WO1999024638A1 - Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern - Google Patents

Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern Download PDF

Info

Publication number
WO1999024638A1
WO1999024638A1 PCT/EP1998/006889 EP9806889W WO9924638A1 WO 1999024638 A1 WO1999024638 A1 WO 1999024638A1 EP 9806889 W EP9806889 W EP 9806889W WO 9924638 A1 WO9924638 A1 WO 9924638A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
treatment solution
corrosion protection
alloy
galvanised
Prior art date
Application number
PCT/EP1998/006889
Other languages
English (en)
French (fr)
Inventor
Jörg Riesop
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to BR9813180-0A priority Critical patent/BR9813180A/pt
Priority to CA002309581A priority patent/CA2309581C/en
Priority to DE59804925T priority patent/DE59804925D1/de
Priority to AU15583/99A priority patent/AU735849B2/en
Priority to JP2000519627A priority patent/JP2001522941A/ja
Priority to EP98959815A priority patent/EP1029111B1/de
Priority to US09/554,038 priority patent/US6537387B1/en
Priority to HU0100106A priority patent/HUP0100106A3/hu
Priority to AT98959815T priority patent/ATE221144T1/de
Publication of WO1999024638A1 publication Critical patent/WO1999024638A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations

Definitions

  • the invention relates to a new method for the corrosion protection of galvanized and alloy-galvanized steel strips.
  • the process provides temporary protection against corrosion for transport and storage purposes.
  • temporary corrosion protection is to be understood in such a way that the metal surfaces are effectively protected against corrosion for transport and storage times until they are coated with a permanent corrosion protection layer, such as, for example, a lacquer before painting, which can take place immediately after the application of the method according to the invention to the metal surfaces.
  • galvanized or alloy-galvanized steel strips are either simply oiled or phosphated or chromated if higher corrosion loads are expected.
  • these measures are not sufficient in the case of particularly high corrosive loads such as ship transport in a salty sea atmosphere or storage in a tropical environment.
  • the best temporary corrosion protection measure known in the prior art is chromating, in which the metal surfaces are provided with a chromium (III) and / or chromium (VI) -containing layer with a layer coating of generally about 5 to about 15 mg / m chromium be covered. Because of the known toxicological problems of chromium compounds, this process is disadvantageous and complex from the aspects of occupational safety, ecology and the necessary disposal.
  • chromated sheets are not very suitable for subsequent phosphating, since on the one hand they lead to chromium contamination of the cleaning solutions and on the other hand the metal surfaces generally do not cover the entire surface are phosphatable. Phosphating as an alternative measure for temporary corrosion protection can undesirably change the appearance of the metal surfaces.
  • phosphating is complex in terms of plant technology, since depending on the substrate material it requires an additional activation step and, as a rule, a passivation step after the phosphating step. Passivation is often carried out with chromium-containing treatment solutions, which also results in the disadvantages mentioned above of using chromium-containing treatment solutions.
  • the object of the invention is to provide a method for the corrosion protection of galvanized and alloy-galvanized steel strips which is less ecologically problematic and easier to implement in terms of plant technology than the aforementioned corrosion protection measures.
  • This new process is said to be at least equivalent to the conventional processes with regard to paintability or paint adhesion, but should still improve corrosion protection for storage purposes.
  • This object is achieved by a method for the corrosion protection of galvanized or alloy-galvanized steel strips, characterized in that the galvanized or alloy-galvanized steel strips are coated with an aqueous
  • Ibis contains 150 g / 1 phosphate ions, and the solution dries without intermediate rinsing.
  • electrolytically galvanized or hot-dip galvanized steel strips are suitable as substrate materials for the process according to the invention.
  • the steel strips can also be alloy-galvanized, that is to say carry an electrolytically or hot-dip layer of a zinc alloy.
  • the most important alloy components for zinc are iron, nickel and / or aluminum.
  • the thickness of the zinc layer or the zinc alloy layer is generally in the range between approximately 2 and approximately 20 micrometers, in particular between approximately 5 and approximately 10 micrometers.
  • the applied treatment solution is dried without intermediate rinsing. Methods of this type are known in the art under no-rinse methods or dry-in-place methods.
  • the treatment solutions can be sprayed onto the metal surfaces or applied by passing the steel strips through the treatment bath.
  • the desired amount of the treatment solution remaining on the metal surface which leads to the desired layer coverage of 1 to 5 g / m, can be adjusted by squeezing rollers.
  • the treatment solution for the process according to the invention contains 1 to 150 g / 1, preferably 10 to 70 g / 1 phosphate ions.
  • the phosphate content is calculated as phosphate ions.
  • the person skilled in the art is aware that at the pH to be set according to the invention in the range from 1.5 to 3.5, only a very small proportion of the phosphate is present as triple negatively charged phosphate ions. Rather, there is an equilibrium of free phosphoric acid, primary and secondary phosphate ions, which depends on the acid constants of the phosphoric acid for the various protolysis stages and on the specifically chosen pH value. In the selected pH range, most of the phosphate is present as free phosphoric acid and as primary and secondary phosphate ions.
