WO1998031775A1 - Granulares sekundäres alkansulfonat - Google Patents

Granulares sekundäres alkansulfonat Download PDF

Info

Publication number
WO1998031775A1
WO1998031775A1 PCT/EP1998/000089 EP9800089W WO9831775A1 WO 1998031775 A1 WO1998031775 A1 WO 1998031775A1 EP 9800089 W EP9800089 W EP 9800089W WO 9831775 A1 WO9831775 A1 WO 9831775A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkanesulfonate
acid
additive
alkane sulphonate
Prior art date
Application number
PCT/EP1998/000089
Other languages
English (en)
French (fr)
Inventor
Frank-Peter Lang
Helmut Kramer
Roland Steinl
Original Assignee
Clariant Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Gmbh filed Critical Clariant Gmbh
Priority to AU62921/98A priority Critical patent/AU6292198A/en
Priority to JP53362998A priority patent/JP4263246B2/ja
Priority to EP98906864A priority patent/EP0966510B1/de
Priority to DE59809971T priority patent/DE59809971D1/de
Publication of WO1998031775A1 publication Critical patent/WO1998031775A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • SAS Secondary alkanesulfonates
  • DE-A-2 415 159 describes a product which is obtained by spray drying an aqueous solution of alkanesulfonate and a carrier material.
  • Inorganic salts are essentially suitable as carrier material. The amount of these salts is quite high and is 50 to 95% by weight, based on the total amount of alkanesulfonate and carrier material.
  • WO 93/16164 describes the preparation of anionic surfactant salts by spray neutralization, in which the anionic surfactants are sprayed in their acid form together with aqueous solutions of bases. Suitable dust-binding additives can be added.
  • the invention relates to a granular secondary alkanesulfonate consisting essentially of finely divided solid sec. Alkanesulfonate and an additive.
  • Alkanesulfonate for example in the form of pellets (Hostapur® SAS 93) or in the form of flakes.
  • the alkyl group can be either saturated or unsaturated, branched or linear and optionally substituted with a hydroxyl group.
  • the sulfo group can be at any position on the C chain, the primary methyl groups at the beginning and end of the chain having no sulfonate groups.
  • the preferred secondary alkanesulfonates contain linear alkyl chains with about 9-25 carbon atoms, preferably 10 to 20, and particularly preferably about 13 to 17 carbon atoms.
  • the cation is, for example, sodium, potassium, ammonium, mono-, di- or triethanolammonium, calcium or magnesium and mixtures thereof. Sodium as the cation is preferred.
  • the alkanesulfonate according to the invention is prepared by grinding SAS in the form of pellets or flakes, as are usually obtained in the production of solid SAS.
  • this coarse SAS is mixed intensively with the additive before grinding and then ground.
  • all grinding devices such as. B. impact mills, granulators, roller mills or air jet mills.
  • Impact mills are, for example, impact wheel mills with and without internals, pin mills and disintegrators, especially with ground pins, universal mills with various working elements, especially with hammer-like working elements.
  • the mixture of alkanesulfonate and additive can be ground with cooling in order to dissipate the frictional heat and to support the comminution process by embrittlement at low temperatures.
  • either the mill can be cooled directly or the air flow sucked in by the mill is cooled if it is a continuous grinding process. You can also see the sec.
  • the SAS and optionally also the additive are ground to a grain size of 0.1 to 3, preferably 0.5 to 2 mm.
  • a large number of compounds are suitable as additives in the context of this invention. They can be water-soluble, but they are preferably hydrophobic. In any case, the prerequisite is that these additives are not hygroscopic. Also preferred are those additives that are already present in finely divided form.
  • Suitable additives are, for example, long-chain fatty acids, in particular C 18 -C 22 fatty acids, such as stearic acid and behenic acid, their salts, in particular the alkaline earth metal salts, fatty alcohols, polymers such as high molecular weight polyethylene glycols, for example PEG 20,000, polyacrylates, for example ⁇ Sokalan CP 5, cellulose and their derivatives such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, waxes, for example montan waxes, paraffin waxes, ester waxes, polyolefin waxes, bentonites, for example ⁇ Laundrosil DGA from Südchemie, magnesium oxide, chalk, kaolin, magnesium silicate, silica chalk, diatomaceous earth, silicic acid, talc, talc.
  • long-chain fatty acids in particular C 18 -C 22 fatty acids, such as stearic acid and behenic acid, their salts, in particular the
  • Alkaline earth sulfates include synthetic, finely divided, highly disperse silicas, for example pyrogenic silicas ( ⁇ Aerosil brands from Degussa) and precipitated silicas, for example the commercial products ⁇ Sident 12, Sident 12 DS. FK 160, FK 300 DS, FK 310, FK 320, FK 320 DS, FK 383 DS, FK 500 LS, FK 700, ⁇ Sipernat 22, Sipemat 22S, Sipernat 30, Sipernat 50, Sipernat 50 S, Sipernat D 17, ⁇ Ultrasil VN 2, Ultrasil VN 3, ⁇ Wessalon and Wessalon S from Degussa.
  • Such silicas are inherently hydrophilic, but it is also possible to use hydrophobically modified silicas, such as Sipernat D 17 or Aerosil R 972.
  • the aforementioned additives are used in a concentration of 0.1 to 10%, preferably 0.5 to 5% and particularly preferably 0.5 to 2%, based on sec. Alkanesulfonate used.
  • the powdery or granular sec. Alkanesulfonate can be used immediately can be incorporated as a surfactant component in detergents and cleaning agents.
  • Such powder detergents and cleaning agents can be, for example, washing powder, stain salts, abrasives and other solid mixtures.
  • Another possibility is to process the powdered or granular SAS according to the invention into solid extrudates such as, for example, wash pieces, bar soaps or toilet blocks, into compacts, for example tablets, or compactates (rollers).
  • the sec. Alkane sulfonate can be used in the finished detergent and cleaning agent formulations either alone or in combination with other surfactants.
  • the total concentration of surfactants including the sec. Alkanesulfonate can be from 1% to 99%, preferably between 5% and 80% and particularly preferably between 5% and 40%.
  • surfactants can be combined, for example, together with the granular secondary alkanesulfonate according to the invention in detergents and cleaning agents.
  • Suitable anionic surfactants are sulfates, sulfonates, carboxylates, phosphates and mixtures thereof.
  • Suitable cations are alkali metals, such as. B. sodium or potassium or alkaline earth metals, such as. As calcium or magnesium and ammonium, substituted ammonium compounds, including mono-, di- or triethanolammonium cations, and mixtures thereof.
  • the following types of anionic surfactants are of particular interest: alkyl ester sulfonates, alkyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, olefin sulfonates and soaps, as described below.
  • Alkyl ester sulfonates include linear esters of C 8 -C 20 carboxylic acids (ie fatty acids) which are sulfonated using gaseous SO 3 , as described in "The Journal of the American Oil Chemists Society” 52 (1975), pp. 323-329. Suitable starting materials are natural fats such as tallow, coconut oil and palm oil, but can also be synthetic in nature. Preferred alkyl ester sulfonates, especially for detergent applications, are compounds of the formula
  • R 1 is a C 8 -C 20 hydrocarbon radical, preferably alkyl
  • R is a C r C 6 hydrocarbon radical, preferably alkyl
  • M stands for a cation that forms a water-soluble salt with the alkyl ester sulfonate. Suitable cations are sodium, potassium, lithium or ammonium cations, such as JVIonoethanolamin, diethanolamine and triethanolamine.
  • R 1 is preferably C 10 -C 16 alkyl and R is methyl, ethyl or isopropyl. Methyl ester sulfonates in which R 1 is C 10 -C 16 alkyl are particularly preferred.
  • alkyl sulfates are water-soluble salts or acids of the formula ROSO 3 M, in which R is a C 10 -C 24 hydrocarbon radical, preferably an alkyl or hydroxyalkyl radical with a C 10 -C 20 alkyl component, particularly preferably a C 12 -C 18 alkyl or Is hydroxyalkyl.
  • M is hydrogen or a cation, e.g. an alkali metal cation (e.g. sodium, potassium, lithium) or ammonium or substituted ammonium, e.g. B.
  • alkylamines such as ethylamine, diethylamine, triethylamine and mixtures thereof.
  • Alkyl chains with C 12 -C 16 are preferred for low washing temperatures (e.g. below approx. 50 ° C) and alkyl chains with C 16 -C 18 for higher washing temperatures (e.g. above approx. 50 ° C).
  • Alkyl ether sulfates are water-soluble salts or acids of the formula RO (A) m S0 3 M, in which R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl radical represents a C 12 -C 20 alkyl or hydroxyalkyl radical, particularly preferably C 12 -C 18 alkyl or hydroxyalkyl radical.
  • A is an ethoxy or propoxy unit
  • m is a number greater than 0, preferably between approximately 0.5 and approximately 6, particularly preferably between approximately 0.5 and approximately 3, and M is a hydrogen atom or a cation such as, for .
  • substituted ammonium cations are methyl, dimethyl, trimethylammonium and quaternary ammonium cations such as tetramethylammonium and dimethylpiperidinium cations as well as those derived from alkylamines such as ethylamine, diethylamine, triethylamine or mixtures thereof.
  • alkylamines such as ethylamine, diethylamine, triethylamine or mixtures thereof.
  • Examples include C 12 to C 18 fatty alcohol ether sulfates, the content of EO being 1, 2, 2.5, 3 or 4 mol per mol of the fatty alcohol ether sulfate, and in which M is sodium or potassium.
  • alkenyl or alkylbenzenesulfonates are alkenyl or alkylbenzenesulfonates.
  • the alkenyl or alkyl group can be branched or linear and optionally substituted with a hydroxyl group.
  • the preferred alkylbenzenesulfonates contain linear alkyl chains with about 9 to 25 carbon atoms, preferably from about 10 to about 13 carbon atoms, the cation is sodium, potassium, ammonium, mono-, di- or triethanolammonium, calcium or magnesium and mixtures thereof. Magnesium is preferred as the cation for mild surfactant systems, while sodium is preferred for standard washing applications. The same applies to alkenylbenzenesulfonates.
