WO1998026497A1 - Unite de puissance - Google Patents

Unite de puissance Download PDF

Info

Publication number
WO1998026497A1
WO1998026497A1 PCT/JP1997/004500 JP9704500W WO9826497A1 WO 1998026497 A1 WO1998026497 A1 WO 1998026497A1 JP 9704500 W JP9704500 W JP 9704500W WO 9826497 A1 WO9826497 A1 WO 9826497A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
power supply
load
rectifier circuit
bridge rectifier
Prior art date
Application number
PCT/JP1997/004500
Other languages
English (en)
French (fr)
Inventor
Koji Hamaoka
Katsumi Endo
Kazunori Kurimoto
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to US09/319,542 priority Critical patent/US6157554A/en
Priority to EP97946153A priority patent/EP0945969A4/en
Priority to NZ336206A priority patent/NZ336206A/en
Priority to AU51388/98A priority patent/AU718570B2/en
Publication of WO1998026497A1 publication Critical patent/WO1998026497A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device having a capacitor input type rectifier circuit for converting an AC power supply to a DC voltage, and particularly to a power supply device such as an inverter-controlled refrigerator.
  • FIG. 19 is a circuit diagram showing an example of a conventional power supply device.
  • power supply 1 00 is, for example, an AC power supply 101 which is a commercial power supply of 100 V5 OHz in a general household, a bridge rectifier circuit 102 for rectifying the AC power supply 101, a first reactor 103, a diode 104, a second reactor 105, and a capacitor 106. And a smoothing capacitor 107.
  • the bridge rectifier circuit 102 is formed by connecting four diodes D101, D102, D103, and D104 in a bridge connection.
  • One end of the first reactor 103 is connected to the + output of the bridge rectifier circuit 102, and the other end is connected to the diode of the diode 104.
  • One end of the second reactor 105 is connected to the + output of the bridge rectifier circuit 102, and the other end is connected to one end of the capacitor 106.
  • the cathode of the diode 104 is connected to the other end of the capacitor 106, and is connected to the negative end of the smoothing capacitor 107.
  • the other end of the smoothing capacitor 107 is connected to one output of the bridge rectifier circuit 102, and the load 108 of the power supply device 100 is connected to both ends of the smoothing capacitor 107.
  • FIG. 20 is a waveform diagram of each part of the power supply half cycle in the power supply device 100 shown in FIG.
  • the input voltage V i ⁇ from the AC power supply 101 is a sine wave as shown in FIG.
  • the current I 101 flowing through the first reactor 103 has a waveform in which the charging current to the smoothing capacitor 107 is blunted by the first reactor 103.
  • current I 102 flowing through second reactor 105 has a waveform oscillating at the resonance frequency of second reactor 105 and capacitor 106.
  • the input current I in is the sum of 1101 and 1102, and has a waveform as shown in FIG.
  • harmonics can be suppressed.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a small-sized and inexpensive power supply device that can obtain a sufficient harmonic suppression effect by using smaller components.
  • the power supply device of the present invention is a power supply device for supplying power to a load, comprising: an AC power supply; a bridge rectifier circuit formed by receiving the AC power supply as an input and connecting diodes in a bridge; and an output of the bridge rectifier circuit.
  • An auxiliary capacitor connected in parallel, a series circuit of a reactor and a diode connected so that the load current flows between one output of the bridge rectifier circuit and the load, and a load
  • a small-capacity auxiliary capacitor is provided at the output of the bridge rectifier circuit, and the charging current to the auxiliary capacitor is charged before the smoothing capacitor starts charging. Therefore, the charging current flowing through the auxiliary capacitor flows as a complementary current.
  • the power supply device of the present invention is a power supply device for supplying power to a load, comprising: an AC power supply; a bridge rectifier circuit formed by receiving the AC power supply as an input and connecting a diode to a bridge; An auxiliary reactor having one end connected to one output, an auxiliary capacitor connected to the other end of the auxiliary reactor and the other output of the bridge rectifier circuit, and a connection between the other end of the auxiliary reactor and the load. It is composed of a series circuit of reactors and diodes connected so that the load current flows in the forward direction, and a smoothing capacitor connected in parallel with the load. In this way, a small-capacity auxiliary reactor is connected between the bridge rectifier circuit and the auxiliary capacitor, so that the charging of the auxiliary capacitor is suppressed by the auxiliary reactor.
  • the power supply device of the present invention is a power supply device for supplying power to a load, comprising: an AC power supply; a bridge rectifier circuit formed by connecting the AC power supply as an input and connecting diodes in a bridge; A reactor with an intermediate tap, one end connected to one output, an auxiliary capacitor connected to the intermediate tap of the reactor and the other output of the bridge rectifier circuit, the other end of the reactor and a load It is composed of a diode connected so that the load current flows in the forward direction, and a smoothing capacitor connected in parallel with the load. Since the reactor is a reactor with an intermediate tap, the number of components can be reduced while maintaining the harmonic suppression effect.
  • the power supply device of the present invention is a power supply device for supplying power to a load, comprising: an AC power supply; a bridge rectifier circuit formed by connecting the AC power supply as an input and connecting diodes in a bridge; A first diode for connecting one output to the load in the forward direction, a reactor having one end connected to one output of the bridge rectifier circuit, and a forward connection for the other end of the reactor and the load And the other end of the reactor and the other end of the bridge rectifier circuit. And a smoothing capacitor connected to the output.
  • the output from the bridge rectifier circuit is composed of two circuits that charge the smoothing capacitor and supply it directly to the load.At the peak of the input power supply voltage, the power is supplied directly from the first diode without passing through the smoothing capacitor. I do.
  • the power supply device of the present invention is a power supply device for supplying power to a load, comprising: an AC power supply; a bridge rectifier circuit formed by connecting the AC power supply as an input and connecting diodes in a bridge; A reactor for connecting one output to the load, and a voltage drop means and a first diode, one end of which is connected to the load side of the reactor and which is connected so that the load current flows in the forward direction. A series circuit, a second diode for connecting the output of the series circuit and the load in the forward direction, and a smoothing capacitor connected to the output of the series circuit and the other output of the bridge rectifier circuit. It is.
  • the output from the bridge rectifier circuit is charged to the smoothing capacitor, the two circuits are directly supplied to the load, and the voltage drop means for lowering the charging voltage to the smoothing capacitor is comprised of the power supply voltage.
  • the output from the reactor can be supplied directly to the load without passing through the smoothing capacitor, thereby suppressing harmonics in charging the smoothing capacitor.
  • the reactor is a reactor having a variable capacity, and further includes a capacity control means for variably controlling the capacity of the reactor. In this way, the capacity of the reactor is changed according to changes in the current flowing through the reactor and changes in the usage environment of the reactor.
  • the reactor includes a first reactor through which a load current flows, and a second reactor connected in parallel to the first reactor to bypass the load current.
  • the capacity control means includes switching means for controlling parallel connection of the second reactor to the first reactor, and switching control of the switching means. And switching control means for performing the control. In this way, the parallel connection of the second reactor to the first reactor is controlled so that the temperature of the first reactor becomes lower than the predetermined temperature.
  • the switching control means includes an outside air temperature detection means for detecting an outside air temperature, and when the outside air temperature detected by the outside air temperature detection means becomes equal to or higher than a predetermined value, the second reactor is replaced with the first reactor.
  • the switching control of the switching means is performed so that the switches are connected in parallel.
  • the second reactor is connected in parallel to the first reactor to increase the current capacity of the reactor. If the outside air temperature is lower than the predetermined value, the connection of the second reactor to the first reactor is cut off, and the current capacity of the reactor is reduced.
  • the switching control means includes a load current detecting means for detecting a load current, and when the load current detected by the load current detecting means becomes equal to or more than a predetermined value, the first reactor is switched to the second reactor.
  • the switching control of the switching means is performed so that the switches are connected in parallel.
  • the second reactor is connected in parallel to the first reactor to increase the current capacity of the reactor.
  • the connection of the second reactor to the first reactor is cut off, and the current capacity of the reactor is reduced.
  • the switching control means includes a reactor temperature detecting means for detecting a temperature of the first reactor, and when the temperature of the first reactor detected by the reactor temperature detecting means becomes equal to or higher than a predetermined value.
  • the switching control of the switching means is performed so that the second reactor is connected to the first reactor in parallel.
  • the second reactor is connected in parallel to the first reactor, and the current capacity of the reactor is increased. Increase.
  • the connection of the second reactor to the first reactor is cut off, and the current capacity of the reactor is reduced.
  • the load is a motor whose rotation speed is controlled by an inverter and the inverter.
  • the switching control means controls the rotation speed of the motor by controlling the inverter.
  • the switching control of the switching means is performed so that the second reactor is connected to the first reactor in parallel.
  • the second reactor is connected in parallel to the first reactor, and the current capacity of the reactor is increased.
  • the connection of the second reactor to the first reactor is cut off, and the current capacity of the reactor is reduced.
  • the motor is a compressor of an electric refrigerator
  • the switching control means is an internal temperature detecting means for detecting an internal temperature of the electric refrigerator, and an internal temperature setting for setting an internal temperature of the electric refrigerator.
  • FIG. 1 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 2 is a waveform diagram of each part of a power supply half cycle in the power supply device shown in FIG.
  • FIG. 3 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 4 is a waveform diagram of each part of a power supply half cycle in the power supply device shown in FIG.
  • FIG. 5 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 6 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 8 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 9 is a waveform diagram of each part of a power supply half cycle in the power supply device shown in FIG.
  • FIG. 10 is a circuit diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 11 is a waveform diagram of each part of a power supply half cycle in the power supply device shown in FIG.
  • FIG. 12 is a flow chart showing the operation of the power supply device of FIG. 10 and its peripheral parts.
  • FIG. 13 is a circuit diagram of a power supply device according to an embodiment of the present invention
  • FIG. 14 is a flowchart showing an operation example of the power supply device of FIG. 13 and peripheral parts thereof.
  • FIG. 15 is a circuit diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 16 is a flowchart showing an operation example of the power supply device of FIG.
  • FIG. 17 is a circuit diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 18 is a flowchart showing an operation example of the power supply device of FIG. 17 and its peripheral parts.
  • FIG. 19 is a circuit diagram showing a conventional power supply device.
  • FIG. 20 is a waveform diagram of each part of a power supply half cycle in the power supply device shown in FIG.
  • FIG. 1 is a circuit diagram showing a power supply device according to the first embodiment of the present invention.
  • a power supply device 9 includes an AC power supply 1 which is a commercial power supply of 100 V and 50 Hz in a general household, a bridge rectifier circuit 2 for rectifying the AC power supply 1, an auxiliary capacitor 3, and a reactor 4. , A diode 5 and a smoothing capacitor 6.
  • the bridge rectifier circuit 2 is formed by bridge-connecting four diodes D 1, D 2, D 3, and D 4.
  • the auxiliary capacitor 3 has one end connected to the + output of the bridge rectifier circuit 2 and the other end connected to one output.
  • Reactor 4 has one end connected to the + output of bridge rectifier circuit 2 and the other end connected to the anode of diode 5.
  • One end of the smoothing capacitor 6 is connected to the power source of the diode 5, the other end is connected to one terminal of the bridge rectifier circuit 2, and the load 7 is connected to both ends of the smoothing capacitor 6.
  • FIG. 2 is a waveform diagram of each part of a power supply half cycle in the power supply device 9 shown in FIG.
  • the input voltage Vin from the AC power supply 1 is a sine wave as shown in FIG.
  • the current I 1 flowing through the reactor 4 has a waveform in which the charging current to the smoothing capacitor 6 is blunted in the reactor 4.
  • the current I2 flowing through the auxiliary capacitor 3 is determined by the input voltage Vin When the voltage becomes higher than the voltage between both ends of the capacitor 3, charging starts.When the smoothing capacitor 6 is charged by the reactor 4, the electric charge charged in the auxiliary capacitor 3 is pulled. .
  • the input current Iin is the sum of I1 and I2, and has a waveform as shown in FIG.
  • the width of the input current I in waveform is wider than usual, and the current peak value is also lower, so that harmonics can be suppressed.
  • the third and fifth components are reduced compared to the normal waveform, and the current rises steeply, so that the ninth and higher harmonic components slightly increase.
  • the third and fifth order components which are most affected by harmonics, show a remarkable decrease, they are effective in suppressing harmonic currents.
  • the harmonic components of each order can be finely adjusted by the capacitance value of the auxiliary capacitor 3. For example, when the capacitance of the auxiliary capacitor 3 is increased, the third and fifth order components are further reduced, but the ninth and higher harmonic components are further increased. This makes it possible to optimally suppress harmonics by adjusting the capacitance of the auxiliary capacitor 3.
  • the capacitance value of the auxiliary capacitor 3 is sufficiently small, such as about 1 Z100 (about several / F), compared with the smoothing capacitor 6 (generally, about several hundred / F to several thousand / zF).
  • the capacitance of the smoothing capacitor 6 was 3900 F and the capacitance of the auxiliary capacitor 3 was 1 / F, and a sufficient harmonic suppression effect was obtained. None)
  • the reactor 4 and the diode 5 may be replaced.
  • the anode of the diode 5 is connected to the + output of the bridge rectifier circuit 2 and the diode 5 is connected.
  • Cathode and one end of load 7 Connect reactor 4 between and.
  • the power supply device is configured such that the auxiliary capacitor 3 having a small capacitance is provided at the output of the bridge rectifier circuit 2 and the charging current flowing through the auxiliary capacitor 3 flows as a complementary current. . Therefore, compared to a power supply that uses a normal passive filter harmonic suppression method (reactor only), effective harmonics can be obtained only by adding small and inexpensive parts such as the auxiliary capacitor 3 and diode 5. Suppression can be realized, and the size and cost of components can be reduced, so that a small and inexpensive power supply device can be provided.