  • the corrosion protection to be achieved with the method according to the invention can be further improved if the treatment solution additionally contains one or more of the following components: up to 10 g / 1, preferably between 2 and 4 g / 1 zinc ions, up to 10 g / 1, preferably 3 to 6 g / 1 nickel ions, up to 20 g / 1, preferably between 3 and 7 g / 1 titanium ions, which are preferably used as hexafluorotitanate ions, up to 50 g / 1, preferably between 15 and 25 g / 1 silicon in the form of silicon compounds such as, for example, hexafluorosilicate ions and / or finely dispersed silica with an average particle size below 10 ⁇ m, up to 30 g / 1 Fluoride ions, which can be introduced as free fluoride in the form of hydrofluoric acid or soluble alkali metal or ammonium fluorides or in the form of hexafluoro anions of titanium or silicon. Free fluoride
  • the treatment solution can contain up to 150 g / 1, preferably between 60 and 125 g / 1, of one or more polymers or copolymers of polymerizable carboxylic acids selected from acrylic acid, methacrylic acid and maleic acid and their esters with alcohols having 1 to 6 carbon atoms. If the term "treatment solution” is used generally, this means that the organic polymers can also be present as a suspension in the active ingredient solution, depending on the type.
  • the carboxylic acids used at the pH set in each case Treatment solution as a mixture of free acids and acid anions, It is particularly preferred to use one or more polymeric carboxylic acids together with at least one of the optional components zinc, nickel, titanium, silicon and fluoride mentioned above.
  • Manganese and, if desired, zinc and nickel can be introduced into the treatment solution in the form of water-soluble salts, for example as nitrates. However, it is preferable not to introduce any other foreign ions into the treatment solution other than the above-mentioned components. Manganese, zinc and nickel are therefore preferably used in the form of the oxides or carbonates, so that they are ultimately present in the treatment solution as phosphates. It is further preferred to use titanium, silicon and fluoride in the form of hexafluoric acid. At most, the silicon can be introduced in the form of finely dispersed silicas, which preferably have a specific surface area in the range from 150 to 250 m 2 / g.
  • the temperature of the treatment solution on contact with the metal surface should preferably be in the range from about 20 to about 40 ° C. Lower temperatures slow down the reaction rate and lead to increasingly weaker corrosion protection, higher temperatures shorten the exposure time by drying too quickly and are therefore also disadvantageous.
  • the treatment solution is dried by increasing the temperature. This can be done by irradiating the metal surfaces with infrared radiation. However, it is easier to drive the metal strips wetted with the treatment solution through a drying oven. This should have a temperature such that the object temperature, that is to say the temperature of the metal surface, is in the range from approximately 60 to approximately 120 ° C. In Anglo-Saxon usage, this object temperature is also referred to as the "peak metal temperature".
  • the invention relates to a metal strip made of galvanized or alloy-galvanized steel with a manganese and phosphate-containing corrosion protection layer, which can be obtained by treating the metal strip with an aqueous treatment solution with a pH in the range from 1.5 to 3 , 5th in contact that
  • Ibis contains 150 g / 1 phosphate ions, and the solution dries without intermediate rinsing.
  • the treatment solution preferably contains one or more of the components listed above and that it is applied in the manner described above.
  • the metal strip can have one or more lacquer layers above the manganese and phosphate-containing corrosion protection layer, as is produced in the method according to the invention. These lacquer layers can be applied, for example, by powder coating or in the so-called “coil coating method”. "Coil coating” means that the lacquer layer or layers are applied to the running metal strips by application rollers and then baked.
  • the invention was tested on test sheets made of hot-dip galvanized steel. Since these were covered with an anti-corrosion oil, they were first cleaned with a commercially available alkaline cleaner. In the practical application of the method in belt systems, however, the cleaning step can be omitted if the method according to the invention immediately follows the process of galvanizing or alloy galvanizing.
  • Table 2 Constant alternating climate test according to DIN 50017: days to rust level 5
  • Table 3 Salt spray test according to DIN 50021 SS: days to rust level 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Coating With Molten Metal (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Verfahren zum Korrosionsschutz von verzinkten oder legierungsverzinkten Stahlbändern, dadurch gekennzeichnet, daß man die verzinkten oder legierungsverzinkten Stahlbänder mit einer wäßrigen Behandlungslösung mit einem pH-Wert im Bereich von 1,5 bis 3,5 in Kontakt bringt, die 1 bis 20 g/l Mangan(II)-Ionen und 1 bis 150 g/l Phosphationen enthält, und die Lösung ohne Zwischenspülung eintrocknet. Fakultativ kann die Lösung zusätzlich enthalten: bis zu 10 g/l Zinkionen, bis zu 10 g/l Nickelionen, bis zu 20 g/l Titanionen, bis zu 50 g/l Silizium in Form von Siliziumverbindungen, bis zu 30 g/l Fluoridionen, bis zu 150 g/l eines oder mehrere Polymere oder Copolymere polymerisierbarer Carbonsäuren ausgewählt aus Acrylsäure, Methacrylsäure, Maleinsäure und deren Estern mit Alkoholen mit 1 bis 6 C-Atomen. Weiterhin betrifft die Erfindung die entsprechend behandelten Metallbänder.

