WO1998032234A1 - Circuit d'antenne - Google Patents

Circuit d'antenne Download PDF

Info

Publication number
WO1998032234A1
WO1998032234A1 PCT/JP1998/000170 JP9800170W WO9832234A1 WO 1998032234 A1 WO1998032234 A1 WO 1998032234A1 JP 9800170 W JP9800170 W JP 9800170W WO 9832234 A1 WO9832234 A1 WO 9832234A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
circuit
signal
antenna
output
Prior art date
Application number
PCT/JP1998/000170
Other languages
English (en)
French (fr)
Inventor
Wasuke Yanagisawa
Shozaburo Kameda
Ryo Horie
Junichi Imai
Haruhisa Uchida
Yuichi Kagoshima
Original Assignee
Yokowo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09007383A external-priority patent/JP3115540B2/ja
Priority claimed from JP16195297A external-priority patent/JPH10336057A/ja
Priority claimed from JP21140297A external-priority patent/JPH1141128A/ja
Application filed by Yokowo Co., Ltd. filed Critical Yokowo Co., Ltd.
Priority to EP98900417A priority Critical patent/EP1026830B1/en
Priority to DE69832635T priority patent/DE69832635T2/de
Publication of WO1998032234A1 publication Critical patent/WO1998032234A1/ja
Priority to US09/357,128 priority patent/US6456832B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes

