EP0774016B1 - Phosphatierverfahren ohne nachspülung - Google Patents

Phosphatierverfahren ohne nachspülung Download PDF

Info

Publication number
EP0774016B1
EP0774016B1 EP95932747A EP95932747A EP0774016B1 EP 0774016 B1 EP0774016 B1 EP 0774016B1 EP 95932747 A EP95932747 A EP 95932747A EP 95932747 A EP95932747 A EP 95932747A EP 0774016 B1 EP0774016 B1 EP 0774016B1
Authority
EP
European Patent Office
Prior art keywords
phosphating solution
phosphating
weight
phosphate
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95932747A
Other languages
English (en)
French (fr)
Other versions
EP0774016A1 (de
Inventor
Reinhard Seidel
Bernd Mayer
Melanie Joppen
Melita Krause
Jörg Riesop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0774016A1 publication Critical patent/EP0774016A1/de
Application granted granted Critical
Publication of EP0774016B1 publication Critical patent/EP0774016B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/17Orthophosphates containing zinc cations containing also organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying

Definitions

  • the invention relates to a method for Phosphating of surfaces made of steel, zinc, aluminum or in each case their alloys. It is particularly suitable for phosphating of electrolytically galvanized or hot dip galvanized Steel.
  • the phosphating solutions are in the sense of a so-called "No-rinse process" after the intended exposure time not rinsed on the surfaces with water but immediately dried up. The method is therefore particularly useful suitable in continuously running belt treatment plants.
  • the phosphating of metals pursues the goal on the metal surface to produce firmly adherent metal phosphate layers already improve the corrosion resistance and in combination with paints and other organic coatings into one Significant increase in paint adhesion and resistance to infiltration contribute to corrosion.
  • Such phosphating processes have been known for a long time.
  • EP-B-141 341 also describes a phosphating process in which is not rinsed with water. This method was used especially for fixed structures such as bridges or the like developed. Treated with a solution the 1 to 5% by weight zinc, 1 to 20% by weight phosphoric acid, 0.01 to 0.5% by weight of cobalt and / or nickel and 0.02 to 1.5% by weight of one Contains accelerator. After applying the phosphating solution, the for example by wiping, brushing, spreading, rolling up or Spraying can take place, the solution is not left for one act for a certain time, whereby the solution reacts or also only partially responded. In both cases, following the Exposure to be rinsed.
  • Phosphating solution described high levels of zinc and phosphate on.
  • Phosphating solutions are in similar concentration ranges also known for depositing phosphate layers on metal parts, that of a cold mechanical shape, for example by pulling or presses to be subjected.
  • the separating ones relatively thick layers of phosphate that you can use to increase their effects can still soak with oil, act as lubricants and reduce the friction between tool and workpiece. They are usually not a pretreatment before painting suitable because the paint adheres to the thick phosphate layers mechanical stress is bad.
  • Such a phosphating solution for the formation of phosphate layers on steel strip or wire as a lubricant before cold drawing or other deformations can be used, for example, in DE-B-25 52 122. Accordingly, solutions are used that contain zinc in in an amount of 5 to 100 g / l and phosphate in an amount of 10 up to 150 g / l and nitrate acting as an accelerator in a quantity from 10 to 80 g / l included.
  • the phosphating solution is with the Surface in contact for a period of 5 to 15 seconds brought and then rinsed with water.
  • EP-A-0 565 346 relates to a phosphating solution for metal surfaces made of steel, zinc, Aluminum or its alloys.
  • the metal surface treated with an aqueous solution containing 0.01 to 1.0 mol / l silicon dioxide, 0.02 to 0.5 mol / l phosphoric acid and 0.001 to 0.5 mol / l of a divalent metal ion contains.
  • divalent metal ions are manganese, cobalt, iron, Nickel, zinc and preferably calcium, zinc or magnesium in question.
  • the metal surface treated in this way is dried and then with a second curable coating, for example a lacquer coating, Mistake.
  • Section 94: 94280a (JP-A-75/139 039) becomes a solution for forming conversion coatings on surfaces of zinc or zinc alloys.
  • the solution contains 3.0 to 20.0 g / l zinc ions, 1.0 up to 5.0 g / l manganese ions, 2.0 to 11.0 g / l nitrate ions, 10 to 100 g / l phosphate ions, 0.2 up to 0.8 vol .-% hydrogen peroxide and preferably 0.02 to 0.25 g / l nickel ions.
  • the object of the invention is phosphating processes to make available for use in continuously running conveyor systems are provided and in which the treated surfaces are rinsed with Water can be dispensed with.
  • Zinc concentrations between 5 and 25 g / l are due to an increased Process security preferable.
  • a phosphating process is required used, in which the phosphating solution 2 to 25 g / l of manganese ions, preferably 5 to 25 g / l, contains.
  • the phosphating solution to optimize the Properties of the phosphate layer for the intended use of the pretreated material contain other components.
  • the phosphating solution can also be one or several divalent metal ions in amounts of 0.1 to 15 each g / l contain, these additional metal ions are selected from nickel, cobalt, calcium and magnesium.
  • the phosphating solution can contain iron in quantities of 0.01 to 5 g / l and / or contain 3 to 200 mg / l copper ions.
  • fluoride in free or complex form, for example as fluorocomplexes of boron, silicon, titanium or Zircon, favorably influence the layer formation. This is particularly so in the phosphating of hot-dip galvanized steel Case.
  • the effective amounts of fluoride are between 0.01 and 5 g / l.
  • pH values above 3 as in the treatment of surfaces of electrolytically galvanized steel can be advantageous, the phosphating solutions tend to instability. You leave by adding 0.1 to 100 g / l of a chelating hydroxycarboxylic acid stabilize with 3 to 6 carbon atoms. Examples of such Hydroxycarboxylic acids are lactic acid and especially citric acid and tartaric acid.
  • the phosphating solution contains free acid in the range of 0 to 100 points.
  • the score will become more free Acidity is determined by adding 10 ml of the phosphating solution to 0.1 N Sodium hydroxide solution titrated to a pH of 3.6. The consumption at Sodium hydroxide solution in ml gives the free acid score. Has the phosphating solution the pH is already at 3.6, the score is on free acid therefore 0. At higher pH values of the phosphating solution is reverse titrated with 0.1N hydrochloric acid until a pH of 3.6 is reached. The free acid score is then negative and will show the consumption with a negative sign Equivalent to hydrochloric acid in ml.
