WO1999011810A1 - Procede de production d'uridine diphosphate-n-acetylglucosamine - Google Patents

Procede de production d'uridine diphosphate-n-acetylglucosamine Download PDF

Info

Publication number
WO1999011810A1
WO1999011810A1 PCT/JP1998/003561 JP9803561W WO9911810A1 WO 1999011810 A1 WO1999011810 A1 WO 1999011810A1 JP 9803561 W JP9803561 W JP 9803561W WO 9911810 A1 WO9911810 A1 WO 9911810A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylglucosamine
udpag
kinase
producing
reaction
Prior art date
Application number
PCT/JP1998/003561
Other languages
English (en)
French (fr)
Inventor
Kenji Takenouchi
Kazuya Ishige
Yuichiro Midorikawa
Kiyoshi Okuyama
Tomoki Hamamoto
Toshitada Noguchi
Original Assignee
Yamasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corporation filed Critical Yamasa Corporation
Priority to CA002270211A priority Critical patent/CA2270211C/en
Priority to JP50211099A priority patent/JP3545425B2/ja
Priority to EP98936727A priority patent/EP0971035B1/en
Priority to DE69811871T priority patent/DE69811871T2/de
Priority to KR10-1999-7003720A priority patent/KR100481763B1/ko
Priority to US09/297,306 priority patent/US6287819B1/en
Publication of WO1999011810A1 publication Critical patent/WO1999011810A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/305Pyrimidine nucleotides

