WO1999010354A1 - Composes esters phosphoriques et procede de production, composes esters phosphoriques du cuivre et procede de production, absorbant du proche infrarouge, et composition de resine acrylique absorbante dans le proche infrarouge - Google Patents

Composes esters phosphoriques et procede de production, composes esters phosphoriques du cuivre et procede de production, absorbant du proche infrarouge, et composition de resine acrylique absorbante dans le proche infrarouge Download PDF

Info

Publication number
WO1999010354A1
WO1999010354A1 PCT/JP1998/003757 JP9803757W WO9910354A1 WO 1999010354 A1 WO1999010354 A1 WO 1999010354A1 JP 9803757 W JP9803757 W JP 9803757W WO 9910354 A1 WO9910354 A1 WO 9910354A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
equation
phosphate
compound
formula
Prior art date
Application number
PCT/JP1998/003757
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Ohnishi
Hiroki Katono
Original Assignee
Daihachi Chemical Industry Co., Ltd.
Kureha Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co., Ltd., Kureha Kagaku Kogyo Kabushiki Kaisha filed Critical Daihachi Chemical Industry Co., Ltd.
Priority to EP98938970A priority Critical patent/EP1008599B1/en
Priority to JP2000507681A priority patent/JP3933392B2/ja
Priority to US09/485,882 priority patent/US6410613B1/en
Priority to DE69824299T priority patent/DE69824299T2/de
Publication of WO1999010354A1 publication Critical patent/WO1999010354A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to a novel phosphate ester compound and a method for producing the same, a novel ester copper phosphate compound and a method for producing the same, a near-infrared absorber containing copper ions, and an excellent visible light transmittance and
  • the present invention relates to a near-infrared absorbing acryl-based resin composition having a performance of absorbing infrared rays with high efficiency.
  • the present invention has been made based on the above circumstances.
  • a first object of the present invention is to disperse copper ions at a high ratio in a synthetic resin, thereby having excellent transparency of visible light, and a property of absorbing near infrared rays with high efficiency.
  • Another object of the present invention is to provide a novel phosphate compound capable of obtaining a resin composition in which a decrease in near-infrared absorption by ultraviolet rays is small.
  • a second object of the present invention is to provide a method capable of advantageously producing the above-mentioned novel phosphate compound.
  • a third object of the present invention is to provide a near-infrared absorbing agent which contains copper ions and can disperse the copper ions at a high ratio in a synthetic resin.
  • a fourth object of the present invention is to provide a novel phosphate copper compound having a performance of absorbing near-infrared rays with high efficiency, a small decrease in near-infrared absorbability due to ultraviolet rays, and having good compatibility with synthetic resins. Is to provide.
  • a fifth object of the present invention is to provide a method capable of advantageously producing the novel copper phosphate ester compound.
  • a sixth object of the present invention is to provide a near-infrared absorbing agent which has good compatibility with a synthetic resin and can provide a resin composition which absorbs near-infrared rays with high efficiency.
  • a seventh object of the present invention is to provide a near-infrared absorptive acryl-based resin composition having excellent visible light transmittance, having a performance of absorbing near-infrared light with high efficiency, and having a small decrease in near-infrared absorbance due to ultraviolet light. Is to provide.
  • the present inventors have found that a phosphate compound having a specific structure has a property of dispersing copper ion in a synthetic resin at a high ratio, and completed the present invention.
  • the phosphate compound of the present invention is represented by the following formula (1).
  • Formula (1) OH) n
  • R independently represents a group represented by the following formula (2) or the following formula (3), and n is 1 or 2.
  • R i represents an alkyl group having 1 to 20 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and m is an integer of 1 to 6.
  • the phosphate compound of the present invention can be easily produced by any one of the following first, second and third methods.
  • R i represents an alkyl group having 1 to 20 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • n is an integer from 1 to 6.
  • a method of synthesizing a phosphonate ester compound by reacting an alcohol represented by the above formula (4) or the above formula (5) with phosphorus trihalide, and oxidizing the phosphonate ester compound.
  • the near-infrared absorbing agent of the present invention is characterized by containing a phosphate compound represented by the above formula (1) and copper ions.
  • the phosphoric acid ester copper compound of the present invention is obtained by reacting the phosphoric acid ester compound represented by the above formula (1) with a copper salt.
  • the copper phosphate ester compound of the present invention is represented by the following formula (6) or (7). Equation (6) Equation (7)
  • R independently represents a group represented by the following formula (2) or the following formula (3), and M represents a copper ion.
  • R i represents an alkyl group having 1 to 20 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and m is an integer of 1 to 6.
  • the method for producing a copper phosphate ester compound of the present invention is characterized by reacting the phosphoric ester compound represented by the above formula (1) with a copper salt.
  • the phosphoric acid ester compound represented by the above formula (1) is reacted with a copper salt in an organic solvent, and then the phosphoric acid ester compound and the copper salt are reacted. The acid component generated by the reaction and the organic solvent are removed.
  • the organic solvent layer in which the phosphate compound represented by the above formula (1) and the alkali are contained in an organic solvent insoluble or hardly soluble in water is brought into contact with an aqueous layer in which the copper salt is dissolved. Thereby, the phosphoric ester compound is reacted with the copper salt, and thereafter, the organic solvent layer and the aqueous layer are separated.
  • the near-infrared absorbing agent of the present invention is characterized by comprising the above-mentioned copper phosphate ester as an active ingredient.
  • the near infrared absorbing acrylic resin composition of the present invention comprises the following component (A) and Or the following component (B) is contained in an acrylic resin.
  • Component (A) a component comprising a copper ion and a phosphate compound represented by the above formula (1).
  • Component (B) a component comprising a compound obtained by reacting a phosphate compound represented by the above formula (1) with a copper salt.
  • the component (B) may be a phosphoric acid ester copper compound represented by the above formula (6) or the above formula (7).
  • the content of copper ions is preferably 0.1 to 5% by weight of the whole.
  • the phosphate compound represented by the above formula (1) is a compound represented by the above formula (2) and a group represented by R in the above formula (3).
  • 2 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and m is preferably an integer of 1 to 3.
  • the phosphate compound of the present invention has a molecular structure represented by the above formula (1).
  • R is an alkyl group to which an alkylene oxide group is bonded as shown in the above formulas (2) and (3).
  • the number m of repeating units of the alkylene oxide group is an integer of 1 to 6, preferably 1 to 3. If the value of m exceeds 6, it is not preferable to include the phosphate compound in a synthetic resin, because the hardness of the obtained resin composition is greatly reduced. On the other hand, when the value of m is 0, that is, when an alkylene oxide group is not bonded, the performance of dispersing copper ions in a synthetic resin, particularly an acrylic resin, is unpreferably reduced.
  • the phosphate compound of the present invention is a compound of the formula (1) wherein the number n of the hydroxyl groups is 2 and Any monoester or diester in which the number n of hydroxyl groups is 1 may be used. In the case of a triester in which the value of n is 0, it does not have a hydroxyl group capable of forming a coordinate bond or an ion bond with copper ion, so that the effect of dispersing copper ions in the synthetic resin cannot be obtained.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms. If the carbon number of the alkyl group R 1 exceeds 2 0, it is difficult to disperse the copper ions at a high rate in a synthetic resin for example Accession Lil resin.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. That is, examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, and the like. Group.
  • the carbon number of the alkyl group R 2 is more than 4, it becomes difficult to disperse the copper ions at a high rate in a synthetic resin for example Accession Lil system resins.
  • Preferred specific examples of the phosphate compound of the present invention include those represented by the following formulas (a) to (X), more preferably the following formulas (m) to (X), and in particular, Preferably, it is represented by the following formulas (m) to (r).
  • the phosphate compound of the present invention may be a single compound or a mixture of two or more compounds.
  • the phosphate compound of the present invention can be produced, for example, by any one of the following first, second and third methods.
  • an alcohol represented by the above formula (4) or the above formula (5) (hereinafter, referred to as “specific alcohol”) is reacted with phosphorus pentoxide in an appropriate organic solvent. Is the way.
  • the organic solvent used for the reaction between the specific alcohol and phosphorus pentoxide is an organic solvent that does not react with phosphorus pentoxide, such as hexane, cyclohexane, heptane, octane, benzene, toluene, Hydrocarbon solvents such as xylene and petroleum spirits, halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, dichloroethane, and cyclobenzene, getyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran And ketone solvents such as acetone, methyl ethyl ketone and dibutyl ketone. Among them, toluene and xylene are preferable.
  • reaction conditions of the specific alcohol and phosphorus pentoxide are such that the reaction temperature is 0 to 100 ° C., preferably 40 to 80, and the reaction time is 1 to 24 hours, preferably 4 to 100 hours. 9 hours.
  • a phosphoric ester compound (hereinafter, referred to as a compound represented by the formula (1) in which the number n of hydroxyl groups is 2)
  • a mixture in which the ratio of a monoester) to a phosphate compound having the number n of hydroxyl groups of 1 in the formula (1) (hereinafter also referred to as a “diester”) is substantially 1: 1. be able to.
  • the ratio of the monoester to the diester is adjusted in a range where the molar ratio is from 99: 1 to 40:60. be able to.
  • This second method is a method in which a specific alcohol is reacted with a phosphorus oxyhalide in an appropriate organic solvent, and water is added to the obtained product to carry out hydrolysis.
  • a specific alcohol is reacted with a phosphorus oxyhalide in an appropriate organic solvent, and water is added to the obtained product to carry out hydrolysis.
  • the oxyhalogenated phosphorus it is preferable to use phosphorus oxychloride or phosphorus oxybromide, and particularly preferably phosphorus oxychloride.
  • the organic solvent used in the reaction between the specific alcohol and the phosphorus oxyhalide is an organic solvent that does not react with the phosphorus oxyhalide, such as hexane, cyclohexane, heptane, octane, benzene, toluene, xylene
  • examples include hydrocarbon solvents such as petroleum spirits, halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, dichloroethane, and cyclobenzene, and ether solvents such as getyl ether, diisopropyl ether, and dibutyl ether. Of these, toluene and xylene are preferred.
  • reaction conditions of the specific alcohol with the phosphorus oxyhalide are as follows: the reaction temperature is 0 to 110 ° C., preferably 40 to 8 (TC, and the reaction time is 1 to 20 hours, preferably 2 to 8 hours.
  • a monoester can be obtained by using a specific alcohol and phosphorus oxyhalide in a molar ratio of 1: 1.
  • titanium tetrachloride Ti C 1 4
  • magnesium chloride M g C 1
  • a Lewis acid catalyst such as Aruminiumu chloride (a 1 C 1 3)
  • Yat suchi agent of hydrochloric acid by-produced, Toryechiruami down, Amin such as Toripuchiruami down And pyridine are preferably used.
  • reaction catalysts or a hydrochloric acid-caching agent By using these reaction catalysts or a hydrochloric acid-caching agent, a mixture of a monoester and a diester can be obtained, and the ratio can be adjusted in a range where the molar ratio is from 99: 1 to 1:99. it can.
  • the ratio between the specific alcohol and the phosphorus oxyhalide and the reaction conditions are selected, and a Lewis acid catalyst and a catch agent for hydrochloric acid are used in combination.
  • a mixture of a monoester and a ester can be obtained, and the ratio can be adjusted within a range of a molar ratio of 99: 1 to 1:99.
  • a hydrochloride cache agent such as an amine is used. If used, the resulting amine hydrochloride may be difficult to remove by washing with water.
  • the amount of the reaction catalyst to be used is from 0.05 to 0.2 mol, preferably from 0.01 to 0.05 mol, per mol of phosphorus oxyhalide.
  • a phosphonate ester compound is synthesized by reacting a specific alcohol with phosphorus trihalide in an appropriate organic solvent, and then the obtained phosphonate ester compound is oxidized. Is the way.
  • phosphorus trihalide it is preferable to use phosphorus trichloride or phosphorus tribromide, and particularly preferably phosphorus trichloride.
  • the organic solvent used for the reaction between the specific alcohol and phosphorus trihalide is an organic solvent that does not react with phosphorus trihalide, such as hexane, cyclohexane, heptane, octane, benzene, Hydrocarbon solvents such as toluene, xylene, petroleum spirit, halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, dichloroethane, chlorobenzene, etc., getyl ether, diisopropyl ether, dibutyl ether, etc. Among them, hexane and heptane are preferable.
  • reaction conditions of the specific alcohol and phosphorus trihalide are as follows: the reaction temperature is 0 to 90 ° C, preferably 40 to 75 ° C, and the reaction time is 1 to 10 hours, preferably 2 to 10 hours. ⁇ 5 hours.
  • the reaction temperature of the phosphonate compound with the halogen is preferably from 0 to 40, particularly preferably from 5 to 25 ° C.
  • the phosphonate esterification Before oxidizing the phosphonate compound, the phosphonate esterification The compound can be purified by distillation.
  • the diester can be obtained with high purity by using, for example, a specific alcohol and phosphorus trihalide in a molar ratio of 3: 1.
  • the ratio of the specific alcohol to the phosphorus trihalide and the reaction conditions a mixture of a monoester and a diester can be obtained, and the molar ratio can be adjusted to a ratio of 99: 1 to 1:99. It can be adjusted in the range as follows.
  • the phosphate compound of the present invention Since the phosphate compound of the present invention has an alkoxy group in its molecular structure, it has high compatibility with synthetic resins, particularly with acrylic resins such as (meth) acrylic ester resins.
  • acrylic resins such as (meth) acrylic ester resins.
  • the phosphate compound of the present invention is contained in the acrylic resin together with copper ions, an ionic bond or a coordination bond is formed between the hydroxyl groups in the phosphate compound and the copper ions.
  • the dispersibility of copper ions in the acrylic resin is remarkably improved, and the acrylic resin composition absorbs near-infrared rays with high efficiency by the interaction between the copper ions and the phosphate compound. Is obtained.
  • the phosphoric acid ester copper compound of the present invention is obtained by reacting a phosphoric acid ester compound represented by the above formula (1) (hereinafter referred to as “specific phosphoric acid ester compound”) with a copper salt, For example, it has the structure represented by the above (6) or (7).
  • R represents the above formula (2) and the above formula ( As shown in 3), it is an alkyl group to which an alkylene oxide group is bonded.
  • the number m of repeating units of the alkylene oxide group is an integer of 1 to 6, preferably 1 to 3.
  • the value of m exceeds 6, it is not preferable to include the obtained phosphoric acid ester copper compound in the synthetic resin because the hardness of the obtained resin composition is greatly reduced.
  • the value of m is 0, that is, the alkylene oxide group is If not, the resulting copper phosphate ester compound is not preferred because it has a remarkably low dispersibility in a synthetic resin, especially an acrylic resin.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • R 2 is It is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. That is, examples of the alkylene oxide group include an ethylene oxide, a propylene oxide group, a butylene oxide group, and the like, and an ethylene oxide and a propylene oxide group are particularly preferable.
  • the alkyl group R 2 has more than 4 carbon atoms, it is difficult to disperse the resulting phosphate ester copper compound at a high ratio in the synthetic resin, which is not preferable. It is not preferable because the hardness is greatly reduced.
  • Preferred specific examples of the specific phosphate compound for obtaining the phosphate copper compound of the present invention include compounds represented by the above formulas ( a ) to (X), and particularly preferably the above formulas (N) to compounds represented by the above formula (r). These compounds can be used alone or in combination of two or more.
  • Examples of the copper salt for obtaining the copper phosphate ester compound of the present invention include copper acetate, copper formate, copper stearate, copper benzoate, copper ethyl acetate, pyrrolinate, copper naphthenate, copper citrate and the like.
  • Anhydrides and hydrates of copper salts of organic acids such as anhydrides and hydrates of copper salts, and copper salts of inorganic acids such as copper chloride, copper sulfate, copper nitrate, and basic copper carbonate, are exemplified. It is preferable to use, and particularly preferable are copper acetate and copper benzoate.
  • the reaction between the specific phosphate compound and the copper salt is carried out by bringing them into contact under appropriate conditions. Specifically, (i) a method of mixing a specific phosphate compound and a copper salt and reacting them, (ii) a method of reacting the specific phosphate compound and a copper salt in an appropriate organic solvent, (Iii) Contact between an organic solvent layer containing a specific phosphate compound in an organic solvent and an aqueous layer in which a copper salt is dissolved And a method of reacting a specific phosphate compound with a copper salt.
  • reaction conditions of the specific phosphate compound and the copper salt are as follows: the reaction temperature is 0 to 150 ° C, preferably 40 to 100 ° C, and the reaction time is 0.5 to 10 hours. , Preferably 1-7 hours.
  • reaction ratio of the specific phosphate compound to the copper salt is preferably such that the copper salt is 0.3 to 1.0 mol per 1 mol of the specific phosphate compound.
  • the organic solvent used in the above method (U) is not particularly limited as long as it can dissolve the specific phosphate compound used, and examples thereof include aromatic compounds such as benzene, toluene, and xylene; Alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; glycol ethers such as methyl sorb and ethyl sorb; ethers such as getyl ether, diisopropyl ether and dibutyl ether; ketones such as acetone and methyl ethyl ketone. And esters such as ethyl acetate and the like, hexane, kerosene, petroleum ether and the like.
  • aromatic compounds such as benzene, toluene, and xylene
  • Alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol
  • glycol ethers such as methyl sorb and ethyl sorb
  • ethers such as getyl
  • organic solvents having polymerizability such as (meth) acrylic acid esters such as (meth) acrylate, and aromatic vinyl compounds such as styrene and ⁇ -methylstyrene can also be used. Of these, toluene is preferred.
  • the organic solvent used in the method (iii) is not particularly limited as long as it is insoluble or hardly soluble in water and can dissolve the specific phosphate compound used.
  • Examples of the organic solvent used in the method of the above method include aromatic compounds, ethers, esters, hexane, kerosene, (meth) acrylic acid esters, and aromatic vinyl compounds. Preferably it is toluene.
  • an acid component which is an anion is released from the copper salt. Since such an acid component may cause the moisture resistance and the thermal stability of a synthetic resin, for example, an acrylic resin composition to be reduced, it is preferable to remove the acid component as necessary.
  • the phosphate copper compound is produced by the method (i) or (ii)
  • the produced acid component [the produced acid component and the organic solvent in the method of (ii)] can be removed by distillation.
  • examples of the alkali metal include sodium hydroxide, hydroxylated steam, and ammonia, but are not limited thereto.
  • a water-soluble salt is formed by the acid component released from the copper salt and the alcohol, and this salt migrates to the aqueous layer, and the specific ester copper phosphate compound formed is formed. Is transferred to the organic solvent layer, so that the acid component can be removed by separating the aqueous layer and the organic solvent layer.
  • the phosphate copper compound of the present invention can be produced, but the phosphate copper compound of the present invention may be any one obtained by reacting a specific phosphate compound with a copper salt. It is not limited to the compound represented by the above formula (6) or (7).
  • a structure in which two hydroxyl groups in a monoester are bonded to different copper ions a structure in which a copper ion is bonded to only one of the two hydroxyl groups in a monoester, or a copper ion bonded to a hydroxyl group in one diester Or a multimer containing two or more copper ions in the molecule or a coordination compound thereof.
  • the phosphoric acid ester copper compound of the present invention has a performance of absorbing near-infrared rays with high efficiency, has a small decrease in near-infrared ray absorption by ultraviolet rays, and has an alkoxy group in the molecule. It has good compatibility with the base resin.
  • the near-infrared absorbent of the present invention comprises a phosphate compound represented by the above formula (1), A compound containing copper ions (hereinafter referred to as “near-infrared absorbing agent (A)”), or obtained by reacting a phosphate compound represented by the above formula (1) with a copper salt.
  • a substance containing a copper phosphate compound as an active ingredient hereinafter referred to as “near-infrared ray absorbent (B)”
  • copper ions are a main component for absorbing near-infrared rays and are supplied by an appropriate copper compound.
  • Specific examples of the copper compound serving as a supply source of such copper ions include those exemplified as the copper salts for obtaining the above-mentioned copper phosphate ester compound.
  • the specific phosphate compound is a component for forming a coordination bond or an ionic bond with copper ions to disperse the copper ions in the synthetic resin.
  • This specific phosphate compound can be used alone or in combination of two or more.
