WO1998010430A1 - Procede d'exposition aux rayonnements de faisceaux d'electrons et objet devant etre ainsi expose - Google Patents

Procede d'exposition aux rayonnements de faisceaux d'electrons et objet devant etre ainsi expose Download PDF

Info

Publication number
WO1998010430A1
WO1998010430A1 PCT/JP1997/003106 JP9703106W WO9810430A1 WO 1998010430 A1 WO1998010430 A1 WO 1998010430A1 JP 9703106 W JP9703106 W JP 9703106W WO 9810430 A1 WO9810430 A1 WO 9810430A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
irradiated
beam irradiation
irradiation
acceleration voltage
Prior art date
Application number
PCT/JP1997/003106
Other languages
English (en)
French (fr)
Inventor
Michio Takayama
Masami Kuwahara
Takeshi Hirose
Toru Kurihashi
Masayoshi Matsumoto
Original Assignee
Toyo Ink Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23432796A external-priority patent/JPH1078500A/ja
Priority claimed from JP08250262A external-priority patent/JP3141790B2/ja
Priority claimed from JP29461696A external-priority patent/JP3237546B2/ja
Priority claimed from JP33629596A external-priority patent/JP3221338B2/ja
Priority claimed from JP35677096A external-priority patent/JPH10197700A/ja
Application filed by Toyo Ink Manufacturing Co., Ltd. filed Critical Toyo Ink Manufacturing Co., Ltd.
Priority to US09/065,052 priority Critical patent/US6188075B1/en
Priority to EP97939173A priority patent/EP0877389A4/en
Priority to AU41347/97A priority patent/AU744614B2/en
Priority to KR10-1998-0703262A priority patent/KR100488225B1/ko
Publication of WO1998010430A1 publication Critical patent/WO1998010430A1/ja

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/068Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using ionising radiations (gamma, X, electrons)