  • anionic surfactants also includes olefin sulfonates which are obtained by sulfonating C 12 -C 24 -, preferably C 14 -C 16 - olefins with sulfur trioxide and subsequent neutralization. Due to the manufacturing process, these olefin sulfonates can contain smaller amounts of hydroxyalkanesulfonates and alkane disulfonates. Special mixtures of ⁇ -olefin sulfonates are described in US 3,332,880.
  • Suitable anionic surfactants are carboxylates, e.g. B. fatty acid soaps and comparable surfactants.
  • the soaps can be saturated or unsaturated and can have various substituents such as hydroxyl groups or ⁇ -sulfonate groups contain.
  • Linear saturated or unsaturated hydrocarbon radicals are preferred as the hydrophobic portion with approximately 6 to approximately 30, preferably approximately 10 to approximately 18 carbon atoms.
  • Suitable anionic surfactants are salts of acylaminocarboxylic acids, the acyl sarcosinates formed in the alkaline medium by reaction of fatty acid chlorides with sodium sarcosinate; Fatty acid-protein condensation products obtained by reacting fatty acid chlorides with oligopeptides; Salts of alkylsulfamidocarboxylic acids; Salts of alkyl and alkylaryl ether carboxylic acids; C 8 -C 24 olefin sulfonates, sulfonated polycarboxylic acids, prepared by sulfonation of the pyrolysis products of alkaline earth metal citrates, as described, for example, in GB-1, 082,179; Alkylglycerol sulfates, oleylglycerol sulfates, alkylphenol ether sulfates, primary paraffin sulfonates, alkyl phosphates, alkyl ether phosphates,
  • Polyethylene, polypropylene and polybutylene oxide condensates of alkylphenols.
  • These compounds include the condensation products of alkyl phenols with a C 6 to C 20 alkyl group, which can be either linear or branched, with alkene oxides. Compounds with about 5 to 25 mol of alkene oxide per mol of alkylphenol are preferred.
  • Commercially available surfactants of this type are, for example, Igepal® CO-630, Triton ® X-45, X-114, X-100 and X102, and the ⁇ Arkopal-N brands from Clariant GmbH. These surfactants are referred to as alkylphenol alkoxylates, for example alkylphenol ethoxylates.
  • the alkyl chain of the aliphatic alcohols can be linear or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.
  • the condensation products of C 10 to C 20 alcohols with about 2 to about 18 moles of ethylene oxide per mole of alcohol are particularly preferred.
  • the alkyl chain can be saturated or unsaturated.
  • the alcohol ethoxylates can have a narrow (“narrow range ethoxylates") or a broad homolog distribution of the ethylene oxide ("broad range ethoxylates").
  • nonionic surfactants of this type are Teritol® 15-S-9 (the condensation product of a linear secondary C ⁇ r C 15 alcohol with 9 moles ethylene oxide), Tergitol ® 24-L-NMW (the condensation product of a linear primary C 12 -C 14 -alcohol with 6 mol ethylene oxide with a narrow molecular weight distribution).
  • Teritol® 15-S-9 the condensation product of a linear secondary C ⁇ r C 15 alcohol with 9 moles ethylene oxide
  • Tergitol ® 24-L-NMW the condensation product of a linear primary C 12 -C 14 -alcohol with 6 mol ethylene oxide with a narrow molecular weight distribution.
  • Genapol® brands from Clariant GmbH also fall under this product class.
  • Condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the hydrophobic part of these compounds preferably has a molecular weight between approximately 1500 and approximately 1800.
  • the addition of ethylene oxide to this hydrophobic part leads to an improvement in water solubility.
  • the product is liquid up to a polyoxyethylene content of approx. 50% of the total weight of the condensation product, which corresponds to a condensation with up to approx. 40 mol ethylene oxide.
  • Commercially available examples of this product class are the Pluronic® brands from BASF and the ®Genapol PF brands from Clariant GmbH.
  • Condensation products of ethylene oxide with a reaction product of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine with excess propylene oxide and generally has a molecular weight of approximately 2500 to 3000.
  • Ethylene oxide is added to this hydrophobic unit up to a content of approximately 40 to approximately 80% by weight of polyoxyethylene and a molecular weight of approximately 5000 to 11000.
  • Commercially available examples of this class of compounds are the ®Tetronic brands from BASF and the ®Genapol PN brands from Clariant GmbH.
  • non-ionic compounds includes water-soluble amine oxides, water-soluble phosphine oxides and water-soluble sulfoxides, each with an alkyl radical of about 10 to about 18 carbon atoms.
  • Semipolar nonionic surfactants are also amine oxides of the formula
  • R here is an alkyl, hydroxyalkyl or alkylphenol group with a chain length of about 8 to about 22 carbon atoms
  • R 2 is an alkylene or hydroxyalkylene group with about 2 to 3 carbon atoms or mixtures thereof
  • each radical R 1 is an alkyl - Or hydroxyalkyl group with approx. 1 to approx. 3 carbon atoms or a polyethylene oxide group with approx. 1 to approx. 3 ethylene oxide units
  • x means a number from 0 to approx. 10.
  • the R 1 groups can be connected to one another via an oxygen or nitrogen atom and thus form a ring.
  • Amine oxides of this type are in particular C 10 -C 18 alkyldimethylamine oxides and C 8 -C 12 alkoxyethyl-dihydroxyethylamine oxides.
  • Fatty acid amides have the formula
  • RCO - N (R 1 ) 2 wherein R is an alkyl group with about 7 to about 21, preferably about 9 to about 17 carbon atoms and each radical R 1 is hydrogen, C r C 4 -alkyl, C r C 4 -hydroxyalkyl and (C 2 H 4 0 ) x means H, where x varies from approx. 1 to approx. 3.
  • C 8 -C 20 amides, monoethanolamides, diethanolamides and isopropanolamides are preferred.
  • nonionic surfactants are alkyl and alkenyl oligoglycosides as well as fatty acid polyglycol esters or fatty amine polyglycol esters each having 8 to 20, preferably 12 to 18 carbon atoms in the fatty alkyl radical, alkoxylated triglycamides, mixed ethers or mixed formals, alkyl oligoglycosides, alkenyl oligoglycosides, fatty acid N-alkyuloxoxide and fatty acid-N-alkyuloxoxide-fatty acids-N-alkyuloxoxide-fatty acid-N-alkylyoxoxide-fatty acids-N-alkyuloxoxide-fatty acids-N-alkylyoxoxide-fatty acids-N-alkylyoxoxide-fatty acids-N-alkylyoxoxide-fatty acids Protein hydrolyzates.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkylamide betaines, aminopropionates, aminoglycinates, or amphoteric imidazolinium compounds of the formula
  • R 1 is C 8 -C 22 alkyl or alkenyl
  • R 2 is hydrogen or CH 2 C0 2 M
  • R 3 CH 2 CH 2 OH or CH 2 CH 2 OCH 2 CH 2 CO 2 M
  • R 4 is hydrogen, CH 2 CH 2 OH or CH 2 CH 2 COOM
  • Z means CO 2 M or CH 2 CO 2 M
  • n 2 or 3 preferably 2
  • M is hydrogen or a cation such as alkali metal, alkaline earth metal, ammonia or alkanolammonium.
  • Preferred amphoteric surfactants of this formula are monocarboxylates and dicarboxylates. Examples include cocoamphocarboxypropionate, cocoamidocarboxypropionic acid, cocoamphocarboxyglycinate (or also known as cocoamphodiacetate) and cocoamphoacetate.
  • amphoteric surfactants are alkyldimethylbetaines and alkyldipolyethoxybetaines with an alkyl radical with about 8 to about 22 carbon atoms, which can be linear or branched, preferably with 8 to 18 carbon atoms and particularly preferably with about 12 to about 18 carbon atoms. These connections are e.g. marketed by Clariant GmbH under the trade name ®Genagen LAB.
  • the washing and cleaning agents can also contain cationic surfactants.
  • Suitable cationic surfactants are substituted or unsubstituted straight-chain or branched quaternary ammonium salts of the type R 1 N (CH 3 ) 3 a X ⁇ , R 1 R 2 N (CH 3 ) 2 ⁇ X ⁇ , R 1 R 2 R 3 N (CH 3 ) ⁇ X ⁇ or R 1 R 2 R 3 RN ⁇ X ⁇ .
  • the radicals R 1 - R 2 - R 3 and R 4 can preferably independently of one another unsubstituted alkyl with a chain length between 8 and 24 C atoms, in particular between 10 and 18 C atoms, hydroxyalkyl with approx. 1 to approx. 4 C - Atoms, phenyl, C 2 to C 18 alkenyl, C 7 to C 24 aralkyl, (C 2 H 4 0) x H, where x is from about 1 to about 3, one or more alkyl groups containing ester groups or cyclic quaternary ammonium salts.
  • X is a suitable anion.
  • Other detergent and cleaning agent ingredients that may be included in the present invention include inorganic and / or organic builders to reduce the hardness of the water.
  • Inorganic builders include, for example, alkali, ammonium and alkanolammonium salts of polyphosphates such as tripolyphosphates, pyrophosphates and glassy polymeric metaphosphates, phosphonates, silicates, carbonates including bicarbonates and sesquicarbonates, sulfates and aluminosilicates.
  • silicate builders are the alkali metal silicates, in particular those with an SiO 2 : Na 2 O ratio between 1.6: 1 to 3.2: 1, and sheet silicates, for example sodium sheet silicates, as described in. US Pat. No. 4,664,839, available from Clariant GmbH under of the SKS® brand.
  • SKS-6® is a particularly preferred layered silicate builder.
  • Aluminosilicate builders are particularly preferred for the present invention. These are in particular zeolites with the formula Na z [(AlO 2 ) z (SiO 2 ) y ] »xH 2 0, where z and y are integers of at least 6, the ratio of z to y between 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • Suitable ion exchangers based on aluminosilicate are commercially available. These aluminosilicates can be crystalline or amorphous in structure, and can be naturally occurring or synthetic. Methods for the production of ion exchangers based on aluminosilicate are described in US Pat. Nos. 3,985,669 and 4,605,509. Preferred ion exchangers based on synthetic crystalline aluminosilicates are available under the names Zeolite A, Zeolite P (B) (including those disclosed in EP-A-0 384 070) and Zeolite X. Preferred are aluminosilicates with a particle diameter between 0.1 and 10 ⁇ m.
  • Suitable organic builders include polycarboxyl compounds, such as ether polycarboxylates and oxydisuccinates, as described, for example, in US Pat. Nos. 3,128,287 and 3,635,830. Reference should also be made to "TMSTDS" builders from US 4,663,071.