  • the ratio of the specific phosphate compound to copper ions in the near infrared absorbing agent (A) is such that the hydroxyl group in the phosphate compound is 0.5 to 10 moles, particularly 1.5 to 5 moles per mole of copper ions. It is preferable that there is. If this ratio is less than 0.5 mol, it may be difficult to disperse copper ions in the synthetic resin. If this proportion exceeds 10 mol, the proportion of hydroxyl groups not involved in coordination bond or ionic bond with copper ions becomes excessively large, so that the resin composition obtained by adding the near-infrared absorber is added. Material may be highly hygroscopic. KNIR absorbing acrylic resin composition>
  • the near-infrared absorbing acrylic resin composition of the present invention comprises the following component (A) and (B)
  • the component (A) is composed of a copper ion and a phosphate compound represented by the above formula (1), that is, the above-mentioned near-infrared absorbent (A), and comprises a copper ion and a specific phosphate compound. It has the effect of absorbing near-infrared rays with high efficiency due to the interaction between the two.
  • the component (A) may contain metal ions other than copper ions (hereinafter referred to as “other metal ions”). Specific examples of such other metal ions include ions of metals such as sodium, potassium, calcium, iron, manganese, magnesium, and nickel. These other metal ions include copper ions and copper ions. Similarly, it can be contained in an acrylic resin.
  • the use ratio of such another metal ion is preferably 50% by weight or less, more preferably 30% by weight or less, and further preferably 20% by weight or less based on the total metal ions. If this ratio exceeds 50% by weight, it may be difficult to obtain an acrylic resin composition having a high near-infrared absorptivity.
  • the component (B) is composed of a phosphoric acid ester copper compound obtained by reacting the phosphoric acid ester compound represented by the above formula (1) with a copper salt (hereinafter referred to as a “specific phosphoric acid ester copper compound”). , Ie, the above-mentioned near-infrared absorbing agent (B).
  • the content of copper ions is preferably from 0.1 to 5% by weight, more preferably from 0.3 to 4% by weight, based on the entire acrylic resin composition. And more preferably 0.5 to 3% by weight.
  • this ratio is less than 0.1% by weight, the ability to absorb near infrared rays with high efficiency may not be obtained. On the other hand, if this proportion exceeds 5% by weight, it becomes difficult to disperse metal ions in the acrylic resin, and an acrylic resin composition having excellent visible light transmittance can be obtained. There may not be.
  • acrylic resin constituting the composition of the present invention a polymer obtained from a (meth) acrylic acid ester monomer can be preferably used.
  • (meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, and n-propyl (meta) acrylate. Crylate, n-butyl (meta) acrylate, isobutyl (meta) acrylate, t-butyl (meta) acrylate, n-hexyl (meta) Acrylate, n-octyl (meta) acrylate, etc., alkyl (meta) acrylates, glycidyl (meta) acrylate, 2—hydroxyethyl (meta) TA) Accelerate, 2 -Hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, methoxypolyethylene (meth) acrylate, phenoxy (meta) Modified (meth) acrylates such as acrylate
  • These monomers can be used alone or in combination of two or more.
  • the acrylic resin may be a copolymer of the above (meth) acrylic ester monomer and a copolymerizable monomer copolymerizable therewith.
  • Such a copolymerizable monomer examples include (meth) acrylic acid, 2- (meth) acryloyloxetyl succinic acid, and 2— (meth) acryloyloxetil sulfonic acid.
  • examples include unsaturated carboxylic acids such as tallic acid, and aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, chlorostyrene, dibromostyrene, methoxystyrene, vinylbenzoic acid, and hydroxymethylstyrene.
  • thermoplastic acryl-based resin is obtained, and when a polyfunctional resin is used as a part or all of the monomer, As a result, a thermosetting acrylic resin is obtained.
  • thermoplastic acryl-based resin or a thermosetting acryl-based resin is selected in accordance with the purpose, use, processing method, and the like of the obtained acrylic resin composition. It can be used selectively.
  • the acrylic resin composition of the present invention is prepared by incorporating one or both of the above-mentioned component (A) and component (B) into an acrylic resin. Is not particularly limited, but a preferred method is as follows:
  • component (A-1) component One of the specific phosphate compound and copper salt (hereinafter referred to as “component (A-1) component”) and / or component (B) in the monomer for obtaining the acrylic resin.
  • component (A-1) component a specific phosphate compound and copper salt
  • component (B) component (B) in the monomer for obtaining the acrylic resin.
  • a method of preparing a monomer composition containing both, and subjecting the monomer composition to a radical polymerization treatment is not particularly limited, and a radical polymerization method using a usual radical polymerization initiator, for example, a bulk (cast) polymerization method
  • Known methods such as a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method can be used.
  • This method is used when a thermoplastic resin is used as the acrylic resin.
  • This method further includes: (i) a method of adding one or both of the component (A-1) and the component (B) to the molten acrylic resin and kneading the mixture; After dissolving or swelling the rill-based resin in an appropriate organic solvent, adding one or both of the component (A-1) and the component (B) to the solution and mixing, then removing the organic solvent from the solution Method.
  • thermoplastic resins for example, means for melt-kneading with a mixing roll, premixing with a Henschel mixer, etc., followed by melting with an extruder Means for kneading may be mentioned.
  • the organic solvent is not particularly limited as long as it can dissolve or swell the acrylic resin used.
  • Specific examples thereof include methyl alcohol, Alcohols such as ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, benzene, Examples include aromatic hydrocarbons such as toluene and xylene, chlorinated hydrocarbons such as methylene chloride, and amide compounds such as dimethylacrylamide and dimethylformamide.
  • a specific phosphate compound reacts with a copper salt, so that an acid component as an anion is liberated from the copper salt. Is done. It is preferable to remove such an acid component as necessary for the same reason as described above.
  • the method of removing such an acid component includes (a) a method of extracting the acid component by immersing the acrylic resin composition in an appropriate organic solvent, and (b) a polymerization treatment of the monomer composition.
  • a method may be mentioned in which the monomer composition is subjected to a cooling treatment to precipitate and separate an acid component.
  • the organic solvent used in the above method (a) is capable of dissolving the acid component to be liberated and has an appropriate affinity for the acrylic resin used (dissolving the acrylic resin). However, it is not particularly limited as long as it has an affinity (a degree of permeation into the acrylic resin).
  • such a solvent examples include lower aliphatic alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol; ketones such as acetone, methylethylketone, and methylisobutylketone; Ethers such as ether and petroleum ether, aliphatic hydrocarbons such as n-pentane, n-hexane, n-hexane, n-hexane, methylene chloride, carbon tetrachloride, and their halides, benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
  • lower aliphatic alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol
  • ketones such as acetone, methylethylketone, and methylisobutylketone
  • Ethers such as ether and petroleum ether
  • the copper salt constituting the component (A-1) one in which the liberated acid component is difficult to dissolve in the monomer.
  • benzoic acid is used.
  • Copper salts of carboxylic acids having an aromatic ring such as acids are mentioned.
  • the specific phosphate compound constituting the component (A) or the specific phosphate ester component constituting the component (B) The copper ester residue (copper ion) in the copper compound Residue other than) Acrylic resin It is used in an amount of, for example, 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, and more preferably 5 to 15 parts by weight based on 100 parts by weight.
  • the acryl-based resin composition thus obtained contains copper ion in a state of being sufficiently dispersed in the acryl-based resin, so that it has excellent visible light transmittance and high efficiency for near infrared rays. It has the ability to absorb near-infrared light, and furthermore, there is little decrease in near-infrared absorption due to ultraviolet rays, and it can be formed into a desired shape such as a plate, a column, or a lens.
  • the acrylic resin composition of the present invention is suitable as a material constituting various optical products such as a heat ray absorbing window member, a near-infrared cut filter, and a near-infrared cut lens.
  • FIG. 1 is a diagram showing an infrared spectrum curve of the phosphate compound obtained in Example 1 below.
  • FIG. 2 is a diagram showing an infrared spectroscopic curve of the phosphate compound obtained in Example 2 below.
  • FIG. 3 is a diagram showing an infrared spectroscopic curve of the phosphate compound obtained in Example 3 below.
  • FIG. 4 is a diagram showing an infrared spectroscopic curve of the phosphate compound obtained in Example 4 below.
  • FIG. 5 is a diagram showing an infrared spectrum curve of the phosphate compound obtained in Example 5 below.
  • FIG. 6 is a diagram showing a spectroscopic transmittance curve of the near-infrared absorbing acryl-based resin composition obtained in Example 6 below.
  • FIG. 7 is a diagram showing an infrared spectrum curve of the copper phosphate ester compound obtained in Example 18 below.
  • FIG. 8 is a diagram showing an infrared spectrum curve of the copper phosphate ester compound obtained in Example 19 below.
  • FIG. 9 is a diagram showing an infrared spectroscopic curve of the copper phosphate compound obtained in Example 20 below.
  • FIG. 10 is a diagram showing an infrared spectroscopic curve of the copper phosphate ester compound obtained in Example 22 below.
  • a four-necked flask was equipped with a stirrer, a thermometer and a condenser.
  • 1-methoxy-1-2-prononol 27 Og (3.0 mol) and toluene 400 as a solvent were used. g and cooled to 5 with stirring.
  • 142 g (1.0 mol) of phosphorus pentoxide was gradually added while maintaining the temperature of the solution at 5 to 10 ° C. Thereafter, the temperature of the solution was gradually increased, and 1-methoxy-2-propanol was reacted with phosphorus pentoxide at 60 ° C. for 6 hours.
  • reaction product was subjected to spectroscopic analysis using an infrared absorption spectrum. As a result, it was found that the reaction product contained a phosphate compound represented by the formula (m) and a phosphate ester compound represented by the formula (n) Was confirmed.
  • Figure 1 shows the infrared absorption curve of this reaction product.
  • composition and yield of the phosphate compound were calculated for the obtained reaction product as follows.
  • the reaction product is heated and decomposed by adding concentrated nitric acid and perchloric acid, and further diluted with distilled water.Then, nitric acid, 0.25% ammonium vanadate aqueous solution and 5% ammonium molybdate are added to this solution. An aqueous solution was added for color development, and the absorbance at a wavelength of 450 nm was measured using a spectrophotometer. The phosphorus concentration (% by weight) in the reaction product was determined based on the absorbance of the phosphorus standard solution.
  • the yield was calculated from the phosphorus concentration and the phosphorus concentration (% by weight) of the phosphorus compound used. Table 1 shows the results.
  • reaction solution was allowed to stand to separate the reaction solution into a toluene layer and an aqueous layer, and then a toluene solution was recovered. Then, add toluene 1 to the remaining aqueous solution.
  • the product in the aqueous solution was extracted by adding 00 g, and a toluene solution was recovered. This operation was repeated three times to collect a total of 600 g of the toluene solution. Then, after replacing the condenser attached to the four-necked flask with a distillation apparatus, the distillation apparatus was used to remove toluene and the like from the toluene solution to obtain 165 g of a liquid reaction product.
  • the obtained reaction product was analyzed by spectroscopy using infrared absorption spectrum. At this time, it was confirmed that the compound contained a phosphate compound represented by the formula (m) and a phosphate ester compound represented by the formula (n).
  • Figure 2 shows the infrared absorption curve of this reaction product.
  • a condenser connected with a stirrer, a thermometer, a 5% sodium hydroxide aqueous solution scrubber and a dip tube for introducing chlorine gas were attached to the four-necked flask, and the obtained liquid was placed in the four-necked flask.
  • 22.6 g (approximately 1.0 mol as bis (2-methoxy-1-methylethyl) hydrogen phosphonate) Cool.
  • chlorine gas was blown into the bis (2-methoxy-1-methylethyl) hydrogen phosphonate while maintaining the temperature at 10 to 20 ° C., and the solution was continued until the solution turned slightly yellow.
  • reaction product was subjected to spectroscopic analysis using an infrared absorption spectrum. As a result, it was found that the reaction product contained a phosphate compound represented by the formula (m) and a phosphate ester compound represented by the formula (n) Was confirmed.
  • Figure 3 shows the infrared absorption curve of this reaction product.
  • a condenser connected to a stirrer, a thermometer, a 5% aqueous sodium hydroxide scrubber and a dip tube for introducing chlorine gas were attached to the four-necked flask. 504 g of the liquid mixture was charged and cooled to 10 ° C. Then, chlorine gas was blown into the liquid mixture while maintaining the temperature at 10 to 20 ° C., and continued until the solution turned slightly yellow.
  • the obtained reaction product was subjected to spectroscopic analysis using an infrared absorption spectrum.
  • the reaction product contained a phosphate compound represented by the formula (o) and a phosphate ester compound represented by the formula ( ⁇ ).
  • Fig. 4 shows the infrared absorption curve of this reaction product.
  • Example 4 The procedure of Example 4 was repeated, except that 3.0 mol of tripropylene glycol monomethyl ether was used instead of dipropylene glycol monomethyl ether, to obtain 424 g of a reaction product.
  • 3.0 mol of tripropylene glycol monomethyl ether was used instead of dipropylene glycol monomethyl ether, to obtain 424 g of a reaction product.
  • the obtained reaction product was subjected to spectroscopic analysis using an infrared absorption spectrum, and was found to contain a phosphate compound represented by the formula (Q) and a phosphate ester compound represented by the formula (r) Was confirmed.
  • Fig. 5 shows the infrared absorption curve of this reaction product.
  • ester A The phosphate compound obtained in Example 3
  • esteer B the phosphate compound obtained in Example 4
  • esteer 5 the phosphate compound obtained in Example 5
  • ester C a phosphoric acid ester compound
  • the phosphate compound and methyl methacrylate were mixed according to the formulation shown in Table 2 below, and anhydrous copper benzoate was added to the mixture, followed by stirring at 60 ° C for 1 hour and mixing to obtain a monomer.
  • a composition was prepared. To this monomer composition, 0.2 g of t-butylvaloxyvivalate was added, and the mixture was heated at different temperatures, such as 16 hours at 45, 8 hours at 60 ° C, and 3 hours at 90 ° C.
  • resin compositions (1) to (3) containing the near-infrared absorber (phosphate compound and copper ion) of the present invention were prepared. .
  • the resulting resin compositions (1) to (3) were press-molded at 200 ° C. to obtain a blue transparent plate having a thickness of 4 mm.
  • the light transmittance at a wavelength of 550 nm, a wavelength of 800 nm, and a wavelength of 900 nm was measured.
  • the resin compositions (1) to (3) containing the near-infrared absorbing agent of the present invention have excellent visible light transmittance and high efficiency of near-infrared ray. It was confirmed that it had the ability to absorb UV light, and that the decrease in near-infrared absorption by UV light was small.
  • the obtained acrylic resin composition was evaluated as follows.
  • the light transmittance at a wavelength of 550 nm, a wavelength of 800 nm, and a wavelength of 900 nm was measured.
  • the obtained sheet was subjected to a weather resistance test for 500 hours by sunshine shark overnight (black panel temperature 63 ° C, with precipitation), and the light of the sheet after the test was tested. The transmittance was measured, and the presence or absence of the change was examined.
  • Fig. 6 shows the spectral transmittance curve of the plate.
  • esters (a) to (r) Compounds represented by the above formulas (a) to (r) (hereinafter referred to as “ester (a)” to “ester (r)”) are prepared as specific phosphoric acid ester compounds.
  • An acrylic resin composition was prepared and evaluated by performing the same operation as in Example 1 except that a specific phosphate compound and a copper salt were used in accordance with the formulation.
  • a stirrer, a thermometer, and a condenser were attached to the four-necked flask.
  • ester (n) 242 g (1.0 mol) as a specific phosphate compound, and toluene 25 as a solvent were used.
  • 0 g and 100 g (0.5 mol) of anhydrous copper acetate monohydrate were charged.c, cl The temperature was gradually increased, and the mixture was stirred at 40 ° C for 1 hour.
  • the obtained copper phosphate compound has a structure represented by the following formula (8).
  • the phosphorus content was 11.40% by weight (theoretical value: 1). 1.35% by weight), copper content 11.70% by weight (theoretical value 1.1.64% by weight), no definite melting point, and decomposition temperature of 247 ° C It was.
  • FIG. 7 shows the infrared absorption curve of the obtained copper phosphate ester compound.
  • a stirrer, a thermometer, and a condenser were attached to the four-necked flask.
  • ester (p) 358 g (1.0 mol) as a specific phosphate compound, and toluene 36 as a solvent were used.
  • 0 g and 100 g (0.5 mol) of anhydrous copper acetate monohydrate were gradually added, and the temperature was gradually increased.
  • the mixture was stirred at 40 ° C for 1 hour, and further added at 80 ° C. By stirring for a certain time, a specific phosphate compound was reacted with anhydrous copper acetate monohydrate to obtain a blue transparent solution.
  • the phosphoric acid ester of the present invention is removed by removing acetic acid and toluene generated by the reaction of a specific phosphoric acid ester compound with anhydrous copper acetate monohydrate. 355 g of copper compound was obtained. The yield was 91.3%.
  • the obtained phosphoric acid ester copper compound has a structure represented by the following formula (9), and its properties are jelly-like solids.
  • FIG. 8 shows an infrared absorption curve of the obtained copper ester phosphate compound.
  • a stirrer, a thermometer, and a condenser were attached to the four-necked flask.
  • ester (r) 475 g (1.0 mol) as a specific phosphate compound, and toluene 4 as a solvent were used.
  • 80 g and 100 g (0.5 mol) of anhydrous copper acetate monohydrate were charged, the temperature was gradually raised, and the mixture was stirred at 40 ° C for 1 hour, and further at 80 ° C.
  • the specific phosphate compound was reacted with anhydrous copper acetate monohydrate to obtain a blue transparent solution.
  • the phosphoric acid ester of the present invention is removed by removing acetic acid and toluene generated by the reaction of a specific phosphoric acid ester compound with anhydrous copper acetate monohydrate. 4.55 g of a copper compound was obtained. The yield was 90.0%.
  • the obtained phosphoric acid ester copper compound has a structure represented by the following formula (10), and has a viscous liquid property.
  • the phosphorus content was 6.20% by weight (theoretical value: 6.13% by weight), and the copper content was 6.33% by weight (theoretical value: 6.29% by weight).
  • FIG. 9 shows an infrared absorption curve of the obtained copper ester phosphate compound.
  • the resin composition was press-molded at 200 ° C. to produce a plate having a thickness of 2 mm, and the evaluation was performed in the same manner as in Example 6.
  • Table 4 shows the results. Table 4
  • the resin composition containing the copper phosphate ester compound of the present invention has excellent visible light transmittance and has a performance of absorbing near infrared rays with high efficiency. In addition, it was confirmed that the absorption of near-infrared light by ultraviolet light did not decrease much.
  • ester (n) 2 42 g (1.0 mol) as a specific phosphate compound and toluene 25 as a solvent were added. 0 g and cooled to 5 ° C.
  • 160 g of a 25% aqueous sodium hydroxide solution 1.0 mol as sodium hydroxide was added to the solution, and the temperature of the solution was raised to 5 to 20 ° C.
  • the ester (n) was neutralized by gradually adding the solution while maintaining the temperature.
  • the obtained copper phosphate compound has a structure represented by the above formula (8).
  • the phosphorus content was 11.26% by weight (theoretical value: 1). 1.35% by weight), copper content 11.04% by weight (theoretical value 11.64% by weight), no definite melting point, and decomposition temperature of 240% Atsushi.
  • FIG. 10 shows the infrared absorption curve of the obtained copper phosphate ester compound. The invention's effect
  • the phosphate compound of the present invention has a hydroxyl group capable of forming a coordinate bond or an ion bond with copper ion, and has good compatibility with a synthetic resin such as an acrylic resin. Copper ions can be dispersed at a high rate. Therefore, the phosphate compound of the present invention is suitable as a resin additive for dispersing copper ions in a synthetic resin.
  • the above-mentioned phosphate compound can be advantageously produced.
  • the phosphate copper compound of the present invention has a performance of absorbing near-infrared rays with high efficiency, has a small decrease in near-infrared absorption by ultraviolet rays, and has good compatibility with synthetic resins such as acryl-based resins. It is.
  • the above-mentioned copper phosphate ester compound can be advantageously produced.
  • the near-infrared absorbing agent of the present invention since the above-mentioned phosphate compound is contained, copper ions, which are near-infrared absorbing components, are dispersed at a high ratio in the synthetic resin. be able to.
  • the resin composition to which the near-infrared absorbent of the present invention is added has excellent visible light transmittance, has a performance of absorbing near-infrared light with high efficiency, and furthermore, a decrease in near-infrared absorbability due to ultraviolet light. There are few.
  • the near-infrared absorbing agent of the present invention since the above-mentioned copper phosphate compound is used as an active ingredient, by containing it in a synthetic resin, it has a performance of absorbing near-infrared rays with high efficiency, Thus, a resin composition having little decrease in near-infrared absorptivity due to the above and an excellent visible light transmittance can be obtained.
  • the near-infrared absorbing acrylic resin composition of the present invention is excellent in visible light transmittance, has a performance of absorbing near-infrared light with high efficiency, and has a small decrease in near-infrared absorbing property due to ultraviolet rays.

