WO1997036196A1 - Fibre optique a indice de refraction reparti et procede de fabrication - Google Patents

Fibre optique a indice de refraction reparti et procede de fabrication Download PDF

Info

Publication number
WO1997036196A1
WO1997036196A1 PCT/JP1997/001093 JP9701093W WO9736196A1 WO 1997036196 A1 WO1997036196 A1 WO 1997036196A1 JP 9701093 W JP9701093 W JP 9701093W WO 9736196 A1 WO9736196 A1 WO 9736196A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
monomers
optical fiber
types
polymer
Prior art date
Application number
PCT/JP1997/001093
Other languages
English (en)
French (fr)
Inventor
Tomoyoshi Yamashita
Yasuteru Tahara
Kazuki Nakamura
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP51330497A priority Critical patent/JP3437848B2/ja
Priority to DE69738524T priority patent/DE69738524T2/de
Priority to AU21770/97A priority patent/AU720263B2/en
Priority to EP97914564A priority patent/EP0942301B1/en
Priority to CA002250249A priority patent/CA2250249C/en
Priority to US09/142,161 priority patent/US6185353B1/en
Publication of WO1997036196A1 publication Critical patent/WO1997036196A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00682Production of light guides with a refractive index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -

Definitions

  • the present invention relates to a gradient index plastic optical fiber usable as an optical communication medium.
  • a graded-index plastic optical fiber (hereinafter referred to as “ ⁇ 1 type? 0”) in which the refractive index distribution in the radial direction of the optical fiber gradually decreases from the center to the outer periphery.
  • It has a wider frequency band than the step index type optical fiber, and is expected as an optical communication medium.
  • NA numerical aperture
  • the GI-type POF manufactured by the methods (1) and (2) is entirely composed of a layer of a mixture of polymers, and therefore has an uneven structure due to microphase separation or the like.
  • the problem is that the light scattering loss of plastic optical fiber (hereinafter referred to as “POF”) is large.
  • styrene and methyl methacrylate produced by the method (3) -GI type P ⁇ F, which is composed of a relay copolymer, etc. has a large light scattering loss because the refractive index difference between the copolymers of adjacent layers of the multilayer structure fiber is too large, such as 0.02. is there.
  • the production method (1) has a problem that a polymerization step is required and productivity is poor.
  • the method (3) is problematic in that, when a plurality of films are wound around a core material and laminated, a foreign substance is liable to be mixed in, and uneven thickness is easily generated at a joint portion of a film end face, and it is difficult to obtain a concentric fiber. .
  • the method (2) is excellent in that GI-type POF with small thickness unevenness can be continuously produced, but the heat diffusion after spinning alone is not sufficient for the interdiffusion of polymer-polymer between the layers. It is difficult to form a gentle refractive index distribution in POF. Also, if the heat treatment temperature is increased to increase the thickness of the interdiffusion layer to smooth the refractive index distribution, the fiber drawn at the time of spinning relaxes and contracts, and the fiber diameter fluctuates. Since transmission and leakage occur, transmission loss increases.
  • An object of the present invention is to provide a technology capable of producing a GI POF having a relatively large numerical aperture with a small thickness variation of the fiber, a small light scattering loss, and a high production rate.
  • the gist of the present invention is that homopolymers HP 1 and HP 2 each produced from two or more kinds of monomers Ml, ⁇ 2, ⁇ and Mn (n is an integer of 2 or more) and whose refractive index decreases sequentially , ⁇ and HPn, and a binary structure of these monomers.
  • the refractive index distribution type optical fiber has a multilayer structure in which the refractive index at the center is highest and the refractive index decreases gradually toward the outer periphery. It is.
  • a plurality of spinning materials having different refractive indices are prepared by using a (co) polymer selected from a group consisting of at least one kind of a binary copolymer CP of these monomers, and These are supplied to a multi-layer concentric nozzle so that the refractive index decreases toward the outer peripheral side and spun out of the nozzle. In the nozzle and after spinning out from the nozzle or the nozzle, the polymer is exchanged between the respective layers of the fiber. This is a method for producing a gradient index optical fiber to be diffused.
  • a ternary copolymer TP composed of three monomers including two monomers constituting the binary copolymer CP is used in combination. can do.
  • a ternary copolymer TP can be used in place of the binary copolymer CP.
  • FIG. 1 is a schematic view showing a gradient index optical fiber according to the present invention.
  • FIG. 1 (a) is a cross-sectional view, (b) is a vertical cross-sectional view, and (c) is a radial refractive index distribution.
  • FIG. 1 (a) is a cross-sectional view, (b) is a vertical cross-sectional view, and (c) is a radial refractive index distribution.
  • HP is homopolymer
  • CP is a binary copolymer
  • L NB is composed of one (co) polymer unmixed layer
  • L B is 2 It means a mixed layer composed of a mixture of two (co) polymers.
  • the number n of the monomers is 3 will be described to facilitate understanding of the present invention.
  • the number n of the monomers is 3
  • three kinds of homopolymers HP 1, HP 2 and HP 3 are produced from the respective monomers M 1, M 2 and M 3.
  • two series of binary copolymers CP 1/2 and CP 2/3 are produced from combinations of monomers that give homopolymers having similar refractive indices. It is preferable to select one of these CPs or one HP and the other CP that are compatible with each other.
  • the high refractive index polymer is a homopolymer HP1 of the monomer M1, and a binary copolymer CP1'2 of the monomer M1 and the monomer M2, CP
  • a plurality of types of 1Z2 can be prepared as copolymers having different molar composition ratios of both monomers and different refractive indexes.
  • the low refractive index polymer is a homopolymer HP 3 of the monomer M 3 and a binary copolymer CP 2 of the monomer M 2 and the monomer M 3
  • a plurality of types of CP 23 can also be prepared as copolymers having different molar composition ratios of monomers and different refractive indices.
  • the non-mixed layer of thickness TM B as shown in FIG. 1 (L WB) And a mixed layer (L B )-having a thickness T B are alternately stacked.
  • the non-mixed layer (L wb ) is a layer composed of only one (co-)
  • L e is a layer composed of a mixture BP of two (co) polymers that constitute the non-mixed layer on both sides.
  • Figure 1 shows a five-layer POF consisting of three unmixed layers (L WB ) and two mixed layers (L B ).
  • the refractive index is constant in the unmixed layer (L NB ), and the refractive index changes continuously in the mixed layer (L B ).
  • the refractive index distribution of the entire POF becomes smoother.
  • the refractive index distribution is smooth.
  • the shape of the refractive index distribution is selected in consideration of the balance between the size of the optical transmission band and the size of the optical transmission loss.
  • a protective layer and a jacket material layer can be provided on the outer periphery of the GI POF.
  • the BP constituting the mixed layer (L B ) will be described.
  • heterogeneous structure because of the tendency to induce refractive index fluctuations and phase separation structure (hereinafter referred to as "heterogeneous structure"), the more the proportion of L B in the P 0 F, Light scattering loss of the entire POF increases.
  • BP as compared to the HP and CP, since the thermal stability of the structure is poor, when used for a long time at a relatively high temperature range the PO F, when the L B is present in the PO F, the PO F Heterogeneous structures are encouraged and light scattering losses increase.
  • T B varies depending on the position of the LB in the radial direction and depends on the target band performance and the number of layers, but is preferably about 0.3 to 100 m, more preferably about 1 to 10 ⁇ . . Further, it is preferable that HP- or CP forming BP and CP and CP have good compatibility and the difference in refractive index between them is sufficiently small.
  • the polymer constituting the non-mixed layer (L WB ), that is, HP and CP will be described.
  • L WB non-mixed layer
  • the difference in the refractive index of the polymer between HP 1 and HP 2 and between HP 3 and HP 2 should be as small as possible when selecting the polymer or monomer.
  • the polymer or monomer so that This is because if the refractive index difference between HP 1 and HP 2 (or between HP 3 and HP 2) is large, a polymer mixture of HP 1 and HP 2 BP or a copolymer of M 1 and M 2 CP 1 / This is because the fluctuation of the refractive index of (2) becomes large, and the light scattering loss of POF increases.
  • Table 1 shows the isotropic light scattering loss (at a wavelength of 650 nm) of a copolymer prepared from 80 mol% of methyl methacrylate (MMA) as M2 and 20 mol% of various monomers as Ml or M3. d BZkm).
  • Table 1 also lists the refractive index difference (An d ) between the homopolymer produced from these monomers and polymethyl methacrylate (PMMA).
  • An d value if the refractive index of the homopolymer is greater than P MM A shows positive value, shown smaller in negative values.
  • GMA Glycidyl methacrylate
  • T11FMA Tetrahydrofurfuryl methacrylate
  • the two monomers constituting the binary copolymer CP used in the POF of the present invention need to have a small difference in the refractive index of each of the homopolymers HP. It is preferably 3 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less. However, if the refractive index difference is too small, the NA will be too small.Therefore, the combination of the monomers M 1 and M 2 (or the monomers M 3 and M 2) should be taken into consideration. It is necessary to make a choice. Therefore, the difference in the refractive index is preferably 0.010 or more.
  • the light scattering loss is small.
  • a mixture having a small light scattering loss can be obtained.
  • Table 2 shows that 2,2,2-Trifluoroethyl methacrylate (3 FM) or 2,2,3,3-tetrafluoropropyl methacrylate (4 FM) as Ml and 2,2,3 as M2 3, 3-pentamethylene full O b was prepared using the methacrylate (5 FM), the HP and BP mixing was prepared in a ratio of a plurality of the CP 5 0/50 having different compositions (wt 0/0), 6 50 Shows isotropic light scattering loss in nm are doing.
  • Table 2 shows that the closer the copolymerization ratio of one C P (or H P) and the other C P to be mixed is, the smaller the isotropic light scattering loss of the BP.