Definitions

  • the present invention relates to a method of accelerating electrons by a voltage in a vacuum, extracting the accelerated electrons into a normal-pressure atmosphere, and irradiating an irradiation object with an electron beam (EB), and an electron beam irradiation object. .
  • EB electron beam
  • Electron beam irradiation has been proposed as a method of crosslinking, curing or modifying coating materials such as paints, printed inks, adhesives and adhesives applied to substrates, and other resin products. Many studies have been made so far. In this method, electrons are accelerated by a voltage in a vacuum, the accelerated electrons are taken out into an atmospheric pressure atmosphere such as air, and an object is irradiated with an electron beam (EB).
  • EB electron beam
  • Post-processing can be performed immediately (cooling, aging, etc. are not required).
  • an inert gas such as nitrogen, which has a high running cost, is required to be inerted.
  • the accelerating voltage is usually as high as 200 kV to 1 MV, so X-rays are generated and a large-scale shield for the equipment must be provided.
  • the effect of ozone generation on the working environment is thought. Since the reaction is inhibited on the surface of the irradiation object due to the generation of oxygen radicals, it is necessary to perform an inert gas inert gas such as nitrogen.
  • the electron beam generated by the acceleration voltage may degrade the resin film and the base material such as paper.
  • the base material such as paper.
  • the collapse caused by the breakage of the glycoside bonds of cellulose occurs at a relatively low dose, and the decrease in bending strength is particularly noticeable even at an irradiation dose of 1 Mrad or less. It is a problem.
  • the thickness is thin or no coating is applied. Since there is an exposed part of the base material, deterioration of the base material tends to be a problem.
  • Japanese Patent Application Laid-Open No. 5-77862 discloses a low As an example of electron beam irradiation at an accelerating voltage, a method of performing irradiation at 200 kV and 30 Mrad is described. However, even with this method, the acceleration voltage cannot be reduced sufficiently, and there is a possibility that the base material may be deteriorated, and furthermore, the method requires inertia.
  • Japanese Patent Application Laid-Open No. 6-317700 discloses an apparatus and a method for irradiating an electron beam with an acceleration voltage of 90 to 150 kV.
  • an electron beam irradiation unit extracts electrons emitted from a cathode as an electron beam, accelerates the electron beam, and an irradiation chamber that irradiates the object with the electron beam.
  • Titanium foil or aluminum foil with a thickness of 10 to 30 m is used for the window material that separates the windows.
  • the transmission power of the electron beam becomes extremely weak, and most of the electron beam is absorbed by this window material.
  • the electron beam cannot be taken out well, and the temperature of the window material may rise above its heat-resistant temperature. Therefore, it is practically used at an accelerating voltage exceeding 100 kV, but the accelerating voltage may still cause the deterioration of the base material.
  • an object of the present invention is to provide an electron beam irradiation method and an electron beam irradiation method capable of irradiating an electron beam with high energy efficiency without causing a problem on an apparatus or the like.
  • An object of the present invention is to provide an electron beam irradiation object.
  • an electron beam is emitted from an object to be irradiated by using a vacuum tube type electron beam irradiation apparatus at an acceleration voltage of less than 100 kV for generating an electron beam.
  • a method of irradiating is provided.
  • an electron beam irradiation method which is an object to be irradiated with a coating material having an acceleration voltage of 10 to 6 OkV and a thickness of 0.01 to 3 applied to a substrate.
  • an electron beam irradiation method for irradiating an irradiated object with an electron beam, wherein the irradiated electron beam is represented by an absorbed dose up to a certain depth / all absorbed doses.
  • Electron beam irradiation that irradiates an electron beam so as to satisfy the following formula (1), where X is the product of the penetration depth ( ⁇ m) of the irradiated object and the specific gravity, where y% is the absorption rate of the irradiated object.
  • an electron beam irradiation method in which an acceleration voltage for generating an electron beam is 100 kV or less and a thickness of an object to be irradiated is 50 m or less. Further, in this case, there is provided an electron beam irradiation method in which the electron beam irradiation is performed by a vacuum tube type electron beam irradiation device.
  • the penetration depth is such that the electron beam reaches in the thickness direction of the irradiated object when the electron beam is irradiated I mean distance.
  • the oxygen concentration of the electron beam irradiation is
  • the oxygen concentration in the air is approximately
  • the accelerating voltage of the irradiated electron beam is more than 40 kV, assuming that the accelerating voltage (kV) is X and the oxygen concentration (%) of the electron beam irradiated part is Y, the following formula (b) is used. It is preferable to irradiate the irradiated object with an electron beam so that the oxygen concentration is as shown.
  • an electron beam by irradiating an object to be irradiated with an electron beam, an electron beam forming a distribution of a degree of crosslinking, curing or modification in a thickness direction of the object to be irradiated.
  • An irradiation method is provided.
  • FIG. 1 is a schematic diagram showing an electron beam irradiation device for carrying out the present invention
  • FIG. 2 is a diagram showing an electron beam emitting unit of the device of FIG. 1,
  • FIG. 3 is a diagram for explaining one embodiment when carrying out the present invention
  • FIG. 4 is a diagram showing an electron beam arrival depth at each accelerating voltage when an electron beam is irradiated using a vacuum tube type electron beam irradiation device. Diagram showing the relationship with the irradiation dose,
  • FIG. 5 is a diagram for explaining the scope of the present invention.
  • FIG. 6 is a schematic diagram showing a specific configuration of an electron beam irradiation apparatus used for carrying out the present invention
  • FIG. 7 is a perspective view of the apparatus of FIG.
  • FIG. 8 is a diagram showing the relationship between the value of the film thickness X specific gravity and the absorptance of the irradiated object in the example,
  • FIG. 9 is a diagram showing the relationship between the acceleration voltage and the allowable oxygen concentration.
  • FIG. 1 is a schematic diagram showing an irradiation tube as an electron beam generator used in an electron beam irradiation apparatus for carrying out the present invention.
  • This device has a cylindrical vacuum vessel 1 made of glass or ceramic, and an electron beam that is provided inside the vessel 1 and that extracts electrons emitted from the cathode as electron beams and accelerates them.
  • a generating unit 2 provided at the end of the vacuum vessel 1, an electron beam emitting portion 3 for emitting an electron beam, and a bottle portion 4 for feeding Ri by feeding portion (not shown) (the electron beam emitting portion 3 Is provided with a thin-film irradiation window 5.
  • the irradiation window 5 of the electron beam emitting unit 3 has a function of transmitting an electron beam without transmitting a gas, and as shown in FIG. An electron beam emitted from the irradiation window 5 is irradiated on the irradiation target placed in the irradiation room.
  • this device is a vacuum tube type electron beam irradiation device, which is fundamentally different from the conventional drum type electron beam irradiation device.
  • a conventional drum-type electron beam irradiation device is a type that irradiates an electron beam while constantly evacuating the inside of the drum.
  • the present inventors have made intensive studies on the acceleration voltage of the electron beam to be irradiated and the allowable oxygen concentration in the low acceleration voltage region.
  • the acceleration voltage of the irradiated electron beam is more than 40 kV
  • the acceleration voltage (kV) is X
  • the oxygen concentration (%) of the electron beam irradiated part is Y
  • the equation (a) is obtained.
  • the acceleration voltage of the electron beam to be irradiated when the acceleration voltage of the electron beam to be irradiated is 40 kV or less, the electron beam is irradiated substantially at the oxygen concentration in air or lower, and the acceleration voltage exceeds 40 kV.
  • the oxygen concentration shown in the above equation (a) is set so that the object is irradiated. Irradiate with electron beam.
  • Irradiating an electron beam in the air without in- terventing has advantages such as lowering the running cost.
  • Similar effects can be obtained by irradiating the irradiated object with an electron beam with an acceleration voltage of 40 kV or less in air, and then irradiating the electron beam with a higher acceleration voltage. .
  • an array 11 is configured by combining a plurality of electron beam irradiation devices 10 having the above-described configuration, and is provided below the array 11.
  • a method of irradiating the irradiation object 13 conveyed at a predetermined speed in the irradiation chamber 12 with an electron beam from each of the electron beam irradiation devices 10 constituting the array 11 is exemplified.
  • reference numeral 14 denotes an X-ray shield
  • 15 denotes a conveyor shield.
  • the size of the shield can be reduced and the inertia can be reduced.
  • the low accelerating voltage makes it possible to reduce the size of the electron beam generating part, which makes it possible to drastically reduce the size of the electron beam irradiation device, and the above devices are expected to be applied to various fields. I have.
  • Fig. 4 shows the relationship between the depth of arrival of the electron beam and the irradiation dose at each accelerating voltage when irradiating the electron beam using the above device. From this figure, it can be seen that when the acceleration voltage is low, the electron beam can work effectively within a certain thickness, and conversely, when the acceleration voltage is ⁇ , the electron beam passes through the film and reaches the substrate. You can see that there is.
  • Conventional electron beam irradiators can extract electron beams only at high acceleration voltage, so they irradiate an electron beam with excessive energy when crosslinking, curing, or modifying inks, paints, adhesives, etc. There was no choice but to consider the electron beam absorption rate.
  • irradiation is performed by expressing the absorbed dose up to a certain depth / the total absorbed dose.