Description

明 細 書 燐酸エステル化合物およびその製造方法、 燐酸エステル銅化合物およびその製 造方法、 近赤外線吸収剤並びに近赤外線吸収性ァクリル系樹脂組成物 技 術 分 野
本発明は、 新規な燐酸エステル化合物およびその製造方法、 新規な燐酸エステ ル銅化合物およびその製造方法、 銅イオンを含有してなる近赤外線吸収剤、 並び に可視光線透過性に優れ、 かつ、 近赤外線を高い効率で吸収する性能を有する近 赤外線吸収性ァクリル系樹脂組成物に関する。 背 景 技 術
従来、 合成樹脂に、 近赤外線を高い効率で吸収する性能を付与する試みが多々 なされており、 例えばァクリル系樹脂中に近赤外線吸収性を有する有機色素が含 有されてなる樹脂組成物が知られている (特開平 5 — 4 2 6 2 2号公報参照) 。 然るに、 このような樹脂組成物においては、 含有される有機色素自体の近赤外 線吸収波長域が狭いため、 近赤外線を広い波長域にわたって吸収することができ ず、 しかも、 この有機色素は、 その化学構造上、 紫外線によって劣化されやすく 、 これにより、 近赤外線吸収性が低下するため、 長期間にわたって初期の近赤外 線吸収性が維持されない、 という問題がある。
また、 近赤外線を吸収する性能を有する樹脂組成物としては、 アクリル系樹脂 中に近赤外線吸収剤として銅ィォンが含有されてなるものが知られている (特公 昭 6 2 - 5 1 9 0号公報参照) 。
然るに、 このような樹脂組成物においては、 アク リル系樹脂中に銅イオンを十 分に分散させた状態で含有させることが困難であるため、 十分に高い近赤外線吸 収性が得られず、 しかも、 可視光線の透過率が低下する、 という問題がある。 また、 合成樹脂に対する銅イオンの分散性を高めるために、 合成樹脂中に燐酸 エステル等の燐酸基含有化合物を添加する手段が知られている (特公昭 6 2 - 5 1 9 0号公報参照) 。
しかしながら、 このような手段においては、 合成樹脂に対する燐酸基含有化合 物の相溶性が十分に高いものではないため、 可視光線の透過性に優れた樹脂組成 物が得られない、 という問題がある。
発 明 の 開 示
本発明は、 以上のような事情に基づいてなされたものである。
本発明の第 1の目的は、 合成樹脂中に銅イオンを高い割合で分散させることが でき、 これにより、 可視光線の透過性に優れ、 近赤外線を高い効率で吸収する性 能を有し、 かつ紫外線による近赤外線吸収性の低下が少ない樹脂組成物が得られ る新規な燐酸エステル化合物を提供することにある。
本発明の第 2の目的は、 上記の新規な燐酸エステル化合物を有利に製造するこ とのできる方法を提供することにある。
本発明の第 3の目的は、 銅イオンを含有してなり、 当該銅イオンを合成樹脂中 に高い割合で分散させることができる近赤外線吸収剤を提供することにある。 本発明の第 4の目的は、 近赤外線を高い効率で吸収する性能を有し、 紫外線に よる近赤外線吸収性の低下が少なく、 しかも、 合成樹脂に対する相溶性が良好な 新規な燐酸エステル銅化合物を提供することにある。
本発明の第 5の目的は、 上記の新規な燐酸エステル銅化合物を有利に製造する ことのできる方法を提供することにある。
本発明の第 6の目的は、 合成樹脂に対する相溶性が良好で、 近赤外線を高い効 率で吸収する樹脂組成物が得られる近赤外線吸収剤を提供することにある。 本発明の第 7の目的は、 可視光線の透過性に優れ、 近赤外線を高い効率で吸収 する性能を有し、 かつ紫外線による近赤外線吸収性の低下が少ない近赤外線吸収 性ァクリル系樹脂組成物を提供することにある。
本発明者らは、 特定の構造を有する燐酸エステル化合物が、 合成樹脂中に銅ィ ォンを高い割合で分散させる性能を有することを見いだし、 本発明を完成した。 本発明の燐酸エステル化合物は、 下記式 ( 1 ) で表されるものである。 式 ( 1 ) ノ OH)n
0 = P
(0R) 3 n
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で表される基を示し、 nは 1または 2である。
式 (2 ) 式 (3)
R 2 R 2
I I
一 (CHCH2 0)m— Ri - (CH2 CHO)m— R i
(但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜 6の整数である。 ) 〕
本発明の燐酸エステル化合物は、 以下の第 1の方法、 第 2の方法および第 3の 方法のいずれかによつて容易に製造することができる。
〔第 1の方法〕
下記式 (4 ) または下記式 ( 5 ) で表されるアルコールと、 五酸化燐とを反応 させる方法。
式 (4) 式 (5)
R 2 R 2
I I HO- (CHCH2 0)m-R i HO— (CH2 CHO)m - R i
〔但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、
mは 1〜 6の整数である。 〕
〔第 2の方法〕
上記式 (4 ) または上記式 ( 5) で表されるアルコールと、 ォキシハロゲン化 燐とを反応させ、 得られる生成物を加水分解する方法。
〔第 3の方法〕
上記式 (4 ) または上記式 ( 5 ) で表されるアルコールと三ハロゲン化燐とを 反応させることにより、 ホスホン酸エステル化合物を合成し、 このホスホン酸ェ ステル化合物を酸化する方法。
本発明の近赤外線吸収剤は、 上記式 ( 1 ) で表される燐酸エステル化合物と、 銅イオンとを含有してなることを特徴とする。
本発明の燐酸エステル銅化合物は、 上記式 ( 1 ) で表される燐酸エステル化合 物と銅塩とを反応させることにより得られるものである。
また、 本発明の燐酸エステル銅化合物は、 下記式 ( 6) または下記式 ( 7) で 表されるものである。 式 ( 6) 式 ( 7 )
0 0 〇、 〇 RO OR
V P M PN
/ \ / / \ \ / %
RO 0 RO OR 0 0
〔但し、 Rは、 それぞれ独立して下記式 ( 2 ) または下記式 (3) で 表される基を示し、 Mは銅イオンを示す。
式 (2) 式 ( 3)
R 2 R 2
- (CHCH2 0)m - R i (C H 2 C HO)m-R 1
(但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜 4のアルキル基を示し、 mは 1〜6の整数である。 ) 〕
本発明の燐酸エステル銅化合物の製造方法は、 上記式 ( 1 ) で表される燐酸ェ ステル化合物と銅塩とを反応させることを特徴とする。
本発明の燐酸エステル銅化合物の製造方法においては、 上記式 ( 1 ) で表され る燐酸エステル化合物と銅塩とを有機溶剤中で反応させ、 その後、 前記燐酸エス テル化合物と前記銅塩との反応によって生成される酸成分および前記有機溶剤を 除去する。
また、 上記式 ( 1 ) で表される燐酸エステル化合物およびアルカリが水に不溶 または難溶の有機溶剤中に含有されてなる有機溶剤層と、 銅塩が溶解されてなる 水層とを接触させることにより、 前記燐酸エステル化合物と前記銅塩とを反応さ せ、 その後、 有機溶剤層と水層とを分離する。
本発明の近赤外線吸収剤は、 上記の燐酸エステル銅化合物を有効成分とするこ とを特徴とする。
本発明の近赤外線吸収性アク リル系榭脂組成物は、 下記 (A) 成分および. /'ま たは下記 (B) 成分が、 アク リル系樹脂中に含有されてなることを特徴とする。
(A) 成分 : 銅イオンおよび上記式 ( 1 ) で表される燐酸エステル化合物よりな る成分
(B) 成分 :上記式 ( 1 ) で表される燐酸エステル化合物と銅塩とを反応させて 得られる化合物よりなる成分
本発明の近赤外線吸収性アク リル系樹脂組成物においては、 (B) 成分が上記 式 ( 6 ) または上記式 ( 7 ) で表される燐酸エステル銅化合物よりなるものであ つてもよい。
また、 本発明の近赤外線吸収性アク リル系樹脂組成物においては、 銅イオンの 含有割合が全体の 0. 1〜 5重量%であることが好ま しい。
また、 本発明の近赤外線吸収性ァク リル系樹脂組成物においては、 上記式 ( 1 ) で表される燐酸エステル化合物は、 基 Rを示す上記式 (2 ) および上記式 ( 3 ) における R2 が、 水素原子または炭素数 1〜 4のアルキル基であることが好ま しく、 また、 mが 1〜 3の整数であることが好ましい。
以下, 本発明について詳細に説明する。
ぐ燐酸エステル化合物〉
本発明の燐酸エステル化合物は、 上記式 ( 1 ) で表される分子構造を有するも のである。
本発明の燐酸エステル化合物の分子構造を示す式 ( 1 ) において、 Rは、 上記 式 ( 2) および上記式 ( 3 ) で示すように、 アルキレンォキサイ ド基が結合され たアルキル基である。
ここで、 アルキレンォキサイ ド基の繰り返し単位数 mは 1〜 6好ま しく は 1〜 3の整数である。 この mの値が 6を超える場合には、 当該燐酸エステル化合物を 合成樹脂中に含有させると、 得られる樹脂組成物の硬度が大幅に低下するため好 ましくない。 一方、 mの値が 0すなわちアルキレンォキサイ ド基が結合されてい ない場合には、 合成樹脂、 特にアク リル系樹脂中に銅イオンを分散させる性能が 著しく低下するため好ま しくない。
また、 本発明の燐酸エステル化合物は、 式 ( 1 ) において水酸基の数 nが 2で あるモノエステルおよび水酸基の数 nが 1であるジエステルのいずれであっても よい。 nの値が 0の トリエステルである場合には、 銅ィォンと配位結合またはィ ォン結合が可能な水酸基を有しないため、 銅イオンを合成樹脂中に分散させる効 果が得られない。
式 ( 1 ) における Rを示す式 ( 2 ) および式 ( 3 ) において、 R 1 は、 炭素数 が 1〜 2 0、 好ましくは 1〜 1 0、 更に好ましく は 1〜 3のアルキル基である。 アルキル基 R 1 の炭素数が 2 0を超える場合には、 合成樹脂例えばアク リル系 樹脂に銅イオンを高い割合で分散させることが困難となる。
また、 R 2 は、 水素原子または炭素数が 1〜 4のアルキル基、 好ましく は炭素 数が 1〜 4のアルキル基である。 すなわち、 アルキレンオキサイ ド基としては、 エチレンォキサイ ド基、 プロピレンォキサイ ド基、 ブチレンォキサイ ド基などが 挙げられ、 好ましく はプロピレンォキサイ ド基、 ブチレンォキサイ ド基、 特に好 ましく はプロピレンォキサイ ド基である。
アルキル基 R 2 の炭素数が 4を超える場合には、 合成樹脂例えばアク リル系樹 脂に銅イオンを高い割合で分散させることが困難となる。
本発明の燐酸エステル化合物の好ま しい具体例としては、 下記式 ( a ) 〜下記 式 (X ) で表されるものが挙げられ、 より好ましく は下記式 (m ) 〜下記式 (X ) 、 特に好ま しく は、 下記式 (m ) 〜下記式 ( r ) で表されるものである。 また 、 本発明の燐酸エステル化合物は、 1種単独のもの若しく は 2種以上を混合した ものであってもよい。
式 (a) 式 (b)
0 - C2H4 - 0 - CH3 0— C2H4— 0— CH3
I
0 = P - 0 H 0 = P - 0 H
I
OH 0 - C2H4 - 0 - CH3 式 (c ) 式 (d)
0- C 2 H 4-O - C 2H5 0 - C2H4 - O - C2H5
O = P - 0 H 0 = P -OH
I
0 H 0 - C2H4 - O - C2H5 式 (e ) 式 ( f )
0-(C 2H4- 0)2- C 2H, 0— (C 2H4— 0)2 - C 2H5
I
0 = P OH 0 = P— OH
I OH 0— (C2H4— 0)2 - C2H5 式 (g) 式 (h)
0— (C2H4— 0)2— C4H 0 _ ( C 2 H 4— 0 ) 2— C 4 H s
I
0= P— OH 0 = P -OH
I I
OH 0— (C 2H 4— 0)2— C 4H9 式 ( i )
C H
0 - C 2H4 - 0 - CH2 - CH - CH
0 = P - 0 H
I 式 ( j )
0 H C H3
I
0 - C 2H 0 - C H 一 C H - C H
I
0 = P - OH C H3
0— C 2H 0 - C H - C H- C H 0 H 〇
II
- -
〇 C H H H n
〇 H 〇
n H C H C H
〇 H 〇
〇H
〇 H 〇
〇 ( 〇c H H C H— I n o
II
〇一- 0—〇 " 〇 H
¾ ()。 〇 〇
3
C H
〇H 〇〇〇 C H——
〇〇Η 〇 H 〇= =—
〇 〇
~ 〇c〇H〇H〇 C H OK 〇 offio C H———Ii
C n H
(m
〇 〇 C H C H
〇 〇H C H =
-
〇 Ha C H u)
〇〇 H =—
0 HCHCH 1—I
C H
; ¾ ()k 式 (Q)
Figure imgf000012_0001
0 -(CH - CH 0)3- C H
0 = P - 0 H
式 ( r )
OH
C H
I
0-(C H C H2— 0)3— C H
I
0= P-OH
I
0—( C H 一 0)3— CH
Figure imgf000012_0002
式 ( s ) 式 ( t )
C H, C H3
I
0 - CH2CH - 0 - CH3 0 - CH2CH - 0 - CH3 0= P -OH 0 = P - OH C H3
Figure imgf000012_0003
式 (u) 式 (v)
C H3 C H3
I
0—(CH2C H— 0)2— C H: 0-(CH2CH-0)2- CH,
I
0= P - OH 0- P-OH C H3
I I I
OH 0 -(C H2CH - 0)2_ CH3 式 (w) 式 (x)
Figure imgf000012_0004
0— (C H2CH— 0)3— C H 0— (C H2C H— 0)3— CH3
I I
0 = P - 0 H 0 = P - 0 H C H3
1 I
OH 0-(C H2CH-0)3- C H3 本発明の燐酸エステル化合物は、 例えば以下の第 1の方法、 第 2の方法および 第 3の方法のいずれかによつて製造することができる。
〔第 1の方法〕
この第 1の方法は、 適宜の有機溶剤中で、 上記式 ( 4 ) または上記式 ( 5 ) で 表されるアルコール (以下、 「特定のアルコール」 という。 ) と、 五酸化燐とを 反応させる方法である。