Definitions

  • the present invention relates to an antenna circuit for effectively transmitting an antenna output signal output from an antenna to a receiver.
  • Fig. 4 shows an example of an antenna circuit provided at the base end of a conventional AMZFM receiving antenna.
  • the antenna output signal of the AMZFM receiving antenna 10 is branched into two, one of which is supplied to an FM band filter 12, the output thereof is supplied to an FM amplifier circuit 14, and the amplified output is further supplied to the FM amplifier circuit 14.
  • the other of the branched antenna output signals is supplied to AM band filter 18, the output is supplied to AM amplifier circuit 20, and the amplified output is further supplied to AM receiver 22.
  • the FM band filter 12, the FM amplifier circuit 14, the AM band filter 18, and the AM amplifier circuit 20 are provided at or near the base end of the AMZFM receiving antenna 10, and the FM amplifier circuit 14 and the AM amplifier circuit 20 are provided.
  • the amplified output signal is transmitted to the FM receiver 16 and the AM receiver 22 via a cable or the like as appropriate.
  • the FM band filter 12 has an input terminal to which an antenna output signal is applied, and a capacitor C1 and two coils L1, L2 and a capacitor C2 connected in series to the output terminal in series.
  • the connection point between the two coils L 1 and L 2 is configured to be grounded via a capacitor C 3 and a coil L 3 in parallel.
  • the FM amplification circuit 14 to which the FM band signal passed through the FM band filter 12 is provided is configured as follows. That is, the input terminal is connected to the base of the transistor Tr1 via the capacitor C4. This base is grounded via a resistor R1, and connected to one end of a parallel connection of a resistor R3 and a capacitor C5 via a resistor R2. The other end of this parallel connection is connected to the collector of transistor Tr1. Continued. This collector is connected to the output terminal via a capacitor C6, and to the power supply terminal + B via a coil L4 and a resistor R4 in series. The connection point between the coil L 4 and the resistor R 4 is grounded via a capacitor C 7. Further, the emitter of the transistor Tr1 is grounded through a parallel connection of the resistor R5 and the capacitor C8.
  • the AM band filter 18 is configured such that an input terminal to which an antenna output signal is supplied is connected to an output terminal via a coil L5, and the output terminal is grounded via a capacitor C9.
  • the constants of the circuit components of the FM band filter 12 are appropriately set so as to block the AM band signal and pass the FM band signal.
  • Their to, FM amplifying circuit 1 4 is an emitter grounded transistor circuit having a high-frequency load to the collector of the transistor T r 1, where c acts as a voltage amplification type amplifying circuit, the voltage amplification effect of this transistor T r 1
  • the FM band signal passed through the FM band filter 12 is amplified in voltage and output.
  • the circuit configuration of the FM amplification circuit 14 is such that the input impedance and the output impedance are almost equal, and the output impedance of the AM / FM receiving antenna 10 via the FM band filter 12 and the FM receiver 16 It is matched with the input impedance.
  • the AM band filter 18 sets the constants of the circuit components appropriately so as to block the FM band signal and pass the AM band signal, and the AM amplifier circuit 20 amplifies and outputs only the AM band signal. Is done. '
  • the voltage of the FM band signal as an input signal to be amplified is applied between the base and the emitter of the transistor Tr1, and the amplified output The signal voltage is applied between the collector and the emitter of transistor Tr1. Therefore, if both the input signal and the output signal become large, the amplification capability determined by the amplification capability of the transistor Tr1 and the bias condition exceeds a predetermined range showing linearity, and high-frequency distortion and intermodulation distortion occur. I was Then, as shown by the circles in FIG. 2, the input / output signal amplitude characteristics are such that the output signal amplitude is saturated with the increase in the input signal amplitude. Therefore, at the FM broadcast signal transmitting station Under a strong electric field such as in the vicinity, the intermodulation distortion becomes strong and some problems such as interference occur.
  • FIGS. 5 (a) when a strong electric field of the FM band signal as example 7 6 MH Z 7 6. 6 MH 2 single broadcast wave 1 and a broadcast wave 2 z are present, these broadcasting waves 1, 2 May be provided to the AM amplifier circuit 20 without being sufficiently attenuated by the AM bandpass filter 18. Then, as shown in FIG. 5 (b), the secondary intermodulation wave of 600 kHz, which is the frequency difference between the two broadcast waves 1 and 2, is also amplified and output by the AM amplifier circuit 20.
  • the 600 kHz signal is included in the frequency range of the AM band signal, and acts as an interference wave in the AM receiver 22.
  • an AMZ FM receiving antenna 10 having a physical length of about 1 m has been widely used, and an antenna output signal of a practically sufficient level for an AM band signal has been obtained.
  • the effective antenna length of the AMZ FM receiving antenna 10 for FM band signals using helical coils is about 1 m, but the physical length is 50 cm.
  • the following short dimensions tend to be used:
  • the antenna output signal of the FM band signal is obtained at the same level as in the past, but the level of the AM band signal is greatly reduced. Therefore, the attenuation of the AM band signal by the FM band filter 112 became a serious problem that could not be ignored.
  • An object of the present invention is to provide an antenna circuit capable of improving deterioration of amplification characteristics under a strong electric field. It is another object of the present invention to provide an AM receiving antenna circuit that can reliably stop and attenuate an FM band signal of a strong electric field, pass an AM band signal without attenuating, and further amplify and output. Furthermore, even if a short antenna is used, the AM band signal is not attenuated by the FM band filter, An object of the present invention is to provide an antenna circuit for AMZ FM reception in which an AM band signal is supplied to an AM band filter while maintaining a practically sufficient level.
  • the antenna circuit of the present invention applies an antenna output signal to an input terminal of a current amplification type amplifier having high input impedance and low output impedance, and connects an output terminal of the current amplification type amplifier to a predetermined terminal. It is connected to the input terminal of a bandpass filter that passes the frequency band, and is configured to output a signal to the receiver from the output terminal of this bandpass filter.
  • the open output signal voltage of the AMZ FM receiving antenna is applied to the input terminal of the FM receiver without being attenuated as it is, and a high gain is obtained.
  • the distortion characteristics in the input / output signal amplitude characteristics are excellent.
  • An AM receiving antenna circuit of the present invention includes an AM band filter that blocks an FM band signal included in an antenna output signal and passes an AM band signal, and an AM amplifier circuit that amplifies and outputs the passed AM band signal.
  • the AM bandpass filter includes an input terminal to which the antenna output signal is supplied, and an AM signal input terminal of the AM amplification circuit connected in series with first and second coils. A connection point between the first and second coils is grounded via a capacitor and a third coil in series.
  • the AM amplifier circuit includes a field effect transistor, and the gate of the field effect transistor is connected to the AM. Connected to signal input and grounded source. In such a configuration, the first and second filters and trap circuits are formed, and the FM band signal is sufficiently attenuated in a plurality of stages, and only the AM band signal is given to the AM amplifier circuit.
  • the antenna circuit for AMZ FM reception of the present invention splits the antenna output signal into two, and blocks the AM band signal while passing the FM band signal.
  • an AM band filter that passes an AM band signal and an AM / FM receiving antenna circuit that is provided to each of the following, one of the branched antenna output signals is passed through an FM series resonance circuit including a series connection of a capacitor and a coil. It is configured to give to the FM bandpass filter. With this configuration, even if the impedance of the coil of the FM series resonance circuit and the coil of the FM band filter is smaller than the AM band signal, The capacitor of the resonance circuit and the capacitor of the FM band filter are attenuated in series, and are not greatly attenuated by the FM band filter as in the past. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram of an embodiment of the antenna circuit of the present invention.
  • FIG. 2 is a characteristic diagram comparing input / output signal amplitude characteristics under a strong electric field between the FM amplifier circuit shown in FIG. 1 and a conventional FM amplifier circuit.
  • FIG. 3A and 3B show equivalent circuit diagrams of the FM band filter shown in FIG. 1 and a conventional FM band filter for AM band signals.
  • FIG. 3A is an equivalent circuit diagram of the present invention
  • FIG. 3B is a conventional equivalent circuit diagram. It is.
  • FIG. 4 is a circuit diagram showing an example of a conventional antenna circuit.
  • FIG. 5 illustrates the problem of the conventional antenna circuit for AM reception due to the presence of the FM band signal in the strong turtle field.
  • (A) shows two broadcast waves in the FM band that have a difference in AM band frequency.
  • FIG. 7B is a diagram showing the existence of a second intermodulation distortion wave due to the frequency difference.
  • the antenna output signal of the AM / FM receiving antenna 10 is branched into two, one of which is given to the FM bandpass filter 12 via the FM series resonance circuit 30, and the output thereof is FM
  • the amplified output is supplied to an amplifier circuit 32, and the amplified output is further supplied to an FM receiver 16.
  • the other of the branched antenna output signals is provided to AM band filter 34, the output is provided to AM amplifier circuit 36, and the amplified output is further provided to AM receiver 22.