Definitions

  • the present invention relates to a method for producing mono-N-acetyl glucosamine peridine dilininate (UDPAG), which is an important substrate for oligosaccharide synthesis.
  • UPAG mono-N-acetyl glucosamine peridine dilininate
  • oligosaccharides have been produced by extraction from natural products, chemical synthesis, or enzyme synthesis, or a combination of these methods.
  • Enzyme synthesis is considered to be a suitable method for mass production. Have been. In other words, (1) the enzyme synthesis method does not require complicated procedures such as protection and deprotection found in the chemical synthesis method, and the desired oligosaccharide can be synthesized quickly. (2) Due to the substrate specificity of the enzyme, This is because it is considered that oligosaccharides with extremely high structure specificity can be synthesized over other methods. Furthermore, the development of recombinant DNA technology in recent years has enabled various synthetic enzymes to be produced inexpensively and in large quantities, further enhancing the superiority of the enzyme synthesis method.
  • a method for synthesizing an oligosaccharide by an enzyme synthesis method two methods, a method using a reverse reaction of an oligosaccharide hydrolase and a method using a glycosyltransferase are considered.
  • the former method is based on the fact that low-cost monosaccharides can be used as substrates.
  • the reaction itself uses the reverse reaction of the decomposition reaction, and is not necessarily considered to be the best method in terms of synthesis yield and application to oligosaccharides with complex structures. .
  • the latter is a synthesis method using a glycosyltransferase, and is considered to be more advantageous than the former method in terms of synthesis yield and application to oligosaccharides having complex structures.
  • the mass production of various glycosyltransferases is also driving the realization of this technology.
  • sugar nucleotides which are sugar donors used in the synthesis method using glycosyltransferases, are still expensive except for some, and can be provided only in a small amount at the reagent level. Is the current situation.
  • UDPAG which is a donor of N-acetylglucosamine contained in the core portion of many bioactive sugar chains
  • Gazette a method using an osmotic-resistant yeast has been reported (Japanese Unexamined Patent Publication No. 8-23993). Gazette)
  • Gazette Japanese Unexamined Patent Publication No. 8-23993
  • the present inventors have conducted detailed studies on the biosynthetic pathway of UDPAG in yeast, and as a result, it was found that glucosamine was converted to glucosamine monophosphate and N-acetylmethylglucosamine via phosphoric acid.
  • the acetylation reaction of glucosamine-6-phosphate to N-acetylglucosamine-6-phosphate is the rate-limiting step in a series of reaction pathways that activate cetylglucosamine-1 phosphate. I thought it might be. For this reason, it is thought that the synthesis efficiency of UDPAG can be improved by using N-acetylglucosamine-6-phosphate as a substrate, but it is not possible at present to obtain this substance inexpensively and in large quantities. It is.
  • N-acetylglucosamine which is inexpensive and available in large quantities at present, can be used as a substrate, the rate-limiting step of acetylation can be avoided, and it can be an ideal substrate rather than glucosamine.
  • UMP peridilic acid
  • N-acetyl glucosamine as substrates reported by Tochikura et al. (JP-B-49-82878: Tochikura method) was examined.
  • Tochikura et al. Reported that the use of N-acetylglucosamine as a substrate reduced the amount of UDPAG produced, and produced no or very little UDPAG, when compared with glucosamine. was something.
  • an object of the present invention is to provide a method for producing UDPAG with high yield even when N-acetylglucosamine is used as a substrate. Disclosure of the invention
  • the present inventors have found that (1) the enzyme activity for phosphorylating N-acetyl glucosamine is hardly present in yeast, or at all very weak. For this reason, N-acetylglucosamine cannot be used as a substrate, but UDPAG is efficiently synthesized by coexisting N-acetylglucosamine kinase, a phosphorylase of N-acetylglucosamine, in the reaction system.
  • N-acetylglucosamine-phosphotmutase and / or peridinenilinate-N-acetyl-glucosamine pyrophosphorylase enables the N-acetyl-glucosamine kinase alone to be added.
  • the present inventors have found that UDPAG can be efficiently synthesized from peridine triphosphate (UTP) by using peridine diphosphate N acetylk's cosamin pyrophosphorylase, and completed the present invention.
  • the present invention provides a method for producing UDPAG from UMP and N-acetylglucosamine using microbial cells, wherein the method comprises producing N-acetylglucosamine kinase in the presence of UDPAG. It is. Further, the present invention relates to a method for producing UDPAG from UTP and N-acetylglucosamine using an enzyme, wherein the enzyme comprises N-acetylglucosamine quinamine. ⁇ , N-Acetyl glucosamine 'Providing a process for producing UDPAG characterized by using a combination of phosphine and peridine diphosphate-N-acetyl glucosamine pyrophosphorylase It is. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a time-dependent change in the amount of UDPAG produced when B-acylglucosamine kinase derived from Bacillus stearothermophilus ATCC15952 coexists.
  • FIG. 2 shows the time-dependent change in the amount of UDPAG produced when N-acetylglucosamine kinase derived from Escherichia coli I AMI268 was co-present.
  • FIG. 3 shows a time-dependent change in the amount of UDP AG produced when N-acetylglycosamine kinase derived from Klebsiella planticola IF03317 was allowed to coexist.
  • FIG. 4 shows the change over time in the amount of UDPAG produced when recombinant N-acetylglucosamine kinase derived from Bacillus subtilis Ml 68 was present.
  • FIG. 5 shows the recombinant N-acetylglucosamine kinase from Bacillus subtilis Ml 68 strain, the recombinant N-acetylglucosamine 'phosphoemutase from baker's yeast, and the Z or E. coli E102 strain.
  • FIG. 4 shows the change over time in the amount of UDPAG produced when a recombinant UDPAG pyrophosphorylase was used together.
  • 1 is yeast and N-acetylglucosamine kinase
  • 2 is yeast and N-acetylglucosamine kinase
  • N-acetylglucosamine phosphine isomer.
  • 3 is yeast and N-acetyl.
  • Acetyl glucosamine kinase and UDPAG pyrophosphorylase 4 shows the results of the combination of yeast, N-acetyl glucosamine kinase, N-acetyl glucosamine phosphine and Tom AG and UDPAG pyrophosphorylase. It is shown.
  • FIG. 6 shows the recombinant N-acetylglucosamine kinase from Bacillus subtilis strain Ml68, the recombinant N-acetylglucosamine phosphate phosphate from yeast, and FIG. 4 shows the time-dependent changes in the amount of UDPAG produced when recombinant UD PAG pyrophosphorylase derived from E. coli E102 strain is present.
  • the present invention relates to a method for producing UDPAG from UMP and N-acetylglucosamine using microbial cells as described above, wherein the method comprises producing UDPAG in the presence of N-acetylglucosamine kinase. Things.
  • the microbial cells used in the reaction are not particularly limited as long as they are used for producing sugar nucleotides. Specifically, the genus Saccharomyces, Zygosaccharomyces, Candida, Tollopsis, Hansenula, and yeasts from Debaryomyces are included. The body can be exemplified. Such yeast cells may be either live yeast cells or dry yeast cells, but it is preferable to use dry yeast cells in view of the reaction yield, ease of handling, and the like.
  • the N-acetylglucosamine kinase to be added to the reaction system is not limited to a specific origin such as animal origin, plant origin, or microbial origin, and any origin can be used. However, it is convenient to use a microorganism-derived enzyme from the viewpoint of simplicity of enzyme preparation.
  • N-acetyl glucosamine kinase is known to be of the genus Candida (Biochemica et Biophysica Acta, 614,350 (1980)), the genus Streptococcus (Methods in Enzymology, 9, 415 (1966)), and Escherichia (Escherichia) (Methods in Enzymology, 9, 421 (1966)), Bacillus, Klebsiella, and many other microorganisms, and can be easily prepared from cultured cells .
  • N-acetylglucosamine kinase is a method for cloning an N-acetylglucosamine kinase gene according to a conventional method and expressing it in a large amount in a microorganism. It can also be prepared by any recombinant DNA technique.
  • the N-acetylglucosamine kinase added to the reaction system may be in any form as long as it has the activity. Specific examples include microbial cells, processed products of the cells, and enzyme preparations obtained from the processed products.
  • the cells of the microorganism can be prepared by using a medium in which the microorganism can grow, culturing by a conventional method, and collecting cells by centrifugation or the like.
  • bacteria belonging to Bacillus stearosa morphophilus (Bacillus stearothermophi lus) or Klebsiella pranticola (Klebsiel la plant i cola) are mentioned as examples.
  • As the culture medium bouillon medium, LB medium (1 % Trypton, 0.5% yeast extract, 1% salt) or 2XYT medium (1.6% tryptone, 1% list extract, 0.5% salt), etc.
  • Examples of the processed microorganism cells include mechanically crushing the above microorganism cells (using a blending blender, a French press, a homogenizer, a mortar, etc.), freeze-thawing, self-digesting, and drying (by freeze-drying, air-drying, etc.), Destruction of bacterial cells or denaturation of cell walls or cell membranes obtained by treatment according to general treatment methods such as enzyme treatment (eg, with lysozyme), ultrasonic treatment, or chemical treatment (eg, with acid or alkali treatment) Things can be exemplified.
  • enzyme treatment eg, with lysozyme
  • ultrasonic treatment e.g, ultrasonic treatment
  • chemical treatment eg, with acid or alkali treatment
  • a fraction having the enzyme activity from the above treated cells is purified by a conventional enzyme purification method (salt precipitation, isoelectric precipitation, organic solvent precipitation, dialysis, various types of chromatography). And the like).
  • the method of preparing N-acetylglucosamine kinase from microbial cells is specifically described.
  • the cells obtained by collecting cells are crushed by ultrasonication, and the cell destruction solution is obtained.
  • the supernatant is obtained by centrifugation, and ammonium sulfate is added to the supernatant, and an approximately 30-54% saturated fraction is collected.
  • the recovered precipitate is desalted, it is subjected to various chromatographic treatments such as ion exchange chromatography and gel chromatography, and the N-acetyl glucosamine kinase active fraction is concentrated and desalted to prepare the desired enzyme. You can get things.
  • the N-acetyl glucosamine kinase is preferably added to the reaction solution in an amount of about 0.01 unit or more, particularly about 0.001 to 100 units / m.
  • UMP and N-acetylglycosamine used in the reaction of the present invention commercially available products can be used.
  • the concentration used is not particularly limited, but can be appropriately set within a range of about i to 20 OmM, preferably about 10 to 100 mM.
  • an inorganic phosphoric acid and an energy source to the reaction system.
  • the inorganic phosphate is preferably used in the form of a phosphate buffer in which potassium phosphate or the like can be used as it is.