  • FIG. 3 is a circuit diagram showing a power supply device according to the second embodiment of the present invention.
  • components having the same configuration as in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted here, and only differences from FIG. 1 will be described.
  • the difference from Fig. 1 in Fig. 3 is that an auxiliary reactor 10 has been added between the + output of the bridge rectifier circuit 2 in Fig. 1 and the connection between the auxiliary capacitor 3 and the reactor 4. Accordingly, the power supply 9 in FIG. 1 is replaced with the power supply 12.
  • the power supply device 12 includes an AC power supply 1, a bridge rectifier circuit 2, an auxiliary capacitor 3, a reactor 4, a diode 5, a smoothing capacitor 6, and an auxiliary reactor 10.
  • the auxiliary reactor 10 is connected between the + output of the bridge rectifier circuit 2 and the connection between the auxiliary capacitor 3 and the reactor 4.
  • FIG. 4 is a waveform diagram of each part of a power supply half cycle in the power supply device 12 shown in FIG.
  • the input voltage V i from AC power supply 1 n is a sine wave as shown in Fig. 4.
  • the current I 3 flowing through the reactor 4 has a waveform in which the charging current to the smoothing capacitor 6 is blunted in the reactor 4.
  • the current I 4 flowing through the auxiliary capacitor 3 starts charging when the input voltage Vin becomes higher than the voltage between both ends of the auxiliary capacitor 3, but its rising is suppressed by the auxiliary reactor 10.
  • Other operations are basically the same as those of the first embodiment, and detailed description is omitted.
  • the input current I in is the sum of I 3 and I 4, and has a waveform as shown in FIG.
  • the capacity of the auxiliary reactor 10 may be about 1 Z 10 of the capacity of the reactor 4, for example, when the capacity of the reactor 4 is 4 O mH, the capacity of the auxiliary reactor 10 is about 2 mH. A sufficient effect can be obtained.
  • the reactor 4 and the diode 5 may be replaced. In such a case, the anode of the diode 5 is connected to the connection between the auxiliary reactor 10 and the auxiliary capacitor 3. And a reactor 4 between the force sword of the diode 5 and one end of the load 7.
  • the power supply device is configured such that the small-capacity auxiliary reactor 10 is connected between the bridge rectifier circuit 2 and the auxiliary capacitor 3.
  • the small-capacity auxiliary reactor 10 is connected between the bridge rectifier circuit 2 and the auxiliary capacitor 3.
  • FIG. 5 is a circuit diagram showing an example of the power supply device according to the third embodiment of the present invention.
  • the difference between Fig. 5 and Fig. 1 is that reactor 4 in Fig. 1 is replaced by reactor 15 with an intermediate tap, and auxiliary capacitor 3 is an intermediate tap of reactor 15 with an intermediate tap and one output of bridge rectifier circuit 2. Therefore, the power supply 1 in FIG. 1 is replaced by the power supply 17.
  • the power supply 17 includes an AC power supply 1, a bridge rectifier circuit 2, an auxiliary capacitor 3, a diode 5, a smoothing capacitor 6, and a reactor 15 with an intermediate tap.
  • the reactor 15 with the intermediate tap has one end connected to the + terminal of the bridge rectifier circuit 2 and the other end connected to the node of the diode 5. Further, in the reactor 15 with the intermediate tap, the intermediate tap is connected to one end of the auxiliary capacitor 3.
  • the position of the intermediate tap in the reactor 15 with the intermediate tap is set so that the reactance from the intermediate tap to the terminal on the bridge rectifier circuit 2 side is sufficiently smaller than the reactance from the intermediate tap to the terminal on the diode 5 side.
  • the operation of the power supply 17 configured as described above is the same as the operation of the power supply 12 of the second embodiment, and a description thereof will be omitted.
  • the reactor is configured by the reactor 15 with the intermediate tap, so that the harmonic current is high as in the second embodiment. It is possible to reduce the number of auxiliary reactors 10 while keeping the suppression effect, and to provide a small and inexpensive power supply device.
  • FIG. 6 is a circuit diagram showing an example of the power supply device according to the fourth embodiment of the present invention.
  • a power supply device 25 includes an AC power supply 1, a bridge rectifier circuit 2, a reactor 4, a smoothing capacitor 6, a first diode 20 and a second diode 21.
  • the reactor 4 is connected between the + output of the bridge rectifier circuit 2 and one end of the smoothing capacitor 6, and the other end of the smoothing capacitor 6 is connected to one output of the bridge rectifier circuit 2.
  • the first diode 20 has an anode connected to the + output of the bridge rectifier circuit 2, and a power source connected to the cathode of the second diode 21 and one end of the load 7.
  • the anode of the second diode 21 is connected to the connection between the reactor 4 and the smoothing capacitor 6.
  • FIG. 7 is a waveform diagram of each part of a power supply half cycle in the power supply device 25 shown in FIG.
  • the input voltage V in from the AC power supply 1 is a sine wave as shown in FIG.
  • the current I5 flowing through the reactor 4 has a waveform in which the charging current to the smoothing capacitor 6 is blunted in the reactor 4.
  • the current I 6 flowing through the first diode 20 does not supply power to the load 7 from the smoothing capacitor 6 but directly from the first capacitor 20. It is supplied to load 7 via diode 20.
  • the input voltage V′f n becomes lower than the voltage between both ends of the smoothing capacitor 6, power is supplied from the smoothing capacitor 6 to the load 7 via the second diode 21.
  • the input current Iin becomes ⁇ ! Of I5 and I6, and has a waveform as shown in FIG. In FIG. 7, in the section where the input voltage Vin is high, power is supplied directly to the load 7 without passing through the smoothing capacitor 6, so that the charging voltage to the smoothing capacitor 6 decreases, and the charging current is reduced in the conduction section. Spread, Pee Since the peak current also decreases, the harmonic suppression effect increases.
  • the power supply device includes two diodes, that is, a first diode 20 and a second diode 21 to add an output from the bridge rectifier circuit 2 to the smoothing capacitor 6.
  • a first diode 20 and a second diode 21 to add an output from the bridge rectifier circuit 2 to the smoothing capacitor 6.
  • FIG. 8 is a circuit diagram showing an example of the power supply device according to the fifth embodiment of the present invention.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted here.
  • the power supply device 35 is composed of an AC power supply 1, a bridge rectifier circuit 2, a reacting resistor 4, a smoothing capacitor 6, a voltage drop means 30, a first diode 31 and a second diode 21.
  • the voltage lowering means 30 may be, for example, a resistor, or may be any means capable of lowering the voltage, such as connecting a diode in series.
  • the reactor 4 has one end connected to the + output of the bridge rectifier circuit 2 and the other end connected to one end of the voltage drop means 30 and one end of the load 7.
  • the other end of the voltage drop means 30 is connected to the anode of the first diode 31, and the cathode of the first diode 31 is connected to one end of the smoothing capacitor 6 and the anode of the second diode 21 .
  • the cathode of the second diode 21 is connected to the connection between the reactor 4 and the load 7.
  • the other end of the smoothing capacitor 6 is connected to the output of the
  • FIG. 9 is a waveform diagram of each part of a power supply half cycle in the power supply device 35 shown in FIG.
  • the input voltage V i from AC power supply 1 n is a sine wave as shown in FIG.
  • the current I 7 flowing through the voltage drop means 30 has a waveform in which the charging current to the smoothing capacitor 6 is blunted by the reactor 4 and the voltage drop means 30.
  • the bypassed current I8 is bypassed directly from the reactor 4 instead of being supplied from the smoothing capacitor 6 to supply the power. Supply.
  • the input voltage Vin becomes lower than the voltage across the smoothing capacitor 6
  • power is supplied from the smoothing capacitor 6 to the load 7 through the second diode 21.
  • the input current I in becomes the sum of I 7 and I 8, and has a waveform as shown in FIG.
  • FIG. 9 in the section where the input voltage Vin is high, power is supplied directly to the load ⁇ without passing through the smoothing capacitor 6, so that the charging voltage to the smoothing capacitor 6 decreases, and the charging current is reduced in the conduction section. Spreading and the peak current also decrease, increasing the high-frequency suppression effect.
  • the power supply device adds the voltage drop means 30 and the first diode 31 to transfer the output from the bridge rectifier circuit 2 to the charging of the smoothing capacitor 6 and to the load 7. It consists of two systems of direct supply and voltage drop means 30 for lowering the charging voltage to the smoothing capacitor 6. As a result, power can be supplied directly near the peak value of the power supply voltage without passing through the smoothing capacitor 6, and harmonics during charging of the smoothing capacitor 6 can be suppressed. Therefore, a small and inexpensive power supply device can be provided.
  • the reactor capacity is fixed, the load current increases depending on the state of the load 7, and the reactor temperature rises. It is necessary to use a reactor with a large current capacity. It was important. Therefore, the capacity of the reactor may be changed according to the state of the load 7, and the current capacity of the reactor may be changed.
  • Such a configuration is referred to as a sixth embodiment of the present invention.
  • the configuration of the power supply in the first embodiment will be described as an example, and the configuration of each power supply in the second to fifth embodiments will be described. The description is omitted because it is the same as above.
  • the load 7 is a motor whose rotation speed is controlled by an inverter and the inverter, for example, a compressor of an electric refrigerator.
  • FIG. 10 is a schematic circuit diagram illustrating an example of a power supply device according to the sixth embodiment of the present invention.
  • the power supply device 40 includes an AC power supply 1, a bridge rectifier circuit 2, an auxiliary capacitor 3, a reactor circuit 41, a diode 5, and a smoothing capacitor 6.
  • the reactor circuit 41 includes a first reactor 42 through which the load current flows, a second reactor 43 connected in parallel with the first reactor 42 to bypass the load current, and the second reactor 43. 4 and a switching means 44 for performing parallel connection to the first reactor 42.
  • an inverter 45 and a compressor 46 whose rotation speed is controlled by the inverter 45 constitute the load 7 in FIG. 1, and the inverter 45 includes a compressor 46 inputted from the control means 47.
  • the rotation speed of the compressor 46 is controlled according to a control signal instructing the rotation speed of the compressor.
  • the auxiliary capacitor 3 has one end connected to the + output of the bridge rectifier circuit 2 and the other end connected to one output, and the anode of the diode 5 connected to the + output of the bridge rectifier circuit 2.
  • the reactor circuit 41 one end of the first reactor 42 and one end of the switching means 44 are connected, and a cathode of the diode 5 is connected to the connection part.
  • the other end of the switching means 4 4 is one end of the second reactor 43
  • the other end of the first reactor 42 and the other end of the second reactor 43 are connected, and the connection is connected to one end of the smoothing capacitor 6.
  • the other end of the smoothing capacitor 6 is connected to one output of the bridge rectifier circuit 2, and the inverter 45 is connected to both ends of the smoothing capacitor 6.
  • the inverter 45 is connected to a compressor 46 and connected to a control means 47.
  • the control means 47 further includes an internal temperature detecting means 48 for detecting an internal temperature of an electric refrigerator (hereinafter referred to as a refrigerator). , And an internal temperature setting means 49 for setting the internal temperature are connected respectively. Further, since the control means 47 controls the switching operation in the switching means 44, the power supply device 40 includes the control means 47 strictly speaking.
  • the switching means 44 when the switching means 44 is 0 n, the second reactor 43 is connected in parallel with the first reactor 42, and when the switching means 44 is 0 ff, the second reactor 43 is connected to the circuit.
  • the reactor circuit 41 is separated from the first reactor 42 only. From this, when the switching means 44 is 0 n, the inductance value L of the reactor circuit 41 is represented by La for the inductance value of the first reactor 42 and Lb for the inductance value of the second reactor 43. Then, the following equation (1) is obtained.
  • L is 6.7 mH
  • the inductance value is larger than when the switching means 44 is set to 0 ff and the reactor circuit 41 is only the first reactor 42. Decrease.
  • control means 47 includes a refrigerator temperature detected by the refrigerator temperature detecting means 48 for detecting the refrigerator temperature and a set temperature set by the refrigerator temperature setting means 49 for setting the refrigerator temperature.
  • the rotational speed of the compressor 46 is commanded to the inverter 45 according to the temperature difference between the compressor 46 and the inverter. For example, 3600 r / m when the difference between the chamber temperature and the set temperature is 5, 3000 r Zm when the temperature is between 0 and 5 ° C, and 2400 r / m when the temperature is between 2 and 0 ° C.
  • the control means 47 sends a rotation speed command to the inverter 45 so as to operate the compressor 46 at 0 r Zm.
  • the control means 47 sets the switching means 44 to 0 n if the rotational speed command is 3600 r / m, and otherwise sets the switching means 44 to 0 f f.
  • FIG. 11 is a waveform diagram of each part of a power supply half cycle in the power supply device 40 shown in FIG. 10, and FIG. 12 is a flowchart showing an operation example of the power supply device shown in FIG. 10 and peripheral parts thereof.
  • the input voltage Vin from the AC power supply 1 is a sine wave as shown in FIG.
  • the current I 1 flowing through the reactor circuit 41 is a smoothing capacitor
  • the charging current to 6 becomes a waveform distorted in the reactor circuit 41.
  • the current I 2 flowing through the auxiliary capacitor 3 starts charging when the input voltage Vin becomes higher than the voltage between both ends of the auxiliary capacitor 3, and when the smoothing capacitor 6 is charged by the reactor circuit 41. In other words, the electric charge charged in the auxiliary capacitor 3 is pulled. That is, after the current I1 has finished flowing, the voltage across the auxiliary capacitor 3 is a sufficiently low voltage. Therefore, the beginning of current flow in the next cycle will start much earlier than normal charging. Therefore, the input current Iin is the sum of the current I1 and the current I2, and has a waveform as shown in FIG.
  • the compressor 46 of the refrigerator when the compressor 46 of the refrigerator is operated at a high speed, the cooling load is large because the temperature in the refrigerator is high, so that the current flowing through the compressor 46 increases, and the current I 1 also increases.
  • the ratio of the harmonic components decreases as the current I 1 increases.In the experiment, when the inductance value of the reactor circuit 41 is 1 O mH and the current I 1 is 1 A, the ratio of the harmonic components is It was 57% when the current I1 was 2 A at 72%.
  • the control means 47 inputs the set temperature from the inside temperature setting means 49 in step S 1, and the inside temperature detected by the inside temperature detecting means 48 in step S 2. input.
  • the control means 47 calculates the temperature difference between the input set temperature and the internal temperature in step S3, and determines the number of rotations for operating the compressor 46 in step S4, In step S5, the determined rotation speed is sent to the inverter 45 as a rotation speed command.
  • the control means 47 determines whether or not the determined rotational speed is 3600 rZm, and if it is 3600rZm (yes), the control means 47 proceeds to step S7. Turn on the switching means 4 4 And return to step S1. Also, in step S6, if it is less than 3600 rZm (no), the control means 47 turns off the switching means 44 in step S8 and returns to step S1.