  • These FM series resonance circuit 30, FM band filter 12 and FM amplifier circuit 32, AM band filter 34 and AM amplifier circuit 36 are provided at or near the base end of AM / FM receiving antenna 10.
  • the amplified output signals of the FM amplifier 32 and the AM amplifier 36 are transmitted to the FM receiver 16 and the AM receiver 22 via cables as appropriate.
  • the input end to which the antenna output signal is It is connected to the output terminal via a capacitor C10 and a coil L6 in series.
  • This output terminal is connected to the input terminal of the FM band filter 12 similar to the conventional one.
  • the capacitor C 10 and the coil L 6 form a resonance circuit in which the FM band signal resonates.
  • the FM amplification circuit 32 in which the FM band signal passed through the FM band filter 12 is supplied to the input terminal is configured as follows.
  • the input is connected to the base of the transistor Tr2 via the capacitor C11.
  • This base is connected via a resistor R6 to the collector of the transistor Tr2.
  • This collector is grounded via a capacitor C12, and is connected to a power supply terminal + B via a resistor R7.
  • the emitter of the transistor Tr2 is grounded via the coil L6 and connected to the input end of the bandpass filter 38 via the capacitor C13.
  • the output terminal of the bandpass filter 38 is connected to the output terminal via the capacitor C14.
  • the band-pass filter 38 has a characteristic of passing an FM band signal and blocking the passage of another frequency band signal such as an AM band signal.
  • AM band filter 3 4 and c input to the antenna output signal is supplied is connected to two coils L 7, L 8 to the input terminal of the AM amplifying circuit 3 6 through the series, the two coils The connection point between L7 and L8 is grounded via the capacitor C15 and the coil L9 in series.
  • the AM amplifier circuit 36 is formed to include the field effect transistor FET as an amplifying element. The input terminal of the AM amplifier circuit 36 is connected to the gate G of the field effect transistor FET, and its source S Is grounded. Note that an input capacitance Ci exists between the gate G and the source S of the field-effect transistor FET.
  • the FM series resonance circuit 30 is set such that the FM band signal resonates and the capacitance of the capacitor C10 is as small as possible. Therefore, the FM band signal passes through the FM series resonance circuit 30 without being attenuated. Then, even if the impedance of the coil L6 of the FM series resonance circuit 30 and the coils LI and L3 of the FM bandpass filter 12 is small with respect to the AM band signal, as shown in the equivalent circuit shown in FIG.
  • the AM band signal is attenuated through capacitors C10 and C1 in series. Therefore, the AM band signal is not greatly attenuated by the FM band filter 112 as in the past. Therefore, the AM band signal is not greatly attenuated
  • the AM band signal is supplied to the AM receiver 22 at a large level. By decreasing the capacitance of the capacitor C 10, the impedance of the series circuit of the capacitor C 10 and the capacitor C 1 for the AM band signal can be increased, and the attenuation can be suppressed more effectively. it can.
  • the FM amplifier circuit 32 constitutes a common-collector transistor amplifier circuit in which the transistor Tr 2 has a high-frequency load on an emitter, and operates as a current amplifier amplifier. Then, due to the current amplifying action of the transistor Tr2 , the FM band signal as an input signal is current amplified.
  • this current amplification type amplifier has high input impedance and low output impedance characteristics. Therefore, the input impedance of the FM amplifier 32 is sufficiently higher than the output impedance of the AM / FM receiving antenna 10, and the open output signal voltage of the AMZFM receiving antenna 10 is not attenuated. To the input terminal of the FM amplifier 32.
  • the output impedance of the FM amplifier 32 is sufficiently lower than the input impedance of the FM receiver 16, and the output signal voltage appearing at the output terminal of the FM amplifier 32 is attenuated. And input to the input terminal of FM receiver 16. Therefore, the open output signal voltage of the AMZFM receiving antenna 10 is supplied to the input terminal of the FM receiver 16 without being attenuated as it is.
  • the gain “1” (O dB) in a system matched at 50 ohms or 75 ohms means that the AMZFM receiving antenna 10 In this state, a voltage of about 1Z2 divided by the output impedance of the FM receiver 16 and the input impedance of the FM receiver 16 is applied to the input terminal of the FM receiver 16. From this, in the FM amplifier 32 of the present invention, the open output signal voltage of the AM / FM receiving antenna 10 is applied to the input terminal of the FM receiver 16 without being divided. As a result, a signal voltage that is about twice that of the conventional signal is supplied to the input terminal of the FM receiver 16. Thus, the apparent gain of the FM amplification circuit 32 of the present invention is “2” (6 dB).
  • the current gain of a current amplifier is finite, the input impedance is not infinite, and the output impedance is not zero, so the apparent gain is 5 to 6 dB. It is. Furthermore, in the case of the current amplification type amplifier used in the FM amplification circuit 32, the output signal voltage generated between the terminals of the load acts as a feedback voltage on r2 in the transistor, so that a small difference between the input signal voltage and the feedback voltage is obtained. A voltage is applied between the base of the transistor Tr2 and the emitter. Further, since the output impedance is low, the voltage between the collector and the emitter of the transistor Tr 2 is smaller than that of the conventional voltage amplification type amplifier. Therefore, the current amplification type amplifier used in the FM amplification circuit 32 has better distortion characteristics than the conventional voltage amplification type amplifier.
  • FIG. 2 shows input / output characteristic data obtained by producing and comparing and measuring a current amplification type amplifier used in the present invention and a conventional voltage amplification type amplifier using the same transistor Tr1 and Tr2.
  • the triangles indicate the characteristics of the present invention
  • the circles indicate the characteristics of the conventional example.
  • the linearity is maintained in a considerably wide range in the present invention even if the relationship of the output signal amplitude with respect to the increase in the input signal amplitude is within the range of saturation in the conventional case. .
  • the distortion characteristics under a strong electric field are greatly improved.
  • the FM amplifier circuit 32 since the emitter of the transistor Tr2 as the output terminal of the current amplification type amplifier is connected to the output terminal via the band-pass filter 38, the FM band Signals other than the signal are blocked from passing, and are not delayed and reflected by the FM receiver 16. This delayed reflected signal is applied to the emitter of the transistor Tr2 with positive feedback, and there is no possibility that unnecessary oscillation may occur. . Thus, by interposing the band-pass filter 38, a stable amplification operation can be obtained.
  • a common-collector transistor amplifier circuit is used as the current amplification type amplifier, the circuit configuration is relatively simple, and the circuit can be configured simply and inexpensively using a commercially available circuit chip or the like.
  • the transistor using the transistor Tr 2 as the current amplification type amplifier has been described.
  • the invention is not limited to this.
  • a signal is supplied to the gate using a field effect transistor, and the source is provided with a high-frequency load. It may be a type field effect transistor amplification circuit. Even the one using the grounded-drain type field-effect transistor amplifier circuit has a relatively simple circuit configuration, and can be configured simply and inexpensively using a commercially available circuit chip or the like.
  • the bandpass filter 38 is What is necessary is to pass only a desired frequency band signal, and the zero-path configuration may be any.
  • the FM amplification circuit 32 for FM band reception has been described. However, the present invention is not limited to this. By appropriately setting the passband of the bandpass filter 38 according to the used frequency band. It can be applied to an amplifier circuit of any signal band.
  • the AM receiving antenna circuit of the present invention which includes the AM band filter 34 and the AM amplifier circuit 36, includes a first filter for blocking and attenuating the FM band signal by the coil L7 and the capacitor C15.
  • the coil L7, the coil L9 and the capacitor C15 are appropriately set so as to form a trap circuit for attenuating the FM band signal by the capacitor C15 and the coil L9.
  • the coil L8 is appropriately set so that the coil L8 and the input capacitance C i of the field effect transistor FET form a second filter that blocks and attenuates the FM band signal. Therefore, the FM band signal is sufficiently attenuated and blocked in a plurality of stages by the first and second filters and the trap circuit, and only the AM band signal is applied to the AM amplifier circuit 36 to be amplified and output.
  • the short-length AM / FM receiving antenna 10 has an extremely short effective antenna length compared to the wavelength of the AM band signal.
  • the capacity is small. Therefore, by connecting the input terminal of the AM amplification circuit 36 to the gate G of the field effect transistor FET, the input impedance as the AM reception antenna circuit is set to be high.
  • the equivalent input capacitance of the AM receiving antenna circuit is reduced by grounding the connection point of coils L7 and L8 with capacitor C15 and coil L9 interposed in series. Therefore, matching between the AM / FM receiving antenna 10 and the AM receiving antenna circuit is achieved, and the antenna output signal is not attenuated due to reflection or the like.
  • the antenna circuit of the present invention can improve the amplification characteristics of FM band signals under a strong electric field.
  • the FM band signal of a strong electric field can be reliably attenuated and applied to the AM band filter without attenuating the AM band signal.
  • the AM band signal is not attenuated by the FM band filter. Therefore, it is suitable as an antenna circuit for AM / FM reception, in which the AM band signal does not cause interference due to the strong electric field FM band signal and the AM band signal is small using an antenna having a short dimension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Description