  • Suitable builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3,5-trihydroxybenzene-2,4,6-trisulfonic acid and carboxymethyloxy succinic acid, the alkali, ammonium and substituted ammonium salts of polyacetic acids such as e.g. Ethylenediaminetetraacetic acid and nitrilotriacetic acid, and also polycarboxylic acids, such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene-1, 3,5-tricarboxylic acid, carboxymethyloxy succinic acid, and their soluble salts.
  • polyacetic acids such as e.g. Ethylenediaminetetraacetic acid and nitrilotriacetic acid
  • polycarboxylic acids such as mellitic acid, succinic acid, oxydisuccinic acid, poly
  • Citric acid and its soluble salts, in particular the sodium salt are preferred polycarboxylic acid builders which can also be used in granulated formulations, in particular together with zeolites and / or layered silicates.
  • phosphorus-based builders can be used, and especially if hand soap bars are to be formulated for washing, various alkali metal phosphates such as sodium tripolyphosphate, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1, 1-diphosphonate and other known phosphonates such as those disclosed in, for example, US-3, 159,581, US-3,213,030, US-3,422,021, US-3,400,148 and US-3,422,137 can also be used .
  • the conventional detergent ingredients can be made from components typical of detergents, such as surfactants and builders can be selected.
  • the detergent ingredients can contain one or more cleaning aids or other materials that enhance the cleaning effect, serve to treat or care for the object to be cleaned or change the performance properties of the detergent composition.
  • Suitable cleaning aids in detergent compositions include those mentioned in US 3,936,537.
  • the cleaning aids that can be used in the detergent compositions of the present invention include, for example, enzymes, in particular proteases, lipases and celluloses, foam boosters, foam retardants, tarnishing and / or anti-corrosion agents, suspending agents, dyes, fillers, optical brighteners, disinfectants, alkalis, hydrotropes Compounds, antioxidants, enzyme stabilizers, perfumes, solvents, solubilizers, redeposition inhibitors, dispersants, color transfer inhibitors, e.g. B.
  • enzymes in particular proteases, lipases and celluloses
  • foam boosters foam retardants
  • tarnishing and / or anti-corrosion agents suspending agents, dyes, fillers, optical brighteners, disinfectants, alkalis, hydrotropes Compounds, antioxidants, enzyme stabilizers, perfumes, solvents, solubilizers, redeposition inhibitors, dispersants, color transfer inhibitors, e.g. B.
  • polyamine N-oxides such as poly- (4-vinylpyridine-N-oxide), polyvinylpyrrolidone, poly-N-vinyl-N-methylacetamide and copolymers of N-vinylimidazole and N-vinyipyrrolidone, processing aids, plasticizers and antistatic aids.
  • the detergent and cleaning agent compositions of the present invention may optionally contain one or more conventional bleaches, and activators or stabilizers, in particular peroxyacids, which do not react with the soil release oligoester ⁇ according to the invention.
  • activators or stabilizers in particular peroxyacids, which do not react with the soil release oligoester ⁇ according to the invention.
  • peroxyacids which do not react with the soil release oligoester ⁇ according to the invention.
  • Conventional test methods such as determining the bleaching activity of the formulated cleaning agent depending on the storage time, can be used for this purpose.
  • the peroxyacid can be either a free peroxyacid or a combination of an inorganic persalt, e.g. sodium perborate or sodium percarbonate, and an organic peroxyacid precursor which is converted to a peroxyacid when the combination of the persalt and the peroxyacid precursor is dissolved in water.
  • the organic peroxyacid precursors are often referred to in the art as bleach activators. Examples of suitable organic peroxyacids are disclosed in U.S. 4,374,035, U.S. 4,681,592, U.S. 4,634,551, U.S. 4,686,063, U.S. 4,606,838 and U.S. 4,671,891. Examples of compositions suitable for bleaching laundry and containing perborate bleaches and activators are described in U.S. 4,412,934, U.S. 4,536,314, U.S. 4,681, 695 and U.S. 4,539,130.
  • peroxyacids preferred for use in this invention include peroxydodecanedioic acid (DPDA), nonylamide of peroxysuccinic acid (NAPSA), nonylamide of peroxyadipic acid (NAPAA) and decyldiperoxysuccinic acid (DDPSA).
  • DPDA peroxydodecanedioic acid
  • NAPSA nonylamide of peroxysuccinic acid
  • NAPAA nonylamide of peroxyadipic acid
  • DDPSA decyldiperoxysuccinic acid
  • the peroxyacid is preferably contained in a soluble granulate, according to the method from US-4,374,035.
  • a preferred bleach granulate contains, in percent by weight, 1% to 50% of an exothermic soluble compound, such as, for example, boric acid; 1% to 25% of a surfactant compatible with the peroxyacid, such as C13LAS; 0.1% to 10% of one or more chelate stabilizers, such as sodium pyrophosphate; and 10% to 70% of a water soluble salt such as sodium sulfate.
  • an exothermic soluble compound such as, for example, boric acid
  • a surfactant compatible with the peroxyacid such as C13LAS
  • chelate stabilizers such as sodium pyrophosphate
  • a water soluble salt such as sodium sulfate
  • the peroxyacid bleaching agent is used in amounts that provide an amount of available oxygen between about 0.1% to about 10%, preferably between about 0.5% to about 5%, especially about 1% to 4%.
  • the percentages relate to the total weight of the detergent composition.
  • Suitable amounts of the peroxyacid bleach based on a unit dose of the detergent composition of the invention as used for a typical wash liquor comprising about 65 liters of water at 15 to 60 ° C produce between about 1 ppm to about 150 ppm available oxygen, preferably between about 2 ppm to about 20 ppm available oxygen.
  • the wash liquor should have a pH between 7 and 11, preferably between 7.5 and 10.5, in order to achieve a sufficient bleaching result.
  • the bleaching composition may contain a suitable organic peroxyacid precursor which produces one of the above-mentioned peroxyacids when it reacts with hydrogen peroxide in an aqueous alkaline solution.
  • the source of hydrogen peroxide can be any inorganic peroxide that releases hydrogen peroxide in aqueous solution, such as sodium perborate (monohydrate and tetrahydrate) and sodium percarbonate.
  • the proportion of bleaching agents containing peroxide in the cleaning agent compositions according to the invention is between about 0.1% by weight to about 95% by weight and preferably between about 1% by weight and about 60% by weight.
  • the proportion of the peroxide-containing bleach be between about 1% to about 20% by weight.
  • the amount of bleach activators that can be used with the soil release oligoesters according to the invention is generally between 0.1 and 60% by weight, preferably between 0.5 and 40% by weight. If the bleaching agent compositions used are at the same time completely formulated detergent compositions, the amount of bleach activators contained in them is preferably between about 0.5 and 20% by weight.
  • the peroxy acid and the soil release oligoester according to the invention are preferably in a weight ratio between the available oxygen from the peroxy acid and the soil release oligoester according to the invention of from about 4: 1 to about 1:30, in particular from about 2: 1 to about 1:15, and especially from about 1: 1 to about 1: 7.5.
  • This combination can be used both as a fully formulated product and as an additive to a detergent.
  • the washing and cleaning agents according to the invention can contain one or more conventional enzymes which do not react with the soil release oligoester according to the invention of this invention.
  • a particularly preferred enzyme is cellulose.
  • the cellulose used here can be obtained from bacteria or fungi and should have an optimal pH range between 5 and 9.5 exhibit. Suitable celluloses are disclosed in US 4,435,307. It is cellulose which is produced by a strain of Humicola insolens, in particular the strain Humicola DSM 1800 or another cellulose-212-producing fungus which belongs to the genus Aeromonas, and cellulose which extracts from the hepatopancreas of certain marine mollusks has been. Suitable celluloses are also disclosed in GB-A-2,075,028, GB-A-2,085,275 and DE-OS-2,247,832.
  • the detergent compositions according to the invention contain enzymes in amounts of up to about 50 mg, preferably from about 0.01 mg to about 10 mg, per gram of the detergent composition. Based on the weight of the detergent and cleaning agent compositions which contain the soil release oligoesters according to the invention, the proportion of the enzymes is at least 0.001% by weight, preferably between about 0.001% by weight and about 5% by weight, in particular about 0.001% by weight. % to about 1% by weight, especially from about 0.01% to about 1% by weight.
  • Alkanesulfonate as in Example 1 was mixed intensively with 10 g of calcium stearate and then ground on a laboratory screen basket mill (universal mill with cross beater) with a product throughput of 70 kg / h.
  • the laboratory screen basket mill universal mill with cross beater
  • Hole diameter of the strainer was 6 mm.
  • Example 3 was repeated, Mg stearate being used as the additive instead of Ca stearate.
  • the free-flowing granules obtained had a bulk density of 519 g / l and the following particle size distribution:
  • Magnesium oxide and magnesium silicate 1: 1 mixed.
  • the pellets treated in this way were placed on a laboratory sieve basket mill with a hole size of 8 mm and a
  • Treated silica (Sipernat® 22 S) and grind as described in Example 3.
  • the bulk density of the free-flowing granules was 532 g / l.
  • the sieve basket consists of a perforated plate with a 6 mm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Granulares sekundäres Alkansulfonat, bestehend im wesentlichen aus feinteiligem, festem sek. Alkansulfonat und einem Additiv. Dieses granulare sek. Alkansulfonat wird erhalten durch Malen und Mischen von grobem sek. Alkansulfonat mit einem Additiv, vorzugsweise feinteiliger Kieselsäure. Das auf diese Weise konfektionierte Alkansulfonat läßt sich in festen Wasch- und Reinigungsmitteln verwenden oder direkt zur Herstellung von Extrudaten, Preßlingen oder Kompaktaten.