  • the pH of the phosphate buffer may be appropriately set within the range of about 6.0 to 9.0.
  • the concentration used is not particularly limited, but can be appropriately set within a range of about 100 to 50 OmM, preferably about 100 to 300 mM.
  • energy sources sugars such as glucose and fructose, and organic acids such as acetic acid and citric acid can be used.
  • the reaction system in addition to the N-acetyl dalcosamine kinase, may contain N-acetyl glucosamine phosphoric acid and / or peridine linoleic acid-N—
  • the addition of acetylglucosamine pyrophosphorylase can further improve the yield of UDPAG.
  • N-Acetylglucosamine phosphatase or peridine diphosphate-N-acetylglucosamine pyrophosphorylase coexisting in the reaction system is derived from a specific source such as animal, plant, or microbial. It is not limited to one, but can be used from all sources. N-Acetyl Darcosami described above As with kinases, it is convenient to use enzymes derived from microorganisms in terms of simplicity of enzyme preparation. In addition, these enzymes can also be prepared using a so-called recombinant DNA technique in which the genes of the respective enzymes are cloned and expressed in large amounts in the microbial cells.
  • Microorganism-derived N-acetylglucosamine phosphenes include the genus Saccharomyces (European Journal of Biochemistry, 221, 741 (1994)) and the genus Neurospoa (Journal of Neurospoa). Biochemical Chemistry, 219, 753 (1956)), microorganisms belonging to the genus Blastocladiel la (Biochemica et Biophysica Acta, 451, 408 (1976)), as well as commercially available dried baker's yeast. Examples include isolated yeasts.
  • microorganism-derived peridine diphosphate-N-acetylglucosamine pyrophosphorylase includes genus Escherichia (Journal of Bacteriology, 175, 6150 (1993)), The genus of Staphylococcus (Journal of Biological Chemistry, 234, 1822 (1959)), the genus of Saccharomyces (Agricultural Biological Chemistry, 40, 2275 (1976), the genus of Neurospoa (Can. J Microbiology, 25, 1381 (1979)).
  • N-Acetylglucosamine 'phosphate, peridinenilinate N-acetylglucosamine pyrophosphorylase is also ubiquitous in many microorganisms, similar to N-acetylglucosamine kinase.
  • N-acetylglucosamine kinase The same method as the above-described method for preparing N-acetylglucosamine kinase is used.
  • N-Acetylglucosamine phosphatm tomase and Z or peridinenilinate-N-acetylglucosamine pyrophosphorylase are added to the reaction solution in an amount of about 0.01 unit or more, especially about 0.1 to 10 units. It is preferable to add unit.
  • UDPAG can be added to, for example, a reaction solution obtained by adding yeast, UMP, N-acetylglucosamine, N-acetylglucosamine kinase, and, if necessary, a saccharide as an energy source to a phosphate buffer, and optionally adding N-acetylglucose.
  • a reaction solution obtained by adding yeast, UMP, N-acetylglucosamine, N-acetylglucosamine kinase, and, if necessary, a saccharide as an energy source to a phosphate buffer, and optionally adding N-acetylglucose.
  • Add Samin phosphatase and Z or peridinenilinate-N-acetylglucosamine pyrophosphorylase and add about 5 to 30 hours, preferably about 5 to 25 hours at 1 to 50 hours. If necessary, it can be produced by reacting with stirring.
  • the UDPAG thus obtained can be isolated and purified by the usual means for isolating and purifying sugar nucleotides (ion-exchange chromatography, adsorption chromatography, salting out, etc.).
  • UTP and N-acetyl glucosamine were synthesized using N-acetyl glucosamine kinase, N-acetyl glucosamine 'phosphate and peridine diphosphate-N-acetyl glucosamine pyrophosphorylase.
  • a method for producing UDPAG from Samin will be described.
  • N-acetylglucosamine kinase N-acetylglucosamine phosphate phosphate and peridinenilinate-N-acetylglucosamine pyrophosphorylase to be added to the reaction system can be used.
  • UTP and N-acetyl dalcosamine used in the reaction of the present invention commercially available products can be used.
  • the concentration used can be appropriately set, for example, from a range of about 1 to 200 mM, preferably about 10 to 10 OmM.
  • UDPAG synthesis reaction for example, UTP and N-acetylglycosamine are added to an acid buffer having a pH of about 6.0 to 9.0, and the above three kinds of enzymes are added to this reaction solution at about 0.000. 1 unit ⁇ ⁇ or more, preferably about 0.001 to 100 with addition of unit, about 5 to 30 ° C, preferably about 5 to 25, about 1 to 50 hours, required
  • the reaction can be carried out while stirring.
  • the obtained UDPAG can be isolated and purified by a usual means of sugar nucleotide as described above.
  • Such a UTP generation system is not particularly limited as long as it can supply UTP to the reaction system, and may be appropriately selected from known methods, for example, a method using microbial cells, a method using an enzyme, and the like. And use it.
  • a UTP generation system as a method using microbial cells, a UTP generation system from orotic acid (Japanese Patent Application Laid-Open No. 5-276974) can be used.
  • a method using an enzyme it is preferable to use a method in which a UTP generation system and an ATP regeneration system are conjugated, and a polyphosphate kinase, an adenylate kinase and a polyphosphate are added to adenylate (AMP). It is possible to utilize a system for producing UTP by reacting UMP with peridylate kinase and, if necessary, nucleoside dilinylate kinase while regenerating ATP.
  • the synthesis reaction of UDPAG using the UTP generation system is basically the same as the above UDP AG synthesis reaction conditions, and the final reaction conditions are that the UTP generation reaction and UDPAG synthesis reaction proceed smoothly.
  • the conditions may be appropriately determined by a small-scale test.
  • UDPAG in the reaction solution was quantified by an HPLC method. That is, an ODS-AQ312 column manufactured by YMC was used for the separation, and a 0.5 M phosphoric acid phosphoric acid solution was used as an eluate.
  • DNA preparation, restriction enzyme digestion, DNA ligation with T4 DNA ligase, All transformation methods for E. coli and E. coli were performed according to Molecular cloningj (Maniatis et al., Eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982)). Restriction enzymes, Amp1i Taq DNA polymerase, T4 DNA Rigase was obtained from Takara Shuzo Co., Ltd.
  • the cells were cultured with shaking. This was used as a precultured cell and inoculated into 10% of ⁇ in a 500-volume flask, and cultured with shaking at 50 ° C for 18 hours.
  • the cells were recovered from the 3 liter (L) culture by centrifugation, and resuspended in 50 ⁇ ⁇ of a 10 OmM phosphate buffer (pH 7.0).
  • the cells recovered by centrifugation were suspended in 30EN ⁇ ⁇ PEN (5 OmM phosphate buffer (pH 7.6), 1 mM EDTA, 0.1 mM N-acetylglucosamine). After that, the cells were disrupted by sonication. The supernatant obtained by centrifugation was used as the crude enzyme solution:
  • the recovered crude enzyme solution of 270 contains 1.0 unit of N-acetylglycosaminokinase activity, and the activity per protein was 0.07 Units Zmg.
  • a 90% saturated solution of ammonium sulfate was added to the crude enzyme solution at 27 0 ⁇ , the mixture was allowed to stand in a cool place for 1 hour, and the supernatant was recovered by centrifugation. The precipitate obtained by further adding a 135% ammonium sulfate 90% saturated solution to the recovered solution was recovered,
  • the solution dissolved in ⁇ of 30 was dialyzed against ⁇ to obtain the enzyme preparation of 4 3.
  • This enzyme preparation contained 4.5 units of 7-acetylacetylglucosamine kinase activity, and the activity per protein was 0.21 unit / mg.
  • the N-acetylglucosamine kinase activity was measured and calculated according to a known method (Methods in Enzymology IX, p415-425 (1966)). That is, 100 mM N-acetyl glucosamine solution, 500 mM Tris-hydrochloric acid buffer (pH 7.8), lOOmM ATP solution, and 100 mM magnesium chloride solution were each separated by 50 ⁇ . After injection, add 50_g enzyme preparation solution and react at 37 ° C for 20 to 30 minutes. In addition, a similar reaction is performed using water instead of the ATP solution to serve as a control.
  • the reaction was stopped by adding 500% each of a 5% zinc sulfate solution and 150 mM barium hydroxide solution to the reaction solution, and the precipitate was removed by centrifugation. ⁇ was separated and added to a 33 / ⁇ borate solution (4.995 g of boric acid dissolved in 50% water and adjusted to pH 9.1 with 1 N potassium hydroxide). Add water and boil for 3 minutes.
  • FIG. 1 shows the results of analyzing the reaction solution over time. As is evident from Fig. 1, almost no UDPAG was produced when ⁇ -acetylglucosamine kinase was not added to the reaction solution, but the reaction was started by adding N-acetylglucosamine kinase. Six hours later, it was clarified that 9.2 mM was added in the reaction solution when 0.1 unit was added, and 11.5 mM UDPAG was added in the reaction solution when 0.2 unit was added.
  • FIG. 2 shows the results of the analysis of the reaction solution over time. As is evident from FIG. 2, no UDPAG was produced when N-acetylglucosamine kinase was not added to the reaction solution, but it was more likely that N-acetylglucosamine kinase was added. 8 hours after the start of the reaction, 7.3 mM UDPAG was produced.
  • Example 2 200 mM phosphate buffer (pH 8.0), 20 mM magnesium chloride, 30 mM 5'-UMP, 20 mM N-acetylglucosamine, lO OmM Klebsiella planticola IF0 prepared in the same manner as (1) of Example 1
  • 1 g of dried baker's yeast (Oriental Yeast Co., Ltd.) was added to a reaction solution (10 ⁇ ) containing 2 units of 3317-derived N-acetylglucosamine kinase, and the reaction was carried out at 20 with stirring.
  • Figure 3 shows the results of analysis of the reaction solution over time. As is evident from Fig. 3, no UDPAG was produced when N-acetylglucosamine kinase was not added to the reaction solution, but the reaction was started by adding N-acetylglucosamine kinase. After 8 hours, 7.8 mM UDPAG was produced.
  • Amplification of the yq gR gene by PCR was carried out in a reaction mixture of 100 mM (500 mM chloride, 10 mM Tris-HCl (pH 8.3), 1.5 mM magnesium chloride, 0.0 mM 0 1% gelatin, 0.2mM d ATP.
  • 0.2mM d GTP, 0.2mM d CTP, 0.2mM d TTP, type I DNA 0.1 / g, primer — DNA (A) and (B) 0.2 / M each, Amp1i Ta qDNA polymerase — 2.5 units) was heat denatured (94 ° C) using a DNA Thermal Cycler manufactured by Perkin-Elmer Cetus Instrument. C, 1 minute), annealing (55 ° C, 1.5 minutes), and extension reaction (72 ° C, 3 minutes) were repeated 25 times.
  • the reaction solution was treated with a mixture of phenol Z-cloth form (1: 1), and twice the volume of ethanol was added to the water-soluble fraction to precipitate DNA.
  • the DNA recovered by precipitation was separated by agarose gel electrophoresis according to the method described in the literature (Molecular cloning, described above), and a DNA fragment corresponding to 1.0 kb was purified.
  • the DNA was cleaved with restriction enzymes XbaI and HindIK, and plasmid pTrc99A (obtained from Pharmacia Biotech.) And T4 DNA also digested with restriction enzymes XbaI and HindHI. Ligation was performed using ligase. E. coli K12 strain JM using ligation reaction solution
  • 109 bacteria obtained from Takara Shuzo Co., Ltd.
  • plasmid pTrcYQG-AB was isolated from the obtained ampicillin-resistant transformant.
  • pTr c YQG—AB is an Xba I—H ind HI DNA that contains the Bacillus subtilis yqg R structural gene and SD sequence at the Xba I—H ind IE cleavage site immediately downstream of the trc promoter of pTr c99 A. The fragment was inserted.