明 細 書
アンテナ回路 ― 技術分野
本発明は、 アンテナから出力されるアンテナ出力信号を効果的に受信機に伝送 するためのアンテナ回路に関するものである。 背景技術
従来の AMZFM受信用アンテナの基端部などに設けられるアンテナ回路の一 例を図 4に示す。 図 4において、 AMZFM受信用アンテナ 10のアンテナ出力 信号が 2つに 岐され、 その一方が FM帯域フィルタ一 12に与えられ、 その出 力が FM増幅回路 14に与えられ、 さらにその増幅出力が FM受信機 16に与え られる。 また、 分岐されたアンテナ出力信号の他方が、 AM帯域フィルタ一 18 に与えられ、 その出力が AM増幅回路 20に与えられ、 さらにその増幅出力が A M受信機 22に与えられる。 これらの FM帯域フィルター 12と FM増幅回路 1 4と AM帯域フィルター 18および AM増幅回路 20は、 AMZFM受信用アン テナ 10の基端部もしくは近傍に設けられ、 FM増幅回路 14と AM増幅回路 2 0の増幅出力信号が適宜にケーブルなどを介して FM受信機 16および AM受信 機 22にそれぞれ伝送される。
FM帯域フィルタ一 12は、 アンテナ出力 号が与えられる入力端が、 コンデ ンサ C 1と 2つのコイル L 1, L 2およぴコンデンサ C 2を順次に直列に介して 出力端に接続される。 そして、 2つのコイル L l, L 2の接続点が、 コンデンサ C 3とコイル L 3を並列に介して接地されて構成されている。
また、 FM帯域フィルタ一 12を通過した FM帯信号が与えられる FM増幅回 路 14は、 以下のごとく構成される。 すなわち、 入力端が、 コンデンサ C 4を介 してトランジスタ T r 1のベースに接続される。 このベースは、 抵抗 R 1を介し て接地され、 また抵抗 R 2を介して抵抗 R 3とコンデンサ C 5の並列接続体の一 端に接続される。 この並列接続体の他端は、 トランジスタ T r 1のコレクタに接 続される。 このコレクタは、 コンデンサ C 6を介して出力端に接続され、 またコ ィル L 4と抵抗 R 4を直列に介して電源端子 + Bに接続される。 このコイル L 4 と抵抗 R 4の接続点は、 コンデンサ C 7を介して接地される。 さらに、 トランジ スタ T r 1のェミッタは、 抵抗 R 5とコンデンサ C 8の並列接続体を介して接地 される。
さらに、 AM帯域フィルター 1 8は、 アンテナ出力信号が与えられる入力端が、 コイル L 5を介して出力端に接続され、 この出力端がコンデンサ C 9を介して接 地されて構成される。
かかる構成において、 F M帯域フィルター 1 2は、 AM帯信号を阻止するとと もに F M帯信号を通過させるように回路構成素子の定数が適宜に設定される。 そ して、 F M増幅回路 1 4はトランジスタ T r 1のコレクタに高周波負荷を設けた エミッタ接地 トランジスタ回路を構成し、 電圧増幅型増幅回路として作用する c そこで、 この トランジスタ T r 1の電圧増幅作用によって、 F M帯域フィルター 1 2を通過した F M帯信号が電圧増幅されて出力される。 また、 この F M増幅回 路 1 4の回路構成は、 入力インピーダンスと出力インピーダンスがほぼ等しく、 F M帯域フィルター 1 2を介した AM/ F M受信用アンテナ 1 0の出力インピー ダンスおよび F M受信機 1 6の入力インピーダンスとそれぞれに整合が図られて いる。
また、 AM帯域フィルター 1 8は、 F M帯信号を阻止するとともに AM帯信号 を通過させるように回路構成素子の定数が適宜に設定され、 A M増幅回路 2 0か らは A M帯信号のみが増幅出力される。 '
ところで、 上述のごとき従来の F M増幅回路 1 4にあっては、 増幅しようとす る入力信号としての F M帯信号の電圧がトランジスタ T r 1のべ一スとエミッタ 間に印加され、 また増幅出力信号の電圧がトランジスタ T r 1のコレクタとエミ ッタ間に印加される。 そこで、 これらの入力信号と出力信号がともに大きなもの となると、 トランジスタ T r 1の増幅能力とバイァス条件等で定まる増幅特性が 直線性を示す所定範囲を越え、 高周波歪みや相互変調歪みが発生していた。 そし て、 この入 '出力信号振幅特性は、 図 2に丸印で示すごとく、 入力信号振幅の増 大に対して出力信号振幅が飽和した状態となる。 そこで、 F M放送信号送信所の 近くなどの強電界下にあっては、 相互変調歪みが強くなり一部で混信などの不具 合が生ずる。
また、 図 5 ( a ) のごとく、 強電界の F M帯信号として例えば 7 6 MH Zと 7 6 . 6 M H zの 2つの放送波 1 と放送波 2が存在すると、 これらの放送波 1、 2 が AM帯域フィルター 1 8で充分に減衰阻止されることなしに、 AM増幅回路 2 0に与えられる場合がある。 すると、 図 5 ( b ) のごとき、 2つの放送波 1、 2 の周波数差である 6 0 0 K H zの 2次相互変調波も AM増幅回路 2 0で増幅出力 されることとなる。 この 6 0 0 K H zの信号は、 AM帯信号の周波数範囲に含ま れており、 AM受信機 2 2における妨害波として作用する。
さらに、 従来は、 AMZ F M受信用アンテナ 1 0として物理的長さが約 1 mの ものが汎用されており、 AM帯信号に対して実用的に充分なレベルのアンテナ出 力信号が得ら ていた。 しかるに、 近年の小型化の強い要請により、 AMZ F M 受信用アンテナ 1 0もヘリカルコイルなどを用いて F M帯信号に対してアンテナ 実効長は約 1 mであるが、 物理的長さは 5 0 c m以下の短い寸法のものが用いら れる傾向にある。 そこで、 F M帯信号は、 従来と同等なレベルでアンテナ出力信 号が得られているが、 AM帯信号のレベルは大きく低減されてしまう。 そこで、 F M帯域フィルタ一 1 2による AM帯信号の減衰が無視し得ない大きな問題とな つた。 これは、 F M帯域フィルター 1 2を構成するコイル L 1, L 3は、 AM帯 信号に対するインピーダンスが小さく、 図 3 ( b ) に示される等価回路図のごと く、 AM帯信号がコンデンサ C 1を介して大きく減衰されるためである。 そこで、 AM帯域フィルター 1 8に与えられる AM帯 ί言号が減少し、 AM帯信号の受信感 度が大幅に劣化するという問題が生じていた。 発明の開示
本発明は、 強電界下における増幅特性の劣化を改善するようにしたアンテナ回 路を提供することを目的とする。 また、 強電界の F M帯信号を確実に阻止減衰で きるとともに AM帯信号を減衰させることなしに通過させ、 さらに増幅出力する AM受信用のアンテナ回路を提供することを目的とする。 さらに、 短い寸法のァ ンテナを用いても、 F M帯域フィルタ一で AM帯信号が減衰されることがなく、 実用的に充分なレベルを保って AM帯信号が AM帯域フィルターに与えられるよ うにした AMZ F M受信用のアンテナ回路を提供することを目的とする。
そこで、 本発明のアンテナ—回路は、 高入力インビーダンスであるとともに低出 力インピーダンスの電流増幅型増幅器の入力端に、 アンテナ出力信号を印加し、 前記電流増幅型増幅器の出力端を所定の周波数帯域を通過させるバンドバスフィ ルタの入力端に接続し、 このバンドパスフィルタの出力端から受信機に信号を出 力するように構成される。 かかる構成にあっては、 AMZ F M受信用アンテナの 開放出力信号電圧がそのまま減衰されることなしに、 F M受信機の入力端に与え られることとなり、 高い利得が得られる。 しかも、 入 ·出力信号振幅特性におけ る歪み特性が優れたものである。