ここで、 特定のアルコールと五酸化燐との反応に用いられる有機溶剤としては 、 五酸化燐と反応しない有機溶剤であって、 例えばへキサン、 シクロへキサン、 ヘプタン、 オクタン、 ベンゼン、 卜ルェン、 キシレン、 石油スピリ ッ 卜等の炭化 水素系溶剤、 クロ口ホルム、 四塩化炭素、 ジクロロェタン、 クロ口ベンゼン等の ハロゲン化炭化水素系溶剤、 ジェチルエーテル、 ジイソプロピルエーテル、 ジブ チルェ一テル、 テ トラヒ ドロフラン等のエーテル系溶剤、 アセ トン、 メチルェチ ルケ トン、 ジブチルケトン等のケ トン系溶剤などが挙げられ、 これらの中では、 トルエン、 キシレンが好ま しい。
また、 特定のアルコールと五酸化燐との反応条件は、 反応温度が 0〜 1 0 0 °C 、 好ましく は 4 0〜 8 0てであり、 反応時間が 1〜 2 4時間、 好ましく は 4〜 9 時間である。
この第 1の方法においては、 例えば特定のアルコールおよび五酸化燐をモル比 で 3 : 1 となる割合で用いることにより、 式 ( 1 ) において水酸基の数 nが 2で ある燐酸エステル化合物 (以下、 「モノエステル」 ともいう。 ) と、 式 ( 1 ) に おいて水酸基の数 nが 1である燐酸エステル化合物 (以下、 「ジエステル」 とも いう。 ) との割合がほぼ 1 : 1の混合物を得ることができる。
また、 特定のアルコールと五酸化燐との割合および反応条件を選択することに より、 モノエステルとジエステルとの割合をモル比が 9 9 : 1〜 4 0 : 6 0 とな る範囲で調整することができる。
〔第 2の方法〕
この第 2の方法は、 適宜の有機溶剤中で、 特定のアルコールとォキシハロゲン 化燐とを反応させ、 得られる生成物に水を添加して加水分解する方法である。 ここで、 ォキシハロゲン化燐と しては、 ォキシ塩化燐、 ォキシ臭化燐を用いる ことが好ましく、 特に好ましく はォキシ塩化燐である。
また、 特定のァルコールとォキシハロゲン化燐との反応に用いられる有機溶剤 としては、 ォキシハロゲン化燐と反応しない有機溶剤であって、 例えばへキサン 、 シクロへキサン、 ヘプタン、 オクタン、 ベンゼン、 トルエン、 キシレン、 石油 スピリ ツ ト等の炭化水素系溶剤、 クロ口ホルム、 四塩化炭素、 ジクロロェタン、 クロ口ベンゼン等のハロゲン化炭化水素系溶剤、 ジェチルエーテル、 ジイソプロ ピルエーテル、 ジブチルエーテル等のエーテル系溶剤が挙げられ、 これらの中で は、 トルエン、 キシレンが好ましい。
また、 特定のアルコールとォキシハロゲン化燐との反応条件は、 反応温度が 0 〜 1 1 0 °C、 好ましくは 4 0〜 8 (TCであり、 反応時間が 1〜 2 0時間、 好まし くは 2〜 8時間である。
この第 2の方法においては、 例えば特定のアルコールおよびォキシハロゲン化 燐をモル比で 1 : 1 となる割合で用いることにより、 モノエステルを得ることが できる。
また、 上記式 ( 5 ) で表される特定のアルコールを用いる場合には、 当該特定 のアルコールとォキシハロゲン化燐との割合および反応条件を選択すると共に、 反応触媒としては、 四塩化チタン (T i C 1 4 ) 、 塩化マグネシウム (M g C 1 ) 、 塩化アルミニゥム (A 1 C 1 3 ) などのルイス酸触媒、 副生する塩酸のキ ャツチ剤としては、 トリェチルァミ ン、 トリプチルァミ ン等のアミ ン類や、 ピリ ジンなどが好ましく用いられる。 これらの反応触媒や塩酸キヤッチ剤を用いるこ とにより、 モノエステルとジエステルとの混合物を得ることができ、 その割合を モル比が 9 9 : 1〜 1 : 9 9 となる範囲で調整することができる。
また、 上記式 ( 4 ) で表される特定のアルコールを用いる場合には、 当該特定 のアルコールとォキシハロゲン化燐との割合および反応条件を選択すると共に、 ルイス酸触媒および塩酸キヤツチ剤を併用することにより、 モノエステルとジェ ステルとの混合物を得ることができ、 その割合をモル比が 9 9 : 1〜 1 : 9 9 と なる範囲で調整することができる。 但し、 特定のアルコール類としてアルキレンォキサイ ド基の繰り返し単位 mが 小さいものを用いる場合には、 得られる燐酸エステル化合物が水溶性のものとな るため、 アミ ン類などの塩酸キヤ ツチ剤を用いると、 生成されるアミ ン塩酸塩を 水による洗浄によって除去することが困難となることがある。
以上において、 反応触媒の使用量は、 ォキシハロゲン化燐 1モルに対して 0 . 0 0 5 〜 0 . 2モル、 好ま しく は 0 . 0 1 〜 0 . 0 5モルである。
〔第 3の方法〕
この第 3の方法は、 適宜の有機溶剤中で、 特定のアルコールと三ハロゲン化燐 とを反応させることにより、 ホスホン酸エステル化合物を合成し、 その後、 得ら れたホスホン酸エステル化合物を酸化する方法である。
ここで、 三ハロゲン化燐としては、 三塩化燐、 三臭化燐を用いることが好まし く、 特に好ま しく は三塩化燐である。
また、 特定のアルコールと三ハロゲン化燐との反応に用いられる有機溶剤とし ては、 三ハロゲン化燐と反応しない有機溶剤であって、 例えばへキサン、 シクロ へキサン、 ヘプタ ン、 オクタン、 ベンゼン、 トルェン、 キシレン、 石油スピリ ッ ト等の炭化水素系溶剤、 クロ口ホルム、 四塩化炭素、 ジクロロェタ ン、 クロ口べ ンゼン等のハロゲン化炭化水素系溶剤、 ジェチルエーテル、 ジイソプロピルエー テル、 ジブチルエーテル等のエーテル系溶剤が挙げられ、 これらの中では、 へキ サン、 ヘプ夕ンが好ましい。
また、 特定のアルコールと三ハロゲン化燐との反応条件は、 反応温度が 0 〜 9 0 °C、 好ましく は 4 0〜 7 5 °Cであり、 反応時間が 1 〜 1 0時間、 好ましく は 2 〜 5時間である。
ホスホン酸エステル化合物を酸化する手段としては、 ホスホン酸エステル化合 物に例えば塩素ガスなどのハロゲンを反応させることにより、 ホスホロハロリデ ― ト化合物を合成し、 このホスホロハロリデー ト化合物を加水分解する手段を利 用することができる。 ここで、 ホスホン酸エステル化合物とハロゲンとの反応温 度は 0 〜 4 0 が好ましく、 特に好ましく は 5 〜 2 5 °Cである。
また、 ホスホン酸エステル化合物を酸化する前に、 当該ホスホン酸エステル化 合物を蒸留して精製することもできる。
この第 3の方法においては、 例えば特定のアルコールおよび三ハロゲン化燐を モル比で 3 : 1 となる割合で用いることにより、 ジエステルを高い純度で得るこ とができる。
また、 特定のアルコールと三ハロゲン化燐との割合および反応条件を選択する ことにより、 モノエステルとジエステルとの混合物を得ることができ、 その割合 をモル比が 9 9 : 1〜 1 : 9 9 となる範囲で調整することができる。
本発明の燐酸エステル化合物は、 その分子構造中にアルコキシ基を有している ため、 合成樹脂、 特に (メタ) アク リル酸エステル樹脂などのアク リル系樹脂と の相溶性が高いものである。 そして、 このような本発明の燐酸エステル化合物が 銅イオンと共にァク リル系樹脂中に含有されることにより、 当該燐酸エステル化 合物における水酸基と、 銅イオンとの間にイオン結合または配位結合が形成され 、 その結果、 アク リル系樹脂に対する銅イオンの分散性が著しく向上すると共に 、 銅イオンと燐酸エステル化合物との相互作用によって、 近赤外線を高い効率で 吸収するァク リル系樹脂組成物が得られる。
ぐ燐酸エステル銅化合物〉
本発明の燐酸エステル銅化合物は、 上記式 ( 1 ) で表される燐酸エステル化合 物 (以下、 「特定の燐酸エステル化合物」 という。 ) と銅塩とを反応させて得ら れるものであり、 例えば上記 ( 6 ) または上記 ( 7 ) で表される構造を有するも のである。
特定の燐酸エステル化合物の分子構造を示す式 ( 1 ) 並びに燐酸エステル銅化 合物の分子構造を示す式 ( 6 ) および式 ( 7 ) において、 Rは、 上記式 ( 2 ) お よび上記式 ( 3 ) で示すように、 アルキレンォキサイ ド基が結合されたアルキル 基である。
ここで、 アルキレンォキサイ ド基の繰り返し単位数 mは 1 ~ 6好ましく は 1〜 3の整数である。 この mの値が 6を超える場合には、 得られる燐酸エステル銅化 合物を合成樹脂中に含有させると、 得られる樹脂組成物の硬度が大幅に低下する ため好ましくない。 一方、 mの値が 0すなわちアルキレンォキサイ ド基が結合さ れていない場合には、 得られる燐酸エステル銅化合物は、 合成樹脂、 特にァク リ ル系樹脂に対する分散性が著しく低いものとなるため好ま しくない。
Rを示す式 ( 2 ) および式 ( 3 ) において、 R 1 は、 炭素数が 1〜 2 0、 好ま しく は 1〜 1 0、 更に好ま しく は 1〜 3のアルキル基である。
アルキル基 R 1 の炭素数が 2 0を超える場合には、 得られる燐酸エステル銅化 合物を合成樹脂例えばァク リル系樹脂に高い割合で分散させることが困難となる また、 R 2 は、 水素原子または炭素数が 1〜 4のアルキル基である。 すなわち 、 アルキレンオキサイ ド基としては、 エチレンオキサイ ド、 プロピレンォキサイ ド基、 ブチレンォキサイ ド基などが挙げられ、 特にエチレンォキサイ ド、 プロピ レンォキサイ ド基が好ま しい。
アルキル基 R 2 の炭素数が 4を超える場合には、 得られる燐酸エステル銅化合 物を合成樹脂中に高い割合で分散させることが困難となるため好ましくなく、 ま た、 得られる樹脂組成物の硬度が大幅に低下するため好ま しくない。
本発明の燐酸エステル銅化合物を得るための特定の燐酸エステル化合物の好ま しい具体例としては、 上記式 ( a ) 〜上記式 (X ) で表される化合物が挙げられ 、 特に好ましく は、 上記式 (n ) 〜上記式 ( r ) で表される化合物である。 これ らの化合物は、 単独で若しくは 2種以上を組み合わせて用いることができる。 本発明の燐酸エステル銅化合物を得るための銅塩としては、 酢酸銅、 蟻酸銅、 ステアリ ン酸銅、 安息香酸銅、 ェチルァセ ト酢酸銅、 ピロリ ン酸銅、 ナフテン酸 銅、 クェン酸銅等の有機酸の銅塩無水物や水和物、 あるいは塩化銅、 硫酸銅、 硝 酸銅、 塩基性炭酸銅等の無機酸の銅塩の無水物や水和物が挙げられるが、 有機酸 塩を用いることが好ましく、 特に好ましく は酢酸銅、 安息香酸銅である。
特定の燐酸エステル化合物と銅塩との反応は、 適宜の条件下で両者を接触させ ることにより行われる。 具体的には、 ( i ) 特定の燐酸エステル化合物と銅塩と を混合して両者を反応させる方法、 (ii ) 適宜の有機溶剤中において特定の燐酸 エステル化合物と銅塩とを反応させる方法、 (iii ) 特定の燐酸エステル化合物が 有機溶剤中に含有されてなる有機溶剤層と、 銅塩が溶解されてなる水層とを接触 させることにより、 特定の燐酸エステル化合物と銅塩とを反応させる方法、 など が挙げられる。
また、 特定の燐酸エステル化合物と銅塩との反応条件は、 反応温度が 0〜 1 5 0 °C、 好ま しく は 4 0 ~ 1 0 0てであり、 反応時間が 0 . 5〜 1 0時間、 好まし くは 1〜 7時間である。
また、 特定の燐酸エステル化合物と銅塩との反応比率は、 特定の燐酸エステル 化合物 1モルに対して銅塩が 0 . 3 ~ 1 . 0モルであることが好ましい。
上記 (U ) の方法において用いられる有機溶剤としては、 用いられる特定の燐 酸エステル化合物を溶解し得るものであれば、 特に限定されず、 例えば、 ベンゼ ン、 トルエン、 キシレン等の芳香族化合物、 メチルアルコール、 ェチルアルコー ル、 イソプロピルアルコール等のアルコール類、 メチルセ口ソルブ、 ェチルセ口 ソルブ等のグリコールエーテル類、 ジェチルエーテル、 ジイソプロピルエーテル 、 ジブチルエーテル等のエーテル類、 アセ トン、 メチルェチルケ トン等のケ トン 類、 酢酸ェチル等のエステル類、 へキサン、 ケロシン、 石油エーテルなどが挙げ られる。 また、 (メタ) ァク リ レー 卜等の (メタ) アク リル酸エステル類、 スチ レン、 α —メチルスチレン等の芳香族ビュル化合物などの重合性を有する有機溶 剤を用いることもできる。 これらの中では、 トルエンが好ましい。
また、 上記 (iii ) の方法において用いられる有機溶剤としては、 水に不溶また は難溶であって、 用いられる特定の燐酸エステル化合物を溶解し得るものであれ ば、 特に限定されず、 例えば (口) の方法において用いられる有機溶剤として例 示したもののうち、 芳香族化合物、 エーテル類、 エステル類、 へキサン、 ケロシ ン、 (メタ) アク リル酸エステル類、 芳香族ビニル化合物などが挙げられ、 好ま しく はトルエンである。
特定の燐酸エステル化合物と銅塩との反応においては、 銅塩から陰ィォンであ る酸成分が遊離される。 このような酸成分は、 合成樹脂例えばアク リル系樹脂組 成物の耐湿性および熱安定性を低下させる原因となることがあるため、 必要に応 じて除去することが好ましい。
上記 ( i ) または (ii ) の方法により燐酸エステル銅化合物を製造する場合に は、 特定の燐酸エステル化合物と銅塩とを反応させた後、 生成された酸成分 〔 ( ii ) の方法では生成された酸成分および有機溶剤〕 を蒸留によって除去すること ができる。
また、 上記 (Mi ) の方法により燐酸エステル銅化合物を製造する場合には、 酸 成分を除去する好ま しい方法として、 以下の方法を挙げることができる。
水に不溶または難溶の有機溶剤に特定の燐酸エステル化合物が含有されてなる 有機溶剤層に、 アルカリを添加することによって中和した後、 この有機溶剤層と 銅塩が溶解された水層とを接触させることより、 特定の燐酸エステル化合物と銅 塩とを反応させ、 その後、 有機溶剤層と水層とを分離する方法。
ここで、 アル力 リ としては、 水酸化ナ トリ ウム、 水酸化力リゥム、 アンモニア などが挙げられるが、 これらに限定されるものではない。
このような方法によれば、 銅塩から遊離される酸成分とアル力リ とによって水 溶性の塩が形成され、 この塩が水層に移行すると共に、 生成される特定の燐酸ェ ステル銅化合物は、 有機溶剤層に移行するため、 当該水層と有機溶剤層とを分離 することにより、 酸成分を除去することができる。