  • Escherichia coli JM109 carrying plasmid pTrcYQG-AB was inoculated into 2 x YT medium 10 containing 100 / gZ of ampicillin, and cultured with shaking at 37 ° C. When the number reached 4 ⁇ 10 8, IPTG was added to the culture to a final concentration of 1 mM, and shaking culture was continued at 37 ° C. for 5 hours. After completion of the culture, the cells were collected by centrifugation (9,000 X g, 10 minutes), and a 2 ⁇ ⁇ buffer solution.
  • FIG. 4 shows the results of analyzing the reaction solution over time. As is evident from FIG. 4, no UDPAG was detected in the reaction solution to which N-acetylglucosamine kinase was not added. However, by adding the enzyme solution, no reaction was observed 24 hours after the start of the reaction. It was confirmed that 12.2 mMUDPAG force was accumulated when 2 units were added, and 13.6 mM UDPAG was accumulated when 1 unit was added.
  • a DNA fragment equivalent to 2.2 kb was purified from the reaction solution in the same manner as in Example 1.
  • a DNA fragment containing the yeast-derived N-acetylglucosamine phosphate enzyme (agml) was amplified again by the PCR method using the following two types of primer DNAs.
  • the second PCR reaction condition is the same as the first.
  • a 1.7 kb DNA fragment was purified in the same manner as described above.
  • the end of the recovered DNA was smoothed with a DNA blunting kit (obtained from Takara Shuzo). This was digested with a restriction enzyme NcoI, and then ligated with a plasmid PT rc99A (obtained from Pharmacia Biotech.) Whose terminal was blunt-ended using T4 DNA ligase.
  • Escherichia coli K12 strain JM109 was transformed using this reaction solution, and plasmid pTrc-agm1 was isolated from the obtained ampicillin-resistant transformant.
  • Plasmid pTrc—agm1 is the same as ATG at the start codon of yeast agm1 gene at ATG at the NcoI cleavage site downstream of the trc promoter of pTrc99A. It is inserted as shown. Further, the obtained transformant was designated as JM109 [pTrc-agm1].
  • JM109 [pTrc-agml] was cultured overnight at 37 ° C in 2 x YT medium 2 containing 100 ⁇ g of ampicillin. This was inoculated into 2 ⁇ YT medium 500 containing 100 / m of ampicillin. 3 after 2 hr at 7, was added to a an I PTG to a final concentration of I mM, 3 5 hours at 7 ° C, subsequently 2 0 ° c After the cultivation was cultured overnight in C, and centrifuged (9 , 0000 Xg, 20 minutes). The collected cells were suspended in 50 mM imidazole buffer (pH 6.8). After disrupting the cells using a Branson Ultrasonic Crusher (Model 450 Funifa) (50 W, 5 min, 3 times), the cells were centrifuged at 15,500 rpm for 30 min. The soluble fraction (supernatant) was collected.
  • a Branson Ultrasonic Crusher Model 450 Funifa
  • the supernatant fraction thus obtained was used as an enzyme preparation, and the N-acetyl glucosamine-phosphate tomase activity in the enzyme preparation was measured.
  • the results are shown in Table 2 below together with the control bacterium (Escherichia coli JM109 carrying pTrc99A).
  • N-acetylglucosamine phosphate activity was determined by the following method according to a known document (European Journal of Biochemistry, No. 221, 741 (1994)). The conversion activity of N-1 phosphoric acid to N-acetylglucosamine-16-phosphate was measured and calculated.
  • Deactivate the enzyme by mixing with a 1 M sulfuric acid solution equal to the reaction volume, and boil for 10 minutes. After boiling, cool to 25 ° C.
  • heat-sensitive N-acetylglucosamine-1 phosphoric acid is decomposed and releases phosphoric acid.
  • the released inorganic phosphoric acid is quantified by the following method. That is, 200 ⁇ ⁇ ⁇ ⁇ of a sample cooled to 25 ° C is added to 700 ⁇ of distilled water, and an amide reagent (100 g of sodium bisulfite is added). 5 g of amide was dissolved to make a 500 aqueous solution.
  • ammonium molybdate 41.5 g of ammonium molybdate was dissolved, and ammonia water was added dropwise. Dissolve well (as a 500 aqueous solution) Add 70 /. After standing at room temperature for 10 minutes, measure the absorbance at 75 nm with a spectrophotometer.
  • the absorbance at 1 mM inorganic phosphoric acid was 0.3687, and the amount of N-acetylglucosamine-1 phosphate reduced by the enzymatic reaction from the concentration of inorganic phosphoric acid was converted to 30
  • One unit (unit) refers to the activity of converting 1 ⁇ m 0 £ e of N-acetylglucosamine-1 phosphoric acid into N-acetylglucosamine-6 phosphoric acid per minute at ° C. .
  • the E. coli UDPAG pyrophosphorylase is known to be identical to glucosamine peridyltransferase (EC 2.7.7.23) (g 1 mU) (Journal of Bacteriology, 175, 19, 6150 (1993)). Therefore, the chromosomal DNA of E. coli IF03972 was prepared by the method of Saito and Miura (Biochemica et Biophysica Acta, 72, 619 (1963)), and this was transformed into type II using the two types of primer DNA shown below. Then, a DNA fragment containing the UDPAG pyrophosphorylase gene (Biochem. J., (1984), 224, 799-815) was amplified by PCR.
  • a 1.5 kb DNA fragment was purified in the same manner as in Example 5.
  • the recovered DNA was blunt-ended using a DNA blunting kit (obtained from Takara Shuzo). This was digested with the restriction enzyme DraI, and then ligated using the plasmid pUC18 digested with the restriction enzyme SmaI and T4 DNA ligase.
  • This plasmid was digested with restriction enzymes EcoRI and HindIE, a 1.5 kb DNA fragment was purified as described above, and the plasmid was also digested with restriction enzymes EcoRI and Hindffi. Ligation was performed using pTrc99A (obtained from Pharmacia Biotech.) and T4 DNA ligase.
  • Escherichia coli K12 strain JM109 was transformed using the ligation reaction solution, and plasmid pTrc-glmU was isolated from the resulting ampicillin-resistant transformant.
  • pTrc-glmU is obtained by inserting the structural gene of E. coli g1 mU into the SmaI-Hind IE recognition site downstream of the trc promoter of pTrc99A.
  • the obtained transformant was designated as JM109 [pT rc-gl mU].
  • JM109 [pTrc-glmU] was cultured overnight at 37 ° C in 2 x YT medium 25; ⁇ containing 100 ⁇ g gZm of ampicillin. This was inoculated into 2 ⁇ YT medium 500 containing 100 g / ampicillin. After culturing at 37 ° C for 2 hours, IPTG was added to a final concentration of 1 mM, followed by culturing at 37 ° C overnight. After completion of the culture, the cells were collected by centrifugation (4 ° C, 9,000 X g, 20 minutes).
  • the collected cells were suspended in 5 OmM Tris-HCl (pH 7.5), crushed using a Branson sonicator (Model 450 Funifa) (50 W, 5 minutes, 3 times), and then suspended. Then, the mixture was centrifuged at 15, 000 rpm for 30 minutes, and a soluble fraction (supernatant) was collected.
  • the supernatant fraction thus obtained was used as an enzyme preparation, and the UDP AG port phosphorylase activity in the enzyme preparation was measured.
  • the results are shown in Table 3 below together with the control bacteria (Escherichia coli JM109 bacteria carrying pTrc99A).
  • the UDPAG pyrophosphorylase activity was obtained by measuring and calculating the activity of decomposing UDP-PAG and pyrrolic acid into N-acetylglucosamine-1-phosphate and UTP by the following method.
  • UDPAG pyrophosphorylase enzyme preparation was added to 50 mM Tris-HCl buffer (pH 7.5), 5 mM magnesium chloride, 3 mM sodium pyrophosphate, and ImM UDPAG (approximately per reaction solution). 6 g) 3 minutes at 7 ° C Let react. The same reaction is carried out using water instead of the sodium pyrophosphate solution, and this is used as a control.
  • FIG. 5 shows the results of analyzing the reaction solution over time.
  • glucose was added, in the reaction mixture of 5% dried baker's yeast and N-acetylglucosamine kinase, 27 mM of UDPAG accumulated in 88 hours of the reaction.
  • UDP-AG pyrophosphorylase is combined in addition to N-acetyl glucosamine kinase, when N-acetyl glucosamine phosphine is combined, UDPAG pyrophosphorylase and N-acetyl glucosamine phosphine are combined. When both of them were combined, the accumulation of UDPAG increased to 33 mM, 37 mM, and 39 mM, respectively.
  • Example 6 a reaction example in a test tube was shown. The results of scale-up of the UD PAG synthesis reaction using are shown. That is, 400 mM glucose, 100 mM N-acetylglucosamine, 100 mM UMP, 200 mM potassium phosphate (pH 8.0), 200 mM magnesium chloride, 5% (w / v) 1.5 L solution containing dried baker's yeast (Oriental Yeast Co., Ltd.) was added to the recombinant enzyme solution (N-acetyl) prepared in Example 5 (2) and Example 6 (2) and (4).
  • 400 mM glucose, 100 mM N-acetylglucosamine, 100 mM UMP, 200 mM potassium phosphate (pH 8.0), 200 mM magnesium chloride, 5% (w / v) 1.5 L solution containing dried baker's yeast (Oriental Yeast Co., Ltd.) was added to the recombinant enzyme solution (N-acetyl) prepared
  • Glucosamine kinase 120 units; N-acetyl phosphamine; 750 units; UD PAG pyrophosphorylase; 750 units
  • the reaction was carried out with stirring at a rate of 1.5 LZ at 700 rpm.
  • enol was appropriately added as an antifoaming agent.
  • 54 g of glucose was added to the reaction solution.
  • FIG. 6 shows the results of analyzing the reaction solution over time. In 45 hours of the reaction, UDPAG accumulated 82 mM.
  • a DNA fragment equivalent to 0.74 kb was purified in the same manner as in Example 5.
  • the DNA was cut with restriction enzymes Nc0I and BamHI, and plasmid pTrc99A (obtained from Pharmacia Biotech.) And T4 which were also digested with restriction enzymes Nc0I and BamHI. Ligation was performed using DNA ligase. Escherichia coli JM109 was transformed using this reaction solution, and plasmid ⁇ TP01 was isolated from the obtained ampicillin-resistant transformant.
  • pTP01 is an NcoI-B containing the structural gene of the E. coli PyrH gene at the NcoI-BamHI cleavage site downstream of the trc promoter and the Shine-Dalgarno sequence of pTrc99A. amHI DNA fragment was inserted.
  • Escherichia coli JM109 carrying plasmid pTP01 was inoculated into LB medium 1 containing 50 g / ampicillin and cultured with shaking at 30 ° C. 4 x 1 0 8 cells / / To added pressure to the I PTG to be 1 mM final concentration to the culture solution at which point was continued for another 3 0 ° C for 5 hours with shaking culture.
  • the cells were collected by centrifugation (9,000 xg, 10 minutes), and 2i buffer (5 OmM Tris-HCl (pH 7.5), 50 mM potassium chloride, 2 mM chloride) Magnesium).
  • 2i buffer 5 OmM Tris-HCl (pH 7.5), 50 mM potassium chloride, 2 mM chloride) Magnesium.
  • the suspension was sonicated to disrupt the cells, and the supernatant fraction was removed by centrifugation (20,000 X g, 10 minutes).
  • the precipitate fraction thus obtained was used as an enzyme preparation.
  • the UMP kinase activity in the enzyme preparation is shown in Table 4 below together with the control bacteria (Escherichia coli JM109 bacteria having pTrc99A).
  • the unit (unit) of the UMP kinase activity in the present invention was measured and calculated by the following method. That is, the reaction was carried out by incubating at 30 ° C under the conditions of 50 mM Tris-HCl (pH 7.5), 50 mM potassium chloride, 2 mM magnesium chloride, 3 mM UTP, and 3 mM ATP. Inactivate the enzyme by boiling for 1 minute.
  • the amount of UDP in the reaction solution is quantified by HPLC, and the activity of producing 1 ⁇ mo ⁇ e of UDP per minute at 30 ° C is defined as 1 unit (unit).
  • Chromosomal DNA of Escherichia coli K12 strain JM109 was prepared by the method of Saito and Miura (Biochemica et Biophysica Acta., 72.619 (1963)).
