WO2006120819A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2006120819A1
WO2006120819A1 PCT/JP2006/307233 JP2006307233W WO2006120819A1 WO 2006120819 A1 WO2006120819 A1 WO 2006120819A1 JP 2006307233 W JP2006307233 W JP 2006307233W WO 2006120819 A1 WO2006120819 A1 WO 2006120819A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
converter
rotational speed
voltage
refrigerant
Prior art date
Application number
PCT/JP2006/307233
Other languages
English (en)
French (fr)
Inventor
Keizo Matsui
Tetsuya Matsuyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006524998A priority Critical patent/JP3898753B2/ja
Publication of WO2006120819A1 publication Critical patent/WO2006120819A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Definitions

  • the present invention relates to a heat pump, and more particularly to a heat pump that collects energy from a refrigerant passing through an expander and uses it as an auxiliary power for a compressor in order to improve a coefficient of performance (COP Coefficient of Performance).
  • a heat pump has a loop in which a compressor, a radiator (condenser), an expander (expansion valve), and an evaporator are connected by piping.
  • the working medium (refrigerant) circulates along this loop while undergoing a gas-liquid conversion operation, and heat source heat is pumped out along with this circulation.
  • heat pumps are required to improve COP.
  • JP-A-61-29647 discloses a heat pump (refrigeration cycle) equipped with a power recovery mechanism that uses power recovered from an expander as auxiliary power for a compressor in order to improve COP.
  • this heat pump includes a compressor 101, a condenser 102, an expander 103, and an evaporator 104, and further converts a commercial alternating current power source 120 into a direct current (power converter) 105 , An inverter 106 that converts the DC current from the converter 105 into an AC current of a predetermined frequency, a generator 108 that generates electricity using the energy supplied by the refrigerant passing through the expander 103, and a converter that converts the AC current from the generator 108 into a DC
  • the inverter 109 is supplied to the DC current power inverter 106 from the converter 109 and serves as auxiliary power for the compressor 101.
  • Japanese Patent Laid-Open No. 2000-241033 discloses a heat pump (refrigeration apparatus) in which the load of a generator connected to an expander is variable (see FIG. 6 of the document). As shown in FIG. 10, this heat pump includes a compressor 201, a radiator 202, an expander 203, and an evaporator 204. Further, a temperature sensor that detects the temperature and pressure of the refrigerant on the outlet side of the radiator 202.
  • reference numeral 207 is a prime mover
  • reference numeral 221 is an oil separator
  • reference numeral 222 is an accumulator
  • the rotational speed of the generator 108 is appropriately controlled according to the state of the refrigerant passing through the expander 103. Good.
  • the rotational speed control of the generator 108 is performed using the converter 109, the rotational speed of the generator 108 can be controlled without providing the rotational speed control means separately from the converter 109.
  • a variable speed converter including a switching element is used, and the switching element is preferably switched by a PWM (Pulse Width Modulation) method.
  • the voltage on the secondary side (DC unit) 100 of the converter 109 needs to be higher than the voltage on the temporary side. .
  • An unlimited current flowing from the generator 108 to the DC unit 100 means that the current of the generator 108 cannot be controlled, in other words, the number of rotations of the generator 108 cannot be controlled. Therefore, in order to stably control the rotational speed of the generator 108 using the variable speed converter, it is desirable to keep the voltage of the DC unit 100 high.
  • the present invention is a technique known individually as a means for improving the conventional force COP, specifically, a power recovery technique using a generator (for example, JP-A-61-29647), It occurs not only in combination with refrigerant pressure control technology (for example, Japanese Patent Laid-Open No. 2000-241033) by load control of an expander using an electric machine, but also when the speed of a generator is controlled using a variable speed converter.
  • the object is to provide a new heat pump that solves the above problems.
  • the present invention relates to a compressor that compresses a refrigerant, a radiator that releases heat to the refrigerant that has passed through the compressor, an expander that expands the refrigerant that has passed through the radiator, and the expansion device.
  • An evaporator that absorbs heat by the refrigerant that has passed through the machine, a pipe that connects the compressor, the radiator, the expander, and the evaporator so that the refrigerant can circulate in this order, and an AC power source.
  • a first converter that converts the alternating current into direct current, an inverter connected to the first converter, an electric motor that drives the compressor by the alternating current supplied to the inverter, and a refrigerant that passes through the expander
  • a second converter that converts an alternating current from the generator into a direct current and is connected to the input terminal of the inverter together with the first converter, and the inverter
  • the first converter and is converted into alternating current a direct current supplied from the second converter is configured to supply to the electric motor, the first converter, a high voltage generating circuit and a low
  • the second converter is a variable speed converter capable of controlling the rotational speed of the generator, and the high voltage generating circuit and the voltage generating circuit can be switched according to the rotational speed of the generator.
  • a circuit selection unit that selects one of the low voltage generation circuits, and the circuit selection unit is configured to switch the high voltage generation circuit when the rotational speed of the generator exceeds the predetermined value based on a predetermined value. Select the low voltage generation circuit when the rotation speed of the generator is lower than the predetermined value, and the predetermined value is equal to or less than the rotation speed of the generator that generates the voltage generated by the low voltage generation circuit.
  • a heat pump that is defined as follows.
  • the circuit selection unit selects one of the high voltage generation circuit and the low voltage generation circuit in accordance with the rotation speed of the generator and the rotation speed of the generator. In place of selection based on the predetermined value, the condition that the rotational speed of the generator exceeds the predetermined value A based on the predetermined value A and the predetermined value B, and the rotational speed of the motor is the predetermined value.
  • the high voltage generation circuit When at least one of the condition that the value B is exceeded and the force is selected, the high voltage generation circuit is selected, the condition that the rotational speed of the generator is below the predetermined value A, and the rotational speed of the motor is The low voltage generation circuit is selected when the condition that the value is lower than the predetermined value B is satisfied, and the selection is performed, and the predetermined value A generates a voltage generated by the low voltage generation circuit. Serial to be equal to or less than the rotational speed of the generator, as defined, or as a heat pump.
  • the heat pump of the present invention includes a temperature detection unit that detects a refrigerant temperature between the radiator and the expander, and a pressure detection that detects a refrigerant pressure between the radiator and the expander. And an operation for calculating an optimum generator speed based on the pressure detected by the pressure detection means and the optimum refrigerant pressure. And the second converter controls the rotational speed of the generator so that the rotational speed of the generator approaches the optimal rotational speed of the generator based on the optimal rotational speed of the generator.
  • a heat pump is preferred.
  • the circuit selection unit may replace one of the high-voltage generation circuit and the low-voltage generation circuit according to the generator optimum rotation speed instead of the generator rotation speed. You may choose.
  • the circuit selection unit described above may be regarded as a voltage setting unit that changes a set value of an output voltage of the first converter in accordance with a rotation speed of the generator. it can.
  • the heat pump is controlled to be equal to or higher than the output voltage force of the first converter and the voltage generated by the generator.
  • FIG. 1 is a configuration diagram showing an example of a heat pump according to the present invention.
  • FIG. 3 is a flowchart illustrating the control procedure of the heat pump of the present invention.
  • FIG. 5 is a configuration diagram showing another example of the heat pump of the present invention.
  • FIG. 6 is a time chart showing an example of voltage control by the control procedure shown in FIG.
  • FIG. 7 is a configuration diagram of a power supply system in the heat pump of the third embodiment.
  • FIG. 8 is a time chart showing an example of voltage control by the power supply system shown in FIG.
  • a heat pump 400 shown in FIG. 1 includes a compressor radiator 2, an expander 3, an evaporator 4, and a pipe 10 connecting them.
  • a main power source that supplies power to the compressor 1 is a commercial AC power source 20.
  • the AC power supply 20 is connected to a power converter 5 (first converter), the power converter 5 is connected to an inverter 6, and the inverter 6 is connected to an electric motor 7 that drives the compressor 1.
  • the auxiliary power source of the compressor 1 is a generator 8.
  • the generator 8 generates power using the energy given to the expander 3 by the refrigerant passing through the expander 3.
  • a permanent magnet type synchronous generator that generates a three-phase AC voltage is used as the generator 8.
  • the generator 8 is connected to the variable speed converter (second converter) 9, and the output terminal (secondary terminal) 92 of the variable speed converter 9 is connected to the input terminal 61 of the inverter 6 together with the output terminal 52 of the power converter 5. It is connected.
  • the circuit section between the output terminals 52 and 92 of the converters 5 and 9 and the input terminal 61 of the inverter 6 constitutes a DC section 30.
  • a DC current is supplied from the power converter 5 and the variable speed converter 9 to the inverter 6, and a three-phase AC current is supplied from the inverter 6 to the motor 7.
  • the compressor 1 is driven by the electric motor 7, the refrigerant circulates through the element devices 1, 2, 3, 4 through the pipe 10, and releases the heat pumped up by the evaporator 4 through the radiator 2.
  • FIG. 2 shows a supply system of electric energy to the compressor 1.
  • the power supply converter 5 includes a rectifier 50 (diode bridge) using a diode, capacitors 56 and 57 for voltage doubler rectification, a smoothing capacitor 58 for smoothing the voltage, and a voltage switching switch 55.
  • the voltage switching switch 55 may be a mechanical relay or a semiconductor switch.