以上のようにして、 本発明の燐酸エステル銅化合物を製造することができるが 、 本発明の燐酸エステル銅化合物は、 特定の燐酸エステル化合物と銅塩とを反応 させて得られるものであれば、 上記式 ( 6 ) または式 ( 7 ) で表される化合物に 限定されるものではない。 例えば、 モノエステルにおける 2つの水酸基に互いに 異なる銅イオンに結合した構造のもの、 モノエステルにおける 2つの水酸基の一 方のみに銅イオンが結合した構造のもの、 銅イオンが 1つのジエステルの水酸基 に結合したもの、 分子中に 2以上の銅イオンを含有する多量体またはこれらの配 位化合物であつてもよい。
本発明の燐酸エステル銅化合物は、 近赤外線を高い効率で吸収する性能を有し 、 紫外線による近赤外線吸収性の低下が少なく、 しかも、 分子中にアルコキシ基 を有するため、 合成樹脂例えばァク リル系樹脂との相溶性が良好なものである。 く近赤外線吸収剤〉
本発明の近赤外線吸収剤は、 上記式 ( 1 ) で表される燐酸エステル化合物と、 銅イオンとを含有してなるもの (以下、 「近赤外線吸収剤 (A ) 」 という。 ) 、 或いは、 上記式 ( 1 ) で表される燐酸エステル化合物と銅塩とを反応させて得ら れる燐酸エステル銅化合物を有効成分とするもの (以下、 「近赤外線吸収剤 (B ) 」 という。 ) であり、 例えば合成樹脂中にまたは合成樹脂を得るための単量体 中に添加されて使用される。
近赤外線吸収剤 (A ) において、 銅イオンは、 近赤外線を吸収するための主成 分であり、 適宜の銅化合物によって供給される。 このような銅イオンの供給源と なる銅化合物の具体例としては、 前述の燐酸エステル銅化合物を得るための銅塩 として例示したものが挙げられる。
また、 特定の燐酸エステル化合物は、 銅イオンと配位結合またはイオン結合を 形成して当該銅イオンを合成樹脂中に分散させるための成分である。 この特定の 燐酸エステル化合物は、 1種単独で若しく は 2種以上を組み合わせて用いること ができる。
近赤外線吸収剤 (A ) における特定の燐酸エステル化合物と銅イオンとの割合 は、 銅イオン 1モルに対して燐酸エステル化合物における水酸基が 0 . 5〜 1 0 モル、 特に 1 . 5〜 5モルであることが好ま しい。 この割合が 0 . 5モル未満で ある場合には、 銅イオンを合成樹脂中に分散させることが困難となることがある 。 この割合が 1 0モルを超える場合には、 銅イオンとの配位結合またはイオン結 合に関与しない水酸基の割合が過大となるため、 当該近赤外線吸収剤が添加され ることによって得られる樹脂組成物は、 吸湿性の大きいものとなることがある。 く近赤外線吸収性ァク リル系樹脂組成物〉
本発明の近赤外線吸収性アク リル系樹脂組成物は、 以下の (A ) 成分および (
B ) 成分のいずれか一方または両方がァク リル系樹脂中に含有されてなるもので ある。
( A ) 成分は、 銅イオンおよび上記式 ( 1 ) で表される燐酸エステル化合物よ りなるもの、 すなわち上記近赤外線吸収剤 (A ) よりなるものであり、 銅イオン と特定の燐酸エステル化合物との相互作用により、 近赤外線を高い効率で吸収す る作用を有するものである。 ( A ) 成分には、 銅イオン以外の金属イオン (以下、 「他の金属イオン」 とい う。 ) が含有されていてもよい。 かかる他の金属イオンの具体例としては、 ナ ト リ ウム、 カ リ ウム、 カルシウム、 鉄、 マンガン、 マグネシウム、 ニッケル等の金 属によるイオンが挙げられ、 これらの他の金属イオンは、 銅イオンと同様にして ァク リル系樹脂中に含有させることができる。
このような他の金属ィォンの使用割合は、 全金属イオンにおける 5 0重量%以 下であることが好ましく、 より好ましく は 3 0重量%以下、 更に好ましく は 2 0 重量%以下である。 この割合が 5 0重量%を超える場合には、 近赤外線の吸収率 が高いァク リル系樹脂組成物を得ることが困難となることがある。
( B ) 成分は、 上記式 ( 1 ) で表される燐酸エステル化合物と、 銅塩とを反応 させることにより得られる燐酸エステル銅化合物 (以下、 「特定の燐酸エステル 銅化合物」 という。 ) よりなるもの、 すなわち上記近赤外線吸収剤 (B ) よりな るものである。
本発明のアク リル系樹脂組成物において、 銅イオンの含有割合は、 アク リル系 樹脂組成物全体の 0 . 1〜 5重量%であることが好ま しく、 より好ましく は 0 . 3〜 4重量%、 さらに好ま しく は 0 . 5〜 3重量%である。
この割合が 0 . 1重量%未満である場合には、 近赤外線を高い効率で吸収する 性能が得られないことがある。 一方、 この割合が 5重量%を超える場合には、 金 属イオンをァク リル系榭脂中に分散させることが困難となり、 可視光線透過性に 優れたァク リル系樹脂組成物が得られないことがある。
本発明の組成物を構成するアク リル系樹脂としては、 (メ タ) アク リル酸エス テル系単量体から得られる重合体を好ましく用いることができる。
かかる (メタ) アク リル酸エステル系単量体の具体例と しては、 メチル (メ タ ) ァク リ レー ト、 ェチル (メ タ) ァク リ レー ト、 n —プロピル (メ タ) ァク リ レ ー ト、 n —ブチル (メ タ) ァク リ レー ト、 イソブチル (メ タ) ァク リ レー ト、 夕 ーシャ リーブチル (メタ) ァク リ レー ト、 n —へキシル (メ タ) ァク リ レー ト、 n —ォクチル (メ タ) ァク リ レー ト等のァルキル (メ タ) ァク リ レー ト類、 グリ シジル (メ タ) ァク リ レー ト、 2 — ヒ ドロシキエチル (メ タ) ァク リ レー 卜、 2 ーヒ ドロシキプロピル (メタ) ァク リ レー ト、 ヒ ドロキシブチル (メタ) ァク リ レー ト、 ィソボルニル (メタ) ァク リ レー ト、 メ トキシポリエチレン (メタ) ァ ク リ レー ト、 フヱノキシ (メタ) ァク リ レー ト等の変性 (メタ) ァクリ レー ト類 、 エチレングリ コ一ルジ (メタ) ァク リ レー ト、 ジエチレングリ コールジ (メ タ ) ァク リ レー ト、 ポリエチレングリ コールジ (メタ) ァク リ レー ト、 ポリプロピ レングリ コ一ルジ (メタ) ァク リ レー 卜、 1, 3 —ブチレングリ コールジ (メタ ) ァク リ レー ト、 1, 4 一ブタンジオールジ (メタ) ァク リ レー ト、 1 , 6 —へ キサンジオールジ (メタ) ァク リ レー ト、 ネオペンチルグリ コールジ (メタ) ァ ク リ レー ト、 2 —ヒ ドロキシ一 1 , 3 —ジ (メ タ) ァク リ レー ト、 2 , 2 —ビス 〔 4 一 (メタ) ァク リロキシエ トキシフエニル〕 プロパン、 2 —ヒ ドロキシー 1 ― (メタ) ァク リ ロキシー 3— (メタ) ァク リ ロキシプロパン、 トリメチロール プロパン トリ (メタ) ァク リ レー ト、 ペンタエリ ト リ ッ ト ト リ (メタ) ァクリ レ ー ト、 ペン夕エリ トリ ッ トテトラ (メタ) ァク リ レー 卜等の多官能 (メタ) ァク リ レー 卜類などが挙げられる。
これらの単量体は、 単独でもしく は 2種以上を組み合わせて用いることができ る。
また、 アク リル系樹脂は、 上記の (メタ) アク リル酸エステル系単量体と、 こ れと共重合可能な共重合性単量体との共重合体であってもよい。
かかる共重合性単量体の具体例としては、 (メタ) アク リル酸、 2 — (メタ) ァク リ ロイルォキシェチルコハク酸、 2 — (メタ) ァク リ ロイルォキシェチルフ タル酸等の不飽和カルボン酸、 スチレン、 α —メチルスチレン、 クロルスチレン 、 ジブロムスチレン、 メ トキシスチレン、 ビニル安息香酸、 ヒ ドロキシメチルス チレン等の芳香族ビニル化合物などが挙げられる。
以上において、 単量体として単官能性のもののみを用いる場合には、 熱可塑性 のァク リル系樹脂が得られ、 単量体の一部または全部として多官能性のものを用 いる場合には、 熱硬化性のァク リル系樹脂が得られる。
本発明においては、 得られるアク リル系樹脂組成物の使用目的、 用途、 加工方 法等に応じて、 熱可塑性のァク リル系樹脂または熱硬化性のァク リル系樹脂を選 択して用いることができる。
本発明のアク リル系樹脂組成物は、 上記の (A) 成分および (B) 成分のいず れか一方または両方をァク リル系樹脂中に含有させることにより調製され、 その 具体的な方法は、 特に限定されるものではないが、 好ましい方法として、 以下の
( 1 ) および (2 ) の 2通りの方法を挙げることができる。
( 1 ) アク リル系樹脂を得るための単量体中に、 特定の燐酸エステル化合物およ び銅塩 (以下、 「 (A— 1 ) 成分」 という。 ) 並びに (B) 成分のいずれか一方 または両方が含有されてなる単量体組成物を調製し、 この単量体組成物をラジカ ル重合処理する方法。 この方法において、 単量体組成物のラジカル重合処理の具 体的な方法としては、 特に限定されるものではなく 、 通常のラジカル重合開始剤 を用いるラジカル重合法、 例えば塊状 (キャス ト) 重合法、 懸濁重合法、 乳化重 合法、 溶液重合法等の公知の方法を利用することができる。
( ) アク リル系樹脂中に、 (A— 1 ) 成分および (B) 成分のいずれか一方ま たは両方を添加して混合する方法。 この方法は、 アク リル系樹脂として熱可塑性 樹脂を用いるときに利用される。 この方法としては、 更に、 ( i ) 溶融させたァ ク リル系樹脂中に、 (A— 1 ) 成分および (B) 成分のいずれか一方または両方 を添加して混練する方法、 (Π) アク リル系樹脂を適宜の有機溶剤に溶解または 膨潤させ、 この溶液に (A— 1 ) 成分および (B) 成分のいずれか一方または両 方を添加して混合した後、 当該溶液から有機溶剤を除去する方法が挙げられる。 上記 ( i ) の方法において、 アク リル系樹脂と (A— 1 ) 成分および/または
(B) 成分とを混練する手段としては、 熱可塑性樹脂の溶融混練法として一般に 用いられている手段、 例えばミキシングロールによって溶融混練する手段、 ヘン シェルミキサ一などによって予備混合した後、 押出機によって溶融混練する手段 が挙げられる。
また、 上記 (ii) の手段において、 有機溶剤としては、 用いられるァク リル系 樹脂を溶解または膨潤し得るものであれば、 特に限定されるものではなく、 その 具体例としては、 メチルアルコール、 エチルアルコール、 イソプロピルアルコー ル等のアルコール類、 アセ トン、 メチルェチルケ 卜ン等のケ 卜ン類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類、 塩化メチレン等の塩素系炭化水素類 、 ジメチルアク リルアミ ド、 ジメチルフオルムアミ ド等のアミ ド化合物などが挙 げられる。
以上のアク リル系樹脂組成物の調製において、 (A— 1 ) 成分を用いる場合に は、 特定の燐酸エステル化合物と銅塩とが反応する結果、 銅塩から陰イオンであ る酸成分が遊離される。 このような酸成分は、 前述と同様の理由により、 必要に 応じて除去することが好ま しい。
このような酸成分を除去する方法としては、 (a ) アク リル樹脂組成物を適宜 の有機溶剤に浸漬させることにより、 酸成分を抽出する方法、 (b ) 単量体組成 物の重合処理を行う前に、 当該単量体組成物を冷却処理することにより、 酸成分 を析出させて分離する方法が挙げられる。
上記 (a ) の方法において用いられる有機溶剤と しては、 遊離される酸成分を 溶解することができ、 用いられるアク リル系樹脂に対して適度な親和性 (ァク リ ル系樹脂を溶解しないが、 当該アク リル系樹脂中に浸透する程度の親和性) を有 するものであれば、 特に限定されるものではない。
このような溶剤の具体例としては、 メチルアルコール、 エチルアルコール、 n —プロピルアルコール、 イソプロピルアルコール等の低級脂肪族アルコール、 ァ セ トン、 メチルェチルケ トン、 メチルイソプチルケ トン等のケ 卜ン類、 ジェチル エーテル、 石油エーテル等のエーテル類、 n—ペンタン、 n—へキサン、 n—へ ブタン、 クロ口ホルム、 メチレンクロライ ド、 四塩化炭素等の脂肪族系炭化水素 類およびそのハロゲン化物、 ベンゼン、 トルエン、 キシレン等の芳香族系炭化水 素類などが挙げられる。
上記 (b ) の方法においては、 (A— 1 ) 成分を構成する銅塩として、 遊離さ れる酸成分が単量体に溶解しにく いものを用いることが好ましく 、 具体的には、 安息香酸などの芳香環を有するカルボン酸の銅塩が挙げられる。
本発明の近赤外線吸収性アク リル系樹脂組成物においては、 (A ) 成分を構成 する特定の燐酸エステル化合物または (B ) 成分を構成する特定の燐酸エステル 銅化合物における燐酸エステル残基 (銅イオン以外の残基) 力^ アク リル系樹脂 1 0 0重量部に対して例えば 0 . 1〜 3 0重量部、 好ましくは 1〜 2 0重量部、 更に好ましくは 5〜 1 5重量部となる割合で使用される。
このようにして得られるァクリル系樹脂組成物は、 ァクリル系榭脂中に銅ィォ ンが十分に分散された状態で含有されているため、 可視光線透過性に優れ、 近赤 外線を高い効率で吸収する性能を有し、 しかも、 紫外線による近赤外線吸収性の 低下が少なく、 板状、 円柱状、 レンズ状等の所望の形状に成形することが可能で ある。
従って、 本発明のアクリル系樹脂組成物は、 熱線吸収性窓部材、 近赤外線カツ 卜フィルター、 近赤外線力ッ 卜レンズ等の種々の光学製品を構成する材料として 好適である。 図 面 の 簡 単 な 説 明
図 1は、 以下の実施例 1で得られた燐酸エステル化合物の赤外分光曲線を示す 図である。
図 2は、 以下の実施例 2で得られた燐酸エステル化合物の赤外分光曲線を示す 図である。
図 3は、 以下の実施例 3で得られた燐酸エステル化合物の赤外分光曲線を示す 図である。
図 4は、 以下の実施例 4で得られた燐酸エステル化合物の赤外分光曲線を示す 図である。
図 5は、 以下の実施例 5で得られた燐酸エステル化合物の赤外分光曲線を示す 図である。
図 6は、 以下の実施例 6で得られた近赤外線吸収性ァクリル系樹脂組成物の分 光透過率曲線を示す図である。
図 7は、 以下の実施例 1 8で得られた燐酸エステル銅化合物の赤外分光曲線を 示す図である。
図 8は、 以下の実施例 1 9で得られた燐酸エステル銅化合物の赤外分光曲線を 示す図である。 図 9は、 以下の実施例 2 0で得られた燐酸エステル銅化合物の赤外分光曲線を 示す図である。