Description

Granuläres sekundäres Alkansulfonat
Sekundäre Alkansulfonate (SAS) stellen seit vielen Jahren eine bedeutende Produktgruppe innerhalb der Aniontenside dar. Sekundäres Alkansulfonat in fester Form hat allerdings die unerwünschte Eigenschaft, daß es hygroskopisch ist. Aufgrund dieser Eigenschaft wird festes SAS nur als Pellets oder Schuppen in den Handel gebracht. Bei dieser groben Form spielt die hygroskopische Eigenschaft des SAS keine Rolle. Zur Herstellung pulverförmiger, homogener Wasch- und Reinigungsmittel ist es jedoch notwendig, daß alle Komponenten in feinteiliger Form vorliegen. Feinteiliges SAS agglomeriert aber infolge seiner hygroskopischen Eigenschaft, so daß solche pulverförmigen Wasch- und Reinigungsmittel mit einem Gehalt an SAS nicht in der feinteiligen Form verbleiben. Der Einsatz von SAS ist daher im wesentlichen auf flüssige Wasch- und Reinigungsmittel beschränkt.
In der Vergangenheit hat es nicht an Versuchen gefehlt, die Anwendung von sek. Alkansulfonaten auch in festen Wasch- und Reinigungsmitteln zu ermöglichen.
So wird in DE-A-2 415 159 ein Produkt beschrieben, das durch Sprühtrocknung einer wäßrigen Lösung von Alkansulfonat und eines Trägermaterials erhalten wird. Als Trägermaterial kommen hier im wesentlichen anorganische Salze in Frage. Die Menge dieser Salze ist ziemlich hoch und beträgt 50 bis 95 Gew.-%, bezogen auf die Gesamtmenge von Alkansulfonat und Trägermaterial.
WO 93/16164 beschreibt die Herstellung von Aniontensidsalzen durch eine Sprühneutralisation, bei der die Aniontenside in ihrer Säureform zusammen mit wäßrigen Lösungen von Basen versprüht werden. Hierbei können geeignete staubbindende Hilfsstoffe zugegeben werden.
Aus JP 89-142 999 sind Mischungen aus Alkansulfonat und Zeolithen bekannt. DE-A 2 745 691 beschreibt SAS in Pulverform wobei das SAS keinerlei Additiv oder Antibackmittel enthält. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, festes SAS in feinteiliger Form zur Verfügung zu stellen, das direkt als Tensidkomponente in pulverförmige Wasch- und Reinigungsmittel homogen eingearbeitet werden kann, ohne daß es hier zu einer Bildung von Agglomeraten kommt oder das in üblicher Weise zusammen mit in Wasch- und Reinigungsmitteln üblichen Komponenten zu festen Extrudaten, Preßlingen oder Kompaktaten weiterverarbeitet werden kann.
Gegenstand der Erfindung ist ein granuläres sekundäres Alkansulfonat, bestehend im wesentlichen aus feinteiligem festen sek. Alkansulfonat und einem Additiv.
Als Ausgangsmaterial dient festes sek. Alkansulfonat, beispielsweise in Form von Pellets (Hostapur® SAS 93) oder in Schuppenform. In diesem sekundären Alkansulfonat kann die Alkylgruppe entweder gesättigt oder ungesättigt, verzweigt oder linear und gegebenenfalls mit einer Hydroxylgruppe substituiert sein. Die Sulfogruppe kann an einer beliebigen Position der C-Kette sein, wobei die primären Methylgruppen am Kettenanfang und Kettenende keine Sulfonatgruppen besitzen. Die bevorzugten sekundären Alkansulfonate enthalten lineare Alkylketten mit ca. 9 - 25 C-Atomen, bevorzugt 10 bis 20, und besonders bevorzugt ca. 13 bis 17 Kohlenstoffatomen. Das Kation ist beispielsweise Natrium, Kalium, Ammonium, Mono-, Di- oder Triethanolammonium, Calcium oder Magnesium und Mischungen davon. Natrium als Kation ist bevorzugt.
Die Herstellung des erfindungsgemäßen Alkansulfonats erfolgt durch Mahlen von SAS in Form von Pellets oder Schuppen, wie sie üblicherweise bei der Produktion von festem SAS anfallen. In einer ersten Ausführungsform wird dieses grobe SAS vor dem Mahlen mit dem Additiv intensiv vermischt und anschließend vermählen. Hierzu eignen sich prinzipiell alle Mahlapparate, wie z. B. Prallmühlen, Schneidmühlen, Walzenstühle oder Luftstrahlmühlen. Prallmühlen sind beispielsweise Schlagradmühlen mit und ohne Einbauten, Stiftmühlen und Desintegratoren besonders mit angeschliffenen Stiften, Universalmühlen mit verschiedenen Arbeitsorganen, besonders mit hammerartigen Arbeitsorganen. Besonders bevorzugt sind Schneidmühlen, Universalmühlen mit Schlagkreuz und Pralltellermühlen mit Siebkorb und Schlagkreuz/Turbine (z.B. Pralltellermühlen vom Typ PP/PPS der Fa. Pallmann).
Alternativ hierzu kann man auch auf eine Vormischung von Alkansulfonat und Additiv verzichten und das Additiv gleichzeitig mit dem Alkansulfonat unmittelbar in die Mahlvorrichtung geben. Es können dann auch gröbere Materialien mit einem Durchmesser im Millimeterbereich verwendet werden, da diese bei der Mahlung selbst zerkleinert und durch die mechanische Einwirkung intensiv mit dem Alkansulfonat vermischt werden.
Die Mahlung des Gemischs aus Alkansulfonat und Additiv kann unter Kühlung erfolgen, um die Reibungswärme abzuführen und den Zerkleinerungsprozess durch eine Kälteversprödung zu unterstützen. Hierzu kann entweder die Mühle direkt gekühlt werden oder man kühlt den von der Mühle angesaugten Luftstrom, wenn es sich um einen kontinuierlichen Mahlvorgang handelt. Man kann auch das sek. Alkansulfonat vorkühlen oder während des Mahlvorgangs ein Kältemittel wie zum Beispiel Trockeneis zugeben. Bei diesem Zerkleinerungsverfahren ist darauf zu achten, daß der Zutritt von Feuchtigkeit, insbesondere der Luftfeuchtigkeit nach der Vermahlung (bis zum Angleich der Produkttemperatur an die Umgebungstemperatur) z.B. durch apparative Maßnahmen vermieden wird.
Gemäß einer dritten Variante kann man auch zunächst das grobteilige feste SAS mahlen, vorzugsweise unter Kühlung, wie zuvor beschrieben, und dann das gemahlene SAS mit dem Additiv vermischen.
Bei allen geschilderten Verfahrensvarianten wird das SAS und gegebenenfalls auch das Additiv auf eine Korngröße von 0,1 bis 3, vorzugsweise 0,5 bis 2 mm vermählen.
Als Additive im Rahmen dieser Erfindung kommen eine Vielzahl von Verbindungen in Frage. Sie können durchaus wasserlöslich sein, vorzugsweise sind sie jedoch hydrophob. Voraussetzung ist in jedem Fall, daß diese Additive nicht hygroskopisch sind. Bevorzugt sind außerdem solche Additive, die bereits von vornherein in feinteiliger Form vorliegen.
Geeignete Additive sind z.B. langkettige Fettsäuren, insbesondere C18-C22- Fettsäuren, wie Stearinsäure und Behensäure, deren Salze, insbesondere die Erdalkalisalze, Fettalkohole, Polymere wie hochmolekulare Polyethylenglykole, z.B. PEG 20.000, Polyacrylate beispielsweise ©Sokalan CP 5, Cellulose und deren Derivate wie Carboxymethylcellulose, Methyicellulose, Hydroxyethylcellulose, Wachse, z.B. Montanwachse, Paraffinwachse, Esterwachse, Polyolefinwachse, Bentonite, z.B. ©Laundrosil DGA von Fa. Südchemie, Magnesiumoxid, Kreide, Kaolin, Magnesiumsilikat, Kieselkreide, Kieselgur, Kieselsäuren, Talkum, Alkalibzw. Erdalkalisulfate. Zu den bevorzugten Additiven gehören synthetische, feinteilige, hochdisperse Kieselsäuren, z.B. pyrogene Kieselsäuren (©Aerosil- Marken der Fa. Degussa) und Fällungskieselsäuren, beispielsweise die Handelsprodukte ©Sident 12, Sident 12 DS. FK 160, FK 300 DS, FK 310, FK 320, FK 320 DS, FK 383 DS, FK 500 LS, FK 700, ©Sipernat 22, Sipemat 22S, Sipernat 30, Sipernat 50, Sipernat 50 S, Sipernat D 17, ©Ultrasil VN 2, Ultrasil VN 3, ©Wessalon und Wessalon S der Firma Degussa. Derartige Kieselsäuren sind von Natur aus hydrophil, es können aber auch hydrophob modifizierte Kieselsäuren genommen werden, wie zum Beispiel Sipernat D 17 oder Aerosil R 972.
Die vorgenannten Additive werden in einer Konzentration von 0,1 bis 10 %, bevorzugt 0,5 bis 5 % und besonders bevorzugt 0,5 bis 2 %, bezogen auf sek. Alkansulfonat, eingesetzt.
Das so erhaltene pulver- oder granulatförmige sek. Alkansulfonat kann unmittelbar als Tensidkomponente in Wasch- und Reinigungsmittel eingearbeitet werden. Derartige pulverförmige Wasch- und Reinigungsmittel können z.B. Waschpulver, Fleckensalze, Scheuermittel und sonstige Feststoffmischungen sein. Eine andere Möglichkeit besteht darin, das erfindungsgemäße pulver- oder granulatförmige SAS zu festen Extrudaten wie zum Beispiel Waschstücke, bar soaps oder Toilettensteine, zu Preßlingen, z.B. Tabletten, oder Kompaktaten (Walzen) zu verarbeiten.
Das erfindungsgemäße sek. Alkansulfonat kann in den fertigen Wasch- und Reinigungsmittelformulierungen entweder allein oder in Kombination mit weiteren Tensiden eingesetzt werden.
Die Gesamtkonzentration von Tensiden einschließlich des erfindungsgemäßen sek. Alkansulfonats kann von 1 % bis 99 %, bevorzugt zwischen 5 % und 80 % und besonders bevorzugt zwischen 5 % und 40 % betragen.
Folgende Tenside können beispielsweise zusammen mit dem erfindungsgemäßen granulärem sekundärem Alkansulfonat in Wasch- und Reinigungsmitteln kombiniert werden.