Description

"Korrosionsschutz von verzinkten und legierungsverzinkten Stahlbändern"
Die Erfindung betrifft ein neues Verfahren zum Korrosionsschutz von verzinkten und legierungsverzinkten Stahlbändern. Das Verfahren bewirkt einerseits einen temporären Korrosionsschutz für Transport- und Lagerzwecke. Der Begriff „temporärer Korrosionsschutz" ist dabei so zu verstehen, daß die Metalloberflächen für Transport- und Lagerzeiten so lange wirksam vor Korrosion geschützt werden, bis sie mit einer permanenten Korrosionsschutzschicht wie beispielsweise einem Lack überzogen werden. Andererseits dient das erfmdungsgemäße Verfahren als Vorbehandlung der Metalloberflächen vor einer Lackierung, die unmittelbar nach der Anwendung des erfindungsgemäßen Verfahrens auf die Metalloberflächen erfolgen kann.
Als Maßnahme zum temporären Korrosionsschutz werden verzinkte oder legierungsverzinkte Stahlbänder entweder einfach nur eingeölt oder bei zu erwartenden höheren Korrosionsbeanspruchungen phosphatiert oder chromatiert. Bei besonders hohen korrosiven Beanspruchungen wie zum Beispiel Schiffstransport in salzhaltiger Seeatmosphäre oder Lagerung in tropischer Umgebung sind diese Maßnahmen jedoch nicht ausreichend. Die beste im Stand der Technik bekannte temporäre Korrosionsschutzmaßnahme ist eine Chromatierung, bei der die Metalloberflächen mit einer Chrom(III)- und/oder Chrom(VI)-haltigen Schicht mit einer Schichtauflage von in der Regel etwa 5 bis etwa 15 mg/m Chrom überzogen werden. Wegen der bekannten toxikologischen Probleme von Chromverbindungen ist dieses Verfahren unter den Aspekten des Arbeitsschutzes, der Ökologie und der erforderlichen Entsorgung nachteilig und aufwendig. Außerdem sind chromatierte Bleche für eine später erfolgende Phosphatierung wenig geeignet, da sie einerseits zu einer Chrombelastung der Reinigerlösungen fuhren und andererseits die Metalloberflächen in der Regel nicht flächendeckend phosphatierbar sind. Eine Phosphatierung als alternative Maßnahme zum temporären Korrosionsschutz kann das Aussehen der Metalloberflächen in unerwünschter Weise verändern. Außerdem ist eine Phosphatierung anlagentechnisch aufwendig, da sie je nach Substratmaterial eine zusätzliche Aktivierungsstufe und in der Regel nach der Phosphatierung eine Passivierungsstufe erfordert. Dabei erfolgt die Passivierung häufig mit chromhaltigen Behandlungslösungen, wodurch sich die vorstehend genannten Nachteile der Anwendung chromhaltiger Behandlungslösungen auch hier ergeben.
Die Erfindung stellt sich die Aufgabe, ein Verfahren zum Korrosionsschutz von verzinkten und legierungsverzinkten Stahlbändern zur Verfügung zu stellen, das ökologisch weniger problematisch und anlagentechnisch einfacher durchführbar ist als die vorgenannten Korrosionsschutzmaßnahmen. Dieses neue Verfahren soll hinsichtlich Lackierbarkeit bzw. Lackhaftung den herkömmlichen Verfahren mindestens gleichwertig sein, den Korrosionsschutz für Lagerzwecke jedoch noch verbessern.
Diese Aufgabe wird gelöst durch ein Verfahren zum Korrosionsschutz von verzinkten oder legierungsverzinkten Stahlbändern, dadurch gekennzeichnet, daß man die verzinkten oder legierungsverzinkten Stahlbänder mit einer wäßrigen
Behandlungslösung mit einem pH-Wert im Bereich von 1,5 bis 3,5 in Kontakt bringt, die
1 bis 20 g/1 Mangan(II)-Ionen und
Ibis 150 g/1 Phosphationen enthält, und die Lösung ohne Zwischenspülung eintrocknet.
Als Substratmaterialien für das erfindungsgemäße Verfahren kommen demnach elektrolytisch verzinkte oder schmelztauchverzinkte Stahlbänder in Frage. Die Stahlbänder können auch legierungsverzinkt sein, d. h., eine elektrolytisch oder im Schmelztauchverfahren aufgebrachte Schicht einer Zinklegierung tragen. Wichtigste Legierungsbestandteile für Zink sind hierbei Eisen, Nickel und/oder Aluminium. Die Dicke der Zinkschicht bzw. der Zinklegierungsschicht liegt dabei in der Regel im Bereich zwischen etwa 2 und etwa 20 Mikrometer, insbesondere zwischen etwa 5 und etwa 10 Mikrometer.