  • the total acid content is determined by 10 ml of the phosphating solution with 0.1 N sodium hydroxide solution titrated to a pH of 8.5. The consumption of 0.1 n sodium hydroxide solution the total acidity is given in ml.
  • Total phosphating solution is in the Range from 40 to 400 points. You set the relationship free acid to total acid preferably so that it is in the range from 1: 4 to 1: 20.
  • Phosphating solutions which have a temperature are preferably used in the range of 15 to 80 ° C, especially in the range of 20 to 40 ° C.
  • the active substance content of the phosphating solutions should Range from about 5.5 to about 35% by weight.
  • the active substance content defined as the sum of the metal ions, phosphoric acid and optionally other components mentioned above.
  • the process is especially designed for the phosphating of running metal strips in strip treatment plants, such as those found in steel mills.
  • a liquid film coating of 2 to 10 ml of phosphating solution per m 2 of metal surface is preferably applied to the surfaces.
  • the optimal value of the liquid film coating depends on the one hand on the active substance content of the phosphating solution and on the other hand on the system-specific exposure time of the phosphating solution.
  • layer weights of the phosphate layers in the range from about 0.3 to about 3 g / m 2 are obtained with liquid film coatings of about 6 ml / m 2 , as is the basis for a subsequent coating are desired.
  • the higher the concentration of the phosphating solution the lower the liquid film coating.
  • the application of the phosphating solution to the surface and the Adjustment of the desired liquid film overlay can vary Procedure. For example, it is possible to spray the phosphating solution onto the surface in such a way that the desired liquid film overlay is set. Greater procedural security is achieved, however, if one looks after the jet the phosphating solution specifically adjusts the liquid film overlay, for example by blowing with compressed air or preferably by Squeeze rollers. Instead of spraying, you can use the phosphating solution also apply to the surface by application rollers, the desired liquid film overlay is set directly leaves.
  • Such application rollers are for the surface treatment of Metal strips known, for example under the name "chemcoater" or "roll coater".
  • the method can be carried out that the surfaces in the phosphating solution immersed. Metal strips can, for example, by the phosphating solution be driven through, leaving after leaving the desired liquid film overlay on the surface of the phosphating solution sets what, for example, by blowing with air or preferably with squeeze rollers.
  • the optimal process parameters depend on the specific material properties of the surfaces to be treated. For example it has been found that in the treatment of surfaces of running belts made of hot-dip galvanized steel Get phosphating results when the phosphating solution Active substance content in the range of 5.5 to 35 wt .-%. Of the preferred pH is in the range 1.0 to 2.2 and the weight ratio the sum of the divalent metal ions to phosphate preferably set in the range 1: 5 to 1: 6.
  • the presence of free or complex-bound fluoride in the phosphating solution has a favorable effect on the layer formation.
  • Fluoride concentrations in the range of 0.5 to 1.5 g / l are particularly effective.
  • Free fluoride is preferably used in the form of hydrofluoric acid, complex fluorides are preferably used as fluoro acids of boron, silicon, titanium and / or zircon.
  • alkali fluoride or acidic alkali fluorides such as KHF 2 to provide free fluoride is also possible.
  • the bath stability can be improved by adding about 1 to 10% by weight of a chelating hydroxycarboxylic acid improve with 3 to 6 carbon atoms, for example by lactic acid and preferably citric acid and / or tartaric acid.
  • accelerators that is to say substances which promote the formation of layers due to their oxidizing or reducing action, is not necessary in particular in the treatment of galvanized steel. However, they can be advantageous if the formation of certain crystal shapes is desired.
  • Suitable accelerators are the compounds known in the relevant prior art, in particular nitrate, nitrite, chlorate, nitrobenzenesulfonic acid or hydrogen peroxide.
  • Hydroxylamine can be used as a rather reducing accelerator. Hydrogen peroxide and hydroxylamine can be used as such, the other accelerators mentioned as free acids or in the form of salts soluble in the phosphating solution.
  • the surfaces are preferably heated to a temperature between 50 and 120 ° C, especially between 60 and 90 ° C.
  • the treated steel strip can be applied by a the appropriate temperature set drying oven become. Drying can also be done by blowing on the surfaces with hot gases, preferably with air and / or by exposure of infrared radiation.
  • the effective exposure time is given by the time between the first contact of the surface with the phosphating solution and the complete drying of the liquid film on the Surface, i.e. the end of the drying measure. Preferably this time period is in the range between approximately 3 and approximately 60 seconds.
  • phosphate layers with a layer weight in the range of 0.3 to 3 g / m 2 are produced on the surfaces.
  • Layer weights in this area are particularly desirable as the basis for subsequent painting, since this means that the two requirements of corrosion protection and paint adhesion are met to a particular extent at the same time.
  • layers are obtained which do not provide any reflections in X-ray diffraction studies, that is to say can be described as X-ray amorphous, or layers in which more or less pronounced reflections from Hopeit can be observed.
  • the sheets pre-phosphated by the process according to the invention can be used in particular in the manufacture of vehicles. It is the rule here that the vehicle bodies according to the assembly again phosphated and then painted become, what is currently a cathodic electrocoating is. In these cases, the method according to the invention Pre-phosphated material in the unpainted state for further processing transported. To improve temporary corrosion protection During storage and transportation the phosphated can Material must also be oiled. This will Simultaneously, subsequent forming operations are made easier. A post-phosphating of the assembled bodies after an alkaline cleaning is easily possible.
  • the phosphating according to the invention can also be carried out directly a tape coating with an organic film or Connect paint.
  • the term "coil coating” is used for this process. common. In this way, coil-coated material becomes currently preferred when building household appliances such as Refrigerators and washing machines as well as for architectural applications used.