  • the electron beam is irradiated so that the absorption rate y% of the irradiated object to the irradiated object satisfies the following formula (1). I do.
  • the electron beam is irradiated so as to be in a region beyond the curve shown in FIG.
  • the absorptance of the electron beam defined as above is Since the higher the fast voltage, the higher the voltage, the higher the absorption rate can be obtained when irradiating the electron beam using a vacuum tube type electron beam irradiation device that can effectively extract the electron beam even at a low acceleration voltage.
  • the curve shown in FIG. 5 shows the case where the acceleration voltage is 100 kV, and in the present invention, the absorption rate above the absorption rate on this curve, that is, 100 kV or less, It is intended for electron beam irradiation at low accelerating voltage.
  • the absorptance increases as the product of the penetration depth of the irradiated object and the specific gravity increases, and the maximum value is exhibited when the product has a certain value.
  • the object to be irradiated preferably has a thickness of about 100 ⁇ m or less.
  • the film dosimeter utilizes the fact that the spectral properties change when an electron beam is applied to the dosimetry film to obtain absorbed energy, and that the amount of change and the absorbed dose are correlated.
  • Scan when irradiating an object to be irradiated having a curved surface or an uneven surface with an electron beam using an electron beam irradiator provided with the irradiation tube as an electron beam generating unit, Scan itself. Specifically, a sensor is attached to the irradiation tube, the distance to the surface of the coating material on the substrate, etc. is controlled to be constant, and the irradiation tube is scanned by a three-dimensional robot with a multi-joint arm. . Therefore, uneven curing can be prevented, and the electron beam can be more efficiently irradiated.
  • the size of the irradiation width at this time depends on the size of the object to be irradiated or the base material provided with the coating agent. It can be appropriately selected according to the shape of the curved surface or the uneven surface.
  • the electron beam generated from the window of the irradiation tube reaches the coating material and cures, crosslinks or modifies the coating material.
  • FIG. 6 shows a specific configuration of the electron beam irradiation apparatus used for implementing the present invention.
  • reference numeral 20 denotes a main body portion including an electron beam irradiation tube, and an optical sensor 21 is attached to the main body portion 20.
  • the main body portion 20 is composed of an irradiation tube 27 having an irradiation window 28 and a shield material 29 covering the outside thereof.
  • the optical sensor 21 is attached to a shield material 29, and emits light from the tip thereof to measure the distance between the surface of the coating material 26 on the curved substrate 30 and the irradiation window 28. To detect.
  • the main body part 20 is attached to the tip of an articulated telescopic arm 22, and this arm 22 is driven by an arm drive port 23.
  • the arm pot 23 is controlled by a control unit 24.
  • Reference numeral 25 is a power supply unit.
  • control unit 24 keeps the distance between the irradiation window 28 and the coating material 26 constant based on the information from the optical sensor 21, and transmits the setting information. Therefore, a command is sent to the arm robot 23 to scan the main body portion 20 including the irradiation tube via the articulated arm 22.
  • this device uses the articulated telescopic arm 22, it can follow freely even if the object to be irradiated or the substrate has a curved surface.
  • the optical sensor 21 can be used.
  • the distance between the irradiation window 28 and the coating material 26 is constant Can be kept. Accordingly, uneven curing can be prevented, and the electron beam can be more efficiently irradiated.
  • the present invention focuses on the fact that the depth of arrival of the electron beam can be controlled, and by irradiating the object with the electron beam, the distribution of the degree of crosslinking, curing, or modification in the thickness direction of the object is improved. Form.
  • the portion is bridged, hardened, or modified up to that portion.
  • the degree of cross-linking, curing, or modification is lower than above, or the cross-linking, hardening, or unmodified parts. Therefore, a distribution of the degree of crosslinking, degree of hardening, or degree of modification is formed in the thickness direction. In other words, it can be partially crosslinked, cured or modified in the thickness direction of the illuminated object. Typical examples include crosslinking, curing, or modifying only the surface portion of the irradiation target.
  • a structure with a high hardness only on the surface and a soft inside, a structure with a low hardness only on the surface, a graded structure or layer with a graded change in the degree of crosslinking, curing, or modification It is possible to form a structure.
  • crosslinking / curing includes graft polymerization
  • modification refers to breaking of chemical bonds, orientation, etc. other than crosslinking and polymerization.
  • the material to be irradiated is partially crosslinked, cured or modified in the thickness direction, and then heat-treated to be uncrosslinked or uncured.
  • the location for applying the electron beam irradiation method of the present invention is not particularly limited, but the vacuum tube type described above is preferable from the viewpoint of controllability.
  • a vacuum tube type electron beam irradiation apparatus represented by Min-EB can effectively extract an electron beam even at a low accelerating voltage, so that the electron beam can be applied with good controllability and at a low depth. And the controllability of the reaching depth is good.
  • the acceleration voltage of the electron beam is preferably 15 OkV or less, and more preferably lOOKV or less. Further, 10 to 70 kV is preferable. Further, in order to realize the electron beam irradiation method of the present invention at such a low accelerating voltage, the thickness of the object to be irradiated is preferably 10 ⁇ m or more, more preferably 10 to 10 ⁇ m. It is in the range of 300 ⁇ m, more preferably 10 ⁇ ; Of course, the object to be irradiated may have a thickness of less than 1 Om, that is, a thickness of 1 to 9111, or may have an thickness of more than 30 OAim.
  • Irradiated objects to which the present invention can be applied include printed inks, paints, adhesives, adhesives and the like, which are formed relatively thin on a base material, plastic films, plastic sheets, and the like.
  • Examples include a printing plate, a semiconductor material, a sustained-release material that gradually releases an effective ingredient such as a poultice, a golf pole, and the like.
  • the printing inks and paints formed on the substrate are cured or shrunk at the portion in contact with the substrate by cross-linking or curing only the surface portion, thereby reducing the contact with the substrate. It is possible to obtain the effect of enhancing the adhesiveness.
  • ⁇ Also in the case of adhesives and pressure-sensitive adhesives, only the surface part is cross-linked and cured, leaving the inside soft and maintaining the adhesive effect. Thus, it can be applied to various uses.
  • Examples of the irradiation target to which the present invention can be applied include a coating applied to a base material such as a printing ink, a paint, and an adhesive.
  • a printing ink there are active energy beam cross-linking / curing inks such as ultraviolet rays and electron beams, such as letterpress ink, offset ink, gravure ink, flexo ink and screen ink.
  • an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, or the like, and an ultraviolet ray using various photosensitive monomers, oligomers, and / or prepolymers are used as a coating material.
  • an active energy ray cross-linking / curing type paint such as an electron beam may be used.
  • a vinyl polymerization type cyanacrylate-based, diacrylate-based, unsaturated polyester resin-based
  • a condensed-type phenolic resin-based, uryl-based
  • Adhesives such as resin-based, melamine resin-based, and polyaddition-type (epoxy resin-based, urethane resin-based) and other reaction-curable (monomer-, oligomer-, and polymer-type) adhesives.
  • the adhesive in addition to the conventional ones, it can be applied to heat-sensitive substrates such as lens bonding and glass sheet bonding.
  • the base material to which these are applied is stainless steel, whether treated or untreated.
  • plastics such as polyethylene, polypropylene, polyethylene terephthalate, plastics such as polyethylene naphthalate, paper, and fibers.
  • various additives conventionally used can be used.
  • various additives include pigments, dyes, stabilizers, solvents, preservatives, antibacterial agents, lubricants, and activators.
  • Example 1 An example in which an offset ink is used as a curable coating composition will be described. The offset adjustment was performed in the following procedure.
  • the mixture was mixed according to the following formula and dispersed with three rolls to obtain an ink for offset printing.
  • the ink obtained by the above procedure was printed to a thickness of about 2 m with an RI tester (a simple printing machine generally used in the printing ink industry).
  • EB irradiation was performed using a Min-EB device manufactured by AIT.
  • the irradiation conditions were an acceleration voltage of 40 kV, a power consumption of 50 W, and a conveyor speed of 20 m / min.
  • the lighting was performed using nitrogen.
  • the curing property was evaluated by evaluating the drying property with a touch finger.
  • the evaluation criteria were a five-point scale, with 5 for completely cured and 1 for uncured.
  • Example 1 The formulation of Example 1 was changed as follows, and after printing, EB irradiation was performed under the same conditions, and the curability was evaluated based on the above criteria. Table 1 shows the evaluation results. Indigo pigment (LIONOL BLUE FG 7 3 3 0) 1 2 parts The above varnish 50 parts
  • Example 1 After printing the same ink as in Example 1, EB irradiation was performed under the same irradiation conditions as in Example 1 except that the acceleration voltage was changed to 60 kV, and the curability was evaluated based on the above criteria. Table 1 shows the evaluation results.
  • Example 1 After printing the same ink as in Example 1, EB irradiation was performed under the same irradiation conditions as in Example 1 except that the accelerating voltage was changed to 90 kV, and the curability was evaluated based on the above criteria. Table 1 shows the evaluation results.
  • This paint was prepared according to the following recipe.