  • power supply converter 5 includes a charge pump type booster circuit.
  • a pair of capacitors 56 and 57 connected in series are connected in parallel to the output side of the rectifying element 50.
  • the voltage switching switch 55 When the voltage switching switch 55 is turned on, the voltage switching switch 55 connects the line between the first capacitor 56 and the second capacitor 57 and one output terminal of the single-phase AC power source 20 (no-pass). ) So that it is built into the circuit.
  • the AC power supply 20 itself is an oscillation source necessary for the booster circuit.
  • the capacitors 56 and 57 When the voltage switching switch 55 is ON, the capacitors 56 and 57 repeatedly store and discharge in synchronization with the frequency of the AC power supply 20, and superimpose a ripple voltage based on its own discharge on the output voltage of the rectifying element 50.
  • Smoothing capacitor 58 outputs the boosted direct current as the output voltage of power supply converter 5 by rectifying and smoothing the boosted output voltage from rectifying element 50.
  • the converter 5 having such a configuration functions as a voltage doubler rectifier circuit (high voltage generation circuit) with the voltage switching switch 55 closed, and with the voltage switching switch 55 opened, Functions as a full-wave rectifier circuit (low voltage generator). If the voltage of the AC power supply 20 is Vac, the voltage obtained from the double voltage rectifier circuit is approximately 2.8 times that of Vac, and the voltage obtained from the full-wave rectifier circuit is approximately 1.4 times that of Vac.
  • the inverter 6 is a so-called three-phase voltage type inverter.
  • the inverter 6 includes a switching element 60.
  • the switching element 60 is a power MOSFET or an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the variable speed converter 9 can also be a three-phase voltage type similar to the inverter 6.
  • the variable speed converter 9 also includes a switching element 90 made of a power MOSFET or IGBT. By switching the switching element 90 by the PWM method, the rotational speed of the generator 8 can be controlled through the control of the torque of the generator 8. However, in the variable speed converter 9, when the voltage at the input terminal 91 becomes higher than the voltage at the output terminal 92, it passes through a flyback diode (not shown) connected in parallel to the switching element 90 and operates the switching element 90. Regardless, since the current flows from the generator 8 to the DC section 30, the variable speed converter 9 cannot control the rotational speed of the generator 8.
  • the voltage of the DC section 30 must be set higher than the induced voltage by the generator 8.
  • the voltage of the DC section 30 is set high when the induced voltage by the generator 8 is low, the loss of recovered energy in the generator 8 and the variable speed converter 9 becomes large.
  • the power converter 5 may appropriately select either the high voltage generation circuit or the low voltage generation circuit according to the rotational speed of the generator 8. In other words, when the induced voltage due to the generator 8 with a low number of revolutions of the generator 8 is low, the voltage switching switch 55 of the power converter 5 is opened to select the low voltage generation circuit, and the voltage of the DC unit 30 is lowered. keep. On the other hand, when the induced voltage is high due to the generator 8 with a high rotational speed of the generator 8, the voltage switching switch 55 is closed to select the high voltage generation circuit, and the voltage of the DC unit 30 is kept high.
  • the high voltage generation circuit is selected, and the rotational speed of the generator 8 falls below the predetermined value.
  • a low voltage generation circuit should be selected.
  • the selection of the circuit when the rotational speed of the generator 8 becomes equal to the predetermined value is arbitrary, and the high voltage generation circuit may be selected. It is also possible to select the low voltage generation circuit and keep it as it is, just before it is selected.
  • a fixed dead zone may be set before and after the predetermined value. That is, the predetermined value includes a first predetermined value R1 and a second predetermined value R2 that is smaller than the first predetermined value R1.
  • the high voltage generation circuit is selected when the rotational speed of the generator 8 exceeds the first predetermined value R1, while the second predetermined speed is slightly lower than the first predetermined value R1. Make sure that the low voltage generator is selected when the value falls below R2.
  • the rotational speed is between the first predetermined value R1 and the second predetermined value R2 it depends on the previous history of the change. If such hysteresis is provided for switching between the high voltage generation circuit and the low voltage generation circuit, the circuit operation is stabilized. Further, chattering can be prevented when a mechanical relay is used as the voltage switching switch 55.
  • the predetermined value should be set to be equal to or less than the rotation speed of the generator 8 that generates the voltage generated by the low voltage generation circuit.
  • the lower limit of the predetermined value is not limited, but if this value is too low, a high voltage generation circuit is easily selected even when the induced voltage in the generator 8 is low. It is good to set it in an appropriate range in consideration of voltage etc.
  • the number of revolutions of the generator 8 that generates the voltage generated by the low voltage generation circuit is both It should be determined that:
  • the selection of the high (low) voltage generation circuit is basically performed according to the rotational speed of the generator 8.
  • the rotational speed of the generator 8 is output from the variable speed converter 9 to the circuit selection unit 15.
  • a circuit to be selected is determined by comparing the rotational speed of the generator 8 with a predetermined value, and this determination is input to the power supply comparator 5.
  • the circuit selection unit 15 can also be configured by a microcomputer. However, it can also be constituted by an analog circuit using an operational amplifier or the like. In FIG. 1, the circuit selection unit 15 is shown as an independent element. However, the circuit selection unit 15 is not limited to this, and may be an element integrated with the power supply converter 5, for example.
  • the selection of the circuit in the power converter 5 may be performed by detecting the number of rotations of the electric motor 7 together with the number of rotations of the generator 8. This is because it is desirable that the voltage of the DC section 30 is high in order to rotate the motor 7 stably when the rotation speed of the motor 7 is high.
  • the rotation speed of the motor 7 may be output from the inverter 6 to the circuit selection unit 15.
  • FIG. 3 shows an example of a circuit selection procedure.
  • This procedure is given, for example, in the form of a program that can be executed by the microcomputer constituting the circuit selection unit 15.
  • the rotational speed of the generator 8 and the rotational speed of the electric motor 7 are detected in step S11.
  • the speed of the generator 8 is compared with the predetermined speed A, and if the speed of the generator 8 is not less than the speed A (if it is greater than or equal to A), the power converter 5 in step S16
  • the voltage switching switch 55 is closed and the high voltage generating circuit is selected.
  • the rotational speed of the generator 8 is less than the rotational speed A in step S 12
  • the rotational speed of the electric motor 7 is compared with a predetermined rotational speed B in step S 13. If the rotational speed of the electric motor 7 is higher than the rotational speed B, the voltage switching switch 55 of the power converter 5 is closed in step S14, and the high voltage generation circuit is selected.
  • the voltage switching switch 55 of the power converter 5 is opened in step S15 and the low voltage generation circuit is selected.
  • the voltage of the direct current section 30 can be appropriately controlled by periodically performing the process according to such a procedure. Note that the number of revolutions A and the number of revolutions B determined as circuit switching thresholds may be equal or different.
  • the dead zone as described above can also be set for the rotational speeds A and B.
  • the rotational speed A includes a first rotational speed A1 and a second rotational speed A2 that is smaller than the first rotational speed A1.
  • the rotation speed B includes a third rotation speed B1 and a fourth rotation speed B2 that is smaller than the third rotation speed B1.
  • the circuit selection unit 15 satisfies at least one of the conditions that the rotational speed of the generator 8 exceeds the first rotational speed A1 and the conditional force that the rotational speed of the motor 7 exceeds the third rotational speed B1. When doing so, the high voltage generating circuit is selected.
  • the condition that the rotational speed of the generator 8 is lower than the second rotational speed A2, and the rotational speed of the motor 7 is the fourth rotational speed. Select the low-voltage generation circuit when both conditions are below the rotation speed B2
  • the pressure of the refrigerant passing through the radiator 2 and going to the expander 3 is adjusted to an appropriate pressure according to the temperature of the refrigerant. Is desirable. This is because the optimum pressure for improving the efficiency varies depending on the temperature of the refrigerant.
  • Fig. 4 shows an example of the optimum efficiency pressure line indicating the refrigerant pressure at which the optimum efficiency is obtained.
  • the heat pump 400 shown in FIG. 1 includes a temperature sensor 11 and a pressure sensor 12 that measure the temperature and pressure of the refrigerant in the pipe 10 in the vicinity of the outlet of the radiator 2, and an arithmetic means 13.
  • the computing means 13 can be constituted by a microcomputer, for example.
  • the calculating means 13 calculates the optimum refrigerant pressure based on the temperature detected by the temperature sensor 11 and the optimum efficiency pressure line inputted in advance, and calculates the pressure detected by the pressure sensor 12 and the optimum refrigerant pressure. Based on the above, the generator optimum rotational speed is calculated. Then, based on this optimum generator speed, more specifically, the differential force between the revolution speed of generator 8 and the optimum generator speed so that the revolution speed of generator 8 becomes the optimum generator speed.
  • the variable speed converter 9 controls the rotational speed of the generator 8 so that S becomes smaller.
  • FIG. 5 shows a configuration example of the heat pump according to the second embodiment.
  • the circuit selection unit 16 selects the high (low) voltage generation circuit and calculates the above-mentioned generator optimum rotation speed.
  • the selection procedure of the high (low) voltage generation circuit may be performed as described with reference to FIG. 3, for example. It is good also as the generator optimal rotation speed calculated without the number. In this case, the circuit selection unit 16 does not need to input the rotational speed of the generator 8 from the variable speed converter 9.