  • activation In the prior art, it is customary to have a so-called activation precede the phosphating.
  • the aim of this activation is to allow crystal nuclei to form on the metal surface for the formation of the phosphate layer. This promotes the formation of dense and small crystalline phosphate layers.
  • aqueous solutions or suspensions of titanium phosphates are currently used for this activation.
  • Such activation can also precede the method according to the invention.
  • Commercial titanium-containing activating agents such as Fixodine R 950 from Henkel KGaA are suitable for this. When performing an activation, it is recommended to dry the tape between activation and phosphating.
  • electrolytically galvanized steel sheets (ZE) with a zinc coating of 7.5 .mu.m on each side and hot-dip galvanized steel sheets (Z) with a zinc coating of about 10 .mu.m were used on both sides.
  • the sheets each had the dimensions 10 cm x 20 cm.
  • a commercially available mildly alkaline cleaner Rosinline R 1250 I, Henkel KGaA, Düsseldorf.
  • the no-rinse treatment was simulated by pouring the treatment solution in a paint spinner (model 4302 from Lau GmbH) and at 550 rpm. was thrown out.
  • the layer weight was determined as a parameter for the phosphate layer obtained. Two different methods were used for this: When determining the layer weight by weighing, the sheet was weighed before the coating was carried out, then the phosphating solution was applied and dried and the coated sheet was weighed again. The layer coverage in g / m 2 was calculated from the difference in weight. When determining the layer weight by detaching, the phosphated sheets were weighed, the phosphate layer was removed by detaching with 0.5% by weight chromic acid solution and the sheets were weighed again. The mass of the removed layer g / m 2 was determined from the weight difference.
  • the layer weight determined by detachment is generally higher than that determined by weighing, since part of the metal surface is converted into metal phosphate by the phosphating. This part is not included in the determination of the layer weight by weighing, but is also removed when the layer is detached.
  • Table 1 contains phosphating baths for electrolytically galvanized steel and the layer coatings obtained, Table 2 corresponding examples for the treatment of hot-dip galvanized steel.
  • phosphating solutions are suitable which lead to layer weights in the range from 1 to 3 g / m 2 .
  • Zinc as oxide, manganese and nickel as carbonate were used in the exemplary treatment baths.
  • the baths contained no components other than water.
  • the layer composition was determined by means of EDX (X-ray emission) determined (in% by weight): Zn 7.5, Mn 2.2, P 7.5, Al 0.3, Rest: Can be taken up as oxygen.
  • EDX X-ray emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Saccharide Compounds (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Phosphatierung von Oberflächen aus Stahl, Zink, Aluminium oder jeweils deren Legierungen. Besonders geeignet ist es für die Phosphatierung von elektrolytisch verzinktem oder schmelztauchverzinktem Stahl. Die Phosphatierlösungen werden dabei im Sinne eines sogenannten "no-rinse-Verfahrens" nach der vorgesehenen Einwirkungsdauer auf die Oberflächen nicht mit Wasser abgespült sondern unmittelbar eingetrocknet. Daher ist das Verfahren insbesondere zur Anwendung in kontinuierlich laufenden Bandbehandlungsanlagen geeignet.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für eine Vorbehandlung vor der Lackierung, insbesondere vor einer elektrolytischen Tauchlackierung, wie sie im Kraftfahrzeugbau üblich ist, wurden in letzter Zeit insbesondere Niedrigzinkphosphatierverfahren bevorzugt, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/l aufweisen.
Im Automobil- und insbesondere im Haushaltsgerätebau, aber auch für Architekturanwendungen, zeigt sich eine Tendenz zum Einsatz von im Stahlwerk vorphosphatierten verzinkten Stahlbändern, um die günstigeren Umformeigenschaften der mit einer Phosphatschicht versehenen Bleche zu nutzen und um chemische Behandlungsschritte vor der Lackierung einzusparen. Daher gewinnen Phosphatierverfahren an Bedeutung, die unter den Bedingungen der kurzen Phosphatierzeiten der Bandanlage von wenigen Sekunden zu qualitativ hochwertigen Phosphatschichten führen. Die Behandlung erfolgt üblicherweise im Spritzen, im Tauchen oder in kombinierten Verfahren, wobei die Phosphatierlösung nach der erwünschten Einwirkungszeit von der Metalloberfläche mit Wasser abgespült wird. Ein solches Verfahren ist beispielsweise in der DE-A-42 41 134 beschrieben, wonach Phosphatierlösungen zum Einsatz kommen, die 1,0 bis 6,0 g/l Zink und 8 bis 25 g/l Phosphat enthalten. Weitere fakultative Bestandteile sind Nickel, Kobalt, Mangan, Magnesium und Calcium in Mengen von jeweils 0,5 bis 5,0 g/l, Eisen(II) in Mengen bis 2 g/l und Kupfer in Mengen von 3 bis 50 mg/l.
Das bisher erforderliche Abspülen der Phosphatierlösung mit Wasser führt einerseits zu einem hohen Frischwasserverbrauch in der Phosphatieranlage und hat andererseits den Anfall von mit Schwermetallen verunreinigtem Abwasser zur Folge, das zur Wiederverwendung oder zum Ablassen in den Kanal aufbereitet werden muß. Das Konzept einer Phosphatierung ohne Nachspülung wurde bereits in der Literatur diskutiert (G.Carreras-Candi: "Caracteristiques de la Phosphatation sans Rincage"..., Surfaces 106 (1976), Heft 15, S. 25-28), ohne daß konkrete Angaben über die Durchführung des Verfahrens und dafür geeignete Behandlungsbäder gemacht wurden.
Die DE-A-2 739 006, entsprechend FR-A-2 365 642, beschreibt ein Phosphatierverfahren, bei dem auf die unter Umwelt- und Kostenaspekten unerwünschte Wasserspülung verzichtet werden kann. Bei diesem Verfahren werden die Oberflächen während einer Dauer von 1 bis 5 Sekunden mit einer Phosphatierungslösung einer Temperatur von 50 bis 75 °C in Berührung gebracht, die 0,1 bis 5 g/l Zink, 1 bis 10 Gew.-Teile Nickel und/oder Kobalt pro Gew.-Teil Zink, 5 bis 50 g/l Phosphat und als Beschleuniger 0,5 bis 5 g/l Wasserstoffperoxid enthält. Danach wird ohne Zwischenspülung unmittelbar getrocknet. Dabei wird von einer Verwendung von Phosphatierlösungen mit einem Zinkgehalt über 5 g/l abgeraten, da sonst die Lackfilmhaftung verschlechtert wird.
Die EP-B-141 341 beschreibt ebenfalls ein Phosphatierverfahren, bei dem auf eine Nachspülung mit Wasser verzichtet wird. Dieses Verfahren wurde insbesondere für ortsfeste Konstruktionen wie Brücken oder ähnliches entwickelt. Behandelt wird demnach mit einer Lösung, die 1 bis 5 Gew.-% Zink, 1 bis 20 Gew.-% Phosphorsäure, 0,01 bis 0,5 Gew.-% Kobalt und/oder Nickel und 0,02 bis 1,5 Gew.-% eines Beschleunigers enthält. Nach dem Auftrag der Phosphatierlösung, der beispielsweise durch Wischen, Bürsten, Aufstreichen, Aufrollen oder Aufspritzen erfolgen kann, läßt man die Lösung für eine nicht näher bestimmte Zeit einwirken, wobei die Lösung ausreagiert oder auch nur teilweise reagiert. In beiden Fällen kann im Anschluß an die Einwirkung gespült werden.