Die aufgebrachte Behandlungslösung wird ohne Zwischenspülung eingetrocknet. Verfahren dieser Art sind in der Technik unter No-Rinse- Verfahren oder Dry-in- Place-Verfahren bekannt. Dabei können die Behandlungslösungen auf die Metalloberflächen aufgesprüht oder durch Durchführen der Stahlbänder durch das Behandlungsbad aufgebracht werden. Die erwünschte Menge der auf der Metalloberfläche verbleibenden Behandlungslösung, die zu der angestrebten Schichtauflage von 1 bis 5 g/m führt, kann hierbei durch Abquetschwalzen eingestellt werden. Vorteilhaft ist es jedoch, die Behandlungslösung durch ein Walzensystem, wie es beispielsweise als „Chemcoater" bekannt ist direkt in der erwünschten Schichtauflage aufzutragen.
Die Behandlungslösung für das erfindungsgemäße Verfahren enthält 1 bis 150 g/1, vorzugsweise 10 bis 70 g/1 Phosphationen. Der Phosphatgehalt wird hierbei als Phosphationen berechnet. Der Fachmann ist sich jedoch bewußt, daß bei dem erfindungs gemäß einzustellenden pH-Wert im Bereich von 1,5 bis 3,5 nur ein sehr geringer Anteil des Phosphats als dreifach negativ geladene Phosphationen vorliegt. Vielmehr stellt sich ein Gleichgewicht aus freier Phosphorsäure, primären und sekundären Phosphationen ein, das von den Säurekonstanten der Phosphorsäure für die verschiedenen Protolysestufen und vom konkret gewählten pH- Wert abhängt. Im gewählten pH-Bereich liegt der größte Anteil des Phosphats als freie Phosphorsäure und als primäre und sekundäre Phopshationen vor.
Der mit dem erfindungsgemäßen Verfahren zu erzielende Korrosionsschutz kann weiter verbessert werden, wenn die Behandlungslösung zusätzlich eine oder mehrere der folgenden Komponenten enthält: bis zu 10 g/1, vorzugsweise zwischen 2 und 4 g/1 Zinkionen, bis zu 10 g/1, vorzugsweise 3 bis 6 g/1 Nickelionen, bis zu 20 g/1, vorzugsweise zwischen 3 und 7 g/1 Titanionen, die vorzugsweise als Hexafluorotitanationen eingesetzt werden, bis zu 50 g/1, vorzugsweise zwischen 15 und 25 g/1 Silicium in Form von Siliciumverbindungen wie beispielsweise Hexafluorosilicationen und/oder feindisperse Kieselsäure mit einer mittleren Teilchengröße unterhalb von 10 μm, bis zu 30 g/1 Fluoridionen, die als freies Fluorid in Form von Flußsäure oder von löslichen Alkalimetall- oder Ammoniumfluoriden oder in Form von Hexafluoroanionen von Titan oder Silicium eingebracht werden können. Freies Fluorid wird, unabhängig davon, ob es als freie Säure oder als lösliches Salz in die Lösung eingebracht wird, bei dem einzustellenden pH- Wert der Behandlungslösung als Gemisch von Flußsäure und freien Fluoridionen vorliegen.
Weiterhin kann die Behandlungslösung bis zu 150 g/1, vorzugsweise zwischen 60 und 125 g/1 eines oder mehrerer Polymere oder Copolymere polymerisierbarer Carbonsäuren ausgewählt aus Acrylsäure, Methacrylsäure und Maleinsäure und deren Estern mit Alkoholen mit 1 bis 6 C-Atomen enthalten. Wenn hierbei allgemein von „Behandlungslösung" die Rede ist, bedeutet dies, daß die organischen Polymere je nach Typ auch als Suspension in der Wirkstofflösung vorliegen können. Auch hierbei gilt, daß je nach Säurekonstanten der eingesetzten Carbonsäuren diese bei dem jeweils eingestellten pH- Wert der Behandlungslösung als Gemisch aus freien Säuren und aus Säureanionen vorliegen. Besonders bevorzugt ist es, eine oder mehrere polymere Carbonsäuren gemeinsam mit mindestens einer der vorstehend genannten fakultativen Komponenten Zink, Nickel, Titan, Silicium und Fluorid einzusetzen.
Mangan und erwünschtenfalls Zink und Nickel können in Form wasserlöslicher Salze, beispielsweise als Nitrate, in die Behandlungslösung eingebracht werden. Vorzuziehen ist es jedoch, außer den vorstehend genannten Komponenten keine weiteren Fremdionen in die Behandlungslösung einzubringen. Daher setzt man Mangan, Zink und Nickel vorzugsweise in Form der Oxide oder der Carbonate ein, so daß sie in der Behandlungslösung letztlich als Phosphate vorliegen. Weiterhin ist es bevorzugt, Titan, Silicium und Fluorid in Form der Hexafluorosäure einzusetzen. Allenfalls kann das Silicium in Form feindisperser Kieselsäuren eingebracht werden, die vorzugsweise eine spezifische Oberfläche im Bereich von 150 bis 250 m2/g haben.