  • FIG. 6 shows an example of voltage change when the heat pumps 400 and 401 of the present invention are controlled by the procedure of FIG.
  • the power converter 5 selects the low voltage generation circuit. Therefore, a low voltage (voltage A) is supplied from the power converter 5.
  • the rotational speed of the generator 8 gradually increases and reaches the rotational speed A at time tl
  • the low voltage generation circuit switches to the high voltage generation circuit, and the supply of high voltage (voltage B) from the power converter 5 starts.
  • the voltage A is supplied again from the power converter 5.
  • the rotational speed of the motor 7 is less than the rotational speed B.
  • the power converter 5 supplies the voltage B.
  • the overall configuration of the heat pump 402 according to the third embodiment is that the internal configuration of the power converter 5B and the output voltage setting unit 17 are provided instead of the circuit selection unit 15. This is different from the heat pump 400 according to the first embodiment. Others are common to the heat pump 400 according to the first embodiment. Further, the basic technical idea has already been described in that the set value of the output voltage of the power converter 5B is changed in accordance with the rotational speed of the generator 8.
  • FIG. 7 shows an electric energy supply system to the compressor 1 of the heat pump 402 according to the third embodiment.
  • the power converter 5B includes a rectifier 50 (a so-called diode bridge) using a diode, a booster coil 301, a backflow prevention diode 302 (for example, a Schottky noria diode) connected in series to the booster coil 301, and a backflow prevention with the booster coil 301.
  • a switching element 303 connected to the negative terminal side of the rectifying element 50 between the diode 302, a smoothing capacitor 304 for smoothing the output voltage, and an oscillation circuit 305 are incorporated.
  • the oscillation circuit 305 can be configured by a control IC that controls ON / OFF of the switching element 303.
  • the output voltage setting unit 17 can be configured by, for example, a microcomputer, sets the output voltage of the power converter 5B, and controls the oscillation circuit 305 so that the power converter 5B generates the set output voltage.
  • the rectifier element 50 constitutes a full-wave rectifier circuit.
  • a part of the direct current output from the rectifying element 50 is branched and input to the switching element 303 (switching unit).
  • Switching element 303 has its branch DC input intermittently switched at a frequency defined by oscillation circuit 305. Ching.
  • the step-up coil 301 generates an induced current based on intermittent switching of the branch DC input, and outputs a ripple voltage based on the induced current in a form superimposed on the DC voltage output from the rectifier element 50.
  • the smoothing capacitor 304 rectifies and smoothes the output voltage from the boosting coil 301 to generate a direct current boosted from the direct current output by the rectifying element 50, and the boosted direct current is Output as output voltage of power converter 5B.
  • the power converter 5B constitutes a boost chopper circuit that can control the output voltage using the boost coil 301 by controlling ON / OFF of the switching element 303 at high speed.
  • the output voltage can be changed by changing the ON duty of the switching element 303.
  • the output voltage of the voltage of the DC unit 30 can be changed in the range of 140V to 300V.
  • the reverse current blocking diode 3002 is necessary to prevent the current from flowing backward from the load side!
  • the charge pump type booster circuit described with reference to FIG. 2 has an advantage that it is difficult to cause the problem of an increase in circuit size and cost due to an extremely small number of parts. Therefore, it is extremely effective in generating a dispersive multiple of the input voltage.
  • a chopper type booster circuit using a coil is employed as in this embodiment, a higher step-up ratio can be obtained freely and easily, and high conversion efficiency can be maintained over a wide range of input Z output voltages. It can be done.
  • the operation of the inverter 6 in the heat pump 402 of the present embodiment is the same as that of the heat pump 400 of the first embodiment, and the rotation speed of the compressor 1 is controlled by the inverter 6.
  • the operation of the variable speed converter 9 is the same as that of the heat pump 400 of the first embodiment.
  • the torque of the generator 8 is controlled by controlling the torque of the generator 8.
  • the number of rotations can be controlled.
  • the voltage of the DC section 30 needs to be set higher than the induced voltage by the generator 8 in order to control the rotational speed of the generator 8. On the other hand, if the voltage of the DC unit 30 is set high when the induced voltage by the generator 8 is low, the loss of recovered energy in the generator 8 and the variable speed converter 9 increases.
  • the output voltage value may be appropriately set in the power converter 5B according to the rotational speed of the generator 8. That is, power generation When the induced voltage due to generator 8 is low, the output voltage of power converter 5B is set low, and the voltage of DC section 30 is kept low. On the other hand, when the induced voltage due to the generator 8 having a high rotational speed of the generator 8 is high, the voltage of the DC section 30 is kept high.
  • the output voltage setting of the power converter 5B is set by the output voltage setting unit 17 according to the rotational speed of the generator 8.
  • the output voltage setting unit 17 obtains the rotational speed of the generator 8 from the variable speed converter 9, and based on the following (Equation 1), the rotational speed co g of the generator 8 and a predetermined coefficient d
  • the power voltage candidate Vsetl is determined.
  • the coefficient d is larger than the value of the ratio (VxZ ⁇ ⁇ ) of the induced voltage (Vx) of the generator 8 to the rotation speed ( ⁇ ⁇ ). This is because the output voltage candidate Vsetl must be set higher than the induced voltage by the generator 8 in order to control the rotational speed of the generator 8.
  • the determined output voltage candidate Vsetl is given to the power converter 5B. In power supply converter 5 B, control is performed so as to generate given output voltage candidate Vsetl. Specifically, the output voltage candidate Vsetl from the output voltage setting unit 17 is input to the oscillation circuit 305.
  • the oscillation circuit 305 is configured to turn on the switching element 303 so that the difference between the given output voltage candidate Vsetl and the output voltage of the power converter 5B (a feedback value that can also obtain the downstream force of the backflow prevention diode 302) is reduced. Controls OFF (duty ratio).
  • the setting of the output voltage value in power supply converter 5B may be performed by detecting the rotational speed of electric motor 7 together with the rotational speed of generator 8. This is because it is desirable that the voltage of the DC section 30 is high in order to rotate the motor 7 stably when the rotation speed of the motor 7 is high.
  • the rotational speed of the electric motor 7 may be output from the inverter 6 to the output voltage setting unit 17.
  • the output voltage setting unit 17 obtains the rotation speed of the motor 7 from the inverter 6, and determines the output voltage candidate Vset2 from the rotation speed com of the motor 7 and a predetermined coefficient based on (Equation 2) below. To do.
  • Vset2 e X ⁇ ⁇ (2)
  • the coefficient e is set to a value larger than the value of the ratio (VyZ oy) of the induced voltage (Vy) of the electric motor 7 to the rotational speed (co y). Because, in order to control the rotation speed of the motor 7, the output voltage This is because the candidate Vset2 must be set higher than the induced voltage of the electric motor 7. Furthermore, the output voltage candidates Vsetl and Vset2 are compared, and the larger one is set as the output voltage value of the power converter 5B. In this way, the voltage value of power converter 5B can be set so as to satisfy both the restriction due to the rotational speed of generator 8 and the restriction due to the rotational speed of electric motor 7. The operation of power converter 5B is as described above. With such a configuration, a heat pump capable of operating the generator 8 and the motor 7 with higher efficiency and higher stability can be realized.
  • FIG. 8 shows an example of voltage change when the heat pump 402 of the present invention is controlled by the above procedure.
  • the output voltage setting unit 17 sets the minimum voltage value VO and the minimum value from the power converter 5B. Voltage value VO is supplied. This minimum voltage value VO is an output voltage when the boosting operation is not performed.
  • the rotational speed of the expander 3 gradually increases, and the output voltage candidate Vsetl obtained by multiplying the rotational speed cog of the generator 8 by a predetermined coefficient d or the rotational speed com of the electric motor 7 is predetermined.
  • the output voltage setting unit 17 compares these output voltage candidates Vsetl and Vset2 in magnitude, Is set as the DC voltage to be generated by the power converter 5B. In this way, the control that satisfies both the following conditions (A) and (B) of the output voltage of the power converter 5B is performed.
  • Vsetl is larger than Vset2, so during this period, the output voltage setting unit 17 sets the voltage setting value toward the power converter 5B.
  • Output Vsetl As a result, a direct current having a magnitude of Vsetl determined based on the rotation speed of the expander 3 is output from the power converter 5B.
  • the rotational speed C of the generator 8 when the set value of the output voltage of the power converter 5B switches from VO to Vsetl is the rotational speed at which the generator 8 generates the induced voltage of VO or a speed smaller than that. It can be a rotation number. In this way, it is possible to prevent an unlimited flow of current from the generator 8 to the DC unit 30.
  • the output voltage setting value Vset2 is output from the unit 17.
  • the power converter 5B outputs a direct current having a magnitude of Vset2 determined based on the rotational speed of the compressor 1.
  • the rotational speed D of the motor 7 when the set value force of the output voltage of the power converter 5B is switched to Vset2 is the voltage value of the DC section 30 that is the minimum required to drive the motor 7 at the rotational speed D. It can be the number of revolutions when is equal to VO. In this way, the electric motor 7 can be rotated stably.
  • the expander 3 and the compressor 1 are stably operated, and a highly efficient heat pump is realized.
  • the generator optimum rotation speed can be calculated in the same procedure as the heat pumps 400 and 401 of the previous embodiment. That is, the variable speed converter 9 controls the rotational speed of the generator 8 so that the differential force from the optimal rotational speed of the generator becomes small. Therefore, instead of the actual rotational speed of the generator 8, the output voltage value can be appropriately set according to the optimal rotational speed of the generator.
  • the present invention described above has great utility value in the technical field to which the heat pump belongs as it contributes to the improvement of the COP of the heat pump by rational control.