Im Vergleich zu üblichen Phosphatierverfahren, die als Vorbehandlung vor einer Lackierung eingesetzt werden, weist die vorstehend beschriebene Phosphatierlösung hohe Gehalte an Zink und Phosphat auf. Phosphatierlösungen in ähnlichen Konzentrationsbereichen sind auch bekannt zum Abscheiden von Phosphatschichten auf Metallteilen, die einer kalten mechanischen Formgebung, beispielsweise durch Ziehen oder Pressen, unterworfen werden sollen. Die sich hierbei abscheidenden relativ dicken Phosphatschichten, die man zur Erhöhung ihrer Wirkung noch mit Öl tränken kann, wirken dabei als Schmiermittel und verringern die Reibung zwischen Werkzeug und Werkstück. Als Vorbehandlung vor einer Lackierung sind sie üblicherweise nicht geeignet, da auf den dicken Phosphatschichten die Lackhaftung bei mechanischer Beanspruchung nur schlecht ist. Eine solche Phosphatierlösung, die zur Ausbildung von Phosphatschichten auf Stahlband oder -draht als Gleitmittel vor dem Kaltziehen oder anderen Verformungen eingesetzt werden kann, ist beispielsweise in der DE-B-25 52 122 beschrieben. Demnach werden Lösungen eingesetzt, die Zink in einer Menge von 5 bis 100 g/l und Phosphat in einer Menge von 10 bis 150 g/l sowie als Beschleuniger wirkendes Nitrat in einer Menge von 10 bis 80 g/l enthalten. Die Phosphatierlösung wird mit der Oberfläche für eine Zeitspanne von 5 bis 15 Sekunden in Kontakt gebracht und anschließend mit Wasser abgespült.
EP-A-0 565 346 betrifft eine Phosphatierlösung für Metalloberflächen aus Stahl, Zink, Aluminium oder deren Legierungen. In einer ersten Verfahrensstufe wird die Metalloberfläche mit einer wäßrigen Lösung behandelt, die 0,01 bis 1,0 mol/l Siliciumdioxid, 0,02 bis 0,5 mol/l Phosphorsäure und 0,001 bis 0,5 mol/l eines zweiwertigen Metallions enthält. Als zweiwertige Metallionen kommen beispielsweise Mangan, Kobalt, Eisen, Nickel, Zink und vorzugsweise Calcium, Zink oder Magnesium in Frage. Ohne Zwischenspülung wird die so behandeltes Metalloberfläche getrocknet und anschließend mit einem zweiten härtbaren Überzug, beispielsweise einem Lacküberzug, versehen.
In Chemical Abstracts, Vol. 84 (1976), Seite 283, Referat 94:94280a (JP-A-75/139 039) wird eine Lösung zur Bildung von Konversionsüberzügen auf Oberflächen von Zink oder Zinklegierungen beschrieben. Die Lösung enthält 3,0 bis 20,0 g/l Zinkionen, 1,0 bis 5,0 g/l Manganionen, 2,0 bis 11,0 g/l Nitrationen, 10 bis 100 g/l Phosphationen, 0,2 bis 0,8 Vol.-% Wasserstoffperoxid und vorzugsweise 0,02 bis 0,25 g/l Nickelionen.
Die Erfindung stellt sich die Aufgabe, Phosphatierverfahren zur Verfügung zu stellen, die zum Einsatz in kontinuierlich laufenden Bandanlagen vorgesehen sind und bei denen auf ein Abspülen der behandelten Oberflächen mit Wasser verzichtet werden kann.
Die Erfindung betrifft ein Verfahren zur Phosphatierung von Oberflächen aus Stahl, Zink, Aluminium oder jeweils deren Legierungen durch Behandlung mit sauren, zink- und phosphathaltigen Lösungen und Eintrocknen der Lösungen ohne Zwischenspülung, dadurch gekennzeichnet, daß die Oberflächen mit einer Phosphatierlösung in Kontakt gebracht werden, die
  • 2 bis 25 g/l Zinkionen,
  • 2 bis 25 g/l Manganionen und
  • 50 bis 300 g/l Phosphationen enthält und einen pH-Wert im Bereich von 1 bis 3,6,
  • einen Gehalt an Freier Säure im Bereich von 0 bis 100 Punkten und
  • einen Gehalt an Gesamtsäure im Bereich von 40 bis 400 Punkten aufweist.
  • Zinkkonzentrationen zwischen 5 und 25 g/l sind wegen einer erhöhten Verfahrenssicherheit vorzuziehen. Für einen verbesserten Korrosionsschutz, wie er beispielsweise für die Anwendung im Fahrzeugbau erforderlich ist, wird ein Phosphatierverfahren eingesetzt, bei dem die Phosphatierlösung 2 bis 25 g/l Manganionen, vorzugsweise 5 bis 25 g/l, enthält. Zusätzlich kann die Phosphatierlösung zur Optimierung der Eigenschaften der Phosphatschicht für den beabsichtigten Verwendungszweck des vorbehandelten Materials weitere Komponenten enthalten. Beispielsweise kann die Phosphatierlösung weiterhin eines oder mehrere zweiwertige Metallionen in Mengen von jeweils 0,1 bis 15 g/l enthalten, wobei diese zusätzlichen Metallionen ausgewählt sind aus Nickel, Kobalt, Calcium und Magnesium. Weiterhin kann die Phosphatierlösung Eisen in Mengen von 0,01 bis 5 g/l und/oder 3 bis 200 mg/l Kupferionen enthalten. Je nach Substrat können Zusätze von Fluorid in freier oder komplex gebundener Form, beispielsweise als Fluorokomplexe von Bor, Silicium, Titan oder Zirkon, die Schichtausbildung günstig beeinflussen. Dies ist insbesondere bei der Phosphatierung von schmelztauchverzinktem Stahl der Fall. Die wirksamen Fluoridmengen liegen zwischen 0,01 und 5 g/l. Bei pH-Werten oberhalb von 3, wie sie bei der Behandlung von Oberflächen von elektrolytisch verzinktem Stahl vorteilhaft sein können, neigen die Phosphatierlösungen zur Instabilität. Sie lassen sich durch Zusatz von 0,1 bis 100 g/l einer chelatisierenden Hydroxycarbonsäure mit 3 bis 6 C-Atomen stabilisieren. Beispiele solcher Hydroxycarbonsäuren sind Milchsäure und insbesondere Citronensäure und Weinsäure.
    Der Gehalt der Phosphatierlösung an freier Säure liegt im Bereich von 0 bis 100 Punkten. Dabei wird die Punktzahl an freier Säure bestimmt, indem man 10 ml der Phosphatierlösung mit 0,1 n Natronlauge bis zu einem pH-Wert von 3,6 titriert. Der Verbrauch an Natronlauge in ml gibt die Punktzahl freier Säure an. Hat die Phosphatierlösung bereits einen pH-Wert von 3,6, ist die Punktzahl an freier Säure demnach 0. Bei höheren pH-Werten der Phosphatierlösung wird umgekehrt mit 0,1 n Salzsäure titriert, bis ein pH-Wert von 3,6 erreicht ist. Die Punktzahl an freier Säure ist dann negativ und wird dem mit einem negativen Vorzeichen versehenen Verbrauch an Salzsäure in ml gleichgesetzt. Der Gehalt an Gesamtsäure wird bestimmt, indem man 10 ml der Phosphatierlösung mit 0,1 n Natronlauge bis zu einem pH-Wert von 8,5 titriert. Der Verbrauch an 0,1 n Natronlauge in ml gibt die Punktzahl Gesamtsäure an. Für die erfindungsgemäße Phosphatierlösung liegt die Gesamtsäure im Bereich von 40 bis 400 Punkten. Dabei stellt man das Verhältnis freie Säure zu Gesamtsäure vorzugsweise so ein, daß es im Bereich von 1 : 4 bis 1 : 20 liegt.
    Vorzugsweise verwendet man Phosphatierlösungen, die eine Temperatur im Bereich 15 bis 80 °C, insbesondere im Bereich 20 bis 40 °C aufweisen. Der Aktivsubstanzgehalt der Phosphatierlösungen soll im Bereich von etwa 5,5 bis etwa 35 Gew.-% liegen. Dabei wird der Aktivsubstanzgehalt definiert als Summe der Metallionen, Phosphorsäure und gegebenenfalls weiterer vorstehend genannter Komponenten.