  • the following two types of primer DNA are synthesized according to a conventional method, and the E. coli polyphosphate kinase (ppk) gene (J. Biol. Chem., 267, 22556-) is synthesized by PCR. 22561 (1992)).
  • Amplification of the ppk gene by PCR was performed using the same reaction composition and reaction equipment as in Example 5, heat denaturation (94 ° C, 1 minute), annealing (55 ° C, 1.5). Min) and the extension reaction (72 ° C., 1.5 min) were repeated 25 times.
  • a DNA fragment equivalent to 1.0 kb was purified in the same manner as in Example 5.
  • the DNA was cleaved with restriction enzymes Nc0I and BamHI, and plasmid pTrc99A (obtained from Pharmacia Biotech.) And digested with restriction enzymes Nc0I and BamHI. 4 Ligation was performed using DNA ligase. Using this reaction mixture, E. coli JM109 was transformed, and the resulting ampicillin-resistant transformant was transformed. The plasmid pTrc-PPK was isolated. pTrc—Ppk was obtained by inserting the NcoI—BamHIDNA fragment containing the E. coli k gene into the NcoI-BamHI cleavage site downstream of the trc promoter of pTrc99A. It is a thing.
  • Plasmid pT rc-E. coli JM109 carrying the PKK was inoculated into 3 ⁇ YT medium 300 containing 100 ⁇ g of ampicillin and cultured at 37 ° C. with shaking. . 4 X 1 0 8 when it reaches the bacteria /, to a final concentration of 1 mM to the culture solution
  • IPTG was added, and shaking culture was continued at 30 ° C. for 5 hours.
  • the cells were collected by centrifugation (9,000 X g, i 0 minutes), and the cells were collected in 60 buffer (50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0 mM 1% Triton X—100, 0.2 mgZ? ⁇ Lysozyme). After incubating for 1 hour at 37 ° C., the cells were disrupted by sonication, and the cell residues were removed by centrifugation (20,000 ⁇ g, 10 minutes). The supernatant fraction thus obtained is
  • the crude enzyme solution was dialyzed against 50 mM Tris-HCl (pH 7.8) containing 5 mM magnesium chloride and 1 mM 2-mercaptoethanol.
  • the unit (unit) of the polyphosphate kinase activity in the present invention is as follows. Measured and calculated by the method.
  • an enzyme preparation was added to a 5 mM Tris-HCl buffer (pH 7.8) containing 5 mM magnesium chloride, 100 mM ammonium sulfate, 5 mM ADP, and polyphosphoric acid (15 OmM as inorganic phosphoric acid). Perform the reaction by incubating at 37 ° C and inactivate the enzyme by boiling for 1 minute. ATP in the reaction solution is quantified by HPLC, and the activity of producing 1 ⁇ mo ⁇ e of ATP per minute at 37 ° C is defined as one unit (unit).
  • the crude enzyme solution was fractionated with a concentration gradient of 0 to 0.5 M NaC using DEAE Toyopearl 65 M (Too Corporation) to obtain a polyphosphate kinase fraction.
  • This fraction was used as a polyphosphate kinase enzyme preparation.
  • the specific activity of borin kinase in this enzyme preparation was 0.6 unit / mg protein.
  • Chromosomal DNA of Escherichia coli K12 strain JM109 was prepared by the method of Saito and Miura (Biochim. Biopys. Acta., 72, 619 (1963)).
  • the following two types of primer DNAs are synthesized according to a conventional method, and the E. coli adenylate kinase (adk) gene (Nucleic Acids Res., 13 (19), 7139-7151) is synthesized by PCR. (1985).
  • Amplification of the adk gene by PCR was performed using the same reaction composition and reaction equipment as in Example 5, heat denaturation (94 ° C, 1 minute), annealing (56, 1 minute), extension reaction (7 minutes). (2 ° C, 3 minutes) was repeated 25 times.
  • a DNA fragment equivalent to 1.0 kb was purified in the same manner as in Example 5.
  • the DNA was cleaved with restriction enzymes BamHI and HindHI, and plasmid pUC18 (obtained from Takara Shuzo) and T4 DNA ligase, also digested with restriction enzymes BamHI and HindlE. Connected. E. coli using this reaction solution JMl09 bacteria were transformed, and plasmid P UC- ADK was isolated from the obtained ampicillin-resistant transformant.
  • pUC-ADK is the BamHI-HindI DNA fragment containing the E. coli adk gene inserted into the BamHI-HindIE cleavage site downstream of the lac promoter of pUC18.
  • Escherichia coli JM109 carrying plasmid pUC-ADK was inoculated into 2XYT medium 300 containing 100 ⁇ g / i ampicillin, and cultured with shaking at 37 ° C. Once at the 4 X 1 0 8 bacteria Z, to a final concentration of 1 mM to the culture solution
  • the cells were collected by centrifugation (9,000 X g, 10 minutes), and a 60-w buffer (5 OmM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% Triton X—100, 0.2 mgZ lysozyme). After incubating for 1 hour at 37 ° C, sonication is performed to disrupt the cells, and then centrifuged.
  • a 60-w buffer 5 OmM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% Triton X—100, 0.2 mgZ lysozyme.
  • the adenylate kinase activity in the crude enzyme solution thus obtained was measured.
  • the results are shown in Table 6 below together with the control bacteria (Escherichia coli JM109 carrying pUC18).
  • the unit (unit) of the adenylate kinase activity in the present invention is as follows. It was measured and calculated by the method described above.
  • the reaction was carried out by adding the enzyme preparation to 5 OmM Tris-HCl buffer (pH 7.8) containing 5 mM magnesium chloride, 5 mM ATP, and 5 mM AMP, keeping the temperature at 37, and reacting for 1 minute.
  • the enzyme is deactivated by boiling.
  • the amount of ADP in the reaction solution is quantified by HPLC, and the activity of producing 2 ⁇ m of ADP per minute at 37 minutes is defined as one unit (unit).
  • the crude enzyme solution was fractionated using DEAE Toyopearl 65 M (Toisoichi Co., Ltd.) with a concentration gradient of 0 to 0.5 M NaC to obtain a fraction having adenylate kinase activity.
  • This fraction was used as an adenylate kinase enzyme preparation.
  • the specific activity of polyphosphate kinase in this enzyme preparation was determined to be 344 units / mg protein.
  • the present invention makes it possible for the first time to produce UDPAG efficiently even when N-acetylglucosamine, which has low utility as a substrate, is used as a substrate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 ゥリジンニリ ン酸— N—ァセチルグルコサミ ンの製造法 技術分野
本発明は、 オリゴ糖合成の重要な基質であるゥリジンニリ ン酸一 N—ァセチル グルコサミ ン (U D P A G ) の製造法に関するものである。 背景技術
近年、 糖鎖についての研究が急速に進み、 その機能が明らかになるにつれ、 生 理活性を有するオリゴ糖の医薬品または機能性素材としての用途開発が注目を集 めている。 しかし、 現在市販されているオリゴ糖はごく限られた種類のものしか なく、 しかも極めて高価である。 また、 そのようなオリゴ糖は試薬レベルでしか 製造できず、 必ずしもその大量製造法が確立されているとは限らない。
従来、 オリゴ糖の製造は天然物からの抽出法、 化学合成法あるいは酵素合成法、 さらにはそれらの併用により行われていたが、 その中でも酵素合成法が大量製造 に適した方法であると考えられている。 すなわち、 ( 1 ) 酵素合成法が化学合成 法にみられる保護、 脱保護といった煩雑な手順を必要とせず、 速やかに目的のォ リゴ糖を合成できる点、 ( 2 ) 酵素の基質特異性により、 きわめて構造特異性の 高いオリゴ糖を合成できる点などが他の方法より有利と考えられるためである。 さらに、 近年の組換え D N A技術の発達により種々の合成酵素が安価にしかも大 量に生産できるようになりつつあることが、 酵素合成法の優位性をさらに押し上 げる結果となっている。
酵素合成法によりオリゴ糖を合成する方法としては、 ォリゴ糖の加水分解酵素 の逆反応を利用する方法および糖転移酵素を利用する方法の 2通りの方法が考え られている。 前者の方法は、 基質として単価の安い単糖を用いることができると いう利点はあるものの、 反応自体は分解反応の逆反応を利用するものであり、 合 成収率や複雑な構造を持つオリゴ糖合成への応用といった点では必ずしも最良の 方法とは考えられていない。
一方、 後者は糖転移酵素を用いる合成法であり、 合成収率や複雑な構造を持つ ォリゴ糖合成への応用といった点で前者の方法よりも有利であると考えられてお り、 また、 近年の組換え D N A技術の進歩により各種糖転移酵素の量産化も該技 術の実現化への後押しとなっている。
しかしながら、 糖転移酵素を用いる合成法で用いる糖供与体である糖ヌクレオ チドは、 一部のものを除き依然として高価で、 量的にも試薬レベルのわずかな供 給量でしか提供し得ないのが現状である。 多くの生理活性糖鎖のコア部分に含ま れる N—ァセチルグルコサミンの供与体である U D P A Gについても耐浸透圧性 酵母を用いる方法などが報告されているものの (特開平 8 - 2 3 9 9 3号公報) 、 工業的生産の現実化までにはまだまだ検討の余地が残されている。
本発明者らは、 酵母中での U D P A Gの生合成経路に関して詳細に検討した結 果、 グルコサミ ンがグルコサミ ン一 6 リン酸、 N—ァセチルグルコサミ ン一 6 リ ン酸を経て N—ァセチルグルコサミ ンー 1 リン酸まで活性化される一連の反応経 路の中でグルコサミ ン— 6 リ ン酸から N—ァセチルグルコサミ ンー 6 リ ン酸への ァセチル化反応が律速段階となっているのではないかと考えた。 このため、 N— ァセチルグルコサミ ンー 6 リ ン酸を基質とすれば U D P A Gの合成効率は向上で きるものと考えられるものの、 この物質を安価にしかも大量に入手することは現 時点では不可能である。
そこで、 現時点において安価にしかも大量に入手可能な N -ァセチルグルコサ ミ ンを基質として用いることができれば、 律速段階であるァセチル化反応を経な くてすみ、 グルコサミ ンよりも理想的な基質となり得ると考え、 栃倉らにより報 告されているゥリジル酸 (U M P ) と N—ァセチルグルコサミ ンを基質として用 いた酵母による U D P A Gの製造方法 (特公昭 4 9 - 8 2 7 8号公報:栃倉法) について検討を行った。 しかしながら、 グルコサミ ンよりも N—ァセチルグルコ サミ ンを基質として用いた方が UDPAGの生成量が減少し、 全く生成しないか、 ごく僅かの U D P A Gしか製造できないという栃倉らの報告を再確認したに過ぎ ないものであった。
したがって、 本発明は、 N ァセチルグルコサミ ンを基質として用いた場合で あっても収率よく UDPAGを製造できる方法を提供することを目的とするもの である。 発明の開示
本発明者らは上記目的を達成すべく研究を重ねた結果、 ( 1 ) N -ァセチ儿グ ルコサミ ンをリ ン酸化する酵素活性が酵母中にはほとんどないか、 あってもごく 微弱であり、 このために N ァセチルグルコサミ ンは基質となりえないが、 反応 系に N ァセチルグルコサミ ンのリン酸化酵素である N ァセチルグルコサミ ン キナーゼを共存させることで効率的に UDPAGが合成できること、 (2) さ ら に N ァセチルグルコサミ ン · ホスフヱ一トムターゼ及び/またはゥリジンニリ ン酸— N ァセチルグルコサミ ンピロホスホリラーゼを添加することにより、 N —ァセチルグルコサミ ンキナ一ゼ単独の時よりも UD P AGの収率を向上させる ことができること、 (3) N ァセチルグルコサミ ンキナーゼ、 N ァセチ几グ ルコサミ ン · ホスフェートム夕一ゼ及びゥリジンニリ ン酸 N ァセチルク' '儿コ サミ ンピロホスホリラーゼを用いることにより、 ゥリジン三リ ン酸 (UTP) か ら UDPAGが効率的に合成できることを見出し、 本発明を完成させた。
すなわち、 本発明は、 微生物菌体を用いて UMP及び N ァセチルグルコサミ ンから UDPAGを製造する方法において、 N ァセチルグルコサミ ンキナーゼ を共存せしめることを特徴とする UDPAGの製造法を提供するものである。 また、 本発明は、 酵素を用いて UT P及び N ァセチルグルコサミ ンから UDPAGを製造する方法において、 酵素として N ァセチルグルコサミ ンキナ —ゼ、 N—ァセチルグルコサミ ン ' ホスフエ一トム夕一ゼ及びゥリジン二リ ン酸 —N—ァセチルグルコサミ ンピロホスホリラーゼを併用することを特徴とする UDPA Gの製造法を提供するものである。 図面の簡単な説明
図 1は、 Bacillus stearothermophi lus ATCC15952 由来の N—ァセチルグルコ サミ ンキナーゼを共存させたときの UDP AG生成量の経時変化を示したもので める。
図 2は、 Escherichia coli I AMI 268 由来の N—ァセチルグルコサミ ンキナー ゼを共存させたときの UD P AG生成量の経時変化を示したものである。
図 3は、 Klebsiella planticola IF03317 由来の N—ァセチルグルコサミ ンキ ナ一ゼを共存させたときの UDP AG生成量の経時変化を示したものである。 図 4は、 枯草菌 Ml 68株由来の組換え N—ァセチルグルコサミ ンキナ一ゼを 共存させたときの UD P AG生成量の経時変化を示したものである。
図 5は、 枯草菌 Ml 68株由来の組換え N—ァセチルグルコサミ ンキナーゼ、 パン酵母由来の組換え N—ァセチルグルコサミ ン ' ホスフエ一トムターゼ、 およ び Zまたは大腸菌 E 1 02株由来の組換え UDP AGピロホスホリラーゼを共存 させたときの UDP AG生成量の経時変化を示したものである。 なお、 図中、 ① は酵母と N—ァセチルグルコサミ ンキナーゼ、 ②は酵母と N—ァセチルダルコサ ミ ンキナ一ゼと N—ァセチルグルコサミ ン · ホスフエ一トム夕一ゼ、 ③は酵母と N—ァセチルグルコサミ ンキナーゼと UDP AGピロホスホリラ一ゼ、 ④は酵母 と N—ァセチルグルコサミ ンキナーゼと N—ァセチルグルコサミ ン · ホスフヱ一 トム夕一ゼと U D P A Gピロホスホリラ一ゼを組み合わせたときの結果を示した ものである。
図 6は、 枯草菌 Ml 68株由来の組換え N—ァセチルグルコサミ ンキナーゼ、 '酵母由来の組換え N—ァセチルグルコサミ ンホスフエート ·厶夕一ゼ、 およ び/または大腸菌 E 1 0 2株由来の組換え UD PAGピロホスホリラ一ゼを共存 させた時の UDP AG生成量の経時変化を示したものである。 発明を実施するための最良の形態
本発明は、 上述したように、 微生物菌体を用いて UMP及び N—ァセチルグル コサミ ンから UDP AGを製造する方法において、 N—ァセチルグルコサミ ンキ ナーゼを共存せしめて UDP AGを製造する方法に関するものである。
反応に使用する微生物菌体としては、 糖ヌクレオチドの製造に使用されるもの であれば特に制限されない。 具体的には、 サッカロミセス (Saccharomyces) 属、 チゴサッカロミセス (Zygosaccharomyces) 属、 カンディダ (Candida) 属、 トル ロプシス (Torulopsis) 属、 ハンセ ヌ ラ (Hansenula) 属、 デバリオミセス (Debaryomyces) 属などの酵母由来の菌体を例示することができる。 このような 酵母菌体は、 生酵母菌体、 乾燥酵母菌体いずれであってもかまわないが、 反応収 率、 取扱いの容易性などの点から乾燥酵母菌体を用いるのが好ましい。
反応系に添加する N—ァセチルグルコサミ ンキナーゼとしては、 動物由来、 植 物由来、 微生物由来など、 特定の由来のものに限定されず、 すべての由来のもの を使用することができる。 しかし、 酵素調製の簡便性などの点から微生物由来の 酵素を使用するのが好都合である。
N _ ァセチルグルコサ ミ ンキナーゼは、 カ ンディ ダ (Candida) 属 (Biochemica et Biophysica Acta, 614,350(1980)) 、 スト レプ トコッカス (Streptococcus) 属 (Methods in Enzymology, 9, 415(1966)) 、 エッシェ リ ヒ ァ (Escherichia) 属 (Methods in Enzymology, 9, 421 (1966)) 、 バンラス (Bacillus) 属、 クレブシエラ (Klebsiella) 属など多くの微生物に普遍的に存 在し、 培養菌体から容易に調製可能である。
また、 N—ァセチルグルコサミ ンキナーゼは、 常法に従って N—ァセチルグル コサミ ンキナーゼ遺伝子をクローン化し、 微生物菌体内で大量発現させる、 いわ ゆる組換え D N A手法により調製することも可能である。
反応系に添加する N—ァセチルグルコサミ ンキナーゼは、 当該活性を有する限 りどのような形態であってもよい。 具体的には、 微生物の菌体、 該菌体の処理物 または該処理物から得られる酵素調製物などを例示することができる。
微生物の菌体の調製は、 当該微生物が生育可能な培地を用い、 常法により培養 後、 遠心分離等で集菌する方法で行うことができる。 具体的に、 バシラス ' ステ ァロサ一モフィラス (Baci l lus stearothermophi lus) またはクレブシヱラ ' プ ランティコラ (Klebsiel la plant i cola) に属する細菌を例に挙げ説明すれば、 培地としてはブイヨン培地、 L B培地 ( 1 %トリプトン、 0 . 5 %イーストェキ ストラク ト、 1 %食塩) または 2 X Y T培地 ( 1 . 6 %トリプトン、 1 %ィ一ス トエキストラク ト、 0 . 5 %食塩) などを使用することができ、 当該培地に種菌 を接種後、 約 3 0〜5 0 °Cで約 1 0〜5 0時間程度必要により撹拌しながら培養 し、 得られた培養液を遠心分離して微生物菌体を集菌することにより N—ァセチ ルグルコサミ ンキナーゼ活性を有する微生物菌体を調製することができる。
微生物の菌体処理物としては、 上記微生物菌体を機械的破壤 (ワーリ ングブレ ンダ一、 フレンチプレス、 ホモジナイザー、 乳鉢などによる) 、 凍結融解、 自己 消化、 乾燥 (凍結乾燥、 風乾などによる) 、 酵素処理 (リゾチームなどによる) 、 超音波処理、 化学処理 (酸、 アルカリ処理などによる) などの一般的な処理法に 従って処理して得られる菌体の破壊物または菌体の細胞壁もしくは細胞膜の変性 物を例示することができる。