Abstract

 本発明のヒートポンプ400における電源コンバータ5は、切り替え可能な高電圧発生回路と低電圧発生回路とを含む。回路選択部15は、発電機8の回転数が所定値を上回るときには高電圧発生回路を、所定値を下回るときには低電圧発生回路を選択する。そのような所定値は、低電圧発生回路により発生する電圧を発生させる発電機8の回転数以下となるように定めることができる。

Description

明 細 書
ヒートポンプ 技術分野
[0001] 本発明は、ヒートポンプに関し、特に、成績係数(COP Coefficient of Performance )の向上のため、膨張機を通過する冷媒カゝらエネルギーを回収して圧縮機の補助動 力として用いるヒートポンプに関する。
背景技術
[0002] ヒートポンプは、圧縮機、放熱器 (凝縮器)、膨張機 (膨張弁)、蒸発器を配管で接 続したループを有する。ヒートポンプでは、このループに沿って作業媒体 (冷媒)が気 液変換操作を受けながら循環し、この循環に伴って熱源力 熱が汲み出される。冷 媒の非フロン化に伴い、ヒートポンプには、従来にも増して COPの向上が求められて いる。
[0003] 特開昭 61— 29647号公報は、 COPの向上のために、膨張機から回収した動力を 圧縮機の補助動力として用いる動力回収機構を備えたヒートポンプ (冷凍サイクル) を開示する。このヒートポンプは、図 9に示すように、圧縮機 101、凝縮器 102、膨張 機 103、蒸発器 104を備え、さらに、商用の交流電源 120からの交流電流を直流化 するコンバータ(電源コンバータ) 105、コンバータ 105からの直流電流を所定周波数 の交流電流に変換するインバータ 106、膨張機 103を通過する冷媒が与えるェネル ギ一により発電する発電機 108、発電機 108からの交流電流を直流化するコンパ一 タ 109を備え、コンバータ 109からの直流電流力インバータ 106に供給され、圧縮機 101の補助動力となる。
[0004] COPの向上のためには、膨張機 103を通過する冷媒の状態に応じ、発電機 108の 回転数を制御して、膨張機 103の負荷を適切に調整することが望ましい。
[0005] 特開 2000— 241033号公報は、膨張機に接続した発電機の負荷の大きさを可変 としたヒートポンプ (冷凍装置)を開示する(当該文献の図 6参照)。このヒートポンプは 、図 10に示すように、圧縮機 201、放熱器 202、膨張機 203、蒸発器 204を備え、さ らに、放熱器 202の出口側において冷媒の温度および圧力を検出する温度センサ 2 11および圧力センサ 212、これらセンサ 211, 212に接続された演算手段 213、演 算手段 213に接続された回転数制御手段 215、回転数制御手段 215に接続された 発電機 208を備え、回転数制御手段 215により発電機 208の回転数を調整すること によって膨張機 203の負荷を制御し、これにより放熱器 202の出口側の冷媒の圧力 を制御している。また、特開 2000— 241033号公報は、冷媒がその温度に応じて定 まる最適圧力を有するように、冷媒の圧力を制御することも開示している(当該文献の 図 10参照)。
[0006] なお、図 10に示したヒートポンプにおいて、符号 207は原動機、符号 221はオイル セパレータ、符号 222はアキュムレータである。
発明の開示
[0007] 特開昭 61— 29647号公報が開示するヒートポンプにおいても、 COPを更に向上さ せるには、膨張機 103を通過する冷媒の状態に応じて発電機 108の回転数を適切 に制御するとよい。この場合、コンバータ 109を用いて発電機 108の回転数制御を行 えば、コンバータ 109とは別に回転数制御手段を設けることなぐ発電機 108の回転 数を制御することが可能となる。コンバータ 109を用いて発電機 108の回転数制御を 行うには、スイッチング素子を備えた可変速コンバータを用い、このスイッチング素子 を PWM (Pulse Width Modulation)方式でスイッチングするとよい。
[0008] ただし、可変速コンバータを用いて発電機 108の回転数を制御するためには、コン バータ 109の二次側(直流部) 100の電圧を一時側の電圧よりも高くする必要がある 。これは、発電機 108による誘起電圧が直流部 100の電圧よりも高いと、コンバータ 1 09内のスイッチング素子の状態 (ON状態または OFF状態)を問わず、そのスィッチ ング素子に並列接続されたフライバックダイオードを通り、発電機 108から直流部 10 0へと電流が流れるためである。発電機 108から直流部 100に無制限に電流が流れ ることは、発電機 108の電流を制御できなくなること、換言すれば、発電機 108の回 転数を制御できなくなることを意味する。したがって、可変速コンバータを用いて発電 機 108の回転数を安定して制御するためには、直流部 100の電圧を高く維持するこ とが望ましい。
[0009] しかし、直流部 100の電圧を高くすると、発電機 108の回転数が低く誘起電圧が低 い場合にはコンバータ 109および発電機 108を経由して回収する動力の回収効率 が低下する。これは、発電機 108の誘起電圧を直流部 100の電圧にまで昇圧する際 にコンバータ 109および発電機 108において発生する損失力 誘起電圧と直流部の 電圧との差が拡大するにつれて大きくなるためである。このため、発電機 108を用い た動力の回収効率を向上させる観点からは、直流部 100の電圧を過度に高く設定す ることは望ましくない。
[0010] 以上のように、発電機を備えたヒートポンプにおいて可変速コンバータを用いて発 電機の回転数を制御する場合には、発電機を安定して制御しょうとすると直流部の 電圧は高いことが望ましぐ発電機によるエネルギーの回収効率を高くしょうとすると 直流部の電圧は低!、ことが望ま U、ため、直流部の電圧の適切な設定が困難となり 、その結果、 COPの向上を十分に図ることもできない、という問題が生じる。
[0011] 本発明は、従来力 COPを向上させる手段として個別に知られていた技術、具体 的には発電機を用いた動力の回収技術 (例えば特開昭 61— 29647号公報)と、発 電機を用いた膨張機の負荷制御による冷媒の圧力制御技術 (例えば特開 2000— 2 41033号公報)とを組み合わせるに止まらず、可変速コンバータを用いて発電機の 回転数制御を行う場合に生じる上記問題を解決する新たなヒートポンプを提供するこ とを目的とする。
[0012] すなわち、本発明は、冷媒を圧縮する圧縮機と、前記圧縮機を通過した冷媒に熱 を放出させる放熱器と、前記放熱器を通過した冷媒を膨張させる膨張機と、前記膨 張機を通過した冷媒に熱を吸収させる蒸発器と、前記圧縮機、前記放熱器、前記膨 張機および前記蒸発器をこの順に冷媒が循環可能となるように接続する配管と、交 流電源からの交流電流を直流電流に変換する第 1コンバータと、前記第 1コンバータ に接続されたインバータと、前記インバータカ 供給される交流電流により前記圧縮 機を駆動する電動機と、前記膨張機を通過する冷媒により駆動する発電機と、前記 発電機からの交流電流を直流電流に変換し、前記第 1コンバータとともに前記インバ ータの入力端に接続された第 2コンバータと、を備え、前記インバータが、前記第 1コ ンバータおよび前記第 2コンバータから供給される直流電流を交流電流に変換して 前記電動機に供給するように構成され、前記第 1コンバータが、高電圧発生回路と低 電圧発生回路とを切り替え可能に有し、前記第 2コンバータが、前記発電機の回転 数を制御可能な可変速コンバータであり、前記発電機の回転数に応じて、前記高電 圧発生回路および前記低電圧発生回路のいずれか一方を選択する回路選択部を 有し、前記回路選択部が、所定値を基準として、前記発電機の回転数が前記所定値 を上回るときには前記高電圧発生回路を選択し、前記発電機の回転数が前記所定 値を下回るときには前記低電圧発生回路を選択し、前記所定値が、前記低電圧発 生回路により発生する電圧を発生させる前記発電機の回転数以下となるように、定め られた、ヒートポンプを提供する。
[0013] 本発明のヒートポンプは、前記回路選択部が、前記発電機の回転数とともに前記電 動機の回転数に応じて、前記高電圧発生回路および前記低電圧発生回路のいずれ か一方を選択し、かつ前記所定値を基準とした選択に代え、所定値 Aおよび所定値 Bを基準として、前記発電機の回転数が前記所定値 Aを上回るという条件、および前 記電動機の回転数が前記所定値 Bを上回るという条件、力 選ばれる少なくとも一方 の条件が成立するときには前記高電圧発生回路を選択し、前記発電機の回転数が 前記所定値 Aを下回るという条件、および前記電動機の回転数が前記所定値 Bを下 回るという条件、力^もに成立するときには前記低電圧発生回路を選択する、選択を 行い、前記所定値 Aが、前記低電圧発生回路により発生する電圧を発生させる前記 発電機の回転数以下となるように、定められた、ヒートポンプとしてもよい。