  • the inductance value L a of the first reactor 42 is 10 mH
  • the current capacity I amax is 1 A
  • the inductance value Lb of the second reactor 43 is 10 mH
  • the current capacity I bmax is 1 A.
  • the inductance value L of the reactor circuit 41 is 5mH
  • the current capacity Imax is 2A
  • the harmonics decrease as the current I1 decreases.
  • the inductance value L of the reactor circuit 41 is 10 mH
  • the current capacity Imax is 1 A.
  • the ratio of the harmonic components is about 69% even when the inductance value L of the reactor circuit 41 is 5 mH, and the inductance value L is 1 OmH and the current I 1 is 1
  • the harmonic component ratio at the time of A is almost the same as 72%. If the current I 1 increases, there is no problem even if the inductance value of the reactor circuit 41 is reduced.
  • the width of the input current I in becomes wider and the current peak value becomes lower than in the normal state, harmonics can be suppressed and the current I 1 becomes large.
  • the inductance value L of the reactor circuit 41 is reduced and the current capacity Imax is increased, so a reactor having a large current capacity and a large inductance value is used. Since the DC resistance of the reactor circuit 41 is also reduced, the loss in the reactor circuit 41 when the current I1 is large when the compressor 46 rotates at a high speed can be reduced.
  • the control means 47 switches the capacity of the reactor circuit 41 according to the set rotation speed of the compressor 46.
  • Effective harmonic suppression can be realized, and the components themselves are very small and inexpensive. It is possible to provide a low-cost, low-loss power supply device.
  • control means 47 performs the switching control of the switching means 44 according to the set rotation speed of the compressor 46, but the switching means 44 according to the outside air temperature of the refrigerator.
  • the switching control described above may be performed, and such a switching control is referred to as a seventh embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing an example of the power supply device according to the seventh embodiment of the present invention.
  • components having the same configuration as in FIG. 10 are denoted by the same reference numerals, and the description thereof will be omitted, and only differences from FIG. 10 will be described.
  • the configuration of the power supply device in the first embodiment will be described as an example, and the second to fifth embodiments will be described. The same applies to the configuration of each power supply device in the above, so the description is omitted.
  • the load 7 in the first embodiment is provided by an inverter and a motor whose rotation speed is controlled by the inverter, for example, the pressure of an electric refrigerator.
  • the case of a contractor will be described as an example.
  • FIG. 13 The difference between FIG. 13 and FIG. 10 is that the outside air temperature detecting means 51 for detecting the outside air temperature of the refrigerator is added, and the control means 47 is adapted to the outside air temperature detected by the outside air temperature detecting means 51. Since the switching control of the switching means 44 is performed accordingly, the control means 47 of FIG. 10 is replaced by the control means 52.
  • the outside air temperature detection means 51 is connected to the control means 52, and the control means 52 has a high outside air temperature detected by the outside air temperature detection means 51. For example, if it is 30 ° C. or more, the switching means 44 is turned on, and if it is less than 30 ° C., the switching means 44 is turned off. This is because when the refrigerator is operated at a high outside air temperature, a larger cooling capacity is required when the refrigerator is operated at a low outside air temperature, and the current flowing through the compressor 46 becomes large, and the current I 1 also becomes large. .
  • the ratio of the harmonic component decreases as the current I 1 increases, and in the experiment, when the inductance value L of the reactor circuit 41 is 1 OmH and the current I 1 is 1 A, the harmonic component The ratio was 72%, and when the current I1 was 2 A, the ratio was 57%.
  • the control means 52 controls the switching operation in the switching means 44, strictly speaking, the power supply device 40 includes the control means 52.
  • FIG. 14 is a flowchart showing an operation example of the power supply device of FIG. 13 and its peripheral portion. The operation example of the power supply device of FIG. 13 and its peripheral portion will be described with reference to FIG. I do.
  • step S 11 the control means 52 inputs the set temperature from the inside temperature setting means 49, and in step S 12, the control means 52 detects the temperature detected by the inside temperature detecting means 48. Enter the internal temperature.
  • step S 12 the control means 52 calculates the temperature difference between the input set temperature and the internal temperature in step S13, and determines the number of revolutions at which the compressor 46 is operated in step S14.
  • step S15 the determined rotation speed is sent to the inverter 45 as a rotation speed command.
  • step S16 the control means 52 inputs the outside air temperature detected by the outside air temperature detecting means 51, and in step S17, determines whether the input outside air temperature is 30 or more. If it is determined that the temperature is 30 ° C.
  • step S 18 the switching means 44 is turned on to return to step S 11. If the temperature is less than 30 ° C. (n 0) in step S 17, the control means 52 turns off the switching means 44 in step S 19 and returns to step S 11.
  • the reactor circuit 41 operates at a high load where the current I 1 is large and the harmonic components are small, so that the inductance value L is small and the current capacity is small.
  • I max becomes larger and current I 1 becomes smaller and harmonic components increase the inductance value L increases and the current capacity I max decreases.
  • the current I1 increases, there is no problem even if the inductance value of the reactor circuit 41 is reduced.
  • the waveform diagram of each part of the power supply half cycle in the power supply device 40 shown in FIG. 13 is the same as that in FIG.
  • the control means 52 for switching the capacity of the reactor circuit 41 enables effective harmonic suppression to be realized, and the constituent parts themselves are very small and inexpensive. Can be provided.
  • control means 52 is controlled in accordance with the set rotational speed of the compressor 46 in the same manner as the control means 47 of the sixth embodiment, in addition to the outside air temperature.
  • the capacity of the reactor 41 may be switched.
  • control means 47 controls the switching of the switching means 44 in accordance with the set rotation speed of the compressor 46, but the current flowing to the motor for operating the compressor 46 is Switching control of the switching means 44 may be performed according to the above, and such a control is referred to as an eighth embodiment of the present invention.
  • FIG. 15 is a circuit diagram showing an example of the power supply device according to the eighth embodiment of the present invention.
  • the same components as those in FIG. 10 are denoted by the same reference numerals, and the description thereof will be omitted, and only differences from FIG. 10 will be described.
  • the configuration of the power supply device in the first embodiment will be described as an example, and the second to fifth embodiments will be described. The same applies to the configuration of each power supply device in the above, so the description is omitted.
  • the load 7 in the first embodiment is a motor whose rotation speed is controlled by an inverter and the inverter, for example, the pressure of an electric refrigerator. The case of a contractor will be described as an example.
  • FIG. 15 The difference between FIG. 15 and FIG. 10 is that a motor current detecting unit 61 for detecting a current flowing to a motor (not shown) for operating the compressor 46 is added, and the control unit 47 is provided with a motor current. Since the switching control of the switching means 44 is performed in accordance with the motor current detected by the detection means 61, the control means 47 of FIG.
  • the motor current detection means 61 is connected to the control means 62, and the control means 62 has a large motor current detected by the motor current detection means 61. If so, the switching means 44 is turned on, and if it is less than 1.5 A, the switching means 44 is turned off. This is because as the current flowing through the compressor 46 increases, the current I 1 also increases. In addition, the ratio of the harmonic components decreases as the current I1 increases, and in experiments, the reactor circuit 4 T / JP97 / 0 S00
  • FIG. 16 is a flowchart showing an operation example of the power supply device of FIG. 15 and its peripheral portion. An operation example of the power supply device of FIG. 15 and its peripheral portion will be described with reference to FIG.
  • the control means 62 inputs the set temperature from the inside temperature setting means 49 in step S21, and inputs the inside temperature from the inside temperature detecting means 48 in step S22.
  • step S23 the control means 62 calculates the temperature difference between the input set temperature and the internal temperature, and in step S24, determines the number of revolutions at which the compressor 46 is operated.
  • step S25 the determined rotation speed is sent to the inverter 45 as a rotation speed command.
  • step S26 the control means 62 inputs the motor current detected by the motor current detection means 61, and in step S27, determines whether the input motor current is 1.5 A or more. If (yes), in step S28, the switching means 44 is turned on, and the process returns to step S21. If it is less than 1.5 A in step S27 (no), the control means 62 turns off the switching means 44 in step S29 and returns to step S21.
  • the reactor circuit 41 is configured to reduce the inductance value L and reduce the current capacity Imax at a high load where the current I1 increases and the harmonic components decrease.
  • the inductance value L increases and the current capacity Imax decreases.
  • the inductance value of the reactor circuit 41 increases. There is no hindrance to lowering.
  • the waveform diagram of each part of the power supply half cycle in the power supply device 40 shown in FIG. 15 is the same as that in FIG.
  • the input current I in has a wider waveform width and a lower current peak value as compared with the normal state, so that harmonics can be suppressed and the current I 1 increases.
  • the inductance value L of the reactor circuit 41 is reduced and the current capacity I max is increased, so it is necessary to use a reactor having a large current capacity and a large inductance value. Since the DC resistance of the reactor circuit 41 is also reduced, the loss in the reactor circuit 41 when the motor current increases and the current I1 increases can be reduced.
  • the auxiliary capacitor 3, the diode 5, the variable capacity reactor circuit 41, and the reactor according to the motor current Control means 6 2 for switching the capacity of the torque circuit 4 1 can realize effective harmonic suppression, and the component itself is very small and inexpensive, so that a small, low-cost, low-loss power supply device is provided. be able to.
  • control means 62 in addition to the motor current, changes the set rotation speed of the compressor 46 in the same manner as the control means 47 of the sixth embodiment.
  • the capacity of reactor 41 may be switched.
  • control means 47 performs the switching control of the switching means 44 according to the set number of revolutions of the compressor 46, but the control means 47 performs the switching control according to the temperature of the first reactor 42.
  • the switching control of the means 44 may be performed, and such a control is referred to as a ninth embodiment of the present invention.
  • FIG. 17 is a circuit diagram showing an example of a power supply device according to the ninth embodiment of the present invention. It is a road map.
  • the same components as those in FIG. 10 are denoted by the same reference numerals, and the description thereof will be omitted, and only the differences from FIG. 10 will be described.
  • the configuration of the power supply device in the first embodiment will be described as an example, and the second to fifth embodiments will be described. The same applies to the configuration of each power supply device in the above, so the description is omitted.
  • the load 7 in the first embodiment is constituted by an inverter and a motor whose rotation speed is controlled by the inverter, for example, the pressure of an electric refrigerator.
  • the inverter for example, the pressure of an electric refrigerator.
  • the case of a contractor will be described as an example.
  • FIG. 17 The difference between FIG. 17 and FIG. 10 is that reactor temperature detecting means 71 for detecting the temperature of the first reactor 42 in the reactor circuit 41 is added, and the control means 47 Since the switching control of the switching means 44 is performed in accordance with the temperature of the first reactor 42 detected by the detecting means 71, the control means 47 of FIG. 10 is replaced by the control means 72. .
  • the reactor temperature detecting means 71 is connected to the control means 72, and the control means 72 is a switching means if the temperature of the first reactor 42 is high, for example, 80 ° C. or higher. 4 4 is set to 0 n, and if it is less than 80 ° C., the switching means 44 is set to 0 ff. This is because if the temperature of the first reactor 42 is high, the current I1 increases. Also, the ratio of the harmonic components decreases as the current I 1 increases.In the experiment, when the inductance value of the reactor circuit 41 is 1 OmH and the current I 1 is 1 A, the ratio of the harmonic components is Was 72%, and was 57% when the current I 1 was 2 A. As described above, since the control means 72 controls the switching operation in the switching means 44, strictly speaking, the power supply device 40 includes the control means 72.
  • FIG. 18 shows an example of the operation of the power supply unit of Fig. 17 and its peripheral parts.
  • FIG. 18 is a flowchart illustrating an operation example of the power supply device of FIG. 17 and peripheral portions thereof.
  • the control means 72 inputs the set temperature from the inside temperature setting means 49 in step S31, and the inside temperature is detected from the inside temperature detecting means 48 in step S32. input.
  • step S33 the control means 72 calculates the temperature difference between the input set temperature and the internal temperature, and in step S34, determines the number of rotations for operating the compressor 46. Then, in step S35, the determined rotation speed is sent to the inverter 45 as a rotation speed command.
  • step S36 the control means 72 inputs the temperature of the first reactor 42 detected by the reactor temperature detecting means 71, and in step S37, the first reactor 4 It is determined whether the temperature in Step 2 is 80 ° C. or more. If the temperature is 80 ° C.
  • step S38 the switching means 44 is turned off to 0n and the process returns to step S31. Further, the control means 72 sets 80 in step S37. If it is less than C (no), in step S39, the switching means 44 is set to 0 f f and the process returns to step S31.
  • the reactor circuit 41 operates at a high load where the current I 1 is large and the harmonic components are small, so that the inductance value L is small and the current capacity is small.
  • the inductance value L increases and the current capacity I max decreases.
  • the waveform diagrams of each part of the power supply half cycle in the power supply device 40 shown in FIG. 17 are the same as those in FIG.
  • the input current I in has a wider waveform and a lower current peak value as compared with the normal state, so that harmonics can be suppressed and the current I 1 increases.
  • 1st reactor where harmonic components decrease When the temperature of the reactor 42 is high, the inductance value L of the reactor circuit 41 is reduced, and the current capacity Imax is increased.Therefore, there is no need to use a reactor having a large current capacity and inductance value. Since the DC resistance of the reactor circuit 41 is also reduced, the loss in the reactor circuit 41 when the temperature of the first reactor 42 is high and the current I1 is large can be reduced.
  • control means 72 includes a compressor 46 in addition to the temperature of the first reactor 42 in the same manner as the control means 47 of the sixth embodiment.
  • the capacity of the reactor 41 may be switched according to the set rotation speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