図 1 0は、 以下の実施例 2 2で得られた燐酸エステル銅化合物の赤外分光曲線 を示す図である。 発明を実施するための最良の形態
以下、 本発明の具体的な実施例について説明するが、 本発明はこれらに限定さ れるものではない。
く実施例 1〉
四つ口フラスコに、 攪拌機、 温度計およびコンデンサーを取り付け、 この四つ 口フラスコ内に、 1 —メ トキシ一 2 —プロノ ノール 2 7 O g ( 3 . 0モル) と、 溶剤としてトルエン 4 0 0 gとを仕込み、 攪拌しながら 5てに冷却した。 次いで 、 この溶液に、 五酸化燐 1 4 2 g ( 1 . 0モル) を当該溶液の温度を 5〜 1 0 °C に保ちながら徐々に添加した。 その後、 徐々に溶液の温度を上昇させ、 6 0 °Cで 6時間の条件で、 1 —メ トキシー 2 —プロパノ一ルと五酸化燐とを反応させた。 得られた反応液に、 水 2 O gを添加し、 8 0 °Cで 2時間攪拌した。 そして、 四つ 口フラスコに取り付けられたコンデンサ一を蒸留装置に交換した後、 この蒸留装 置によって反応液中のトルエンおよび水の除去処理を行うことにより、 液状の反 応生成物 3 9 0 gを得た。
得られた反応生成物について、 赤外吸収スぺク トルによる分光分析を行ったと ころ、 式 (m ) で表される燐酸エステル化合物および式 (n ) で表される燐酸ェ ステル化合物を含有するものであることが確認された。 この反応生成物の赤外吸 収曲線を図 1 に示す。
また、 得られた反応生成物について、 以下のようにして、 燐酸エステル化合物 の組成および収率を算出した。
〔燐酸エステル化合物の組成〕
平沼産業株式会社製のォート夕ィ トレーター C O M T I T E— 1 0 1を用いて 反応生成物の中和滴定を行い、 得られた第 1変曲点および第 2変曲点の滴定量か ら、 式 (m ) で表される燐酸エステル化合物および式 (n ) で表される燐酸エス テル化合物の含有割合を算出した。 結果を表 1に示す。
〔収率〕
反応生成物に濃硝酸および過塩素酸を添加して加熱分解し、 更に、 蒸留水を加 えて希釈した後、 この溶液に硝酸、 0 . 2 5 %バナジン酸アンモニゥム水溶液お よび 5 %モリブデン酸アンモニゥム水溶液を加えて発色させ、 分光光度計を用い て波長 4 4 0 n mの吸光度を測定し、 燐標準溶液の吸光度を基準として、 反応生 成物における燐濃度 (重量%) を求めた。
この燐濃度と、 使用した燐化合物における燐濃度 (重量%) とから収率を算出 した。 結果を表 1に示す。
〈実施例 2 >
四つ口フラスコに、 攪拌機、 温度計、 水スクラバーが連結されたコンデンサー および滴下ロートを取り付け、 この四つ口フラスコ内に、 ォキシ塩化燐 1 5 3 g
( 1 . 0モル) と、 触媒として四塩化チタン 4 . 6 gと、 溶剤としてトルエン 1 8 O gとを仕込み、 攪拌しながら 5 °Cに冷却した。 次いで、 この溶液に、 1 —メ トキシー 2 —プロパノール 1 8 0 g ( 2 . 0モル) を添加した後、 トリェチルァ ミ ン 2 0 2 g ( 2 . 0モル) を、 当該溶液の温度を 5〜 1 5 °Cに保ちながら 2時 間かけて添加した。 そして、 徐々に溶液の温度を上昇させ、 5 0 °Cで 2時間の条 件で、 1 —メ トキシ— 2 —プロパノールとォキシ塩化燐とを反応させた。 その後 、 水 2 0 0 gを添加し、 5 0 °Cで 1時間の条件で生成物の加水分解を行った。 次 いで、 得られた反応液を静置することにより、 当該反応液をトルエン層と水層と に分離させた後、 トルエン溶液を回収した。 そして、 残りの水溶液にトルエン 1
0 0 gを添加して当該水溶液中の生成物の抽出処理を行い、 トルエン溶液を回収 した。 この操作を 3回繰り返すことにより、 合計で 6 0 0 gの トルエン溶液を回 収した。 そして、 四つ口フラスコに取り付けられたコンデンサーを蒸留装置に交 換した後、 この蒸留装置によってトルエン溶液から トルエン等の除去処理を行う ことにより、 液状の反応生成物 1 6 5 gを得た。
得られた反応生成物について、 赤外吸収スぺク トルによる分光分析を行ったと ころ、 式 (m) で表される燐酸エステル化合物および式 (n) で表される燐酸ェ ステル化合物を含有するものであることが確認された。 この反応生成物の赤外吸 収曲線を図 2に示す。
また、 得られた反応生成物について、 実施例 1 と同様にして、 燐酸エステル化 合物の組成および収率を算出した。 結果を表 1 に示す。
〈実施例 3 >
( 1 ) ホスホン酸エステル化合物の製造 :
四つ口フラスコに、 攪拌機、 温度計、 水スクラバーが連結されたコンデンサ一 および滴下ロー卜を取り付け、 この四つ口フラスコ内に、 三塩化燐 2 7 5 g ( 2 . 0モル) と、 溶剤としてへキサン 2 0 0 gと仕込み、 5 0 °Cに加熱した。 次い で、 この溶液に、 1 ーメ 卜キシ一 2—プロパノール 5 4 0 g ( 6. 0モル) を当 該溶液の温度を 5 0〜 7 0 °Cに保ちながら 2時間かけて添加した。 以上において 、 1 ーメ トキシー 2 —プロパノールを添加した際に発生する塩化水素は、 水スク ラバーに導入して回収した。 1 ーメ トキシー 2 —プロパノールの添加が終了した 後、 四つロフラスコ内を、 5 0 0 mm H gの減圧下に 6 0 で 1時間吸引するこ とにより、 残存する塩化水素の除去処理を行った。 そして、 四つ口フラスコに取 り付けられたコンデンサ一を蒸留装置に交換した後、 この蒸留装置によって反応 液中のへキサンおよび反応副生物である 1 ーメ トキシ— 2 —クロロプロパンの除 去処理を行い、 更に減圧蒸留し、 3 mmH gで 1 1 9. (!〜 1 2 5. 0 °Cにおけ る留分を回収することにより、 液状物 3 9 8 gを得た。 この液状物をガスクロマ トグラフィ一によつて分析したところ、 ビス ( 2—メ トキシ一 1 一メチルェチル ) ハイ ドロジヱンホスホネ一 卜の純度 (チヤ一 卜の面積比を算出したもの) は 9
6. 3 %であった。
( 2 ) 燐酸エステル化合物の製造 :
四つ口フラスコに、 攪拌機、 温度計、 5 %水酸化ナ トリ ゥム水溶液スクラバー が連結されたコンデンサーおよび塩素ガス導入用ディ ップ管を取り付け、 この四 つ口フラスコ内に、 得られた液状物 2 2 6 g (ビス ( 2 —メ トキシー 1 —メチル ェチル) ハイ ドロジェンホスホネー トとして約 1. 0モル) を仕込み、 1 0 に 冷却した。 次いで、 ビス ( 2 —メ トキシ— 1 ーメチルェチル) ハイ ドロジェンホ スホネー 卜に、 その温度を 1 0〜 2 0 °Cに保ちながら塩素ガスを吹き込み、 溶液 が僅かに黄色に着色するまで続けた。 その後、 四つ口フラスコ内を、 1 5 m m H gの減圧下に 2 5 °Cで吸引することにより、 過剰の塩素ガスおよび反応副生物で ある塩化水素の除去処理を行い、 液状物 2 6 3 gを得た。 この液状物をガスクロ マトグラフィ 一により分析したところ、 ビス ( 2 —メ トキシー 1 —メチルェチル ) ホスホロクロリデ一 卜の純度 (チヤ一 卜の面積比を算出したもの) が 9 2 . 4 %であった。 また、 液状物の塩素濃度を、 「分析化学実験法」 (株式会社化学同 人発行) に記載された 「硝酸銀標準液による塩素イオンの定量法」 に準じて測定 したところ、 塩素濃度は 1 4 . 3 %であった。
得られた液状物に水 9 0 g ( 5 . 0モル) を添加し、 この溶液の温度を徐々に 上昇させ、 4 0てで 2時間の条件でビス ( 2 —メ トキシ— 1 ーメチルェチル) ホ スホロクロリデー トの加水分解を行った。 そして、 四つ口フラスコに取り付けら れたコンデンサ一を蒸留装置に交換した後、 この蒸留装置によって反応液から水 の除去処理を行うことにより、 反応生成物 2 3 4 gを得た。
得られた反応生成物について、 赤外吸収スぺク トルによる分光分析を行ったと ころ、 式 (m ) で表される燐酸エステル化合物および式 (n ) で表される燐酸ェ ステル化合物を含有するものであることが確認された。 この反応生成物の赤外吸 収曲線を図 3に示す。
また、 得られた反応生成物について、 実施例 1 と同様にして、 燐酸エステル化 合物の組成および収率を算出した。 結果を表 1 に示す。
く実施例 4 >
( 1 ) ホスホン酸エステル化合物の製造 :
四つ口フラスコに、 攪拌機、 温度計、 水スクラバーが連結されたコンデンサー および滴下ロー トを取り付け、 この四つ口フラスコ内に、 三塩化燐 1 3 7 . 5 g
( 1 . 0モル) と、 溶剤としてへキサン 3 0 0 gと仕込み、 5 (TCに加熱した。 次いで、 この溶液に、 ジプロピレングリ コールモノメチルエーテル 4 4 4 g ( 3 . 0モル) を当該溶液の温度を 5 0〜 7 0 °Cに保ちながら 2時間かけて添加した 。 以上において、 ジプロピレングリ コールモノメチルエーテルを添加した際に発 生する塩化水素は、 水スクラバーに導入して回収した。 ジプロピレングリ コール モノメチルエーテルの添加が終了した後、 四つロフラスコ内を、 5 0 0 m m H の減圧下に 6 0 °Cで 3時間吸引することにより、 残存する塩化水素の除去処理を 行った。 そして、 四つ口フラスコに取り付けられたコンデンサ一を蒸留装置に交 換した後、 この蒸留装置によって反応液中のへキサンの除去処理を行うことによ り、 ジプロピレンダリ コールモノメチルエーテルのホスホン酸エステル化合物と 、 反応副生物であるジプロピレングリ コールモノメチルェ一テルの塩化物との液 状混合物 5 0 4 gを得た。 この液状混合物をゲルパーミエイシヨ ンクロマ 卜グラ フィ 一によつて分析したところ、 ホスホン酸エステル化合物の純度 (チャー トの 面積比を算出したもの) は 7 2 . 2 %であった。
( 2 ) 燐酸エステル化合物の製造 :
四つ口フラスコに、 攪拌機、 温度計、 5 %水酸化ナ ト リ ゥム水溶液スクラバー が連結されたコンデンサーおよび塩素ガス導入用ディ ップ管を取り付け、 この四 つ口フラスコ内に、 得られた液状混合物 5 0 4 gを仕込み、 1 0 °Cに冷却した。 次いで、 この液状混合物に、 その温度を 1 0〜 2 0 °Cに保ちながら塩素ガスを吹 き込み、 溶液が僅かに黄色に着色するまで続けた。 その後、 四つ口フラスコ内を 、 1 5 m m H gの減圧下に 2 5 °Cで吸引することにより、 過剰の塩素ガスおよび 反応副生物である塩酸の除去処理を行い、 ジプロピレングリ コールモノメチルェ 一テルのホスホロクロリデー トとジプロピレングリ コールモノメチルェ一テルの 塩化物との混合物 5 4 6 gを得た。 この混合物をゲルパ一ミエイシヨ ンクロマ 卜 グラフィ一により分析したところ、 ホスホロクロリデー トの純度 (チャー トの面 積比を算出したもの) は 6 9 . 9 %であった。 また、 実施例 3 と同様にして、 混 合物の塩素濃度を測定したところ、 9 . 3 %であった。
得られた混合物に水 1 2 8 g ( 7 . 0モル) を添加し、 この溶液の温度を徐々 に上昇させ、 5 0 °Cで 2時間の条件でジプロピレングリ コールモノメチルェ一テ ルのホスホロクロリデー トの加水分解を行った。 そして、 四つ口フラスコに取り 付けられたコンデンサーを蒸留装置に交換した後、 この蒸留装置によって、 2 0 m m H gの減圧下にディ ップ管から水蒸気を吹き込みながら水蒸気蒸留を行うこ とにより、 反応液から水およびジプロピレングリコールモノメチルェ一テルの塩 化物の除去処理を行うことにより、 反応生成物 3 4 8 gを得た。
得られた反応生成物について、 赤外吸収スぺク トルによる分光分析を行ったと ころ、 式 (o ) で表される燐酸エステル化合物および式 (ρ ) で表される燐酸ェ ステル化合物を含有するものであることが確認された。 この反応生成物の赤外吸 収曲線を図 4に示す。
また、 得られた反応生成物について、 実施例 1 と同様にして、 燐酸エステル化 合物の組成および収率を算出した。 結果を表 1に示す。
く実施例 5 >
ジプロピレングリ コールモノメチルエーテルの代わりに ト リプロピレングリ コ ールモノメチルエーテル 3 . 0モルを用いたこと以外は、 実施例 4と同様の操作 を行うことにより、 反応生成物 4 2 4 gを得た。
得られた反応生成物について、 赤外吸収スぺク トルによる分光分析を行ったと ころ、 式 (Q ) で表される燐酸エステル化合物および式 ( r ) で表される燐酸ェ ステル化合物を含有するものであることが確認された。 この反応生成物の赤外吸 収曲線を図 5に示す。
また、 得られた反応生成物について、 実施例 1 と同様にして、 燐酸エステル化 合物の組成および収率を算出した。 結果を表 1に示す。
表 1
Figure imgf000032_0001
〈樹脂組成物の調製〉
実施例 3で得られた燐酸エステル化合物 (以下、 「エステル A」 という。 ) 、 実施例 4で得られた燐酸エステル化合物 (以下、 「エステル B」 という。 ) およ び実施例 5で得られた燐酸エステル化合物 (以下、 「エステル C」 という。 ) を 用い、 以下のようにして樹脂組成物を調製した。
下記表 2の配合処方に従って、 燐酸エステル化合物とメチルメタク リ レー 卜と を混合し、 この混合物に無水安息香酸銅を添加し、 6 0 °Cで 1時間攪拌して混合 することにより、 単量体組成物を調製した。 この単量体組成物に、 t ーブチルバ 一ォキシビバレー ト 0. 2 gを添加し、 4 5 で 1 6時間、 6 0 °Cで 8時間、 9 0 °Cで 3時間と順次異なる温度で加熱してメチルメタク リ レー 卜の重合を行うこ とにより、 本発明の近赤外線吸収剤 (燐酸エステル化合物および銅イオン) を含 有してなる樹脂組成物 ( 1 ) 〜樹脂組成物 ( 3 ) を調製した。
く樹脂組成物の評価〉
得られた樹脂組成物 ( 1 ) 〜樹脂組成物 ( 3 ) を 2 0 0 °Cでプレス成形するこ とにより、 厚みが 4 mmの青色透明の板状体を得た。
得られた板状体について、 波長 5 5 0 nm、 波長 8 0 0 nmおよび波長 9 0 0 n mにおける光線透過率を測定した。