Die Temperatur der Behandlungslösung beim Kontakt mit der Metalloberfläche soll vorzugsweise im Bereich von etwa 20 bis etwa 40 °C liegen. Tiefere Temperaturen verlangsamen die Reaktionsgeschwindigkeit und führen zu einem zunehmend schwächeren Korrosionsschutz, höhere Temperaturen verkürzen die Einwirkungszeit durch zu rasches Eintrocknen und sind daher ebenfalls nachteilig. Nach einer Einwirkdauer, die von der Bandgeschwindigkeit, im Falle von Spritzoder Tauchapplikation von der Länge der Behandlungszone und in jedem Fall von der Strecke zwischen Behandlungszone und Trockeneinrichtung abhängt und die in der Regel zwischen 1 bis 6 Sekunden liegt, wird die Behandlungslösung durch Temperaturerhöhung eingetrocknet. Dies kann dadurch erfolgen, daß man die Metalloberflächen mit Infrarotstrahlung bestahlt. Einfacher ist es jedoch, die mit der Behandlungslösung benetzten Metallbänder durch einen Trockenofen zu fahren. Dieser soll eine solche Temperatur aufweisen, daß die Objekttemperatur, also die Temperatur der Metalloberfläche, sich im Bereich von etwa 60 bis etwa 120 °C einstellt. Im angelsächsischen Sprachgebrauch wird diese Objekttemperatur auch als „Peak Metal Temperature" bezeichnet.
In einem weiteren Aspekt betrifft die Erfindung ein Metallband aus verzinktem oder legierungsverzinktem Stahl mit einer Mangan- und Phosphat-haltigen Korrosionsschutzschicht, die dadurch erhältlich ist, daß man das Metallband mit einer wäßrigen Behandlungslösung mit einem pH-Wert im Bereich von 1,5 bis 3,5 in Kontakt bringt, die
1 bis 20 g/1 Mangan(II)-Ionen und
Ibis 150 g/1 Phosphationen enthält, und die Lösung ohne Zwischenspülung eintrocknet.
Auch hierfür gilt, daß die Behandlungslösung vorzugsweise eine oder mehrere der vorstehend aufgeführten Komponenten enthält und daß sie in der vorstehend beschriebenen Weise aufgebracht wird. Dabei kann das Metallband oberhalb der Mangan- und Phosphat-haltigen Korrosionsschutzschicht, wie sie in dem erfindungsgemäßen Verfahren erzeugt wird, eine oder mehrere Lackschichten aufweisen. Diese Lackschichten können beispielsweise durch Pulverlackierung oder im sogenannten „Coil-Coating- Verfahren" aufgebracht worden sein. Unter „Coil Coating" versteht man, daß die Lackschicht bzw. die Lackschichten auf die laufenden Metallbänder durch Auftragswalzen aufgetragen und anschließend eingebrannt werden.
Ausführungsbeispiele
Die Erfindung wurde an Probeblechen aus schmelztauchverzinktem Stahl erprobt. Da diese mit einem Korrosionsschutzöl bedeckt waren, wurden sie zunächst mit einem handelsüblichen alkalischen Reiniger gereinigt. Bei der praktischen Anwendung des Verfahrens in Bandanlagen kann der Reinigungsschritt jedoch entfallen, wenn das erfindungsgemäße Verfahren unmittelbar auf den Prozeß der Verzinkung bzw. Legierungsverzinkung folgt. Die Behandlungslösungen gemäß Tabelle 1, die eine Temperatur von 20 °C aufwiesen und einen pH- Wert von 3,2 hatten, wurden durch Eintauchen auf die Probebleche aufgebracht und durch Abschleudern bei 550 Umdrehungen pro Minute auf eine Naßfilmdicke von 6 ml/m eingestellt. Anschließend wurden die benetzten Bleche in einem auf 75 °C eingestellten Umlufttrockenschrank getrocknet. Trockenschranktemperatur und Trockendauer führten zu einer abgeschätzten „Peak Metal Temperature" von 70 °C.
Die erfmdungsgemäß vorbehandelten Probebleche sowie unbehandelte oder gemäß Stand der Technik chromatierte Vergleichsbleche wurden einem Konstant- Wechselklimatest nach DIN 50017 und einem Salzsprühtest nach DIN 50021 SS unterzogen. Dabei wurden die Anzahl der Tage registriert, bis die Probebleche einen visuell abgeschätzten Rostgrad 5 erreichten. Die Ergebnisse sind in Tabellen 2 und 3 wiedergegeben.
Tabelle 1 : Badzusammensetzungen (g/1 in vollentsalztem Wasser)
Figure imgf000009_0001
Tabelle 2: Konstant- Wechselklimatest nach DIN 50017: Tage bis Rostgrad 5
Figure imgf000010_0001
Tabelle 3: Salzsprühtest nach DIN 50021 SS: Tage bis Rostgrad 5
Figure imgf000010_0002