  • This paint was applied to a 300-m-thick tin-free steel plate on a PET film of a 100-m-th PET film-laminated material to a film thickness of 1 ⁇ m. Irradiation with EB was performed under the same conditions. Curability For, as in the case of the print ink of Example 1, the curability was evaluated by evaluating the dryness with a touch finger. The evaluation criterion was a five-point scale, with 5 being completely cured and 1 being uncured. The pencil hardness was measured based on JISK-5400 as the coating film hardness. The results obtained are also shown in Table 1.
  • Comparative Examples 1 to 3 printed and painted materials were prepared under the conditions shown in Examples 1, 2 and 5, respectively, and Nichiin High Voltage's Curetron EBC-200 was used as an EB irradiation device. Irradiation was performed using an acceleration power of 100 kV, a power consumption of 100 W, and a conveyor speed of 20 m / min.
  • Comparative Example 4 a coating was applied so that the film thickness was 35 ⁇ m in Example 5, and EB irradiation was performed in the same manner as in Example 5. Thereafter, the curability was evaluated on the basis of the above criteria, and the pencil hardness of the coating film was measured in the same manner. The results are also shown in Table 1. Table 1
  • FAR WEST film A 50-meter-thick dosimetry film (FAR WEST film) from FAR WEST TECHNOLOGY, USA, whose absorbance changes by electron beam irradiation, was prepared. First, two films of this film were irradiated, and it was confirmed with a spectrophotometer that all doses were absorbed by the film on the electron beam source side and not absorbed by the second film. Then, on this one FAR WEST film, a 1 () m thick PET
  • the specific gravity of the PET film was calculated as 1.4.
  • the irradiation device used was an electron beam irradiation device manufactured by AIT of the United States, and irradiation was performed at an acceleration voltage of 70 kV, a current value of 400 / A, and a conveyor speed of 7 m / min. The results are shown below.
  • Fig. 8 shows the relationship between specific gravity X thickness ( ⁇ m) value X and dose absorption rate (%) y at that time.
  • This can-can paint was prepared according to the following recipe.
  • Triethylene glycol diacrylate 35 parts Ketonformaldehyde resin (Tg: 83; C, Mn: 800) 20 parts
  • This paint was applied on a PET film of a 100-m thick PET film-laminated material on a 300-m-thick tin-free steel plate, and was irradiated with an electron beam.
  • the electron beam irradiation at this time was performed at an accelerating voltage of 70 OkV and 15 OkV (irradiation at 70 kV was performed using a Min-EB device manufactured by AIT, USA, and the current value was 4 0 0> ⁇ , the conveyor speed was 7 m / min, and the irradiation at 150 kV was a curetron EBC 200—20—30 electron manufactured by Shin High Voltage. Irradiation was performed at a current value of 6 mA and at a conveyor speed of 1 lm / min using a beam irradiation device.
  • the hardness of the coating film was evaluated by pencil hardness.
  • the pencil hardness was measured according to JIS K5400, paragraph 6.14. As a result, both had a pencil hardness HB.
  • the thickness of the coating film was 6 m, and the specific gravity was 1.7.
  • Example 1 printing was performed in the same manner as in Example 1.
  • EB irradiation was performed using a Min-EB device manufactured by AIT.
  • the irradiation conditions were an acceleration voltage of 40 kV to 150 kV, a current value of 600 A, and a contrast bead of 10 m / min.
  • the initializing was performed using nitrogen.
  • the oxygen concentration was changed by adjusting the nitrogen flow rate. At this time, the oxygen concentration was measured using an oxygen concentration meter (Zirconia type LC-175H manufactured by Toray Engineering Co., Ltd.).
  • the curability was evaluated based on the dryness with the touch finger and the adhesion by peeling off the cellophane tape.
  • the evaluation criteria were as follows.
  • Figure 9 shows the results. As shown in this figure, when the accelerating voltage is 40 KV or more, the accelerating voltage (KV) is X, and the oxygen concentration (%) of the electron beam irradiated part is Y. In the area below the straight line shown by the equation (2), that is, in the area of the following equation (1), it is effective to irradiate the irradiated object (the coating provided on the base material) with the electron beam. confirmed.
  • This paint was prepared according to the following recipe.
  • Additives ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  • the irradiation device shown in Fig. 6 was used.
  • a Mi ⁇ - ⁇ ⁇ device manufactured by AI II was used for the irradiation tube used as the electron beam generator.
  • the irradiation conditions were an acceleration voltage of 60 kV, a current value of 800 ⁇ A, an irradiation width of 5 cm, and an irradiation tube scanning speed of 2 Om / min.
  • the lighting was performed using nitrogen gas.
  • the obtained coating film was uniform, and the coating film hardness was a sufficient pencil hardness of 2 H.
  • Additives (BYK manufactured by BYK Corporation, 3.58) 0.5 parts These were mixed and dispersed in a sand mill for 1 hour to prepare a paint. This paint was applied to a medium-coated metal plate (a steel plate previously coated with an epoxy primer) to a film thickness of 30 m and irradiated with an electron beam.
  • irradiation device a Mini-EB device manufactured by AIT was used as the irradiation device. Irradiation conditions were as follows: acceleration voltage 50 kV, current value 508, conveyor speed
  • Table 3 shows the evaluation results.
  • Example 12 The same paint as in Example 12 was applied to a film thickness of 20 ⁇ m, and electron beam irradiation was performed under the same irradiation conditions as in Example except that the acceleration voltage was changed to 4 OkV.
  • Example The same evaluation criteria were evaluated for the same evaluation items as 12. Table 3 shows the obtained results.
  • the obtained electron beam-curable pressure-sensitive adhesive composition was applied over the separator at a thickness of 25 m, irradiated with an electron beam under the same conditions as in Example 12, and then adhered to high quality paper for adhesion. I got a sheet.
  • the adhesive strength, tack and holding power of the obtained sheet were measured. Table 4 shows the obtained results.
  • the method of measuring the adhesive strength, tack, removability and unreacted amount of the unreacted single piece of the adhesive sheet is as follows.
  • the width of the test piece was set to 25 mm, and after 30 minutes of adhesion to the stainless steel plate, it was peeled off at 180 degrees and a pulling speed of 300 mm / min, and the adhesive force was measured.
  • the measurement results were displayed in units of g / 25 mm. Although it depends on the application, 100 g / 25 mm was set as the practical range.
  • a fixed amount of the pressure-sensitive adhesive composition after curing was collected from the pressure-sensitive adhesive sheet, added to 50 ml of tetrahydrofuran, and allowed to stand for 24 hours. After standing, the mixture is filtered, and the filtrate is used as a sample to determine the amount of unreacted monomer N-butylcarbamoyloxetil in the cured adhesive composition, which is measured by a glue permeation chromatography. The weight (%) of the acrylate was determined. If the amount of the unreacted monomer in the pressure-sensitive adhesive composition after curing was less than 1.0%, it was determined that the pressure-sensitive adhesive composition was in a practical range.
  • An adhesive composition was prepared under the same conditions as in Example 14, and electron beam irradiation was performed under the same conditions as in Example 14 except that the accelerating voltage was set at 60 kV, and a method similar to that of Example 14 was used. Was evaluated.
  • a coated object was prepared under the conditions shown in Example 12 and the acceleration voltage was set to 200 kV using a Nitron Shin Portage Co., Ltd. Curetron EBC 200 200 , Current value 5 mA, conveyor speed 20 m / mi Electron beam irradiation was performed under the conditions of n. The lighting was performed using nitrogen gas. The coating film hardness, the coating film adhesion, and the coating film scratch resistance of the obtained coated product were evaluated in the same manner as in Example 12. Table 3 shows the obtained results. (Comparative Example 6)
  • An electron beam-curable pressure-sensitive adhesive composition was applied in the same manner as in Example 14, and a curetron EBC—200—20—30 manufactured by Shin Hypotage Co., Ltd. was used as an electron beam irradiation device.
  • the electron beam was irradiated under the conditions of an acceleration voltage of 200 kV, a current value of 6 mA, and a conveyor bead of 7.5 m / min. Investigations were performed using nitrogen gas.
  • the adhesive strength, tack and holding power of the obtained adhesive sheet were measured and evaluated according to the same criteria as in Example 14. Table 4 shows the obtained results.
  • Examples 12 and 13 all had good coating adhesion, while Comparative Example 5 had poor adhesion. That is, in Examples 12 and 13, the cross-linking density distribution was observed in the thickness direction, and since the cross-linking density of the portion of the coating film in contact with the metal plate was reduced, no curing shrinkage occurred in that portion. However, as a result, the adhesion of the coating film was improved, whereas in Comparative Example 1, the coating was cross-linked to the metal plate side (since the cross-linking density was increased throughout the thickness direction). ) Hardening shrinkage occurred at the part in contact with the metal plate, resulting in poor adhesion.
  • Examples 14 and 15 showed that the adhesive strength of the stainless steel plate as the adherend, and the peeling and removability by steel balls were all low. It was good and the amount of unreacted monomer was small. From this, it was confirmed that the pressure-sensitive adhesive of Example 1415 had a crosslink density distribution. On the other hand, in Comparative Example 6, the adhesive strength with the stainless steel plate as the adherend and the evening ball due to the steel ball were low. This indicates that the pressure-sensitive adhesive of Comparative Example 2 does not have a crosslink density distribution, and has a high crosslink density throughout the thickness direction. In Comparative Example 7, the conveyor speed was tripled, and the irradiation dose was reduced to about 1/3.
  • the cross-linking, curing or modification is performed by irradiating an electron beam with a low accelerating voltage, so that there is little adverse effect on the working environment and the inert gas needs to be inerted.
  • An extremely advantageous effect can be obtained in that the properties are relatively small and the problem of deterioration of the base material is small.
  • an electron beam irradiation method and an electron beam irradiation object which can irradiate an electron beam with high energy efficiency without causing any problems on the apparatus or the like.