    Das Verfahren ist insbesondere konzipiert zur Phosphatierung laufender Metallbänder in Bandbehandlungsanlagen, wie sie beispielsweise in Stahlwerken angetroffen werden. Hierbei bringt man auf die Oberflächen vorzugsweise eine Flüssigfilmauflage von 2 bis 10 ml Phosphatierlösung pro m2 Metalloberfläche auf. Der optimale Wert der Flüssigfilmauflage hängt einerseits vom Aktivsubstanzgehalt der Phosphatierlösung und andererseits von der anlagenspezifischen Einwirkungszeit der Phosphatierlösung ab. Bei den derzeit üblichen Bandgeschwindigkeiten der Größenordnung 10 bis 300 m/Minute werden mit Flüssigfilmauflagen von etwa 6 ml/m2 Schichtgewichte der Phosphatschichten im Bereich von etwa 0,3 bis etwa 3 g/m2 erhalten, wie sie als Grundlage für eine nachfolgende Lackierung erwünscht sind. Allgemein sind die Konzentrationen der Phosphatierlösung umso höher zu wählen, je geringer die Flüssigfilmauflage ist.
    Die Applikation der Phosphatierlösung auf die Oberfläche und die Einstellung der erwünschten Flüssigfilmauflage kann dabei nach unterschiedlichen Verfahren erfolgen. Beispielsweise ist es möglich, die Phosphatierlösung auf die Oberfläche derart aufzudüsen, daß sich die erwünschte Flüssigfilmauflage einstellt. Eine höhere Verfahrenssicherheit wird jedoch erreicht, wenn man nach dem Aufdüsen der Phosphatierlösung die Flüssigfilmauflage gezielt einstellt, beispielsweise durch Abblasen mit Preßluft oder vorzugsweise durch Abquetschwalzen. Anstelle des Aufdüsens kann man die Phosphatierlösung auch durch Auftragswalzen auf die Oberfläche aufbringen, wobei sich die erwünschte Flüssigfilmauflage direkt einstellen läßt. Solche Auftragswalzen sind für die Oberflächenbehandlung von Metallbändern bekannt, beispielsweise unter der Bezeichnung "chemcoater" oder "roll-coater". Weiterhin kann das Verfahren derart ausgeführt werden, daß man die Oberflächen in die Phosphatierlösung eintaucht. Metallbänder können beispielsweise durch die Phosphatierlösung hindurch gefahren werden, wobei man nach dem Verlassen der Phosphatierlösung auf der Oberfläche die erwünschte Flüssigfilmauflage einstellt, was beispielsweise durch Abblasen mit Luft oder vorzugsweise mit Abquetschwalzen erfolgen kann.
    Die optimalen Verfahrensparameter hängen von den spezifischen Materialeigenschaften der zu behandelnden Oberflächen ab. Beispielsweise wurde gefunden, daß man bei der Behandlung von Oberflächen von laufenden Bändern aus schmelztauchverzinktem Stahl dann optimale Phosphatierergebnisse erhält, wenn die Phosphatierlösung einen Aktivsubstanzgehalt im Bereich von 5,5 bis 35 Gew.-% aufweist. Der bevorzugte pH-Wert liegt im Bereich 1,0 bis 2,2 und das Gewichtsverhältnis der Summe der zweiwertigen Metallionen zu Phosphat wird vorzugsweise im Bereich 1 : 5 bis 1 : 6 eingestellt.
    Bei der Behandlung von schmelztauchverzinktem Stahl wirkt sich die Anwesenheit von freiem oder komplexgebundenem Fluorid in der Phosphatierlösung günstig auf die Schichtausbildung aus. Dabei sind Fluoridkonzentrationen im Bereich von 0,5 bis 1,5 g/l besonders wirkungsvoll. Freies Fluorid wird vorzugsweise in Form von Flußsäure, komplexe Fluoride werden vorzugsweise als Fluorosäuren von Bor, Silicium, Titan und/oder Zirkon eingesetzt. Die Verwendung von Alkalifluorid oder sauren Alkalifluoriden wie KHF2 zur Bereitstellung von freiem Fluorid ist ebenfalls möglich.
    Bei der Behandlung von Oberflächen von laufenden Bändern aus elektrolytisch verzinktem Stahl erhält man dagegen die besten Ergebnisse, wenn man folgende Bedingungen einstellt: Aktivsubstanzgehalt der Phosphatierlösung im Bereich 5,5 bis 20 Gew.-%, pH-Wert im Bereich 1,5 bis 3,5, Gewichtsverhältnis der Summe der zweiwertigen Metallionen zu Phosphat im Bereich 1 : 5 bis 1 : 6. Phosphatierlösungen mit diesen Badparametern neigen zur Instabilität, insbesondere, wenn der pH-Wert in der oberen Hälfte des genannten Bereichs eingestellt wird. Die Badstabilität läßt sich durch Zugabe von etwa 1 bis 5 Gew.-% einer chelatisierenden Hydroxycarbonsäure mit 3 bis 6 C-Atomen verbessern. Hierfür kommen beispielsweise Milchsäure, und vorzugsweise Citronensäure und/oder Weinsäure in Betracht.
    Bei der Behandlung von Oberflächen von laufenden Bändern aus kaltgewalztem, ungalvanisiertem Stahl wählt man vorzugsweise folgende Bedingungen: Aktivsubstanzgehalt der Phosphatierlösung im Bereich von 5,5 bis 25 Gew.-%, pH-Wert im Bereich 2,0 bis 3,6, Gewichtsverhältnis der Summe der zweiwertigen Metallionen zu Phosphat im Bereich 1 : 5 bis 1 : 6. Auch hierbei läBt sich die Badstabilität durch Zugabe von etwa 1 bis 10 Gew.-% einer chelatisierenden Hydroxycarbonsäure mit 3 bis 6 C-Atomen verbessern, beispielsweise durch Milchsäure und vorzugsweise Citronensäure und/oder Weinsäure.
    Die Verwendung von sogenannten Beschleunigern, also von Substanzen, die aufgrund ihrer oxidierenden oder reduzierenden Wirkung die Schichtausbildung fördern, ist insbesondere bei der Behandlung von verzinktem Stahl nicht erforderlich. Sie können jedoch Vorteile bringen, wenn die Ausbildung bestimmter Kristallformen erwünscht ist. Als Beschleuniger kommen die im einschlägigen Stand der Technik bekannten Verbindungen in Frage, insbesondere Nitrat, Nitrit, Chlorat, Nitrobenzolsulfonsäure oder Wasserstoffperoxid. Als eher reduzierend wirkender Beschleuniger läßt sich Hydroxylamin einsetzen. Dabei können Wasserstoffperoxid und Hydroxylamin als solche eingesetzt werden, die anderen genannten Beschleuniger als freie Säuren oder in Form von in der Phosphatierlösung löslichen Salzen. Da nach dem Eintrocknen der Phosphatierlösung auf der Oberfläche möglichst wenig und vorzugsweise keine wasserlöslichen Salze zurückbleiben sollen, ist es jedoch empfehlenswert, Alkalimetall- und Ammoniumsalze sowie Sulfate zu vermeiden. Besonders bevorzugt sind Beschleuniger, die keine salzartigen Rückstände auf den behandelten Oberflächen hinterlassen. Daher sind Hydroxylamin und insbesondere Wasserstoffperoxid besonders geeignet. Im Falle der Verwendung von Beschleunigern liegen deren bevorzugte Konzentrationen für Hydroxylamin, Nitrobenzolsulfonsäure und Chlorat im Bereich 2 bis 5 g/l, für Nitrit im Bereich 0,2 bis 1 g/l und für H2O2 im Bereich 20 bis 100 ppm.
    Der nach der Applikation der Phosphatierlösung auf der Oberfläche verbleibende Flüssigfilm wird erfindungsgemäß nicht abgespült, sondern eingetrocknet. Hierzu erwärmt man die Oberflächen vorzugsweise auf eine Temperatur zwischen 50 und 120 °C, insbesondere zwischen 60 und 90 °C. Hierfür stehen verschiedene Möglichkeiten zur Verfügung. Beispielsweise kann das behandelte Stahlband durch einen auf die entsprechende Temperatur eingestellten Trockenofen gefahren werden. Die Trocknung kann aber auch durch Anblasen der Oberflächen mit heißen Gasen, vorzugsweise mit Luft und/oder durch Einwirkung von Infrarotstrahlung erfolgen. Da die saure Phosphatierungslösung so lange mit der Metalloberfläche chemisch reagieren kann, wie sie noch flüssig ist, ist die effektive Einwirkungszeit gegeben durch die Zeit zwischen dem ersten Kontakt der Oberfläche mit der Phosphatierlösung und dem völligen Eintrocknen des Flüssigfilms auf der Oberfläche, also dem Ende der Trocknungsmaßnahme. Vorzugsweise liegt diese Zeitspanne im Bereich zwischen etwa 3 und etwa 60 Sekunden.