  • the difference in the copolymer composition ratio of M 1 or M 2 in adjacent (co) polymers is preferably 20 mol% or less, more preferably 15 mol% or less, and 10 mol% or less. % Is more preferable. However, if the difference in the copolymer composition ratio is made extremely small, it is necessary to increase the number of (co) polymer layers in order to maintain the NA of the optical fiber.
  • MMA is used as M2
  • PMMA having a refractive index of 1.49% is used as HP2
  • the following monomers are exemplified as M1 and M3.
  • n d in parentheses is the refractive index of the homopolymer.
  • n d l. 5 7 7 5
  • styrene (nd l. 5 9 20 )
  • n d l 5 1 7 0
  • the monomer used for producing the (co) polymer constituting the GI-type POF of the present invention preferably has a glass wheel transition temperature (T g) of the homopolymer of 70 ° C. or higher. If T g is too low, decrease the heat resistance of the whole POF, relatively high temperature Te use environment odor, particularly accelerated phase separation L B layer, scattering loss tends to be increased. such high Examples of T g (co) polymers include (co) polymers made from a combination of methyl methacrylate and chloroethyl methacrylate.
  • a particularly preferred example of a (co) polymer in which the refractive index difference between HP is small and the scattering loss of POF is small is a (co) polymer produced from a combination of two or three alkyl fluoride (meth) acrylates. Polymers. Similarly, (co) polymers having different copolymer composition ratios produced from a combination of monomers selected from black hexyl methacrylate, tetrahydric furfuryl methacrylate, glycidyl methacrylate, isoptyl methacrylate and methyl methacrylate. Is mentioned.
  • the difference in the refractive index between the central portion and the outer peripheral portion of the GI type PF of the present invention is not particularly limited, but may be about 0.02 to 0.04 in consideration of the size of the numerical aperture (NA). I like it.
  • Homopolymers HP 1, HP 2, ⁇ manufactured from two or more types of monomers M l, ⁇ 2, '' and M n (where n is an integer of 2 or more) and whose refractive index decreases sequentially ⁇ HPn and binary copolymers of these monomers selected from the group consisting of one or more types of CP Using a (co) polymer, three or more types with different refractive indices, preferably five types
  • the spinning raw materials described above are prepared and supplied to a multilayer concentric nozzle having three or more layers, preferably five or more layers, so that the refractive index decreases toward the outer peripheral side, and the spinning material is spun from the nozzle.
  • the heat treatment is performed, for example, by the following method.
  • the fiber is drawn at a temperature range of about Is a way to get -In addition, in order to increase the thickness of the mixed layer, the spinning raw material contains a monomer having the same composition as the (co) polymer constituting the spinning material and a photopolymerization initiator. It is also possible to adopt a method in which a material is prepared, spun out from a nozzle, the monomer is interdiffused between the respective layers, and then the monomer in the fiber is photopolymerized.
  • the control of the refractive index distribution of P ⁇ F is controlled by the residence time in the spinning nozzle, the control of the melt spinning temperature and the heat treatment temperature after spinning, the draw ratio during spinning, the type of resin composition and the concentric cylindrical layer of the spinning material ( (Hereinafter referred to as “spinning material layer”).
  • spun material layer the same composition as the (co) polymer constituting the spinning material in the spinning material is used.
  • a spinning raw material is prepared by containing the above monomer and a photopolymerization initiator and spun from a nozzle, and after spinning, the state where mutual diffusion of each layer is possible due to a decrease in viscosity due to the monomer. After that, a method of photopolymerizing the monomer in the fiber may be adopted.
  • the refractive index distribution n ′ (r) to be performed is described by the following equation.
  • N a aZ2 L is a reasonable number, but if aa is significantly larger than L, the supply of the raw material polymer to the nozzle and the control of the spinning conditions will be complicated, and the production cost will increase. Not preferred. If N ⁇ aa / 2 L, the interdiffusion distance is short with respect to the thickness of the spinning material layer, so that the refractive index distribution is insufficiently formed and the performance as a broadband fiber is reduced.
  • a multi-fiber multi-fiber can be manufactured by simultaneously spinning these multilayer fibers from a plurality of nozzles adjacent to each other.
  • the light scattering loss is small by selecting two types of monomers in a combination that reduces the difference in the refractive index between the two homopolymers. POF can be manufactured.
  • a terpolymer TP may be used for the purpose of improving the heat resistance and mechanical strength of the POF.
  • a terpolymer TP consisting of three monomers can be used in combination.
  • a ternary copolymer TP can be used instead of the binary copolymer CP.
  • CHMA Hexyl methacrylate
  • MMA MMA
  • nd 1.4770
  • IBMA at T g 48 to 53 ° C)
  • these eight kinds of spinning raw materials were supplied to an extruder, melted at 24 CTC, and supplied to an eight-layer concentric cylindrical composite spinning nozzle.
  • the spinning nozzle is designed so that an eight-layer concentric cylindrical structure is formed 500 mm before the tip of the nozzle from which the molten fiber is discharged. Further, the present nozzle is manufactured so as to extend over a length of 10 Omm from this position in the ejection direction and that the inner diameter thereof gradually decreases.
  • the nozzle diameter becomes constant at 2 mm 0 from the point 400 mm before the tip, and basically the smooth refractive index due to polymer / "polymer mutual diffusion" when flowing through this section of 400 mm
  • the spinning nozzle temperature is strictly controlled by equally dividing it into four sections of 100 Omm, and ensuring the spinning stability in the section of 100 mm from the end of the spinning nozzle.
  • the temperature was set at 230 ° C. to increase the temperature and 240 ° C. for the other three sections to increase the interdiffusion of polymer-polymer.
  • the discharge speed of the polymer is 40 mm / min, and the residence time of the polymer in the 2 mm ⁇ spinning nozzle section is about 10 minutes.
  • the fiber after ejection was stretched to have a final diameter of 0 mm in P0F, and was wound by a winder.
  • the 13 dB transmission band was measured and found to be 900 MHz.
  • the transmission band was measured using an optical sampling oscilloscope manufactured by Hamamatsu Photonics, and a semiconductor laser TOLD 9410 manufactured by Toshiba (emission wavelength: 650 nm) as the light source, with an excitation NA of 0.85.
  • the transmission loss was 160 dBZZ km.
  • the transmission loss was measured by the lO Om ⁇ m cutback method at a wavelength of 650 nm and an excitation NAO.1. The same measurement conditions were used in the following examples.
  • the numerical aperture NA of this GI POF was 0.25.
  • the thickness of each mixed layer of POF was about 1-3.
  • Example 2 A multi-core fiber having a sea-island structure was manufactured, in which nine POFs having the same multilayer structure as in Example 1 were used as islands. However, in row Y 1, the MMAZ
  • each mixed layer of POF was about 1 to 3 m.
  • Three kinds of monomer components of chill methacrylate (17 FM) were used. Accordingly, the refractive index difference delta n d between homopolymer that put each binary copolymer system is as follows.
  • N d 1. 4 1 4 6 of homopolymer
  • Each of these monomers or each monomer mixture was polymerized and spun in the same manner as in Example 1 to produce POF.
  • the transmission band of this POF was 1.9 GHz, the transmission loss was 110 dB / km, and the thickness of each mixed layer was about 1 to 3 m.
  • Refractive index Sa ⁇ n d between homopolymer in this case is 0.0 2 9 5.
  • POF was obtained in the same manner as in Example 1.
  • the transmission band of this POF was 1.5 GHz, the transmission loss was 120 dBBZkm, and the thickness of each mixed layer was about 1 to 3 m.
  • C EMA Clomethylethyl methacrylate
  • n d 1.517
  • the refractive index difference ⁇ n d between the homopolymers is 0.026.
  • P ⁇ F was obtained in the same manner as in Example 1.
  • the transmission band of this PF was 1.2 GHz, the transmission loss was 155 dB / km, and the thickness of each mixed layer was about 1 to 3 m.
  • Example 8 Eight kinds of polymers obtained in this manner were used as a spinning dope and spun in the same manner as in Example 1 to obtain POF.
  • the transmission band of this POF was 1.2 GHz, the transmission loss was 190 dBZkm, and the thickness of each mixed layer was about 1-3 ⁇ .
  • Example 8
  • Example 9 The thus obtained eight kinds of polymers were used as spinning dope and spun in the same manner as in Example 1 to obtain POF.
  • the transmission band of this POF was 1.3 GHz, the transmission loss was 200 dBZkm, and the thickness of each mixed layer was about 1-3.
  • Example 9 The transmission band of this POF was 1.3 GHz, the transmission loss was 200 dBZkm, and the thickness of each mixed layer was about 1-3.
  • Example 10 Eight kinds of polymers obtained in this manner were used as a spinning dope and spun in the same manner as in Example 1 to obtain POF.
  • the transmission band of this P0F was 1.0 GHz
  • the transmission loss was 130 dBZkm
  • the thickness of each mixed layer was about 1 to 3 ⁇ .
  • C EMA Chloroethyl methacrylate
  • n d 1.517
  • T g 92 ° C
  • n d l. 491
  • T g 112 ° C
  • MMA Methyl methacrylate
  • a photoinitiator was added to these six types of mixed slabs to form a six-layer concentric cylindrical structure.
  • the syrup was supplied to the same multi-layer spinning nozzle as in Example 1 except that the syrup was heated and the temperature of the spinning nozzle was set to 4.0 ° C., and then discharged. Upon completion, a POF was obtained.
  • the transmission band of this P 0 F was 2.1 GHz, the transmission loss was 140 dBkm, and the thickness of each mixed layer was about 30 m.
  • the following eight types of monomers or monomer mixtures (numerical values are mol%) subjected to the polymerization reaction are as follows.
  • the thus obtained eight kinds of polymers were used as a spinning dope and spun in the same manner as in Example 1 to obtain a POF.
  • the transmission band of this P 0 F was 1.1 GHz, the transmission loss was 180 dBZZ km, and the thickness of each mixed layer was about 1 to 3 m.
  • a GI POF having a relatively large numerical aperture and a small light scattering loss can be obtained. Further, the method for producing POF of the present invention has high productivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Glass Compositions (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Surgery Devices (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Laminated Bodies (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