Als anionische Tenside kommen Sulfate, Sulfonate, Carboxylate, Phosphate und Mischungen daraus in Betracht. Geeignete Kationen sind hierbei Alkalimetalle, wie z. B. Natrium oder Kalium oder Erdalkalimetalle, wie z. B. Caicium oder Magnesium sowie Ammonium, substituierte Ammoniumverbindungen, einschließlich Mono-, Dioder Triethanolammoniumkationen, und Mischungen daraus. Folgende Typen von anionischen Tensiden sind von besonderem Interesse: Alkylestersulfonate, Alkylsulfate, Alkylethersulfate, Alkylbenzolsulfonate, Olefinsulfonate und Seifen, wie im folgenden beschrieben. Alkylestersulfonate sind unter anderem lineare Ester von C8-C20-Carboxylsäuren (d.h. Fettsäuren), welche mittels gasförmigem S03 sulfoniert werden, wie in "The Journal of the American Oil Chemists Society" 52 (1975), pp. 323-329 beschrieben wird. Geeignete Ausgangsmaterialien sind natürliche Fette wie z.B. Talg, Kokosöl und Palmöl, können aber auch synthetischer Natur sein. Bevorzugte Alkylestersulfonate, speziell für Waschmittelanwendungen, sind Verbindungen der Formel
R 1 CH COOR
I SO3M
-worin R1 einen C8-C20-Kohlenwasserstoffrest, bevorzugt Alkyl, und R einen CrC6 Kohlenwasserstoffrest, bevorzugt Alkyl, darstellt. M steht für ein Kation, das ein wasserlösliches Salz mit dem Alkylestersulfonat bildet. Geeignete Kationen sind Natrium, Kalium, Lithium oder Ammoniumkationen, wieJVIonoethanolamin, Diethanolamin und Triethanolamin. Bevorzugt bedeuten R1 C10-C16-Alkyl und R Methyl, Ethyl oder Isopropyl. Besonders bevorzugt sind Methylestersulfonate, in denen R1 C10-C16-Alkyl bedeutet.
Alkylsulfate sind hier wasserlösliche Salze oder Säuren der Formel ROSO3M, worin R ein C10-C24-Kohlenwasserstoffrest, bevorzugt ein Alkyl- oder Hydroxyalkylrest mit C10-C20-Alkylkomponente, besonders bevorzugt ein C12-C18 Alkyl- oder Hydroxyalkylrest ist. M ist Wasserstoff oder ein Kation, z.B. ein Alkalimetallkation (z.B. Natrium, Kalium, Lithium) oder Ammonium oder substituiertes Ammonium, z. B. Methyl-, Dimethyl- und Trimethylammoniumkationen und quatemäre Ammoniumkationen, wie Tetramethylammonium- und Dimethylpiperidiniumkationen und quartäre Ammoniumkationen, abgeleitet von Alkylaminen wie Ethylamin, Diethylamin, Triethylamin und Mischungen davon. Alkylketten mit C12-C16 sind für niedrige Waschtemperaturen (z. B. unter ca. 50°C) und Alkylketten mit C16-C18 für höhere Waschtemperaturen (z. B. oberhalb ca. 50°C) bevorzugt.
Alkylethersulfate sind wasserlösliche Salze oder Säuren der Formel RO(A)m S03M, worin R einen unsubstituierten C10-C24-Alkyl- oder Hydroxyalkylrest, bevorzugt einen C12-C20 Alkyl- oder Hydroxyalkylrest, besonders bevorzugt C12-C18-Alkyl- oder Hydroxyalkylrest darstellt. A ist eine Ethoxy- oder Propoxyeinheit, m ist eine Zahl größer als 0, vorzugsweise zwischen ca. 0,5 und ca. 6, besonders bevorzugt zwischen ca. 0,5 und ca. 3 und M ist ein Wasserstoffatom oder ein Kation wie z. B. Natrium, Kalium, Lithium, Caicium, Magnesium, Ammonium oder ein substituiertes Ammoniumkation. Spezifische Beispiele von substituierten Ammoniumkationen sind Methyl-, Dimethyl-, Trimethylammonium- und quartemäre Ammoniumkationen wie Tetramethylammonium und Dimethylpiperidiniumkationen sowie solche, die von Alkylaminen, wie Ethylamin, Diethylamin, Triethylamin oder Mischungen davon abgeleitet sind. Als Beispiele seien C12- bis C18-Fettalkoholethersulfate genannt wobei der Gehalt an EO 1 , 2, 2.5, 3 oder 4 mol pro mol des Fettalkoholethersulfats beträgt, und in denen M Natrium oder Kalium ist.
Weitere geeignete anionische Tenside sind Alkenyl- oder Alkylbenzolsulfonate. Die Alkenyl- oder Alkylgruppe kann verzweigt oder linear und gegebenenfalls mit einer Hydroxylgruppe substituiert sein. Die bevorzugten Alkylbenzolsulfonate enthalten lineare Alkylketten mit ca. 9 bis 25 Kohlenstoffatomen, bevorzugt von ca. 10 bis ca. 13 Kohlenstoffatome, das Kation ist Natrium, Kalium, Ammonium, Mono-, Dioder Triethanolammonium, Caicium oder Magnesium und Mischungen davon. Für milde Tensidsysteme ist Magnesium als Kation bevorzugt, für Standardwaschanwendungen dagegen Natrium. Gleiches gilt für Alkenylbenzolsulfonate.
Der Begriff anionische Tenside schließt auch Olefinsulfonate mit ein, die durch Sulfonierung von C12-C24-, vorzugsweise C14-C16- -Olefinen mit Schwefeltrioxid und anschließende Neutralisation erhalten werden. Bedingt durch das Herstellverfahren, können diese Olefinsulfonate kleinere Mengen an Hydroxyalkansulfonaten und Alkandisulfonaten enthalten. Spezielle Mischungen von α-Olefinsulfonaten sind in US-3, 332,880 beschrieben.
Weitere bevorzugte anionische Tenside sind Carboxylate, z. B. Fettsäureseifen und vergleichbare Tenside. Die Seifen können gesättigt oder ungesättigt sein und können verschiedene Substituenten, wie Hydroxylgruppen oder α-Sulfonatgruppen enthalten. Bevorzugt sind lineare gesättigte oder ungesättigte Kohlenwasserstoffreste als hydrophober Anteil mit ca. 6 bis ca. 30, bevorzugt ca. 10 bis ca. 18 Kohlenstoffatomen.
Als anionische Tenside kommen weiterhin Salze von Acylaminocarbonsäuren in Frage, die durch Umsetzung von Fettsäurechloriden mit Natriumsarkosinat im alkalischen Medium entstehenden Acylsarcosinate; Fettsäure-Eiweiß- Kondensationsprodukte, die durch Umsetzung von Fettsäurechloriden mit Oligopeptiden erhalten werden; Salze von Alkylsulfamidocarbonsäuren; Salze von Alkyl- und Alkylarylethercarbonsäuren; C8-C24-Olefinsulfonate, sulfonierte Polycarboxylsäuren, hergestellt durch Sulfonierung der Pyrolyseprodukte von Erdalkalimetallcitraten, wie z.B. beschrieben in GB-1 ,082,179; Alkylglycerinsulfate, Oleylglycerinsulfate, Alkylphenolethersulfate, primäre Paraffinsulfonate, Alkylphosphate, Alkyletherphosphate, Isethionate, wie Acylisethionate, N-Acyltauride, Alkylsuccinate, Sulfosuccinate, Monoester der Sulfosuccinate (besonders gesättigte und ungesättigte C 2-C18-Monoester) und Diester der Sulfosuccinate (besonders gesättigte und ungesättigte C12-C18-Diester), Acylsarcosinate, Sulfate von Alkylpolysacchariden wie Sulfate von Alkylpolyglycosiden, verzweigte primäre Alkylsulfate und Alkylpolyethoxycarboxylate wie die der Formel RO(CH2CH2)kCH2COO"M+, worin R C8 bis C22-Alkyl, k eine Zahl von 0 bis 10 und M ein Kation ist, Harzsäuren oder hydrierte Harzsäuren, wie Rosin oder hydriertes Rosin oder Tallölharze und Tallölharzsäuren. Weitere Beispiele sind in "Surface Active Agents and Detergents" (Vol. I und II, Schwartz, Perry und Berch) beschrieben.
Als nicht-ionische Tenside kommen beispielsweise folgende Verbindungen in
Frage:
Polyethylen-, Polypropylen- und Polybutylenoxidkondensate von Alkylphenolen.
Diese Verbindungen umfassen die Kondensationsprodukte von Alkylphenolen mit einer C6- bis C20-Alkylgruppe, die entweder linear oder verzweigt sein kann, mit Alkenoxiden. Bevorzugt sind Verbindungen mit ca. 5 bis 25 mol Alkenoxid pro mol Alkylphenol. Kommerziell erhältliche Tenside diesen Typs sind z.B. Igepal® CO-630, Triton® X-45, X-114, X-100 und X102, und die ^Arkopal-N-Marken der Clariant GmbH. Diese Tenside werden als Alkylphenolalkoxilate, z.B. Alkylphenolethoxilate, bezeichnet.
Kondensationsprodukte von aliphatischen Alkoholen mit ca. 1 bis ca. 25 mol Ethylenoxid.
Die Alkylkette der aliphatischen Alkohole kann linear oder verzweigt, primär oder sekundär sein, und enthält im allgemeinen ca. 8 bis ca. 22 Kohlenstoffatome. Besonders bevorzugt sind die Kondensationsprodukte von C10- bis C20-Alkoholen mit ca. 2 bis ca. 18 mol Ethylenoxid pro mol Alkohol. Die Alkylkette kann gesättigt oder auch ungesättigt sein. Die Alkoholethoxilate können eine enge ("Narrow Range Ethoxilates") oder eine breite Homologenverteilung des Ethylenoxides ("Broad Range Ethoxylates") aufweisen. Beispiele von kommerziell erhältlichen nichtionischen Tensiden dieses Typs sind Teritol® 15-S-9 (Kondensationsprodukt eines linearen sekundären Cι rC15-Alkohols mit 9 mol Ethylenoxid), Tergitol® 24-L- NMW (Kondensationsprodukt eines linearen primären C12-C14-Alkohols mit 6 mol Ethylenoxid bei enger Molgewichtsverteilung). Ebenfalls unter diese Produktklasse fallen die Genapol®-Marken der Clariant GmbH.
Kondensationsprodukte von Ethylenoxid mit einer hydrophoben Basis, gebildet durch Kondensation von Propylenoxid mit Propylenglykol.
Der hydrophobe Teil dieser Verbindungen weist bevorzugt ein Molekulargewicht zwischen ca. 1500 und ca. 1800 auf. Die Anlagerung von Ethylenoxid an diesen hydrophoben Teil führt zu einer Verbesserung der Wasserlöslichkeit. Das Produkt ist flüssig bis zu einem Polyoxyethylengehalt von ca. 50 % des Gesamtgewichtes des Kondensationsproduktes, was einer Kondensation mit bis zu ca. 40 mol Ethylenoxid entspricht. Kommerziell erhältliche Beispiele dieser Produktklasse sind die Pluronic®-Marken der BASF und die ®Genapol PF-Marken der Clariant GmbH.
Kondensationsprodukte von Ethylenoxid mit einem Reaktionsprodukt von Propylenoxid und Ethylendiamin. Die hydrophobe Einheit dieser Verbindungen besteht aus dem Reaktionsprodukt von Ethylendiamin mit überschüssigem Propylenoxid und weist im allgemeinen ein Molekulargewicht von ca. 2500 bis 3000 auf. An diese hydrophobe Einheit wird Ethylenoxid bis zu einem Gehalt von ca. 40 bis ca. 80 Gew.-% Polyoxyethylen und einem Molekulargewicht von ca. 5000 bis 11000 addiert. Kommerziell erhältliche Beispiele dieser Verbindungsklasse sind die ®Tetronic-Marken der BASF und die ®Genapol PN-Marken der Clariant GmbH.
Semipolare nichtionische Tenside