  • the electron beam is irradiated by scanning the electron beam irradiation apparatus, even if the irradiation target has a curved surface or an uneven surface, the quality of the apparatus such as a problem in the apparatus and curing unevenness can be improved.
  • the electron beam can be irradiated without the above problems.
  • the present invention instead of uniformly cross-linking or curing the entire irradiated object, a distribution of cross-linking density or hardness is formed in the thickness direction, or in the thickness direction.
  • the resin since the resin is partially crosslinked or cured, the crosslinked or cured state can have variations.
  • problems in the conventional device can be solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Recrystallisation Techniques (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書 電子線照射方法および電子線照射物
[技術分野]
本発明は、 真空中で電子を電圧にて加速し、 この加速された電子を常 圧雰囲気中に取り出し、 被照射物に対して電子線 ( E B ) を照射する方 法および電子線照射物に関する。
[背景技術]
基材に施された塗料、 印刷イ ンキ、 接着剤、 粘着剤等の被覆剤、 およ びその他の樹脂製品の架橋, 硬化または改質方法と して電子線照射によ るものが提案されてお り、 これまでに多くの検討がなされている。 この 方法は、 真空中で電子を電圧にて加速し、 この加速された電子を空気中 等の常圧雰囲気中に取り出し、 物体に対して電子線 (E B ) を照射する 方法である。
電子線照射による架橋, 硬化または改質の利点と しては、 次のような ものが挙げられる。
(1) 希釈剤と して有機溶剤を含有させる必要がないので環境に優しい
(2) 架橋, 硬化または改質速度が速い (生産性大) 。
(3) 熱乾燥よ り も架橋, 硬化または改質の作業面積が少なくてすむ。
(4) 基材に熱がかからない (熱に弱いものにも適用可能) 。
(5) 後加工がすぐできる (冷却、 エージング等が不要である) 。
(6) 電気的作業条件を管理すればよいから、 熱乾燥の際の温度管理よ り も管理しゃすい。
(7) 開始剤、 増感剤がなくてもよいので、 不純物の少ないものができ る (品質の向上) 。
しかし、 従来の電子線硬化技術は、 大エネルギーの電子線を照射して 高速で被照射物を架橋, 硬化または改質するものであ り、 エネルギー効 率の点は考慮されていない。
また、 装置が大型で初期投資が高いという閊題、 酸素ラ ジカルの発生 に起因する表面の反応阻害を解消するために、 ラ ンニン グコス 卜の高い 窒素等の不活性ガスによるイナ一ティ ングが必要であるという問題、 さ らに 2次 X線のシールデイ ングが必要であるという問題等がある。
すなわち、 従来の電子線硬化または架橋では, 加速電圧が通常 2 0 0 k V〜 l M Vと高いため, X線が発生し、 装置の大掛か りなシール ドを 設ける必要がある。 または、 このような高いエネルギーの電子線を用い る場合には、 オゾン発生による作業環境への影響が想念されている。 酸 素ラジカルの発生に起因して、 被照射物表面において反応が阻害される ため、 窒素等の不活性ガスによるイナ一ティ ングを必要とする。
さ らに、 髙加速電圧による電子線は到達深度が深いため、 樹脂フィ ル ムおよび紙等の基材を劣化させることがある。 例えば、 紙においては、 セルロースのグリ コシ ド結合の切断に起因する崩壊が比較的低線量で生 じ、 特に耐折強度の低下は照射線量が 1 M r a d以下でも顕著に現れる ことが知られてお り、 問題となっている。 特に、 基材に印刷または塗装 された厚さ 0 . 0 1 〜 3 0〃 mの被覆剤 (印刷イ ンキ、 塗料、 接着剤等) においては、 その厚さが薄かった り、 被覆剤がなく露出している基材部 分があるため、 基材の劣化が問題となりやすい。
このため、 加速電圧が低く、 装置の小形化を図ることができる低エネ ルギ一電子線照射装置および方法が期待されている。
このような要望に応えるべく、 低加速電圧で電子線照射する装置およ び方法が検討されてお り、 例えば特開平 5— 7 7 8 6 2号公報には、 低 加速電圧で電子線照射する例と して、 2 0 0 k V、 3 0 M r a dで照射 を行う方法が記載されている。 しかしながら、 この方法でも、 加速電圧 の低下が十分とはいえず、 基材の劣化が生じるおそれがあり、 またイナ 一ティ ングを必要とする。
また、 特開平 6— 3 1 7 7 0 0号公報には、 加速電圧を 9 0〜 : 1 5 0 k Vに して電子線照射する装置および方法が知られている。 この技術に おいては、 電子線照射装置において陰極から放出された電子を電子線と して取り出し、 電子線を加速する電子線発生部と、 被照射物にその電子 線を照射する照射室とを仕切る窓材に、 厚さ 1 0〜 3 0 〃 mのチタ ン箔 またはアルミ二ユウム箔が使用されている。
しかしながら、 実際にはこの技術において加速電圧が 1 0 0 k V以下 になると、 電子線の透過力が極めて弱く な り、 この窓材に大部分の電子 線が吸収されるため、 照射室内に効率よ く電子線を取り出すことができ ず、 しかも窓材の温度がその耐熱温度以上に上昇するおそれがある。 し たがって、 事実上 1 0 0 k Vを超える加速電圧で使用されるが、 この加 速電圧でもやはり基材の劣化が生じることがある。
したがって、 電子線硬化技術は、 上述したように省エネルギーかつ溶 剤を放出しない環境に優しいプロセ.スと して注目を集めているものの、 以上のような問題から実用化が十分になされているとは言い難い状態で ある。
[発明の開示]
本発明はこのような状況のもとになされたものであ り、 その目的は、 装置上等の問題が生じることなく、 高エネルギー効率で電子線を照射す ることができる電子線照射方法および電子線照射物を提供することにあ る。 本発明の第 1の観点によれば、 真空管型電子線照射装置を使用して, 電子線を発生させる際の加速電圧 1 0 0 k V未満に して、 被照射物に対 して電子線照射する方法が提供される。 また、 この場合に、 加速電圧が 1 0〜 6 O k Vで、 基材に施された厚さ 0. 0 1〜 3 の被覆剤の 被照射物である電子線照射方法が提供される。
本発明の第 2の観点によれば、 被照射物に電子線を照射する電子線照 射方法であって、 ある深さまでの吸収線量/すべての吸収線量で表され る照射した電子線の被照射物への吸収率 y %が、 被照射物の透過深度 (〃m) と比重との積を Xと した場合に、 以下の ( 1 ) 式を満たすよう に電子線を照射する電子線照射方法が提供される。 また、 この方法にお いて、 電子線を発生させる際の加速電圧が 1 0 0 k V以下、 被照射物の . 厚さが 5 0 m以下である電子線照射方法が提供される。 さ らに、 この 場合に、 前記電子線照射が真空管型電子線照射装置によってなされる電 子線照射方法が提供される。
y ≥ - 0. 0 1 2 + 2 X ( 0 < ≤ 1 0 0 ) ( 1 ) なお、 透過深度は、 電子線照射したときの、 被照射物の厚さ方向にお ける電子線の到達する距離を意昧している。
本発明の第 3の観点によれば、 電子線照射の酸素濃度が、
照射する電子線の加速電圧が 4 0 k V以下の場合には、 略空気中の酸 素濃度またはそれ以下の濃度、
照射する電子線の加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V) を X、 電子線照射部分の酸素濃度 (%) を Yと したとき、 以下 の ( a ) 式で示される酸素濃度になるように して被照射物に電子線照射 する方法が提供される。
Y≤ 1. 1 9 x l 02 x e x p (- 4. 4 5 x 1 0— 2 X X ) ( a ) この場合に、 電子線照射の酸素濃度が、 照射する電子線の加速電圧が 4 O k V以下の場合には、 略空気中の酸 素濃度またはそれ以下の濃度、
照射する電子線の加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V ) を X、 電子線照射部分の酸素濃度 (% ) を Yと したとき、 以下 の ( b ) 式で示される酸素濃度になるように して被照射物に電子線照射 することが好ま しい。
1. 1 9 X 1 02 x e x p (- 4. 4 5 x 1 0— 2x X) ≥ Y≥ 0. 0 5
…… ( b ) 本発明の第 4の観点によれば、 曲面または凹凸面を有する被照射物に 対し、 電子線照射装置における電子線発生部を走査させて電子線を照射 する方法が提供される。 また、 この方法において、 センサ一によ り、 前 記電子線発生部と被照射物との間隔を一定に保ちながら電子線発生部を 走査させる電子線照射方法が提供される。
本発明の第 5の観点によれば、 被照射物に電子線を照射することによ り、 被照射物の厚さ方向に架橋度、 硬化度または改質度合いの分布を形 成する電子線照射方法が提供される。
[図面の簡単な説明]
図 1は、 本発明を実施するための電子線照射装置を示す模式図、 図 2は、 図 1の装置の電子線射出部を示す図、
図 3は、 本発明を実施する際の一つの実施形態を説明するための図、 図 4は、 真空管型電子線照射装置を用いて電子線照射した際の各加速 電圧における電子線到達深度と照射線量との関係を示す図、
図 5は、 本発明の範囲を説明するための図。
図 6は、 本発明の実施に用いる電子線照射装置の具体的構成を示す概 略図、 図 7は、 図 6の装置の照射管を含む本体部分を一部切り欠いて示す斜 視図、
図 8は、 実施例における被照射物の膜厚 X比重の値と吸収率との関係 を示す図、
図 9は、 加速電圧と許容酸素濃度との関係を示す図である。
[発明を実施するための最良の形態]
以下、 本発明の実施の形態について具体的に説明する。
図 1 は本発明を実施するための電子線照射装置に用いられる、 電子線 発生部と しての照射管を示す模式図である。 この装置は、 円筒状を.なす ガラスまたはセラ ミ ック製の真空容器 1 と、 その容器 1 内に設けられ、 陰極から放出された電子を電子線と して取り出してこれを加速する電子 線発生部 2 と、 真空容器 1 の端部に設けられ、 電子線を射出する電子線 射出部 3 と、 図示しない給電部よ り給電するためのビン部 4 とを有する ( 電子線射出部 3 には薄膜状の照射窓 5が設けられている。 電子線射出部 3 の照射窓 5は、 ガスは透過せずに電子線を透過する機能を有しており、 図 2に示すように、 偏平状をなしている。 そ して、 照射室内に配置され た被照射物に照射窓 5から射出された電子線が照射される。
すなわち、 この装置は真空管型の電子線照射装置であ り、 従来の ドラ ム型の電子線照射装置とは根本的に異なっている。 従来の ドラム型電子 線照射装置は、 ドラム内を常に真空引き しながら電子線を照射するタイ ブのものである。
このような構成の照射管を有する装置は、 米国特許第 5, 4 1 4, 2 6 7号に開示されてお り、 Amer i can I nternati onal Techno l ogi e s ( A I T ) 社によ り M i n — E B装置と して検討されている。 この装置にお いては、 1 0 0 k V以下という低加速電圧でも電子線の透過力の低下が 小さ く、 有効に電子線を取り出すことができる。 これによつて、 基材上 の被覆材に対し低深度で電子線を作用させることが可能となり、 基材へ の悪影響および 2次 X線の発生量を低下させることができるようにな り、 大がかりなシール ドは必ずしも必要と しない。
また、 電子線のエネルギーが低いため、 酸素ラジカルに起因する被覆 剤表面での反応阻害を低減することができるようにな り、 イナ一ティ ン グの必要性が小さ くなる。
本発明者らは、 低加速電圧領域において、 照射する電子線の加速電圧 と許容される酸素濃度について鋭意検討を重ねた。 その結果、 照射する 電子線の加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V ) を X、 電子線照射部分の酸素濃度 (% ) を Yと したとき、 ( a ) 式で示さ れる酸素濃度になるように して被照射物に電子線照射すれば、 酸素ラジ カルに起因する被覆剤等表面での反応阻害が生じず、 所定の架橋、 硬化 または改質性能を得ることができることが判明した。
Y≤ 1. 1 9 x l 0 2 x e x p (- 4. 4 5 x 1 0 - 2x X) ( a ) また、 4 0 k V以下の照射においては、 酸素濃度 2 0 %前後、 すなわ ちイナ一ティ ングをほとんどしなくても電子線照射が可能であることが 判明した。
したがって、 本発明では、 照射する電子線の加速電圧が 4 0 k V以下 の場合には、 略空気中の酸素濃度またはそれ以下の濃度で電子線照射を 行い、 加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V ) を X、 電子線照射部分の酸素濃度 (%) を Yと したとき、 上記 ( a ) 式で示さ れる酸素濃度になるように して被照射物に電子線照射する。
酸素ラジカルに起因する被覆材等の被照射物表面での反応阻害を考慮 した場合には, 酸素濃度の下限はないが、 窒素置換によるランニングコ ス ト等の観点から、 以下の ( b ) 式の範囲内であることが好ま しい。 1. 1 9 X 1 02 x e x p (- 4. 4 5 x 1 0— 2x X ) ≥ Y≥ 0. 0 5
…… ( b ) なお、 このような加速電圧が低い場合、 同時にオゾンの発生量も大幅 に低减することがわかっている。
イナ一ティ ングな しで空気中において電子線照射することは、 ラン二 ングコス ト を低下させる等のメ リ ッ トがある。 本発明では、 このことを 考慮して、 空気中の電子線照射で問題となる酸素ラジカルによる重合阻 害を防ぐために、 まず被照射物に対して表層部分のみを架橋、 硬化また は改質させる程度の紫外線照射を行い、 その後電子線照射を行う。 これ によ り、 酸素による重合阻害を生じず、 よ り完全な架橋物、 硬化物また は改質物を得ることができる。
また、 空気中で、 被照射物に加速電圧が 4 0 k V以下の電子線照射し、 次に紫外線照射することによつても、 同様に、 酸素による重合阻害が生 じず、 よ り完全な硬化物を得ることができる。
さらに、 空気中で、 被照射物に加速電圧が 4 0 k V以下の電子線照射 を行った後、 それよ り高い加速電圧で電子線照射を行う ことによって同 様な効果を得ることができる。 この場合、 最初に加速電圧が 3 0 k V以 下の電子線照射した後に、 それよ り高い加速電圧で電子線照射を行うこ とがよ り好ま しい。
本発明の典型的な実施形態と しては、 図 3に示すように上述した構成 を有する電子線照射装置 1 0を複数本合わせてアレイ 1 1 を構成し、 ァ レイ 1 1の下方にある照射室 1 2において、 所定の速度で搬送される被 照射体 1 3に対し、 アレイ 1 1 を構成する各電子線照射装置 1 0から電 子線を照射する方法が挙げられる。 なお、 図中、 参照符号 1 4は X線シ —ル ド、 1 5はコンベアシール ドである。
このように、 シール ドの小型化およびイナ一ティ ングの低減化、 また 低加速電圧であるため電子線発生部分の小型化が可能となるこ とから、 電子線照射装置の飛躍的な小型化が可能とな り、 上記装置は種々の分野 への応用が期待されている。
また、 上記装置は、 低加速電圧であるため、 電子線の到達深度が小さ く、 また加速電圧を容易に制御することができるため、 電子線の到達深 度を制御することが可能である。 このことを図 4 に示す。 図 4は上記装 置を用いて電子線照射した際の各加速電圧における電子線到達深度と照 射線量との関係を示すものである。 この図から、 加速電圧が低い場合、 その電子線をある厚さの中で有効に作用させることができ、 逆に髙加速 電圧の場合、 その電子線は、 皮膜を通り抜け基材へ到達しているこ とが わかる。
よって、 皮膜を要求する程度まで電子線によ り架橋 · 硬化 · 改質させ るのに必要な照射量を得るためには、 低加速電圧による電子線照射の場 合、 少ない発生エネルギーで済むことを示唆している。
従来の電子線照射装置は、 高加速度電圧で しか電子線を取り出せなか つたことから、 イ ンキ、 塗料、 接着剤等を架橋, 硬化または改質させる 際など、 過剰なエネルギーの電子線を照射せざるを得ず、 電子線の吸収 率を考慮する余地はなかった。
これに対して、 本発明では、 上述のような制御性の良好な真空管型電 子線照射装置を前提に して、 ある深さまでの吸収線量/すべての吸収線 量で表される、 照射した電子線の被照射物への吸収率 y %が、 被照射物 の透過深度 (〃 m ) と比重との積を Xと した場合に、 以下の ( 1 ) 式を 満たすように電子線を照射する。
y≥ - 0 . 0 1 2 + 2 X ( 0 < x≤ 1 0 0 ) ( 1 ) すなわち、 図 5に示す曲線以上の領域になるように電子線を照射する。 上記のように定義される電子線の吸収率は、 電子線を照射する際の加 速電圧が低くなるほど高くなるため、 低加速電圧でも有効に電子線を取 り出すこ とができる真空管型電子線照射装置を用いて電子線を照射した 場合に高い吸収率を得ることができる。 ここで、 図 5 に示す曲線は、 加 速電圧が 1 O O k Vの場合を示すものであ り、 本発明ではこの曲線上の 吸収率以上の吸収率、 つま り 1 0 0 k V以下の低い加速電圧で電子線照 射することを意図している。 また、 同じ加速電圧の場合には、 被照射物 の透過深度と比重との積が大き くなるほど吸収率が高く なり、 この積が ある値の時に極大値を示す。
この場合に、 被照射物と しては 1 0 0 〃 m程度以下の厚さのものであ ることが好ま しい。
なお、 電子線の照射線量の測定方法と しては、 フ ィ ルム線量計を使用 する方法を採用する場合が多い。 フィルム線量計とは、 線量測定用フ ィ ルムに電子線が照射され吸収エネルギーを得ると分光特性が変化し、 そ の変化量と吸収線量とが相関関係にあることを利用 したものである。
このように、 高い吸収率が得られるため、 従来にない高いエネルギー 効率で電子線を照射することができる。 したがって、 被照射物に対して 例えば架橋、 硬化または改質を目的に電子線を照射する場合に、 従来の 1 / 4から 1 / 2程度の低いエネルギーで目的を達成するこ とが可能と なる。 '
本発明においては、 電子線発生部である上記照射管を備えた電子線照 射装置を用いて、 曲面または凹凸面を有する被照射物に電子線を照射す るにあた り、 上記照射管自体を走査させる。 具体的には、 照射管にセン サ一を取り付け、 基材上の被覆剤等表面との距離を一定に制御し、 多関 節アームを有する 3次元ロポッ ト等によ り照射管を走査する。 したがつ て、 硬化ムラが防止され、 よ り効率よ く電子線を照射することができる' この際の照射幅の大きさは被照射物または被覆剤を設けた基材の大きさ や曲面または凹凸面の形状によ り適切に選択することができる。 照射管 の窓から発生した電子線は被覆剤に到達し、 被覆剤を硬化、 架橋または 改質させる。
この場合に、 電子線を全面に照射するため、 照射管を走査する時間を 要するが、 既に公知の通り、 電子線による反応速度は熱硬化、 U V硬化 と比較して飛躍的に速いことから問題はない。
次に、 本発明の実施に用いる電子線照射装置の具体的な構成を図 6 に 示す。 図中参照符号 2 0は電子線照射管を含む本体部分であ り、 この本 体部分 2 0 に光センサー 2 1 が取り付けられている。 本体部分 2 0は、 図 7 に示すように、 照射窓 2 8 を有する照射管 2 7 と、 その外側を覆う シール ド材 2 9 とで構成されている。
光センサー 2 1 は、 シール ド材 2 9に取り付けられてお り、 その先端 から光を射出して、 曲面を有する基材 3 0上の被覆剤 2 6表面と照射窓 2 8 との距離を検出する。
本体部分 2 0は多関節伸縮アーム 2 2の先端に取り付けられてお り、 このアーム 2 2はアーム駆動ロポヅ ト 2 3 によ り駆動される。 このァ一 ムロポッ ト 2 3は、 コン ト ロールユニッ ト 2 4 によ り制御される。 なお、 参照符号 2 5は電源ュニッ トである。
このような構成の装置においては、 コン ト ロールユニッ ト 2 4は、 光 センサー 2 1 からの情報によ り照射窓 2 8 と被覆剤 2 6 との距離を一定 に保つように、 かつ設定情報に したがって、 アームロボヅ ト 2 3 に指令 を送り、 多関節アーム 2 2 を介して照射管を含む本体部分 2 0 を走査さ せる。
この装置では、 多関節伸縮アーム 2 2 を用いているため、 被照射物や 基材が曲面を有していても自由自在に追従することができ、 しかも光セ ンサー 2 1 を用いることによ り照射窓 2 8 と被覆剤 2 6 との距離を一定 に保つことができる。 したがって、 硬化ムラが防止され、 よ り効率よ く 電子線を照射することができる。
本発明では、 電子線の到達深度を制御できることを着目 し、 被照射物 に電子線を照射するこ とによ り、 被照射物の厚さ方向に架橋、 硬化また は改質度合いの分布を形成する。
すなわち、 被照射物に対して厚さ方向途中の所定の深さまでの到達深 度を有する加速電圧で電子線を照射することによ り、 その部分までは架 橋、 硬化または改質するが、 それよ り も深い位置では架橋度、 硬化度ま たは改質度がそれよ り上の部分よ り も低くなるか、 または架橋、 硬化も し く は改質していない部分となる。 したがって、 厚さ方向に架橋度、 硬 化度または改質度の分布が形成されるのである。 見方を変えれば、 被照 射物の厚さ方向に対して部分的に架橋、 硬化または改質するという こと もできる。 典型例と しては、 被照射物の表面部分のみを架橋、 硬化また は改質することが挙げられる。
このように、 架橋度、 硬化度または改質度の分布を形成することによ り、 極めてバリエーショ ンのある適用が可能となる。
具体的には、 表面のみ硬度が高く、 内部が軟質の構造物、 表面のみ硬 度が低い構造物、 架橋度、 硬化度または改質度が段階的に変化するグラ デ一シヨ ン構造または層構造を形成することが可能である。
なお、 本発明における架橋、 硬化には、 グラフ ト重合も含み、 改質と は、 架橋、 重合以外の、 化学結合の切断、 配向等を意味する。
グラデーショ ン構造または層構造をよ り確実に形成するためには、 被 照射物の厚さ方向に対して部分的に架橋、 硬化または改質させた後、 熱 処理して、 未架橋、 未硬化または未改質の部分をある程度架橋、 硬化ま たは改質することによ り、 架橋度、 硬化度または改質度の分布を形成す るようにすることが好ま しい。 本発明の電子線照射方法を適用するための 置は特に限定されないが, 前述したような真空管型のものが制御性の観点から好ま しい。 すなわち, M i n— E Bに代表される真空管型電子線照射装置は、 上述したように、 低加速電圧でも電子線を有効に取り出すことができるので、 制御性良く しかも低深度で電子線を作用させることができ、 到達深度の制御性も髙 い。
このような到達深度の制御性の観点からは、 電子線の加速電圧は 1 5 O k V以下であることが好ま し く、 l O O k V以下が一層好ま しい。 さ らには 1 0〜 7 0 k Vが好ま しい。 また、 このような低加速電圧におい て本発明の電子線照射方法を実現するためには、 被照射物の厚さは 1 0 〃 m以上が好ま し く、 よ り好ま し く は 1 0〜 3 0 0〃m、 さ らに好ま し く は 1 0〜 ; L 0 0〃 m程度の範囲である。 もちろん、 l O m未満、 す なわち 1〜 9 111の厚さの被照射物または 3 0 O Ai mを超える厚さの被 照射物であってもよい。
本発明が適用可能な被照射物と しては、 印刷イ ンキ、 塗料、 接着剤、 粘着剤等、 基材上に比較的薄く形成されるものの他、 プラスチックフ ィ ルム、 ブラスチックシー ト、 印刷原版、 半導体材料、 湿布薬など有効成 分を徐々に放出する徐放性の素材、 ゴルフポールなどが挙げられる。