- 明. 細 書 屈折率分布型光フアイバ及びその製法 技 術 分 野
本発明は、 光通信媒体として利用可能な屈折率分布型プラスチック光ファイバ に関する。
背 景 技 術
光ファイバの半径方向の屈折率分布がその中心部から外周部に向かって順次減 少する屈折率分布型プラスチック光ファイバ (以下 「〇 1型?0 」 という) は
、 ステップインデックス型光ファイバに比較して周波数帯域が広く、 光通信媒体 として期待されている。
0 1型1^ 0 では、 曲げ損失や、 光源との結合損失を改善するために、 開口数 ( N A ) が大きく、 伝送損失のできる限リ小さなものを製造する必要がある。 N Aを大きくするには、 G I型 P O Fの中心部と最外周部の最大屈折率差厶 nが大 きくなるように設計しなければならなレ、。
この G I型 P O Fの製造方法としては種々の方法が知られており、 ( 1 ) 反応 性比が異なり、 且つその単独重合体の屈折率が異なる 2種類の単量体を、 これら 単量体の重合体からなる円筒容器内に入れて重合体を溶解 ·膨潤させた後に、 重 合させ、 次いで延伸する方法 (日本国特開昭 6 1— 1 3 0 9 0 4号公報) 、 (2 ) 屈折率の異なる 2種類の重合体を用いて、 その混合比を変化させた複数の重合 体混合物を調製し、 これらを多層紡糸し、 次いで熱処理することによって各層間 で相互拡散させる方法 (日本国特開平 1— 2 6 5 2 0 8号公報) 、 (3 ) 共重合 組成比の異なる複数の二元共重合体からなるフィルムを巻き付けた積層体を加熱 延伸する方法 (曰本国特公昭 5 5 - 1 5 6 8 4号公報) 等がある。
前記 ( 1 ) 及び ( 2 ) の方法で製造される G I型 P O Fは、 全体が重合体の混 物の層で構成されているために、 ミクロ相分離などによる不均一な構造が発生 しゃすく、 プラスチック光ファイバ (以下 「P O F」 という) の光散乱損失が大 きい点が問題である。 また、 (3 ) の方法で製造されるスチレンとメチルメタク リレ一ト共重合体等からなる- G I型 P〇 Fは、 多層構造ファイバの隣接する層の 共重合体間の屈折率差が 0. 02等と大きすぎるので、 光散乱損失が大きいもの である。
また、 製法に関しては、 前記 ( 1 ) の製法は重合工程が必要であって生産性が 悪い点が問題である。 (3) の製法は複数のフィルムを芯材に巻き付けて積層す る際に異物が混入され易い点及びフィルム端面の接合部で厚み斑が生じ易く同心 円状のファイバを得難い点が問題である。
一方、 (2) の製法は厚み斑の少ない G I型 PO Fを連続的に製造できる点で 優れているが、 紡糸後の熱処理のみでは各層間のポリマ一ポリマーの相互拡散は 十分とは言えず、 PO F中においてなだらかな屈折率分布を形成することが難し レ、。 また、 相互拡散層の厚みを大きく して屈折率分布をなめらかにしょうとして 、 熱処理温度を高くすると、 紡糸時に延伸されたファイバでは、 緩和収縮し、 フ アイバ径が変動し、 径変動部では光の漏れや散乱が生じるので、 伝送損失が増大 する。
発 明 の 開 示
本発明の目的は、 ファイバの厚み斑が少なく、 光散乱損失が小さくて開口数が 比較的大きな G I型 POFを、 高生産速度で製造可能な技術を提供することにあ る。
本発明の要旨は、 2種類以上の単量体 M l、 Μ2、 · · ' 及び Mn (nは 2以 上の整数) からそれぞれ製造され屈折率が順次低下する単独重合体 H P 1、 H P 2、 · · ·及び HP n、 並びにこれら単量体の 2元共重合体 C Pの一種類以上か らなる群より選ばれる (共) 重合体を同心円状に積層した多層構造であって、 各 層間には隣接する 2つの (共) 重合体の混合層が形成された構造を有する、 中心 部の屈折率が最も高く外周部に向かって屈折率が順次低下する多層構造の屈折率 分布型光ファイバである。
また、 2種類以上の単量体 M l、 Μ 2、 · ' ·及び Mn (nは 2以上の整数) >、らそれぞれ製造され屈折率が順次低下する単独重合体 H P 1、 H P 2、 · · · 及び H P n並びにこれら単量体の 2元共重合体 C Pの一種類以上からなる群よリ 選ばれる (共) 重合体を用いて、 屈折率の異なる複数の紡糸原料を調製し、 これ らを外周部側程屈折率が低下するようにして多層同心円状ノズルに供給してノズ ルから紡出させ、 ノズル内で及びノ又はノズルから紡出後に、 ファイバの各層間 で重合体を相互拡散させる屈折率分布型光ファイバの製法である。
前記 P O F及びその製法において、 前記 2元共重合体 C Pに加えて更にこの 2 元共重合体 C Pを構成する 2つの単量体を含む 3つの単量体からなる 3元共重合 体 T Pを併用することができる。 また、 2元共重合体 C Pの代わりに 3元共重合 体 T Pを併用することができる。
図面の簡単な説明
図 1は、 本発明の屈折率分布型光ファイバを示す模式図であり、 図 1 ( a ) は 横断面図、 (b ) は縦断面図、 ( c ) はその半径方向の屈折率の分布を示す図で ある。
発明を実施するための最良の形態
本発明において、 H Pは単独重合体、 C Pは二元共重合体、 B Pは 2つの (共 ) 重合体の混合物、 LNBはひとつの (共) 重合体からなる非混合層、 LB は 2つ の (共) 重合体を混合した混合物からなる混合層を意味する。
本発明の理解を容易にするために、 先ず単量体の数 nが 3の場合について説明 する。 単量体の数 nが 3の場合、 各単量体 M 1 、 M 2及び M 3からそれぞれ 3種 類の単独重合体 H P 1 、 H P 2及び H P 3が製造される。 また、 近接する屈折率 をもつ単独重合体を与える単量体の組合せから 2系列の 2元共重合体 C P 1 / 2 及び C P 2 / 3が製造さる。 これらのひとつの C Pまたはひとつの H Pと他の C Pとは互いに相溶性の良いものを選択するのが好ましい。
本発明において高屈折率重合体は、 単量体 M 1の単独重合体 H P 1 と、 単量体 M 1及び単量体 M 2の 2元共重合体 C P 1'ノ 2とであり、 C P 1 Z 2は両単量体 のモル組成比が種々異なリ屈折率が異なる共重合体として複数種調製することが できる。 また、 低屈折率重合体は同様にして、 単量体 M 3の単独重合体 H P 3と 、 単量体 M 2及び単量体 M 3の 2元共重合体 C P 2ノ 3とであり、 C P 2 3も ^単量体のモル組成比が種々異なり屈折率が異なる共重合体として複数種調製す ることができる。
本発明の多層構造の P O Fは、 図 1 に示すように厚み T MBの非混合層 (LWB) と厚み TB の混合層 (LB )-が交互に積層された構造を有している。 ここで、 非 混合層 (Lwb) はひとつの (共) 童合体のみから構成される層であり、 混合層 (
Le ) はその両側の非混合層を構成する 2つの (共) 重合体の混合物 B Pで構成 される層である。
非混合層 (LWB) の数を多くすれば実質的に混合層 (LB ) が存在しない構造 とすることもできる。 しかし非混合層 (L ) の数が少ない場合は、 屈折率の急 激な変化を避けるために、 混合層 (LB ) が必要であり、 またその厚み TB をあ る程度大きくすることが必要となる。
図 1は、 3つの非混合層 (LWB) と 2つの混合層 (LB ) からなる 5層構造の POFを示している。 図 1 (c) から明らかなように、 非混合層 (LNB) におい て屈折率は一定であり、 混合層 (LB ) において屈折率は迚続的に変化している 。 層数が多くなれば PO F全体の屈折率分布はより滑らかになる。 光伝送帯域を 大きくするためには屈折率分布は滑らかな方が好ましい。 しかし、 P OF中の混 合層 (LB ) の割合が多すぎると光伝送損失が大きくなる。 そこで光伝送帯域の 大きさと光伝送損失の大きさのバランスを考慮して、 屈折率分布の形状が選定さ れる。
なお、 図 1には示されていないが、 G I型 POFの外周部には保護層やジャケ ット材層を設けることができる。
先ず混合層 (LB ) を構成する B Pについて説明する。 一般に B Pは、 HPや C Pに比べて、 屈折率揺らぎ及び相分離構造 (以下適宜 「不均一構造」 という) を誘発し易い傾向にあるため、 P 0 F中の LB の割合が多い程、 PO F全体の光 散乱損失が大きくなる。 また一般に B Pは、 HPや C Pに比べて、 構造の熱的安 定性が乏しいので、 PO Fを比較的高温域での長期間使用した場合、 PO F中に LB が存在すると、 PO Fの不均質構造が助長され、 光散乱損失が増大する。 このように POF中の LB の割合が多い程、 PO F全体の光散乱損失が大きく なるので、 P O F中の LB の割合は少ない方が好ましく、 その厚み TB も小さい 方が好ましい。 TB は、 半径方向における LB の位置によっても異なり、 目標と する帯域性能や層数にも依存するが、 0. 3〜 100 m程度が好ましく、 1〜 1 0 μπι程度であることがより好ましい。 また、 B Pを形成する H P-もしくは C Pと C Pとは、 相溶性が良好であってそ の屈折率差が十分に小さいことが好ましい。
次に、 非混合層 (LWB) を構成する重合体、 即ち、 H Pと C Pについて説明す る。 PO F中の LWBを構成する (共) 重合体は、 光散乱損失が小さいものである ことが好ましい。 光散乱損失が小さい (共) 重合体を得るためには、 重合体また は単量体の選定に際しては、 H P 1 と H P 2間及び H P 3と H P 2間のポリマー の屈折率差ができるだけ小さくなるようにポリマ一 (または単量体) を選定する ことが好ましい。 これは H P 1 と H P 2間 〔または H P 3と H P 2間) の屈折率 差が大きいと、 H P 1 と H P 2との重合体混合物 B Pまたは M 1 と M 2との共重 合体 C P 1 / 2の屈折率揺らぎが大きくなリ、 PO Fの光散乱損失を増加させる からである。
表 1は、 M 2としてメチルメタクリ レート (MMA) 80モル%と M lまたは M 3として各種単量体 20モル%とから製造された共重合体の波長 6 50 nmに おける等方性光散乱損失 (d BZkm) を示している。 表 1には、 これら単量体 から製造される単独重合体とポリメチルメタクリレート (PMMA) との屈折率 差 (A nd ) も掲載されている。 ここで、 And 値は、 各単独重合体の屈折率が P MM Aより大きい場合には正値で示し、 小さい場合は負値で示した。
表 1
Figure imgf000008_0001
1 ) VB: ビニルベンゾネ一卜
PliMA: フエニルメタクリレー卜
2-PhEMA: 2—フエニルェチルメタクリレー卜
BzA: ベンジルア リレー卜
GMA: グリシジルメタクリレー卜
CEMA: クロ口ェチルメタクリレ一卜
T11FMA: テトラヒドロフルフリルメタクリレー卜
CI1MA: クロ口へキシルメタクリレート
1MBA: ィソブチルメタクリレー卜