Claims

Patentansprüche
1. Verfahren zum Korrosionsschutz von verzinkten oder legierungsverzinkten Stahlbändern, dadurch gekennzeichnet, daß man die verzinkten oder legierungsverzinkten Stahlbänder mit einer wäßrigen Behandlungslösung mit einem pH- Wert im Bereich von 1,5 bis 3,5 in Kontakt bringt, die
1 bis 20 g/1 Mangan(II)-Ionen und 1 bis 150 g/1 Phosphationen
enthält, und die Lösung ohne Zwischenspülung eintrocknet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Behandlungslösung zusätzlich eine oder mehrere der folgenden Komponenten enthält:
bis zu 10 g/1 Zinkionen, bis zu 10 g/1 Nickelionen, bis zu 20 g/1 Titanionen, bis zu 50 g/1 Silizium in Form von Siliziumverbindungen, bis zu 30 g/1 Fluoridionen, bis zu 150 g/1 eines oder mehrere Polymere oder Copolymere polymerisierbarer
Carbonsäuren ausgewählt aus Acrylsäure, Methacrylsäure, Maleinsäure und deren Estern mit Alkoholen mit 1 bis 6 C-Atomen.
3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Behandlungslösung eine Temperatur im Bereich von 20 bis 40 °C aufweist.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Behandlungslösung nach einer Einwirkdauer von 1 bis 6 Sekunden bei einer Objekttemperatur von 60 bis 120 °C eintrocknet.
5. Metallband aus verzinktem oder legierungsverzinktem Stahl mit einer Mangan- und Phosphat-haltigen Korrosionsschutzschicht, die dadurch erhältlich ist, daß man das Metallband mit einer wäßrigen Behandlungslösung mit einem pH- Wert im Bereich von 1,5 bis 3,5 in Kontakt bringt, die
1 bis 20 g/1 Mangan(II)-Ionen und Ibis 150 g/1 Phosphationen
enthält, und die Lösung ohne Zwischenspülung eintrocknet.
6. Metallband nach Anspruch 5, dadurch gekennzeichnet, daß es oberhalb der Mangan- und Phosphat-haltigen Korrosionsschutzschicht eine oder mehrere Lackschichten aufweist.
PCT/EP1998/006889 1997-11-08 1998-10-30 Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern WO1999024638A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR9813180-0A BR9813180A (pt) 1997-11-08 1998-10-30 Proteção contra corrosão de fitas de aço galvanizadas e galvanizadas com liga
CA002309581A CA2309581C (en) 1997-11-08 1998-10-30 Corrosion protection of steel strips coated with zinc or zinc alloy
DE59804925T DE59804925D1 (de) 1997-11-08 1998-10-30 Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern
AU15583/99A AU735849B2 (en) 1997-11-08 1998-10-30 "Corrosion protection of steel strips coated with zinc or zinc alloy"
JP2000519627A JP2001522941A (ja) 1997-11-08 1998-10-30 亜鉛メッキ鋼板又は亜鉛合金メッキ鋼板の防食
EP98959815A EP1029111B1 (de) 1997-11-08 1998-10-30 Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern
US09/554,038 US6537387B1 (en) 1997-11-08 1998-10-30 Corrosion protection for galvanized and alloy galvanized steel strips
HU0100106A HUP0100106A3 (en) 1997-11-08 1998-10-30 Corrosion protection for galvanised and alloy galvanised steel strips
AT98959815T ATE221144T1 (de) 1997-11-08 1998-10-30 Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19749508A DE19749508A1 (de) 1997-11-08 1997-11-08 Korrosionsschutz von verzinkten und legierungsverzinkten Stahlbändern
DE19749508.7 1997-11-08