明細書
技術分野
本発明は、 交流電源を直流電圧に変換するコンデンサインプッ ト型整流 回路を持つ電源装置に関し、 特にィンバータ制御された冷蔵庫などの電源 装置に関する。
背景技術
近年、 冷蔵庫やエアコンなどの冷凍システムにおけるインバータゃ、 ス ィツチング電源などにおいて、 交流を直流に変換するためにコンデンサィ ンプッ ト型整流回路が広く使用されている。 しかしながら、 コンデンサィ ンプッ ト型整流回路において、 電流波形が正弦波ではなく高調波 (特に基 本波成分の奇数次高調波成分) が多く含まれているため、 様々な障害が発 生する。 そこでこの高調波電流を少なくする技術が現在盛んに開発が進め られている。 そのひとつの技術としてパッシブフィルタがある。 これは一 般的にはリアク トルを用いて電流波形をなまらせ、 高調波を抑制するもの である。 しかしながら、 リアク トルだけで十分な高調波抑制効果を得るに は、 非常に大容量のリアク トルが必要である。 そこで、 補助手段を用いて 高調波を抑制する方法について、 提案がなされている。 例えば特開平 7— 2 7 4 5 1 5号公報などに高調波を効果的に抑制する方法について記載さ れている。
本発明の前提である基本技術とその課題
本発明の特徴を理解するために、 従来の高調波を抑制する方法を用いた 電源装置について図 1 9および図 2 0を参照しながら説明する。 図 1 9は 従来の電源装置の例を示した回路図である。 図 1 9において、 電源装置 1 00は、 例えば一般家庭における 100 V5 OH zの商用電源である交流 電源 101、 該交流電源 101を整流するプリッジ整流回路 102、 第 1 リアク トル 103、 ダイオード 104、 第 2リアク トル 105、 コンデン サ 106および平滑コンデンサ 107で構成されている。 プリッジ整流回 路 102は、 4個のダイオード D 101、 D102、 D103、 D 104 がプリッジ接続されて形成されている。
第 1リアク トル 103は、 一端がプリッジ整流回路 102の +出力に接 続され、 他端がダイォード 104のァノ一ドに接続されている。 第 2リア ク トル 105は、 一端がプリッジ整流回路 102の +出力に接続され、 他 端がコンデンサ 106の一端に接続されている。 ダイォ一ド 104のカソ ―ドと、 コンデンサ 106の他端とは接続され、 平滑コンデンサ 107の —端に接続されている。 平滑コンデンサ 107の他端は、 ブリッジ整流回 路 102の一出力に接続され、 平滑コンデンサ 107の両端に、 電源装置 100の負荷 108が接続されている。
次に、 この電源装置 100の動作について説明する。 図 20は図 19で 示した電源装置 100における電源半周期の各部の波形図である。 まず、 交流電源 101からの入力電圧 V i ηは図 20に示すとおり、 正弦波であ る。 また第 1リアクトル 103を流れる電流 I 101は、 平滑コンデンサ 107への充電電流が第 1リアク トル 103でなまった波形となる。 また、 第 2リアク トル 105を流れる電流 I 102は、 第 2リアク トル 105と コンデンサ 106との共振周波数で振動する波形となる。 従って、 入力電 流 I i nは 1101と 1102との和になり、 図 20に示すような波形と なる。 このように、 入力電源波形が更になまり、 電流ピーク値も低くなる ので、 高調波を抑制することができる。
しかしながら、 このような従来の構成では次のような課題があった。 先 に述べたように、 従来例の場合、 第 2リアク トル 1 0 5とコンデンサ 1 0 6との共振を用いて高調波を補完するような電流を流すので、 その共振周 波数は電源周波数の約 3倍に設定する必要があった。 即ち、 電源の周波数 が 5 0 H zである場合、 共振周波数は約 1 5 0 H zにする必要があつた。 例えば、 コンデンサ 1 0 6の容量を 1 0 0〃Fとすると、 第 2リアク トル 1 0 5は約 1 O mHにする必要があった。 このように、 従来例においては、 高調波を抑制するために非常に大きな容量の第 2リアク トル 1 0 5とコン デンサ 1 0 6が必要であり、 更に、 第 1リアタ トル 1 0 3は高負荷時の大 きな電流に対応できるような電流容量の大きな物を使用しなければならず、 電源装置が非常に大きくなり、 しかもコストも大幅にアップするという課 題を有していた。
本発明は上記のような課題を解決するもので、 より小型の部品を用いて、 十分な高調波抑制効果が得られ、 しかも小型でコストの安い電源装置を提 供することを目的とする。
発明の開示
本発明の電源装置は、 負荷に電源の供給を行う電源装置において、 交流 電源と、 該交流電源を入力とし、 ダイオードをブリッジ接続して形成され たプリッジ整流回路と、 該ブリッジ整流回路の出力に並列に接続された補 助コンデンサと、 プリッジ整流回路の一方の出力と負荷との間に負荷電流 が順方向に流れるように接続された、 リアク トルとダイォ一ドとの直列回 路と、 負荷に並列に接続された平滑コンデンサとで構成されるものである このように、 プリッジ整流回路の出力に小さな容量の補助コンデンサを設 け、 平滑コンデンザへの充電が始まる前に補助コンデンサへの充電電流が 流れることから、 この補助コンデンサに流れる充電電流を補完電流として 流すようにしたものである。 また、 本発明の電源装置は、 負荷に電源の供給を行う電源装置において、 交流電源と、 該交流電源を入力とし、 ダイォードをプリッジ接続して形成 されたプリッジ整流回路と、 該ブリッジ整流回路の一方の出力に一端が接 続された補助リアク トルと、 該補助リアク トルの他端とプリッジ整流回路 の他方の出力とに接続された補助コンデンサと、 補助リアク トルの他端と 負荷との間に負荷電流が順方向に流れるように接続された、 リアク トルお よびダイォ一ドの直列回路と、 負荷に並列に接続された平滑コンデンサと で構成されるものである。 このように、 ブリッジ整流回路と補助コンデン ザとの間に小さな容量の補助リアク トルを接続し、 補助コンデンサへの充 電立ち上がりを補助リアク トルでなまらせるようにしたものである。
また、 本発明の電源装置は、 負荷に電源の供給を行う電源装置において、 交流電源と、 該交流電源を入力とし、 ダイオードをブリッジ接続して形成 されたプリッジ整流回路と、 該ブリッジ整流回路の一方の出力に一端が接 続された、 中間タップ付きのリアク トノレと、 該リアク トルの中間タップと 上記ブリッジ整流回路の他方の出力に接続された補助コンデンサと、 リア ク トルの他端と負荷との間に負荷電流が順方向に流れるように接続された ダイォードと、 負荷に並列に接続された平滑コンデンサとで構成されるも のである。 このように、 リアク トルを中間タップ付きリアク トルとするこ とから、 高調波抑制効果は維持したままで部品点数の削減を行える。
また、 本発明の電源装置は、 負荷に電源の供給を行う電源装置において、 交流電源と、 該交流電源を入力とし、 ダイオードをブリッジ接続して形成 されたプリッジ整流回路と、 該ブリッジ整流回路の一方の出力と負荷とを 順方向に接続する第 1ダイォードと、 プリッジ整流回路の一方の出力に一 端が接続されたリアク トルと、 該リアク トルの他端と負荷とを順方向に接 続する第 2ダイオードと、 リアク トルの他端とプリッジ整流回路の他方の 出力に接続した平滑コンデンサとで構成されるものである。 このように、 プリッジ整流回路からの出力を平滑コンデンサの充電と、 直接負荷へ供給 する 2系統の回路で構成して、 入力電源電圧のピーク時には平滑コンデン サを介さず直接第 1ダイォードから電源供給する。
また、 本発明の電源装置は、 負荷に電源の供給を行う電源装置において、 交流電源と、 該交流電源を入力とし、 ダイオードをブリッジ接続して形成 されたプリッジ整流回路と、 該ブリッジ整流回路の一方の出力と負荷とを 接続するリアク トルと、 該リアク トルの負荷側に一端が接続され、 負荷電 流が順方向に流れるように接続された、 電圧降下手段と第 1ダイォ一ドと の直列回路と、 該直列回路の出力と負荷とを順方向に接続する第 2ダイォ ードと、 直列回路の出力とプリッジ整流回路の他方の出力とに接続された 平滑コンデンサとで構成されるものである。 このように、 ブリッジ整流回 路からの出力を平滑コンデンザの充電と、 直接負荷へ供給する 2系統の回 路と、 更に平滑コンデンサへの充電電圧を下げる電圧降下手段とで構成し、 電源電圧のピーク値付近においては、 平滑コンデンサを介さずにリアク ト ルからの出力を直接負荷に供給することができ、 平滑コンデンザの充電に おける高調波を抑制する。
また、 具体的には、 上記リアク トルは、 容量可変のリアク トルであり、 該リアク トルの容量の可変制御を行う容量制御手段を更に備えるものであ る。 このように、 リアク トルに流れる電流の変化や、 リアク トルの使用環 境などの変化に応じてリアク トルの容量を変えるようにする。
更に、 具体的には、 上記リアク トルは、 負荷電流が流れる第 1リアク ト ルと、 該第 1リアク トルに並列に接続して負荷電流をバイパスする第 2リ ァク トノレと力、らなり、 上記容量制御手段は、 該第 2リアク トルの第 1リア ク トルへの並列接続を制御する切替手段と、 該切替手段のスイッチング制 御を行うスイッチング制御手段とからなるものである。 このように、 第 2 リアク トルの第 1リアク トルへの並列接続を制御して、 第 1リアク トルの 温度が所定の温度未満になるようにする。
具体的には、 上記スイッチング制御手段は、 外気温度を検出する外気温 度検出手段を備え、 該外気温度検出手段で検出した外気温度が所定値以上 になると、 第 1リアク トルに第 2リアク トルを並列に接続するように切替 手段のスイッチング制御を行うものである。 このように、 外気温度が所定 値以上になると、 第 1リアク トルに第 2リアク トルを並列に接続して、 リ ァク トルの電流容量を増加させる。 また、 外気温度が所定値未満の場合、 第 2リアク トルの第 1リアク トルへの接続を断ち、 リアク トルの電流容量 を減少させる。
具体的には、 上記スイッチング制御手段は、 負荷電流を検出する負荷電 流検出手段を備え、 該負荷電流検出手段で検出した負荷電流が所定値以上 になると、 第 1リアク トルに第 2リアク トルを並列に接続するように切替 手段のスイッチング制御を行うものである。 このように、 負荷電流が所定 値以上になると、 第 1リアク トルに第 2リアク トルを並列に接続して、 リ ァク トルの電流容量を増加させる。 また、 負荷電流が所定値未満の場合、 第 2リアク トルの第 1リアク トルへの接続を断ち、 リアク トルの電流容量 を減少させる。
具体的には、 上記スイッチング制御手段は、 第 1リアク トルの温度を検 出するリアク トル温度検出手段を備え、 該リアク トル温度検出手段で検出 した第 1リアク トルの温度が所定値以上になると、 第 1リアク トルに第 2 リアク トルを並列に接続するように切替手段のスィッチング制御を行うも のである。 このように、 第 1リアク トルの温度が所定値以上になると、 第 1リアク トルに第 2リアク トルを並列に接続して、 リアク トルの電流容量 を増加させる。 また、 第 1 リアク トルの温度が所定値未満の場合、 第 2リ ァク トルの第 1リアク トルへの接続を断ち、 リアク トルの電流容量を減少 させる。
例えば、 上記負荷は、 インバータおよび該インバー夕によって回転数制 御が行われるモータであり、 上記スイッチング制御手段は、 該インバータ の制御を行ってモータの回転数制御を行い、 該モータの回転数が所定値以 上になると、 第 1リアクトルに第 2リアク トルを並列に接続するように切 替手段のスイッチング制御を行うものである。 このように、 モータの回転 数が所定値以上になると、 第 1リアク トルに第 2リアク トルを並列に接続 して、 リアク トルの電流容量を増加させる。 また、 モータの回転数が所定 値未満になると、 第 2リアク トルの第 1リアク トルへの接続を断ち、 リア ク トルの電流容量を減少させる。
例えば、 上記モータは電気冷蔵庫の圧縮機であり、 上記スイッチング制 御手段は、 電気冷蔵庫の庫内の温度を検出する庫内温度検出手段と、 電気 冷蔵庫の庫内温度を設定する庫内温度設定手段とを備え、 庫内温度検出手 段で検出した庫内温度と庫内温度設定手段で設定した設定温度との温度差 に応じてインバータを介して圧縮機の回転数制御を行い、 圧縮機の回転数 が所定値以上になると、 第 1リアク トルに第 2リアク トルを並列に接続す るように切替手段のスイッチング制御を行うものである。 このように、 電 気冷蔵庫における圧縮機の回転数が所定値以上になると、 第 1リアク トル に第 2リアクトルを並列に接続して、 リアク トルの電流容量を増加させる c また、 電気冷蔵庫における圧縮機の回転数が所定値未満になると、 第 2リ ァク トルの第 1リアク トルへの接続を断ち、 リアク トルの電流容量を減少 させる。
図面の簡単な説明 図 1は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 2は、 図 1で示した電源装置における電源半周期の各部の波形図であ り、
図 3は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 4は、 図 3で示した電源装置における電源半周期の各部の波形図であ り、
図 5は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 6は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 7は、 図 6で示した電源装置における電源半周期の各部の波形図であ 0、
図 8は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 9は、 図 8で示した電源装置における電源半周期の各部の波形図であ り、
図 1 0は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 1 1は、 図 1 0で示した電源装置における電源半周期の各部の波形図 であり、
図 1 2は、 図 1 0の電源装置およびその周辺部分の動作を示したフロー チャートであり、
図 1 3は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 1 4は、 図 1 3の電源装置およびその周辺部分の動作例を示したフロ 一チャートであり、
図 1 5は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 1 6は、 図 1 5の電源装置およびその周辺部分の動作例を示したフロ