ΤΒΜΛ: ターシャルブチルメタクリレート この表から明らかなように; 屈折率差 Δ η の絶対値が小さい程、 共重合体の 等方性光散乱損失量が小さくなる傾向にある。 したがって、 本発明の P O Fに使 用される二元共重合体 C Pを構成する 2つの単量体はそれらの単独重合体 H Pの 各々の屈折率差が小さいことが必要でぁリ、 0. 0 3以下であることが好ましく 、 0. 02以下であることがより好ましく、 0. 0 1 5以下であることが特に好 ましい。 但し、 屈折率差を余り小さく しすぎると NAが小さくなりすぎてしまう ので、 その点も考慮して単量体 M 1 と M 2 (または単量体 M 3と M 2 ) の組み合 わせを選択することが必要である。 したがって、 屈折率差は 0. 0 1 0以上であ ることが好ましい。
また、 本発明の混合層 (LB ) を含む多層構造の PO Fにおいては、 隣接する 非混合層 (LMB) 間の屈折率差が小さい程、 混合層 ( LB ) と非混合層 (LWB) との界面における急な屈折率変化が抑えられ、 界面での光散乱損失が小さくなる 。 したがって、 隣接する非混合層 (LNB) 間の屈折率差は小さいほど好ましく、 0. 0 1 6以下、 ょリ好ましくは 0. 008以下である。
P O F中の混合層 (LB ) を構成する B Pも、 光散乱損失が小さいものである ことが好ましい。 混合される (共) 重合体同士の相溶性を高めることによって、 光散乱損失が小さい混合物を得ることができる。
その手段として、 隣接する非混合層 (LMB) を構成する C P (または H P) と C Pとの間の共重合組成比の差をできるだけ小さくすることが挙げられる。 共重 合組成比差が大きい (共) 重合体からなる混合物 B Pでは、 ひとつの C P (また は H P) と他の C Pの性質が大きくかけ離れるため、 互いの相溶性が低下し、 B P中で不均一構造が多く形成されやすく、 その結果 PO Fの光散乱損失が増大す る。 共重合組成比の差は、 実際には、 PO F全体に占める混合層 (LE ) の割合 も考慮して実用上問題が生じない値に設定される。
表 2は、 M l として 2, 2, 2—トリフルォロェチルメタクリレート (3 FM ) 又は 2, 2, 3, 3—テトラフルォロプロピルメタクリレート (4 FM) 、 M2として 2, 2, 3, 3 , 3—ペンタフルォロプロピルメタクリレート (5 FM ) を用いて製造した、 H P及び組成が異なる複数の C Pを 5 0/50 (重量0 /0) の割合で混合調製した B Pについて、 6 50 n mにおける等方性光散乱損失を示 している。 - ここで、 単量体 M l及び M 2の 〔共) 重合体において、 M 2の組成が 0モル% のときは M 1の単独重合体 H P 1であリ、 同じく M 1の組成が 0モル%のときは P 2の単独重合体 H P 2である。 互いに共重合組成比の異なる 2種類の共重合体 Aおよび共重合体 Bの組成比の差は、 M 1または M 2のモル組成比 (%) の差と して、 記載されている。
混合されるひとつの C P (または H P) と他の C Pの共重合組成比が近い程、 B Pがよリ小さい等方性光散乱損失を有することが表 2に示されている。 隣接す る (共) 重合体中の M 1 または M 2についてその共重合組成比の差は 2 0モル% 以下であることが好ましく、 1 5モル%以下であることがより好ましく、 1 0モ ル%以下であることが更に好ましい。 但し、 共重合組成比の差を極端に小さく し すぎると、 光ファイバの NAの大きさを維持するためには、 (共) 重合体の層数 を多く増やす必要がある。
表 2 単量休 共重合体 1の 共重合体 2の 共重合体 1 , 2 共重合休 1 /共重合体
M 1/M2 纏本誠比 単量体編比 の M 1組成の差 2の混合物の等方性光
(モル%) (モル%) (モル%) 散乱損失
(d B/km)
3F /5 ! 40/60 30170 10 00 〜 80
3FM-5R! 45/55 30170 15 70 〜 100
3FM/5FM 50/50 30170 20 80 〜 140
3F /5FM 50/50 01100 50 > 10000 (白濁)
3FM/5 1 50/50 10010 50 > 10000 (白濁)
4FM/5 1 40/60 30170 10 60 〜 80
4FM/5 1 45/55 30170 15 80 ~ 110
4BV5 I 50/50 30170 20 90 〜 150
4FM/5 I 50/50 01100 50 > 10000 (白濁) 棚 /5FM 50/50 10010 50 > 10000 (白濁) 本発明にいう屈折率の高低は相対的なものである。 仮に、 M 2として MMA、 即ち H P 2として屈折率 1. 4 9 Γの PMMAを用いる場合には、 M 1及び M 3 として以下の単量体が例示される。 なお、 括弧内の nd は単独重合体の屈折率を 示す。
高屈折率の重合体を形成する単量体 M 1 としては、 ベンジルメタクリレート ( nd = 1. 5 6 8 0 ) 、 フエニルメタクリレート ( nd = I . 5 7 0 6 ) 、 安息 香酸ビニル (nd = l . 5 7 7 5) 、 スチレン (nd = l . 5 9 20) 、 1ーフ ェニルェチルメタクリレート (nd = l . 54 9 0) 、 2一フエニルェチルメタ クリレート (nd = 1. 5 5 9 2 ) 、 ジフエニルメチルメタクリレート (nd = 1. 5 9 3 3 ) 、 1, 2ージフエニルェチルメタクリレート (nd = 1. 5 8 1 6 ) 、 1 一ブロモェチルメタクリレート (nd = 1. 54 2 6 ) 、 ベンジルァク リ レー卜 ( nd = 1. 5 5 8 4) 、 a , α—ジメチルベンジルメタクリレート ( nd = 1. 5 8 20) 、 p—フルォロスチレン (nd = l . 5 6 6) 、 2—クロ ロェチルメタクリレート (nd = l . 5 1 7 0) 、 ィソボルニルメタクリレート ( nd = 1. 5 0 5 ) 、 ァダマンチルメタクリレート ( nd = 1. 5 3 5 ) 、 ト リシクロデシルメタクリレート (nd = 1. 5 2 3 ) 、 I —メチルシクロへキシ ルメタクリレート (nd = 1. 5 1 1 1 ) 、 2—クロロシク口へキシルメタクリ レート (nd = l . 5 1 7 9) 、 1, 3—ジクロロブ口ピルメタクリレート (n d = 1. 5 2 7 0) 、 2—クロロー 1 一クロロメチルェチルメタクリ レート ( n d = 1. 5 2 7 0) 、 ボルニルメタクリレート (no = 1. 5 0 5 9) 、 シクロ へキシルメタクリレート (nd = l . 5 0 6 6) 、 テトラヒ ドロフルフィルメタ クリレート ( nd = 1. 5 0 9 6 ) 、 ァリルメタクリレート (nd = 1. 5 1 9 6 ) 、 テトラヒドロフルフリルメタクリレート ( n d = 1. 5 0 9 6 ) 、 ビニル クロ口アセテート (nd = 1. 5 1 2 0) 、 グリシジルメタクリレート (nd = 1. 5 1 7) 、 メチルー α—クロロアクリレート (r d = 1 . 5 1 7 2) 、 等力 挙げられる。
_ また、 低屈折率の重合体を形成する単量体 M 3としては、 2, 2 , 2—トリフ ルォロェチルメタクリレート (nd = l . 4 1 5) 、 2 , 2, 3 , 3—テトラフ ルォロプロピルメタクリレート (nd = l . 4 2 2) 、 2, 2 , 3, 3, 3—ぺ ンタフルォ口プロピルメタクリレート (nd = l . 3 9 2) 、 2 , 2, 2—トリ フルオロー 1 _トリフルォロメチルェチルメタクリ レート ( nd 二 1 . 3 8 0 ) 、 2, 2 , 3 , 4, 4 , 4一へキサフルォロブチルメタクリ レート (nd = 1 . 4 0 7 ) 、 2, 2, 3, 3 , 4, 4, 5 , 5—ォクタフルォロペンチルメタクリ レート (nd = I . 3 9 3) 、 2, 2, 2—トリフロォロェチルー α—フルォロ ァクリレート ( nd = 1 . 3 8 6 ) 、 2 , 2 , 3, 3—テトラフルォロプロピル — α—フルォロアクリレート (nd = l . 3 9 7) 、 2, 2, 3 , 3, 3—ペン タフルォロプロピル一 α—フルォロアクリレート (nd = l . 3 6 6) 、 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5—ォクタフルォロベンチルー 一フルォロアクリレー ト (nd = l . 3 7 6) 、 0または p—ジフルォロスチレン (nd = 1. 4 7 5 0 ) 、 ビニルァセテ一ト (nd = l . 4 6 6 5) 、 ターシャルブチルメタクリレ —ト (nd = 1 . 4 6 3 8 ) 、 イソプロピルメタクリレート (nd = 1 . 4 7 2 8 ) 、 へキサデシルメタクリレート ( nd = 1. 7 5 0 ) 、 イソブチルメタク リレート (nd = 1. 4 7 7 0 ) 、 α—トリフルォロメチルアタリレート、 /3 — フルォロアクリレート、 β, 3—ジフルォロアクリレート、 /3—トリフルォロメ チルァクリ レート、 β, ^—ビス (トリフルォロメチル) ァクリレート、 α—ク ロロァクリレ一ト等が挙げられる。
本発明の G I型 P O Fを構成する (共) 重合体の製造に用いられる単量体は、 その単独重合体のガラス車云移温度 (T g ) が 7 0"C以上であることが好ましい。 T gが低過ぎると、 P O F全体の耐熱性が低下し、 比較的高温の使用環境におい て、 特に LB 層での相分離が加速され、 散乱損失が増大するおそれがある。 この ような高 T g (共) 重合体の例として、 メチルメタクリレートとクロロェチルメ タクリレートの組み合せから製造される (共) 重合体が挙げられる。
H P間の屈折率差が小さくて P O Fの散乱損失が少ない (共) 重合体の特に好 ましい例として、 2種類あるいは 3種類のフッ化アルキル (メタ) ァクリレート の組み合せから製造される (共) 重合体が挙げられる。 同様に、 クロ口へキシル メタクリレート、 テトラヒド口フルフリルメタクリレート、 グリシジルメタクリ レート、 ィソプチルメタクリレート及びメチルメタクリレー卜から選ばれる単量 の組み合せから製造される共重合組成比が異なる (共) 重合体が挙げられる。 更に、 H P間の屈折率差が大ぎいが、 相溶性が良好な (共) 重合体として 2— フエニルェチルメタクリ レートとメチルメタクリレートとから製造される共重合 組成比が異なる (共) 重合体が挙げられる。
本発明の G I型 P〇 Fの中心部と外周部の屈折率の差は特に限定されないが、 開口数 (N A ) の大きさを考慮すると 0 . 0 2〜0 . 0 4程度であることが好ま しい。
以下、 本発明の G I型 P 0 Fの製法について説明する。
2種類以上の単量体 M l、 Μ 2、 · ' '及び M n ( nは 2以上の整数) からそ れぞれ製造され屈折率が順次低下する単独重合体 H P 1、 H P 2、 · · ·及び H P n並びにこれら単量体の 2元共重合体 C Pの一種類以上からなる群よリ選ばれ る (共) 重合体を用いて、 屈折率の異なる 3種類以上、 好ましくは 5種類以上の 紡糸原料を調製し、 これらを外周部側程屈折率が低下するようにして 3層以上、 好ましくは 5層以上の多層同心円状ノズルに供給してノズルから紡出させる。 各層間の屈折率分布を滑らかにするためには、 各層間のポリマ一 Zポリマ一相 互拡散により混合層を形成するが必要であり、 以下の方法が採用される。 その一 つとして、 紡糸ノズル内部で、 隣接する各層間の紡糸原料を比較的長時間溶融接 触させて、 ポリマーノポリマー相互拡散を行わせ、 その後紡出させる方法が挙げ られる。 尚、 層数が充分多い場合は、 積極的な意味での各層間のポリマー Zポリ マ一相互拡散処理は必要ではない。