[0014] 本発明のヒートポンプは、前記放熱器と前記膨張機との間において冷媒の温度を 検出する温度検出手段と、前記放熱器と前記膨張機との間において冷媒の圧力を 検出する圧力検出手段と、前記温度検出手段により検出された温度に応じて冷媒最 適圧力を算出し、前記圧力検出手段により検出された圧力と前記冷媒最適圧力とに 基づいて発電機最適回転数を算出する演算手段と、をさらに備え、前記発電機最適 回転数に基づき、前記発電機の回転数が前記発電機最適回転数に近づくように、前 記第 2コンバータが前記発電機の回転数を制御する、ヒートポンプであることが好まし い。
[0015] この場合、前記回路選択部が、前記発電機の回転数に代えて、前記発電機最適 回転数に応じて前記高電圧発生回路および前記低電圧発生回路のいずれか一方 を選択しても構わない。
[0016] また、本発明の他の側面において、上述の回路選択部を、前記発電機の回転数に 応じて、前記第 1コンバータの出力電圧の設定値を変更する電圧設定部と捉えること もできる。この場合、ヒートポンプは、前記第 1コンバータの出力電圧力 前記発電機 の発生する電圧以上となるように制御される。
[0017] 以上本発明によれば、発電機の安定した回転数制御と、発電機を用いた効率的な 動力回収との両立を可能とし、これによつてヒートポンプの COPの更なる向上を可能 とする。
図面の簡単な説明
[0018] [図 1]本発明のヒートポンプの一例を示す構成図
[図 2]図 1のヒートポンプにおける圧縮機への電力供給系の構成図
[図 3]本発明のヒートポンプの制御手順を例示するフローチャート
[図 4]最適効率が得られる冷媒圧力の冷媒温度依存性を示す最適効率圧力線を例 示するグラフ
[図 5]本発明のヒートポンプの別の一例を示す構成図
[図 6]図 3に示した制御手順による電圧の制御例を示すタイムチャート
[図 7]第 3の実施形態のヒートポンプにおける電力供給系の構成図
[図 8]図 7に示した電力供給系による電圧の制御例を示すタイムチャート
[図 9]発電機により動力を回収する従来のヒートポンプの構成図
[図 10]発電機により冷媒圧力を制御する従来のヒートポンプの構成図
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
[0020] (第 1の実施形態)
図 1に示すヒートポンプ 400は、圧縮機 放熱器 2、膨張機 3、蒸発器 4、およびこ れらを接続する配管 10を備えている。
[0021] 圧縮機 1に動力を供給する主動力源は商用の交流電源 20である。交流電源 20は 電源コンバータ 5 (第 1コンバータ)に接続され、電源コンバータ 5はインバータ 6に接 続され、インバータ 6は圧縮機 1を駆動させる電動機 7に接続されている。 [0022] 圧縮機 1の補助動力源は発電機 8である。発電機 8は、膨張機 3を通過する冷媒が 膨張機 3に与えるエネルギーにより発電する。図示した形態では、発電機 8として、三 相の交流電圧を発生させる永久磁石型同期発電機が用いられている。発電機 8は、 可変速コンバータ (第 2コンバータ) 9に接続され、可変速コンバータ 9の出力端 (二次 側端子) 92は、電源コンバータ 5の出力端 52とともに、インバータ 6の入力端 61に接 続されている。コンバータ 5, 9の出力端 52, 92とインバータ 6の入力端 61との間の 回路部は、直流部 30を構成する。
[0023] 電源コンバータ 5および可変速コンバータ 9からインバータ 6には直流電流が供給さ れ、インバータ 6から電動機 7には三相の交流電流が供給される。電動機 7により圧 縮機 1が駆動すると、冷媒が配管 10を介して要素機器 1, 2, 3, 4を循環しながら、蒸 発器 4で汲み上げた熱を放熱器 2で放出する。
[0024] 図 2に、圧縮機 1への電気エネルギーの供給系統を示す。電源コンバータ 5は、ダ ィオードを用いた整流素子 50 (ダイオードブリッジ)、倍電圧整流用のコンデンサ 56, 57、電圧を平滑ィ匕する平滑コンデンサ 58、および電圧切替スィッチ 55を内蔵する。 電圧切替スィッチ 55は、機械的なリレーであってもよいし、半導体スィッチであっても よい。
[0025] 図 2に示すように、電源コンバータ 5は、チャージポンプ型の昇圧回路を含んでいる 。直列接続された 1対のコンデンサ 56, 57が整流素子 50の出力側に並列接続され ている。電圧切替スィッチ 55は、自身が ON状態になったとき、第 1コンデンサ 56と第 2コンデンサ 57との間の線路と、単相の交流電源 20の一方の出力端とを結線する( ノ ィパスする)ように回路に組み込まれている。つまり、交流電源 20自身が昇圧回路 に必要な発振源となっている。電圧切替スィッチ 55が ONのとき、コンデンサ 56, 57 は、交流電源 20の周波数に同期して蓄電と放電を繰り返し、自己の放電に基づくリ ップル電圧を整流素子 50の出力電圧に重畳させる。平滑コンデンサ 58は、整流素 子 50からの昇圧された出力電圧を整流および平滑ィ匕することにより、昇圧された直 流を電源コンバータ 5の出力電圧として出力する。
[0026] このような構成のコンバータ 5は、電圧切替スィッチ 55が閉じた状態で倍電圧整流 回路 (高電圧発生回路)として機能し、電圧切替スィッチ 55が開いた状態で通常の 全波整流回路 (低電圧発生回路)として機能する。交流電源 20の電圧を Vacとすると 、倍電圧整流回路力 得られる電圧は Vacの約 2. 8倍となり、全波整流回路から得ら れる電圧は Vacの約 1. 4倍となる。
[0027] インバータ 6は、いわゆる 3相電圧型インバータである。インバータ 6にはスィッチン グ素子 60が内蔵されている。スイッチング素子 60は、パワー MOSFETや IGBT(Ins ulated Gate Bipolar Transistor)である。このスイッチング素子 60を PWM方式でスィ ツチングすることにより、インバータ 6からは任意に定められた所定周波数の交流電流 が圧縮機 1に供給される。こうして、圧縮機 1の回転数はインバータ 6により制御される
[0028] 可変速コンバータ 9も、インバータ 6と同様の 3相電圧型とすることができる。可変速 コンバータ 9にも、パワー MOSFETや IGBTからなるスイッチング素子 90が内蔵され ている。スイッチング素子 90を PWM方式でスイッチングすることにより、発電機 8のト ルクの制御を通じ、発電機 8の回転数を制御できる。しかし、可変速コンバータ 9にお いて入力端 91の電圧が出力端 92の電圧よりも高くなると、スイッチング素子 90に並 列接続されたフライバックダイオード(図示省略)を通り、スイッチング素子 90の操作と は関係なく発電機 8から直流部 30へと電流が流れるため、可変速コンバータ 9によつ て発電機 8の回転数を制御することができなくなる。このため、発電機 8の回転数を制 御するためには、直流部 30の電圧を、発電機 8による誘起電圧よりも高く設定しなけ ればならない。他方、発電機 8による誘起電圧が低い場合に直流部 30の電圧を高く 設定すると、発電機 8および可変速コンバータ 9における回収エネルギーの損失が大 きくなる。
[0029] 直流部 30に対する上記の相反する要求を満たすには、電源コンバータ 5において 、発電機 8の回転数に応じ、高電圧発生回路および低電圧発生回路のいずれかを 適切に選択するとよい。すなわち、発電機 8の回転数が低ぐ発電機 8による誘起電 圧が低い場合には電源コンバータ 5の電圧切替スィッチ 55を開いて低電圧発生回 路を選択し、直流部 30の電圧を低く保つ。一方、発電機 8の回転数が高ぐ発電機 8 による誘起電圧が高い場合には電圧切替スィッチ 55を閉じて高電圧発生回路を選 択し、直流部 30の電圧を高く保つ。 [0030] 具体的には、予め定めた所定値を基準として、発電機 8の回転数が所定値を上回 つたときには高電圧発生回路を選択し、発電機 8の回転数が所定値を下回ったとき には低電圧発生回路を選択するとよい。この場合、所定値が適切に定められていれ ば、発電機 8の回転数が所定値と等しくなつたときの回路の選択は任意であって、高 電圧発生回路を選択してもよいし、低電圧発生回路を選択してもよぐその直前に選 択されて 、た回路をそのまま維持することとしてもょ ヽ。
[0031] なお、上記所定値の前後に一定の不感帯を設定するようにしてもよい。すなわち、 上記所定値は、第 1の所定値 R1と、該第 1の所定値 R1よりも小さい第 2の所定値 R2 とを含む。発電機 8の回転数が第 1の所定値 R1を上回った場合に高電圧発生回路 が選択される一方、発電機 8の回転数が上記第 1の所定値 R1よりも若干小さい第 2 の所定値 R2を下回った場合に低電圧発生回路が選択されるようにする。第 1の所定 値 R1から第 2の所定値 R2の間の回転数のときは、変化の前歴による。高電圧発生 回路と低電圧発生回路との切り替えに、このようなヒステリシスを持たせれば、回路の 動作が安定する。また、電圧切替スィッチ 55として機械的なリレーを用いた場合のチ ャタリング防止を図ることができる。