Publications (1)

Publication Number Publication Date
WO1999024638A1 true WO1999024638A1 (de) 1999-05-20

Family

ID=7848097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006889 WO1999024638A1 (de) 1997-11-08 1998-10-30 Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern

Country Status (12)

Country Link
US (1) US6537387B1 (de)
EP (1) EP1029111B1 (de)
JP (1) JP2001522941A (de)
AT (1) ATE221144T1 (de)
AU (1) AU735849B2 (de)
BR (1) BR9813180A (de)
CA (1) CA2309581C (de)
DE (2) DE19749508A1 (de)
ES (1) ES2180217T3 (de)
HU (1) HUP0100106A3 (de)
WO (1) WO1999024638A1 (de)
ZA (1) ZA9810120B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046421A1 (en) * 2002-11-15 2004-06-03 Henkel Kommanditgesellschaft Auf Aktien Passivation composition and process for zinciferous and aluminiferous surfaces
AU778285B2 (en) * 2000-03-07 2004-11-25 Chemetall Gmbh Method for applying a phosphate covering and use of metal parts thus phospated
US6835460B2 (en) * 2000-01-28 2004-12-28 Henkel Kommanditgesellschaft Auf Aktien Dry-in-place zinc phosphating compositions and processes that produce phosphate conversion coatings with improved adhesion to subsequently applied paint, sealants, and other elastomers
KR100852441B1 (ko) * 2000-11-10 2008-08-14 닛신 세이코 가부시키가이샤 내식성이 개선된 화성처리 강판
EP2080564A3 (de) * 2007-12-19 2011-11-16 Voestalpine Stahl GmbH Behandlungsloesung zum Beschichten eines verzinkten oder legierungsverzinkten Stahlbandes, ein Verfahren zum Aufbringen derselben sowie ein verzinktes oder legierungsverzinktes Stahlband mit einer Beschichtung aus der erhaltenen behandlungsloesung zur Verbesserung des Umformverhaltens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022352A1 (de) * 2000-05-08 2001-11-22 Georg Gros Verfahren zur Beschichtung von elektrolytisch- oder feuerverzinkten Blechen
WO2002024344A2 (de) * 2000-09-25 2002-03-28 Chemetall Gmbh Verfahren zur vorbehandlung und beschichtung von metallischen oberflächen vor der umformung mit einem lackähnlichen überzug und verwendung der derart beschichteten substrate
DE10110833B4 (de) * 2001-03-06 2005-03-24 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
DE102005027567A1 (de) 2005-06-14 2006-12-21 Basf Ag Verfahren zum Passivieren von metallischen Oberflächen mit Säuregruppen aufweisenden Polymeren
JP4970773B2 (ja) * 2005-11-18 2012-07-11 日本パーカライジング株式会社 金属表面処理剤、金属材の表面処理方法及び表面処理金属材
JP5241075B2 (ja) * 2006-03-06 2013-07-17 日本パーカライジング株式会社 金属材料表面処理用のノンクロメート水系表面処理剤
CN101516728B (zh) * 2006-07-31 2011-10-19 佛罗里达大学研究基金公司 微型飞行器的无翼悬停
CN106222639B (zh) * 2016-08-17 2018-07-13 安徽红桥金属制造有限公司 一种弹簧钢铸件表面防锈预处理溶液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264378A (en) * 1979-02-14 1981-04-28 Oxy Metal Industries Corporation Chromium-free surface treatment
US5378292A (en) * 1993-12-15 1995-01-03 Henkel Corporation Phosphate conversion coating and compositions and concentrates therefor with stable internal accelerator
US5427632A (en) * 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
WO1996009422A1 (de) * 1994-09-23 1996-03-28 Henkel Kommanditgesellschaft Auf Aktien Phosphatierverfahren ohne nachspülung
WO1996017977A1 (de) * 1994-12-09 1996-06-13 Metallgesellschaft Aktiengesellschaft Verfahren zum aufbringen von phosphatüberzügen auf metalloberflächen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264378A (en) * 1979-02-14 1981-04-28 Oxy Metal Industries Corporation Chromium-free surface treatment
US5427632A (en) * 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
US5378292A (en) * 1993-12-15 1995-01-03 Henkel Corporation Phosphate conversion coating and compositions and concentrates therefor with stable internal accelerator
WO1996009422A1 (de) * 1994-09-23 1996-03-28 Henkel Kommanditgesellschaft Auf Aktien Phosphatierverfahren ohne nachspülung
WO1996017977A1 (de) * 1994-12-09 1996-06-13 Metallgesellschaft Aktiengesellschaft Verfahren zum aufbringen von phosphatüberzügen auf metalloberflächen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835460B2 (en) * 2000-01-28 2004-12-28 Henkel Kommanditgesellschaft Auf Aktien Dry-in-place zinc phosphating compositions and processes that produce phosphate conversion coatings with improved adhesion to subsequently applied paint, sealants, and other elastomers
AU778285B2 (en) * 2000-03-07 2004-11-25 Chemetall Gmbh Method for applying a phosphate covering and use of metal parts thus phospated
KR100841156B1 (ko) * 2000-03-07 2008-06-24 케메탈 게엠베하 인산염 코팅을 도포하는 방법
KR100852441B1 (ko) * 2000-11-10 2008-08-14 닛신 세이코 가부시키가이샤 내식성이 개선된 화성처리 강판
WO2004046421A1 (en) * 2002-11-15 2004-06-03 Henkel Kommanditgesellschaft Auf Aktien Passivation composition and process for zinciferous and aluminiferous surfaces
EP2080564A3 (de) * 2007-12-19 2011-11-16 Voestalpine Stahl GmbH Behandlungsloesung zum Beschichten eines verzinkten oder legierungsverzinkten Stahlbandes, ein Verfahren zum Aufbringen derselben sowie ein verzinktes oder legierungsverzinktes Stahlband mit einer Beschichtung aus der erhaltenen behandlungsloesung zur Verbesserung des Umformverhaltens