    Unter den genannten Verfahrensbedingungen werden auf den Oberflächen Phosphatschichten mit einem Schichtgewicht im Bereich von 0,3 bis 3 g/m2 erzeugt. Als Grundlage für eine nachfolgende Lackierung sind Schichtgewichte in diesem Bereich besonders erwünscht, da hierdurch die beiden Anforderungen Korrosionsschutz und Lackhaftung in besonderem Maße gleichzeitig erfüllt werden. Je nach Verfahrensführung werden Schichten erhalten, die bei Röntgenbeugungsuntersuchungen keine Reflexe liefern, also als röntgenamorph zu bezeichnen sind, oder solche, bei denen mehr oder weniger ausgeprägte Reflexe von Hopeit beobachtbar sind.
    Die nach dem erfindungsgemäßen Verfahren vorphosphatierten Bleche lassen sich insbesondere bei der Herstellung von Fahrzeugen einsetzen. Hierbei ist es die Regel, daß die Fahrzeugkarosserien nach dem Zusammenbau nochmals phosphatiert und anschließend lackiert werden, wofür derzeit eine kathodische Elektrotauchlackierung üblich ist. In diesen Fällen wird das nach dem erfindungsgemäßen Verfahren vorphosphatierte Material im unlackierten Zustand zum Weiterverarbeiter transportiert. Zur Verbesserung des temporären Korrosionsschutzes während Lagerung und Transport kann das phosphatierte Material zusätzlich eingeölt werden. Hierdurch werden gleichzeitig spätere Umformvorgänge erleichtert. Eine Nachphosphatierung der montierten Karosserien nach einer alkalischen Reinigung ist problemlos möglich.
    Der erfindungsgemäßen Phosphatierung kann sich jedoch auch unmittelbar eine Bandbeschichtung mit einem organischen Film oder einem Lack anschließen. Für diesen Prozeß ist die Bezeichnung "coil-coating" geläufig. Auf diese Weise bandbeschichtetes Material wird derzeit bevorzugt beim Bau von Haushaltsgeräten wie beispielsweise Kühlschränken und Waschmaschinen sowie für Architekturanwendungen eingesetzt.
    Im Stand der Technik ist es üblich, der Phosphatierung eine sogenannte Aktivierung vorausgehen zu lassen. Diese Aktivierung hat das Ziel, auf der Metalloberfläche Kristallkeime für die Ausbildung der Phosphatschicht entstehen zu lassen. Hierdurch wird die Ausbildung von dichten und kleinkristallinen Phosphatschichten gefördert. In der Praxis werden derzeit für diese Aktivierung ausschließlich wäßrige Lösungen bzw. Suspensionen von Titanphosphaten eingesetzt. Eine solche Aktivierung kann auch dem erfindungsgemäßen Verfahren vorgeschaltet werden. Geeignet hierfür sind handelsgängige titanphosphathaltige Aktiviermittel wie beispielsweise FixodineR 950 der Henkel KGaA. Bei Durchführung einer Aktivierung ist es empfehlenswert, das Band zwischen Aktivierung und Phosphatierung zu trocknen.
    Ausführungsbeispiele
    Für die labormäßige Abprüfung des erfindungsgemäßen Phosphatierverfahrens wurden beidseitig elektrolytisch verzinkte Stahlbleche (ZE) mit einer Zinkauflage von jeweils 7,5 µ und beidseitig schmelztauchverzinkte Stahlbleche (Z) mit einer Zinkauflage von etwa 10 µ verwendet. Die Bleche hatten jeweils die Abmessungen 10 cm x 20 cm. Vor der Phosphatierung wurden diese mit einem handelsüblichen mildalkalischen Reiniger (RidolineR 1250 I, Henkel KGaA, Düsseldorf) entfettet. Die no-rinse-Behandlung wurde dadurch simuliert, daß die Behandlungslösung in einer Lackschleuder (Modell 4302 der Firma Lau GmbH) aufgegossen und bei 550 U/Min. abgeschleudert wurde. Hierdurch ließ sich ein Naßfilm mit einer Auflage von etwa 6 ml/m2 erzeugen. Nach dem etwa 5 Sekunden dauernden Aufschleudern der Behandlungslösung wurden die Bleche unmittelbar in einem auf 75 °C aufgeheizten Umluft-Trockenschrank für die Dauer von etwa 120 Sekunden getrocknet.
    Als Parameter für die erhaltene Phosphatschicht wurde das Schichtgewicht bestimmt. Hierfür wurden 2 unterschiedliche Methoden herangezogen: Bei der Bestimmung des Schichtgewichtes durch Auswiegen wurde das Blech vor der Durchführung der Beschichtung gewogen, danach wurde die Phosphatierlösung aufgebracht und eingetrocknet und das beschichtete Blech wieder gewogen. Aus der Gewichtsdifferenz wurde die Schichtauflage in g/m2 errechnet. Bei der Bestimmung des Schichtgewichts durch Ablösen wurden die phosphatierten Bleche gewogen, die Phosphatschicht durch Ablösen mit 0,5 gew.-%iger Chromsäurelösung entfernt und die Bleche wieder gewogen. Aus der Gewichtsdifferenz wurde die Masse der entfernten Schicht g/m2 ermittelt. Das durch Ablösen ermittelte Schichtgewicht ist in der Regel höher als das durch Auswiegen bestimmte, da durch die Phosphatierung ein Teil der Metalloberfläche in Metallphosphat umgewandelt wird. Dieser Teil wird bei der Schichtgewichtsbestimmung durch Auswiegen nicht mit erfaßt, beim Ablösen der Schicht jedoch mit entfernt.
    Die Tabelle 1 enthält Phosphatierbäder für elektrolytisch verzinkten Stahl und die erhaltenen Schichtauflagen, Tabelle 2 entsprechende Beispiele für die Behandlung von schmelztauchverzinktem Stahl. Für die Behandlung dieser Substrate sind jeweils solche Phosphatierlösungen geeignet, die zu Schichtgewichten im Bereich von 1 bis 3 g/m2 führen. In die beispielhaften Behandlungsbäder wurden Zink als Oxid, Mangan und Nickel als Carbonat eingesetzt. Die Bäder enthielten außer Wasser keine weiteren Komponenten.
    Für Beispiel 7 wurde die Schichtzusammensetzung mittels EDX (Röntgenemission) bestimmt (in Gew.-%): Zn 7,5, Mn 2,2, P 7,5, Al 0,3, Rest: Kann als Sauerstoff aufgenommen werden.
    Eine Auswahl erfindungsgemäß behandelter Z-Bleche wurde, wie beim praktischen Einsatz vorgesehen, einer im Karosseriebau üblichen Nachphosphatierung mit einem handelsgängigen Trikation-Phosphatierverfahren (GranodineR 1994, Henkel KGaA, Düsseldorf) unterzogen und mit einem kathodischen Elektrotauchlack (AqualuxR K, Firma IDAC) lackiert. Nach einem Korrosionstest (10 Zyklen Wechselklima gemäß VDA 621 415) wurde die Lackunterwanderung an einem Einschnitt gemäß DIN 53167 gemessen. Ergebnisse:
  • Beisp. 6 1,9 mm
  • Beisp. 7 2,2 mm
  • Beisp. 8 2,4 mm.
  • No-rinse Phosphatierung von elektrolytisch verzinktem Stahl
    Bsp. Nr. Badzusammensetzung [g/l] Aktivsubstanz [Gew.-%] pH Freie Säure [Punkte] Gesamtsäure [Punkte] Schichtgew. [g/m2]
    1 210 H3PO4-85%ig
    15 Zn 21,4 1,5 65 303 1,57 (W)
    20 Mn
    2 210 H3PO4-85%ig
    15 Zn 21,4 2,4 31 281 1,75 (W)
    10 Mn
    3 175 H3PO4-85%ig
    12,5 Zn 17,8 2,5 29 228 1,34 (W)
    16,6 Mn 1,96 (A)
    4 110 H3PO4-85%ig
    7,5 Zn 11,4 2,5 27 190 1,24 (A)
    10,0 Mn
    2,5 Ni
    No-rinse Phosphatierung von schmelztauchverzinktem Stahl
    Bsp. Nr. Badzusammensetzung [g/l] Aktivsubstanz [Gew.-%] pH Freie Säure [Punkte] Gesamtsäure [Punkte] Schichtgew.1) [g/m2]
    5 280 H3PO4-85%ig 20 Zn 20 Mn 27,8 1,3 81 365 0,73 (W)
    6 210 H3PO4-85%ig
    15,3 Zn 20,9 1,4 73 294 1,50 (W)
    15,0 Mn
    7 210 H3PO4-85%ig
    15 Zn 22,0 1,5 65 303 1,8 (W)
    20 Mn
    8 221 H3PO4-85%ig
    15 Zn 22,3 1,5 67 321 1,55 (W)
    15 Mn
    5 Ni