[0032] ところで、発電機 8の安定した制御のために、所定値は、低電圧発生回路により発 生する電圧を発生させる発電機 8の回転数以下となるように、設定するべきである。 所定値の下限に制限はないが、この値が低すぎると発電機 8における誘起電圧が低 い場合にも高電圧発生回路が選択されやすくなるため、ヒートポンプの標準的な運 転時に発生する誘起電圧などを考慮しつつ適切な範囲に定めるとよい。また、高電 圧発生回路と低電圧発生回路との切り替えにヒステリシスを持たせる場合の所定値 R 1, R2についても、ともに、低電圧発生回路により発生する電圧を発生させる発電機 8の回転数以下となるように定めるとよ 、。
[0033] 高 (低)電圧発生回路の選択は、基本的に、発電機 8の回転数に応じて行われる。
図 1に示したヒートポンプ 400では、発電機 8の回転数が可変速コンバータ 9から回路 選択部 15に出力される。回路選択部 15において、発電機 8の回転数と予め定めら れた所定値とが対比されて選択されるべき回路が決定され、この決定が電源コンパ ータ 5に入力される。回路選択部 15は、マイクロコンピュータで構成することもできる し、オペアンプ等を用いたアナログ回路で構成することもできる。なお、図 1では、回 路選択部 15を独立した要素として示したが、これに限らず、回路選択部 15は、例え ば電源コンバータ 5と一体となった要素であってもよい。
[0034] 電源コンバータ 5における回路の選択は、発電機 8の回転数とともに電動機 7の回 転数を検出することにより行ってもよい。電動機 7の回転数が高い場合に電動機 7を 安定して回転させるためには、直流部 30の電圧は高いことが望ましいからである。電 動機 7の回転数はインバータ 6から回路選択部 15へと出力すればよい。
[0035] 図 3に、回路選択の手順の一例を示す。この手順は、例えば、回路選択部 15を構 成するマイクロコンピュータが実行可能なプログラムの形で与えられる。まず、この手 順では、ステップ S 11で発電機 8の回転数と電動機 7の回転数が検出される。続くス テツプ S 12で発電機 8の回転数が所定の回転数 Aと対比され、発電機 8の回転数が 回転数 A未満でなければ (A以上であれば)、ステップ S16で電源コンバータ 5の電 圧切替スィッチ 55が閉じられて高電圧発生回路が選択される。
[0036] 一方、ステップ S 12で発電機 8の回転数が回転数 A未満であれば、ステップ S 13で 電動機 7の回転数が所定の回転数 Bと対比される。電動機 7の回転数が回転数 Bより 大の場合には、ステップ S 14で電源コンバータ 5の電圧切替スィッチ 55が閉じられて 高電圧発生回路が選択される。電動機 7の回転数が回転数 B以下の場合には、ステ ップ S15で電源コンバータ 5の電圧切替スィッチ 55が開かれて低電圧発生回路が選 択される。このような手順に沿った処理を定期的に実施することにより、直流部 30の 電圧を適切に制御することができる。なお、回路切替の閾値として定められる回転数 Aと回転数 Bは、等しい場合もあるし、異なる場合もある。
[0037] また、上記回転数 A, Bにも、前述したような不感帯を設定することができる。この場 合、回転数 Aは、第 1の回転数 A1と、該第 1の回転数 A1よりも小さい第 2の回転数 A 2とを含む。回転数 Bは、第 3の回転数 B1と、該第 3の回転数 B1よりも小さい第 4の回 転数 B2とを含む。回路選択部 15は、発電機 8の回転数が第 1の回転数 A1を上回る という条件、および電動機 7の回転数が第 3の回転数 B1を上回るという条件力も選ば れる少なくとも一方の条件が成立するときには高電圧発生回路を選択する。発電機 8 の回転数が第 2の回転数 A2を下回るという条件、および電動機 7の回転数が第 4の 回転数 B2を下回るという条件がともに成立するときには低電圧発生回路を選択する
[0038] ところで、ヒートポンプの効率を高めて COPの向上を図るには、放熱器 2を通過して 膨張機 3に向かう冷媒の圧力を、その冷媒の温度に応じた適切な圧力に調整するこ とが望ましい。冷媒の温度により、効率向上に最適な圧力は相違するためである。図 4に、最適効率が得られる冷媒圧力を示す最適効率圧力線を例示する。
[0039] 冷媒の圧力を最適化するためには、発電機 8の回転数の制御を通じて膨張機 3の 負荷を制御するとよい。図 1に示したヒートポンプ 400は、放熱器 2の出口近傍の配 管 10内において冷媒の温度および圧力をそれぞれ測定する温度センサ 11および 圧力センサ 12と、演算手段 13とを備えている。演算手段 13は、例えば、マイクロコン ピュータによって構成することができる。
[0040] 演算手段 13は、温度センサ 11により検出された温度、および予め入力された最適 効率圧力線に基づいて冷媒最適圧力を算出し、圧力センサ 12により検出された圧 力と冷媒最適圧力とに基づいて発電機最適回転数を算出する。そして、この発電機 最適回転数に基づき、発電機 8の回転数が発電機最適回転数となるように、より具体 的には、発電機 8の回転数と発電機最適回転数との差分力 S小さくなるように、可変速 コンバータ 9が発電機 8の回転数を制御する。
[0041] (第 2の実施形態)
図 5に、第 2の実施形態に係るヒートポンプの構成例を示す。このヒートポンプ 401 では、回路選択部 16が、高 (低)電圧発生回路を選択するとともに、前述の発電機最 適回転数を算出する。回路選択部 16においても、高 (低)電圧発生回路の選択の手 順は、例えば図 3を参照して説明したとおりに行えばよいが、所定値と対比する対象 を、発電機 8の回転数ではなぐ算出した発電機最適回転数としてもよい。この場合、 回路選択部 16は、可変速コンバータ 9からの発電機 8の回転数についての入力を要 しな ヽこと〖こなる。
[0042] 図 6に、本発明のヒートポンプ 400, 401を図 3の手順により制御した場合の電圧の 変化の例を示す。ヒートポンプ 400, 401の運転開始時 (t=0)は、発電機 8および電 動機 7はともに回転していないため、電源コンバータ 5では低電圧発生回路が選択さ れ、電源コンバータ 5からは低電圧 (電圧 A)が供給されている。発電機 8の回転数が 徐々に高くなり、時間 tlにおいて回転数 Aに至ると、低電圧発生回路が高電圧発生 回路に切り替わり、電源コンバータ 5からは高電圧 (電圧 B)の供給が始まる。その後 、発電機 8の回転数が減少に向カゝい、時間 t2において回転数 Aを下回ると、電源コ ンバータ 5からは再び電圧 Aが供給される。この間、電動機 7の回転数は回転数 B未 満である力 その回転数が増加に向力い、時間 t3において回転数 Bを超えると、電 源コンバータ 5からは電圧 Bが供給される。
[0043] (第 3の実施形態)
図 1に示すように、第 3の実施形態に係るヒートポンプ 402の全体構成は、電源コン バータ 5Bの内部構成、および回路選択部 15の代わりに出力電圧設定部 17が設け られているという点で、第 1の実施形態に係るヒートポンプ 400と相違している。その 他は、第 1の実施形態に係るヒートポンプ 400と共通である。また、発電機 8の回転数 に応じて、電源コンバータ 5Bの出力電圧の設定値を変更するという点についても、 基本的な技術思想は既に説明したとおりである。
[0044] 図 7は、第 3の実施形態に係るヒートポンプ 402の圧縮機 1への電気エネルギーの 供給系統を示す。電源コンバータ 5Bは、ダイオードを用いた整流素子 50 (いわゆる ダイオードブリッジ)、昇圧コイル 301、この昇圧コイル 301に直列に接続した逆流阻 止ダイオード 302 (例えばショットキーノリアダイオード)、昇圧コイル 301と逆流阻止 ダイオード 302との間で整流素子 50の負端子側に接続したスイッチング素子 303、 出力電圧を平滑ィ匕する平滑コンデンサ 304、および発振回路 305を内蔵する。発振 回路 305は、スイッチング素子 303の ON'OFFを制御する制御用 ICにて構成するこ とができる。出力電圧設定部 17は、例えばマイクロコンピュータにて構成することがで き、電源コンバータ 5Bの出力電圧を設定し、設定した出力電圧を電源コンバータ 5B が生成するように発振回路 305を制御する。
[0045] 電源コンバータ 5Bの動作を具体的に説明する。電源コンバータ 5Bにおいて、整流 素子 50は全波整流回路を構成している。整流素子 50が出力する直流の一部は、ス イッチング素子 303 (スイッチング部)に分岐入力するようになっている。スイッチング 素子 303は、その分岐直流入力を発振回路 305が規定する周波数にて断続スイツ チングする。昇圧コイル 301は、分岐直流入力の断続スイッチングに基づいて誘導 電流を発生させるとともに、その誘導電流に基づくリップル電圧を整流素子 50が出力 する直流電圧に重畳させた形で出力する。平滑コンデンサ 304 (整流平滑部)は、昇 圧コイル 301からの出力電圧を整流および平滑ィ匕することにより整流素子 50による 直流出力よりも昇圧された直流を生成し、この昇圧された直流を当該電源コンバータ 5Bの出力電圧として出力する。