また、 本発明の AM受信用のアンテナ回路は、 アンテナ出力信号に含まれる F M帯信号を阻止するとともに AM帯信号を通過させる AM帯域フィルターと、 通 過した AM帯信号を増幅出力する AM増幅回路とを備える AM受信用のアンテナ 回路において、 前記 AM帯域フィルタ一は、 前記アンテナ出力信号が与えられる 入力端を第 1 と第 2のコイルを直列に介して前記 AM増幅回路の AM信号入力端 に接続し、 前記第 1 と第 2のコイルの接続点をコンデンサと第 3のコイルを直列 に介して接地し、 前記 AM増幅回路は、 電界効果トランジスタを含み、 この電界 効果トランジスタのゲートに前記 AM信号入力端を接続し、 ソースを接地して構 成される。 かかる構成にあっては、 第 1 と第 2のフィルターおよびトラップ回路 が形成され、 F M帯信号は複数段階で充分に減衰阻止され、 AM帯信号のみが A M増幅回路に与えらる。 '
そして、 本発明の AMZ F M受信用のアンテナ回路は、 アンテナ出力信号を 2 つに分岐し、 AM帯信号を阻止するとともに F M帯信号を通過させる F M帯域フ ィルターと、 F M帯信号を阻止するとともに AM帯信号を通過させる AM帯域フ ィルターと、 にそれぞれ与える AM/ F M受信用のアンテナ回路において、 分岐 された前記アンテナ出力信号の一方をコンデンサとコイルの直列接続からなる F M直列共振回路を介して前記 F M帯域フィルターに与えるように構成されている。 かかる構成により、 AM帯信号に対して、 F M直列共振回路のコイルおよび F M 帯域フィルターのコイルのインピーダンスが小さくても、 AM帯信号は F M直列 共振回路のコンデンサと FM帯域フィルターのコンデンサを直列に'介して減衰さ れ、 従来のごとく FM帯域フィルタ一により大幅に減衰されることがない。 図面の簡単な説明
図 1は、 本発明のアンテナ回路の一実施例の回路図である。
図 2は、 図 1に示す FM増幅回路と従来の FM増幅回路の強電界下の入 ·出力 信号振幅特性を比較した特性図である。
図 3は、 図 1に示す FM帯域フィルターと従来の FM帯域フィルターの AM帯 信号に対する等価回路図を示し、 (a) は本発明の等価回路図であり、 (b) は 従来の等価回路図である。
図 4は、 従来のアンテナ回路の一例を示す回路図である。
図 5は、 強亀界の FM帯信号の存在による従来の AM受信用のアンテナ回路の 不具合を説明するものであり、 (a) は AM帯の周波数差を有する FM帯の 2つ の放送波の存在を示す図であり、 (b) はその周波数差による 2次相互変調歪波 を示す図である。 発明を実施するための最良の形態
本発明をより詳細に説明するために、 添付の図面に従ってこれを説明する。 図 1において、 AM/FM受信用アンテナ 1 0のアンテナ出力信号が 2つに分 岐され、 その一方が FM直列共振回路 30を介して FM帯域フィルタ一 1 2に与 えられ、 その出力が FM増幅回路 3 2に与えられ、 さらにその増幅出力が FM受 信機 1 6に与えられる。 また、 分岐されたアンテナ出力信号の他方が AM帯域フ ィルター 34に与えられ、 その出力が AM増幅回路 3 6に与えられ、 さらにその 増幅出力が AM受信機 22に与えられる。 これらの FM直列共振回路 30と FM 帯域フィルター 1 2と FM増幅回路 3 2と AM帯域フィルター 34および AM増 幅回路 3 6は、 AM/FM受信用アンテナ 1 0の基端部もしくは近傍に設けられ、 FM増幅回路 3 2と AM増幅回路 36の増幅出力信号が適宜にケーブルを介して FM受信機 1 6と AM受信機 22にそれぞれ伝送される。 ―
FM直列共振回路 30は、 アンテナ出力信号が与えられる入力端が、 コンデン サ C 1 0とコイル L 6を直列に介して出力端に接続される。 この出'力端が、 従来 と同様な FM帯域フィルター 1 2の入力端に接続される。 なお、 このコンデンサ C 1 0とコイル L 6とで FM帯信号が共振する共振回路が構成されている。
そして、 FM帯域フィルター 1 2を通過した FM帯信号が入力端に与えられる FM増幅回路 3 2は以下のごとく構成される。 入力端が、 コンデンサ C 1 1を介 してトランジスタ T r 2のベースに接続される。 このべ一スは、 抵抗 R 6を介し てトランジスタ T r 2のコレクタに接続される。 そして、 このコレクタは、 コン デンサ C 1 2を介して接地されるとともに、 抵抗 R 7を介して電源端子 +Bに接 続される。 また、 トランジスタ T r 2のェミッタは、 コイル L 6を介して接地さ れるとともに、 コンデンサ C 1 3を介してバンドパスフィルタ 3 8の入力端に接 続される。 このバンドパスフイイルタ 3 8の出力端が、 コンデンサ C 1 4を介し て出力端に接続される。 ここで、 バンドパスフィルタ 3 8は、 FM帯信号を通過 させ AM帯信号などの他の周波数帯域信号の通過を阻止する特性を有する。
また、 AM帯域フィルター 3 4は、 アンテナ出力信号が与えられる入力端が、 2つのコイル L 7, L 8を直列に介して AM増幅回路 3 6の入力端に接続される c そして、 2つのコイル L 7, L 8の接続点が、 コンデンサ C 1 5とコイル L 9を 直列に介して接地される。 さらに、 AM増幅回路 3 6は、 電界効果トランジスタ F ETを増幅素子として含んで形成されており、 AM増幅回路 3 6の入力端が電 界効果トランジスタ F ETのゲート Gに接続され、 そのソース Sが接地される。 なお、 この電界効果トランジスタ F ETのゲート Gとソース Sの間には、 入力容 量 C iが存在している。
かかる構成において、 FM直列共振回路 3 0は、 FM帯信号が共振し、 しかも コンデンサ C 1 0の容量がなるべく小さくなるように設定される。 そこで、 FM 帯信号は、 FM直列共振回路 3 0を減衰されずに通過する。 そして、 AM帯信号 に対して、 FM直列共振回路 3 0のコイル L 6および FM帯域フィルター 1 2の コイル L I , L 3のインピーダンスが小さくても、 図 3 (a ) に示す等価回路の ごとく、 AM帯信号はコンデンサ C 1 0とコンデンサ C 1を直列に介して減衰さ れる。 したがって、 従来のごとく FM帯域フィルタ一 1 2により AM帯信号が大 幅に減衰されることがない。 そこで、 AM帯信号は大きく減衰されずに AM帯域 フィルタ一 34に与えられ、 AM帯信号は大きなレベルで AM受信機 22に与え られる。 なお、 コンデンサ C 1 0の容量を小さくすることで、 AM帯信号に対す るコンデンサ C 1 0とコン^ ^ンサ C 1の直列回路によるインピーダンスを大きく でき、 減衰をより効果的に抑制することができる。