—チヤ一トであり、
図 1 7は、 本発明の一実施の形態で構成した電源装置の回路図であり、 図 1 8は、 図 1 7の電源装置およびその周辺部分の動作例を示したフロ —チャートであり、
図 1 9は、 従来の電源装置を示した回路図であり、
図 2 0は、 図 1 9で示した電源装置における電源半周期の各部の波形図 である。
発明を実施するための最良の形態
以下に、 本発明の実施の形態を図面を参照しながら説明する。
(実施の形態 1 )
図 1は、 本発明の第 1の実施の形態における電源装置を示した回路図で ある。 図 1において、 電源装置 9は、 例えば一般家庭における 1 0 0 V 5 0 H zの商用電源である交流電源 1、 該交流電源 1を整流するプリッジ整 流回路 2、 補助コンデンサ 3、 リアク トル 4、 ダイオード 5および平滑コ ンデンサ 6で構成されている。 ブリッジ整流回路 2は、 4個のダイオード D 1 , D 2 , D 3 , D 4がブリッジ接続されて形成されている。 補助コン デンサ 3は、 一端がブリッジ整流回路 2の +出力に、 他端が一出力に接続 されている。 リアク トル 4は、 一端がブリッジ整流回路 2の +出力に接続 され、 他端はダイオード 5のアノードに接続されている。 平滑コンデンサ 6は、 一端がダイオード 5の力ソードに、 他端がブリッジ整流回路 2の一 端子に接続され、 負荷 7は、 平滑コンデンサ 6の両端に接続されている。
このように構成された電源装置 9について、 以下その動作を図 1および 図 2を用いて説明する。 図 2は、 図 1で示した電源装置 9における電源半 周期の各部の波形図である。 まず、 交流電源 1からの入力電圧 V i nは図 2に示すとおり、 正弦波である。 また、 リアク トル 4を流れる電流 I 1は、 平滑コンデンサ 6への充電電流がリアク トル 4でなまった波形となってい る。 補助コンデンサ 3を流れる電流 I 2は、 入力電圧 V i nが補助コンデ ンサ 3の両端電圧より高くなつたときに充電を開始し、 リアク トル 4によ り平滑コンデンサ 6に充電を行っているときは、 補助コンデンサ 3に充電 された電荷が引っ張られていくこととなる。 すなわち、 電流 I 1が流れ終 わったあと、 補助コンデンサ 3の両端電圧は十分に低い電圧となっている。 従って、 次のサイクルにおける電流の流れはじ は、 通常の充電に比べ、 十分に早く始まることになる。 従って、 入力電流 I i nは I 1と I 2との 和になり、 図 2に示すような波形となる。
このように、 入力電流 I i n波形の幅が通常時に比べて広くなり、 電流 ピーク値も低くなるので、 高調波は抑制できることとなる。 高調波の次数 で説明すると、 通常の波形に比べて 3次と 5次の成分が減少し、 電流の立 ち上がりが急峻になるため、 9次以降の高調波成分は若干増加する。 しか しながら、 最も高調波の影響が大きい 3次と 5次の成分に顕著な減少が見 られるので、 高調波電流の抑制に有効となる。 また、 この各次数の高調波 成分は補助コンデンサ 3の容量値によって、 微調整が可能である。 例えば、 補助コンデンサ 3の容量を大きくすると 3次、 5次の成分が更に減少する が、 9次以降の高調波成分は更に増加する。 このことにより、 補助コンデ ンサ 3の容量値の調整によって最適な高調波抑制が可能である。
また、 補助コンデンサ 3の容量値は、 平滑コンデンサ 6 (通常、 数百// Fから数千/ z F程度) に比べて、 1 Z 1 0 0程度 (数 / F程度) といった 十分に小さなものでよく、 実際の実験においても平滑コンデンサ 6の容量 が 3 9 0 Fに対して補助コンデンサ 3の容量は 1 / Fで十分な高調波抑 制効果が得られた (高次数に対しても問題なし) 。
なお、 本第 1の実施の形態において、 リアク トル 4とダイオード 5を置 き換えてもよく、 このようにした場合、 ブリッジ整流回路 2の +出力にダ ィォード 5のアノードを接続し、 ダイォード 5のカソードと負荷 7の一端 との間にリアクトル 4を接続する。
このように、 本第 1の実施の形態における電源装置は、 ブリッジ整流回 路 2の出力に小さな容量の補助コンデンサ 3を設け、 この補助コンデンサ 3に流れる充電電流を補完電流として流すように構成した。 このことから、 通常のパッシブフィルタによる高調波抑制方法 (リアク トルのみ) を使用 した電源装置に比べ、 補助コンデンサ 3とダイォ一ド 5といった小型で安 価な部品の追加のみによって、 有効な高調波抑制が実現できると共に部品 の小型化および低コスト化を行うことができ、 小型で安価な電源装置を提 供することができる。
(実施の形態 2 )
図 3は、 本発明の第 2の実施の形態における電源装置を示した回路図で ある。 なお、 図 3では、 図 1と同一構成のものは同じ符号を付与し、 ここ ではその説明を省略すると共に、 図 1との相違点のみ説明する。 図 3にお ける図 1との相違点は、 図 1のブリッジ整流回路 2の +出力と、 補助コン デンサ 3およびリアクトル 4との接続部との間に補助リアク トル 1 0を追 加したことにおり、 これに伴って、 図 1の電源装置 9を電源装置 1 2とし たことにある。
図 3において、 電源装置 1 2は、 交流電源 1、 ブリッジ整流回路 2、 補 助コンデンサ 3、 リアク トノレ 4、 ダイォード 5、 平滑コンデンサ 6および 補助リアクトル 1 0で構成されている。 補助リアク トル 1 0は、 プリッジ 整流回路 2の +出力と、 補助コンデンサ 3およびリアク トル 4の接続部と の間に接続されている。
上記のように構成された電源装置 1 2について、 以下その動作を図 3お よび図 4を用いて説明する。 図 4は、 図 3で示した電源装置 1 2における 電源半周期の各部の波形図である。 まず、 交流電源 1からの入力電圧 V i nは図 4に示すとおり、 正弦波である。 また、 リアク トル 4を流れる電流 I 3は、 平滑コンデンサ 6への充電電流がリアク トル 4でなまった波形と なる。 また補助コンデンサ 3を流れる電流 I 4は、 入力電圧 V i nが補助 コンデンサ 3の両端電圧より高くなつたときに充電を開始するが、 補助リ ァク トル 1 0でその立ち上がりはなまらされる。 他の動作は基本的に第 1 の実施の形態と同様であり、 詳しい説明は省略する。
従って、 入力電流 I i nは I 3と I 4との和になり、 図 4に示すような 波形となる。 図 4において、 特に補助コンデンサ 3を流れる電流 I 4の立 ち上がりにおける波形が補助リアク トル 1 0でなまらせることができるの で、 第 1の実施の形態の電源装置において増加した 9次以降の高調波成分 を減少させることができる。 補助リアク トル 1 0の容量は、 リアク トル 4 の容量の 1 Z 1 0程度でよく、 例えば、 リアク トル 4の容量が 4 O mHの 時は、 補助リアク トル 1 0の容量は 2 mH程度で十分な効果が得られる。 なお、 本第 2の実施の形態において、 リアク トル 4とダイオード 5を置 き換えてもよく、 このようにした場合、 補助リアク トル 1 0と補助コンデ ンサ 3との接続部にダイォード 5のアノードを接続し、 ダイォード 5の力 ソードと負荷 7の一端との間にリアク トル 4を接続する。
このように、 本第 2の実施の形態における電源装置は、 プリッジ整流回 路 2と補助コンデンサ 3との間に小さな容量の補助リアク トル 1 0を接続 するように構成した。 このことにより、 小さな容量の補助リアク トル 1 0 といつた小型で安価な部品を追加することによって、 高調波抑制効果が更 に高くなり、 小型で安価な電源装置を提供することができる。
(実施の形態 3 )
図 5は、 本発明の第 3の実施の形態における電源装置の例を示した回路 図である。 なお、 図 5では、 図 1と同一構成のものは同じ符号を付与し、 ここではその説明を省略すると共に、 図 1との相違点のみ説明する。 図 5 における図 1との相違点は、 図 1のリアク トル 4を中間タップ付きリアク トル 1 5に置き換え、 補助コンデンサ 3を中間タップ付きリアク トル 1 5 の中間タップとブリッジ整流回路 2の一出力との間に接続したことにあり、 これらのことから、 図 1の電源装置 1を電源装置 1 7としたことにある。 図 5において、 電源装置 1 7は、 交流電源 1、 プリッジ整流回路 2、 補 助コンデンサ 3、 ダイオード 5、 平滑コンデンサ 6および中間タップ付き リアク トル 1 5で構成されている。 中間タップ付きリアク トル 1 5は、 一 端がプリッジ整流回路 2の +端子に接続され、 他端がダイオード 5のァノ ードに接続されている。 更に、 中間タップ付きリアク トル 1 5は、 中間タツ プが補助コンデンサ 3の一端に接続されている。 ここで、 中間タップ付き リアク トノレ 1 5における中間タップの位置は、 中間タップからブリッジ整 流回路 2側の端子に対するリアクタンスが、 中間タップからダイオード 5 側の端子に対するリアクタンスに比べ十分小さくなるように設定されてい る o
上記のように構成された電源装置 1 7における動作は、 第 2の実施の形 態の電源装置 1 2の動作と同様であるので、 その説明を省略する。
このように、 本第 3の実施の形態における電源装置は、 リアク トルを中 間タップ付きリアク トル 1 5で構成することにより、 高調波電流に対して は第 2の実施の形態と同様に高い抑制効果を持ったまま補助リアク トル 1 0を削減することができ、 更に小型で安価な電源装置を提供することがで さる。
(実施の形態 4 )
図 6は、 本発明の第 4の実施の形態における電源装置の例を示した回路 図である。 なお、 図 6では、 図 1と同一構成のものは同じ符号を付与し、 ここではその説明を省略する。
図 6において、 電源装置 2 5は、 交流電源 1、 ブリッジ整流回路 2、 リ ァク トル 4、 平滑コンデンサ 6、 第 1ダイォード 2 0および第 2ダイォー ド 2 1で構成されている。 リアク トル 4は、 ブリッジ整流回路 2の +出力 と、 平滑コンデンサ 6の一端との間に接続され、 平滑コンデンサ 6の他端 は、 プリッジ整流回路 2の一出力に接続されている。 第 1ダイオード 2 0 は、 アノードがブリッジ整流回路 2の +出力に接続され、 力ソードが第 2 ダイォ一ド 2 1のカソードおよび負荷 7の一端に接続されている。 第 2ダ ィオード 2 1は、 アノードがリアク トル 4と平滑コンデンサ 6との接続部 に接続されている。
上記のように構成された電源装置 2 5について、 以下その動作を図 6お よび図 7を用いて説明する。 図 7は、 図 6で示した電源装置 2 5における 電源半周期の各部の波形図である。 まず、 交流電源 1からの入力電圧 V i nは図 7に示すとおり、 正弦波である。 また、 リアク トル 4を流れる電流 I 5は、 平滑コンデンサ 6への充電電流がリアク トル 4でなまった波形と なる。 また、 第 1ダイォ一ド 2 0を流れる電流 I 6は、 入力電圧 V i nが 平滑コンデンサ 6の両端電圧より高くなつたとき、 平滑コンデンサ 6から 負荷 7に電力供給するのではなく、 直接第 1ダイォード 2 0を介して負荷 7に供給される。 また、 入力電圧 V'f nが平滑コンデンサ 6の両端電圧よ り低くなれば、 平滑コンデンサ 6から第 2ダイォード 2 1を介して、 負荷 7に電力を供袷する。
従って、 入力電流 I i nは I 5と I 6との^!になり、 図 7に示すような 波形となる。 図 7において、 入力電圧 V i nの高い区間においては、 平滑 コンデンサ 6を通さず直接負荷 7に電力を供給するようにしたので、 平滑 コンデンサ 6への充電電圧は低下し、 充電電流は導通区間が広がり、 ピー ク電流も低下するため、 高調波抑制効果が高まる。
このように、 本第 4の実施の形態における電源装置は、 第 1ダイオード 2 0および第 2ダイォ一ド 2 1の 2個のダイォードを追加して、 プリッジ 整流回路 2からの出力を平滑コンデンサ 6の充電と、 直接負荷 7へ供給す る 2系統の回路で構成することによって、 高調波抑制効果が高くなり、 小 型で安価な電源装置を提供することができる。
(実施の形態 5 )
図 8は、 本発明の第 5の実施の形態における電源装置の例を示した回路 図である。 なお、 図 8では、 図 1と同一構成のものは同じ符号を付与し、 ここではその説明は省略する。
図 8において、 電源装置 3 5は、 交流電源 1、 ブリッジ整流回路 2、 リ ァク トノレ 4、 平滑コンデンサ 6、 電圧降下手段 3 0、 第 1ダイォード 3 1 および第 2ダイオード 2 1で構成されている。 電圧降下手段 3 0は、 例え ば抵抗器でもよく、 またダイオードを直列接続するなど、 電圧を降下させ れるものであればよい。 リアクトル 4は、 一端がプリッジ整流回路 2の + 出力に接続され、 他端が電圧降下手段 3 0の一端と負荷 7の一端とに接続 されている。 電圧降下手段 3 0の他端は、 第 1ダイォ一ド 3 1のアノード に接続され、 第 1ダイォード 3 1のカソードは、 平滑コンデンサ 6の一端 および第 2ダイォード 2 1のアノードに接続されている。 第 2ダイォード 2 1のカソードは、 リアクトル 4と負荷 7との接続部に接続されている。 平滑コンデンサ 6の他端は、 プリッジ整流回路 2の—出力に接続されてい 0
上記のように構成された電源装置 3 5について、 以下その動作を図 8お よび図 9を用いて説明する。 図 9は、 図 8で示した電源装置 3 5における 電源半周期の各部の波形図である。 まず、 交流電源 1からの入力電圧 V i nは図 9に示すとおり、 正弦波である。 また、 電圧降下手段 3 0を流れる 電流 I 7は、 平滑コンデンサ 6への充電電流がリアク トル 4および電圧降 下手段 3 0でなまった波形となる。 また、 バイパスされる電流 I 8は、 入 力電圧 V i nが平滑コンデンサ 6の両端電圧より高くなつたとき、 平滑コ ンデンサ 6から電力供給するのではなく、 直接リアク トル 4からバイパス されて電力を供給する。 入力電圧 V i nが平滑コンデンサ 6の両端電圧よ り低くなれば、 平滑コンデンサ 6から第 2ダイォード 2 1を通して、 負荷 7に電力を供給する。
従って、 入力電流 I i nは I 7と I 8との和になり、 図 9に示すような 波形となる。 図 9において、 入力電圧 V i nの高い区間においては、 平滑 コンデンサ 6を通さず直接負荷 Ίに電力を供給するようにしたので、 平滑 コンデンサ 6への充電電圧は低下し、 充電電流は導通区間が広がり、 ピー ク電流も低下するため、 高周波抑制効果が高まる。