[0046] このように、電源コンバータ 5Bは、スイッチング素子 303の ON · OFFを高速に制御 することにより昇圧コイル 301を利用して出力電圧の制御が可能な昇圧チヨッパ回路 を構成して ヽる。スイッチング素子 303の ONデューティを変えることにより出力電圧 を変えることができる。一例として、交流電源 20が 100Vの場合、直流部 30の電圧は 140V〜300Vの範囲で出力電圧を変えることができる。なお、逆流阻止ダイオード 3 02は、負荷側から電流が逆流しな!、ようにするために必要である。
[0047] 図 2で説明したチャージポンプ型の昇圧回路は、部品点数が極めて少なぐ回路の 大型化やコスト増の問題を招来しにくいという利点がある。そのため、入力電圧の離 散的な倍数を生成するのには極めて有効である。他方、本実施形態のようにコイルを 用いたチヨッパ型の昇圧回路を採用すれば、より高いステップアップ比が自由かつ容 易に得られるとともに、広範囲の入力 Z出力電圧にわたって高い変換効率を維持す ることがでさる。
[0048] 本実施形態のヒートポンプ 402におけるインバータ 6の動作は、第 1の実施形態のヒ ートポンプ 400と同様であり、圧縮機 1の回転数はインバータ 6により制御される。また 、可変速コンバータ 9の動作も第 1の実施形態のヒートポンプ 400と同様であり、内蔵 されたスイッチング素子 90を PWM方式でスイッチングすることにより、発電機 8のトル クの制御を通じ、発電機 8の回転数を制御できる。また、直流部 30の電圧は、発電機 8の回転数を制御するために、発電機 8による誘起電圧よりも高く設定する必要があ る。他方、発電機 8による誘起電圧が低い場合に直流部 30の電圧を高く設定すると 、発電機 8および可変速コンバータ 9における回収エネルギーの損失が大きくなる。
[0049] 直流部 30に対する上記の相反する要求を満たすには、電源コンバータ 5Bにおい て、発電機 8の回転数に応じ、出力電圧値を適切に設定するとよい。すなわち、発電 機 8の回転数が低ぐ発電機 8による誘起電圧が低い場合には電源コンバータ 5Bの 出力電圧を低く設定し、直流部 30の電圧を低く保つ。他方、発電機 8の回転数が高 ぐ発電機 8による誘起電圧が高い場合には、直流部 30の電圧を高く保つ。電源コン バータ 5Bの出力電圧設定は、発電機 8の回転数に応じて出力電圧設定部 17によつ て設定される。具体的に、出力電圧設定部 17は、可変速コンバータ 9から発電機 8の 回転数を取得し、下記 (式 1)に基づき、発電機 8の回転数 co gと予め定められた係数 dと力ゝら、出力電圧候補 Vsetlを決定する。
Vsetl = d X co g · · · (式 1)
[0050] ここで係数 dは、発電機 8の誘起電圧 (Vx)の回転数 ( ω χ)に対する比 (VxZ ω χ) の値より大の値とする。なぜなら、発電機 8の回転数を制御するために、出力電圧候 補 Vsetlを発電機 8による誘起電圧よりも高く設定しなければならないからである。決 定された出力電圧候補 Vsetlは、電源コンバータ 5Bに与えられる。電源コンバータ 5 Bにおいては、与えられた出力電圧候補 Vsetlを生成するように制御が実施される。 具体的には、出力電圧設定部 17からの出力電圧候補 Vsetlは、発振回路 305に入 力される。発振回路 305は、与えられた出力電圧候補 Vsetlと、当該電源コンバータ 5Bの出力電圧 (逆流阻止ダイオード 302の下流側力も得られるフィードバック値)と の差分が縮小するように、スイッチング素子 303の ON · OFF (デューティ比)を制御 する。
[0051] さらに、電源コンバータ 5Bにおける出力電圧値の設定は、発電機 8の回転数ととも に電動機 7の回転数を検出することにより行ってもよい。電動機 7の回転数が高い場 合に電動機 7を安定して回転させるためには、直流部 30の電圧は高 、ことが望まし いからである。電動機 7の回転数はインバータ 6から出力電圧設定部 17へと出力す ればよい。出力電圧設定部 17は、インバータ 6から電動機 7の回転数を取得し、下記 (式 2)に基づき、その電動機 7の回転数 co mと予め定められた係数 から、出力電 圧候補 Vset2を決定する。
Vset2 = e X ω πι · · · (式 2)
[0052] ここで係数 eは、電動機 7の誘起電圧 (Vy)の回転数(co y)に対する比 (VyZ o y) の値より大の値とする。なぜなら、電動機 7の回転数を制御するためには、出力電圧 候補 Vset2を電動機 7の誘起電圧よりも高く設定しなければならないからである。さら に、出力電圧候補 Vsetlと Vset2とを比較し、大きい方を電源コンバータ 5Bの出力 電圧値として設定する。このようにすれば、発電機 8の回転数による制約と電動機 7の 回転数による制約との両者を満足するように、電源コンバータ 5Bの電圧値を設定す ることができる。電源コンバータ 5Bの動作は先に説明した通りである。このような構成 により、効率が高ぐさらに安定した発電機 8および電動機 7の運転が可能なヒートポ ンプが実現される。
[0053] 図 8に、本発明のヒートポンプ 402を上記の手順により制御した場合の電圧の変化 の例を示す。ヒートポンプ 402の運転開始時 (t=0)は、発電機 8および電動機 7はと もに回転していないため、出力電圧設定部 17は最低電圧値 VOを設定し、電源コン バータ 5Bからは最低電圧値 VOが供給されている。この最低電圧値 VOは、昇圧動作 を行わないときの出力電圧である。
[0054] 膨張機 3の回転数が徐々に高くなり、発電機 8の回転数 co gに予め定められた係数 dを乗じて求まる出力電圧候補 Vsetl、または電動機 7の回転数 co mに予め定められ た係数 eを乗じて求まる出力電圧候補 Vset2が、最低電圧値 V0よりも大きいと判断し た場合、出力電圧設定部 17は、それら出力電圧候補 Vsetlと Vset2の大小比較を 行い、より大きい方を電源コンバータ 5Bが生成するべき直流電圧として設定する。こ のようにして、電源コンバータ 5Bの出力電圧の設定値力 下記条件 (A) (B)を共に 満足する制御が実施される。
(A)発電機 8による誘起電圧よりも高いこと。
(B)電動機 7の目標回転数を実現する、つまり、電動機 7をある目標回転数で駆動 するために必要な電圧以上であること。
[0055] 図 8の例において、時間 t4から t5の期間は、 Vsetlの方が Vset2より大となってい るので、この期間中、出力電圧設定部 17は、電源コンバータ 5Bに向けて電圧設定 値 Vsetlを出力する。この結果、電源コンバータ 5Bからは、膨張機 3の回転数に基 づいて決定される Vsetlの大きさの直流が出力されることとなる。電源コンバータ 5B の出力電圧の設定値が VOから Vsetlに切り替わるときの発電機 8の回転数 Cは、発 電機 8がちょうど VOの誘起電圧を発生する回転数、またはその回転数よりも小さい回 転数とすることができる。このようにすれば、発電機 8から直流部 30に電流が無制限 に流れ込むことを防止できる。
[0056] その後、発電機 8の回転数が減少に向カゝい、圧縮機 1の回転数が増加し、 Vset2の 方が Vsetlより大となると(図 8中の時間 t5)、出力電圧設定部 17からは電圧設定値 Vset2が出力される。この結果、電源コンバータ 5Bからは、圧縮機 1の回転数に基づ いて決定される Vset2の大きさの直流が出力されることとなる。電源コンバータ 5Bの 出力電圧の設定値力 から Vset2に切り替わるときの電動機 7の回転数 Dは、当該 電動機 7をその回転数 Dで駆動するために最低限必要とされる、直流部 30の電圧値 が VOに一致する場合の回転数とすることができる。このようにすれば、電動機 7を安 定して回転させることが可能となる。
[0057] このようにして、膨張機 3および圧縮機 1が安定運転され、高効率なヒートポンプが 実現される。なお、本実施形態のヒートポンプ 402においても、先の実施形態のヒート ポンプ 400, 401と同様の手順にて、発電機最適回転数を算出することができる。す なわち、可変速コンバータ 9は、発電機最適回転数との差分力 、さくなるように、発電 機 8の回転数を制御する。したがって、実際の発電機 8の回転数に代えて、発電機最 適回転数に応じて、出力電圧値を適切に設定することも可能である。
[0058] 以上に説明した本発明は、合理的な制御によりヒートポンプの COPの向上に寄与 するものとして、ヒートポンプが属する技術分野において、多大な利用価値を有する。