また、 FM増幅回路 3 2は、 トランジスタ T r 2がェミッタに高周波負荷を設 けたコレクタ接地型トランジスタ増幅回路を構成し、 電流増幅型増幅器として作 用する。 そして、 このトランジスタ T r 2の電流増幅作用によって、 入力信号と しての FM帯信号が電流増幅される。 ここで、 この電流増幅型増幅器は、 高入力 インピーダンスであるとともに低出力インピーダンス特性を有する。 そこで、 A M/FM受信用アンテナ 1 0の出力インピーダンスに比較して FM増幅回路 3 2 の入力インピーダンスが充分に高いものであり、 AMZFM受信用アンテナ 1 0 の開放出力信号電圧が減衰されることなしに FM増幅回路 3 2の入力端に与えら れる。 また、 この FM増幅回路 3 2の出力インピーダンスが FM受信機 1 6の入 力インピーダンスに比較して充分に低いものであり、 FM増幅回路 3 2の出力端 に現れる出力信号電圧が減衰されることなく FM受信機 1 6の入力端に与えられ る。 そこで、 AMZFM受信用アンテナ 1 0の開放出力信号電圧がそのまま減衰 されることなしに、 FM受信機 1 6の入力端に与えられることとなる。
ところで、 例えば 50オームまたは 75オームで整合が図られた系における利 得 「 1」 (O d B) とは、 AMZFM受信用アンテナ 1 0の開放出力信号電圧に 対して、 AMZFM受信用アンテナ 1 0の出力インピーダンスと FM受信機 1 6 側の入力インピーダンスとで分圧された約 1Z2の電圧が、 FM受信機 1 6の入 力端に与えられる状態である。 このことからすると、 本発明の FM増幅回路 3 2 にあっては、 FM受信機 1 6の入力端に AM/FM受信用アンテナ 1 0の開放出 力信号電圧が分圧されることなくそのまま与えられ、 従来の約 2倍の信号電圧が FM受信機 1 6の入力端に与えられることとなる。 そこで、 本発明の FM増幅回 路 3 2は、 見かけ上の利得が 「2」 (6 d B) である。 実際上は、 電流増幅型増 幅器の電流増幅率は有限であり、 また入力インピーダンスは無限大でなく、 さら に出力インピーダンスは零でないことから、 見かけ上の利得は 5〜6 d Bのあい だである。 さらに、 F M増幅回路 3 2で用いる電流増幅型増幅器にあってば、 負荷の端子 間に発生する出力信号電圧がトランジスタで r 2に帰還電圧として作用するため、 入力信号電圧と帰還電圧の小さな差電圧がトランジスタ T r 2のベースとエミッ タ間に加わる。 また、 出力インピーダンスが低いために、 トランジスタ T r 2の コレクタとエミッタ間の電圧も、 従来の電圧増幅型増幅器に比較して小さなもの となる。 そこで、 F M増幅回路 3 2で用いる電流増幅型増幅器は、 従来の電圧増 幅型増幅器に比較して歪み特性の優れたものである。
図 2は、 トランジスタ T r l, 2に同じものを用いて、 本発明で用いる電流増 幅型増幅器と従来の電圧増幅型増幅器をそれぞれ制作して比較測定した入 ·出力 特性データである。 図 2で、 三角印で本発明の特性を示し、 丸印で従来例の特性 を示す。 図 2から明らかなように、 入力信号振幅の増大に対する出力信号振幅の 関係が、 従来^では飽和してしまう範囲であっても、 本発明ではかなりの広い範 囲で直線性が維持されている。 もって、 本発明にあっては、 強電界下での歪み特 性に大幅な改善が図られている。
そしてさらに、 F M増幅回路 3 2にあっては、 電流増幅型増幅器の出力端とし てのトランジスタ T r 2のェミッタを、 バンドパスフィルタ 3 8を介して出力端 に接続しているので、 F M帯信号以外は通過が阻止されて、 F M受信機 1 6で遅 延反射されることがなく、 この遅延反射信号がトランジスタ T r 2のェミッタに 正帰還で印加されて不要な発振を生ずる虞がない。 もって、 バンドパスフィルタ 3 8を介装することで、 安定した増幅作用を得ることができる。 そして、 電流増 幅型増幅器としてコレクタ接地型トランジスタ増幅回路を用いるので、 回路構成 が比較的に簡単であって、 市販の回路チップなどを用いて簡単かつ安価に構成す ることもできる。
上記実施例では、 電流増幅型増幅器としてトランジスタ T r 2を用いたものを 説明したが、 これに限られず、 電界効果トランジスタを用いて、 ゲートに信号を 与え、 ソースに高周波負荷を設けたドレイン接地型電界効果トランジスタ増幅回 路であっても良い。 このドレイン接地型電界効果トランジスタ増幅回路を用いる ものにあっても、 回路構成が比較的に簡単であって、 市販の回路チップなどを用 いて簡単かつ安価に構成することもできる。 また、 バンドパスフィルタ 3 8は、 所望の周波数帯域信号のみを通過させるものであれば良く、 その 0路構成はいか なるものであっても良い。 さらに、 上記実施例では、 F M帯受信用の F M増幅回 路 3 2を説明したが、 これに限られず、 使用周波数帯域に応じてバンドパスフィ ルタ 3 8の通過帯域を適宜に設定することで、 いかなる信号帯域の増幅回路とし ても応用することができる。
さらに、 AM帯域フィルター 3 4と AM増幅回路 3 6からなる本発明の AM受 信用のアンテナ回路は、 コイル L 7とコンデンサ C 1 5とにより F M帯信号を阻 止および減衰させる第 1のフィルターを形成し、 またコンデンサ C 1 5とコイル L 9により F M帯信号を減衰させる トラップ回路を形成するように、 コイル L 7 とコイル L 9およびコンデンサ C 1 5が適宜に設定されている。 さらに、 コイル L 8と電界効果トランジスタ F E Tの入力容量 C i とにより F M帯信号を阻止お よび減衰させる第 2のフィルターを形成するように、 コイル L 8が適宜に設定さ れる。 したがって、 第 1 と第 2のフィルタ一およびトラップ回路によって、 F M 帯信号は複数段階で充分に減衰阻止され、 AM帯信号のみが A M増幅回路 3 6に 与えられて増幅出力される。
ところで、 短い寸法の AM/ F M受信用アンテナ 1 0は、 AM帯信号の波長に 比べてアンテナ実効長が極めて短いため、 AM帯信号に対して、 その出力インピ —ダンスは極めて高く、 また等価出力容量は小さいものである。 そこで、 AM増 幅回路 3 6の入力端を電界効果トランジスタ F E Tのゲート Gに接続することで、 A M受信用のアンテナ回路としての入力インピーダンスを高いものに設定してい る。 また、 コイル L 7, L 8の接続点をコンデンサ C 1 5とコイル L 9を直列に 介装して接地することで、 AM受信用のアンテナ回路の等価入力容量を小さなも のとしている。 したがって、 AM/ F M受信用アンテナ 1 0と AM受信用のアン テナ回路の整合が図られており、 反射等によるアンテナ出力信号の減衰を生じさ せることがない。 したがって、 強電界の F M帯信号によって AM受信機の受信が 妨害されることがなく、 しかも効率よく AM帯信号を AM受信機に与えることが できる。 なお、 AM帯域フィルター 3 4において、 AM帯信号が減衰されないこ とは勿論である。 産業上の利用可能性 ' 以上説明したように、 本発明のアンテナ回路は、 強電界下における FM帯信号 の増幅特性を改善できる。 また、 強電界の FM帯信号を確実に減衰させて AM帯 信号を減衰させずに AM帯域フィルターに与えることができる。 さらに、 FM帯 域フィルターで AM帯信号が減衰されない。 そこで、 強電界の FM帯信号により AM帯信号に混信を生じることがなく、 また短い寸法のアンテナを用いて AM帯 信号が小さな AM/ FM受信用のアンテナ回路として好適である。