また、 ノズル内での相互拡散が不十分で、 それだけでは滑らかな屈折率分布が 得られない場合は、 紡出後に再度熱処理することによリボリマー Zポリマーを相 互拡散させる方法が挙げられる。 ただし、 この方法を採用する場合は、 熱処理時 のフアイバの緩和収縮を避けるために、 紡糸ノズルからの紡出は未延伸状態で行 なうことが好ましい。 ファイバ径の変化は P O Fの光伝送損失を増大させるから である。
熱処理は、 例えば以下の方法で行われる。 先ず、 その未延伸ファイバを構成す (共) 重合体の平均的なガラス転移温度 (T g ) より 1 0 0度以上の高い温度 で熱処理して相互拡散を行わせ、 次いで、 T g〜T g + 8 0 °C程度の温度範囲で ファイバを延伸することによってファイバの屈曲強度を発現させ、 G I型 P〇 F を得る方法である。 - 更に、 混合層の層の厚みを大きくするために、 紡糸原料中に、 その紡糸原料を 構成する (共) 重合体と同じ組成の単量体と光重合開始剤とを含有させて紡糸原 料を調製してノズルから紡出させ、 単量体を各層間で相互拡散させた後、 フアイ バ内の単量体を光重合させる方法を採ることもできる。
P〇 Fの屈折率分布形態の制御は、 紡糸ノズル内滞在時間、 溶融紡糸温度や紡 糸後の熱処理温度の制御、 紡糸時の延伸倍率、 樹脂組成成分の種類や紡糸原料の 同心円筒層 (以下、 「紡糸原料層」 という) の数を変えることによって行われる 更に、 混合層の層の厚みを大きくとるために、 紡糸原料中に、 その紡糸原料を 構成する (共) 重合体と同じ組成の単量体と光重合開始剤とを含有させて紡糸原 料を調製してノズルから紡出させ、 紡出後にも単量体による粘度低下によリ各層 の相互拡散が可能である状態を経た後、 ファイバ内の単量体を光重合させる方法 を採ることもできる。
以下、 理想的屈折率分布 (最も広帯域となる条件) を有する G I型 PO Fを作 製するための、 紡糸ノズル内部での紡糸原料の多層同心円筒状における配置と、 その屈折率との関係についての設計法を述べる。 但し、 以下の内容は本発明を制 限するものではない。
中心部から外周部に向かって徐々に屈折率が低下する G I型 P O Fを考える。 中心部における屈折率の値を Γ 、 最外周部における最も屈折率の低い値を n2 、 半径を a、 中心からの位置 (距離) を r (0く rく a) 、 A= (m — n2 ) η とすると、 PO Fにおいて最も広帯域となる条件は、 屈折率分布形状 n ( r ) が以下の式で近似される。
n ( r ) = n 1 { 1 一 2 A ( r/ a) 2 } 。.5 ( 1 ) 即ち、 ni 、 n2 及び aの値が決まれば ( 1 ) 式に^つて P' F内部で 想 的屈折率分の布形状が決まる。 また、 紡糸ノズル径 bと紡出延伸後に得られる PO Fの直径 c との比を a { \ <a = b / c ) とすると、 紡糸ノズル内部 (ノズル 内部でのコア半径は a a ) で形成されるべき屈折率分布 n' ( r ) は、 次式で記 述される。 n ' ( r ) = ηΊ { 1 - 2 Δ ( r/a a) ≥ } 0- 5 ( 2 ) 従って、 屈折率 n' j ( j = 1 , " 2 , 3 , ···) として調製された紡糸原料ポリ マ一 jがノズル内の半径方向においてに配置される位置 r j は、 (2 ) 式におい て n' ( r ) の値として n' j を代入し、 rの値として i を代入すれば、 次式 で表される。
r j = a a ( { 1 - (η' j η Λ ) 2 } / 2 A) 0.5 ( 3 ) この時、 紡糸原料層の数 Nは、 ノズル内部でのコア半径は a aと紡糸原料ポリ マ一の相互拡散距離 (L) に依存している。 N= a aZ2 Lがほぼ妥当な数であ るが、 a aが Lに比べ著しく大きいと、 ノズルへの紡糸原料ポリマーの供給装置 や紡糸条件の制御などが複雑となり、 製造コストも高くなるのであまり好ましく ない。 また、 Nく <a a/2 Lとすると、 紡糸原料層の厚さに対し相互拡散距離 が短いため、 屈折率分布形成が不十分となり、 広帯域ファイバとしての性能が低 下する。 しかし、 製造コストや製造上の煩雑さの問題を考慮すると、 実際的には 、 5〜 1 0層程度の多層紡糸が適当であると考えられる。 このようにして製造さ れる P O Fは、 その屈折率分布はやや階段状となり、 理想的な分布である式 ( 1 ) の屈折率分布を有する PO Fの帯域性能には及ばなが、 実用上要求される帯域 性能を示す。
本発明の製法によれば、 これらの多層ファイバを互いに隣接する複数個のノズ ルから同時に紡出させることによって多芯構造のマルチファイバを製造すること もできる。
以上、 単量体の数 nが 3の場合について説明してきたが、 nを 4以上とすれば G I型 P O Fの中心部と最外周部の間の屈折率差を大きくすること、 即ち高 NA 化が容易となる。
また 単量体の数 nが 2の場合であっても両単独重合体間の屈折率差が小さく なるような組み合わせの 2種類の単量体を選択することによって光散乱損失の小 さい G I型 P O Fが製造できる。
_ 本発明の G I型 P O Fの非混合層 (LWB) を構成する (共) 重合体としては、 PO Fの耐熱性や機械的強度の向上等を目的として 3元共重合体 T Pを用いるこ とができる。 すなわち、 前記 2元共重合体 C Pに加えて更にこの 2元共 S合体 C Pを構成する 2つの単量体を含む.3つの単量体からなる 3元共重合体 T Pを併用 することができる。 また、 2元共重合体 C Pの代わりに 3元共重合体 T Pを用い ることができる。
以下、 実施例により本発明を説明する。
実施例 1
単独重合体の屈折率 nd = 1. 5 1 74、 ガラス転移温度 T g = 46°Cのグリ シジルメタクリレート (GMA) 、 nd = 1. 50 6 6、 T g = 8 3°Cのシクロ へキシルメタクリ レート (CHMA) 、 nd = 1. 49 08、 T g= 1 1 2°Cの MMA及びnd = 1. 4770、 T g = 48〜 53 °Cのイソブチルメタクリレ一 ト ( I BMA) の 4種類の単量体成分を用いた。 したがって、 各 2元共重合体系 における単独重合体間の屈折率差厶 nd は以下の通りである。
GMA /C HMA (A nd = 0. 0 1 08)
C HMA/MM A (A nd = 0. 0 1 58)
MMA / I BMA (Δ nd = 0. 0 1 3 8)
また、 重合反応に供した単量体または単量体混合液 (数値は重量%) は以下の 8種類である。
DGMA/C HMA= 1 7 44/8 2 56
2) C HM A
3) C HMA/MMA= 8 7 05/ 1 2 95
4) C HMA/MMA= 7 1 5 9/28 1
5) C HMA/MMA= 5 2 83/47 1 7
6) C HMA/MMA= 2 9, 58/70 42
7) MA
8) MMA/ I BMA = 7 3. 80/26 20
これら各単量体または単量体混合液 1 00 g当たり、 分子量調整剤 (連鎖移動 剤) としてノルマルドデシルメルカブタンを 500 1加え、 更に、 低温開始剤 して、 ァゾビスジメチルバレロニトリルを 0. 1 1 g、 高温開始剤として、 ジ タ一シャルブチルバ一オキサイドを 8. 00 1添加し、 モノマ一混合液を調製 した。 これらモノマー混合液を、 窒素雰囲気下で、 発泡が起こらないように、 7 0"Cの温度で 5時間重合させ-、 重合度が 90重量%以上に達した後に、 1 3 CTC で 40時間重合させる 2段階法によりラジカル重合を行い、 ポリマーの紡糸原料 を得た。 このようにして得られた重合物の重量平均分子量は、 G PC測定から約 1 0万〜 1 4万であり、 残存モノマ一量は 1重量%以下であった。
次に、 これら 8種類の紡糸原料を押出機に供給して、 24 CTCで溶融し、 8層 の同心円筒状の複合紡糸ノズルに供給した。 紡糸ノズルは、 溶融状態のファイバ が吐出されるノズル先端部から 500 mm手前で、 8層の同心円筒構造が形成さ れるように設計されている。 さらに、 本ノズルは、 この位置から吐出方向に向か つて 1 0 Ommの長さにわたリ、 その内径が徐々に小さくなるように作製されて いる。 最終的に、 先端部手前 400 mmのところからノズル径は 2 mm 0と一定 になり、 基本的にこの 400 mmの区間を流れる問にポリマ一/ "ポリマ一相互拡 散によって、 なだらかな屈折率分布が形成される。 この間の紡糸ノズル温度は、 1 0 Ommづっ 4区間の領域に等分割して厳密に制御されており、 紡糸ノズル先 端部から 1 00 mm区間を紡糸の安定性を確保するために 2 30°Cの温度に設定 し、 他の 3つの区間をポリマ一ポリマーの相互拡散性を高めるために 240°Cの 温度に設定した。
ポリマーの吐出速度は 40 mm,分で、 ポリマーの 2 mm øの紡糸ノズル区間 滞在時間は約 1 0分である。 吐出後のファイバは、 最終的に直径が 1 mm 0の P 0 Fとなるように延伸され、 巻き取り機によって巻き取った。
以上のようにして製造された POFを長さ 0. 1 kmで用い、 一 3 d B伝送帯 域を測定したところ、 900MH zであった。 伝送帯域測定は、 浜松ホトニクス 社製の光サンプリングオシロスコープ、 及び光源として東芝製半導体レーザ一 T OLD 94 1 0 (発光波長 6 50 nm) を用い、 励振 NA0. 8 5で行った。 ま た、 伝送損失は、 1 60 d BZ k mであった。 伝送損失測定は、 l O Om ^m カットバック法で、 波長 6 50 n m、 励振 NAO. 1で行った。 なお、 以下の実 施例においても同様の測定条件によった。
_ 本 G I型 POFの開口数 NAは 0. 25であった。 また、 PO Fの各混合層の 厚みはおよそ 1〜 3 おであった。
実施例 2 実施例 1 と同様の多層構造を有.する 9本の P O Fを島とする、 海島構造の多芯 ファイバを製造した。 ただし、 実施 Y列 1において、 最外周部に配置した MMAZ
1 BMA= 7 3. 8 0/ 2 6. 2 0の組成の共重合体を海材として用いた。 した がって、 島の構造は、 海材を除くと、 実質上実施例 1のファイバ中心から 7番目 までの層によって構成されることになる。 この島の平均直径は約 0. 5 mmで、 多芯ファイバ全体の直径は 3. O mmである。 この多芯ファイバは、 伝送損失が
2 5 0 d B/ k mであり、 0. 1 k mにおける島 1本あたりの伝送帯域は 6 5 0 MH zであった。 また、 PO Fの各混合層の厚みはおよそ 1 〜 3 mであった。 実施例 3