Claims

請求の範囲
[1] 冷媒を圧縮する圧縮機と、前記圧縮機を通過した冷媒に熱を放出させる放熱器と、 前記放熱器を通過した冷媒を膨張させる膨張機と、前記膨張機を通過した冷媒に熱 を吸収させる蒸発器と、前記圧縮機、前記放熱器、前記膨張機および前記蒸発器を この順に冷媒が循環可能となるように接続する配管と、
交流電源からの交流電流を直流電流に変換する第 1コンバータと、前記第 1コンパ ータに接続されたインバータと、前記インバータから供給される交流電流により前記 圧縮機を駆動する電動機と、
前記膨張機を通過する冷媒により駆動する発電機と、前記発電機からの交流電流 を直流電流に変換し、前記第 1コンバータとともに前記インバータの入力端に接続さ れた第 2コンバータと、を備え、
前記インバータが、前記第 1コンバータおよび前記第 2コンバータから供給される直 流電流を交流電流に変換して前記電動機に供給するように構成され、
前記第 1コンバータが、高電圧発生回路と低電圧発生回路とを切り替え可能に有し 前記第 2コンバータが、前記発電機の回転数を制御可能な可変速コンバータであり 前記発電機の回転数に応じて、前記高電圧発生回路および前記低電圧発生回路 のいずれか一方を選択する回路選択部を有し、
前記回路選択部が、所定値を基準として、
前記発電機の回転数が前記所定値を上回るときには前記高電圧発生回路を選択 し、前記発電機の回転数が前記所定値を下回るときには前記低電圧発生回路を選 択し、
前記所定値が、前記低電圧発生回路により発生する電圧を発生させる前記発電機 の回転数以下となるように、定められた、
ヒートポンプ。
[2] 前記回路選択部が、前記発電機の回転数とともに前記電動機の回転数に応じて、 前記高電圧発生回路および前記低電圧発生回路の!/ヽずれか一方を選択し、かつ、 前記所定値を基準とした選択に代え、所定値 Aおよび所定値 Bを基準として、 前記発電機の回転数が前記所定値 Aを上回るという条件、および前記電動機の回 転数が前記所定値 Bを上回るという条件、力 選ばれる少なくとも一方の条件が成立 するときには前記高電圧発生回路を選択し、
前記発電機の回転数が前記所定値 Aを下回るという条件、および前記電動機の回 転数が前記所定値 Bを下回るという条件、力ともに成立するときには前記低電圧発生 回路を選択する、選択を行い、
前記所定値 Aが、前記低電圧発生回路により発生する電圧を発生させる前記発電 機の回転数以下となるように、定められた、
請求項 1に記載のヒートポンプ。
[3] 前記放熱器と前記膨張機との間において冷媒の温度を検出する温度検出手段と、 前記放熱器と前記膨張機との間において冷媒の圧力を検出する圧力検出手段と、 前記温度検出手段により検出された温度に応じて冷媒最適圧力を算出し、前記圧力 検出手段により検出された圧力と前記冷媒最適圧力とに基づいて発電機最適回転 数を算出する演算手段と、をさらに備え、
前記発電機最適回転数に基づき、前記発電機の回転数が前記発電機最適回転 数に近づくように、前記第 2コンバータが前記発電機の回転数を制御する、
請求項 1に記載のヒートポンプ。
[4] 前記回路選択部が、前記発電機の回転数に代えて、前記発電機最適回転数に応 じて前記高電圧発生回路および前記低電圧発生回路のいずれか一方を選択する、 請求項 3に記載のヒートポンプ。
[5] 前記所定値は、第 1の所定値と、該第 1の所定値よりも小さい第 2の所定値とを含み 前記回路選択部は、前記発電機の回転数が前記第 1の所定値を上回った場合に 前記高電圧発生回路を選択する一方、前記発電機の回転数が前記第 2の所定値を 下回った場合に前記低電圧発生回路を選択する、請求項 1に記載のヒートポンプ。
[6] 冷媒を圧縮する圧縮機と、前記圧縮機を通過した冷媒に熱を放出させる放熱器と、 前記放熱器を通過した冷媒を膨張させる膨張機と、前記膨張機を通過した冷媒に熱 を吸収させる蒸発器と、前記圧縮機、前記放熱器、前記膨張機および前記蒸発器を この順に冷媒が循環可能となるように接続する配管と、
交流電源からの交流電流を直流電流に変換する第 1コンバータと、前記第 1コンパ ータに接続されたインバータと、前記インバータから供給される交流電流により前記 圧縮機を駆動する電動機と、
前記膨張機を通過する冷媒により駆動する発電機と、前記発電機からの交流電流 を直流電流に変換し、前記第 1コンバータとともに前記インバータの入力端に接続さ れた第 2コンバータと、を備え、
前記インバータが、前記第 1コンバータおよび前記第 2コンバータから供給される直 流電流を交流電流に変換して前記電動機に供給するように構成され、
前記第 1コンバータが、出力電圧を連続的に変更可能な回路により構成され、 前記第 2コンバータが、前記発電機の回転数を制御可能な可変速コンバータであり 前記発電機の回転数に応じて、前記第 1コンバータの出力電圧の設定値を変更す る電圧設定部を有し、
前記第 1コンバータの出力電圧が、前記発電機の発生する電圧以上となるように制 御される、
ヒートポンプ。
[7] 前記電圧設定部が、前記発電機の回転数とともに前記電動機の回転数に応じて、 前記第 1コンバータの出力電圧の設定値を変更する機能を有し、かつ、
前記第 1コンバータの出力電圧が、前記発電機の発生する電圧以上となる条件、 および前記電動機の目標回転数を実現するための電圧以上となる条件を共に成立 させるような設定値となるように制御される、
請求項 6に記載のヒートポンプ。
[8] 前記放熱器と前記膨張機との間において冷媒の温度を検出する温度検出手段と、 前記放熱器と前記膨張機との間において冷媒の圧力を検出する圧力検出手段と、 前記温度検出手段により検出された温度に応じて冷媒最適圧力を算出し、前記圧力 検出手段により検出された圧力と前記冷媒最適圧力とに基づいて発電機最適回転 数を算出する演算手段と、をさらに備え、
前記発電機最適回転数に基づき、前記発電機の回転数が前記発電機最適回転 数に近づくように、前記第 2コンバータが前記発電機の回転数を制御する、
請求項 6に記載のヒートポンプ。
[9] 前記電圧設定部が、前記発電機の回転数に代えて、前記発電機最適回転数に応 じて前記第 1コンバータの出力電圧を設定する、請求項 8に記載のヒートポンプ。
[10] 前記第 1コンバータは、発信回路と、整流素子と、前記整流素子が出力する直流の 一部を分岐入力させ、その分岐直流入力を前記発振回路が規定する周波数にて断 続スイッチングするスイッチング部と、前記分岐直流入力の断続スイッチングに基づ いて誘導電流を発生させるとともに、その誘導電流に基づくリップル電圧を前記整流 素子が出力する直流電圧に重畳させた形で出力する昇圧コイルと、前記昇圧コイル 力 の出力電圧を整流及び平滑ィ匕することにより前記整流素子による直流出力よりも 昇圧された直流を生成し、この昇圧された直流を当該第 1コンバータの出力電圧とし て出力するための整流平滑部とを含む、請求項 6に記載のヒートポンプ。
[11] 前記発振回路は、前記電圧設定部によって与えられた設定電圧が生成されるよう に前記スイッチング部の ON 'OFFを制御する、請求項 10に記載のヒートポンプ。
PCT/JP2006/307233 2005-05-12 2006-04-05 ヒートポンプ WO2006120819A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006524998A JP3898753B2 (ja) 2005-05-12 2006-04-05 ヒートポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-140012 2005-05-12
JP2005140012 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006120819A1 true WO2006120819A1 (ja) 2006-11-16

Family

ID=37396336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307233 WO2006120819A1 (ja) 2005-05-12 2006-04-05 ヒートポンプ

Country Status (2)

Country Link
JP (1) JP3898753B2 (ja)
WO (1) WO2006120819A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011029A (ja) * 2007-06-26 2009-01-15 Hitachi Ltd 電気車両の制御装置及び電気車両
JP2010019528A (ja) * 2008-07-14 2010-01-28 Denso Corp 給湯システム
US8955323B2 (en) 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
WO2016130870A1 (en) * 2015-02-12 2016-08-18 Parker-Hannifin Corporation Gear expander for energy recovery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249411A (ja) * 1999-02-25 2000-09-14 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249411A (ja) * 1999-02-25 2000-09-14 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011029A (ja) * 2007-06-26 2009-01-15 Hitachi Ltd 電気車両の制御装置及び電気車両
JP2010019528A (ja) * 2008-07-14 2010-01-28 Denso Corp 給湯システム
US8955323B2 (en) 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
US9897103B2 (en) 2009-07-06 2018-02-20 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
WO2016130870A1 (en) * 2015-02-12 2016-08-18 Parker-Hannifin Corporation Gear expander for energy recovery

Also Published As

Publication number Publication date
JPWO2006120819A1 (ja) 2008-12-18
JP3898753B2 (ja) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5264849B2 (ja) 電力変換装置及び冷凍空気調和装置
JP5855025B2 (ja) 逆流防止手段、電力変換装置及び冷凍空気調和装置
EP3166219B1 (en) Power converter and air-conditioning device provided with said power converter
JP5674959B2 (ja) 直流電源装置および電動機駆動装置
US9998007B2 (en) Boost converter with flying capacitor and refrigeration circuit
CN105432009A (zh) 电动机驱动控制装置、压缩机、送风机以及空气调节装置
KR20160065977A (ko) 직류 전원 장치, 전동기 구동 장치, 공기 조화기 및 냉장고
JP2002176778A (ja) 電源装置及びその電源装置を用いた空気調和機
JPWO2019049299A1 (ja) 電力変換装置、圧縮機、送風機、および空気調和装置
JP5213932B2 (ja) モーター駆動装置及びそれを搭載した冷凍サイクル装置
CN112640283B (zh) 逆变器的控制方法、针对交流负载的电力供给系统、制冷回路
JP2007135254A (ja) 電源装置および冷凍・空調装置
JP3898753B2 (ja) ヒートポンプ
JP6940370B2 (ja) 電力変換装置及びランキンサイクルシステム
JP6469235B2 (ja) 電力変換装置及びこの電力変換装置を備えた空気調和装置
JP6182462B2 (ja) 電力変換装置
CN116897498A (zh) 电力转换装置、马达驱动装置以及空调机
JP6837311B2 (ja) ヒートポンプ装置
JP5721669B2 (ja) 電力変換装置および冷凍空調システム
JP2008099510A (ja) 直流電源装置とそれを用いた機器
JP2004147387A (ja) 電力変換装置および空気調和装置
JP5916830B2 (ja) 直流電源装置および電動機駆動装置
JP2006149021A (ja) 直流電源装置およびこれを用いた圧縮機駆動装置
KR20020029228A (ko) 선형압축기 구동회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006524998

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731181

Country of ref document: EP

Kind code of ref document: A1