Claims

請 求 の 範 囲
1 、 高入力インピーダンスであるとともに低出力インピーダンスの電流増幅型 増幅器の入力端に、 アンテナ出力信号を印加し、 前記電流増幅型増幅器の出力端 を所定の周波数帯域を通過させるバンドパスフィルタの入力端に接続し、 このバ ンドバスフィルタの出力端から受信機に信号を出力するように構成したことを特 徴とするアンテナ回路。
2、 前記電流増幅型増幅器を、 ェミッタに負荷を設けたコレクタ接地型トラン ジスタ増幅回路またはソースに負荷を設けたドレイン接地型電界効果トランジス タ増幅回路で構成したことを特徴とする請求の範囲第 1項記載のアンテナ回路。
3、 前記バン ドパスフィルタを F M帯信号を通過させるように構成し、 前記受 信機が F M受信機であることを特徴とする請求の範囲第 1項記載のァンテナ回路 c
4、 アンテナ出力信号に含まれる F M帯信号を阻止するとともに AM帯信号を 通過させる AM帯域フィルターと、 通過した AM帯信号を增幅出力する A M増幅 回路とを備える AM受信用のアンテナ回路において、 前記 AM帯域フィルタ一は、 前記アンテナ出力信号が与えられる入力端を第 1 と第 2のコイルを直列に介して 前記 AM増幅回路の AM信号入力端に接続し、 前記第 1 と第 2のコイルの接続点 をコンデンサと第 3のコイルを直列に介して接地し、 前記 AM増幅回路は、 電界 効果トランジスタを含み、 この電界効果トランジスタのゲートに前記 AM信号入 力端を接続し、 ソースを接地して構成したことを特徴とする AM受信用のアンテ ナ回路。
5、 前記第 1のコイルとコンデンサにより F M帯信号を阻止する第 1のフィル ターを形成し、 前記コンデンサと第 3のコイルにより F M帯信号を減衰させる ト ラップ回路を形成し、 前記第 2のコイルと前記電界効果トランジスタのゲートと ソース間の入力容量により F M帯信号を阻止する第 2のフィルタ一を形成するよ うに構成したことを特徴とする請求の範囲第 4項記載の AM受信用のアンテナ回 路。
6、 アンテナ出力信号を 2つに分岐し、 AM帯信号を阻止するとともに F M帯 信号を通過させる FM帯域フィルタ一と、 FM帯信号を阻止するどともに AM帯 信号を通過させる AM帯域フィルターと、 にそれぞれ与える AMZFM受信用の アンテナ回路において、 分岐された前記アンテナ出力信号の一方をコンデンサと コイルの直列接続からなる FM直列共振回路を介して前記 FM帯域フィルターに 与えるように構成したことを特徴とする AMZFM受信用のアンテナ回路。
PCT/JP1998/000170 1997-01-20 1998-01-19 Circuit d'antenne WO1998032234A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98900417A EP1026830B1 (en) 1997-01-20 1998-01-19 Antenna circuit
DE69832635T DE69832635T2 (de) 1997-01-20 1998-01-19 Antennenschaltung
US09/357,128 US6456832B1 (en) 1997-01-20 1999-07-20 Antenna circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/7383 1997-01-20
JP09007383A JP3115540B2 (ja) 1997-01-20 1997-01-20 Am・fm受信用アンテナ
JP16195297A JPH10336057A (ja) 1997-06-04 1997-06-04 Am受信用アンテナブースタ
JP9/161952 1997-06-04
JP9/211402 1997-07-22
JP21140297A JPH1141128A (ja) 1997-07-22 1997-07-22 アンテナブースタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/357,128 Continuation US6456832B1 (en) 1997-01-20 1999-07-20 Antenna circuit