また、 得られた板状体について、 サンシャイ ンゥェザメーター (ブラックハネ ル温度 6 3 °C、 降水有り) により、 5 0 0時間の耐候性試験を行い、 試験後にお ける板状体の光線透過率を測定し、 その変化の有無を調べた。
以上、 結果を表 に示す。 表 2
Figure imgf000033_0001
表 2の結果から明らかなように、 本発明の近赤外線吸収剤が含有されてなる樹 脂組成物 ( 1 ) 〜樹脂組成物 ( 3 ) は、 可視光線透過性に優れ、 近赤外線を高い 効率で吸収する性能を有し、 しかも、 紫外線による近赤外線吸収性の低下が少な いものであることが確認された。
く実施例 6 >
特定の燐酸エステル化合物として上記式 ( a ) で表される化合物 0. 1 4 gお よび上記式 (b) で表される化合物 0. 8 0 gをメチルメ 夕ク リ レー ト 2 0 g中 に添加して混合した。 この混合溶液に、 無水安息香酸銅 1. 1 7 gを添加し、 6 0 °Cで 1時間攪拌することにより、 燐酸エステル化合物と無水安息香酸銅とを反 応させ、 特定の燐酸エステル銅化合物を含有する単量体組成物を調製した。 得られた単量体組成物に、 t 一ブチルバーオキシピバレ一 卜 0 . 2 gを添加し 、 4 5 °Cで 1 6時間、 6 0 °Cで 8時間、 9 0 °Cで 3時間と順次異なる温度で加熱 してメチルメタク リ レー トを重合することにより、 アタ リル系樹脂組成物を調製 した。
以下のようにして、 得られたァク リル系樹脂組成物の評価を行った。
ァク リル系榭脂組成物を 2 0 0 °Cでプレス成形することにより、 厚みが 4 m m の青色透明の板状体を作製した。
得られた板状体について、 波長 5 5 0 n m、 波長 8 0 0 n mおよび波長 9 0 0 n mにおける光線透過率を測定した。
また、 得られた板状体について、 サンシャイ ンゥェザメ一夕一 (ブラックパネ ル温度 6 3 °C、 降水有り) により、 5 0 0時間の耐候性試験を行い、 試験後にお ける板状体の光線透過率を測定し、 その変化の有無を調べた。
以上、 結果を表 3に示す。
また、 板状体の分光透過率曲線を図 6に示す。
く実施例 Ί〜実施例 1 7 >
特定の燐酸エステル化合物として上記式 ( a ) 〜式 ( r ) で表される化合物 ( 以下、 これらを 「エステル ( a ) 」 〜 「エステル ( r ) 」 という。 ) を用意し、 下記表 3の配合処方に従って特定の燐酸エステル化合物および銅塩を用いたこと 以外は、 実施例 1 と同様の操作を行うことにより、 アク リル系樹脂組成物を調製 し、 その評価を行った。
結果を表 3に示す。
Figure imgf000035_0001
く実施例 1 8 >
四つ口フラスコに、 攪拌機、 温度計およびコンデンサーを取り付け、 この四つ 口フラスコ内に、 特定の燐酸エステル化合物としてエステル (n) 2 4 2 g ( 1 . 0モル) と、 溶剤として トルエン 2 5 0 gと、 無水酢酸銅一水和物 1 0 0 g ( 0. 5モル) とを仕込み c、cl徐々に温度を上昇させ、 4 0 °Cで 1時間攪拌し、 更に
H H
、 8 0 °Cで 3時間攪拌するこ 3一とにより、 特定の燐酸エステル化合物と無水酢酸銅 o
一水和物とを反応させ、 青色透明な溶液を得た。 この溶液に対して蒸留処理を行 うことにより、 特定の燐酸エステル ^-化ΟΡΟΗΙΙ合物と無水酢酸銅一水和物との反応によつ て生成された酢酸およびトルエンを除去す 0ることにより、 本発明の燐酸エステル 銅化合物 2 7 0 gを得た。 収率は 9 9. 0 %であった。
得られた燐酸エステル銅化合物は、 下記式 ( 8 ) で表される構造を有するもの であり、 当該燐酸エステル銅化合物について分析したところ、 燐含有量が 1 1. 4 0重量% (理論値 1 1. 3 5重量%) 、 銅含有量 1 1. 7 0重量% (理論値 1 1. 6 4重量%) であり、 明確な融点を有さず、 また、 分解温度は 2 4 7 °Cであ つた。 なお、 得られた燐酸エステル銅化合物の赤外吸収曲線を図 7に示す。
式 ( 8)
CH3 〇 CH3
II I
H3C-O-CH2-CH- 0— P -〇一 CH- CH2— 0 - CH3
H3C— 0— CH: CH— CH2— 0— CH3
I
CH3 この燐酸エステル銅化合物 1 gとエステル (n) 1. 0 3 gとを、 メチルメ タ クリ レート 2 0 g中に添加し、 6 0 °Cで 1時間攪拌混合することにより、 青色透 明の単量体組成物を得た。 得られた単量体組成物に、 t 一ブチルパーォキシビバ レー ト 0 . 3 gを添加し、 4 5 °Cで 1 6時間、 6 0 °Cで 8時間、 9 0 °Cで 3時間 と順次異なる温度で加熱してメチルメ夕クリ レートを重合することにより、 本発 明の燐酸エステル銅化合物を含有してなるァクリル系樹脂組成物を調製し、 実施 例 6と同様にしてその評価を行った。 結果を表 4に示す。
く実施例 1 9 >
四つ口フラスコに、 攪拌機、 温度計およびコンデンサーを取り付け、 この四つ 口フラスコ内に、 特定の燐酸エステル化合物としてエステル (p ) 3 5 8 g ( 1 . 0モル) と、 溶剤としてトルエン 3 6 0 gと、 無水酢酸銅一水和物 1 0 0 g ( 0 . 5モル) とを仕込み、 徐々に温度を上昇させ、 4 0 °Cで 1時間攪拌し、 更に 、 8 0 °Cで 3時間攪拌することにより、 特定の燐酸エステル化合物と無水酢酸銅 一水和物とを反応させ、 青色透明な溶液を得た。 この溶液に対して蒸留処理を行 うことにより、 特定の燐酸エステル化合物と無水酢酸銅一水和物との反応によつ て生成された酢酸およびトルエンを除去することにより、 本発明の燐酸エステル 銅化合物 3 5 5 gを得た。 収率は 9 1 . 3 %であった。
得られた燐酸エステル銅化合物は、 下記式 ( 9 ) で表される構造を有するもの であって、 その性状はゼリー状の固体であり、 当該燐酸エステル銅化合物につい て分析したところ、 燐含有量が 8 . 0 3重量% (理論値 7 . 9 6重量%) 、 銅含 有量 8 . 2 0重量% (理論値 8 . 1 7重量%) であった。 なお、 得られた燐酸ェ ステル銅化合物の赤外吸収曲線を図 8に示す。
式 (9)
CH3 〇 CH3
I II
H3C—(〇— CH2— CH)2 〇 P O-CCH-CH: 〇)2— CH
0
I
C u
0
I
H3C-(0-CH: CH) -O-P- 0 -(CH - CH2 -〇)2 CH:
II CH3 〇 CH3 この燐酸エステル銅化合物 1 gとエステル (p) 1. 0 8 gとを、 メチルメ タ ク リ レー ト 2 0 g中に添加し、 6 0 °Cで 1時間攪拌混合することにより、 青色透 明のメチルメタク リ レー 卜溶液を得た。 得られたメチルメタク リ レー 卜溶液を用 い、 実施例 1 8 と同様の操作を行うことにより、 本発明の燐酸エステル銅化合物 を含有してなるアク リル系樹脂組成物を調製し、 その評価を行った。 結果を表 4 に示す。
く実施例 2 0 >
四つ口フラスコに、 攪拌機、 温度計およびコンデンサ一を取り付け、 この四つ 口フラスコ内に、 特定の燐酸エステル化合物としてエステル ( r) 4 7 5 g ( 1 . 0モル) と、 溶剤としてトルエン 4 8 0 gと、 無水酢酸銅一水和物 1 0 0 g ( 0. 5モル) とを仕込み、 徐々に温度を上昇させ、 4 0 °Cで 1時間攪拌し、 更に 、 8 0 °Cで 3時間攪拌することにより、 特定の燐酸エステル化合物と無水酢酸銅 一水和物とを反応させ、 青色透明な溶液を得た。 この溶液に対して蒸留処理を行 うことにより、 特定の燐酸エステル化合物と無水酢酸銅一水和物との反応によつ て生成された酢酸およびトルエンを除去することにより、 本発明の燐酸エステル 銅化合物 4 5 5 gを得た。 収率は 9 0. 0 %であった。
得られた燐酸エステル銅化合物は、 下記式 ( 1 0 ) で表される構造を有するも のであって、 その性状は粘調な液体であり、 当該燐酸エステル銅化合物について 分析したところ、 燐含有量が 6. 2 0重量% (理論値 6. 1 3重量%) 、 銅含有 量 6. 3 3重量% (理論値 6. 2 9重量%) であった。 なお、 得られた燐酸エス テル銅化合物の赤外吸収曲線を図 9に示す。
式 ( 1 0 )
CH3 〇 CH3
I II I
H3C— (〇一 CH2— CH)3—〇一P— O— (CH— CH2—〇)3— CH3
I
I
C υ
I
0
H3C— (〇一 CH2— CH)3—〇一 P— 0— (CH— CH2—〇)3— CH3
I II I
CH3 〇 CH3 この燐酸エステル銅化合物 1 gとエステル ( r ) 1. 1 8 gとを、 メチルメタ クリ レー ト 2 0 g中に添加し、 6 0 °Cで 1時間攪拌混合することにより、 青色透 明のメチルメタク リ レー 卜溶液を得た。 得られたメチルメタク リ レー ト溶液を用 い、 実施例 1 8 と同様の操作を行うことにより、 本発明の燐酸エステル銅化合物 を含有してなる樹脂組成物を調製し、 その評価を行った。 結果を表 4に示す。 く実施例 2 1 >
特定の燐酸エステル化合物としてエステル ( c ) 0. 4 gおよびエステル (d ) 1. 6 gと、 無水安息香酸銅 1. 3 gとを、 トルエン 2 0 g中に添加し、 6 0 てで 1時間攪拌混合することにより、 特定の燐酸エステル化合物と無水安息香酸 銅とを反応させ、 本発明の燐酸エステル銅化合物を含有してなる青色透明な トル ェン溶液を得た。
この トルエン溶液の全量を、 ポリ メチルメ タク リ レー ト樹脂ビーズ (住友化学 工業 (株) 製、 「MHG A」 ) 4 0 gに添加して攪拌混合し、 その後、 6 0 °Cで 2 4時間真空乾燥することにより トルエンの除去処理を行い、 塊状物を得た。 こ の塊状物を粉砕した後、 1 8 0 °Cの加熱ロールにより 5分間混練することにより 、 青色透明な樹脂組成物を調製した。
この樹脂組成物を 2 0 0 °Cでプレス成形することにより、 厚みが 2 m mの板状 体を作製し、 実施例 6 と同様にしてその評価を行った。 結果を表 4に示す。 表 4
Figure imgf000040_0001
表 3および表 4の結果から明らかなように、 本発明の燐酸エステル銅化合物が 含有されてなる樹脂組成物は、 可視光線透過性に優れ、 近赤外線を高い効率で吸 収する性能を有し、 しかも、 紫外線による近赤外線吸収性の低下が少ないもので あることが確認された。
く実施例 2 2 >
四つ口フラスコに、 攪拌機、 温度計およびコンデンサーを取り付け、 この四つ 口フラスコ内に、 特定の燐酸エステル化合物としてエステル (n ) 2 4 2 g ( 1 . 0モル) と、 溶剤としてトルエン 2 5 0 gとを仕込み、 5 °Cに冷却した。 次い で、 この溶液に、 2 5 %水酸化ナ ト リ ゥム水溶液 1 6 0 g (水酸化ナ ト リウムと して 1 . 0モル) を、 当該溶液の温度を 5〜 2 0 °Cに保ちながら徐々に添加する ことにより、 エステル (n ) の中和を行った。 その後、 この溶液に、 硫酸銅 (II ) 五水和物 2 5 0 g ( 1モル) を水 7 5 0 gに溶解した水溶液を、 当該溶液の温 度を 2 0 °Cに保ちながら 1時間かけて添加した。 そして、 徐々に溶液の温度を上 昇させ、 8 0 °Cで 5時間の条件で、 エステル (n ) と硫酸銅 (Π ) とを反応させ た。 得られた反応液中における生成した硫酸ナ トリ ウムおよび硫酸銅 (Π ) ナ ト リゥムを濾別した後、 この反応液を静置することによってトルエン層と水層とに 分離させ、 トルエン溶液を回収した。 更に、 残りの水溶液にトルエン 2 0 0 gを 添加して当該水溶液中の生成物の抽出処理を行い、 トルエン溶液を回収した。 こ の操作を 3回繰り返すことにより、 合計で 1 0 2 0 gのトルエン溶液を回収した 。 そして、 四つ口フラスコに取り付けられたコンデンサーを蒸留装置に交換した 後、 この蒸留装置によってトルエン溶液から トルエン等の除去処理を行うことに より、 反応生成物 1 8 0 gを得た。 収率は 6 6 . 0 %であつた。
得られた燐酸エステル銅化合物は、 上記式 ( 8 ) で表される構造を有するもの であり、 当該燐酸エステル銅化合物について分析したところ、 燐含有量が 1 1 . 2 6重量% (理論値 1 1 . 3 5重量%) 、 銅含有量 1 1 . 0 4重量% (理論値 1 1 . 6 4重量%) であり、 明確な融点を有さず、 また、 分解温度は 2 4 0てであ つた。 なお、 得られた燐酸エステル銅化合物の赤外吸収曲線を図 1 0に示す。 発 明 の 効 果
本発明の燐酸エステル化合物によれば、 銅ィォンと配位結合またはィォン結合 が可能な水酸基を有し、 しかも、 合成樹脂例えばアクリル系樹脂との相溶性が良 好であるため、 合成樹脂中に銅イオンを高い割合で分散させることができる。 従 つて、 本発明の燐酸エステル化合物は、 銅イオンを合成樹脂中に分散させるため の樹脂用添加剤として好適である。
本発明の燐酸エステル化合物の製造方法によれば、 上記燐酸エステル化合物を 有利に製造することができる。
本発明の燐酸エステル銅化合物は、 近赤外線を高い効率で吸収する性能を有し 、 紫外線による近赤外線吸収性の低下が少なく、 しかも、 合成樹脂例えばァクリ ル系樹脂との相溶性が良好なものである。
本発明の燐酸エステル銅化合物の製造方法によれば、 上記燐酸エステル銅化合 物を有利に製造することができる。
本発明の近赤外線吸収剤によれば、 上記の燐酸エステル化合物が含有されてい るため、 近赤外線吸収成分である銅イオンを合成樹脂中に高い割合で分散させる ことができる。 そして、 本発明の近赤外線吸収剤が添加されてなる樹脂組成物は 、 可視光線透過性に優れ、 近赤外線を高い効率で吸収する性能を有し、 しかも、 紫外線による近赤外線吸収性の低下が少ないものである。
また、 本発明の近赤外線吸収剤によれば、 上記の燐酸エステル銅化合物を有効 成分とするため、 合成樹脂中に含有させることにより、 近赤外線を高い効率で吸 収する性能を有し、 紫外線による近赤外線吸収性の低下が少なく、 しかも、 可視 光線の透過性に優れた樹脂組成物が得られる。
本発明の近赤外線吸収性アクリル系樹脂組成物は、 可視光線透過性に優れ、 近 赤外線を高い効率で吸収する性能を有し、 しかも、 紫外線による近赤外線吸収性 の低下が少ないものである。