酵素調製物としては、 上記菌体処理物から当該酵素活性を有する画分を通常の 酵素の精製手段 (塩析処理、 等電点沈澱処理、 有機溶媒沈澱処理、 透析処理、 各 種クロマトグラフィー処理など) を施して得られる粗酵素または精製酵素を例示 することができる。
微生物菌体からの N—ァセチルグルコサミ ンキナーゼの調製法を具体的に説明 すれば、 集菌して得られた菌体を超音波処理により菌体を破砕し、 菌体破壊液を 遠心して上清を得、 この上清に硫酸アンモニゥ厶を添加し、 約 3 0〜5 4 %飽和 画分を回収する。 回収した沈澱を脱塩後、 イオン交換クロマトグラフィー、 ゲル クロマトグラフィ一などの各種クロマトグラフィ一処理を施し、 N—ァセチ儿グ ルコサミ ンキナ一ゼ活性画分を濃縮、 脱塩することで目的とする酵素調製物を取 得することができる。
N—ァセチルグルコサミ ンキナーゼは反応液に約 0 . 0 0 1ュニッ ト 以上、 特に約 0 . 0 0 1〜 1 0 0ュニッ ト /m添加するのが好ましい。
本発明の反応に使用する U M Pと N—ァセチルグルコサミ ンは、 市販品を使用 することができる。 使用濃度としては、 特に制限されないが、 それぞれ約 i〜 2 0 O m M、 好ましくは約 1 0〜 1 0 0 m Mの範囲から適宜設定することができ る。
本発明においては、 無機リ ン酸とエネルギー源を反応系に添加するのが好まし い。 無機リ ン酸は、 リ ン酸カリウムなどをそのまま使用することもできる力 \ リ ン酸緩衝液の形態で使用するのが好ましい。 リ ン酸緩衝液の P Hは約 6 . 0〜 9 . 0の範囲から適宜設定すればよい。 使用濃度は、 特に制限されないが、 約 1 0〜5 0 O m M、 好ましくは約 1 0 0〜 3 0 0 m Mの範囲から適宜設定するこ とができる。 エネルギー源としては、 グルコース、 フラク トースなどの糖類、 酢 酸、 クェン酸などの有機酸を使用することができる。
また、 本発明の製造法においては、 N—ァセチルダルコサミ ンキナーゼの他に 反応系に N—ァセチルグルコサミ ン · ホスフエ一ト厶夕一ゼ及び/またはゥリ ジ ンニリ ン酸ー N—ァセチルグルコサミ ンピロホスホリラーゼを添加共存させると U D P A Gの収率をさらに向上させることができる。
反応系に共存させる N—ァセチルグルコサミ ン · ホスフエ一トム夕ーゼまたは ゥリジンニリン酸一 N—ァセチルグルコサミ ンピロホスホリラ一ゼとしては、 動 物由来、 植物由来、 微生物由来など、 特定の由来のものに限定されず、 すべての 由来のものを使用することができる。 し力、し、 上述した N—ァセチルダルコサミ ンキナーゼと同様に酵素調製の簡便性などの点から微生物由来の酵素を使用する のが好都合である。 また、 これらの酵素は、 それぞれの酵素の遺伝子をクローン 化し、 微生物菌体内で大量発現させる、 いわゆる組換え DNA手法を用いて調製 することも可能である。
微生物由来の N—ァセチルグルコサミ ン · ホスフエ一トム夕一ゼとしては、 サ ッカロ ミセス (Saccharomyces) 属 (European Journal of Biochemistry, 221, 741(1994)) 、 ニューロスポラ (Neurospoa) 属 ( Journal of Biolo ical Chemistry, 219, 753(1956)) 、 ブラ ス ト ク ラ デ ィ エラ (Blastocladiel la) 属 (Biochemica et Biophysica Acta, 451, 408(1976)) に属する微生物のほか、 市販の乾燥パン酵母から分離した酵母菌などが挙げられる。
また、 微生物由来のゥリジン二リン酸— N—ァセチルグルコサミ ンピロホスホ リ ラ ー ゼ と し て は、 エ ッ シ ェ リ ヒ ァ (Escherichia) 属 (Journal of Bacteriology, 175, 6150(1993) ) 、 ス夕フイ ロコッカス (Staphylococcus) 属 (Journal of Biological Chemistry, 234, 1822(1959)) 、 サッカロ ミ セス (Saccharomyces) 属 (Agricultural Biological Chemistry, 40, 2275(1976 、 ニューロスボラ (Neurospoa) 属 (Can. J. Microbiology, 25, 1381(1979)) に属 する微生物、 大腸菌などが挙げられる。
N—ァセチルグルコサミ ン ' ホスフエ一 トム夕ーゼ、 ゥリ ジンニリ ン酸一 N— ァセチルグルコサミ ンピロホスホリラーゼとも N—ァセチルグルコサミ ンキナー ゼと同様に多くの微生物に普遍的に存在し、 培養菌体から容易に調製可能である c 反応系に添加する N—ァセチルグルコサミ ン · ホスフヱートムタ一ゼ及びゥリ ジンニリ ン酸— N—ァセチルグルコサミ ンピロホスホリラーゼは、 当該活性を有 する限りどのような形態であってもよい。 具体的には、 微生物の菌体、 該菌体の 処理物または該処理物から得られる酵素調製物などを例示することができ、 前述 した N—ァセチルグルコサミ ンキナーゼの調製法と同様の方法で調製することか できる。 N—ァセチルグルコサミ ン · ホスフエ一トムターゼ及び Zまたはゥリジンニリ ン酸—N—ァセチルグルコサミ ンピロホスホリラ一ゼは反応液に約 0. 0 0 1ュ ニッ ト 以上、 特に約 0. 1〜 1 0ュニッ ト 添加するのが好ましい。
UDPAGは、 例えばリン酸緩衝液中に酵母、 UMP、 N—ァセチルグルコサ ミ ン、 N—ァセチルグルコサミ ンキナーゼ、 および必要によりエネルギー源とし て糖類を添加した反応液に、 任意で N—ァセチルグルコサミ ン . ホスフヱ一トム ターゼ及び Zまたはゥリジンニリ ン酸ー N—ァセチルグルコサミ ンピロホスホリ ラーゼを添加し、 約 5〜3 0て、 好ましくは約 5〜2 5°C中で 1〜5 0時間程度 必要により攪拌しながら反応させることにより製造できる。
このようにして得られた UDPAGは、 糖ヌクレオチドの通常の単離精製手段 (イオン交換ク πマトグラフィー、 吸着クロマトグラフィー、 塩析など) により 単離精製することができる。
次に、 N—ァセチルグルコサミ ンキナーゼ、 N—ァセチルグルコサミ ン ' ホス フエ一トム夕一ゼおよびゥリジンニリン酸ー N—ァセチルグルコサミ ンピロホス ホリラ一ゼを用いて UTPと N—ァセチルグルコサミ ンから UD P AGを製造す る方法について説明する。
反応系に添加する N—ァセチルグルコサミ ンキナーゼ、 N—ァセチルグルコサ ミ ン · ホスフェ一トム夕一ゼおよびゥリジンニリ ン酸— N—ァセチルグルコサミ ンピロホスホリラーゼは上述のものを使用することができる。
また、 本発明の反応に使用する UTPと N—ァセチルダルコサミ ンは、 市販品 を使用することができる。 使用濃度としては、 たとえばそれぞれ約 1〜2 0 0 mM、 好ましくは約 1 0〜 1 0 OmMの範囲から適宜設定することができる。
UDPAGの合成反応は、 例えば pH約 6. 0〜9. 0の酸緩衝液中に UTP、 N—ァセチルグルコサミ ンを添加し、 この反応液に上記 3種類の酵素を約 0. 0 0 1ユニッ ト Ζτ^以上、 好ましくは約 0. 0 0 1〜 1 0 0ユニッ ト 添 加共存させ、 約 5〜 3 0 °C、 好ましくは約 5〜 2 5 で 1〜 5 0時間程度、 必要 により撹拌しながら反応させることにより実施できる。
また、 得られた UDPAGは、 前述したように、 糖ヌクレオチドの通常の手段 により単離精製することができる。
さらに、 本発明方法においては、 UTPの代わりに UTP生成系を UDP AG の反応系に共存させて行うことも可能である。
そのような UTP生成系としては、 反応系に UTPを供給できる系であれば特 に制限されるものではなく、 公知の方法、 例えば微生物菌体を用いる方法、 酵素 を用いる方法等から適宜選択して使用すればよい。
具体的に UTP生成系を例示すれば、 微生物菌体を用いる方法としては、 ォロ チン酸からの UTP生成系 (特開平 5— 276974号) 等を利用することがで きる。 また、 酵素を用いる方法としては、 UTP生成系と ATP再生系とが共役 したものを用いるのが好ましく、 アデニル酸 (AMP) にポリ リ ン酸キナーゼ、 アデニレ一 トキナ一ゼ及びポリ リ ン酸を作用せしめて AT Pを再生しながら UMPにゥリジル酸キナーゼ、 および必要によりヌクレオシドニリ ン酸キナーゼ を作用せしめて U TPを生成する系などを利用することができる。
UT P生成系を利用 した UD P AGの合成反応は、 基本的には上記の UDP AGの合成反応条件と同じであり、 最終的な反応条件は U T P生成反応と UDPAG合成反応がスムーズに進行する条件を小規模試験にて適宜決定すれば よい。 実施例
以下、 実施例を示し、 本発明を具体的に説明するが、 本発明がこれに限定され ないことは明らかである。 なお、 実施例において、 反応液中の UDPAGの定量 には HPLC法により行った。 すなわち、 分離には YMC社製の ODS - AQ 3 1 2カラムを用い、 溶出液として 0. 5 Mリ ン酸一力リゥ厶溶液を用いた。 DNAの調製、 制限酵素による切断、 T 4 DNAリガ一ゼによる DNA連結、 並 びに大腸菌の形質転換法は全て 「Molecular cloningj (Maniatisら編、 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982)) に従 つて行った。 制限酵素、 Amp 1 i T a qDNAポリメラ一ゼ、 T4 DNAリガ 一ゼは宝酒造 (株) より入手した。
実施例 1
( 1 ) N—ァセチルグルコサミ ンキナーゼの調製
1 07^の 2 丁 ( 1. 6 %ト リプトン、 1 %イース トエキス トラク ト、 0. 5 %食塩) に一白金耳の Bacillus stearothermophi lus ATCC15952 を植菌 して、 5 0°Cにて 24時間振とう培養した。 これを前培養菌体として 5 0 0 容 フラスコに入った 1 0 Οτηβの 2 ΧΥΤに植菌して 5 0 °Cにて 1 8時間振とう培養 した。 3 リ ッ トル (L) の培養液から遠心分離によって菌体を回収し、 5 0 Οττ^ の 1 0 OmMリン酸緩衝液 (pH 7. 0) に菌体を再懸濁した。 遠心分離により 回収した菌体を、 3 0 Οττ^の PEN ( 5 OmMリ ン酸緩衝液 (pH 7. 6) 、 1 mM EDTA、 0. 1 mM N—ァセチルグルコサミ ン) に懸濁したのち、 超 音波破砕処理により菌体を破砕した。 遠心分離により得た上清を粗酵素液とした: 回収された 2 7 0 の粗酵素液には 1. 0 5ュニッ ト の N—ァセチルグル コサミ ンキナーゼ活性が含まれており、 タンパク質あたりの活性は 0. 0 7ュニ ッ ト Zmgであった。 粗酵素液に硫酸アンモニゥ厶 9 0 %飽和溶液を 2 7 0 τηβ添 加して冷所で 1時間放置したのち遠心分離にて上清を回収した。 回収液に対して さらに 1 3 5 の硫酸アンモニゥム 9 0 %飽和溶液を添加して得た沈殿を回収、
3 0 の Ρ ΕΝに溶解したものを Ρ ΕΝに対して透析して 4 3. の酵素調製 物を得た。 この酵素標品には 4. 5ユニッ ト 7 の Ν—ァセチルグルコサミ ンキ ナーゼ活性が含まれており、 タンパク質あたりの活性は 0. 2 1ュニッ ト/ mg であった。
なお、 N—ァセチルグルコサミ ンキナーゼ活性は、 公知の方法 (Methods in Enzymology IX, p415- 425 (1966)) に準じて測定、 算出したものである。 すなわち、 1 0mM N—ァセチルグルコサミ ン溶液、 5 0 0mMトリス—塩 酸緩衝液 (pH 7. 8) 、 l O OmM ATP溶液、 1 0 0 mM塩化マグネシゥ ム溶液を各々 5 0 ^ずつ分注後、 5 0 _g酵素調製液を添加し、 3 7°Cで 2 0 〜3 0分間反応させる。 また、 ATP溶液の代わりに水を用いて同様の反応を行 わせ、 コントロールとする。
反応液に 5 %硫酸亜鉛溶液および 1 5 O mM水酸化バリウム溶液各々 5 0 0 ^を添加して反応を停止させ、 遠心分離にて沈殿を除去後、 別の容器に上清 1 6 6〃 ^を分取し、 これに 3 3 / ^ホウ酸塩溶液 ( 4. 9 5 gのホウ酸を 5 0 の水に溶解し、 1 N水酸化カリウムで p H 9. 1に調整したものを水で 1 0 0 とする) を添加後、 3分間煮沸する。
煮沸後、 水で室温まで冷却してから 1 DM B A試薬 ( 1 O gの p—ジメチ ルァミノベンズアルデヒ ドを 1 0 N塩酸を 1 2. 5 %含む氷酢酸 1 0 0 m に溶解 し、 これを使用直前に氷酢酸で 1 0倍希釈したもの) を混和し、 3 7 °Cで 2 0分 間放置した後、 分光光度計で 5 8 5 nmの吸収を測定する。 濃度既知の N -ァ セチルグルコサミ ン溶液により作成した検量線より反応液中の残存する N—ァセ チルグルコサミ ンの量を算出し、 3 7でで 1分間に 1 //mo^e の N—ァセチルグ ルコサミ ンが消費される活性を 1単位 (ュニッ ト) とする。
次に DE AE— トヨパール 6 5 0 M ( 2. 2 x 2 5 cmカラム) による分画を 行った。 0〜0. 5 Mの食塩の濃度勾配で溶出して得たフラクションから活性画 分を回収したところ、 4 7. の回収液を得た。 これに 9 5^の硫酸アンモニ ゥム 9 0 %飽和溶液を添加して冷所に放置後、 遠心分離により沈殿を回収した。 1 5 の PENに沈殿を溶解後、 P ENに対して透析して部分精製酵素 2 1 を 得た。 これには 6. 8 4ユニッ ト の N—ァセチルグ儿コサミ ンキナーゼ活性 が含まれており、 タンパク質あたりの活性は 0.. 9 9ユニッ ト Zmgであった。 (2) UDPAGの合成
2 0 0 mMリ ン酸緩衝液 (p H 8. 0 ) 、 2 0 mM塩化マグネシウム、 3 0 mM 5 ' — UMP、 20 mM N—ァセチルグルコサミ ン、 l O OmMグルコ ースおよび所定の活性を含む Bacillus stearothermophi lus ATCC15952 由来の N—ァセチルグルコサミ ンキナーゼ調製物 (部分精製酵素) を含む反応液 1 0 に乾燥パン酵母 (オリエンタル酵母工業) l gを添加し、 20°Cで撹拌しつつ反 応を つた。
経時的に反応液の分析を行った結果を図 1に示す。 図 1から明らかなように、 反応液中に Ν—ァセチルグルコサミ ンキナ一ゼを添加しない時には UD P AGは ほとんど生成しなかったが、 N—ァセチルグルコサミ ンキナーゼを添加すること により反応開始 6時間後には 0. 1ユニッ ト 添加で 9. 2mM、 0. 2ュニ ッ ト 添加で 1 1. 5mMの UDP AGが反応液中に生成しているのが明らか となつた。
実施例 2
2 0 0 mMリ ン酸緩衝液 (p H 8. 0) 、 20 mM塩化マグネシウム、 30 mM 5 ' 一 UMP、 20 mM N—ァセチルグ儿コサミ ン、 l O OmMダルコ ースおよび実施例 1の ( 1 ) と同様にして調製した Escherichia coli IAM1268 由来の N—ァセチルグルコサミ ンキナーゼ 2ュニッ トを含む反応液 ( 1 Qmi) に 乾燥パン酵母 (オリエンタル酵母工業) を 1 g添加し、 20°Cで撹拌しつつ反応 を行った。
経時的に反応液の分析を行った結果を図 2に示す。 図 2から明らかなように、 反応液中に N—ァセチルグルコサミ ンキナ一ゼを添加しない時には UD P AGは 全く生成しなかったが、 N—ァセチルグルコサミ ンキナーゼを添加する二とによ り反応開始 8時間後に 7. 3 mMの U D P A Gが生成した。
実施例 3
2 0 0 mMリ ン酸緩衝液 (p H 8. 0) 、 20 m M塩化マグネシウム、 3 0 mM 5 ' — UMP、 20 mM N—ァセチルグルコサミ ン、 l O OmMグ儿コ —スおよび実施例 1の ( 1) と同様にして調製した Klebsiella planticola IF0 3317 由来の N—ァセチルグルコサミ ンキナーゼ 2ュニッ トを含む反応液 ( 1 0 τηβ) に乾燥パン酵母 (オリエンタル酵母工業) を 1 g添加し、 2 0でで撹拌しつ つ反応を行った。
経時的に反応液の分析を行った結果を図 3に示す。 図 3から明らかなように、 反応液中に N—ァセチルグルコサミ ンキナーゼを添加しない時には UD P AGは 全く生成しなかったが、 N—ァセチルグルコサミ ンキナーゼを添加することによ り反応開始 8時間後に 7. 8 mMのUDPAGが生成した。
実施例 4
実施例 1 と同様の反応液組成で液量を 1 0 0 として 2 4時間反応を行った 後、 反応液の pHを塩酸により 3. 0として、 遠心により上清を回収した。 回収 液中の UDPAGを定量したところ、 7. 2 gの UD P AGが含まれていた。 実施例 5
( 1 ) 枯草菌由来 N—ァセチルグルコサミ ンキナーゼをコードする y q gR遺伝 子のクローン化
枯草菌 M 1 6 8株 (東大 ·分子細胞生物学研究所 ·分子遺伝育種部門より入手) の染色体 DN Aを斉藤と三浦の方法 (Biochemica et Biophysica Acta. , 72, 619 (1963)) で調製した。 この DNAを鐯型として、 以下に示す 2種類のプライ マー DNAを常法に従って合成し、 P C R法により枯草菌 y q g R遺伝子 (Submitted to EMBL/GENEBANK/DDBJ DATA BANKS, Accession No. D84432, 小林 ら) を増幅した。
プライマー ( A ) : 5' -TATCTAGAACCACATGATTGAAAAGGAGCA-3'
プライマー ( B ) : 5' -TGAAGCTTCGCATTTCAACCTCCTATGCAG-3'
P CRによる y q gR遺伝子の増幅は、 反応液 1 0 0〃 ( 5 0 mM塩化力リ ゥ厶、 1 0 mMト リス塩酸 ( p H 8. 3 ) 、 1. 5 mM塩化マグネシウム、 0. 0 0 1 %ゼラチン、 0. 2mM d ATP. 0. 2 mM d GTP、 0. 2 mM d CTP、 0. 2mM d TTP、 铸型 DNA 0. l / g、 プライマ — DNA (A) および (B) 各々 0. 2 /M、 Amp 1 i Ta qDNAポリメラ —ゼ 2. 5ュニッ ト) を Perkin- Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、 熱変性 ( 94°C、 1分) 、 アニーリング ( 55 °C、 1. 5分) 、 伸長反応 (72°C、 3分) のステップを 25回繰り返すことにより行った。
遺伝子増幅後、 反応液をフ ノール Zクロ口ホルム ( 1 : 1) 混合液で処理し、 水溶性画分に 2倍容のエタノールを添加し、 DNAを沈殿させた。 沈殿回収した DNAを文献 (Molecular cloning, 前述) の方法に従ってァガロースゲル電気 泳動により分離し、 1. 0 kb相当の DNA断片を精製した。 該 DNAを制限酵 素 Xb a I及び H i n d IKで切断し、 同じく制限酵素 Xb a I及び H i n dHIで 消化したプラスミ ド p T r c 9 9 A (Pharmacia Biotech.社より入手) と T 4 DNAリガーゼを用いて連結した。 連結反応液を用いて大腸菌 K 1 2株 JM
1 0 9菌 (宝酒造株式会社より入手) を形質転換し、 得られたアンピシリ ン耐性 形質転換体よりプラスミ ド pTr c YQG— ABを単離した。 pTr c YQG— ABは、 pTr c 9 9 Aの t r cプロモ一夕一下流の Xb a I— H i n d IE切断 部位に枯草菌 y q g R構造遺伝子および S D配列を含有する X b a I — H i n d HI DNA断片が挿入されたものである。
(2) 枯草菌由来 y q gR遺伝子産物の調製
プラスミ ド pT r c YQG— A Bを保持する大腸菌 J M 1 0 9菌を、 1 0 0 / gZ のアンピシリ ンを含有する 2 x YT培地 1 0 に植菌し、 37°Cで振 とう培養した。 4 X 1 08 個 に達した時点で培養液に最終濃度 1 mMになる ように I PTGを添加し、 さらに 37 °Cで 5時間振とう培養を続けた。 培養終了 後、 遠心分離 (9, 000 X g, 1 0分) により菌体を回収し、 2 Οτ ^の緩衝液
(5 OmMト リス塩酸 (pH7. 5) 、 5 mM EDTA、 0. 1 %トライ トン X— 1 00、 0.
Figure imgf000017_0001
リゾチ一厶) に懸濁した。 37°Cで 1時間保温した 後、 超音波処理を行い、 菌体を破砕し、 さらに遠心分離 ( 2 0, 0 0 0 X g,
1 0分) により菌体残渣を除去した。 このように得られた上清画分を酵素標品とし、 酵素標品における N—ァセチル グルコサミ ンキナーゼ活性を実施例 1に記載の方法で測定した。 その結果を対照 菌 (pT r c 9 9 Aを保持する大腸菌 JM 1 0 9菌) と共に下記表に示す。
菌 Zプラスミ ド N—ァセチルグルコサミ ンキナ一ゼ活性
(Units/mg protein;
JM109/pTrc99A 0.012
JM109/pTrcYQG-AB 0.571
(3) UDPAGの合成
2 0 0 mMリ ン酸緩衝液 (p H 8. 0 ) 、 1 0 m M塩化マグネシウム、 5 0 mM 5 ' 一 UMP、 5 0 mM N—ァセチルグルコサミ ン、 2 0 0 mMグ儿コ ースを含む溶液 に上記 (2) で調製した所定活性量の N-ァセチルグルコサ ミ ンキナーゼ酵素液および乾燥パン酵母 (オリエンタル酵母工業) 0. 5 gを添 加し、 1 6 °Cで撹拌しつつ反応を行った。
反応途中の反応液から 0. 2^を採取し、 5分間煮沸後遠心分離してその上清 の 2 5 0倍希釈液を 0. 4 5 mのフィルターで膜濾過したものを HP L C分析 に供した。
経時的に反応液の分析を行った結果を図 4に示す。 図 4から明らかなように、 N—ァセチルグルコサミ ンキナーゼを添加しない反応液中には UD P AGは全く 検出されなかったが、 該酵素液を添加することにより、 反応開始 24時間後には 0. 2ユニッ ト添加で 1 2. 2mMUDPAG力、、 1ユニッ ト添加では 1 3. 6 mMの UDPAGがそれぞれ蓄積したことを確認した。
実施例 6
( 1 ) 酵母由来 N—ァセチルグルコサミ ン · ホスフエ一トムターゼ遺伝子のク口 オリエン夕ル酵母工業から購入した乾燥パン酵母を Y P D培地で起こして分離 したオリコィーストを YPD培地で培養後、 常法により染色体 DNAを調製した c この DN Aを铸型に、 以下に示す 2種類のプライマー DN Aを用いて P CR法に より酵母由来 N—ァセチルグルコサミ ン . ホスフェート厶夕一ゼ (E C 5. 4. 2. 3) 遺伝子 (a gm l ) (Eur. J. Biochem. , 221, 741 -747(1994)) を含 む DNA断片を増幅した。
プライマ— ( C ) : 5' -TTGGCTGTTTGCTTGCTTGTGCGT-3'
プライマ— ( D ) : 5' -CGATTGCAGAGCGAAACGACGAAA-3'
P CR反応は実施例 5 と同じ反応組成、 同じ反応器を用い、 熱変性 ( 9 4° (, 1分) 、 アニーリ ング ( 3 7°C, 2分) 、 伸長反応 ( 7 2°C, 3分) のステップ を 2 5回繰り返すことにより行った。
遺伝子増幅後、 反応液から 2. 2 k b相当の DNA断片を実施例 1 と同様に精 製した。 この DNAを鎵型に、 以下に示す 2種類のプライマー DNAを用いて P CR法により酵母由来 N—ァセチルグルコサミ ンホスフエートム夕一ゼ遺伝子 (a gm l ) を含む DNA断片を再度増幅した。 なお、 2度目の P CR反応条件 は 1回目と同じである。
プライマ一 ( E ) : 5' -AAGGTTGATTACGAGCAATTGTGC-3'
プライマー (F) : 5' -TCAAGCAGATGCCTTAACGTGCTC-3'
遺伝子増幅後、 前述と同様の手法により 1. 7 k bの DNA断片を精製した。 回収した DNAを DNAブランティ ングキッ ト (宝酒造より入手) により末端平 滑化した。 これを制限酵素 N c o Iで消化後、 末端平滑化したプラスミ ド P T r c 9 9 A (Pharmacia Biotech.社より入手) と T 4 DNAリガーゼを用い て連結した。 この反応液を用いて大腸菌 K 1 2株 JM 1 0 9菌を形質転換し、 得 られたァンピシリン耐性形質転換体よりプラスミ ド p T r c— a gm 1を単離し た。 プラスミ ド p T r c— a gm 1は、 p T r c 9 9 Aの t r cプロモーター下 流の N c o I切断部位の ATGに酵母 a gm 1遺伝子の開始コ ドンの ATGが揃 うように挿入されたものである。 また、 得られた形質転換体を JM 1 0 9 [p T r c - a gm 1 ] と命名した。
(2) 酵母由来 N—ァセチルグルコサミ ンホスフヱ一トムタ一ゼの調製
JM 1 0 9 [pTr c— a gm l ] をアンピシリ ンを 1 0 0〃 g 含む 2 x YT培地 2 で一夜 3 7°Cで培養した。 これをアンピシリンを 1 0 0 /m 含む 2 X YT培地 5 0 0 に植菌した。 3 7でで 2時間培養後、 I PTGを終濃 度 I mMになるように添加し、 3 7 °Cで 5時間、 引き続き 2 0 °Cで一夜培養した c 培養終了後、 遠心分離 ( 9, 0 0 0 X g, 2 0分) により菌体を回収した。 回収 した菌体を 5 0 mMィ ミダゾ一ル緩衝液 ( p H 6. 8 ) に懸濁した。 ブランソン 社製超音波破砕機 (モデル 4 5 0フニファー) を用いて菌体を破砕後 ( 5 0 W, 5分, 3回) 、 1 5, 0 0 0 r pmで 3 0分間遠心分離し、 可溶性画分 (上清) を回収した。