このように、 本第 5の実施の形態における電源装置は、 電圧降下手段 3 0および第 1ダイオード 3 1を追加して、 ブリッジ整流回路 2からの出力 を平滑コンデンサ 6の充電と、 負荷 7へ直接供給する 2系統の回路と、 更 に平滑コンデンサ 6への充電電圧を下げる電圧降下手段 3 0で構成した。 このことによって、 電源電圧のピーク値付近においては、 平滑コンデンサ 6を介さずに直接電力を供給することができ、 平滑コンデンサ 6の充電に おける高調波を抑制することができるため、 高調波抑制効果が高くなり、 小型で安価な電源装置を提供することができる。
(実施の形態 6 )
上記第 1の実施の形態から第 5の実施の形態では、 リアク トルの容量を 一定にしていたため、 負荷 7の状態よつては負荷電流が増加し、 リアク ト ルの温度が上昇することから、 電流容量の大きなリアク トルを使用する必 要があった。 そこで、 負荷 7の状態に応じてリアク トルの容量を変え、 リ ァク トルの電流容量を変えるようにしてもよく、 このようにしたものを本 発明の第 6の実施の形態とする。 なお、 本第 6の実施の形態では、 第 1の 実施の形態における電源装置の構成を例にして説明し、 第 2の実施の形態 から第 5の実施の形態における各電源装置の構成の場合においても同様で あるのでその説明を省略する。 また、 第 6の実施の形態では、 負荷 7が、 インバータおよび該インバー夕によって回転数が制御されるモータ、 例え ば電気冷蔵庫の圧縮機である場合を例にして説明する。
図 1 0は、 本発明の第 6の実施の形態における電源装置の例を示した概 略の回路図である。 なお、 図 1 0では、 図 1と同一構成のものは同じ符号 を付与し、 ここではその説明を省略する。 図 1 0において、 電源装置 4 0 は、 交流電源 1、 ブリッジ整流回路 2、 補助コンデンサ 3、 リアク トル回 路 4 1、 ダイオード 5および平滑コンデンサ 6で構成されている。 リアク トル回路 4 1は、 負荷電流が流れる第 1リアク トル 4 2と、 第 1リアク ト ル 4 2に並列に接続されて負荷電流をバイパスする第 2リアク トル 4 3と、 該第 2リアク トル 4 3の第 1リアク トル 4 2への並列接続を行う切替手段 4 4とで形成されている。 また、 インバータ 4 5および該インバータ 4 5 によって回転数が制御される圧縮機 4 6が、 図 1の負荷 7をなしており、 インバータ 4 5は、 制御手段 4 7から入力される圧縮機 4 6の回転数を指 令する制御信号に従って圧縮機 4 6の回転数の制御を行う。
補助コンデンサ 3は、 一端がブリッジ整流回路 2の +出力に、 他端が一 出力に接続され、 ダイオード 5のアノードは、 ブリッジ整流回路 2の +出 力に接続されている。 リアク トル回路 4 1において、 第 1 リアク トル 4 2 の一端と切替手段 4 4の一端が接続され、 該接続部にダイォ一ド 5のカソ 一ドが接続されている。 切替手段 4 4の他端は第 2リアク トル 4 3の一端 に接続され、 第 1リアク トル 42の他端と第 2リアク トル 43の他端は接 続され、 該接続部は、 平滑コンデンサ 6の一端に接続されている。 平滑コ ンデンサ 6の他端は、 ブリッジ整流回路 2の一出力に接続され、 平滑コン デンサ 6の両端にィンバータ 45が接続されている。 ィンバータ 45は、 圧縮機 46に接続されると共に、 制御手段 47に接続され、 制御手段 47 には、 更に、 電気冷蔵庫 (以下、 冷蔵庫と呼ぶ) の庫内温度を検出する庫 内温度検出手段 48、 および庫内温度の設定を行う庫内温度設定手段 49 がそれぞれ接続されている。 また、 制御手段 47は、 切替手段 44におけ るスイッチング動作の制御を行うことから、 厳密に言えば、 電源装置 40 は制御手段 47を含むものである。
上記のような構成において、 切替手段 44が 0 nすると、 第 2リアク ト ノレ 43は第 1リアク トル 42に並列に接続され、 切替手段 44が 0 f fす ると、 第 2リアク トル 43は回路から切り離され、 リアク トル回路 41は、 第 1リアク トル 42のみとなる。 このことから、 切替手段 44が 0 nの時、 リアク トル回路 41のィンダクタンス値 Lは、 第 1リアク トル 42のィン ダクタンス値を La、 第 2リアク トル 43のインダクタンス値を Lbとす ると、 下記 (1)式のようになる。
L = L a x Lb/(L a + Lb) (1)
ここで、 例えば Laを 20mH、 Lbを 1 OmHとすれば、 Lは 6.7 mHとなり、 切替手段 44が 0 f f してリアク トル回路 41が第 1リアク トル 42のみとなったときよりもィンダクタンス値が減少する。
—方、 切替手段 44が 0 nの時は、 リアク トル回路 41の電流容量 I m a Xは、 第 1リアク トル 42の電流容量を I ama x、 第 2リアク トル 4 3の電流容量を I bma Xとすると、 下記 (2)式のようになる。
Imax=I amax+I bmax ( 2 ) このように、 切替手段 44が o nの時は、 リアク トル回路 41の電流容 量 I m a Xは、 第 1リアク トル 42の電流容量 l amaxと第 2リアク ト ノレ 43の電流容量 I bmaxとを加えた値となる。 これに対して、 切替手 段 44が 0 f f の時は、 リアク トル回路 41の電流容量は、 第 1リアク ト ル 42の電流容量 I ama Xとなる。 この結果、 切替手段 44が o nの時 は、 リアク トル回路 41のインダクタンス値 Lが減少して、 電流容量 Im a Xは増加し、 切替手段 44が 0 f f の時は、 リアク トル回路 41のイン ダクタンス値 Lは増加して、 リアク トル回路 41の電流容量 Imaxは減 少することとなる。
また、 制御手段 47は、 冷蔵庫の庫内温度を検出する庫内温度検出手段 48で検出された庫内温度と、 庫内温度の設定を行う庫内温度設定手段 4 9で設定された設定温度との温度差に応じてィンバータ 45に対して圧縮 機 46の回転数を指令する。 例えば、 庫内温度と設定温度の差が 5でのと きは 3600 r/m、 0〜5°Cのときは 3000 r Zm、 一 2〜0°Cのと きは 2400 r/m. — 2°C以下のときは 0 r Zmで圧縮機 46を動作さ せるように、 帝 ιί御手段 47はインバー夕 45に回転数指令を送出する。 ま た、 制御手段 47は回転数指令が 3600 r/mであれば切替手段 44を 0 nし、 それ以外は切替手段 44を 0 f fする。
以上のように構成された冷蔵庫の電源装置について、 以下その動作を図 10〜図 12を用いて、 もう少し詳細に説明する。 図 11は、 図 10で示 した電源装置 40における電源半周期の各部の波形図であり、 図 12は図 10で示した電源装置およびその周辺部分の動作例を示したフローチヤ一 トである。
まず、 交流電源 1からの入力電圧 V i nは図 11に示すとおり、 正弦波 である。 また、 リアク トル回路 41を流れる電流 I 1は、 平滑コンデンサ 6への充電電流がリアク トル回路 4 1でなまった波形となる。 また、 補助 コンデンサ 3を流れる電流 I 2は、 入力電圧 V i nが補助コンデンサ 3の 両端電圧より高くなつたときに充電を開始し、 リアク トル回路 4 1により 平滑コンデンサ 6に充電を行っているときは、 補助コンデンサ 3に充電さ れた電荷が引っ張られていくこととなる。 すなわち、 電流 I 1が流れ終わつ たあと、 補助コンデンサ 3の両端電圧は十分に低い電圧となっている。 従つ て、 次のサイクルにおける電流の流れはじめは、 通常の充電に比べ、 十分 に早く始まることになる。 従って、 入力電流 I i nは電流 I 1と電流 I 2 との和になり、 図 1 1に示すような波形となる。
また、 冷蔵庫の圧縮機 4 6を高回転で運転するときは、 庫内温度が高い ときであるから冷却負荷が大きく、 圧縮機 4 6に流れる電流が大きくなり、 電流 I 1も大きくなる。 また、 高調波成分の比率は、 電流 I 1が大きくな るほど小さくなり、 実験ではリアク トル回路 4 1のインダクタンス値 が 1 O mHで電流 I 1が 1 Aのとき、 高調波成分の比率は 7 2 %で、 電流 I 1が 2 Aのときで 5 7 %であった。
次に図 1 2を用いて図 1 0の電源装置およびその周辺部分の動作例につ いて説明する。
図 1 2において、 制御手段 4 7は、 ステップ S 1で、 庫内温度設定手段 4 9から設定温度を入力し、 ステップ S 2で、 庫内温度検出手段 4 8より 検出された庫内温度を入力する。 次に、 制御手段 4 7は、 ステップ S 3で、 入力された設定温度と庫内温度との温度差を計算し、 ステップ S 4で、 圧 縮機 4 6を運転する回転数を決定し、 ステップ S 5で、 インバータ 4 5に 決定した回転数を回転数指令として送出する。 次に、 制御手段 4 7は、 ス テツプ S 6で、 決定した回転数が 3 6 0 0 r Zmであるかを判断し、 3 6 0 0 r Zmであれば (y e s ) 、 ステップ S 7で、 切替手段 4 4を o nし てステップ S 1に戻る。 また、 制御手段 47は、 ステップ S 6で、 360 0 rZm未満であれば (n o) 、 ステップ S 8で、 切替手段 44を o f f してステップ S 1に戻る。
ここで、 例えば、 第 1リアク トル 42のィンダクタンス値 L aを 10 m H、 電流容量 I amaxを 1Aとし、 第 2リアク トル 43のインダクタン ス値 Lbを 10mH、 電流容量 I bmaxを 1 Aとすれば、 電流 I 1が大 きくなつて高調波成分が少なくなる高負荷時には、 リアク トル回路 41の インダクタンス値 Lは 5mH、 電流容量 I maxは 2 Aとなり、 電流 I 1 が小さくなつて高調波成分が多くなる低負荷時には、 リアク トル回路 41 のインダクタンス値 Lは 10mH、 電流容量 Imaxは 1 Aとなる。 また、 電流 I 1が 2 Aの時の高調波成分の比率はリアク トル回路 41のインダク タンス値 Lを 5mHとしても 69%程度であり、 ィンダク夕ンス値 Lが 1 OmHで電流 I 1が 1 Aの時の高調波成分の比率 72%とほとんど変わら ず、 電流 I 1が大きくなればリアク トル回路 41のィンダクタンス値を低 下させても支障はない。
このように、 本第 6の実施の形態における電源装置は、 入力電流 I i n 波形の幅が通常時に比べて広くなり、 電流ピーク値も低くなるので、 高調 波は抑制でき、 電流 I 1が大きくなつて高調波成分が減少する圧縮機 46 の高回転時には、 リアク トル回路 41のィンダクタンス値 Lを小さく して、 電流容量 I m a xを増加させるので電流容量とィンダクタンス値の大きな リアク トルを使う必要がなく、 リアク トル回路 41の直流抵抗も減少する ため、 圧縮機 46の高回転時における、 電流 I 1が大きい時のリアク トル 回路 41での損失が低減できる。 このことから、 通常のパッシブフィルタ による高調波抑制方法 (リアク トルのみ) を使用した電源装置に比べ、 補 助コンデンサ 3、 ダイォード 5、 容量可変のリアク トル回路 41、 および 圧縮機 4 6の設定回転数に応じてリアク トル回路 4 1の容量を切り替える 制御手段 4 7によって、 有効な高調波抑制が実現でき、 構成する部品自体 は非常に小型で安価であるので、 小型、 低コストで損失の少ない電源装置 を提供することができる。
(実施の形態 7 )
第 6の実施の形態では、 制御手段 4 7は、 圧縮機 4 6の設定回転数に応 じて切替手段 4 4のスィツチング制御を行ったが、 冷蔵庫の外気温度に応 じて切替手段 4 4のスィツチング制御を行ってもよく、 このようにしたも のを本発明の第 7の実施の形態とする。
図 1 3は、 本発明の第 7の実施の形態における電源装置の例を示した回 路図である。 なお、 図 1 3では、 図 1 0と同一構成のものは同じ符号を付 与し、 ここではその説明を省略すると共に、 図 1 0との相違点のみ説明す る。 また、 第 7の実施の形態では、 第 6の実施の形態と同様、 第 1の実施 の形態における電源装置の構成を例にして説明し、 第 2の実施の形態から 第 5の実施の形態における各電源装置の構成の場合においても同様である のでその説明を省略する。 更に、 第 7の実施の形態において、 第 6の実施 の形態と同様に、 第 1の実施の形態における負荷 7が、 インバータおよび 該ィンバー夕によって回転数が制御されるモータ、 例えば電気冷蔵庫の圧 縮機である場合を例にして説明する。
図 1 3における図 1 0との相違点は、 冷蔵庫の外気温度を検出する外気 温度検出手段 5 1を追加し、 制御手段 4 7は、 外気温度検出手段 5 1で検 出された外気温度に応じて切替手段 4 4のスィツチング制御を行うことか ら、 図 1 0の制御手段 4 7を制御手段 5 2としたことにある。
図 1 3において、 外気温度検出手段 5 1は、 制御手段 5 2に接続され、 制御手段 5 2は、 外気温度検出手段 5 1で検出された外気温度が高い、 例 えば 3 0 °C以上であれば切替手段 4 4を o nさせ、 3 0 °C未満であれば切 替手段 4 4を 0 f f させる。 これは、 冷蔵庫が高外気温度で運転するとき は、 低外気温度で運転するときより大きい冷却能力が必要であり、 圧縮機 4 6に流れる電流も大きくなり、 電流 I 1も大きくなるためである。 また、 高調波成分の比率は、 電流 I 1が大きくなるほど小さくなり、 実験ではリ ァク トル回路 4 1のィンダクタンス値 Lが 1 O mHで電流 I 1が 1 Aのと き、 高調波成分の比率は 7 2 %で、 電流 I 1が 2 Aのときで 5 7 %であつ た。 このように、 制御手段 5 2は、 切替手段 4 4におけるスィツチング動 作の制御を行うことから、 厳密に言えば、 電源装置 4 0は制御手段 5 2を 含むものである。
次に、 図 1 4は、 図 1 3の電源装置およびその周辺部分の動作例を示し たフローチャートであり、 図 1 4を用いて図 1 3の電源装置およびその周 辺部分の動作例について説明する。