Also Published As

Publication number Publication date
DE59804925D1 (de) 2002-08-29
DE19749508A1 (de) 1999-05-12
ZA9810120B (en) 1999-05-10
ES2180217T3 (es) 2003-02-01
JP2001522941A (ja) 2001-11-20
HUP0100106A3 (en) 2004-06-28
ATE221144T1 (de) 2002-08-15
US6537387B1 (en) 2003-03-25
BR9813180A (pt) 2000-08-22
EP1029111A1 (de) 2000-08-23
EP1029111B1 (de) 2002-07-24
CA2309581A1 (en) 1999-05-20
HUP0100106A2 (hu) 2001-05-28
CA2309581C (en) 2007-04-10
AU1558399A (en) 1999-05-31
AU735849B2 (en) 2001-07-19

Similar Documents

Publication Publication Date Title
DE102005059314B4 (de) Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
EP0700452B1 (de) Chromfreie konversionsbehandlung von aluminium
EP0754251B1 (de) Chromfreies verfahren zur no-rinse behandlung von aluminium und seinen legierungen sowie hierfür geeignete wässrige badlösungen
DE2428065C2 (de) Verfahren zum Versiegeln von Zinkphosphatüberzügen auf Stahlsubstraten
EP0214571B1 (de) Verfahren zur Erzeugung von Konversionsschichten auf Zink und/oder Zinklegierungen
EP0774016B1 (de) Phosphatierverfahren ohne nachspülung
DE69633735T2 (de) Zinkphosphat konversionsüberzugszusammensetzung und verfahren
DE3234558C2 (de)
EP0187917B1 (de) Verfahren zur Verbesserung des Korrosionsschutzes autophoretisch abgeschiedener Harzschichten auf Metalloberflächen
WO2001059181A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP2255026A1 (de) Optimierte passivierung auf ti-/zr-basis für metalloberflächen
WO2000068458A1 (de) Vorbehandlung von aluminiumoberflächen durch chromfreie lösungen
EP0796356B1 (de) Verfahren zum aufbringen von phosphatüberzügen auf metalloberflächen
EP1029111B1 (de) Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern
EP1402083A1 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP0578670A1 (de) Verfahren zum phosphatieren von metalloberflächen.
WO1999007917A1 (de) Alkalische bandpassivierung
DE3247729A1 (de) Verfahren zur behandlung von metalloberflaechen, insbesondere solchen von aluminium, aluminiumlegierungen und stahl, sowie hierfuer geeignete waessrige badloesungen
WO2009068523A1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
DE4228470A1 (de) Verfahren zur Phospatierung von einseitig verzinktem Stahlband
EP0039093B1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie dessen Anwendung
EP0264811B1 (de) Verfahren zum Erzeugen von Phosphatüberzügen
EP0486576A1 (de) Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl.
DE1088309B (de) Verfahren zur Behandlung von eisernen Oberflaechen zwecks Erhoehung der Korrosions-bestaendigkeit und Verbesserung der Haftfestigkeit fuer organische UEberzuege
EP2255028A1 (de) Optimierte elektrotauchlackierung von zusammengefügten und teilweise vorphosphatierten bauteilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ GE HR HU ID IS JP KG KP KR KZ LK LT LV MD MX NO NZ PL RO RU SG SI SK TJ TM TR UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998959815

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2309581

Country of ref document: CA

Ref country code: CA

Ref document number: 2309581

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 15583/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09554038

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998959815

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 15583/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998959815

Country of ref document: EP