Publications (1)

Publication Number Publication Date
WO1998032234A1 true WO1998032234A1 (fr) 1998-07-23

Family

ID=27277586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000170 WO1998032234A1 (fr) 1997-01-20 1998-01-19 Circuit d'antenne

Country Status (5)

Country Link
US (1) US6456832B1 (ja)
EP (2) EP1026830B1 (ja)
DE (2) DE69832635T2 (ja)
ES (2) ES2267081T3 (ja)
WO (1) WO1998032234A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856284A1 (de) * 1998-12-07 2000-06-08 Bosch Gmbh Robert Eingangsschaltung für FM-/AM-Rundfunkempfänger
EP1471649B1 (en) * 2003-04-25 2007-04-04 Fujitsu Ten Limited Antenna amplifier and shared antenna amplifier
CN101243684A (zh) * 2005-08-22 2008-08-13 Nxp股份有限公司 用于接收rf信号的多调谐器设备
JP4692635B2 (ja) * 2006-12-04 2011-06-01 パナソニック株式会社 アンテナ装置と、これを用いた電子機器
CN101217213B (zh) * 2007-12-26 2012-05-23 蒋小平 汽车顶置天线装置
WO2012088632A1 (en) * 2010-12-30 2012-07-05 Silicon Laboratories Inc. Air loop antenna for shared am/fm
US9093967B2 (en) * 2011-05-02 2015-07-28 Rfaxis, Inc. Power amplifier with co-existence filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184934U (ja) * 1982-05-31 1983-12-08 クラリオン株式会社 雑音防止回路
JPS6175648U (ja) * 1984-10-22 1986-05-21
JPS6335337U (ja) * 1986-08-25 1988-03-07
JPH01126641U (ja) * 1988-02-09 1989-08-30
JPH0232625A (ja) * 1988-07-22 1990-02-02 Pioneer Electron Corp アンテナブースタ回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932651A1 (de) * 1979-08-11 1981-03-26 Robert Bosch Gmbh, 70469 Stuttgart Schaltungsanordnung zum empfangen und verstaerken von hochfrequenzsignalen
US4524331A (en) * 1982-09-13 1985-06-18 Orion Industries, Inc. High input impedance amplifier circuit
JPH01126641A (ja) * 1987-11-12 1989-05-18 Nippon Zeon Co Ltd パターン形成材料
US4875019A (en) * 1988-07-21 1989-10-17 Bahr Technologies, Inc. Receiver preamplifier with tuned circuit adapted for Loran reception
US5151708A (en) * 1989-03-10 1992-09-29 Harada Kogyo Kabushiki Kaisha Shortened mast antenna with compensating circuits
US5140700A (en) * 1990-12-07 1992-08-18 Ford Motor Company FM resonant filter having AM frequency bypass
US5280638A (en) * 1991-09-06 1994-01-18 Ford Motor Company RF filter self-alignment for multiband radio receiver
DE4208062A1 (de) * 1992-03-13 1993-09-16 Bosch Gmbh Robert Aktive frequenzweiche
US5483693A (en) * 1992-03-19 1996-01-09 Bose Corporation Combining antenna element signals
US5937337A (en) * 1996-09-23 1999-08-10 Delco Electronics Corporation Method and apparatus for reducing FM intrusion in AM receivers
JPH1126641A (ja) * 1997-06-30 1999-01-29 Toshiba Corp 半導体装置及びその製造方法
JP3621252B2 (ja) * 1998-04-13 2005-02-16 パイオニア株式会社 受信回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184934U (ja) * 1982-05-31 1983-12-08 クラリオン株式会社 雑音防止回路
JPS6175648U (ja) * 1984-10-22 1986-05-21
JPS6335337U (ja) * 1986-08-25 1988-03-07
JPH01126641U (ja) * 1988-02-09 1989-08-30
JPH0232625A (ja) * 1988-07-22 1990-02-02 Pioneer Electron Corp アンテナブースタ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1026830A4 *

Also Published As

Publication number Publication date
ES2267081T3 (es) 2007-03-01
EP1026830A4 (en) 2004-10-06
EP1026830B1 (en) 2005-11-30
EP1545014B1 (en) 2006-06-14
ES2251068T3 (es) 2006-04-16
DE69832635T2 (de) 2006-07-20
DE69834966D1 (de) 2006-07-27
EP1026830A1 (en) 2000-08-09
US6456832B1 (en) 2002-09-24
EP1545014A1 (en) 2005-06-22
DE69832635D1 (de) 2006-01-05
DE69834966T2 (de) 2007-01-25

Similar Documents

Publication Publication Date Title
US4295108A (en) Filter circuit employing surface acoustic wave device
WO1998032234A1 (fr) Circuit d'antenne
JP3442208B2 (ja) 高周波用電子回路
US6104259A (en) Harmonic suppression circuit
US4491809A (en) Matching circuit for a pre-amplifier of SHF band television signal receiver
JP3612241B2 (ja) テレビジョンチューナの中間周波回路
JPH10336057A (ja) Am受信用アンテナブースタ
JPS60249436A (ja) 受信機の入力切換装置
JPH03211904A (ja) 高周波増幅器
JPH04304705A (ja) 低雑音増幅器
JP3292957B2 (ja) ラジオ受信機
JP3134127B2 (ja) Fm用高周波増幅回路
JPH10221389A (ja) 周波数特性測定方法
JP3292955B2 (ja) ラジオ受信機
JPH04294637A (ja) ワイヤレスマイクロホン装置の送信機
JPH1141128A (ja) アンテナブースタ
JPS62171233A (ja) 受信装置
JP2660936B2 (ja) 低雑音増幅装置
JP3107503B2 (ja) ダブルスーパーヘテロダインamラジオ受信機
EP0996997A1 (en) Device for separating rf signals
JPH0129875Y2 (ja)
JPH042225A (ja) Fm受信機
JP2009212649A (ja) 電子回路
JPH0548360A (ja) ラジオ受信機
KR19980050717U (ko) 원격 시동 시스템용 수신신호 증폭기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998900417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09357128

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998900417

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998900417

Country of ref document: EP