単独重合体の nd = l . 4 2 1 5、 T g = 6 4°Cの 2 , 2 , 3 , 3 —テトラフ ルォロプロピルメタクリ レート (4 FM) 、 nd = 1. 3 9 2 0、 T g = 6 7°C の 2, 2 , 3 , 3 , 3—ペンタフルォロプロピルメタクリレイ ト (5 FM) 及び nd = 1 · 3 7 3 2の 2—( パ一フルォロォクチル) ェチルメタクリレート ( 1 7 FM) の 3種類の単量体成分を用いた。 したがって、 各 2元共重合体系におけ る単独重合体間の屈折率差 Δ nd は以下の通りである。
4 FM/ 5 FM (A nd = 0. 0 2 9 5 )
5 FM/ 1 7 FM (A nd = 0. 0 1 8 8)
また、 重合反応に共した単量体または単量体混合液 (数値は重量%) は以下の 8種類である。
1 ) 4 FM/ 5 FM = 5 7. 9 2 /4 2. 0 8
2) 4 FM/5 FM = 4 5. 8 6 /54. 1 4
3 ) 4 FM/ 5 F = 3 4. 04/6 5. 96
4 ) 4 FM/ 5 FM= 2 2. 4 6 /7 7. 54
5 ) 4 FM/5 FM= 1 1. 1 2 /8 8. 8 8
6 ) 5 FM
7 ) 5 FM/ 1 7 FM= 7 8. 6 7/ 2 1. 3 3
8 ) 5 FM/ 1 7 FM= 6 2. 1 1 /3 7. 8 9
これら各単量体または単量体混合液を実施例 1 と同様の方法で重合し、 紡糸し 、 PO Fを製造した。 この P〇 Fの伝送帯域は 1. 1 GH Z、 伝送損失は 1 4〇 d BZ k mであリ、 各混合層の厚みはおよそ 1 〜 3 mであった。
実施例 4 "
単独重合体の nd = 1. 4 1 4 6、 T g = 7 5°Cの 2 , 2 , 2—トリフルォロ ェチルメタクリレート ( 3 FM) 及び nd = 1. 3 9 2 0、 T g = 6 7°Cの 2, 2, 3 , 3, 3—ペンタフルォロプロピルメタクリレート ( 5 FM) の 2種類の 単量体成分を用いた。 したがって、 この 2元共重合体系における単独重合体間の 屈折率差は、 A nd = 0. 0 2 2 6である。 また、 重合反応に共した単量体また は単量体混合液 (数値は重量%) は以下の 8種類である。
1 ) 3 FM
2 ) 3 FM/5 FM= 8 2. 5 6 / 1 7. 44
3 ) 3 FM/ 5 FM= 6 6. 46 / 3 3. 54
4 ) 3 FM/ 5 FM= 5 1. 5 6 /4 8. 44
5 ) 3 FM/5 FM= 3 7. 7 2 /6 2. 2 8
6 ) 3 FM/ 5 FM= 2 4. 8 3 /7 5. 1 7
7 ) 3 FM/5 FM= 1 2. 8 0 /8 7. 2 0
8 ) 5 FM
これら各単量体または各単量体混合液を実施例 1 と同様の方法で重合し、 紡糸 し、 PO Fを製造した。 この PO Fの伝送帯域は 1. 9 GH z、 伝送損失は 1 1 0 d B/ k mであり、 各混合層の厚みはおよそ 1〜 3 mであった。
実施例 5
4 FM及び 5 FMの 2種類の単量体を用い、 下記 8種類の単量体または単量体 混合液 (数値はモル%) を重合反応に供した。 この場合の単独重合体間の屈折率 差厶 nd は 0. 0 2 9 5である。
1 ) 4 FM/ 5 FM= 7 0/3 0
2 ) 4 FM/ 5 FM= 6 0/40
3 ) FM/ 5 FM= 5 0/50
4 ) 4 FM/ 5 FM = 4 0/6 0
5 ) 4 FM/ 5 F = 3 0/7 0
6 ) 4 FM/ 5 FM= 2 0/8 0 7 ) 4 FM/ 5 FM = 1 0ノ-9 0.
8 ) 5 FM "
これら 8種類の重合物を紡糸原液として用い、 実施例 1 と同様の方法で P O F を得た。 この PO Fの伝送帯域は 1 · 5 G H z、 伝送損失は 1 2 0 d BZk mで あり、 各混合層の厚みはおよそ 1〜 3 mであった。
実施例 6
単独重合体の nd = 1. 5 1 7、 T g = 9 2 °Cのクロ口ェチルメタクリレート (C EMA) 及び rid = 1. 4 9 1、 T g = 1 1 2 °Cの MM Aを 2種類の単量体 成分として用い、 下記 8種類の単量体または単量体混合液 (数値はモル%) を重 合反応に供した。 この場合の単独重合体間の屈折率差△ nd は 0. 0 2 6である
1 ) C EMAZMMA= 84Z 1 6
2) C EMA/MMA= 7 2 /2 8
3 ) C EMA/MMA= 6 0/40
4) C EM A/MM A = 48/5 2
5) C EMA/MMA= 3 6/6 4
6 ) C EMA/MMA= 24/7 6
7 ) C EMA/MMA= 1 2/8 8
8 ) MMA
これら 8種類の重合物を紡糸原液として用い、 実施例 1 と同様の方法で P〇 F を得た。 この P 0 Fの伝送帯域は 1. 2 GH z、 伝送損失は、 1 5 5 d B/k m であり、 各混合層の厚みはおよそ 1〜 3 mであった。
実施例 7
単独重合体の nd = l . 5 1 0、 T g = 6 0°Cのテトラヒドロフルフリルメタ クリレート (TH FMA) 、 nd = 1 . 4 9 1、 T g = 1 1 2°Cの 1^1^八及び11 d = 1. 4 7 7、 T g = 4 8〜 5 3°Cのィソブチルメタクリレート ( I BMA) J 3種類の単量体成分を用いた。 重合反応に供した単量体または単量体混合液 ( 数値はモル%) は以下の 8種類である。
1 ) T H FM A MM A - 8 0/ 2 0 2 ) THFMA/MMA = 6" 0 / 40
3 ) THFMA/MMA = 40/60
4) T H FM A/MMA = 20/80
5 ) MMA
6 ) MMA/ I B A= 80/20
7 ) MMA/ I BMA= 60/40
8) MMA/ I BMA= 40/60
このようにして得られた 8種類の重合物を紡糸原液として用い、 実施例 1 と同 様の方法で紡糸し、 PO Fを得た。 この P OFの伝送帯域は 1. 2GH z, 伝送 損失は 1 90 d BZkmであリ、 各混合層の厚みはおよそ 1〜3 μπιであった。 実施例 8
単独重合体の nd = 1. 5 5 9の 2—フエニルェチルメタクリレート ( 2— P 1 £1^ ) 及び1^ = 1. 49 1、 T g = 1 1 2°Cの MMAの 2種類の単量体成 分を用いた。 重合反応に供した単量体または単量体混合液 (数値はモル%) は以 下の 8種類である。
1 ) 2— P h EMAZMMA- 3 5/ 65
2) 2 - P h EMA/M A= 3 0/ 70
3 ) 2 - P h EMA/M A= 2 5/ 7 5
4) 2 - P h EM A/MM A- 20/80
5 ) 2 - P h EMA/MMA= 1 5/8 5
6 ) 2 - P h EMA/MMA= 1 0/ 90
7) 2 - P h EMA/MMA= 5/ 9 5
8 ) MMA
このようにして得られた 8種類の重合物を紡糸原液として用い、 実施例 1 と同 様の方法で紡糸し、 POFを得た。 この POFの伝送帯域は 1. 3 GH z、 伝送 損失は 200 d BZkmであリ、 各混合層の厚みはおよそ 1〜3 つであった。 実施例 9
単独重合体の nd = l . 3 80、 T g = 78°Cの 2, 2 , 2—トリフルオロー 1一トリフルォロメチルェチルメタクリレート U s o— 6 FM) 及び nd = 1 . 4 1 5、 T g = 7 5°Cの 2-, 2', 2 —トリフルォロェチルメタクリ レート (3 FM) を 2種類の単量体成分として用いた。 重合反応に供した単量体または単量 体混合液 (数値はモル%) は以下の 8種類である。
1 ) 3 F
2 ) i s 0 - 6 FM/ 3 FM= 1 0/ 9 0
3 ) i s o - 6 FM/3 FM= 2 0/ 8 0
4 ) i s o - 6 FM/3 FM= 3 0/ 7 0
5 ) i s o - 6 FM/3 FM= 4 0/ 6 0
6 ) i s o - 6 FM/3 FM= 5 0/ 5 0
7 ) i s o - 6 FM/3 FM= 6 0/40
8 ) i s o - 6 FM/3 FM= 7 0/ 3 0
このようにして得られた 8種類の重合物を紡糸原液として用い、 実施例 1 と同 様の方法で紡糸し、 PO Fを得た。 この P 0 Fの伝送帯域は 1. 0 GH z、 伝送 損失は 1 3 0 d BZkmであり、 各混合層の厚みはおよそ 1 〜 3 μιηであった。 実施例 1 0
単独重合体の nd = 1. 5 1 7、 T g = 9 2 °Cのクロロェチルメタクリレ一ト (C EMA) 及び nd = l . 4 9 1、 T g = 1 1 2°Cのメチルメタクリレート ( MMA) を 2種類の単量体成分として用いた。 重合反応に供した単量体または単 量体混合液 (数値はモル%) は以下の 6樋類である。
1 ) C E A/M A= 8 0/2 0
2 ) C EMA/MMA = 6 4/ 3 6
3 ) C EMA/MMA = 4 8 / 5 2
4 ) C EMA/MMA= 3 2/6 8
5 ) C EMA/MMA= 1 6 /84
6 ) MMA
次に、 これら 6種類の単量体または単量体混合液を、 それぞれ熱重合により、 合度 5 0 %前後まで重合を行い、 高粘度のモノマー ポリマ一混合シラップを 作製した。
次にこれら 6種類の混合シラッブに光開始剤を添加し、 6層の同心円筒構造で あること及び紡糸ノズル温度 ¾ 4.0°Cとしたことを除いては実施例 1と同様な多 層紡糸ノズルに供給し、 吐出した後: UV照射することにより、 上記シラップを 光重合し、 重合を完結することにより、 POFを得た。
この P 0 Fの伝送帯域は 2. 1 G H z、 伝送損失は 140 d B k mであり、 各混合層の厚みはおよそ 30 mであった。
実施例 1 1
単独重合体の nd = l . 5066、 Tg = 83°Cのシクロへキシルメタクリ レ ート (CHMA) 、 nd = 1 · 49 1、 T g = 1 1 2°〇の1^1 八及び1^ = 1. 477、 T g = 48〜 53UCのイソブチルメタクリ レート ( I BMA) を 3種類 の単量体成分として用いた。 重合反応に供した単量体または単量体混合液 (数値 はモル%) は以下の 8種類である。
1 ) C HMA/ I B A/M A= 70/ 1 0/20
2 ) CHMA/ I BMA/MMA=60/20/20
3 ) CHMA/ I BMA/MMA= 50/30/20
4) C HMA/ I BMA/MMA = 40/40/20
5) CHMA/ I B A/MMA= 30/50/20
6 ) CHMA/ I B MA/MM A- 20/60/20
7) CHMA/ I BMA/M A= 1 0/70/20
8 ) C HMA/ I BMA/M A= 0/80/20
このようにして得られた 8種類の重合物を紡糸原液として用い、 実施例 1と同 様の方法で紡糸し、 POFを得た。 この P 0 Fの伝送帯域は 1. 1 GH z、 伝送 損失は 1 80 d BZk mであリ、 各混合層の厚みはおよそ 1〜 3 mであった。
産業上の利用の可能性
本発明によれば、 光散乱損失が小さくて開口数の比較的大きな G I型 POFを 得ることができる。 また本発明の PO Fの製法は生産性が高い。