    Claims (13)

    1. Verfahren zur Phosphatierung von Oberflächen aus Stahl, Zink, Aluminium oder jeweils deren Legierungen durch Behandlung mit sauren, zink- und phosphathaltigen Lösungen und Eintrocknen der Lösungen ohne Zwischenspülung, dadurch gekennzeichnet, daß die Oberflächen mit einer Phosphatierlösung in Kontakt gebracht werden, die
      2 bis 25 g/l Zinkionen und
      2 bis 25 g/l Manganionen und
      50 bis 300 g/l Phosphationen
      enthält, einen pH-Wert im Bereich von 1 bis 3,6,
      einen Gehalt an Freier Säure im Bereich von 0 bis 100 Punkten und
      einen Gehalt an Gesamtsäure im Bereich von 40 bis 400 Punkten aufweist.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich einen oder mehrere der folgenden Bestandteile enthält:
         eines oder mehrere zusätzliche zweiwertige Metallionen, ausgewählt aus
      Ni, Co, Ca, Mg in Mengen von jeweils 0,1 bis 15 g/l,
      Kupfer in Mengen von 3 bis 200 mg/l
      Eisen in Mengen von 0,01 bis 5 g/l,
      0,01 bis 5 g/l Fluorid in freier oder komplex gebundener Form,
      0,1 bis 100 g/l chelatisierende Hydroxycarbonsäuren mit 3 bis 6 C-Atomen.
    3. Verfahren nach einem oder mehreren der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Phosphatierlösung eine Temperatur im Bereich 15 bis 80 °C aufweist.
    4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Phosphatierlösung einen Aktivsubstanzgehalt, definiert als Summe der Metallionen und Phosphorsäure im Bereich von 5,5 bis 35 Gew.-% aufweist.
    5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4 zur Behandlung von Oberflächen laufender Metallbänder.
    6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung auf die Oberfläche aufgedüst und auf eine Flüssigfilmauflage von 2 bis 10 ml/m2 eingestellt wird.
    7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung durch Auftragswalzen auf die Oberfläche mit einer Flüssigfilmauflage von 2 bis 10 ml/m2 aufgetragen wird.
    8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Oberflächen in die Phosphatierlösung eingetaucht werden und daß nach Verlassen der Phosphatierlösung auf der Oberfläche eine Flüssigfilmauflage von 2 bis 10 ml/m2 eingestellt wird.
    9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8 zur Behandlung von Oberflächen von laufenden Bändern aus schmelztauchverzinktem Stahl, dadurch gekennzeichnet, daß die Phosphatierlösung
      einen Aktivsubstanzgehalt im Bereich 5,5 bis 35 Gew.-%,
      einen pH-Wert im Bereich 1,0 bis 2,2 und/oder
      ein Gewichtsverhältnis (Summe zweiwertige Metallionen) : Phosphat im Bereich 1 : 5 bis 1 : 6 aufweist.
    10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8 zur Behandlung von Oberflächen von laufenden Bändern aus elektrolytisch verzinktem Stahl, dadurch gekennzeichnet, daß die Phosphatierlösung
      einen Aktivsubstanzgehalt im Bereich 5,5 bis 20 Gew.-%,
      einen pH-Wert im Bereich 1,5 bis 3,5 und/oder
      ein Gewichtsverhältnis (Summe zweiwertige Metallionen) : Phosphat im Bereich 1 : 5 bis 1 : 6 aufweist.
    11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8 zur Behandlung von Oberflächen aus kaltgewalztem, ungalvanisiertem Stahl, dadurch gekennzeichnet, daß die Phosphatierlösung
      einen Aktivsubstanzgehalt im Bereich 5,5 bis 25 Gew.-%,
      einen pH-Wert im Bereich 2,0 bis 3,6 und/oder
      ein Gewichtsverhältnis (Summe zweiwertige Metallionen): Phosphat im Bereich 1:5 bis 1:6 aufweist.
    12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Trocknung bei einer Temperatur zwischen 50 und 120 °C erfolgt, wobei die Zeit zwischen dem erstem Kontakt der Oberfläche mit der Phosphatierlösung und dem Ende der Trocknungsmaßnahme 3 bis 60 Sekunden beträgt.
    13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12 zur Vorbehandlung von Oberflächen aus Stahl, Zink, Aluminium oder jeweils deren Legierungen zur Erzeugung kristalliner oder röntgenamorpher, zinkhaltiger Phosphatschichten mit einem Schichtgewicht im Bereich von 0,3 bis 3 g/m2.
    EP95932747A 1994-09-23 1995-09-14 Phosphatierverfahren ohne nachspülung Expired - Lifetime EP0774016B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4433946 1994-09-23
    DE4433946A DE4433946A1 (de) 1994-09-23 1994-09-23 Phosphatierverfahren ohne Nachspülung
    PCT/EP1995/003619 WO1996009422A1 (de) 1994-09-23 1995-09-14 Phosphatierverfahren ohne nachspülung