Diese Kategorie von nichtionischen Verbindungen umfaßt wasserlösliche Aminoxide, wasserlösliche Phosphinoxide und wasserlösliche Sulfoxide, jeweils mit einem Alkylrest von ca. 10 bis ca. 18 Kohlenstoffatomen. Semipolare nichtionische Tenside sind auch Aminoxide der Formel
O
R (O R2 )χ N (R 1 ) 2
R ist hierbei eine Alkyl-, Hydroxyalkyl- oder Alkylphenolgruppe mit einer Kettenlänge von ca. 8 bis ca. 22 Kohlenstoffatomen, R2 ist eine Alkylen- oder Hydroxyalkylengruppe mit ca. 2 bis 3 Kohlenstoffatomen oder Mischungen hiervon, jeder Rest R1 ist eine Alkyl- oder Hydroxyalkylgruppe mit ca. 1 bis ca. 3 Kohlenstoffatomen oder eine Polyethylenoxidgruppe mit ca. 1 bis ca. 3 Ethylenoxideinheiten und x bedeutet eine Zahl von 0 bis etwa 10. Die R1 -Gruppen können miteinander über ein Sauerstoff- oder Stickstoffatom verbunden sein und somit einen Ring bilden. Aminoxide dieser Art sind besonders C10-C18- Alkyldimethylaminoxide und C8-C12-Alkoxiethyl-Dihydroxyethylaminoxide.
Fettsäureamide
Fettsäureamide besitzen die Formel
RCO — N(R1)2 worin R eine Alkylgruppe mit ca. 7 bis ca. 21 , bevorzugt ca. 9 bis ca. 17 Kohlenstoffatomen ist und jeder Rest R1 Wasserstoff, CrC4-Aikyl, CrC4- Hydroxyalkyl und (C2H40)xH bedeutet, wobei x von ca. 1 bis ca. 3 variiert. Bevorzugt sind C8-C20-Amide, -monoethanolamide, -diethanolamide und -isopropanolamide.
Weitere geeignete nichtionische Tenside sind Alkyl- und Alkenyloligoglycoside sowie Fettsäurepolyglykolester oder Fettaminpolyglykolester mit jeweils 8 bis 20, vorzugsweise 12 bis 18 C-Atomen im Fettalkylrest, alkoxylierte Triglycamide, Mischether oder Mischformale, Alkyloligoglycoside, Alkenyloligoglycoside, Fettsäure-N-alkyiglucamide, Phosphinoxide, Dialkylsulfoxide und Proteinhydrolysate.
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidbetaine, Aminopropionate, Aminoglycinate, oder amphotere Imidazolinium- Verbindungen der Formel
R1
Figure imgf000013_0001
worin R1 C8-C22-Alkyl- oder -Alkenyl, R2 Wasserstoff oder CH2C02M, R3 CH2CH2OH oder CH2CH2OCH2CH2CO2M, R4 Wasserstoff, CH2CH2OH oder CH2CH2COOM, Z C02M oder CH2C02M, n 2 oder 3, bevorzugt 2, M Wasserstoff oder ein Kation wie Alkalimetall, Erdalkalimetall, Ammoniak oder Alkanolammonium bedeutet.
Bevorzugte amphotere Tenside dieser Formel sind Monocarboxylate und Dicarboxylate. Beispiele hierfür sind Cocoamphocarboxypropionat, Cocoamidocarboxypropionsäure, Cocoamphocarboxyglycinat (oder auch als Cocoamphodiacetat bezeichnet) und Cocoamphoacetat.
Weitere bevorzugte amphotere Tenside sind Alkyldimethylbetaine und Alkyldipolyethoxybetaine mit einem Alkylrest mit ca. 8 bis ca. 22 Kohlenstoffatomen, der linear oder verzweigt sein kann, bevorzugt mit 8 bis 18 Kohlenstoffatomen und besonders bevorzugt mit ca. 12 bis ca. 18 Kohlenstoffatomen. Diese Verbindungen werden z.B. von der Clariant GmbH unter dem Handelsnamen ®Genagen LAB vermarktet.
In Sonderfällen können die Wasch- und Reinigungsmittel auch kationische Tenside enthalten. Geeignete kationische Tenside sind substituierte oder unsubstituierte geradkettige oder verzweigte quartäre Ammoniumsalze vom Typ R1 N(CH3)3 aXθ, R1R2N(CH3)2 ΘXΘ, R1R2R3N(CH3)ΘXΘ oder R1R2R3R NΦXΘ. Die Reste R1- R2- R3 und R4 können vorzugsweise unabhängig voneinander unsubstituiertes Alkyl mit einer Kettenlänge zwischen 8 und 24 C-Atomen, insbesondere zwischen 10 und 18 C-Atomen, Hydroxyalkyl mit ca. 1 bis ca. 4 C-Atomen, Phenyl, C2- bis C18-Alkenyl, C7- bis C24-Aralkyl, (C2H40)xH, wobei x von ca. 1 bis ca. 3 bedeutet, ein oder mehrere Estergruppen enthaltende Alkylreste oder cyclische quartäre Ammoniumsalze sein. X ist ein geeignetes Anion. Weitere Wasch- und Reinigungsmittelinhaltsstoffe, die in der vorliegenden Erfindung enthalten sein können, umfassen anorganische und/oder organische Gerüststoffe, um den Härtegrad des Wassers zu mindern.
Diese Gerüststoffe können mit Gewichtsanteilen von etwa 5 % bis etwa 80 % in den Wasch- und Reinigungsmittelzusammensetzungen enthalten sein. Anorganische Gerüststoffe umfassen beispielsweise Alkali-, Ammonium- und Alkanolammoniumsalze von Polyphosphaten wie etwa Tripolyphosphate, Pyrophosphate und glasartige polymere Metaphosphate, Phosphonaten, Silikaten, Carbonaten einschließlich Bicarbonate und Sesquicarbonate, Sulfaten und Aluminosilikaten.
Beispiele für Silikatgerüststoffe sind die Alkalimetallsilikate, insbesondere diejenigen mit einem SiO2:Na2O-Verhältnis zwischen 1 ,6:1 bis 3,2:1 sowie Schichtsilikate, beispielsweise Natriumschichtsilikate, wie beschrieben in. US- 4,664,839, erhältlich von Clariant GmbH unter der Marke SKS®. SKS-6® ist ein besonders bevorzugter Schichtsilikatgerüststoff.
Aluminosilikatgerüststoffe sind für die vorliegende Erfindung besonders bevorzugt. Es handelt sich dabei insbesondere um Zeolithe mit der Formel Naz[(AI02)z(Si02)y]»xH20, worin z und y ganze Zahlen von mindestens 6 bedeuten, das Verhältnis von z zu y zwischen 1 ,0 bis etwa 0,5 liegt, und x eine ganze Zahl von etwa 15 bis etwa 264 bedeutet.
Geeignete lonentauscher auf Aluminosilikatbasis sind im Handel erhältlich. Diese Aluminosilikate können von kristalliner oder amorpher Struktur sein, und können natürlich vorkommend oder auch synthetisch hergestellt sein. Verfahren für die Herstellung von lonentauschem auf Aluminosilikatbasis werden beschrieben in US- 3,985,669 und US-4,605,509. Bevorzugte lonentauscher auf der Basis synthetischer kristalliner Aluminosilikate sind erhältlich unter der Bezeichnung Zeolith A, Zeolith P(B) (einschließlich der in EP-A-0 384 070 offenbarten) und Zeolith X. Bevorzugt sind Aluminosilikate mit einem Partikeldurchmesser zwischen 0,1 und 10 μm. Geeignete organische Gerüststoffe umfassen Polycarboxylverbindungen, wie beispielsweise Etherpolycarboxylate und Oxydisuccinate, wie beispielsweise in US-3,128,287 und US-3,635,830 beschrieben. Ebenfalls soll auf "TMSTDS"- Gerüststoffe aus US-4,663,071 verwiesen werden.
Andere geeignete Gerüststoffe umfassen die Etherhydroxypolycarboxylate, Copolymere von Maleinsäureanhydrid mit Ethylen oder Vinylmethylether, 1 ,3,5-Trihydroxybenzol-2,4,6-trisulfonsäure und Carboxymethyloxybemsteinsäure, die Alkali-, Ammonium- und substituierten Ammoniumsalze von Polyessigsäuren wie z.B. Ethylendiamintetraessigsäure und Nitrilotriessigsäure, sowie Polycarbonsäuren, wie Mellithsäure, Bernsteinsäure, Oxydibemsteinsäure, Polymaleinsäure, Benzol-1 ,3,5-tricarbonsäure, Carboxymethyloxybemsteinsäure, sowie deren lösliche Salze.
Gerüststoffe auf Citratbasis, z.B. Zitronensäure und ihre löslichen Salze, insbesondere das Natriumsalz, sind bevorzugte Polycarbonsäuregerüststoffe, die auch in granulierten Formulierungen, insbesondere zusammen mit Zeolithen und/oder Schichtsilikaten verwendet werden können.
Weitere geeignete Gerüststoffe sind die 3,3-Dicarboxy-4-oxa-1 ,6-hexandioate und die verwandten Verbindungen, die in US-4,566,984 offenbart sind.
Wenn Gerüststoffe auf Phosphorbasis verwendet werden können, und insbesondere wenn Seifenstücke für die Wäsche von Hand formuliert werden sollen, können verschiedene Alkalimetallphosphate wie etwa Natriumtripolyphosphat, Natriumpyrophosphat und Natriumorthophosphat verwendet werden. Ebenfalls können Phosphonatgerüststoffe, wie Ethan-1 -hydroxy-1 ,1- diphosphonat und andere bekannte Phosphonate wie sie beispielsweise in US-3, 159,581 , US-3,213,030, US-3,422,021 , US-3,400,148 und US-3,422,137 offenbart sind, verwendet werden.
In einer bevorzugten Ausführungsform der Erfindung können die konventionellen Reinigungsmittelinhaltsstoffe aus für Reinigungsmittel typischen Komponenten, wie oberflächenaktive Stoffe und Gerüststoffe ausgewählt werden. Gegebenenfalls können die Reinigungsmittelinhaltsstoffe einen oder mehrere Reinigungshilfsstoffe oder andere Materialien enthalten, die die Reinigungswirkung verstärken, zur Behandlung oder Pflege des zu reinigenden Gegenstandes dienen oder die Gebrauchseigenschaften der Reinigungsmittelzusammensetzung ändern. Geeignete Reinigungshilfsmittel in Reinigungsmittelzusammensetzungen umfassen die in US-3,936,537 genannten Stoffe. Die Reinigungshilfsstoffe, die in den Reinigungsmittelzusammensetzungen der vorliegenden Erfindung benutzt werden können, umfassen beispielsweise Enzyme, insbesondere Proteasen, Lipasen und Cellulosen, Schaumverstärker, Schaumbremsen, Anlauf- und/oder Korrosionsschutzmittel, Suspensionsmittel, Farbstoffe, Füllmittel, optische Aufheller, Desinfektionsmittel, Alkalien, hydrotrope Verbindungen, Antioxidantien, Enzymstabilisatoren, Parfüme, Lösungsmittel, Lösungsvermittler, Wiederablagerungsverhinderer, Dispergiermittel, Farbübertragungsinhibitoren, z. B. Polyamin-N-oxide wie etwa Poly-(4-vinylpyridin-N-oxid), Polyvinylpyrrolidon, Poly-N- vinyl-N-methylacetamid und Copolymere von N-Vinylimidazol und N-Vinyipyrrolidon, Verarbeitungshilfsmittel, Weichmacher und Antistatikhilfsmittel.
Die Wasch- und Reinigungsmittelzusammensetzungen der vorliegenden Erfindung können gegebenenfalls einen oder mehrere konventionelle Bleichmittel enthalten, sowie Aktivatoren oder Stabilisatoren, insbesondere Peroxysäuren, die nicht mit den erfindungsgemäßen Schmutzlöseoligoesterπ reagieren. Im allgemeinen muß sichergestellt sein, daß die verwendeten Bleichmittel mit den Reinigungsmittelinhaltsstoffen verträglich sind. Konventionelle Prüfmethoden, wie etwa die Bestimmung der Bleichaktivität des fertig formulierten Reinigungsmittels in Abhängigkeit von der Lagerungszeit können für diesen Zweck verwendet werden.