図 1 4において、 制御手段 5 2は、 ステップ S 1 1で、 庫内温度設定手 段 4 9から設定温度を入力し、 ステップ S 1 2で、 庫内温度検出手段 4 8 より検出された庫内温度を入力する。 次に、 制御手段 5 2は、 ステップ S 1 3で、 入力された設定温度と庫内温度との温度差を計算し、 ステップ S 1 4で、 圧縮機 4 6を運転する回転数を決定し、 ステップ S 1 5で、 イン バータ 4 5に決定した回転数を回転数指令として送出する。 次に、 制御手 段 5 2は、 ステップ S 1 6で、 外気温度検出手段 5 1より検出された外気 温度を入力し、 ステップ S 1 7で、 入力された外気温度が 3 0で以上かを 判断し、 3 0 °C以上であれば (y e s ) 、 ステップ S 1 8で、 切替手段 4 4を 0 nしてステップ S 1 1に戻る。 また、 制御手段 5 2は、 ステップ S 1 7で、 3 0 °C未満であれば (n 0 ) 、 ステップ S 1 9で、 切替手段 4 4 を 0 f f してステップ S 1 1に戻る。 ここで、 第 6の実施の形態の場合と同様に、 リアク トル回路 4 1は、 電 流 I 1が大きくなつて高調波成分が少なくなる高負荷時には、 インダクタ ンス値 Lが小さくなつて電流容量 I m a Xが大きくなり、 電流 I 1が小さ くなって高調波成分が多くなる低負荷時には、 ィンダクタンス値 Lが大き くなつて電流容量 I m a xが小さくなる。 更に、 第 6の実施の形態の場合 と同様に電流 I 1が大きくなればリァク トル回路 4 1のインダクタンス値 を低下させても支障はない。 なお、 図 1 3で示した電源装置 4 0における 電源半周期の各部の波形図は、 図 1 1と同じであるので省略する。
このように、 本第 7の実施の形態における電源装置は、 入力電流 I i n 波形の幅が通常時に比べて広くなり、 電流ピーク値も低くなるので、 高調 波は抑制でき、 電流 I 1が大きくなり高調波成分が減少する高外気温時に は、 リアク トル回路 4 1のィンダクタンス値 Lを小さく して、 電流容量 I m a Xを増加させるので電流容量とィンダクタンス値の大きなリアク トル を使う必要がなく、 リアク トル回路 4 1の直流抵抗も減少するため、 高外 気温時における電流 I 1が大きい時のリアク トル回路' 4 1での損失が低減 できる。 このことから、 通常のパッシブフィルタによる高調波抑制方法 (リ ァク トルのみ) を使用した電源装置に比べ、 補助コンデンサ 3、 ダイォー ド 5、 容量可変のリアク トル回路 4 1、 および外気温度に応じてリアク ト ル回路 4 1の容量を切り替える制御手段 5 2によって、 有効な高調波抑制 が実現でき、 構成する部品自体は非常に小型で安価であるので、 小型、 低 コストで損失の少ない電源装置を提供することができる。
なお、 本第 7の実施の形態において、 制御手段 5 2は、 外気温度に加え て、 上記第 6の実施の形態の制御手段 4 7と同様にして圧縮機 4 6の設定 回転数に応じてリアク トル 4 1の容量を切り替えるようにしてもよい。
(実施の形態 8 ) 第 6の実施の形態では、 制御手段 4 7は、 圧縮機 4 6の設定回転数に応 じて切替手段 4 4のスイッチング制御を行ったが、 圧縮機 4 6を動作させ るモータに流れる電流に応じて切替手段 4 4のスィツチング制御を行って もよく、 このようにしたものを本発明の第 8の実施の形態とする。
図 1 5は、 本発明の第 8の実施の形態における電源装置の例を示した回 路図である。 なお、 図 1 5では、 図 1 0と同一構成のものは同じ符号を付 与し、 ここではその説明を省略すると共に、 図 1 0との相違点のみ説明す る。 また、 第 8の実施の形態では、 第 6の実施の形態と同様、 第 1の実施 の形態における電源装置の構成を例にして説明し、 第 2の実施の形態から 第 5の実施の形態における各電源装置の構成の場合においても同様である のでその説明を省略する。 更に、 第 8の実施の形態において、 第 6の実施 の形態と同様に、 第 1の実施の形態における負荷 7が、 インバータおよび 該ィンバー夕によって回転数が制御されるモータ、 例えば電気冷蔵庫の圧 縮機である場合を例にして説明する。
図 1 5における図 1 0との相違点は、 圧縮機 4 6を動作させるモータ (図 示せず) に流れる電流を検出するモータ電流検出手段 6 1を追加し、 制御 手段 4 7は、 モータ電流検出手段 6 1で検出されたモータ電流に応じて切 替手段 4 4のスィッチング制御を行うことから、 図 1 0の制御手段 4 7を 制御手段 6 2としたことにある。
図 1 5において、 モータ電流検出手段 6 1は、 制御手段 6 2に接続され、 制御手段 6 2は、 モータ電流検出手段 6 1で検出されたモータ電流が大き い、 例えば 1. 5 A以上であれば切替手段 4 4を o nさせ、 1 . 5 A未満で あれば切替手段 4 4を o f f させる。 これは、 圧縮機 4 6に流れる電流が 大きくなると、 電流 I 1も大きくなるためである。 また、 高調波成分の比 率は、 電流 I 1が大きくなるほど小さくなり、 実験ではリアク トル回路 4 T/JP97/0 S00
1のィンダクタンス値 Lが 1 OmHで電流 I 1が 1 Aのとき、 高調波成分 の比率は 72%で、 電流 I 1が 2Aのときで 57%であった。 このように、 制御手段 62は、 切替手段 44におけるスィツチング動作の制御を行うこ とから、 厳密に言えば、 電源装置 40は制御手段 62を含むものである。 次に、 図 16は、 図 15の電源装置およびその周辺部分の動作例を示し たフローチヤ一トであり、 図 16を用いて図 15の電源装置およびその周 辺部分の動作例について説明する。
図 16において、 制御手段 62は、 ステップ S 21で、 庫内温度設定手 段 49から設定温度を入力し、 ステップ S 22で、 庫内温度検出手段 48 より庫内温度を入力する。 次に、 制御手段 62は、 ステップ S 23で、 入 力された設定温度と庫内温度との温度差を計算し、 ステップ S 24で、 圧 縮機 46を運転する回転数を決定し、 ステップ S25で、 インバータ 45 に決定した回転数を回転数指令として送出する。 次に、 制御手段 62は、 ステップ S26で、 モータ電流検出手段 61より検出されたモータ電流を 入力し、 ステップ S 27で、 入力されたモータ電流が 1.5 A以上かを判 断し、 1.5 A以上であれば (y e s) 、 ステップ S 28で、 切替手段 4 4を o nしてステップ S 21に戻る。 また、 制御手段 62は、 ステップ S 27で、 1.5 A未満であれば (no) 、 ステップ S 29で、 切替手段 4 4を o f f してステップ S 21に戻る。
ここで、 第 6の実施の形態の場合と同様に、 リアク トル回路 41は、 電 流 I 1が大きくなつて高調波成分が少なくなる高負荷時には、 インダクタ ンス値 Lが小さくなつて電流容量 Imaxが大きくなり、 電流 I 1が小さ くなって高調波成分が多くなる低負荷時には、 ィンダクタンス値 Lが大き くなつて電流容量 Imaxが小さくなる。 更に、 第 6の実施の形態の場合 と同様に電流 I 1が大きくなればリアク トル回路 41のインダクタンス値 を低下させても支障はない。 なお、 図 1 5で示した電源装置 4 0における 電源半周期の各部の波形図は、 図 1 1と同じであるので省略する。
このように、 本第 8の実施の形態における電源装置は、 入力電流 I i n 波形の幅が通常時に比べて広くなり、 電流ピーク値も低くなるので、 高調 波は抑制でき、 電流 I 1が大きくなり高調波成分が減少するモータ電流の 大きい時には、 リアク トル回路 4 1のィンダクタンス値 Lを小さく して、 電流容量 I m a Xを増加させるので電流容量とィンダクタンス値の大きな リアク トルを使う必要がなく、 リアク トル回路 4 1の直流抵抗も減少する ため、 モータ電流が大きくなつて電流 I 1が大きくなつた時のリアク トル 回路 4 1での損失が低減できる。 このことから、 通常のパッシブフィルタ による高調波抑制方法 (リアク トルのみ) を使用した電源装置に比べ、 補 助コンデンサ 3、 ダイォード 5、 容量可変のリアク トル回路 4 1、 および モータ電流に応じてリアク トル回路 4 1の容量を切り替える制御手段 6 2 によって、 有効な高調波抑制が実現でき、 構成する部品自体は非常に小型 で安価であるので、 小型、 低コストで損失の少ない電源装置を提供するこ とができる。
なお、 本第 8の実施の形態において、 制御手段 6 2は、 モータ電流に加 えて、 上記第 6の実施の形態の制御手段 4 7と同様にして圧縮機 4 6の設 定回転数に応じてリアク トル 4 1の容量を切り替えるようにしてもよい。
(実施の形態 9 )
第 6の実施の形態では、 制御手段 4 7は、 圧縮機 4 6の設定回転数に応 じて切替手段 4 4のスィツチング制御を行ったが、 第 1リアク トノレ 4 2の 温度に応じて切替手段 4 4のスィツチング制御を行ってもよく、 このよう にしたものを本発明の第 9の実施の形態とする。
図 1 7は、 本発明の第 9の実施の形態における電源装置の例を示した回 路図である。 なお、 図 1 7では、 図 1 0と同一構成のものは同じ符号を付 与し、 ここではその説明を省略すると共に、 図 1 0との相違点のみ説明す る。 また、 第 9の実施の形態では、 第 6の実施の形態と同様、 第 1の実施 の形態における電源装置の構成を例にして説明し、 第 2の実施の形態から 第 5の実施の形態における各電源装置の構成の場合においても同様である のでその説明を省略する。 更に、 第 9の実施の形態において、 第 6の実施 の形態と同様に、 第 1の実施の形態における負荷 7が、 インバータおよび 該ィンバー夕によって回転数が制御されるモータ、 例えば電気冷蔵庫の圧 縮機である場合を例にして説明する。
図 1 7における図 1 0との相違点は、 リアク トル回路 4 1における第 1 リアク トル 4 2の温度を検出するリアク トル温度検出手段 7 1を追加し、 制御手段 4 7は、 リアク トル温度検出手段 7 1で検出された第 1リアク ト ノレ 4 2の温度に応じて切替手段 4 4のスィツチング制御を行うことから、 図 1 0の制御手段 4 7を制御手段 7 2としたことにある。
図 1 7において、 リアク トル温度検出手段 7 1は、 制御手段 7 2に接続 され、 制御手段 7 2は、 第 1リアク トル 4 2の温度が高い、 例えば 8 0 °C 以上であれば切替手段 4 4を 0 nさせ、 8 0 °C未満であれば切替手段 4 4 を 0 f f させる。 これは、 第 1リアク トル 4 2の温度が高いと電流 I 1が 大きくなるためである。 また、 高調波成分の比率は、 電流 I 1が大きくな るほど小さくなり、 実験ではリアク トル回路 4 1のィンダクタンス値 が 1 O mHで電流 I 1が 1 Aのとき、 高調波成分の比率は 7 2 %で、 電流 I 1が 2 Aのときで 5 7 %であった。 このように、 制御手段 7 2は、 切替手 段 4 4におけるスィツチング動作の制御を行うことから、 厳密に言えば、 電源装置 4 0は制御手段 7 2を含むものである。
次に、 図 1 8は、 図 1 7の電源装置およびその周辺部分の動作例を示し たフローチャートであり、 図 1 8を用いて図 1 7の電源装置およびその周 辺部分の動作例について説明する。
図 1 8において、 制御手段 7 2は、 ステップ S 3 1で、 庫内温度設定手 段 4 9から設定温度を入力し、 ステップ S 3 2で、 庫内温度検出手段 4 8 より庫内温度を入力する。 次に、 制御手段 7 2は、 ステップ S 3 3で、 入 力された設定温度と庫内温度との温度差を計算し、 ステップ S 3 4で、 圧 縮機 4 6を運転する回転数を決定し、 ステップ S 3 5で、 インバータ 4 5 に決定した回転数を回転数指令として送出する。 次に、 制御手段 7 2は、 ステップ S 3 6で、 リアク トル温度検出手段 7 1より検出された第 1リア ク トル 4 2の温度を入力し、 ステップ S 3 7で、 第 1リアク トル 4 2の温 度が 8 0 °C以上かを判断し、 8 0 °C以上であれば (y e s ) 、 ステップ S 3 8で、 切替手段 4 4を 0 nしてステップ S 3 1に戻る。 また、 制御手段 7 2は、 ステップ S 3 7で、 8 0。C未満であれば (n o ) 、 ステップ S 3 9で、 切替手段 4 4を 0 f f してステップ S 3 1に戻る。
ここで、 第 6の実施の形態の場合と同様に、 リアク トル回路 4 1は、 電 流 I 1が大きくなつて高調波成分が少なくなる高負荷時には、 インダクタ ンス値 Lが小さくなつて電流容量 I m a Xが大きくなり、 電流 I 1が小さ くなって高調波成分が多くなる低負荷時には、 インダクタンス値 Lが大き くなつて電流容量 I m a xが小さくなる。 更に、 第 6の実施の形態の場合 と同様に電流 I 1が大きくなればリアク トル回路 4 1のインダクタンス値 を低下させても支障はない。 なお、 図 1 7で示した電源装置 4 0における 電源半周期の各部の波形図は、 図 1 1と同じであるので省略する。
このように、 本第 9の実施の形態における電源装置は、 入力電流 I i n 波形の幅が通常時に比べて広くなり、 電流ピーク値も低くなるので、 高調 波は抑制でき、 電流 I 1が大きくなり高調波成分が減少する第 1リアク ト ル 4 2の温度が高い時には、 リアク トル回路 4 1のィンダクタンス値 Lを 小さく して、 電流容量 I m a xを増加させるので電流容量とインダクタン ス値の大きなリアク トルを使う必要がなく、 リアク トル回路 4 1の直流抵 抗も減少するため、 第 1リアク トル 4 2の温度が高く電流 I 1が大きい時 のリアク トル回路 4 1での損失が低減できる。 このことから、 通常のパッ シブフィルタによる高調波抑制方法 (リアク トルのみ) を使用した電源装 置に比べ、 補助コンデンサ 3、 ダイォ一ド 5、 容量可変のリアク トル回路 4 1、 および第 1リアク トル 4 2の温度に応じてリアク トル回路 4 1の容 量を切り替える制御手段 7 2によって、 有効な高調波抑制が実現でき、 構 成する部品自体は非常に小型で安価であるので、 小型、 低コストで損失の 少ない電源装置を提供することができる。
なお、 本第 9の実施の形態において、 制御手段 7 2は、 第 1リアク トル 4 2の温度に加えて、 上記第 6の実施の形態の制御手段 4 7と同様にして 圧縮機 4 6の設定回転数に応じてリアク トル 4 1の容量を切り替えるよう にしてもよい。
産業上の利用の可能性
以上のように本発明によれば、 より小型の部品を用いて、 十分な高調波 抑制効果が得られ、 しかも小型でコス卜の安い電源装置を提供することが できる。