    Publications (2)

    Publication Number Publication Date
    EP0774016A1 EP0774016A1 (de) 1997-05-21
    EP0774016B1 true EP0774016B1 (de) 1999-07-28

    Family

    ID=6528963

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95932747A Expired - Lifetime EP0774016B1 (de) 1994-09-23 1995-09-14 Phosphatierverfahren ohne nachspülung

    Country Status (9)

    Country Link
    US (1) US5976272A (de)
    EP (1) EP0774016B1 (de)
    JP (1) JPH10505881A (de)
    KR (1) KR100347405B1 (de)
    AT (1) ATE182632T1 (de)
    CA (1) CA2200893A1 (de)
    DE (2) DE4433946A1 (de)
    ES (1) ES2135090T3 (de)
    WO (1) WO1996009422A1 (de)

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19639597C2 (de) * 1996-09-26 2000-01-20 Henkel Kgaa Verfahren zur Phosphatierung von laufenden Bändern aus kalt- oder warmgewalztem Stahl in schnellaufenden Bandanlagen
    US6179934B1 (en) 1997-01-24 2001-01-30 Henkel Corporation Aqueous phosphating composition and process for metal surfaces
    JPH10204649A (ja) * 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd 金属表面のりん酸塩処理水溶液及び処理方法
    US5968240A (en) * 1997-08-19 1999-10-19 Sermatech International Inc. Phosphate bonding composition
    DE19749508A1 (de) * 1997-11-08 1999-05-12 Henkel Kgaa Korrosionsschutz von verzinkten und legierungsverzinkten Stahlbändern
    DE19844391C2 (de) 1998-09-28 2003-01-09 Chemetall Gmbh Verfahren zur Vorbereitung von Werkstücken für die Kaltumformung
    US6162508A (en) * 1998-11-02 2000-12-19 Nortel Networks Limited Molybdenum phosphate based corrosion resistant conversion coatings
    TW500827B (en) * 1999-08-06 2002-09-01 Sms Demag Ag Process and installation for hot galvanizing of hot rolled steel strip
    DE10010355A1 (de) 2000-03-07 2001-09-13 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
    JP2001295063A (ja) * 2000-04-10 2001-10-26 Nippon Parkerizing Co Ltd 非鉄金属材料およびめっき鋼板へのりん酸塩被膜の形成方法
    DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
    DE10110833B4 (de) * 2001-03-06 2005-03-24 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
    US20020164425A1 (en) * 2001-04-27 2002-11-07 Rivard Douglas Charles Method for treating iron based parts
    ES2448829T3 (es) * 2002-12-24 2014-03-17 Chemetall Gmbh Agente de recubrimiento de conversión química y metal tratado en superficie
    DE102005023023B4 (de) * 2005-05-19 2017-02-09 Chemetall Gmbh Verfahren zur Vorbereitung von metallischen Werkstücken zum Kaltumformen, mit dem Verfahren beschichtete Werkstücke und ihre Verwendung
    JP5114834B2 (ja) * 2005-09-21 2013-01-09 Jfeスチール株式会社 冷延鋼板およびその製造方法
    US20080283152A1 (en) * 2007-05-17 2008-11-20 Jeffrey Allen Greene Rinse conditioner bath for treating a substrate and associated method
    US20080314479A1 (en) * 2007-06-07 2008-12-25 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
    KR101016915B1 (ko) * 2007-11-28 2011-02-22 가부시키가이샤 고베 세이코쇼 표면 안정성이 우수한 알루미늄 합금재 및 그 제조 방법
    AU2014225668B2 (en) * 2013-03-06 2016-08-11 Quaker Chemical Corporation High temperature conversion coating on steel and iron substrates
    KR20170027798A (ko) * 2014-06-27 2017-03-10 헨켈 아게 운트 코. 카게아아 아연 코팅된 강용 건조 윤활제
    KR101769302B1 (ko) * 2016-06-08 2017-08-18 현대자동차주식회사 망간 함량을 최적화시킨 인산염 피막 조성물 및 아연계 전기도금강판의 인산염 처리 방법
    US10465292B2 (en) 2016-10-07 2019-11-05 Goodrich Corporation Anti-corrosion and/or passivation composition for metal-containing substrates and methods for making, enhancing, and applying the same
    DE102017207591A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Stahlkolben mit einer Phosphat-Schicht
    WO2022232815A1 (en) * 2021-04-30 2022-11-03 Ppg Industries Ohio, Inc. Methods of making inorganic coating layers and substrates having same coating layers

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3819425A (en) * 1972-10-18 1974-06-25 Diamond Shamrock Corp Composite coating adherent under shear condition
    JPS50139039A (de) * 1974-04-26 1975-11-06
    US3939014A (en) * 1974-11-20 1976-02-17 Amchem Products, Inc. Aqueous zinc phosphating solution and method of rapid coating of steel for deforming
    IT1065925B (it) * 1976-09-03 1985-03-04 Pirelli Apparato per riunire tra di loro dei filamenti sottili
    JPS5339945A (en) * 1976-09-25 1978-04-12 Nippon Packaging Kk Surface treatment of zinc or zinc alloy
    DE2905535A1 (de) * 1979-02-14 1980-09-04 Metallgesellschaft Ag Verfahren zur oberflaechenbehandlung von metallen
    US4316751A (en) * 1980-04-14 1982-02-23 Hooker Chemicals & Plastics Corp. Electrical resistance coating for steel
    DE3023479A1 (de) * 1980-06-24 1982-01-14 Metallgesellschaft Ag, 6000 Frankfurt Phosphatierverfahren
    GB2148950B (en) * 1983-10-26 1987-02-04 Pyrene Chemical Services Ltd Phosphating composition and processes
    DE3636390A1 (de) * 1986-10-25 1988-04-28 Metallgesellschaft Ag Verfahren zur erzeugung von phosphatueberzuegen auf metallen
    DE3800834A1 (de) * 1988-01-14 1989-07-27 Henkel Kgaa Verfahren und mittel zum gleichzeitigen gleitschleifen, reinigen und passivieren metallischer werkstuecke
    DE58905074D1 (de) * 1988-02-03 1993-09-09 Metallgesellschaft Ag Verfahren zur erzeugung von phosphatueberzuegen auf metallen.
    GB9207725D0 (en) * 1992-04-08 1992-05-27 Brent Chemicals Int Phosphating solution for metal substrates
    DE4241134A1 (de) * 1992-12-07 1994-06-09 Henkel Kgaa Verfahren zur Phosphatierung von Metalloberflächen

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    UBERSETZUNG VON JP-A-50139039 *

    Also Published As

    Publication number Publication date
    KR100347405B1 (ko) 2002-12-05
    KR970706420A (ko) 1997-11-03
    ES2135090T3 (es) 1999-10-16
    CA2200893A1 (en) 1996-03-28
    US5976272A (en) 1999-11-02
    EP0774016A1 (de) 1997-05-21
    JPH10505881A (ja) 1998-06-09
    DE59506484D1 (de) 1999-09-02
    DE4433946A1 (de) 1996-03-28
    WO1996009422A1 (de) 1996-03-28
    ATE182632T1 (de) 1999-08-15

    Similar Documents

    Publication Publication Date Title
    EP0774016B1 (de) Phosphatierverfahren ohne nachspülung
    EP0700452B1 (de) Chromfreie konversionsbehandlung von aluminium
    DE10110833B4 (de) Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
    EP1200641B1 (de) Vorbehandlung von aluminiumoberflächen durch chromfreie lösungen
    EP0796356B1 (de) Verfahren zum aufbringen von phosphatüberzügen auf metalloberflächen
    EP1235949B1 (de) Verfahren zum aufbringen eines phosphatüberzuges und verwendung der derart phosphatierten metallteile
    EP2255026A1 (de) Optimierte passivierung auf ti-/zr-basis für metalloberflächen
    DE3234558C2 (de)
    WO2001059181A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
    DE4210513A1 (de) Nickel-freie Phosphatierverfahren
    WO2000008231A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
    EP0155547B1 (de) Verfahren zur Zink-Calcium-Phosphatierung von Metalloberflächen bei niedriger Behandlungstemperatur
    EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
    EP0486576B1 (de) Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl
    DE4228470A1 (de) Verfahren zur Phospatierung von einseitig verzinktem Stahlband
    DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
    DE19639597C2 (de) Verfahren zur Phosphatierung von laufenden Bändern aus kalt- oder warmgewalztem Stahl in schnellaufenden Bandanlagen
    WO1999014397A1 (de) Verfahren zur phosphatierung von stahlband
    WO1999045171A1 (de) Schichtgewichtsteuerung bei bandphosphatierung
    WO2001040546A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
    WO1998009000A1 (de) Rutheniumhaltige zinkphosphatierung
    DE3239088A1 (de) Verfahren zur phosphatierung von metalloberflaechen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970315

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    17Q First examination report despatched

    Effective date: 19970425

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    REF Corresponds to:

    Ref document number: 182632

    Country of ref document: AT

    Date of ref document: 19990815

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59506484

    Country of ref document: DE

    Date of ref document: 19990902

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2135090

    Country of ref document: ES

    Kind code of ref document: T3

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991029

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20000915

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20010906

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010912

    Year of fee payment: 7

    Ref country code: AT

    Payment date: 20010912

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010914

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20010920

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010927

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20011106

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020910

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020914

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020914

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020915

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020915

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020918

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020930

    BERE Be: lapsed

    Owner name: *HENKEL K.G.A.A.

    Effective date: 20020930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030401

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020914

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040401

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20031011

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040528

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050914