これらのうち、 基材上に形成される印刷イ ンキおよび塗料は、 表面部 分のみをを架橋または硬化することによ り、 基材に接する部分の硬化収 縮を抑えて、 基材との接着性を高めるといった効果を得ることができる < また、 接着剤や粘着剤の場合は、 表面部分のみ架橋 ' 硬化させ、 内部を 柔らかい、 接着効果を保ったままの状態に してお く ことによ り、 種々の 用途への適用が可能となる。
本発明が適用可能な被照射物と しては印刷イ ンキ、 塗料、 接着剤等の 基材に塗布される被覆物が例示される。 これらのうち、 印刷イ ンキと しては、 凸版イ ンキ、 オフセ ッ トイ ンキ、 グラビアイ ンキ、 フ レキソイ ンキ、 スク リーンイ ンキ等の紫外線や電子 線等の活性エネルギー線架橋 · 硬化型ィ ンキが挙げられる。
また、 塗料と しては、 アク リル樹脂系、 エポキシ樹脂系、 ウ レタ ン樹 脂系、 ポリエステル樹脂系等の樹脂、 および各種光感応性モノマー、 ォ リ ゴマーおよび/またはプレポリマーを用いた紫外線または電子線等の 活性エネルギー線架橋 · 硬化型塗料が挙げられる。
さ らに、 接着剤と しては、 ビニル重合型 (シァノアク リ レー- ト系、 ジ ァク リ レー ト系、 不飽和ポリエステル樹脂系) 、 縮合型 (フ エ ノ ール樹 脂系、 ユリャ樹脂系、 メラ ミ ン樹脂系) 、 重付加型 (エポキシ樹脂系、 ウ レ夕ン樹脂系) などの反応硬化型 (モノマー型、 オリ ゴマ一型、 ブレ ポリマ一型) 接着剤が挙げられる。 接着剤の適用例と しては、 従来のも のに加え、 レンズの接着、 ガラスシー トの接着など、 熱に弱い基材にも 適応することができる。
これらを塗布する基材と しては、 処理、 未処理を問わずステン レス鋼
( s u s ) 、 アルミ等の金属、 ポ リ エチレ ン、 ポ リ プロ ピレ ン、 ポ リ エ チ レ ンテ レフ 夕 レー ト、 ポリ エチレ ンナフ夕 レー ト等のブラスチ ヅ ク、 紙、 繊維等が挙げられる。
上記のような被覆剤においては、 従来から使用されている各種添加剤 を使用することができる。 各種添加剤の例と しては、 顔料、 染料、 安定 剤、 溶剤、 防腐剤、 抗菌剤、 潤滑剤、 活性剤等が挙げられる。 実施例
以下、 本発明の実施例について説明する。 以下の説明において、 「部」 「%」 は、 それそれ重量部、 重量%である。
(実施例 1 ) 硬化性被覆組成物と してオフセ ッ トイ ンキを用いた例を示す。 このォ フセ ッ トイ ンキの調整は以下の手順で行った。
〔ワニスの作成〕
ジペン夕エリス リ トールへキサァク リ レー ト 6 9. 9 %、 ハイ ドロキ ノ ン 0. 1 %を仕込み、 1 0 0 °Cに昇温し、 その後 D T (東都化成製ジ ァリルフタ夕 レー ト樹脂) 3 0部を徐々に仕込み、 溶解した時点で くみ 出した。 このとき粘度は 2 1 0 0ポィズ ( 2 5。C) であった。
〔印刷ィ ンキの調整〕
以下の処方に従って混合し, 3本ロールにて分散させ, オフセ ッ ト印 刷用イ ンキと した。
藍顔料 (LIONOL BLUE F G 7 3 3 0 ) 1 5部
上記ワニス 5 0部
ジペン夕エリス リ トールへキサァク リ レー ト 2 5部
ペンタエリス リ ト一ルテ トラァク リ レー ト 1 0部
上記手順で得られたイ ンキを R Iテスター (印刷イ ンキ業界で一般的 に使用されている簡便印刷機) にて厚さ約 2 mに印刷した。
印刷後、 A I T社製 M i n— E B装置を用いて E B照射を行った。 照 射条件は加速電圧 4 0 k V、 使用電力 5 0 W、 コ ンベアス ピー ド 2 0 m /m i nと した。 イナ一ティ ングは窒素を使用 して行った。
照射後、 触指にて乾燥性を評価することによ り硬化性を評価した。 評 価基準は完全硬化を 5 と し, 未硬化を 1 と した 5段階評価と した。
得られた結果を表 1 に示した。
(実施例 2 )
実施例 1の処方を以下のように変更し、 同様に印刷後、 同様の条件で E B照射し、 上記基準で硬化性を評価した。 その評価結果を表 1 に示し た。 藍顔料 (LIONOL BLUE F G 7 3 3 0 ) 1 2部 上記ワニス 5 0部
ジペン夕エリス リ トールへキサァク リ レー ト 2 8部
ペン夕エリス リ トールテ トラァク リ レー ト 1 0部
(実施例 3 )
実施例 1 と同様のイ ンキを同様に印刷した後、 加速電圧を 6 0 k Vに 変更した以外は実施例 1 と同様の照射条件で E B照射し, 上記基準で硬 化性を評価した。 その評価結果を表 1 に示した。
(実施例 4 )
実施例 1 と同様のィ ンキを同様に印刷した後、 加速電圧を 9 0 k Vに 変更した以外は実施例 1 と同様の照射条件で E B照射し、 上記基準で硬 化性を評価した。 その評価結果を表 1 に示した。
(実施例 5 )
こ こでは、 硬化性被覆組成物と して製缶埜料を用いた例を示す。 この 塗料の作成は以下の処方で行った。
ビスフヱノ一ル A型エポキシァク リ レー 卜 5 5部
(ダイセル . ユーシ一ビ—社製 エベク リル E B 6 0 0 )
ト リエチレングリ コ一ルジァク リ レー ト 3 5部 ケ ト ンホルムアルデヒ ド樹脂 (Tg: 83。C,Mn : 800) 2 0部
(ヒュルス社製 Synshetic resin S K )
ルチル型酸化チタン 1 0 0部
(石原産業製 夕ィぺ一ク C R— 5 8 )
を混合し、 サン ド ミルで 1時間分散して塗料を作成した。
この塗料を、 厚さ 3 0 0 mのティ ンフ リースチール板に 1 0 0〃m の P E Tフ ィルムラ ミネー ト した素材の P E Tフィルム上に膜厚 1 μ mとなるように塗布し、 実施例 1 と同一の条件で E B照射した。 硬化性 については、 実施例 1の印刷イ ンキと同様に、 触指にて乾燥性を評価す ることによ り硬化性を評価した。 評価基準は完全硬化を 5 と し、 未硬化 を 1 と した 5段階評価と した。 また、 塗膜硬度と して、 J I S K— 5 4 0 0に基づき鉛筆硬度を測定した。 得られた結果は同様に表 1 に示し た。
(実施例 6 )
実施例 5 と同様の塗料を同様に塗布した後、 加速電圧を 6 O k Vに変 更した以外は実施例 5 と同様の照射条件で E B照射し、 上記基準で硬化 性を評価した。 その評価結果を表 1 に示した。
(実施例 7 )
実施例 5 と同様の塗料を同様に塗布した後、 加速電圧を 9 0 K Vに変 更した以外は実施例 5 と同様の照射条件で E B照射し、 上記基準で硬化 性を評価した。 その評価結果を表 1 に示した。
(比較例 1〜 4 )
比較例 1〜 3は、 それそれ実施例 1、 2、 5に示す条件で印刷物およ び塗装物を作成し、 E B照射装置と して日新ハイボルテージ社製キュア ト ロン E B C— 2 0 0— 2 0— 3 0を使用 し、 加速電圧 1 0 0 k V、 使 用電力 1 0 0 W、 コンベアスピー ド 2 0 m/m i nの条件で照射した。 また、 比較例 4は、 実施例 5において、 膜厚が 3 5〃 mとなるように塗 料を塗布し、 実施例 5 と同様に E B照射した。 その後、 これらについて 上記基準で硬化性を評価し、 塗膜については同様に鉛筆硬度を測定した その結果も同様に表 1 に示した。 表 1
Figure imgf000020_0001
この表 1 に示すように、 低加速電圧で、 所定の装置によ り E B照射す ることによ り、 十分な硬化性が得られることが確認された。
(実施例 8 )
ここでは、 線量吸収率の測定例と、 本発明を満たす電子線照射方法の 例を示す。
電子線照射によ り吸光度が変化する米国 FAR WEST TECHNOLOGY 社の厚 さ 5 0 mの線量測定用フ ィ ルム (FAR WESTフ イルム) を用意した。 ま ず、 このフィ ルムを 2枚重ねて照射し、 電子線発生源側のフィ ルムにす ベての線量が吸収され、 2枚目に吸収されないことを分光光度計で確認 した。 そ してこの 1枚の FAR WESTフイ ルムの上に厚さ 1 () mの P E T
差替え用紙 (規則 26) フ ィルムを積み重ねて電子線照射した。 その吸光度変化を分光光度計で 測定し、 吸収線量を FAR WEST TECHNOLOGY 社の検量線によ り計算した。 そ して n枚積み重ねた場合の吸収線量から、 比重 X厚さの値 ( X ) とそ の値に対応する塗膜の線量吸収率 ( y ) を導いた。
この際の、 yの計算方法は、 以下の通り と した。
FAR WESTフ イ ルムの吸収線量 : F
P E Tフ ィ ルムを全く重ねないときの FAR WEST フ ィ ルムの吸収線量 : T
と したとき、
y = ( 1 - F/T ) X 1 0 0 ( % )
と した。 P E Tフィルムの比重は 1. 4 と して計算した。
照射装置と,しては米国 A I T社製の電子線照射装置を使用 し、 加速電 圧 7 0 k V、 電流値 4 0 0 / A、 コ ンベアス ピー ド 7 m/m i nで照射 した。 その結果を以下に示す。
n (枚) 吸収率 y ( % )
1 4 2
2 7 2
3 8 8. 3
4 9 9. 2
5 1 0 0
6 1 0 0
その時の比重 X厚さ (〃 m ) の値 X と線量吸収率 (% ) yとの関係を 図 8に示す。
この図に示すように、 この際の曲線は
y = - 0. 0 2 2 4 x2 + 3. 0 0 6 6 x ( 0 < x≤ 7 0 )
とな り、 本発明の範囲を満たす照射方法であることが確認された。 (実施例 9 )
こ こでは、 硬化性被覆組成物と して製罐塗料を用いた例を示す。 この 製罐塗料の作成は以下の処方で行った。
ビスフエノール A型エポキシァク リ レー ト 5 5部
(ダイセル . ュ―シ一ビー社製 エペク リル E B 6 0 0 )
ト リエチレングリコ一ルジァク リ レー ト 3 5部 ケ 卜 ンホルムアルデヒ ド樹脂 (Tg:83 。C、 Mn:800) 2 0部
(ヒュノレス社製 Synshetic resin S K )
ルチル型酸化チタン 1 0 0部
(石原産業製 夕ィぺ一ク C R— 5 8 )
を混合し、 サン ド ミルで 1時間分散して塗料を作成した。
この塗料を、 厚さ 3 0 0〃 mのティ ンフ リ ースチール板に 1 0 0 m の P E Tフ ィルムラ ミ ネー ト した素材の P E Tフィルム上に塗布し、 電 子線照射した。
この際の電子線照射は、 加速電圧 7 O k Vおよび 1 5 O k Vで行った ( 7 0 k Vでの照射では、 米国 A I T社製 M i n— E B装置を使用 し、 電 流値 4 0 0 > Α、 コンベアス ピー ド 7 m/m i nの条件と した。 また、 1 5 0 k Vの照射では、 曰新ハイボルテージ社製のキュア ト ロ ン E B C 2 0 0 — 2 0— 3 0電子線照射装置を使用 し、 電流値 6 mA、 コンベア スピー ド 1 l m/m i nで照射した。 イナ一ティ ングは窒素ガスを使用 して行った。
このように電子線を照射して塗料を硬化させた後、 塗膜の硬度を鉛筆 硬度で評価した。 鉛筆硬度の測定は JIS K5400 6.14項に準じて行った。 その結果、 両者ともに鉛筆硬度 H Bであった。 また、 塗膜の膜厚は 6 m、 比重は 1. 7であった。
以上を基に計算した結果、 加速電圧 7 O k Vの照射では塗料の電子線 吸収率が約 2 8 %、 加速電圧 1 5 0 k Vの照射では約 1 1 %となった。 図 4から、 膜厚 6 m、 比重 1. 7の場合には、 x = 1 0. 2 とな り、 これを上記 ( 1 ) 式の y≥— 0. 0 1 x 2 + 2 xに代入すると、 y≥ l 9. 3 6 ( ) となるから、 真空管型電子線照射装置である米国 A I T 社製 M i n— E B装置で照射した場合には本発明の範囲内であるが、 曰 新ハイボルテージ社製のキュア トロン E B C 2 0 0 - 2 0 - 3 0電子線 照射装置で照射した場合には本発明の範囲から外れることが確認された。 (実施例 1 0 )
実施例 1の印刷イ ンキを使用し, 実施例 1 と同様に して印刷した。 印 刷後、 A I T社製 M i n— E B装置を用いて E B照射を行った。 照射条 件は加速電圧 4 0 k V ~ 1 5 0 k V、 電流値 6 0 0〃 A、 コンペァス ビ — ド 1 0 m/m i nと した。 イナ一ティ ングは窒素を使用して行った。 また, 酸素濃度は窒素流量を調整し変化させた。 また、 この際、 酸素濃 度は酸素濃度計 (東レエンジニアリ ング製ジルコニァ式 L C一 7 5 0 H ) を使用 して測定した。
硬化性の評価は照射後, 触指による乾燥性およびセロテープ剥離によ る密着性によって行った。 評価基準は以下のとおり と した。
乾燥性 : (完全硬化) 5〜 1 (未硬化)
密着性 : (良好) 5〜 : L (不良) '
得られた結果を表 2に示した。
この結果をも とに、 良好な硬化性が得られる酸素濃度の範囲を加速電 圧毎に把握した。 その結果を図 9に示す。 この図に示すように, 加速電 圧が 4 0 K V以上においては, 加速電圧 ( K V ) を X、 電子線照射部分 の酸素濃度 (% ) を Yと したとき、 酸素濃度 Yが図の ( 1 ) 式で示され る直線の下の領域、 すなわち以下の ( a ) 式の領域において被照射物 (基材に設けられた被覆物) に電子線照射することが有効であることが 確認された。
Y≤ 1. 1 9 X 1 0 2 X exp (- 4. 4 5 x 1 0 - 2 x X ) ( a ) なお、 経済性等を考慮すると図 9の ( 1 ) 式と ( 2 ) 式の間の領域、 すなわち以下の ( b ) 式の領域がよ り好ま しいことが確認された。
1. 1 9 x 1 02 X exp(一 4. 4 5 x l O -2x X ) ≥ Y≥ 0. 0 5
······ ( b )
表 2
Figure imgf000024_0001
差替え用紙 (規則 26) (実施例 1 1 )
こ こでは、 硬化性被覆組成物と して金属塗料を用いた例を示す。 この 塗料の作成は以下の処方で行った。
ビスフエノール A型エポキシァク リ レー ト 2 0部
(ダイセル ' ユーシービ一社製 エベク リル E B 6 0 0 )
ポリ ウレタンァク リ レー ト 1 5部
( S A R T O ME R社製 C N 9 6 3 B 8 0 )
ケ ト ンホルムアルデヒ ド樹脂 1 0部
( ヒュ レス社製 Synshetic resin S K )
イ ソボロニルァク リ レー 卜 3 0部 ヒ ドロキシェチルァク リ レー ト 2 5部 ルチル型酸化チタン 1 0 0部
(石原産業製 タイぺーク C R— 5 8 )
添加剤 ( Β Υ Κ社製 Β Υ Κ— 3 5 8 0. 5部 これらを混合し、 サン ド ミルで 1時間分散して塗料を作成した。 この 塗料を、 中塗り した曲面を有する金属板 (あらかじめプライマー塗料を 塗装し、 # 3 0 0のサン ドペーパーで水研ぎ した鋼板) に塗布 し、 電子 線照射した。
照射装置と しては図 6に示したものを用いた。 電子線発生部と しての 照射管には A I Τ社製 M i η— Ε Β装置を使用 した。 また、 照射条件は、 加速電圧 6 0 k V、 電流値 8 0 0〃 A、 照射幅 5 c m、 照射管走査速度 2 O m/m i nと した。 イナ一ティ ングは窒素ガスを使用して行った。 このように して電子線照射した結果、 得られた塗膜は均一であ り、 塗 膜硬度は鉛筆硬度で 2 Hと十分な硬度を有 していた。
(実施例 1 2 )
こ こでは、 硬化性被覆組成物と して金属塗料を用いた例を示す。 この 塗料の作成は以下の処方で行った。
ポ リ ウ レタ ンァク リ レー ト 3 5部
(東亜合成化学工業 (株) 社製 ァロニ ッ クス M 6 4 0 0 ) ビスフエノール A型エポキシァク リ レー ト 1 0部
(ダイセル . ユーシ—ビー社製 エベク リル E B 6 0 0 )
イ ソポロニルァク リ レー ト 2 5部 ヒ ドロキシェチルァク リ レー ト 3 0部 ルチル型酸化チタン 1 0 0部
(石原産業 (株) 社製 タイぺ一ク C R— 9 5 )
添加剤 ( B YK社製 B YK— 3 5 8 ) 0. 5部 これらを混合し、 サン ド ミルで 1時間分散して塗料を作成した。 この 塗料を、 中塗り した金属板 (あらかじめ、 エポキシブライマ一塗料を塗 装した鋼板) に膜厚 3 0〃 mに塗布し、 電子線照射した。
照射装置と しては、 A I T社製 M i n— E B装置を使用 した。 また、 照射条件は、 加速電圧 5 0 k V、 電流値 5 0 0 八、 コ ンベアス ピー ド
1 O m/m i nと した。 イナ一ティ ングは窒素ガスを使用 して行った。 評価については、 塗膜硬度を鉛筆硬度にて、 塗膜密着性を碁盤目試験 で、 また塗膜の傷つき性については、,学振型染色物摩擦堅牢度試験器 (大栄科学機器) を使用し、 不織布を使用して荷重 5 0 0 gで 5 0 0回 振とう後の塗膜の傷つき状態を目視で評価した。 評価基準は以下の通り と した。
傷つき性 : (良好) 5〜 1 (不良)
評価結果を表 3に示す。
(実施例 1 3 )
実施例 1 2 と同様の塗料を膜厚 2 0〃 mに塗布し、 加速電圧を 4 O k Vに変更した以外は実施例と同様の照射条件で電子線照射した。 実施例 1 2 と同じ評価項目について同様の評価基準で評価した。 得られた結果 を表 3に示す。
(実施例 1 4 )
ここでは粘着シー トに関する例を示す。
アク リル酸 n—ブチル 4 1部
アク リル酸 2—ェチルへキシル 4 1部
酢酸ビニル 1 0部
アク リル酸 8部
を トルエン中で共重合させ、 脱溶剤させてアク リル系重合体を得た。 得られた共重合体 1 0 0部
N—ブチルカルバモイルォキシェチルァク リ レー ト 6 0部
ポリエチレングリコ一ルジァク リ レー ト 3部
を混合し、 電子線硬化性粘着剤組成物を得た。
得られた電子線硬化性粘着剤組成物を、 セパレ一夕一上に膜厚 2 5 mで塗布し、 実施例 1 2 と同様の条件で電子線照射し、 その後上質紙を 貼り合わせて粘着シー トを得た。 得られたシー トの粘着力、 タ ックおよ び保持力を測定した。 得られた結果を表 4に示す。 なお、 粘着シー トの 粘着力、 タ ック、 再剥離性および未反応単体量の測定方法は以下の通り である。
( 1 ) 接着力の測定
試験片の幅を 2 5 mmと し、 ステ ン レス板に粘着 3 0分後に、 1 8 0 度、 引っ張り速度 3 0 0 mm/m i nで剥離し、 接着力を測定した。 測 定結果は、 g/ 2 5 mmを単位と して表示した。 用途によ り異なるが、 1 0 0 0 g/ 2 5 mmを実用域と した。
( 2 ) タ ックの測定
試験片の幅を 2 5 mmと し、 球転法にて測定し傾斜角 3 0度で止まる 最大の鋼球番号で表示した。 用途によ り異なるが鋼球番号が 7以上であ れば実用域にあるものと した。
( 3 ) 再剥離性試験
前述の試験片をステン レス板に貼着し、 2 3 。Cで 7 日間放置した後、 再剥離性、 剥離面の被着体 (ステン レス板) 糊残り を目視評価した。 評 価基準は以下の通り と した。
再剥離性…〇 : 良好、 厶 : 一部剥離可、 X : 剥離不可
被着体糊残り 〜〇 : 糊残りなし、 △ : 一部糊残りなし、 X : 全面に 糊残り有 り
( 4 ) 未反応単体量の測定
硬化後の粘着剤組成物を一定量、 粘着シー トから採取し、 これを 5 0 m 1のテ トラ ヒ ドロフ ラ ンに加え、 2 4時間そのまま放置した。 放置後 濾過し、 濾液をサンブルと してグルパーミ ュ レ一シヨ ンクロマ ト グラフ ィ一によ り測定し、 硬化後の粘着剤組成物中の未反応の単量体 N —プチ ルカルバモイルォキシェチルァク リ レー 卜の重量 (%) を決定した。 硬 化後の粘着剤組成物中の未反応単量体の量が 1 . 0 %未満であれば実用 域にあると した。
これらの評価結果を表 4に示す。
(実施例 1 5 )
実施例 1 4 と同様の条件で粘着剤組成物を作成し、 加速電圧を 6 0 k Vと した以外は実施例 1 4 と同様の条件で電子線照射し、 実施例 1 4 と 同様の方法で評価した。
(比較例 5 )
実施例 1 2 に示す条件で塗装物を作成し、 電子線照射装置と して日新 ハイポルテ一ジ社製キュア ト ロン E B C 2 0 0 2 0 3 0 を使用し て加速電圧 2 0 0 k V、 電流値 5 m A、 コ ンベアス ピー ド 2 0 m / m i nの条件で電子線照射した。 イナ一ティ ングは窒素ガスを使用 して行つ た。 得られた塗装物の塗膜硬度、 塗膜密着性および塗膜傷つき性につい て実施例 1 2 と同様の基準で評価した。 得られた結果を表 3に示す。 (比較例 6 )
実施例 1 4 と同様に電子線硬化性粘着剤組成物を塗布し、 電子線照射 装置と して曰新ハイポルテ一ジ社製キュア ト ロン E B C— 2 0 0 - 2 0 — 3 0を使用 して加速電圧 2 0 0 k V、 電流値 6 mA、 コ ンベアス ビ一 ド 7. 5 m/m i nの条件で電子線照射した。 イナ一ティ ングは窒素ガ スを使用 して行った。 得られた粘着シー トの粘着力、 タ ックおよび保持 力を測定し、 実施例 1 4 と同様の基準で評価した。 得られた結果を表 4 に示す。
(比較例 7 )
比較例 6 と同様に電子線硬化性粘着剤組成物を塗布し、 同じ電子線照 射装置を用い、 加速電圧 2 0 0 k V、 電流値 6 mA、 コ ンベアス ピー ド 2 2. 5 m/m i nの条件で電子線照射した。 この際、 コンペァスビー ドを 3倍に したために、 照射線量は約 1 / 3に低下した。 得られた粘着 シー トについて実施例 1 4 と同じ項目を同様の評価基準で評価した。 得 られた結果を表 4に示す。 表 3
加速電圧(kV) 膜厚(am) 膜硬度 傷つき性 密着性 実施例 1 2 50 30 2H 5 100/100 実施例 1 3 40 20 2H 5 100/100 比較例 5 200 30 2H 5 30/100 表 4
Figure imgf000030_0001
*コンペァスビードを 3倍に上げた場合
表 3から明らかなように、 実施例 1 2, 1 3は、 いずれも塗膜密着性 が良好であるのに対し、 比較例 5は密着性が劣っていた。 すなわち、 実 施例 1 2, 1 3では、 厚さ方向に架橋密度分布を有しており、 塗膜の金 属板に接する部分が架橋密度が低下したために、 その部分に硬化収縮が 生じず、 結果と して塗膜密着性が良好になったのに対し、 比較例 1 では 塗膜の金属板側まで架橋しているため (厚さ方向全体に亘つて架橋密度 が高くなつているため。 ) 金属板に接する部分に硬化収縮が生じ、 結果 と して密着性が劣化した。
また、 表 4から明らかなように、 実施例 1 4 , 1 5は、 被着体である ステ ン レス板 の接着力、 鋼球による夕 ヅクおよび再剥離性がいずれも 良好であ り、 未反応単量体量も少なかった。 このことから、 実施例 1 4 1 5の粘着剤が架橋密度分布を有することが確認された。 これに対して, 比較例 6は、 被着体であるステンレス板との接着力および鋼球による夕 ッグが低く かった。 このこ とから、 比較例 2の粘着剤が架橋密度分布を 有しておらず、 厚さ方向全体で架橋密度が高いことがわかる。 また、 比 較例 7ではコンベアスピー ドを 3倍と して照射線量を約 1 / 3 に低下さ せた結果、 架橋密度が低下し、 接着力および夕 ッグは向上した。 しかし、 未反応単量体が多いことからもわかるように、 架橋密度が厚さ方向全体 で低くな り、 結果と して再剥離性が不良となった。 以上説明したように、 本発明によれば、 低加速電圧の電子線を照射し て、 架橋、 硬化または改質させるので、 作業環境への悪影響が少なく、 不活性ガスによるイナ一ティ ングの必要性が比較的小さ く、 しかも基材 劣化の問題が少ないといった極めて有利な効果を得るこ とができる。
本発明によれば、 装置上等の問題が生じることなく、 高エネルギー効 率で電子線を照射することができる電子線照射方法および電子線照射物 を得ることができる。
また、 本発明によれば、 電子線照射装置を走査させて電子線を照射す るので、 曲面や凹凸面を有する被照射物であっても、 装置上の問題およ び硬化ムラ等の品質上の問題も生じずに電子線を照射することができる。
さ らに、 本発明によれば、 被照射物の全体を一様に架橋または硬化す るのではな く、 厚さ方向に架橋密度または硬度の分布を形成する、 ない しは厚さ方向に対して部分的に架橋または硬化するので、 架橋または硬 化状態にバリエーショ ンを持たせることができる。 また、 真空管型電子 線照射装置を用いることによ り、 従来の装置上の問題を解決するこ とが できる。