Die Peroxysäure kann entweder eine freie Peroxysäure sein, oder eine Kombination aus einem anorganischen Persalz, beispielsweise Natriumperborat oder Natriumpercarbonat und einem organischen Peroxysäure-Vorläufer, der zu einer Peroxysäure umgewandelt wird, wenn die Kombination des Persalzes und des Peroxysäure-Vorläufers in Wasser aufgelöst wird. Die organischen Peroxysäure- Vorläufer werden im Stand der Technik oft als Bleichaktivatoren bezeichnet. Beispiele geeigneter organischer Peroxysäuren sind offenbart in US-4, 374,035, US-4,681 ,592, US-4,634,551 , US-4,686,063, US-4,606,838 und US-4,671 ,891. Beispiele für Zusammensetzungen, die zum Bleichen von Wäsche geeignet sind und die Perboratbleichmittel und Aktivatoren enthalten, werden beschrieben in US-4,412,934, US-4,536,314, US-4,681 ,695 und US-4,539,130.
Beispiele für Peroxysäuren, die für die Verwendung in dieser Erfindung bevorzugt sind, umfassen die Peroxydodecandisäure (DPDA), das Nonylamid der Peroxybemsteinsäure (NAPSA), das Nonylamid der Peroxyadipinsäure (NAPAA) und Decyldiperoxybernsteinsäure (DDPSA). Die Peroxysäure ist vorzugsweise in einem löslichen Granulat enthalten, entsprechend der Methode aus US-4, 374, 035. Ein bevorzugtes Bleichgranulat enthält, in Gewichtsprozenten, 1 % bis 50 % einer exotherm löslichen Verbindung, wie beispielsweise Borsäure; 1 % bis 25 % eines mit der Peroxysäure verträglichen oberflächenaktiven Wirkstoffes, wie beispielsweise C13LAS; 0,1 % bis 10 % eines oder mehrerer Chelatstabilisatoren, wie beispielsweise Natriumpyrophosphat; und 10 % bis 70 % eines wasserlöslichen Salzes, wie beispielsweise Natriumsulfat.
Das peroxysäurehaltige Bleichmittel wird in Mengen verwendet, die eine Menge von verfügbarem Sauerstoff zwischen etwa 0,1 % bis etwa 10 %, vorzugsweise zwischen etwa 0,5 % bis etwa 5 %, insbesondere von etwa 1 % bis 4 % ergeben. Die Prozentangaben beziehen sich auf das Gesamtgewicht der Reinigungsmittelzusammensetzung.
Geeignete Mengen des peroxysäurehaltigen Bleichmittels, bezogen auf eine Einheitsdosis der erfindungsgemäßen Reinigungsmittelzusammensetzung, wie sie für eine typische Waschflotte verwendet wird, die etwa 65 Liter Wasser von 15 bis 60°C umfaßt, erzeugen zwischen etwa 1 ppm bis etwa 150 ppm verfügbaren Sauerstoffs, vorzugsweise zwischen etwa 2 ppm bis etwa 20 ppm verfügbaren Sauerstoffs. Die Waschflotte sollte einen pH-Wert zwischen 7 und 11 aufweisen, vorzugsweise zwischen 7,5 und 10,5, um ein hinreichendes Bleichergebnis zu erzielen. Es wird auf Spalte 6, Zeilen 1 bis 10 von US-4,374,035 verwiesen. Alternativ dazu kann die Bleichmittelzusammensetzung einen geeigneten organischen Peroxysäurevorläufer enthalten, der eine der oben genannten Peroxysäuren erzeugt, wenn er in wäßriger alkalischer Lösung mit Wasserstoffperoxid reagiert. Die Quelle des Wasserstoffperoxids kann jedes anorganische Peroxid sein, das in wäßriger Lösung Wasserstoffperoxid freisetzt, wie etwa Natriumperborat (Monohydrat und Tetrahydrat) und Natriumpercarbonat.
Der Anteil der peroxidhaltigen Bleichmittel in den erfindungsgemäßen Reinigungsmittelzusammensetzungen liegt zwischen etwa 0,1 Gew.-% bis etwa 95 Gew.-% und vorzugsweise zwischen etwa 1 Gew.-% und etwa Gew. -60 %. Wenn die Bleichmittelzusammensetzung auch eine voll formulierte Reinigungsmittelzusammensetzung ist, ist bevorzugt, daß der Anteil des peroxidhaltigen Bleichmittels zwischen etwa 1 Gew.-% bis etwa 20 Gew.-% liegt.
Die Menge an Bleichaktivatoren, die mit den erfindungsgemäßen Schmutzlöseoligoestern verwendet werden kann, liegt im allgemeinen zwischen 0,1 und 60 Gew.-%, bevorzugt zwischen 0,5 und 40 Gew.-%. Sind die verwendeten Bleichmittelzusammensetzungen gleichzeitig vollständig formulierte Waschmittelzusammensetzungen, so beträgt die Menge an Bleichaktivatoren, die in ihnen enthalten ist, vorzugsweise zwischen etwa 0,5 und 20 Gew.-%.
Die Peroxysäure und die erfindungsgemäßen Schmutzlöseoligoester sind bevorzugt in einem Gewichtsverhältnis zwischen verfügbarem Sauerstoff aus der Peroxysäure zu erfindungsgemäßem Schmutzlöseoligoester von etwa 4:1 bis etwa 1 :30, insbesondere von etwa 2:1 bis etwa 1 :15, und speziell von etwa 1 :1 bis etwa 1 :7,5 vor. Diese Kombination kann sowohl als voll formuliertes Produkt als auch als Additiv zu einem Waschmittel verwendet werden.
Die erfindungsgemäßen Wasch- und Reinigungsmittel können ein oder mehrere konventionelle Enzyme enthalten, die nicht mit den erfindungsgemäßen Schmutzlöseoligoestern dieser Erfindung reagieren. Ein besonders bevorzugtes Enzym ist Cellulose. Die hierbei verwendete Cellulose kann aus Bakterien oder Pilzen gewonnen sein und soll einen optimalen pH-Bereich zwischen 5 und 9,5 aufweisen. Geeignete Cellulosen sind in US-4, 435,307 offenbart. Es handelt sich dabei um Cellulose, die von einem Stamm von Humicola insolens produziert wird, insbesondere vom Stamm Humicola DSM 1800 oder einem anderen Cellulose-212- produzierenden Pilz, der zur Gattung Aeromonas gehört, sowie Cellulose, die aus dem Hepatopankreas bestimmter mariner Mollusken extrahiert wurde. Geeignete Cellulosen sind ebenfalls in GB-A-2,075,028, GB-A-2,085,275 und DE-OS-2,247,832 offenbart.
Bevorzugte Cellulosen sind in WO-91/17243 beschrieben. Die erfindungsgemäßen Reinigungsmittelzusammensetzungen enthalten Enzyme in Mengen bis etwa 50 mg, bevorzugt von etwa 0,01 mg bis etwa 10 mg pro Gramm der Reinigungsmittelzusammensetzung. Bezogen auf das Gewicht der Wasch- und Reinigungsmittelzusammensetzungen, die die erfindungsgemäßen Schmutzlöseoligoester enthalten, beträgt der Anteil der Enzyme mindestens 0,001 Gew.-%, bevorzugt zwischen etwa 0,001 Gew.-% bis etwa 5 Gew.-%, insbesondere von etwa 0,001 Gew.-% bis etwa 1 Gew.-%, speziell von etwa 0,01 Gew.-% bis etwa 1 Gew.-%.
Beispiele:
Beispiel 1
1000 g eines sek. Alkansulfonats (Handelsprodukt ©Hostapur SAS 93 Pellets) wurden mit 10 g Calciumstearat intensiv gemischt und anschließend auf einer Schlagradmühle ohne Einbauten mit einem Produktdurchsatz von 55 kg/h vermählen. Es wurde ein gut rieselfähiges Granulat mit folgender Korngrößenverteilung erhalten:
0,1 - 0,6 mm 18 %
0,6 - 1 ,0 mm 34 %
1 ,0 - 2,0 mm 33 %
> 2,0 mm 15 %
Beispiel 2
1000 g sek. Alkansulfonat wie in Beispiel 1 wurden mit 10 g Kieselsäure (Sipernat®
22 S) intensiv gemischt und anschließend auf einer
Schlagradmühle ohne Einbauten mit einem Produktdurchsatz von 60 kg/h vermählen. Es wurde ein gut rieselfähiges Granulat mit folgender
Korngrößenverteilung erhalten:
0,1 - 0,6 mm 25 %
0,6 - 1 ,0 mm 46 %
1 ,0 - 2,0 mm 19 %
> 2,0 mm 10 %
Beispiel 3
1000 g sek. Alkansulfonat wie in Beispiel 1 wurden mit 10 g Calciumstearat intensiv gemischt und anschließend auf einer Laborsiebkorbmühle (Universalmühle mit Schlagkreuz) mit einem Produktdurchsatz von 70 kg/h vermählen. Der
Lochdurchmesser des Siebkorbs betrug 6 mm.
Es wurde ein gut rieselfähiges Granulat mit einer Schüttdichte von 519 g/l und folgender Korngrößenverteilung erhalten:
0,1 - 0,6 mm 43 %
0,6 - 1 ,0 mm 48 % 1,0 -2,0 mm 9%
Beispiel 4
Es wurde Beispiel 3 wiederholt, wobei anstelle Ca-Stearat als Additiv Mg-Stearat verwendet wurde. Das erhaltene gut rieselfähige Granulat hatte eine Schüttdichte von 519 g/l und die folgende Korngrößenverteilung:
0,1 -0,6 mm 26%
0,6 -1,0 mm 64%
1,0 -2,0 mm 10%
Beispiel 5
1000 g sek. Alkansulfonat wie in Beispiel 1 wurden mit 20 g einer Vormischung aus
Magnesiumoxid und Magnesiumsilikat = 1:1 gemischt. Die so behandelten Pellets wurden auf einer Laborsiebkorbmühle mit einer Lochweite von 8 mm und einem
Produktdurchsatz von 40 kg/h vermählen. Es wurde ein gutrieselfähiges Granulat von folgender Korngrößenverteilung erhalten:
0,1 -1,0 mm 39%
1,0 -2,0 mm 58%
>12mm 3%
Beispiel 6
5000 g sek. Alkansulfonat wie in Beispiel 1 wurden mit 50 g hydrophober
Kieselsäure (Sipernat D 17) vorgemischt und auf einer Laborsiebkorbmühle bei einer Lochweite von 6 mm und einem Produktdurchsatz von 60 kg/h vermählen. Das erhaltene Granulat hatte folgende Korngrößenverteilung:
0,1 - 1,0 mm 81 %
1,0 -2,0 mm 19% Beispiel 7
5000 g sek. Alkansulfonat wie in Beispiel 1 wurden mit 100 g hydrophiler
Kieselsäure (Sipernat® 22 S) behandelt und wie in Beispiel 3 beschrieben vermählen. Die Schüttdichte des gut rieselfähigen Granulats betrug 532 g/l. Eine
Siebanalyse ergab die folgende Korngrößenverteilung:
0,1 - 1 ,0 mm 88 %
1 ,0 - 2,0 mm 12 %
Beispiel 8
Sekundäres Alkansulfonat wurde mit 1 Gew.-% Kieselsäure (Sipernat D 17) gemischt und auf einer Pallmann-Mühle (Pallmann PP6-Mühle mit Siebkorb und
Turbine) gemahlen. Der Siebkorb besteht aus einem Lochblech mit einer 6 mm
Rechtecktlochung. Der Produktdurchsatz betrug 500 kg/h. Die Schüttdichte des gut rieselfähigen Granulats betrug 590 g/l. Eine Siebanalyse ergab die folgende
Korngrößenverteilung:
0,1 - 1 ,0 mm 95 %
1 ,0 - 2,0 mm 5 %