Claims

請 求 の 範 囲
1. 下記式 ( 1 ) で表される燐酸エステル化合物。
式 ( 1 ) OH)n
0 = P.
、(OR) 3 - n
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で表される基を示し、 nは 1または 2である。
式 (2 ) 式 (3)
R 2 R 2
I I
- (CHCH2 0)m-R i - (C H 2 C HO)m-R 1
(但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜6の整数である。 ) 〕
2. 請求項 1に記載の燐酸エステル化合物を製造する方法であって、
下記式 (4 ) または下記式 ( 5 ) で表されるアルコールと、 五酸化燐とを反応 させることを特徴とする燐酸エステル化合物の製造方法。
式 (4) 式 ( 5)
R 2 R 2
I I HO- (CHCH2 0)m-R i HO— (CH 2 C HO)m— R i
〔但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜 4のアルキル基を示し、
mは 1〜 6の整数である。 〕
3. 請求項 1に記載の燐酸エステル化合物を製造する方法であって、
請求項 2に記載の式 ( 4 ) または式 ( 5 ) で表されるアルコールと、 ォキシハ ロゲン化燐とを反応させ、 得られる生成物を加水分解することを特徴とする燐酸 エステル化合物の製造方法。
4. 請求項 1に記載の燐酸エステル化合物を製造する方法であって、
請求項 2に記載の式 ( 4 ) または式 ( 5 ) で表されるアルコールと三ハロゲン 化燐とを反応させることにより、 ホスホン酸エステル化合物を合成し、 このホス ホン酸エステル化合物を酸化することを特徴とする燐酸エステル化合物の製造方 法。
5. 下記式 ( 1 ) で表される燐酸エステル化合物と銅塩とを反応させることによ り得られる燐酸エステル銅化合物。
式 ( 1 ) ノ OH)n
0 -
(0R) 3 - n
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で表される基を示し、 nは 1または 2である。
式 ( 2 ) 式 (3)
R 2 R 2
I I
一 (CHCH2 0)m - R i — (CH2 CHO)m— R i
(但し、 R i は、 炭素数が 1〜2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜 6の整数である。 ) 〕
6. 下記式 ( 6) または下記式 ( 7) で表される燐酸エステル銅化合物
式 (6) 式 (7) R
Figure imgf000046_0001
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で 表される基を示し、 Mは銅イオンを示す。
式 (2) 式 (3)
R 2 R 2
I I
一 (CHCH2 0)m— Ri - (C H 2 C HO)m-R 1
(但し、 Ri は、 炭素数が 1〜20のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜 6の整数である。 ) 〕
7. 請求項 5に記載の式 ( 1 ) で表される燐酸エステル化合物と銅塩とを反応さ せることを特徴とする燐酸エステル銅化合物の製造方法。
8. 式 ( 1 ) で表される燐酸エステル化合物と銅塩とを有機溶剤中で反応させ、 その後、 前記燐酸エステル化合物と前記銅塩との反応によって生成される酸成分 および前記有機溶剤を除去する工程を有することを特徴とする請求項 7に記載の 燐酸エステル銅化合物の製造方法。
9. 式 ( 1 ) で表される燐酸エステル化合物およびアルカリが水に不溶または難 溶の有機溶剤中に含有されてなる有機溶剤層と、 銅塩が溶解されてなる水層とを 接触させることにより、 前記燐酸エステル化合物と前記銅塩とを反応させ、 その 後、 有機溶剤層と水層とを分離する工程を有することを特徴とする請求項 7に記 載の燐酸エステル銅化合物の製造方法。
1 0. 請求項 1 に記載の燐酸エステル化合物と、 銅イオンとを含有してなること を特徴とする近赤外線吸収剤。
1 1. 請求項 5または請求項 6に記載の燐酸エステル銅化合物を有効成分とする ことを特徴とする近赤外線吸収剤。
1 2. 下記 (A) 成分および Zまたは下記 (B) 成分が、 アク リル系樹脂中に含 有されてなることを特徴とする近赤外線吸収性ァク リル系樹脂組成物。
(A) 成分 : 銅イオンおよび下記式 ( 1 ) で表される燐酸エステル化合物よりな る成分
(B) 成分 : 下記 ( 1 ) で表される燐酸エステル化合物と銅塩とを反応させて得 られる化合物
式 ( 1 )
Figure imgf000047_0001
n
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で表される基を示し、 nは 1または 2である。
式 (2 ) 式 (3)
R 2 R 2
I I
- (CHCH2 0)m-Ri - (C H 2 C HO)m-R 1
(但し、 R i は、 炭素数が 1 ~2 0のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜6の整数である。 ) 〕
1 3. (B) 成分が下記式 ( 6 ) または下記式 ( 7 ) で表される燐酸エステル銅 化合物よりなることを特徴とする請求項 1 2に記載の近赤外線吸収性ァク リル系 樹脂組成物。 式 (6) 式 (7) R
R
Figure imgf000048_0001
〔但し、 Rは、 それぞれ独立して下記式 (2) または下記式 (3) で 表される基を示し、 Mは銅イオンを示す。
式 (2) 式 (3)
R 2 R 2
I I
- (CHCH2 0)m-R 1 — (CH2 CHO)m—Ri
(但し、 Ri は、 炭素数が 1〜20のアルキル基を示し、
R 2 は、 水素原子または炭素数が 1〜4のアルキル基を示し、 mは 1〜 6の整数である。 ) 〕
1 4. 銅イオンの含有割合が組成物全体の 0. 1〜 5重量%であることを特徴と する請求項 1 2に記載の近赤外線吸収性ァク リル系樹脂組成物。
1 5. 式 ( 1 ) で表される燐酸エステル化合物は、 基 Rを示す式 (2 ) および式 (3) における R 2 が、 水素原子または炭素数 1〜 4のアルキル基であることを 特徴とする請求項 1 2に記載の近赤外線吸収性ァク リル系樹脂組成物。
1 6. 式 ( 1 ) で表される燐酸エステル化合物は、 基 Rを示す式 ( 2 ) および式 (3) における mが 1〜 3の整数であることを特徴とする請求項 1 2に記載の近 赤外線吸収性ァク リル系樹脂組成物。
PCT/JP1998/003757 1997-08-26 1998-08-25 Composes esters phosphoriques et procede de production, composes esters phosphoriques du cuivre et procede de production, absorbant du proche infrarouge, et composition de resine acrylique absorbante dans le proche infrarouge WO1999010354A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98938970A EP1008599B1 (en) 1997-08-26 1998-08-25 Copper phosphoric ester compounds and process for producing the same, near infrared absorber, and near infrared absorbent acrylic resin composition
JP2000507681A JP3933392B2 (ja) 1997-08-26 1998-08-25 近赤外線吸収剤および近赤外線吸収性合成樹脂組成物
US09/485,882 US6410613B1 (en) 1997-08-26 1998-08-25 Phosphate compound and preparation process thereof, phosphate copper compound and preparation process thereof, near infrared ray absorber, and near infrared ray-absorbing acrylic resin composition
DE69824299T DE69824299T2 (de) 1997-08-26 1998-08-25 Kupfer-enthaltende phosphorsäureester-derivate und verfahren zu ihrer herstellung, nahinfrarot-aborber, und im nahinfrarot absorbierende acrylharzzubereitungen

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/229723 1997-08-26
JP22972397 1997-08-26
JP9/229731 1997-08-26
JP9/229727 1997-08-26
JP22973197 1997-08-26
JP22972797 1997-08-26

Publications (1)

Publication Number Publication Date
WO1999010354A1 true WO1999010354A1 (fr) 1999-03-04

Family

ID=27331556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003757 WO1999010354A1 (fr) 1997-08-26 1998-08-25 Composes esters phosphoriques et procede de production, composes esters phosphoriques du cuivre et procede de production, absorbant du proche infrarouge, et composition de resine acrylique absorbante dans le proche infrarouge

Country Status (5)

Country Link
US (1) US6410613B1 (ja)
EP (2) EP1008599B1 (ja)
JP (1) JP3933392B2 (ja)
DE (1) DE69824299T2 (ja)
WO (1) WO1999010354A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025908B1 (en) 1999-09-16 2006-04-11 Kureha Corporation Optical filter and process for producing the same
WO2008029777A1 (en) 2006-09-06 2008-03-13 Asahi Kasei Chemicals Corporation Photosensitive resin composition
EP2058123A2 (en) 2007-11-08 2009-05-13 FUJIFILM Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
EP2082874A1 (en) 2008-01-25 2009-07-29 Fujifilm Corporation Method of manufacturing relief printing plate and printing plate precursor for laser engraving
EP2085220A2 (en) 2008-01-29 2009-08-05 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method of producing the same
EP2095947A1 (en) 2008-02-28 2009-09-02 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
EP2095970A1 (en) 2008-02-29 2009-09-02 Fujifilm Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
EP2105795A1 (en) 2008-03-28 2009-09-30 FUJIFILM Corporation Resin composition for laser engraving, image forming material, relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
EP2106906A1 (en) 2008-03-31 2009-10-07 FUJIFILM Corporation Relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
WO2009123020A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
EP2165828A1 (en) 2008-09-17 2010-03-24 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method of producing the same
EP2551112A2 (en) 2011-07-29 2013-01-30 Fujifilm Corporation Flexographic printing plate precursor for laser engraving and process for producing same, and flexographic printing plate and process for making same
EP2556959A1 (en) 2011-08-12 2013-02-13 Fujifilm Corporation Process for producing flexographic printing plate precursor for laser engraving
JP2014074769A (ja) * 2012-10-03 2014-04-24 Fujifilm Corp 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2015043080A (ja) * 2013-07-24 2015-03-05 富士フイルム株式会社 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、カメラモジュールおよびその製造方法、ならびに固体撮像素子
US9618666B2 (en) 2013-02-19 2017-04-11 Fujifilm Corporation Near-infrared-absorbing composition, near-infrared cut-off filter using same, manufacturing method therefor, camera module, and manufacturing method therefor
WO2020195701A1 (ja) * 2019-03-26 2020-10-01 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS50766B2 (sr) 2005-11-25 2018-01-31 Sicpa Holding Sa Ic apsorbujuća štamparska boja za duboku štampu
DE102009001335A1 (de) * 2009-03-04 2010-09-09 Chemische Fabrik Budenheim Kg Strahlung absorbierendes Material
CN111919147B (zh) * 2018-03-23 2022-04-26 柯尼卡美能达株式会社 近红外线吸收性组合物、近红外线吸收性膜及固体摄像元件用图像传感器
KR102491492B1 (ko) * 2018-07-26 2023-01-20 삼성전자주식회사 근적외선 흡수 조성물, 근적외선 흡수 필름, 및 이를 포함하는 카메라 모듈 및 전자 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064226A (ja) * 1973-10-10 1975-05-31
JPS55142045A (en) * 1979-04-20 1980-11-06 Mitsubishi Rayon Co Ltd Methacrylic resin material having excellent solar radiation absorptivity, and its preparation
JPS55142068A (en) * 1979-04-20 1980-11-06 Taoka Chem Co Ltd Adhesive composition
JPS5948493A (ja) * 1982-09-13 1984-03-19 Nippon Chem Ind Co Ltd:The ジ−(2−エチルヘキシル)リン酸の製造方法
JPS63159386A (ja) * 1986-12-23 1988-07-02 Mitsubishi Kasei Corp テトラナフトポルフイラジン誘導体
JPS63254671A (ja) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd 亜鉛アルカリ電池
JPH02264788A (ja) * 1989-04-05 1990-10-29 Nippon Kanko Shikiso Kenkyusho:Kk ニッケル錯体
JPH05170748A (ja) * 1991-12-24 1993-07-09 Asahi Chem Ind Co Ltd イソシアヌレート基含有ポリイソシアネートの製法
JPH09211220A (ja) * 1996-01-30 1997-08-15 Kureha Chem Ind Co Ltd 熱線吸収性複合体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227673A (en) * 1962-06-05 1966-01-04 Standard Oil Co High acrylonitrile high solids containing latices
US3331896A (en) * 1964-09-15 1967-07-18 Gen Aniline & Film Corp Method of preparing alkali soluble phosphate esters of hydroxylic organic compounds
GB1075125A (en) * 1964-12-09 1967-07-12 Hardman & Holden Ltd Improvements relating to phosphorus-containing metal-organic compounds
US3462520A (en) 1966-10-14 1969-08-19 Gaf Corp Phosphate esters of alkoxylated straight-chain primary alcohols
US3678086A (en) * 1970-03-27 1972-07-18 Fmc Corp Complexes of heavy metal salts of acid phosphate esters
GB1474618A (en) * 1973-09-05 1977-05-25 Asahi Chemical Ind Concentrated latex of synthetic rubbers and the method for the preparation thereof
JPS5913791A (ja) * 1982-07-15 1984-01-24 Kao Corp リン酸ジエステルの製造法
US5800861A (en) * 1985-08-15 1998-09-01 The Sherwin-Williams Company High solid infrared absorbing compositions
US4939285A (en) * 1987-07-13 1990-07-03 Ciba-Geigy Corporation Process for the preparation of metal salts of phosphoric and phosphonic acid esters
US5256718A (en) * 1990-02-14 1993-10-26 Mitsui Petrochemical Industries, Ltd. Flame retardant polyamide thermoplastic resin composition
DE69314580T2 (de) * 1992-08-20 1998-02-19 Kureha Chemical Ind Co Ltd Optischer Filter
TW251302B (ja) * 1992-12-28 1995-07-11 Kao Corp
JPH0875919A (ja) * 1994-09-07 1996-03-22 Kureha Chem Ind Co Ltd アクリル系樹脂製光学フィルター
TW445380B (en) * 1996-10-23 2001-07-11 Sumitomo Chemical Co Plasma display front panel
JPH10282335A (ja) * 1997-04-09 1998-10-23 Sumitomo Chem Co Ltd 近赤外線吸収積層板、その製造方法及びそれを用いてなるプラズマディスプレイ前面板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064226A (ja) * 1973-10-10 1975-05-31
JPS55142045A (en) * 1979-04-20 1980-11-06 Mitsubishi Rayon Co Ltd Methacrylic resin material having excellent solar radiation absorptivity, and its preparation
JPS55142068A (en) * 1979-04-20 1980-11-06 Taoka Chem Co Ltd Adhesive composition
JPS5948493A (ja) * 1982-09-13 1984-03-19 Nippon Chem Ind Co Ltd:The ジ−(2−エチルヘキシル)リン酸の製造方法
JPS63159386A (ja) * 1986-12-23 1988-07-02 Mitsubishi Kasei Corp テトラナフトポルフイラジン誘導体
JPS63254671A (ja) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd 亜鉛アルカリ電池
JPH02264788A (ja) * 1989-04-05 1990-10-29 Nippon Kanko Shikiso Kenkyusho:Kk ニッケル錯体
JPH05170748A (ja) * 1991-12-24 1993-07-09 Asahi Chem Ind Co Ltd イソシアヌレート基含有ポリイソシアネートの製法
JPH09211220A (ja) * 1996-01-30 1997-08-15 Kureha Chem Ind Co Ltd 熱線吸収性複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1008599A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025908B1 (en) 1999-09-16 2006-04-11 Kureha Corporation Optical filter and process for producing the same
US8389116B2 (en) 2006-09-06 2013-03-05 Asahi Kasel Chemicals Corporation Photosensitive resin composition
WO2008029777A1 (en) 2006-09-06 2008-03-13 Asahi Kasei Chemicals Corporation Photosensitive resin composition
EP2058123A2 (en) 2007-11-08 2009-05-13 FUJIFILM Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
EP2082874A1 (en) 2008-01-25 2009-07-29 Fujifilm Corporation Method of manufacturing relief printing plate and printing plate precursor for laser engraving
EP2085220A2 (en) 2008-01-29 2009-08-05 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method of producing the same
EP2095947A1 (en) 2008-02-28 2009-09-02 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
EP2095970A1 (en) 2008-02-29 2009-09-02 Fujifilm Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
EP2105795A1 (en) 2008-03-28 2009-09-30 FUJIFILM Corporation Resin composition for laser engraving, image forming material, relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
EP2106906A1 (en) 2008-03-31 2009-10-07 FUJIFILM Corporation Relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
WO2009123020A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
EP2165828A1 (en) 2008-09-17 2010-03-24 FUJIFILM Corporation Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method of producing the same
EP2551112A2 (en) 2011-07-29 2013-01-30 Fujifilm Corporation Flexographic printing plate precursor for laser engraving and process for producing same, and flexographic printing plate and process for making same
EP2556959A1 (en) 2011-08-12 2013-02-13 Fujifilm Corporation Process for producing flexographic printing plate precursor for laser engraving
JP2014074769A (ja) * 2012-10-03 2014-04-24 Fujifilm Corp 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
US9618666B2 (en) 2013-02-19 2017-04-11 Fujifilm Corporation Near-infrared-absorbing composition, near-infrared cut-off filter using same, manufacturing method therefor, camera module, and manufacturing method therefor
JP2015043080A (ja) * 2013-07-24 2015-03-05 富士フイルム株式会社 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、カメラモジュールおよびその製造方法、ならびに固体撮像素子
WO2020195701A1 (ja) * 2019-03-26 2020-10-01 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
CN113614195A (zh) * 2019-03-26 2021-11-05 柯尼卡美能达株式会社 近红外线吸收性组合物、近红外线吸收性膜及固体摄像元件用图像传感器
CN113614195B (zh) * 2019-03-26 2023-10-20 柯尼卡美能达株式会社 近红外线吸收性组合物、近红外线吸收性膜及固体摄像元件用图像传感器
JP7452530B2 (ja) 2019-03-26 2024-03-19 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー

Also Published As

Publication number Publication date
US20020068778A1 (en) 2002-06-06
EP1008599B1 (en) 2004-06-02
DE69824299T2 (de) 2004-10-21
EP1388565A1 (en) 2004-02-11
US6410613B1 (en) 2002-06-25
DE69824299D1 (de) 2004-07-08
EP1008599A4 (en) 2001-12-12
EP1008599A1 (en) 2000-06-14
JP3933392B2 (ja) 2007-06-20

Similar Documents

Publication Publication Date Title
WO1999010354A1 (fr) Composes esters phosphoriques et procede de production, composes esters phosphoriques du cuivre et procede de production, absorbant du proche infrarouge, et composition de resine acrylique absorbante dans le proche infrarouge
JP5302008B2 (ja) カルダノールから得られた多官能性アルコール、多官能性アクリル系架橋剤及びそのペンダント含リン難燃性誘導体
WO2008029893A1 (fr) Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides
WO2006025226A1 (ja) ポリグリセリンモノエーテル及びその製造方法
JP2010509476A (ja) 放射線硬化性混成組成物及び方法
Cheng et al. Synthesis of three‐arm poly (ethylene glycol) by combination of controlled anionic polymerization and ‘click’chemistry
JPH026517A (ja) ポリエステル(メタ)アクリレートの製造方法
KR20100100840A (ko) (메트)아크릴레이트 화합물
US20040235980A1 (en) Polymerizable compound, polymerizable composition and cured product containing the compound
JP4463649B2 (ja) 光ラジカル重合開始剤、感光性樹脂組成物及び、物品
TW201434936A (zh) 無機粒子用分散劑、含有該分散劑之組成物、硬化性組成物、硬化物及薄膜
JP2003215325A (ja) 光学材料
JP2006241001A (ja) グリセリンモノ(メタ)アクリレートの製造方法
JP6670039B2 (ja) 表面修飾無機酸化物粒子及び樹脂組成物
JPS63105029A (ja) ポリエ−テルモノアルコ−ルの製法
JP2000007871A (ja) 樹脂組成物およびその製造法、光学フィルターおよびこれを備えた装置、熱線吸収フィルター、光ファイバーおよび眼鏡レンズ
WO2000050530A1 (fr) Composition absorbante dans le proche infrarouge et ecran d'affichage obtenu a partir d'une telle composition
JPH1180118A (ja) 新規スルホニウム塩、カチオン重合性組成物及びその硬化物
JP3129355B2 (ja) 有機高分子−酸化チタンコンポジット
US20040097676A1 (en) Crosslinkable functional polymer which makes possible the manufacture of light-conducting materials
JP7441526B2 (ja) 架橋高分子化合物およびその製造方法並びに高分子化合物の生成方法
JP2867644B2 (ja) 反応性樹脂の製造方法
JP4895683B2 (ja) ビニルエーテル誘導体ポリマー並びにその製造方法及び用途
JPH10259202A (ja) サイクロデキストリンの(メタ)アクリル酸エステルの製法及びサイクロデキストリンの(メタ)アクリル酸エステル
KR101066132B1 (ko) 직쇄상 (메타)아크릴로일기 함유 화합물, 성형 (메타)아크릴로일기 함유 화합물, 및 그들의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09485882

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998938970

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998938970

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998938970

Country of ref document: EP