Claims

請求の範囲
1 . 負荷(7)に電源の供袷を行う電源装置において、
交流電源(1)と、
該交流電源(1)を入力とし、 ダィォード 1,02,03, 04)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路(2)の出力に並列に接続された補助コンデンサ(3) と、
上記プリッジ整流回路 (2)の一方の出力と負荷(7)との間に負荷電流が順 方向に流れるように接続された、 リアクトル (4)とダイオード(5)との直列 回路と、
上記負荷(7)に並列に接続された平滑コンデンサ(6)と、
で構成されることを特徴とする電源装置。
2. 負荷(7)に電源の供給を行う電源装置において、
交流電源(1)と、
該交流電源 C1)を入力とし、 ダィォード 1,02,03,1)4)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路(2)の一方の出力に一端が接続された補助リアクト ル (10)と、
該補助リアクトル (10)の他端とプリッジ整流回路(2)の他方の出力とに 接続された補助コンデンサ(3)と、
上記補助リアク トル (10)の他端と負荷(7)との間に負荷電流が順方向に 流れるように接続された、 リアクトル (4)およびダイオード(5)の直列回路 と、
上記負荷(7)に並列に接続された平滑コンデンサ(6)と、
で構成されることを特徴とする電源装置。
3 . 負荷(7)に電源の供給を行う電源装置において、
交流電源(1)と、
該交流電源(1)を入力とし、 ダイォード(D1, D2, D3,D4)をプリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路(2)の一方の出力に一端が接続された、 中間タップ 付きのリアクトル(15)と、
該リアク トル(15)の中間タップと上記ブリッジ整流回路(2)の他方の出 力に接続された補助コンデンサ(3)と、
上記リアクトル (15)の他端と負荷 (7)との間に負荷電流が順方向に流れ るように接続されたダイォ一ド (5)と、
上記負荷(7)に並列に接続された平滑コンデンサ(6)と、
で構成されることを特徴とする電源装置。
4 . 負荷(7)に電源の供給を行う電源装置において、
交流電源(1)と、
該交流電源(1)を入力とし、 ダィォ一ド 1,02,03,04)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路 (2)の一方の出力と負荷(7)とを順方向に接続する第 1ダイォ—ド(20)と、
上記プリッジ整流回路 (2)の一方の出力に一端が接続されたリアクトル (4)と、
該リアク トル (4)の他端と負荷とを順方向に接続する第 2ダイオード (21) と、
上記リアクトル (4)の他端とプリッジ整流回路(2)の他方の出力に接続し た平滑コンデンサ(6)と、
で構成されることを特徴とする電源装置。
5 . 負荷(7)に電源の供給を行う電源装置において、 交流電源(1)と、
該交流電源 α)を入力とし、 ダイオード (D1,D2, D3,D4)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、 .
該ブリッジ整流回路(2)の一方の出力と負荷(7)とを接続するリアク トル (4)と、
該リアク トル (4)の負荷側に一端が接続され、 負荷電流が順方向に流れ るように接続された、 電圧降下手段 (30)と第 1ダイォ一ド(31)との直列回 路と、
該直列回路の出力と負荷(7)とを順方向に接続する第 2ダイォ一ド(21) と、
上記直列回路の出力と上記プリッジ整流回路(2)の他方の出力とに接続 された平滑コンデンサ(6)と、
で構成されることを特徴とする電源装置。
6 . 上記リアク トル(4, 15)は、 容量可変のリアク トルであり、 該リアク トルの容量の ¾f変制御を行う容量制御手段を更に備えることを特徴とする 請求項 1から請求項 5のいずれかに記載の電源装置。
7. 上記リアク トル (4, 15)は、
負荷電流が流れる第 1リアクトル (42)と、
該第 1リアク トル (42)に並列に接続して負荷電流をバイパスする第 2リ ァク トル (43)と、
からなり、
上記容量制御手段は、
該第 2リアク トル (43)の第 1リアク トル (42)への並列接続を制御する切 替手段 (44)と、 該切替手段 (44)のスィツチング制御を行うスィツチング制御手段と、 からなることを特徴とする請求項 6に記載の電源装置。
8. 上記スイッチング制御手段 (52)は、 外気温度を検出する外気温度検 出手段 (51)を備え、 該外気温度検出手段(51)で検出した外気温度が所定値 以上になると、 上記第 1リアク トル (42)に第 2リアク トル (43)を並列に接 続するように切替手段 (44)のスィツチング制御を行うことを特徴とする請 求項 7に記載の電源装置。
9. 上記スイッチング制御手段(62)は、 負荷電流を検出する負荷電流検 出手段(61)を備え、 該負荷電流検出手段(61)で検出した負荷電流が所定値 以上になると、 上記第 1リアク トル (42)に第 2リアク トル (43)を並列に接 続するように切替手段(44)のスイッチング制御を行うことを特徴とする請 求項 7に記載の電源装置。
1 0. 上記スイッチング制御手段(72)は、 第 1リアク トルの温度を検出 するリアク トル温度検出手段 (71)を備え、 該リアク トル温度検出手段 (71) で検出した第 1リアク トル (42)の温度が所定値以上になると、 上記第 1リ ァク トル (4¾に第 2リアク トル (43)を並列に接続するように切替手段 (44) のスィツチング制御を行うことを特徴とする請求項 7に記載の電源装置。
1 1. 上記負荷(7)は、 インバータ(45)および該インバータ(45)によつ て回転数制御が行われるモータ(46)であり、上記スィツチング制御手段 (47) は、 該インバータ(45)の制御を行ってモータ(46)の回転数制御を行い、 該 モータ(46)の回転数が所定値以上になると、 上記第 1リアク トル (42)に第 2リアク トル (43)を並列に接続するように切替手段 (44)のスイッチング制 御を行うことを特徴とする請求項 7から請求項 1 0のいずれかに記載の電
2. 上記モータは電気冷蔵庫の圧縮機 (46)であり、 上記スイッチング 制御手段 (47)は、電気冷蔵庫の庫内の温度を検出する庫内温度検出手段 (48) と、 電気冷蔵庫の庫内温度を設定する庫内温度設定手段 (49)とを備え、 庫 内温度検出手段 (48)で検出した庫内温度と庫内温度設定手段 (49)で設定し た設定温度との温度差に応じて上記ィンバ一タ(45)を介して圧縮機(46)の 回転数制御を行い、 圧縮機 (46)の回転数が所定値以上になると、 上記第 1 リアク トル (42)に第 2リアク トル (43)を並列に接続するように切替手段 (4 4)のスィッチング制御を行うことを特徴とする請求項 1 1に記載の電源装
補正書の請求の範囲
[ 1 9 9 8年 4月 2 0日 (2 0 . 0 4 . 9 8 ) 国際事務局受理:出願当初の請求の範囲 1— 7は補 正された;他の請求の範囲は変更なし。 ( 5頁) ]
1 . (補正後) 負荷(7)に電源の供給を行う電源装置において、 交流電源(1)と、
該交流電源(1)を入力とし、 ダイォード (D1,D2, D3, D4)をプリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路 (2)の一方の出力と負荷 (7)との間に負荷電流が順方 向に流れるように接続された、 リアク トル (4)とダイオード (5)との直列回 路と、
上記負荷 (7)に並列に接続された平滑コンデンサ (6)と、
上記プリッジ整流回路 (2)の出力に並列に接続され、 該平滑コンデンサ(6
)の 1 Z 1 0ひ程度の容量を有する補助コンデンサ(3)と、
で構成されることを特徴とする電源装置。
2. (補正後) 負荷(7)に電源の供給を行う電源装置において、 交流電源(1)と、
該交流電源(1)を入力とし、 ダイォード (Dl, D2, D3, D4)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
上記負荷 (7)に並列に接続された平滑コンデンサ (6)と、
上記プリッジ整流回路 (2)の一方の出力に一端が接続された補助リアク トル(10)と、
該補助リアク トル (10)の他端とプリッジ整流回路 (2)の他方の出力とに 接続され、 上記平滑コンデンサ(6)の 1 1 0 0程度の容量を有する捕助 コンデンサ(3)と、
上記補助リアク トル (10)の他端と負荷(7)との間に負荷電流が順方向に 流れるように接続された、 リアク トル (4)およびダイオード (5)の直列回路 と、 36
補正された用紙 (条約第 19条) で構成されることを特徴とする電源装置。
3. (補正後) 負荷(7)に電源の供給を行う電源装置において、 交流電源(1)と、
該交流電源(1)を入力とし、 ダィォ一ド 1,02,03, 04)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路(2)の一方の出力に一端が接続された、 中間タップ 付きのリアク トル(15)と、
上記負荷 (7)に並列に接続された平滑コンデンサ (6)と、
上記リアク トル (15)の中間タップと上記プリッジ整流回路(2)の他方の 出力に接続され、 該平滑コンデンサ(6)の 1 1 0 0程度の容量を有する 補助コンデンサ(3)と、
上記リアク トル(15)の他端と負荷(7)との間に負荷電流が順方向に流れ るように接続されたダイォ一ド (5)と、
で構成されることを特徴とする電源装置。
4. (補正後) 負荷(7)に電源の供給を行う電源装置において、 交流電源(1)と、
該交流電源(1)を入力とし、 ダィォード 1,02,03, 04)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路 (2)の一方の出力と負荷(7)とを順方向に接続する第 1ダイォード (20)と、
上記プリッジ整流回路(2)の一方の出力に一端が接続された、 可変容量 のリアク トル (4)と、
該リアク トル (4)の他端と負荷とを順方向に接続する第 2ダイォード (21) と、
上記リアク トル (4)の他端とプリッジ整流回路 (2)の他方の出力に接続し
37
據正された用紙 (条約第 19 た平滑コンデンサ(6)と、
上記リアク トル (4)における容量の可変制御を行う容量制御手段と、 で構成されることを特徴とする電源装置。
5. (補正後) 負荷(7)に電源の供給を行う電源装置において、 交流'電源(1)と、
該交流電源(1)を入力とし、 ダイォード 1,02,03, 04)をブリッジ接続し て形成されたプリッジ整流回路 (2)と、
該ブリッジ整流回路 (2)の一方の出力と負荷(7)とを接続する、 可変容量 のリアク トル(4)と、
該リアク トル (4)の負荷側に一端が接続され、 負荷電流が順方向に流れ るように接続された、 電圧降下手段(30)と第 1ダイォード(31)との直列回 路と、
該直列回路の出力と負荷(7)とを順方向に接続する第 2ダイォード(21) と、
上記直列回路の出力と上記プリッジ整流回路 (2)の他方の出力とに接続 された平滑コンデンサ(6)と、
上記リアク トル (4)における容量の可変制御を行う容量制御手段と、 で構成されることを特徴とする電源装置。
6. (補正後) 上記リアク トル (4, 15)は、 容量可変のリアク トルであり、 該リアク トルの容量の可変制御を行う容量制御手段を更に備えることを特 徵とする請求項 1から請求項 3のいずれかに記載の電源装置。
7. (補正後) 上記リアク トル (4, 15)は、
負荷電流が流れる第 1リアク トル (42)と、
該第 1リアク トル (42)に並列に接続して負荷電流をバイパスする第 2リ ァク トル (43)と、
38
補正された用紙 (条約第 19 からなり、
上記容量制御手段は、
該第 2リアク トル (43)の第 1リアク トル (42)への並列接続を制御する切 替手段 (44)と、
該切替手段 (44)のスィツチング制御を行うスィツチング制御手段と、 からなることを特徵とする請求項 4から請求項 6のいずれかに記載の電源
8. 上記スイッチング制御手段 (52)は、 外気温度を検出する外気温度検 出手段 (51)を備え、 該外気温度検出手段 (51)で検出した外気温度が所定値 以上になると、 上記第 1リアク トル (42)に第 2リアク トル (43)を並列に接 続するように切替手段 (44)のスイッチング制御を行うことを特徴とする請 求項 7に記載の電源装置。
9. 上記スイッチング制御手段(62)は、 負荷電流を検出する負荷電流検 出手段 (61)を備え、 該負荷電流検出手段(61)で検出した負荷電流が所定値 以上になると、 上記第 1リアク トル (42)に第 2リアク トル (43)を並列に接 続するように切替手段 (44)のスィッチング制御を行うことを特徴とする請 求項 7に記載の電源装置。
1 0. 上記スイッチング制御手段(72)は、 第 1リアクトルの温度を検出 するリアク トル温度検出手段(71)を備え、 該リアク トル温度検出手段(71) で検出した第 1リアク トル (42)の温度が所定値以上になると、 上記第 1リ ァク トル (42)に第 2リアク トル (43)を並列に接続するように切替手段 (44) のスィツチング制御を行うことを特徴とする請求項 7に記載の電源装置。
1 1. 上記負荷(7)は、 インバー夕(45)および該インバータ(45)によつ て回転数制御が行われるモータ(46)であり、 上記スィツチング制御手段 (4 7)は、 該ィンバータ(45)の制御を行ってモータ(46)の回転数制御を行い、
39
補正された用紙 (条約第 19^ 該モータ(46)の回転数が所定値以上になると、 上記第 1リアク トル (42)に 第 2リアク トル (43)を並列に接続するように切替手段 (44)のスィツチング 制御を行うことを特徵とする請求項 7から請求項 1 0の t、ずれかに記載の
2. 上記モータは電気冷蔵庫の圧縮機 (46)であり、 上記スイッチング
40
攄正された用紙 (条約第 条) 条約 1 9条に基づく説明書
請求項 1、 請求項 2、 請求項 3は削除し、 明細書第 1 0頁の 1 8〜2 0 行目の記載に基づいて補助コンデンサ(3)の容量を規定する補正内容の新 たな請求項 1、 請求項 2、 請求項 3に差し替えました。 また、 請求項 4は 削除し、 請求項 4に請求項 6の内容を加味した新たな請求項 4に差し替え、 請求項 5は削除し、 請求項 5に請求項 6の内容を加味した新たな請求項 5 に差し替えました。 また、 請求項 6では、 新たな請求項 1から請求項 3の 従属項となるように補正し、 請求項 7では、 新たな請求項 4から請求項 6 の従属項となるように補正しました。
その他の請求項 8から請求項 1 2は変更ありません。
PCT/JP1997/004500 1996-12-10 1997-12-08 Unite de puissance WO1998026497A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/319,542 US6157554A (en) 1996-12-10 1997-12-08 Power unit
EP97946153A EP0945969A4 (en) 1996-12-10 1997-12-08 POWER UNIT
NZ336206A NZ336206A (en) 1996-12-10 1997-12-08 Power rectifier with harmonic suppression for supply of refrigerator motor inverter
AU51388/98A AU718570B2 (en) 1996-12-10 1997-12-08 Electric power unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/329329 1996-12-10
JP32932996 1996-12-10
JP7539097 1997-03-27
JP9/75390 1997-03-27

Publications (1)

Publication Number Publication Date
WO1998026497A1 true WO1998026497A1 (fr) 1998-06-18

Family

ID=26416534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004500 WO1998026497A1 (fr) 1996-12-10 1997-12-08 Unite de puissance

Country Status (8)

Country Link
US (1) US6157554A (ja)
EP (1) EP0945969A4 (ja)
KR (1) KR100310608B1 (ja)
CN (1) CN1240063A (ja)
AU (1) AU718570B2 (ja)
NZ (1) NZ336206A (ja)
TW (1) TW421906B (ja)
WO (1) WO1998026497A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249923A2 (de) * 2001-04-12 2002-10-16 Philips Corporate Intellectual Property GmbH Schaltung zur Umwandlung von Wechselspannung in Gleichspannung
JP2006074945A (ja) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd 電力変換装置
WO2016135889A1 (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 モータ駆動制御装置及び空気調和機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341832B2 (ja) * 1999-12-27 2002-11-05 日本電気株式会社 電源回路および平滑方法
US6845021B2 (en) * 2000-12-26 2005-01-18 Sony Corporation Multi-output DC-DC converter
JP3374917B2 (ja) * 2001-02-16 2003-02-10 サンケン電気株式会社 スイッチング電源装置
KR101797230B1 (ko) * 2011-02-09 2017-11-13 삼성전자주식회사 Dc기기용 전원회로
CN102769956A (zh) * 2012-06-29 2012-11-07 艾维新能源科技南京有限公司 一种高功率因素滤波电路
CN103427616A (zh) * 2013-08-28 2013-12-04 苏州汇川技术有限公司 大型变频器及其控制电源的上电缓冲电路
US10050572B2 (en) 2014-12-19 2018-08-14 Black & Decker Inc. Power tool with electric motor and auxiliary switch path
CN106152658B (zh) * 2015-04-10 2019-04-19 新昌县七星街道锦驰机械厂 交流电和光伏直流电两用电冰箱
BR102015030840B1 (pt) * 2015-12-09 2022-04-19 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Sistema para redução de conteúdo harmônico em circuito elétrico de potência e compressor para refrigeração

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869462A (ja) * 1981-10-19 1983-04-25 Nec Corp リツプル低減制御回路を備えた整流電源回路
JPH06209574A (ja) * 1993-01-06 1994-07-26 Sony Corp 電源回路
JPH0736700B2 (ja) * 1983-02-15 1995-04-19 松下電工株式会社 電源装置
JPH08149812A (ja) * 1994-11-14 1996-06-07 Daikin Ind Ltd 整流装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660787A (en) * 1970-08-19 1972-05-02 Us Navy Low frequency paper transient filters
JPS62131757A (ja) * 1985-11-29 1987-06-15 Hitachi Metals Ltd フイルタ−回路
JPS62138058A (ja) * 1985-12-09 1987-06-20 Matsushita Seiko Co Ltd インバ−タ装置
US4855890A (en) * 1987-06-24 1989-08-08 Reliance Comm/Tec Corporation Power factor correction circuit
CA2050068A1 (en) * 1990-09-27 1992-03-28 Richard Wayne Glaser Power factor improving arrangement
JPH0736700A (ja) * 1993-07-23 1995-02-07 Hitachi Ltd 予想ルール自動生成方法および装置
US5535087A (en) * 1994-01-14 1996-07-09 Power Quality Engineering, Inc. Circuit for reducing effects of transient events on electronic equipment
JP2865194B2 (ja) * 1994-07-29 1999-03-08 株式会社アイ・ヒッツ研究所 単相入力3相全波整流回路及び単相入力疑似4相全波整流回路
AT403103B (de) * 1994-12-12 1997-11-25 Siemens Ag Oesterreich Netzgleichrichterschaltung
EP0744816B1 (en) * 1995-05-26 2000-09-20 AT&T IPM Corp. Power factor control for switched mode rectifiers
US5642267A (en) * 1996-01-16 1997-06-24 California Institute Of Technology Single-stage, unity power factor switching converter with voltage bidirectional switch and fast output regulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869462A (ja) * 1981-10-19 1983-04-25 Nec Corp リツプル低減制御回路を備えた整流電源回路
JPH0736700B2 (ja) * 1983-02-15 1995-04-19 松下電工株式会社 電源装置
JPH06209574A (ja) * 1993-01-06 1994-07-26 Sony Corp 電源回路
JPH08149812A (ja) * 1994-11-14 1996-06-07 Daikin Ind Ltd 整流装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0945969A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249923A2 (de) * 2001-04-12 2002-10-16 Philips Corporate Intellectual Property GmbH Schaltung zur Umwandlung von Wechselspannung in Gleichspannung
EP1249923A3 (de) * 2001-04-12 2004-02-11 Philips Intellectual Property & Standards GmbH Schaltung zur Umwandlung von Wechselspannung in Gleichspannung
JP2006074945A (ja) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd 電力変換装置
JP4706211B2 (ja) * 2004-09-03 2011-06-22 パナソニック株式会社 電力変換装置
WO2016135889A1 (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 モータ駆動制御装置及び空気調和機
JPWO2016135889A1 (ja) * 2015-02-25 2017-05-25 三菱電機株式会社 モータ駆動制御装置及び空気調和機

Also Published As

Publication number Publication date
AU5138898A (en) 1998-07-03
CN1240063A (zh) 1999-12-29
EP0945969A4 (en) 2001-02-28
US6157554A (en) 2000-12-05
AU718570B2 (en) 2000-04-13
NZ336206A (en) 2001-03-30
KR100310608B1 (ko) 2001-10-18
TW421906B (en) 2001-02-11
EP0945969A1 (en) 1999-09-29
KR20000069420A (ko) 2000-11-25

Similar Documents

Publication Publication Date Title
JP4240141B1 (ja) 直接形交流電力変換装置
JP3422218B2 (ja) コンバータ
JP4337316B2 (ja) 電力変換装置
US20070217236A1 (en) Apparatus and method for supplying dc power source
WO1998026497A1 (fr) Unite de puissance
JP3687641B2 (ja) インバ−タエアコン
JP2005534270A (ja) 低減された部品定格の電力伝達装置
KR20050026356A (ko) 컨버터 회로, 모터 구동 장치, 압축기, 공기 조화기,냉장고, 전기 세탁기, 송풍기, 전기 청소기 및 히트펌프급탕기
CN100376853C (zh) 压缩机装置及使用该压缩机装置的冷冻机
JPH08196077A (ja) 電力変換装置及びこれを利用した空気調和装置
JP2004312990A (ja) モータ駆動用インバータ制御装置および空気調和機
JPH11289766A (ja) 電源装置
JP2004320981A (ja) モータ駆動用インバータ制御装置および空気調和機
JP2000207043A (ja) 空気調和機の力率改善装置
JP6692696B2 (ja) 空気調和機
JPH10311646A (ja) 冷蔵庫の制御装置
US6239992B1 (en) Electric power unit with early auxiliary capacitor charging
JP2009189241A (ja) 電力変換装置
JP4572595B2 (ja) コンバータ制御方法及びコンバータ制御装置並びに空調機及びその制御方法及び制御装置
JP2000308353A (ja) 電源装置
WO2006120819A1 (ja) ヒートポンプ
JPH08237957A (ja) 空気調和機の制御方法およびその装置
JPH114596A (ja) 電動機駆動装置およびこれを用いた空気調和機
WO2008066000A1 (fr) Chargeur d'alimentation électrique et procédé de chargement d'alimentation électrique
JPH08251985A (ja) 単相誘導電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180462.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 51388/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09319542

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997005198

Country of ref document: KR

Ref document number: 336206

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1997946153

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997946153

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 51388/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1019997005198

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005198

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997946153

Country of ref document: EP