Claims

Patentansprüche:
1. Granuläres sekundäres Alkansulfonat, bestehend im wesentlichen aus feinteiligem, festem sekundären Alkansulfonat und einem Additiv.
2. Granuläres sekundäres Alkansulfonat nach Anspruch 1 , dadurch gekennzeichnet, daß das Additiv eine Kieselsäure ist.
3. Granuläres sekundäres Alkansulfonat nach Anspruch 1 , enthaltend 0,1 bis 10 Gew.-% des Additivs, bezogen auf die Menge an sekundären Alkansulfonat.
4. Pulverförmige Wasch- und Reinigungsmittel enthaltend ein granuläres sekundäres Alkansulfonat nach Anspruch 1.
5. Extrudate, Preßlinge und Kompaktate, enthaltend ein granulates sekundäres Alkansulfonat nach Anspruch 1.
PCT/EP1998/000089 1997-01-21 1998-01-09 Granulares sekundäres alkansulfonat WO1998031775A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU62921/98A AU6292198A (en) 1997-01-21 1998-01-09 Granular secondary alkane sulphonate
JP53362998A JP4263246B2 (ja) 1997-01-21 1998-01-09 顆粒状第二アルカンスルホネート
EP98906864A EP0966510B1 (de) 1997-01-21 1998-01-09 Herstellung von granularem sekundärem alkansulfonat
DE59809971T DE59809971D1 (de) 1997-01-21 1998-01-09 Herstellung von granularem sekundärem alkansulfonat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701896A DE19701896A1 (de) 1997-01-21 1997-01-21 Granulares sekundäres Alkansulfonat
DE19701896.3 1997-01-21

Publications (1)

Publication Number Publication Date
WO1998031775A1 true WO1998031775A1 (de) 1998-07-23

Family

ID=7817883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000089 WO1998031775A1 (de) 1997-01-21 1998-01-09 Granulares sekundäres alkansulfonat

Country Status (8)

Country Link
US (1) US6051544A (de)
EP (1) EP0966510B1 (de)
JP (2) JP4263246B2 (de)
AR (1) AR011543A1 (de)
AU (1) AU6292198A (de)
DE (2) DE19701896A1 (de)
ES (1) ES2210725T3 (de)
WO (1) WO1998031775A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944218A1 (de) * 1999-09-15 2001-03-29 Cognis Deutschland Gmbh Waschmitteltabletten
DE19956802A1 (de) * 1999-11-25 2001-06-13 Cognis Deutschland Gmbh Waschmitteltabletten
DE19956803A1 (de) * 1999-11-25 2001-06-13 Cognis Deutschland Gmbh Tensidgranulate mit verbesserter Auflösegeschwindigkeit
EP1201741A1 (de) * 2000-10-31 2002-05-02 The Procter & Gamble Company Waschmittelzusammensetzungen
DE102004017112B4 (de) * 2004-04-07 2007-06-28 Henkel Kgaa Verwendung von Pudermittel
DE102007028310A1 (de) * 2007-06-20 2008-12-24 Clariant International Ltd. Tensidmischungen mit synergistischen Eigenschaften
DE102007034540A1 (de) * 2007-07-20 2009-01-22 Henkel Ag & Co. Kgaa Bügel-Pad mit fester Fleckbehandlungszusammensetzung
DE102008013606A1 (de) 2008-03-11 2009-09-17 Clariant International Ltd. Verfahren zur Herstellung fester Erdalkalimetallsalze sekundärer Paraffinsulfonsäuren
WO2010122050A2 (en) * 2009-04-24 2010-10-28 Unilever Plc Manufacture of high active detergent particles
DE102010055742A1 (de) * 2010-12-22 2012-06-28 Clariant International Ltd. Zusammensetzungen enthaltend sekundäres Paraffinsulfonat und Alkoholalkoxylat
DE102010055743A1 (de) * 2010-12-22 2012-06-28 Clariant International Ltd. Zusammensetzungen enthaltend sekundäres Paraffinsulfonat und Alkoholalkoxylat
DE102010055741A1 (de) * 2010-12-22 2012-06-28 Clariant International Ltd. Zusammensetzungen enthaltend sekundäres Paraffinsulfonat und Tetrahydroxypropylethylendiamin
US9828569B2 (en) 2013-06-13 2017-11-28 The Procter & Gamble Company Granular laundry detergent
CN105324477B (zh) * 2013-06-13 2018-04-06 宝洁公司 颗粒状衣物洗涤剂
DE102014009836B4 (de) 2014-07-03 2017-04-06 Weylchem Wiesbaden Gmbh Natriumsalze sekundärer Alkansulfonate enthaltende Compounds, ihre Herstellung und Verwendung sowie Wasch-, Desinfektion- und Reinigungsmittel enthaltend diese
CN109843727B (zh) 2016-07-18 2022-04-05 阿祖瑞缇医药公司 用于将散装材料填充到容器中的设备和方法
CN114949928A (zh) * 2022-06-08 2022-08-30 史宏霞 一种低熔点表面活性剂粉剂化的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783223A (en) * 1954-09-06 1957-09-18 Degussa Process for the production of moulded bodies of detergent sulphonates
FR2265852A1 (de) * 1974-03-29 1975-10-24 Hoechst Ag
EP0030859A2 (de) * 1979-12-14 1981-06-24 Unilever Plc Verfahren zur Herstellung von Reinigungsmittelzusammensetzungen
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
JPH01229100A (ja) * 1988-03-10 1989-09-12 Nippon Mining Co Ltd 洗剤組成物
JPH0310000A (ja) * 1989-06-07 1991-01-17 Nippon Mining Co Ltd 洗剤用組成物
EP0688861A1 (de) * 1994-06-22 1995-12-27 SOCIETE FRANCAISE HOECHST Société anonyme dite: Verfahren zur Herstellung von anionische Tenside enthaltenden Zusammensetzungen in Form von Pulvern, Perlen oder Granulaten und Verwendung dieser Zusammensetzungen in Reinigungs- und Pflegeprodukten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423391C2 (de) * 1974-05-14 1983-08-04 Hoechst Ag, 6230 Frankfurt Waschmittel
DE4001247A1 (de) * 1990-01-18 1991-07-25 Bayer Ag Verfahren zur verbesserung der fliessfaehigkeit von dimerisiertem 2,4-toluylendiisocyanat
EP0708818A4 (de) * 1993-07-14 1997-05-14 Procter & Gamble Perkarbonatbleichmittelteilchen umhüllt mit partiell hydratisiertem kristallinem aluminiumsilikat
JPH0764317A (ja) * 1993-08-24 1995-03-10 Ricoh Co Ltd 静電荷像現像用トナー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783223A (en) * 1954-09-06 1957-09-18 Degussa Process for the production of moulded bodies of detergent sulphonates
FR2265852A1 (de) * 1974-03-29 1975-10-24 Hoechst Ag
EP0030859A2 (de) * 1979-12-14 1981-06-24 Unilever Plc Verfahren zur Herstellung von Reinigungsmittelzusammensetzungen
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
JPH01229100A (ja) * 1988-03-10 1989-09-12 Nippon Mining Co Ltd 洗剤組成物
JPH0310000A (ja) * 1989-06-07 1991-01-17 Nippon Mining Co Ltd 洗剤用組成物
EP0688861A1 (de) * 1994-06-22 1995-12-27 SOCIETE FRANCAISE HOECHST Société anonyme dite: Verfahren zur Herstellung von anionische Tenside enthaltenden Zusammensetzungen in Form von Pulvern, Perlen oder Granulaten und Verwendung dieser Zusammensetzungen in Reinigungs- und Pflegeprodukten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8942, Derwent World Patents Index; Class A97, AN 89-306657, XP002067763 *
DATABASE WPI Section Ch Week 9109, Derwent World Patents Index; Class D25, AN 91-061479, XP002067764 *

Also Published As

Publication number Publication date
AU6292198A (en) 1998-08-07
DE19701896A1 (de) 1998-07-23
JP2001508118A (ja) 2001-06-19
AR011543A1 (es) 2000-08-30
JP5124379B2 (ja) 2013-01-23
EP0966510A1 (de) 1999-12-29
EP0966510B1 (de) 2003-10-22
JP4263246B2 (ja) 2009-05-13
ES2210725T3 (es) 2004-07-01
DE59809971D1 (de) 2003-11-27
JP2008285683A (ja) 2008-11-27
US6051544A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP5124379B2 (ja) 顆粒状第二アルカンスルホネート
EP0746599B1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
DE4124701A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
DE3545947A1 (de) Phosphatfreies, granulares waschmittel
WO1993015180A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
DE69409531T2 (de) Zeolithhaltige granulare waschmittelzusammensetzungen und verfahren zu ihrer herstellung
EP2726442B2 (de) Modifizierte aminocarboxylate mit verbesserter lagerstabilität und verarbeitbarkeit
DE69425550T2 (de) Verfahren zur Herstellung von Reinigungsmittelgranulaten
DE69016945T2 (de) Verfahren zur Herstellung von Ton enthaltenden Reinigungspulvern hoher Dichte.
EP0793708B1 (de) Verfahren zur herstellung extrudierter wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
EP1043387B1 (de) Alkylbenzolsulfonat-Granulate
EP1141186B1 (de) Tensidgranulate
EP0901515B1 (de) Verwendung von mindestens dreiwertigen alkoholen und deren alkoxylierungsprodukten zur erhöhung der lösegeschwindigkeit von teilchenförmigen waschmittelformulierungen in wasser
DE19851454B4 (de) Tensid-Granulate durch Wirbelschichtgranulation
EP0237895B1 (de) Reinigungsmittel für Toiletten
DE3640541A1 (de) Stueckfoermiges waschmittel
WO1995004125A1 (de) Waschmittel mit saurer komponente
EP0903401A1 (de) Antimikrobieller Waschmittelzusatz
EP0845028A1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
WO2012117030A1 (de) Carboxylgruppenhaltige polymere mit verbesserter lagerstabilität und verarbeitbarkeit
DE19541755A1 (de) Waschmittel, enthaltend amorphe Alkalisilikate und Peroxybleichmittel
DE2406454A1 (de) Lagerbestaendiger, leichtloeslicher waschmittelzusatz und verfahren zu dessen herstellung
DE2547203A1 (de) Pulverfoermige, nichtionische tenside und seife enthaltende wasch- und reinigungsmittel, sowie verfahren zu deren herstellung
DE19620094A1 (de) Einsatz von Schmutzlösepolymeren in Wasch- und Reinigungsmitteln
DE2365268A1 (de) Lagerbestaendiger, leichtloeslicher waschmittelzusatz und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU ID JP KR MX PL TR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998906864

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 533629

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998906864

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998906864

Country of ref document: EP