このように得られた上清画分を酵素標品とし、 酵素標品における N—ァセチル グルコサミ ン · ホスフェー ト厶夕ーゼ活性を測定した。 その結果を対照菌 (pTr c 9 9 Aを保持する大腸菌 JM 1 0 9菌) と共に下記表 2に示す。
なお、 N—ァセチルグルコサミ ン · ホスフェート厶夕ーゼ活性は、 公知の文献 (European Journal of Biochemistry, No.221, 741(1994)) に従い、 以下に示 す方法で N—ァセチルグルコサミ ン— 1 リ ン酸から N—ァセチルグルコサミ ン一 6 リ ン酸への転換活性を測定、 算出したものである。
すなわち、 5 0 mMイミダゾ一ル (p H 6. 8) 、 l O OmM塩化カリウム、 1 OmM塩化マグネシウム、 0. I mM EDTA、 2 0 Mグルコース一 1, 6—ビスリ ン酸、 2mM N—ァセチルグルコサミ ン— 1 リ ン酸に N—ァセチ儿 グルコサミ ン ' ホスフヱ一トムターゼ酵素標品を添加し、 3 0°Cで反応させる。 また、 グルコース— 1, 6—ビスリ ン酸の代わりに水を用い同様の反応を行わせ、 コントロールとする。
反応液量と等量の 1 M硫酸溶液と混合することで酵素を失活させ、 1 0分間煮 沸後、 2 5 °Cに冷却する。 これにより、 熱に弱い N—ァセチルグルコサミ ン— 1 リ ン酸は分解し、 リン酸を遊離する。 遊離した無機リ ン酸を次の方法で定量する すなわち、 2 5 °Cに冷却したサンプル 2 0 0〃 £に蒸留水 7 0 0〃 、 アミ ド一 ル試薬 (亜硫酸水素ナトリウム 1 0 0 gとアミ ドール 5 gを溶解して 5 0 0 水 溶液としたもの) 1 0 0 、 および 8 . 3 %モリブデン酸アンモニゥム (モリ ブデン酸アンモニゥ厶 4 1 . 5 gを溶解し、 アンモニア水を滴下してよく溶解し て 5 0 0 水溶液としてもの) 7 0 / を添加する。 室温に 1 0分間放置後、 分 光光度計で 7 5 0 n mにおける吸光度を測定する。 無機リ ン酸 1 m Mのときの吸 光度を 0 . 3 8 6 7とし、 無機リ ン酸の濃度から酵素反応で減少した N—ァセチ ルグルコサミ ン— 1 リン酸の量を換算し、 3 0 °Cで 1分間に 1 〃m 0 £ eの N— ァセチルグルコサミ ンー 1 リ ン酸を N—ァセチルグルコサミ ン— 6 リ ン酸に転換 する活性を 1単位 (ユニッ ト) とする。
表 2 菌/プラスミ ド N—: セチルグルコサミ ンホス 'フエ一ト
ム夕- -ゼ活性
(Uni t s/mg pro te i n)
JM109/pTrc99A 0. 01以下
JM109/pTrc-agml 5. 70
後述する U D P A Gの合成には N—ァセチルダ儿コサミ ン ' ホスフエ一 —ゼの N—ァセチルグルコサミ ン— 6 リ ン酸から N—ァセチルグルコサミ ン一 1 リン酸への転換活性を利用する。 したがって、 この転換反応の活性測定は、 上記 反応液のうち N—ァセチルダルコサミ ン一 1 リ ン酸を N—ァセチルダルコサミ ン 一 6 リ ン酸に代えて行い、 反応によって生じた N—ァセチルグルコサミ ン一 1 リ ン酸の量を上述の方法から算出し、 酵素活性を求めた。 その結果、 N -ァセチル グルコサミ ン— 6 リ ン酸から N—ァセチルグルコサミ ンー 1 リ ン酸への転換活性 の比活性は, N—ァセチルグルコサミ ン— 1 リ ン酸から N—ァセチルダルコサミ ン— 6 リン酸への転換活性のそれの約 3 0分の 1であった。
( 3 ) 大腸菌由来 U D P A Gピロホスホリラ一ゼ遺伝子の調製
大腸菌の UD P AGピロホスホリ ラーゼはグルコサミ ン . ゥリ ジル · トランス フェラ一ゼ (EC 2. 7. 7. 2 3) (g 1 mU) と同一であることが知られて いる (Journal of Bacteriology, 175, 19, 6150(1993)) 。 そこで、 大腸菌 I F 0 3 9 7 2の染色体 D N Aを斎藤と三浦の方法 (Biochemica et Biophysica Acta, 72, 619 (1963)) で調製し、 これを铸型に以下に示す 2種類 のプライマー DNAを用いて、 PCR法により UDPAGピロホスホリラ一ゼ遺 伝子 (Biochem. J. , (1984), 224, 799-815) を含む D Ν Α断片を増幅した。
プライマー (G) : 5' -CCTGCTGATATAAAACCCCCCTGT-3'
プライマー (H) : 5' -CCCGAAGCTTGTAGAGAGTGGGGT-3'
PCR反応は、 PCR反応は実施例 5と同じ反応組成、 反応機器を用い、 熱変 性 ( 9 4°C, 1分) 、 アニーリ ング ( 5 5°C, 2分) 、 伸長反応 ( 72°C, 3分) のステップを 2 5回繰り返すことにより行った。
遺伝子増幅後は実施例 5と同様の手法により、 1. 5 kbのDNA断片を精製 した。 回収した DNAは DNAブランティ ング ·キッ ト (宝酒造より入手) によ り末端平滑化した。 これを制限酵素 D r a Iで消化した後, 制限酵素 Sma Iで 消化したプラスミ ド pUC l 8と T 4 DNAリガーゼを用いて連結した。 このプ ラスミ ドを制限酵素 E c oR Iおよび H i n d IEで消化し、 前述と同様に 1. 5 kbの DNA断片を精製し、 同じく制限酵素 E c oR Iおよび H i n dffiで消化 したプラスミ ド p T r c 9 9 A (Pharmacia Biotech.社より入手) と T 4 DNA リガ一ゼを用いて連結した。 連結反応液を用いて大腸菌 K 1 2株 JM 1 0 9菌を 形質転換し、 得られたアンピシリ ン耐性形質転換体よりプラス ミ ド p T r c - g l mUを単離した。 pT r c— g l mUは、 p T r c 9 9 Aの t r cプロモー ター下流の Sma I -H i n d IE認識部位に大腸菌 g 1 mUの構造遺伝子が挿入 されたものである。 得られた形質転換体を JM 1 0 9 [pT r c - g l mU] と 名し 、
(4) UD PAGピロホスホリラ一ゼの調製
JM 1 0 9 [pT r c— g l mU] をァンピシリ ンを 1 0 0〃 gZm£含む 2 x YT培地 2 5; ^で一夜 3 7°Cで培養した。 これを、 アンピシリンを 1 0 0 g/ 含む 2 X YT培地 5 0 0 に植菌した。 3 7°Cで 2時間培養後、 I PTGを終 濃度 1 mMになるように添加し、 引き続き 3 7°Cで一夜培養した。 培養終了後、 遠心分離 ( 4°C, 9, 0 0 0 X g, 2 0分) により菌体を回収した。 回収した菌 体を 5 OmMト リス塩酸 (pH 7. 5) に懸濁し、 ブランソン社製超音波破砕機 (モデル 4 5 0 フニファー) を用いて破砕後 ( 5 0W, 5分, 3回) 、 4て、 1 5, 0 0 0 r pmの条件下で 3 0分間遠心分離し、 可溶性画分 (上清) を回収 した。
このように得られた上清画分を酵素標品とし、 酵素標品における UDP AGピ 口ホスホリラーゼ活性を測定した。 その結果を対照菌 (pT r c 9 9 Aを保持す る大腸菌 JM 1 0 9菌) と共に下記表 3に示す。
表 3 菌 /プラスミ ド U D P A Gピロホスホリ ラーゼ活性
(Uni ts/mg protein)
JM109/pTrc99A 0.29
JM109/pTrc-glmU 16.52
なお、 UDPAGピロホスホリラーゼ活性は、 以下に示す方法で UD PAGと ピロリ ン酸から N—ァセチルグルコサミ ンー 1 リ ン酸と UTPへの分解活性を測 定、 算出したものである。
すなわち、 5 0 mMトリス塩酸緩衝液 (p H 7. 5) 、 5mM塩化マグネシゥ 厶、 3 mMピロ リ ン酸ナト リウム、 I mM U D P A Gに U D P A Gピロホスホ リラーゼ酵素標品を添加して (反応液 当たり約 6 g相当量) 3 7°Cで 5分 反応させる。 また、 ピロリン酸ナトリウム溶液の代わりに水を用い同様の反応を 行い、 これをコントロールとする。
反応液を 5分間の煮沸にて反応を停止し、 これを 3 0倍に希釈した後 HP L C による分析を行う。 分離には YMC社製の ODS— AQ 3 1 2カラムを用い、 溶 出液として 0. 5M リ ン酸一カリウム溶液を用いる。 HPLC分析結果から反 応液中の U D P A Gの残量を算出し、 3 7でで 1 分間に 1 // m o £ eの UD PAGを分解する活性を 1単位 (ュニッ ト) とする。
(5) 組換え酵素を用いた UD P AGの合成
2 0 0 m Mグルコース、 5 0 m M N—ァセチルグルコサミ ン、 5 0 m M UMP、 2 0 0 mMリ ン酸カリウム (p H 8. 0) 、 1 0 mM 塩化マグネシゥ 厶、 5 % (w/v) 乾燥パン酵母 (オリエンタル酵母工業) を含む溶液 5 に調 製した組換え酵素 (N—ァセチルグルコサミ ンキナーゼ; 0. 2ュニッ ト, N ァセチルグルコサミ ン ' ホスフエ一トムターゼ; 0. 5ユニッ ト, UDPAGピ 口ホスホリラ一ゼ; 5ユニッ ト) を添加し、 2 0でで 3 0 0 1- p mで撹拌しなか ら反応を行った。 また, 反応開始 1 6, 2 4, 4 0, 4 8, 6 4, 7 2時間目に 5 0 %グルコース溶液を反応液の 1 4分の 1量ずつ添加した。
経時的に反応液の分析を行った結果を図 5に示す。 グルコース添加した場合、 5 %乾燥パン酵母と N—ァセチルグルコサミ ンキナ一ゼを組み合わせた反応液で は、 反応 8 8時間で UD P AGは 2 7 mM蓄積した。 N—ァセチルグルコサミ ン キナーゼの他に UD P AGピロホスホリラ一ゼを組み合わせた場合、 N—ァセチ ルグルコサミ ンホスフヱ一トム夕一ゼを組み合わせた場合、 UDPAGピロホス ホリラ一ゼと N—ァセチルグルコサミ ンホスフヱ一トムターゼの両方を組み合わ せた場合、 UDPAGの蓄積量はそれぞれ 3 3mM、 3 7mM、 および 3 9mM に増加した。
実施例 7
実施例 6では、 試験管での反応例を示したが、 ここではジャーフアーメン夕一 を用いて UD PAG合成反応のスケール ·アップを行った結果を示す。 すなわち、 4 0 0 mMグルコース、 l O OmM N—ァセチルグルコサミ ン、 l O O mM UMP、 2 0 0 mM リ ン酸カリウム (pH 8. 0) 、 2 OmM 塩化マグネシ ゥム、 5 % (w/v) 乾燥パン酵母 (オリエンタル酵母工業) を含む 1. 5 L溶 液に、 実施例 5 (2) および実施例 6 (2) および (4) で調製した組換え酵素 液 (N—ァセチルグルコサミ ンキナ一ゼ; 1 2 0ユニッ ト、 N—ァセチルグ儿コ サミ ン ' ホスフエ一トム夕一ゼ; 7 5 0ュニッ ト、 UD P AGピロホスフォリラ —ゼ ; 7 5 0ュニッ ト) を添加して、 2 3て、 通気量 1. 5 LZ分、 7 0 0 r pmで攪拌しながら反応を行った。 反応中消泡剤としてエイノールを適宜添加 した。 また、 1 2, 2 0, 3 6時間目にグルコースを 5 4 g反応液に添加した。 経時的に反応液を分析した結果を図 6に示す。 反応 4 5時間で UD P AGは 8 2mM蓄積した。
実施例 8
実施例 7までは乾燥パン酵母を用いた UD P AG合成について説明したが、 乾 燥パン酵母を使用する代わりに、 一例として UMPキナ一ゼ、 ポリ リ ン酸キナー ゼ、 アデ二レートキナーゼから成る UTP生成を利用し、 i n v i t r oでも UD PAG合成が可能であることを以下に示す。 なお、 110 からの11丁?の合 成に通常ヌクレオシドニリ ン酸キナーゼが必要であるが、 アデ二レートキナーゼ も当該活性を有しているため、 ヌクレオシドニリ ン酸キナーゼの添加は必要ない c ( 1 ) 大腸菌由来 UMPキナーゼ遺伝子のクローニング
大腸菌 1 2株 JM 1 0 9菌 (宝酒造 (株) より入手) の染色体 DNAを斉藤 と三浦の方法 (Biochemica et Biophysica Acta., 72, 619 (1963)) で調製した c この DNAをテンペレートとして、 以下に示す 2種類のプライマー DN Aを常法 に従って合成し、 P C R法により大腸菌 UMPキナーゼ (p y r H) 遺伝子 (GeneticsCLife Sci. Adv.), 11,59-65(1992)) を増幅した。
プライマー ( I ) : 5' -TTCCATGGCTACCAATGCAAAAC-3' プライマ— ( J ) : 5' -TTGGATCCTTATTCCGTGATTAAAGTCCC-3'
?じ尺にょる !^!!遺伝子の増幅は、 実施例 5 と同じ反応組成、 反応機器を 用い、 熱変性 ( 9 4 °C, 1分) 、 ァニーリ ング ( 5 5 °C, 2分) 、 伸長反応 ( 7 2°C, 4分) のステップを 2 5回繰り返すことにより行った。
遺伝子増幅後は実施例 5と同様の手法により、 0. 7 4 k b相当のDNA断片 を精製した。 該 DNAを制限酵素 N c 0 I及び B amH Iで切断し、 同じく制限 酵素 N c 0 I及び B amH Iで消化したプラスミ ド p T r c 9 9 A (Pharmacia Biotech.社より入手) と T 4 DNAリガーゼを用いて連結した。 この反応液を用 いて大腸菌 JM 1 0 9菌を形質転換し、 得られたアンピシリ ン耐性形質転換体よ りプラスミ ド ρ TP 0 1を単離した。 p TP 0 1は、 p T r c 9 9 Aの t r cプ 口モーター及びシャイン—ダルガノ配列下流の N c o I - B amH I切断部位に 大腸菌 P y r H遺伝子の構造遺伝子を含有する N c o I — B amH I DNA断片 が揷入されたものである。
( 2) 大腸菌由来 UMPキナーゼの調製
プラスミ ド pTP 0 1を保持する大腸菌 JM 1 0 9菌を、 5 0 g/ のアン ピシリ ンを含有する L B培地 1 に植菌し、 3 0 °Cで振とう培養した。 4 x 1 08 個/ / に達した時点で培養液に最終濃度 1 mMになるように I PTGを添 加し、 さらに 3 0°Cで 5時間振とう培養を続けた。
培養終了後、 遠心分離 ( 9, 0 0 0 x g, 1 0分) により菌体を回収し、 2 i の緩衝液 ( 5 OmMト リス塩酸 (pH 7. 5) 、 5 0mM塩化カリウム、 2mM 塩化マグネシウム) に懸濁した。 懸濁液を超音波処理して菌体を破砕し、 さらに 遠心分離 ( 2 0, 0 0 0 X g, 1 0分) により上清画分を除去した。 このように 得られた沈殿画分を酵素標品とした。
酵素標品における UMPキナーゼ活性を対照菌 (p T r c 9 9 Aを保持する大 腸菌 JM 1 0 9菌) と共に下記表 4に示す。 なお、 本発明における UMPキナー ゼ活性の単位 (ュニッ ト) は、 以下の方法で測定、 算出したものである。 すなわち、 5 0 mMトリス塩酸 (p H 7. 5 ) 、 5 0 mM塩化カ リウム、 2 mM塩化マグネシウム、 3mM UTP、 3mM A T Pの条件下で 3 0 °Cで保 温することで反応を行い、 1分間煮沸することにより酵素を失活させる。
HP L Cにより反応液中の UDPを定量し、 3 0°Cで 1分間に 1 〃mo ^ eの UDPを生成する活性を 1単位 (ユニッ ト) とする。
表 4 菌 Zプラスミ ド UMPキナーゼ活性
(Units/mg protein)
JM109/pTrc99A 0.1以下
JM109/pTP01 4.9
( 3) 大腸菌由来ポリ リ ン酸キナーゼ遺伝子のクローニング
大腸菌 K 1 2株 JM 1 0 9菌 (宝酒造 (株) より入手) の染色体 DNAを斉藤 と三浦の方法 (Biochemica et Biophysica Acta. , 72. 619 (1963)) で調製し た。 この DNAをテンペレートとして、 以下に示す 2種類のプライマ一 DNAを 常法に従って合成し、 P CR法により大腸菌ポリ リ ン酸キナーゼ (p p k) 遺伝 子 (J. Biol. Chem. , 267, 22556-22561(1992)) を増幅した。
プライマー ( Κ ) : 5' -TACCATGGGTCAGGAAAAGCTATA-3'
プライマー ( L ) : 5' -ATGGATCCTTATTCAGGTTGTTCGAGTGA-3'
P CRによる p p k遺伝子の増幅は、 実施例 5と同じ反応組成、 反応機器を用 レ、、 熱変性 ( 9 4 °C, 1分) 、 ァニ一リ ング ( 5 5 °C, 1. 5分) 、 伸長反応 ( 7 2°C, 1. 5分) のステップを 2 5回繰り返すことにより行った。
遺伝子増幅後は実施例 5 と同様の手法により、 1. O k b相当のDNA断片を 精製した。 該 DNAを制限酵素 N c 0 I及び B amH Iで切断し、 同じく制限酵 素 N c 0 I及び B amH Iで消化したプラスミ ド p T r c 9 9 A (Pharmacia Biotech.社より入手) と T 4 DNAリガーゼを用いて連結した。 この反応液を用 いて大腸菌 JM 1 0 9菌を形質転換し、 得られたアンピシリ ン耐性形質転換体よ りプラスミ ド p T r c - P P Kを単離した。 p T r c— P PKは、 p T r c 9 9 Aの t r cプロモーター下流の N c o I - B a mH I切断部位に大腸菌 k遺伝子を含有する N c o I— B amH I DN A断片が挿入されたもので ある。
(4) 大腸菌由来ポリ リン酸キナーゼの調製
プラスミ ド pT r c— P PKを保持する大腸菌 JM 1 0 9菌を、 1 0 0〃 gZ のアンピシリンを含有する 2 X YT培地 3 0 0 に植菌し、 3 7 °Cで振とう培 養した。 4 X 1 08 菌 / に達した時点で、 培養液に終濃度 1 mMになるように
I PTGを添加し、 さらに 3 0°Cで 5時間振とう培養を続けた。
培養終了後、 遠心分離 ( 9, 0 0 0 X g, i 0分) により菌体を回収し、 6 0 の緩衝液 ( 5 0 mMトリス塩酸 (p H 7. 5) 、 5 mM EDTA、 0. 1 % トライ トン X— 1 0 0、 0. 2 mgZ? ^リゾチーム) に懸濁した。 3 7てで 1時 間保温した後、 超音波処理を行い菌体を破砕し、 さらに遠心分離 ( 2 0, 0 0 0 x g、 1 0分) により菌体残さを除去した。 このように得られた上清画分を
5 mM塩化マグネシウム及び 1 mM 2一メルカプトエタノールを含有する 5 0 mMトリス塩酸 (pH 7. 8) に対して透析を行い、 粗酵素液とした。
このように得られた粗酵素液におけるポリ リ ン酸キナーゼ活性を測定した。 そ の結果を対照菌 (pT r c 9 9 Aを保持する大腸菌 JM 1 0 9菌) と共に下記表
5に示す。
表 5 菌 Zプラスミ ド ポリ リン酸キナーゼ活性
(Units/mg protein)
JM109/pTrc99A 0.00018
JM109/pTrc-PPK 0.19
なお、 本発明におけるポリ リ ン酸キナーゼ活性の単位 (ュニッ ト) は、 以下の 方法で測定、 算出したものである。
すなわち、 5mM塩化マグネシウム、 1 0 0 mM硫酸アンモニゥム、 5mM ADP、 ポリ リン酸 (無機リ ン酸として 1 5 OmM) を含有する 5mM トリス 塩酸緩衝液 (pH 7. 8 ) に酵素標品を添加して 3 7 °Cで保温することで反応を 行い、 1分間煮沸することにより酵素を失活させる。 HPL Cにより反応液中の ATPを定量し、 3 7°Cで 1分間に 1 〃mo ^ eの A T Pを生成する活性を 1単 位 (ュニッ ト) とする。
次に粗酵素液を DEAE トヨパール 6 5 0 M (トーツー (株) ) を用いて 0〜 0. 5 M N a C の濃度勾配にて分画し、 ポリ リン酸キナーゼ画分を得た。 こ の画分をポリ リン酸キナーゼ酵素標品とした。 なお、 この酵素標品におけるボリ リ ン酸キナーゼの比活性は、 0. 6ユニッ ト/ mg蛋白質であった。
( 5 ) 大腸菌由来アデ二レートキナーゼのクローニング
大腸菌 K 1 2株 JM 1 0 9菌 (宝酒造 (株) より入手) の染色体 DNAを斉藤 と三浦の方法 (Biochim. Biopys. Acta. , 72, 619 (1963)) で調製した。 この DNAをテンペレートとして、 以下に示す 2種類のプライマー DNAを常法に従 つて合成し、 P C R法により大腸菌アデ二レー トキナーゼ ( a d k) 遺伝子 (Nucleic Acids Res., 13(19), 7139-7151(1985 ) を増幅した。
プライマー (M) : 5' -ATGGATCCCGTTTCAGCCCCAGGTGCC-3'
プライマー ( N ) : 5' -ATAAGCTTGGCCTGAGATTGCTGATAAG-3'
P CRによる a d k遺伝子の増幅は、 実施例 5 と同じ反応組成、 反応機器を用 い、 熱変性 ( 9 4 °C, 1分) 、 ァニーリ ング ( 5 6で, 1分) 、 伸長反応 ( 7 2 °C, 3分) のステップを 2 5回繰り返すことにより行った。
遺伝子増幅後は実施例 5 と同様の手法により、 1. 0 k b相当の DNA断片を 精製した。 該 DNAを制限酵素 B amH I及び H i n d HIで切断し、 同じく制限 酵素 B amH I及び H i n dlEで消化したプラスミ ド p UC 1 8 (宝酒造 (株) より入手) と T 4 DNAリガーゼを用いて連結した。 この反応液を用いて大腸菌 JMl 0 9菌を形質転換し、 得られたアンピシリン耐性形質転換体よりプラスミ ド P UC— ADKを単離した。 pUC— ADKは、 pUC 1 8の l a cプロモ一 ター下流の B amH I -H i n d IE切断部位に大腸菌 a d k遺伝子を含有する BamH I -H i n dl DN A断片が挿入されたものである。
(6) 大腸菌由来アデニレ一トキナ一ゼの調製
プラスミ ド pUC— ADKを保持する大腸菌 JM 1 0 9菌を、 1 0 0 β g/i のアンピシリンを含有する 2 X YT培地 300 に植菌し、 37°Cで振とう培養 した。 4 X 1 08 菌 Z に達した時点で、 培養液に終濃度 1 mMになるように
I PTGを添加し、 さらに 30°Cで 5時間振とう培養を続けた。
培養終了後、 遠心分離 ( 9, 000 X g, 1 0分) により菌体を回収し、 60 wの緩衝液 (5 OmMトリス塩酸 (pH7. 5) 、 5 mM EDTA、 0. 1 % トライ トン X— 1 0 0、 0. 2mgZ リゾチ一厶) に懸濁した。 37°Cで 1時 間保温した後、 超音波処理を行い、 菌体を破砕し、 さ らに遠心分離
( 2 0, 0 0 0 X , 1 0分) により菌体残さを除去した。 このように得られた 上清画分を 5 m M塩化マグネシゥ厶及び 1 m M 2—メルカプトエタノールを含有 する 5 OmMトリス塩酸 (pH7. 8) に対して透析を行い、 粗酵素液とした。
このように得られた粗酵素液におけるアデ二レートキナーゼ活性を測定した。 その結果を対照菌 (pUC l 8を保持する大腸菌 JMl 0 9菌) と共に下記表 6 に示す。
表 6 菌 //プラスミ ド ァデニレ一トキう -一ゼ活性
(Units/mg protein)
JM109/pUC18 1. 9
JM109/pUC-ADK 134
なお、 本発明におけるアデ二レートキナーゼ活性の単位 (ュニッ ト) は、 以下 の方法で測定、 算出したものである。
すなわち、 5 mM塩化マグネシウム、 5mM ATP、 5 mM AMPを含有 する 5 OmM トリス塩酸緩衝液 (pH 7. 8 ) に酵素標品を添加して 3 7でで 保温することで反応を行い、 1分間煮沸することにより酵素を失活させる。 H P L Cにより反応液中の AD Pを定量し、 3 7てで 1分間に 2〃m o の AD Pを生成する活性を 1単位 (ユニッ ト) とする。
次に粗酵素液を DEAEトヨパール 6 5 0 M (ト一ソ一 (株) ) を用いて 0〜 0. 5M N a C の濃度勾配にて分画し、 アデ二レートキナーゼ活性のある画 分を回収した。 この画分をアデ二レートキナーゼ酵素標品とした。 なお、 この酵 素標品におけるポリ リ ン酸キナーゼの比活性は、 3 4 4ュニッ ト /mg蛋白質で めつた。
( 7) UMPキナーゼ、 ポリ リ ン酸キナーゼ、 アデ二レー トキナーゼからなる 11丁?生成系を用ぃた110?八0の合成
1 OmM塩化マグネシウム、 1 0 OmM硫安、 ポリ リ ン酸 (無機リ ン酸として
7 5mM) 、 1 OmM UMP及び 3 mM AM Pを含有する 2 0 0 mMトリス 塩酸緩衝液 (pH 7. 8) に 0. 1ユニッ ト ポリ リ ン酸キナーゼ、 2. 5ュ ニッ ト/ アデ二レー トキナーゼ、 0. 5ユニッ ト/ UM Pキナーゼ、
0. 0 5ユニッ ト / N—ァセチルグルコサミ ンキナーゼ、 0. 5ユニッ ト Z τηβ Ν—了セチルグルコサミ ン . ホスフェートム夕ーゼ、 及び 1. 0ユニッ ト Ζ ni UDPAGピロホスホリラ一ゼ酵素標品を添加し、 3 7でで 24時間保温し たところ 3. 4mMの UDPAGの生成が確認された。 産業上の利用可能性
本発明により、 基質としての利用価値が低かった N—ァセチルグルコサミ ンを 基質として用いた場合であっても UDPAGを効率的に製造することが初めて可 能となったのである。