Claims

請 求 の 範 囲
1. 真空管型電子線照射装置を使用して、 電子線を発生させる際の加 速鼋圧 1 0 O k V未満に して、 被照射物に対して電子線照射する電子線 照射方法。
2. 請求項 1の方法において、 加速電圧が 1 0 ~ 6 0 k Vで、 基材に 施された厚さ 0. 0 1〜 3 0 mの被覆剤の被照射物である電子線照射 方法。
3. 被照射物に電子線を照射する電子線照射方法であって、 ある深さ までの吸収線量/すべての吸収線量で表される照射した電子線の被照射 物への吸収率 y %が、 被照射物の透過深度 (〃 m ) と比重との積を Xと した場合に、 以下の ( 1 ) 式を満たすように電子線を照射する電子線照 射方法。
y ≥ - 0. 0 1 2 + 2 ( 0 < X ≤ 1 0 0 ) ( 1 )
4. 請求項 3の方法において、 加速電圧が 1 0 0 k V以下、 被照射物 の厚さが 1 0 0〃m以下である電子線照射方法。
5. 請求項 3 または請求項 4の方法において、 前記電子線の照射は真 空管型電子線照射装置によってなされる電子線照射方法。
6. 電子線照射の酸素濃度が、
照射する電子線の加速電圧が 4 O k V以下の場合には、 略空気中の酸 素濃度またはそれ以下の濃度、
照射する電子線の加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V) を X、 電子線照射部分の酸素濃度 (% ) を Yと したとき、 以下 の ( a ) 式で示される酸素濃度になるように して被照射物に電子線照射 する電子線照射方法。
Y≤ 1. 1 9 X 1 02 x e x p (- 4. 4 5 x 1 0 x X ) …… ( a)
7. 電子線照射の酸素濃度が、 照射する電子線の加速電圧が 4 O k V以下の場合には、 略空気中の酸 素濃度またはそれ以下の濃度、
照射する電子線の加速電圧が 4 0 k V超の場合においては、 加速電圧 ( k V) を X、 電子線照射部分の酸素濃度 (%) を Yと したとき、 以下 に示す ( b ) 式で示される酸素濃度になるように して被照射物に電子線 照射する電子線照射方法。
1. 1 9 X 1 02 e x p (- 4. 4 5 x 1 0— 2x X ) ≥ Y≥ 0. 0 5
······ ( b )
8. 略空気中で、 被照射物に紫外線照射し、 次に電子線照射する電子 線照射方法。
9. 略空気中で、 被照射物に加速電圧が 4 0 K V以下の電子線照射を 行った後、 それよ り高い加速電圧で電子線照射を行う電子線照射方法。
1 0. 曲面または凹凸面を有する被照射物に対し、 電子線照射装置に おける電子線発生部を走査させて電子線を照射する電子線照射方法。
1 1. 請求項 1 0の方法において、 センサーによ り, 前記電子線発生 部と被照射物との間隔を一定に保ちながら電子線発生部を走査させる電 子線照射方法。
1 2. 請求項 1 0または請求項 1 1の方法において、 前記電子線発生 部の走査を 3次元ロポツ トによ り行う電子線照射方法。
1 3. 被照射物に電子線を照射することによ り、 被照射物の厚さ方向 に架橋度、 硬化度または改質度の分布を形成する電子線照射方法。
1 4. 被照射物に電子線を照射することによ り、 被照射物の厚さ方向 に対して部分的に架橋、 硬化または改質する電子線照射方法。
1 5. 請求項 1 4の方法において、 被照射物の表面部分のみを架橋, 硬化または改質する電子線照射方法。
1 6. 請求項 1 3ないし請求項 1 5のいずれか 1項の方法において、 前記被照射物の厚さが 1 0 / m以上である電子線照射方法。
1 7. 請求項 1 3ないし請求項 1 6のいずれか 1項の方法において、 前記電子線の照射は, 真空管型電子線照射装置によってなされる電子線 照射方法。
1 8. 電子線を照射して、 被照射物の厚さ方向に対して部分的に架橋、 硬化または改質させた後、 熱処理することによ り架橋密度, 硬化または 改質度合いの分布を形成する架橋, 硬化または改質方法。
1 9. 請求項 1ないし請求項 1 8いずれか 1項に記載の方法で電子線 照射して得られた電子線照射物。
PCT/JP1997/003106 1996-09-04 1997-09-04 Procede d'exposition aux rayonnements de faisceaux d'electrons et objet devant etre ainsi expose WO1998010430A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/065,052 US6188075B1 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
EP97939173A EP0877389A4 (en) 1996-09-04 1997-09-04 METHOD OF EXPOSURE TO RADIATION OF ELECTRON BEAMS AND OBJECT TO BE SO EXPOSED
AU41347/97A AU744614B2 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
KR10-1998-0703262A KR100488225B1 (ko) 1996-09-04 1997-09-04 전자선조사방법및전자선조사물