Claims

it 求 の 範 囲
1 . 2種類以上の単量体 M l 、 M 2、 ' · '及び M n ( nは 2以上の整数) か らそれぞれ製造され屈折率が順次低下する単独重合体 H P 1 、 H P 2、 . . ·及 び H P n、 並びにこれら単量体の 2元共重合体 C Pの一種類以上からなる群よリ 選ばれる (共) 重合体を同心円状に積層した多層構造であって、 各層間には隣接 する 2つの (共) 重合体の混合屑が形成された構造を有し、 中心部の屈折率が最 も高く外周部に向かって屈折率が順次低下する多層構造の屈折率分布型光フアイ ノ 。
2 . 各単独重合体のガラス転移温度が 7 CTC以上となる 3種類の単量体 M 1 、 M 2及び M 3から製造される、 2元共重合体 C P 1 2で共重合組成比と屈折率 が異なるものの 1種類以上、 2元共重合体 C P 2ノ 3で共重合組成比と屈折率が 異なるものの 1種類以上、 並びに単独重合体 H P 1 、 H P 2及び H P 3からなる 群より選ばれる (共) 重合体を、 同心円状に積層した多層構造を有する請求の範 囲 1に記載の光ファイバ。
3 . 各単独重合体のガラス転移温度が 7 0 °C以上となる 2種類の単量体から製 造される共重合組成比と屈折率が異なる (共) 重合体の 3種類以上を、 同心円状 に積層した多層構造を有する請求の範囲 1に記載の光ファイバ。
4 . 各単独重合体の屈折率の差が 0 . 0 3以下となる 3種類の単量体から製造 される、 2元共重合体 C P 1ノ 2で共重合組成比と屈折率が異なるものの 1種類 以上、 2元共重合体 C P 2 Z 3で共重合組成比と屈折率が異なるものの 1種類以 上、 並びに単独重合体 H P 1 、 H P 2及び H P 3からなる群よリ選ばれる (共) 重合体を、 同心円状に積層した多層構造を有する請求の範囲 1に記載の光フアイ ノ 。
5 . 各単独重合体の屈折率の差が 0 . 0 3以下となる 2種類の単量体から製造 される共重合組成比と屈折率が異なる (共) 重合体の 3種類以上を、 同心円状に
-積層した多層構造を有する請求の範囲 1に記載の光ファイバ。
6 . 隣接する各層間の (共) 重合体の屈折率差がいずれも 0 . 0 1 6以下であ る請求の範囲 1に記載の光ファイバ。
7. 3種類のフッ化アルキル (メタ) ァクリレートから製造される (共) 重合 体を用いたものである請求の範囲 Γに記載の光フアイバ。
8. 2種類のフッ化アルキル (メタ) ァクリレートから製造される (共) 重合 体を用いたものである請求の範囲 1に記載の光ファイバ。
9. クロロェチルメタクリレート及び 2—フエニルェチルメタクリレートから 選ばれた単量体とメチルメタクリレートとの組合せから製造される (共) 重合体 を用いたものである請求の範囲 1に記載の光ファイバ。
1 0. クロ口へキシルメタクリレート、 テトラヒドロフルフリルメタクリレー ト、 グリシジルメタクリレート、 イソブチルメタクリレート及びメチルメタクリ レートから選ばれた単量体の組合せから製造される (共) 重合体を用いたもので ある請求の範囲 1に記載の光ファイバ。
1 1. 3種類以上の単量体 M l、 Μ 2、 · · '及び Mn (nは 3以上の整数) からそれぞれ製造され屈折率が順次低下する単独重合体 HP 1、 HP 2、 · - - 及び H P n、 これら単量体の 2元共重合体 C Pの一種類以上並びにこれら単量体 の 3元共重合体 T Pの一種類以上からなる群より選ばれる (共) 重合体を同心円 状に積層した多層構造であって、 各層間には隣接する 2つの (共) 重合体の混合 層が形成された構造を有し、 中心部の屈折率が最も高く外周部に向かって屈折率 が順次低下する多層構造の屈折率分布型光ファイバ。
1 2. 隣接する各層間の (共) 重合体の共重合組成比の差がいずれも 20モル %以下である請求の範囲 1〜 1 1のいずれかに記載の光ファイバ。
1 3. 2種類以上の単量体 M l、 Μ 2、 · · '及び Mn (nは 2以上の整数) からそれぞれ製造され屈折率が順次低下する単独重合体 H P 1、 HP 2, · - · 及び H P n並びにこれら単量体の 2元共重合体 C Pの一種類以上からなる群よリ 選ばれる (共) 重合体を用いて、 屈折率の異なる複数の紡糸原料を調製し、 これ らを外周部側程屈折率が低下するように多層同心円状ノズルに供給してノズルか ら紡出させ、 ノズル内で及びノ又はノズルから紡出後に、 ファイバの各層間で重
-合体を相互拡散させる屈折率分布型光ファイバの製法。
14. 2種類以上の単量体 M l、 Μ 2、 · · '及び Mn (nは 2以上の整数) からそれぞれ製造され屈折率が順次低下する単独重合体 H P 1、 HP 2、 . · - 及び H P n並びにこれら単量体の 2元共重合体 C Pの一種類以上からなる群よリ 選ばれる (共) 重合体を含み、 更にこれらと同じ組成の単量体と光重合開始剤と を含有させた、 屈折率の異なる複数の紡糸原料を調製し、 これらを外周部側程屈 折率が低下するように多層同心円状ノズルに供給してノズルから紡出させ、 単量 体を各層間で相互拡散させた後、 単量体を光重合させる屈折率分布型光ファイバ の製法。
1 5 . 屈折率の異なる 5種類以上の (共) 重合体を用いる請求の範囲 1 3また は 1 4に記載の光ファイバの製法。
1 6 . 単独重合体 H P 1及び H P 2の屈折率差が 0 . 0 3以下である 2種類の 単量体から製造される共重合組成比と屈折率が異なる (共) 重合体の 3種以上を 用いる請求の範囲 1 3または 1 4に記載の光ファイバの製法。
1 7 . 屈折率の最も近接する単独重合体の屈折率の差が 0 . 0 2以下となる 2 種類以上の単量体から製造される (共) 重合体を用いる請求の範囲 1 3または 1 4に記載の光ファイバの製法。
1 8 . 多層同心円状ノズルの隣接するノズル孔に供給される (共) 重合体の屈 折率差が 0 . 0 1 6以下である請求の範囲 1 3または 1 4に記載の光ファイバの 製法。
1 9 . 多層同心円状ノズルの隣接するノズル孔に供給される (共) 重合体間の 共重合組成比の差が 2 0モル%以下である (共) ffi合体を用いる請求の範 HI 1 3 または 1 4に記載の製法。
2 0 . 3種類以上の単量体 M l 、 Μ 2、 · · '及び M n ( nは 3以上の整数) からそれぞれ製造され屈折率が順次低下する単独重合体 H P 1 、 H P 2 、 · - ' 及び H P n、 これら単量体の 2元共重合体 C Pの一種類以上並びにこれら単量体 の 3元共重合体 T Pの一種類以上からなる群より選ばれる (共) 重合体を用いて 、 屈折率の異なる複数の紡糸^料を調製し、 これらを外周部側程屈折率が低下す るように多層同心円状ノズルに供給してノズルから紡出させ、 ノズル内で及びノ Xはノズルから紡出後に、 ファイバの各層間で重合体を相互拡散させる屈折率分 布型光ファイバの製法。
PCT/JP1997/001093 1996-03-28 1997-03-28 Fibre optique a indice de refraction reparti et procede de fabrication WO1997036196A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP51330497A JP3437848B2 (ja) 1996-03-28 1997-03-28 屈折率分布型光ファイバ及びその製法
DE69738524T DE69738524T2 (de) 1996-03-28 1997-03-28 Optische faser mit brechungsindexgradient und verfahren zu deren herstellung
AU21770/97A AU720263B2 (en) 1996-03-28 1997-03-28 Graded index type optical fibers and method of making the same
EP97914564A EP0942301B1 (en) 1996-03-28 1997-03-28 Graded refractive index optical fiber and method of manufacturing the same
CA002250249A CA2250249C (en) 1996-03-28 1997-03-28 Distributed refractive index optical fiber and method of manufacturing the same
US09/142,161 US6185353B1 (en) 1996-03-28 1997-03-28 Graded index type optical fibers and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7426996 1996-03-28
JP8/74269 1996-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/142,161 A-371-Of-International US6185353B1 (en) 1996-03-28 1997-03-28 Graded index type optical fibers and method of making the same
US09/726,553 Continuation US6307992B2 (en) 1996-03-28 2000-12-01 Graded index type optical fibers and method of making the same

Publications (1)

Publication Number Publication Date
WO1997036196A1 true WO1997036196A1 (fr) 1997-10-02

Family

ID=13542240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001093 WO1997036196A1 (fr) 1996-03-28 1997-03-28 Fibre optique a indice de refraction reparti et procede de fabrication

Country Status (10)