Claims

請 求 の 範 囲
1. 微生物菌体を用いてゥリジル酸 (UMP) 及び N—ァセチルグルコサミ ン からゥリジン二リ ン酸一 N—ァセチルグルコサミ ン (UDPAG) を製造する方 法において、 N—ァセチルグルコサミ ンキナーゼを共存せしめることを特徴とす る UDPAGの製造法。
2. 微生物菌体が酵母菌体である請求項 1記載の UDPAGの製造法。
3. N—ァセチルグルコサミ ンキナ一ゼが細菌由来のものである請求項 1記載 の UDPAGの製造法。
4. さらに N—ァセチルグルコサミ ン · ホスフエ一トムターゼ及び Zまたはゥ リジンニリ ン酸— N—ァセチルグルコサミ ンピロホスホリラ一ゼを作用せしめる 請求項 1記載の UDPAGの製造法。
5. 酵素を用いてゥリジン三リン酸 (UTP) 及び N—ァセチルグルコサミ ン から UDPAGを製造する方法において、 酵素として N—ァセチルグルコサミ ン キナーゼ、 N—ァセチルグルコサミ ン . ホスフエ一ト厶夕ーゼ及びゥリジンニリ ン酸ー N—ァセチルグルコサミ ンピロホスホリラーゼを併用することを特徴とす る UDPAGの製造法。
6. UTPを用いる代わりに UT P生成系を共存させる請求項 5記載の UDPAGの製造法。
9. UTP生成系が微生物菌体を用し、る方法である請求項 6記載の U D P A G の製造法。
8. UTP生成系が酵素を用し、る方法である請求項 6記載の U D P A Gの製造 法。
9. UT P生成系が U TP生成系とアデノ シン三リ ン酸 (AT P) 再生系とが 共役したものである請求項 6記載の U D P A Gの製造法。
1 0. UTP生成系が、 アデニル酸 (AMP) にポリ リ ン酸キナーゼ、 アデ二 レートキナ一ゼ及びポリ リン酸を作用せしめて ATPを再生しながら UMPにゥ リジル酸キナーゼを作用せしめて UT Pを生成するものである請求項 9記載の UDPAGの製造法。
PCT/JP1998/003561 1997-08-29 1998-08-11 Procede de production d'uridine diphosphate-n-acetylglucosamine WO1999011810A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002270211A CA2270211C (en) 1997-08-29 1998-08-11 Process for producing uridine diphosphate-n-acetylglucosamine
JP50211099A JP3545425B2 (ja) 1997-08-29 1998-08-11 ウリジン二リン酸―n―アセチルグルコサミンの製造法
EP98936727A EP0971035B1 (en) 1997-08-29 1998-08-11 Process for producing uridine diphosphate-n-acetylglucosamine
DE69811871T DE69811871T2 (de) 1997-08-29 1998-08-11 Verfahren zur herstellung von uridine diphosphat-n-acetylglucosamine (13.04.99)
KR10-1999-7003720A KR100481763B1 (ko) 1997-08-29 1998-08-11 우리딘 이인산-엔-아세틸글루코사민의 제조법
US09/297,306 US6287819B1 (en) 1997-08-29 1998-08-11 Process for producing uridine diphosphate-n-acetylglucosamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24946197 1997-08-29
JP9/249461 1997-08-29

Publications (1)

Publication Number Publication Date
WO1999011810A1 true WO1999011810A1 (fr) 1999-03-11

Family

ID=17193311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003561 WO1999011810A1 (fr) 1997-08-29 1998-08-11 Procede de production d'uridine diphosphate-n-acetylglucosamine

Country Status (8)

Country Link
US (1) US6287819B1 (ja)
EP (1) EP0971035B1 (ja)
JP (1) JP3545425B2 (ja)
KR (1) KR100481763B1 (ja)
CN (1) CN1167804C (ja)
CA (1) CA2270211C (ja)
DE (1) DE69811871T2 (ja)
WO (1) WO1999011810A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335988A (ja) * 2001-05-22 2002-11-26 Yamasa Shoyu Co Ltd オリゴ糖の製造法
WO2006043525A1 (ja) * 2004-10-21 2006-04-27 Yamasa Coporation ウリジン5'-ジリン酸-n-アセチルガラクトサミンの製造法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230372B (zh) * 2008-02-27 2011-08-10 南京工业大学 全细胞生物催化合成尿苷二磷酸-n-乙酰葡糖胺的方法
CN106755022B (zh) * 2015-11-25 2020-08-04 中国科学院大连化学物理研究所 乙酰葡萄糖胺磷酸变位酶AtAGM编码基因及其酶、制备、应用与酶活性检测方法
CN106893699B (zh) * 2015-12-21 2020-11-03 中国科学院天津工业生物技术研究所 一种粗酶制剂、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498278B1 (ja) * 1970-03-30 1974-02-25
JPH0823993A (ja) * 1994-05-12 1996-01-30 Tomita Seiyaku Kk ウリジン二リン酸n−アセチルグルコサミンの製造方法
JPH1028594A (ja) * 1996-07-18 1998-02-03 Yamasa Shoyu Co Ltd ウリジン二リン酸−n−アセチルグルコサミンの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772673A (en) 1972-03-20 1973-11-13 Gte Sylvania Inc Temperature compensated fluid level sensor
US4569909A (en) * 1982-06-03 1986-02-11 Seitetsu Kagaku Co., Ltd. Process for preparing uridine diphosphate-N-acetylgalactosamine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498278B1 (ja) * 1970-03-30 1974-02-25
JPH0823993A (ja) * 1994-05-12 1996-01-30 Tomita Seiyaku Kk ウリジン二リン酸n−アセチルグルコサミンの製造方法
JPH1028594A (ja) * 1996-07-18 1998-02-03 Yamasa Shoyu Co Ltd ウリジン二リン酸−n−アセチルグルコサミンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0971035A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335988A (ja) * 2001-05-22 2002-11-26 Yamasa Shoyu Co Ltd オリゴ糖の製造法
WO2006043525A1 (ja) * 2004-10-21 2006-04-27 Yamasa Coporation ウリジン5'-ジリン酸-n-アセチルガラクトサミンの製造法
JPWO2006043525A1 (ja) * 2004-10-21 2008-05-22 ヤマサ醤油株式会社 ウリジン5’−ジリン酸−n−アセチルガラクトサミンの製造法
JP4606419B2 (ja) * 2004-10-21 2011-01-05 ヤマサ醤油株式会社 ウリジン5’−ジリン酸−n−アセチルガラクトサミンの製造法
US7901912B1 (en) 2004-10-21 2011-03-08 Yamasa Corporation Method of producing uridine 5′-diphospho-N-acetylgalactosamine
KR101123062B1 (ko) * 2004-10-21 2012-03-15 야마사 쇼유 가부시키가이샤 우리딘 5'-디인산-n-아세틸갈락토사민의 제조법

Also Published As

Publication number Publication date
KR100481763B1 (ko) 2005-04-11
EP0971035A1 (en) 2000-01-12
EP0971035B1 (en) 2003-03-05
US6287819B1 (en) 2001-09-11
EP0971035A4 (en) 2000-11-02
CN1276837A (zh) 2000-12-13
DE69811871D1 (de) 2003-04-10
JP3545425B2 (ja) 2004-07-21
DE69811871T2 (de) 2004-02-05
CA2270211C (en) 2008-05-13
CN1167804C (zh) 2004-09-22
KR20000068859A (ko) 2000-11-25
CA2270211A1 (en) 1999-03-11

Similar Documents

Publication Publication Date Title
JP4505011B2 (ja) 3’−ホスホアデノシン−5’−ホスホ硫酸の酵素合成法
EP1816206B1 (en) Method of producing uridine 5 -diphospho-n-acetylgalactosamine
JP3545424B2 (ja) ヌクレオシド5’−トリリン酸の製造法及びその応用
Zou et al. One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives
JP3231791B2 (ja) 糖ヌクレオチドの製造法
WO1999011810A1 (fr) Procede de production d'uridine diphosphate-n-acetylglucosamine
JP3764755B2 (ja) 「アデノシン5’−三リン酸の製造法及びその応用」
De Luca et al. Overexpression, one-step purification and characterization of UDP-glucose dehydrogenase and UDP-N-acetylglucosamine pyrophosphorylase
CN114507649A (zh) 嗜热酶及一锅法高效合成udp-葡萄糖和udp-葡萄糖醛酸的方法
CA2392463C (en) Novel use of uridine diphosphate glucose 4-epimerase
JP4437786B2 (ja) ペントース−5−リン酸エステルの製造方法。
Okuyama et al. An efficient method for production of uridine 5′-diphospho-N-acetylglucosamine
KR100680765B1 (ko) 3'-아미노-2',3'-디데옥시구아노신의 제조 방법
JP2003093091A (ja) Cmp−n−アセチルノイラミン酸の製造法
WO1999049073A1 (fr) Procede de production de cytidine 5'-diphosphate choline
CN116479074A (zh) 一种由GDP-Mannose合成稀有糖类核苷酸的方法
Yoo et al. Expression of orf8 (chlD) as Glucose-1-Phosphate Thymidylyltransferase Gene Involved in Olivose Biosynthesis from Streptomyces antibioticus Tü99 and Biochemical Properties of the Expressed Protein
JP2001169797A (ja) S―アデノシル−l−メチオニンの酵素的製造法
JP2999256B2 (ja) イノシングアノシンキナーゼ
JPWO2003057895A1 (ja) 2’−デオキシグアノシンの製造法
JP4509447B2 (ja) 高純度グアノシン5′−ジリン酸フコースおよびその製造法
CN115698313A (zh) 氨基糖的直接酶法转化工艺;用于该工艺的酶和组合物
JP2002085087A (ja) シチジン5’−トリリン酸の製造法及びその応用
CN117587086A (zh) 一种制备n1-甲基假尿苷三磷酸的方法
WO1999024600A1 (fr) Procede servant a preparer un nucleotide de sucre

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801453.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997003720

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2270211

Country of ref document: CA

Ref document number: 2270211

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09297306

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998936727

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998936727

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003720

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998936727

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997003720

Country of ref document: KR