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP23432796A JPH1078500A (ja) 1996-09-04 1996-09-04 被覆剤の硬化または架橋方法および被覆物
JP8/234327 1996-09-04
JP8/250262 1996-09-20
JP08250262A JP3141790B2 (ja) 1996-09-20 1996-09-20 活性エネルギー線照射方法および活性エネルギー線照射物
JP29461696A JP3237546B2 (ja) 1996-10-17 1996-10-17 被覆剤の硬化または架橋方法および被覆物
JP8/294616 1996-10-17
JP33629596A JP3221338B2 (ja) 1996-12-03 1996-12-03 電子線照射方法および架橋または硬化方法、ならびに電子線照射物
JP8/336295 1996-12-03
JP35677096A JPH10197700A (ja) 1996-12-27 1996-12-27 電子線照射方法および電子線照射物
JP8/356770 1996-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/065,052 A-371-Of-International US6188075B1 (en) 1996-09-04 1997-09-04 Electron beam irradiating method and object to be irradiated with electron beam
US09/731,312 Continuation US6504163B2 (en) 1996-09-04 2000-12-06 Electron beam irradiation process and an object irradiated with an electron beam

Publications (1)

Publication Number Publication Date
WO1998010430A1 true WO1998010430A1 (fr) 1998-03-12

Family

ID=27529929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003106 WO1998010430A1 (fr) 1996-09-04 1997-09-04 Procede d'exposition aux rayonnements de faisceaux d'electrons et objet devant etre ainsi expose

Country Status (7)

Country Link
US (2) US6188075B1 (ja)
EP (1) EP0877389A4 (ja)
KR (1) KR100488225B1 (ja)
AU (1) AU744614B2 (ja)
CA (1) CA2236672A1 (ja)
TW (1) TW343339B (ja)
WO (1) WO1998010430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052650A1 (de) * 1998-04-11 1999-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur elektronenbestrahlung von schichten auf oberflächen von objekten sowie einrichtung zur durchführung des verfahrens

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2236672A1 (en) * 1996-09-04 1998-03-12 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiation process and an object irradiated with an electron beam
US6500495B2 (en) * 1997-02-27 2002-12-31 Acushnet Company Method for curing reactive ink on game balls
WO1999040803A1 (en) * 1998-02-12 1999-08-19 Accelerator Technology Corp. Method and system for electronic pasteurization
US20030001108A1 (en) * 1999-11-05 2003-01-02 Energy Sciences, Inc. Particle beam processing apparatus and materials treatable using the apparatus
US7026635B2 (en) * 1999-11-05 2006-04-11 Energy Sciences Particle beam processing apparatus and materials treatable using the apparatus
US6426507B1 (en) * 1999-11-05 2002-07-30 Energy Sciences, Inc. Particle beam processing apparatus
FR2803243B1 (fr) * 1999-12-30 2002-08-23 Ass Pour Les Transferts De Tec Procede d'obtention d'une piece en materiau polymere, par exemple d'une piece prototype, ayant des caracteristiques ameliorees par exposition a un flux electronique
US7183563B2 (en) * 2000-12-13 2007-02-27 Advanced Electron Beams, Inc. Irradiation apparatus
DE10100170A1 (de) * 2001-01-04 2002-07-11 Basf Ag Beschichtungsmittel
JP2004532403A (ja) * 2001-03-20 2004-10-21 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド 電子ビーム照射装置
KR20050004251A (ko) * 2002-06-05 2005-01-12 도요 잉키 세이조 가부시끼가이샤 쉬링크 필름과 그 제조 방법, 인쇄 잉크와 이것을 사용한인쇄물, 및 인쇄물의 제조 방법
AU2003263606A1 (en) * 2002-09-18 2004-04-08 Tokyo University Of Science Surface processing method
JP2004110970A (ja) * 2002-09-19 2004-04-08 Tdk Corp ディスク状記録媒体の製造方法
US7211368B2 (en) * 2003-01-07 2007-05-01 3 Birds, Inc. Stereolithography resins and methods
JP4875886B2 (ja) * 2005-11-22 2012-02-15 株式会社日立ハイテクノロジーズ 荷電粒子線装置
EP2558521A1 (en) * 2010-04-13 2013-02-20 Energy Sciences Inc. Cross linking membrane surfaces
US8541740B2 (en) * 2011-02-28 2013-09-24 Ethicon, Inc. Device and method for electron beam energy verification
ITBS20110061A1 (it) 2011-04-26 2012-10-27 Guala Pack Spa Unità di ingresso o di uscita di un dispositivo di sterilizzazione afasci di elettroni e metodo di sterilizzazione
ITBS20110060A1 (it) * 2011-04-26 2012-10-27 Guala Pack Spa Dispositivo di sterilizzazione a fasci di elettroni per contenitori a parete sottile e metodo di sterilizzazione
SG195117A1 (en) * 2011-05-27 2013-12-30 3M Innovative Properties Co Scanned, pulsed electron-beam polymerization
US9383460B2 (en) 2012-05-14 2016-07-05 Bwxt Nuclear Operations Group, Inc. Beam imaging sensor
US9535100B2 (en) 2012-05-14 2017-01-03 Bwxt Nuclear Operations Group, Inc. Beam imaging sensor and method for using same
US10344109B2 (en) 2012-09-10 2019-07-09 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
JP5620456B2 (ja) 2012-11-20 2014-11-05 住友ゴム工業株式会社 表面改質方法及び表面改質弾性体
JP6053482B2 (ja) 2012-11-30 2016-12-27 住友ゴム工業株式会社 注射器用ガスケットの製造方法
JP5816222B2 (ja) 2013-04-25 2015-11-18 住友ゴム工業株式会社 表面改質方法及び表面改質弾性体
JP5797239B2 (ja) 2013-06-11 2015-10-21 住友ゴム工業株式会社 立体形状物の表面改質方法及び注射器用ガスケット
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
JP5820489B2 (ja) 2014-01-06 2015-11-24 住友ゴム工業株式会社 表面改質方法及び表面改質弾性体
JP6338504B2 (ja) 2014-10-02 2018-06-06 住友ゴム工業株式会社 表面改質方法及び表面改質弾性体
JP6551022B2 (ja) 2015-08-03 2019-07-31 住友ゴム工業株式会社 表面改質方法及び表面改質体
JP6613692B2 (ja) 2015-08-03 2019-12-04 住友ゴム工業株式会社 表面改質方法及び表面改質弾性体
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11097310B2 (en) * 2019-03-28 2021-08-24 Toyota Jidosha Kabushiki Kaisha Paint hardening device and paint hardening method
JP2022147372A (ja) * 2021-03-23 2022-10-06 本田技研工業株式会社 塗装方法および自動車の車体
JP2022147563A (ja) * 2021-03-23 2022-10-06 本田技研工業株式会社 塗装方法および塗膜硬化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218217B2 (ja) * 1983-03-23 1990-04-24 Toa Nenryo Kogyo Kk
JPH02208325A (ja) * 1989-02-08 1990-08-17 Unitika Ltd 耐熱性高分子成形品およびその製造法
JPH0647883A (ja) * 1992-07-29 1994-02-22 Toppan Printing Co Ltd 電離放射線照射によるエンボスシート製造方法
US5414267A (en) * 1993-05-26 1995-05-09 American International Technologies, Inc. Electron beam array for surface treatment
JPH08141955A (ja) * 1994-11-22 1996-06-04 Tokico Ltd ロボットの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798053A (en) * 1971-03-30 1974-03-19 Brien O Corp Control of atmospheric composition during radiation curing
JPS5731134A (en) * 1980-08-01 1982-02-19 Hitachi Ltd Drawing device by electron beam
DE3476980D1 (en) 1983-03-23 1989-04-13 Toa Nenryo Kogyo Kk Oriented polyethylene film and method of manufacture
JPS6259098A (ja) * 1985-09-09 1987-03-14 ダイニツク株式会社 軟質筆記板の製法
JPS62243328A (ja) * 1986-04-15 1987-10-23 Matsushita Electronics Corp 粒子ビ−ム露光用位置合せマ−ク
JPS6379791A (ja) * 1986-09-22 1988-04-09 Matsushita Electric Ind Co Ltd 薄膜製造法
JPS63232311A (ja) * 1987-02-20 1988-09-28 Tokyo Inst Of Technol 半導体薄膜の製造方法
JPH0218217A (ja) 1988-07-01 1990-01-22 Nisshin Steel Co Ltd コイル置場管理装置
EP0350446B1 (de) 1988-07-08 1992-04-01 GebràœDer Sulzer Aktiengesellschaft Frottierverfahren und Webmaschine mit Florbildungsorganen
JP2907575B2 (ja) * 1991-04-05 1999-06-21 三菱製紙株式会社 抗菌性フィルムおよびその製造方法
DE4215070A1 (de) * 1992-05-07 1993-11-11 Herberts Gmbh Verfahren zur Herstellung von Mehrschichtlackierungen
CA2236672A1 (en) * 1996-09-04 1998-03-12 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiation process and an object irradiated with an electron beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218217B2 (ja) * 1983-03-23 1990-04-24 Toa Nenryo Kogyo Kk
JPH02208325A (ja) * 1989-02-08 1990-08-17 Unitika Ltd 耐熱性高分子成形品およびその製造法
JPH0647883A (ja) * 1992-07-29 1994-02-22 Toppan Printing Co Ltd 電離放射線照射によるエンボスシート製造方法
US5414267A (en) * 1993-05-26 1995-05-09 American International Technologies, Inc. Electron beam array for surface treatment
JPH08141955A (ja) * 1994-11-22 1996-06-04 Tokico Ltd ロボットの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0877389A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052650A1 (de) * 1998-04-11 1999-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur elektronenbestrahlung von schichten auf oberflächen von objekten sowie einrichtung zur durchführung des verfahrens

Also Published As

Publication number Publication date
AU4134797A (en) 1998-03-26
US6188075B1 (en) 2001-02-13
KR100488225B1 (ko) 2005-06-16
CA2236672A1 (en) 1998-03-12
AU744614B2 (en) 2002-02-28
EP0877389A1 (en) 1998-11-11
EP0877389A4 (en) 2001-06-13
US6504163B2 (en) 2003-01-07
KR20000064321A (ko) 2000-11-06
US20020139939A1 (en) 2002-10-03
TW343339B (en) 1998-10-21

Similar Documents

Publication Publication Date Title
WO1998010430A1 (fr) Procede d&#39;exposition aux rayonnements de faisceaux d&#39;electrons et objet devant etre ainsi expose
JP4954060B2 (ja) 粒子ビーム加工装置によって処理可能な物質
JP5521876B2 (ja) 化粧シート及びこれを用いた金属化粧板
JP2022524226A (ja) 低移行性電子ビーム硬化型プライマー
EP1485211B1 (en) Hot melt coating composition for film transfer and casting process
JP2009084372A (ja) 電子線硬化性樹脂組成物、積層体、及び、粘着シート又は粘着フィルム
CN111619215B (zh) 柔性基材eb固化系统和方法以及制备功能复合膜的方法
JP2005053109A (ja) ブリスターパック用包装材料およびその製造方法
JP3141790B2 (ja) 活性エネルギー線照射方法および活性エネルギー線照射物
JP2005028209A (ja) 抗菌性、防かび性を有する硬化皮膜及びその形成方法
JP2015120769A (ja) 活性エネルギー線硬化性組成物用プライマー、および積層体
JPS58162640A (ja) ポリオレフイン系プラスチツク用被覆組成物
JP3221338B2 (ja) 電子線照射方法および架橋または硬化方法、ならびに電子線照射物
JP2007015232A (ja) 化粧紙および化粧材
JP3635978B2 (ja) 活性エネルギー線照射方法
JPH05269935A (ja) マット面工程用剥離シート
JP2019177661A (ja) 印刷物
JP2005054080A (ja) 電子線硬化型被覆剤、それを用いた包装材料およびその製造方法
JPH05286103A (ja) 積層シートの製造方法
JPH10197700A (ja) 電子線照射方法および電子線照射物
JPH1078500A (ja) 被覆剤の硬化または架橋方法および被覆物
JPH05269933A (ja) 工程用剥離シート及びその製造方法
JP2006175719A (ja) 化粧紙および化粧材
JP2003334936A (ja) インクジェット記録装置、記録方法および電子線照射物
JP2019217680A (ja) 印刷物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09065052

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997939173

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2236672

Country of ref document: CA

Ref country code: CA

Ref document number: 2236672

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980703262

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997939173

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980703262

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980703262

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997939173

Country of ref document: EP