Country Link
US (3) US6185353B1 (ja)
EP (2) EP0942301B1 (ja)
JP (1) JP3437848B2 (ja)
KR (1) KR100443223B1 (ja)
CN (2) CN1101000C (ja)
AT (2) ATE386953T1 (ja)
AU (1) AU720263B2 (ja)
CA (1) CA2250249C (ja)
DE (2) DE69738524T2 (ja)
WO (1) WO1997036196A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331162A (en) * 1997-11-06 1999-05-12 Samsung Electronics Co Ltd Multi-step core structured single mode optical fibre and method of fabrication
JP2000035517A (ja) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd 光伝送体、光伝送体アレイ、イメージセンサー、レンズプレートおよび画像形成装置
EP1026525A1 (en) * 1997-07-25 2000-08-09 Mitsubishi Rayon Co., Ltd. Refractive index profile type optical fiber
EP1057617A2 (en) * 1999-05-27 2000-12-06 Lucent Technologies Inc. Process for fabricating plastic optical fiber
EP1080871A1 (en) * 1999-08-31 2001-03-07 Lucent Technologies Inc. Fabricating graded index plastic optical fibers
WO2017002833A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 光硬化性組成物、パターン形成方法およびデバイスの製造方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101000C (zh) * 1996-03-28 2003-02-05 三菱丽阳株式会社 分布的折光指数型光导纤维及其制作方法和具有海一岛结构的多芯光导纤维
KR100322131B1 (ko) * 1999-01-28 2002-02-04 윤종용 오.에이치.차단층을 구비한 광섬유 모재 및 그 제조방법
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
JP2000241649A (ja) * 1999-02-18 2000-09-08 Kdd Corp 光ビーム径低減装置
DE19914958A1 (de) * 1999-04-01 2000-10-26 Deutsche Telekom Ag Verfahren zur Herstellung von Rohlingen für polymere optische Fasern
US6871000B1 (en) * 1999-09-09 2005-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable, plugged optical fiber cable, and production methods thereof
US20010048968A1 (en) * 2000-02-16 2001-12-06 Cox W. Royall Ink-jet printing of gradient-index microlenses
KR100368692B1 (ko) * 2000-03-21 2003-01-24 옵티미디아(주) 반경 방향으로 변화하는 물성을 지니는 봉형 고분자 모재,그의 제조방법 및 이에 사용되는 장치
FR2832515B1 (fr) * 2001-11-19 2004-01-30 Nexans Procede de fabrication d'une fibre optique plastique a gradient d'indice et fibre optique a gradient d'indice obtenue par ce procede
JP3938684B2 (ja) * 2001-12-11 2007-06-27 株式会社豊田中央研究所 自己形成光導波路材料組成物
US20030132536A1 (en) * 2001-12-31 2003-07-17 General Components, Inc. Method of making a graded index polymer optical fiber
JP2005517204A (ja) * 2001-12-31 2005-06-09 ジェネラル・コンポーネンツ・インコーポレイテッド グレーデッド・インデックスポリマー光ファイバおよびその製造方法
EP1472073A1 (en) * 2001-12-31 2004-11-03 General Components Inc. Optical fiber production system and crosshead die therefor
EP1476788A2 (en) * 2002-02-21 2004-11-17 Honeywell International Inc. Fluorinated molecules and methods of making and using same
JP2005526253A (ja) * 2002-05-17 2005-09-02 アプレラ コーポレイション 励起波長による複数の蛍光シグナルを分化するための装置および方法
US20050041944A1 (en) * 2002-07-26 2005-02-24 Cryan Colm V. Graded index fiber array and method of manufacture
JP2004128677A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd 情報記録装置及び情報記録システム
US20050157999A1 (en) * 2002-12-27 2005-07-21 Zhen Zhen Graded index polymer optical fiber and a method of making the same
CN1771443A (zh) * 2003-02-10 2006-05-10 纳诺博蒂克斯公司 制造塑料光传输介质的方法和装置
JP2005284250A (ja) * 2004-03-04 2005-10-13 Nakagawa Kenkyusho:Kk 通信システム及び漏洩光ファイバ
JP2006208551A (ja) * 2005-01-26 2006-08-10 Fuji Photo Film Co Ltd プラスチック光ファイバ素線の製造方法およびその製造設備
US7171090B2 (en) * 2005-06-30 2007-01-30 Corning Incorporated Low attenuation optical fiber
FR2893149B1 (fr) * 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
FR2899693B1 (fr) * 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
US7773834B2 (en) 2006-08-30 2010-08-10 3M Innovative Properties Company Multilayer polarizing fibers and polarizers using same
US7620282B2 (en) * 2006-08-31 2009-11-17 Corning Incorporated Low bend loss single mode optical fiber
US9358000B2 (en) * 2006-12-15 2016-06-07 Ethicon, Inc. Tungsten alloy suture needles
BRPI0819166B1 (pt) 2007-11-09 2019-03-06 Draka Comteq, B.V. Fibra óptica, e caixa óptica
AU2009222066B2 (en) * 2008-03-05 2012-06-28 3M Innovative Properties Company Color shifting multilayer polymer fibers and security articles containing color shifting multilayer polymer fibers
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
US7773848B2 (en) 2008-07-30 2010-08-10 Corning Incorporated Low bend loss single mode optical fiber
US10730232B2 (en) 2013-11-19 2020-08-04 Guill Tool & Engineering Co, Inc. Coextruded, multilayer and multicomponent 3D printing inputs
US20160297104A1 (en) * 2013-11-19 2016-10-13 Guill Tool & Engineering Coextruded, multilayer and multicomponent 3d printing inputs field
CA2981078C (en) 2015-03-27 2023-08-22 Penguin Automated Systems Inc. Omnidirectional optical wireless communications receiver & system
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications
CN114603890A (zh) * 2020-12-08 2022-06-10 深南电路股份有限公司 一种有机光波导元件的制造装置及其喷头组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265207A (ja) * 1988-04-15 1989-10-23 Mitsubishi Rayon Co Ltd 光伝送体の製造方法
JPH01265208A (ja) * 1988-04-15 1989-10-23 Mitsubishi Rayon Co Ltd 光伝送体の製造方法
JPH063533A (ja) * 1992-06-18 1994-01-14 Mitsubishi Rayon Co Ltd 屈折率分布型プラスチック光伝送体の製法
JPH08106019A (ja) * 1994-10-06 1996-04-23 Mitsubishi Rayon Co Ltd プラスチック光ファイバ及びその製造方法
JPH0915431A (ja) * 1995-06-27 1997-01-17 Mitsubishi Rayon Co Ltd 光ファイバの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506350A (ja) 1973-05-16 1975-01-23
DE3607301A1 (de) * 1986-03-06 1987-09-10 Hoechst Ag Lichtleitfaser mit kern-mantel-struktur
DE3769581D1 (de) * 1986-09-22 1991-05-29 Mitsubishi Rayon Co Kunststoffmultifilamentfaser als optische faser.
DE3814299A1 (de) * 1988-04-28 1989-11-09 Hoechst Ag Lichtwellenleiter
JPH05232337A (ja) 1992-02-21 1993-09-10 Furukawa Electric Co Ltd:The プラスチック光ファイバ
US5235660A (en) * 1992-07-10 1993-08-10 Peachtree Fiberoptics, Inc. Graded polymer optical fibers and process for the manufacture thereof
US5555525A (en) * 1994-09-07 1996-09-10 Industrial Technology Research Institute Method of making graded refractive index polymeric optical fibers and optical fibers made by the method
CN1101000C (zh) * 1996-03-28 2003-02-05 三菱丽阳株式会社 分布的折光指数型光导纤维及其制作方法和具有海一岛结构的多芯光导纤维
US6200503B1 (en) * 1996-09-13 2001-03-13 Mohammad W. Katoot Graded index polymer optical fibers and process for manufacture thereof
JPH10160947A (ja) * 1996-11-29 1998-06-19 Toray Ind Inc 広帯域プラスチッククラッド光ファイバ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265207A (ja) * 1988-04-15 1989-10-23 Mitsubishi Rayon Co Ltd 光伝送体の製造方法
JPH01265208A (ja) * 1988-04-15 1989-10-23 Mitsubishi Rayon Co Ltd 光伝送体の製造方法
JPH063533A (ja) * 1992-06-18 1994-01-14 Mitsubishi Rayon Co Ltd 屈折率分布型プラスチック光伝送体の製法
JPH08106019A (ja) * 1994-10-06 1996-04-23 Mitsubishi Rayon Co Ltd プラスチック光ファイバ及びその製造方法
JPH0915431A (ja) * 1995-06-27 1997-01-17 Mitsubishi Rayon Co Ltd 光ファイバの製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529665B1 (en) 1997-07-25 2003-03-04 Mitsubishi Rayon Co., Ltd. Refractive index profile type optical fiber
EP1376167A1 (en) * 1997-07-25 2004-01-02 Mitsubishi Rayon Co., Ltd. Graded index type optical fibers
EP1176437B1 (en) * 1997-07-25 2007-10-03 Mitsubishi Rayon Co., Ltd. Graded index type optical fibres
EP1026525A1 (en) * 1997-07-25 2000-08-09 Mitsubishi Rayon Co., Ltd. Refractive index profile type optical fiber
EP1026525A4 (en) * 1997-07-25 2000-10-18 Mitsubishi Rayon Co OPTICAL FIBER TYPE WITH REFRACTION INDEX PROFILE
EP1176437A2 (en) * 1997-07-25 2002-01-30 Mitsubishi Rayon Co., Ltd. Graded index type optical fibres
GB2331162A (en) * 1997-11-06 1999-05-12 Samsung Electronics Co Ltd Multi-step core structured single mode optical fibre and method of fabrication
GB2331162B (en) * 1997-11-06 2000-02-09 Samsung Electronics Co Ltd Single mode optical fiber having multi-step core structure and method of fabricating the same
JP2000035517A (ja) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd 光伝送体、光伝送体アレイ、イメージセンサー、レンズプレートおよび画像形成装置
EP1057617A3 (en) * 1999-05-27 2003-01-29 Lucent Technologies Inc. Process for fabricating plastic optical fiber
EP1057617A2 (en) * 1999-05-27 2000-12-06 Lucent Technologies Inc. Process for fabricating plastic optical fiber
EP1080871A1 (en) * 1999-08-31 2001-03-07 Lucent Technologies Inc. Fabricating graded index plastic optical fibers
WO2017002833A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 光硬化性組成物、パターン形成方法およびデバイスの製造方法
JPWO2017002833A1 (ja) * 2015-06-30 2018-04-19 富士フイルム株式会社 光硬化性組成物、パターン形成方法およびデバイスの製造方法
US10739678B2 (en) 2015-06-30 2020-08-11 Fujifilm Corporation Photocurable composition, pattern forming method, and method for manufacturing device

Also Published As

Publication number Publication date
ATE431566T1 (de) 2009-05-15
EP1607778B1 (en) 2009-05-13
EP0942301B1 (en) 2008-02-20
CN100347573C (zh) 2007-11-07
US6307992B2 (en) 2001-10-23
EP0942301A4 (ja) 1999-09-15
CN1217069A (zh) 1999-05-19
KR20000005078A (ko) 2000-01-25
CN1419142A (zh) 2003-05-21
KR100443223B1 (ko) 2004-09-18
EP0942301A1 (en) 1999-09-15
CN1101000C (zh) 2003-02-05
DE69739406D1 (de) 2009-06-25
US6631233B2 (en) 2003-10-07
CA2250249C (en) 2003-07-15
DE69738524D1 (de) 2008-04-03
US20010000140A1 (en) 2001-04-05
CA2250249A1 (en) 1997-10-02
AU720263B2 (en) 2000-05-25
DE69738524T2 (de) 2009-03-05
ATE386953T1 (de) 2008-03-15
US20020044754A1 (en) 2002-04-18
AU2177097A (en) 1997-10-17
JP3437848B2 (ja) 2003-08-18
EP1607778A1 (en) 2005-12-21
US6185353B1 (en) 2001-02-06

Similar Documents

Publication Publication Date Title
WO1997036196A1 (fr) Fibre optique a indice de refraction reparti et procede de fabrication
JP3916304B2 (ja) 屈折率分布型光ファイバ
US5382448A (en) Method of manufacturing optical transmission medium from synthetic resin
US7142754B2 (en) Plastic optical fiber, plastic optical fiber cables, optical fiber cables with plugs with copolymer
EP0497984B1 (en) Method of manufacturing optical transmission medium from synthetic resin
JPS6225706A (ja) 樹脂製光学繊維及びその製造方法
JP2000193839A (ja) 屈折率分布型光ファイバ、光ファイバケ―ブル、プラグ付き光ファイバケ―ブル及び屈折率分布型光ファイバの製法
JP3258605B2 (ja) 多段階屈折率分布プラスチック光ファイバ
JPH10133036A (ja) マルチステップインデックス型プラスチック光ファイバ及びその製造方法
JP2001166174A (ja) 多層コア光ファイバ
JP3945910B2 (ja) 光ファイバ及び光ファイバケーブル
JPWO2020263834A5 (ja)
JP3504065B2 (ja) 屈折率分布型プラスチック光ファイバ及びその製造方法
AU773707B2 (en) Refractive index profile type optical fiber
EP1393885A1 (en) Method for fabricating preform for plastic optical fiber
JPH11344624A (ja) 光ファイバ及び光ファイバケーブル
JP2004070070A (ja) 光ファイバ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2250249

Country of ref document: CA

Ref document number: 2250249

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 97194148.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09142161

Country of ref document: US

Ref document number: 1019980707708

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997914564

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997914564

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707708

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707708

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997914564

Country of ref document: EP