WO2017002833A1 - 光硬化性組成物、パターン形成方法およびデバイスの製造方法 - Google Patents

光硬化性組成物、パターン形成方法およびデバイスの製造方法 Download PDF

Info

Publication number
WO2017002833A1
WO2017002833A1 PCT/JP2016/069205 JP2016069205W WO2017002833A1 WO 2017002833 A1 WO2017002833 A1 WO 2017002833A1 JP 2016069205 W JP2016069205 W JP 2016069205W WO 2017002833 A1 WO2017002833 A1 WO 2017002833A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
meth
acrylate
alkyl group
group
Prior art date
Application number
PCT/JP2016/069205
Other languages
English (en)
French (fr)
Inventor
北川 浩隆
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020177037214A priority Critical patent/KR101995749B1/ko
Priority to JP2017526383A priority patent/JPWO2017002833A1/ja
Publication of WO2017002833A1 publication Critical patent/WO2017002833A1/ja
Priority to US15/852,363 priority patent/US10739678B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F236/16Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists

Definitions

  • the present invention relates to a photocurable composition. Moreover, it is related with the pattern formation method and the manufacturing method of a device using a photocurable composition.
  • the imprint method is an evolution of embossing technology known for optical disc production, and precisely uses the fine pattern of the original mold (generally called molds, stampers, and templates) on which irregular patterns are formed. Transfer technology. Once a mold is produced, it is economical because a microstructure such as a nanostructure can be easily and repeatedly molded, and in recent years, application to various fields is expected.
  • the thermal imprint method is a method in which a mold is pressed at a high pressure on a thermoplastic resin heated to a temperature higher than the glass transition temperature, then cooled to a temperature lower than the glass transition temperature, and then the mold is peeled to transfer the fine structure to the resin. .
  • the photocurable composition is sandwiched between the substrate and the mold, the photocurable composition is cured by ultraviolet (UV) exposure through the light transmissive mold or the light transmissive substrate.
  • UV ultraviolet
  • the fine pattern is transferred to the cured product by peeling the mold. Since this method enables imprinting at room temperature, it can be applied to the field of precision processing of ultrafine patterns such as the fabrication of semiconductor integrated circuits.
  • Non-Patent Document 4 describes that the etching rate of the resist material has a correlation with the Onishi parameter (Onishi P).
  • a photocurable composition for imprints used for dry etching processing such as semiconductors is used for pattern deformation after etching (change in line width roughness ( ⁇ LWR)) and pattern disconnection after etching.
  • ⁇ LWR line width roughness
  • the present invention aims to solve such problems, and provides a photocurable composition capable of suppressing both deformation of the pattern after etching ( ⁇ LWR) and disconnection of the pattern after etching.
  • the present inventors have conducted intensive studies, and as a result, have found that the above object can be achieved by using a specific monofunctional (meth) acrylate described later, and have completed the present invention. Specifically, the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 14>.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group which may be substituted with a fluorine atom
  • R 3 represents a hydrogen atom, a linear alkyl group that may be substituted with a fluorine atom, or a branched alkyl group that may be substituted with a fluorine atom
  • R 4 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms
  • the total number of carbon atoms contained in R 2 and R 3 is 1-6; R 2 and R 3 , or R 2 and R 4 may be bonded to each other to form a ring.
  • R 1 represents a hydrogen atom or a methyl group
  • L represents a linear alkylene group or a branched alkylene group
  • R 32 represents a hydrogen atom, a linear alkyl group or a branched alkyl group
  • R 5 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms
  • the total number of carbon atoms contained in L and R 32 is 1-6.
  • ⁇ 6> The photocuring according to any one of ⁇ 1> to ⁇ 5>, wherein the monofunctional (meth) acrylate is contained in an amount of 20 to 80% by mass based on all components excluding the solvent in the photocurable composition.
  • Sex composition. ⁇ 7> The photocuring according to any one of ⁇ 1> to ⁇ 6>, further comprising 20 to 79% by mass of a polyfunctional (meth) acrylate with respect to all components excluding the solvent in the photocurable composition.
  • Sex composition. ⁇ 8> The photocurable composition according to ⁇ 7>, wherein the polyfunctional (meth) acrylate has an aromatic group.
  • ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, wherein the Onishi parameter of the photocurable composition is 3.6 or less, and a glass transition temperature of a cured film of the photocurable composition is 85 ° C. or higher.
  • the glass transition temperature of the cured film is a value measured by the following method; A photocurable composition is sandwiched between quartz plates, a high pressure mercury lamp is used as a light source, UV cured under conditions of a wavelength of 300 to 400 nm, an illuminance of 10 mW / cm 2 , and an exposure time of 100 seconds, and a strip having a thickness of 150 ⁇ m and a width of 5 mm.
  • a cured film as a sample is prepared, and a strip sample is obtained using a dynamic viscoelasticity measuring device under conditions of a distance between chucks of 20 mm, a temperature range of 20 ° C. to 220 ° C., a temperature rising rate of 5 ° C./min, and a frequency of 1 Hz
  • the dynamic viscoelasticity is measured in the tension sine wave mode, and the maximum temperature of the obtained loss tangent curve is defined as the glass transition temperature;
  • ⁇ 10> The photocurable composition according to any one of ⁇ 1> to ⁇ 9>, wherein the photocurable composition has a viscosity at 23 ° C. of 5.5 to 15.0 mPa ⁇ s.
  • ⁇ 11> The photocurable composition according to any one of ⁇ 1> to ⁇ 10>, which is used for imprinting.
  • ⁇ 12> applying the photocurable composition according to any one of ⁇ 1> to ⁇ 11> on a substrate or a mold having a pattern; Sandwiching the photocurable composition between the mold and the substrate; Irradiating light in a state where the photocurable composition is sandwiched between the mold and the substrate, and curing the photocurable composition; A pattern forming method including a step of peeling the mold.
  • ⁇ 13> The pattern forming method according to ⁇ 12>, wherein the photocurable composition is applied to the substrate or the mold having the pattern by an inkjet method.
  • a device manufacturing method including a step of etching the substrate using a pattern produced by the pattern forming method according to ⁇ 12> or ⁇ 13> as a mask.
  • a photocurable composition capable of suppressing both deformation of a pattern after etching (change in line width roughness ( ⁇ LWR)) and disconnection of the pattern after etching. It became possible to provide.
  • imprint preferably refers to pattern transfer having a size of 1 nm to 100 ⁇ m, more preferably pattern transfer having a size (nanoimprint) of 10 nm to 1 ⁇ m.
  • substitution in the description of the group (atomic group) in this specification, the description which does not describe substitution and no substitution except the monofunctional (meth) acrylate represented by general formula (I) and (II) mentioned later is substitution.
  • a group having a substituent together with a group having no group is also included.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “light” includes not only light in a wavelength region such as ultraviolet, near ultraviolet, far ultraviolet, visible, infrared, and electromagnetic waves, but also radiation.
  • Examples of radiation include microwaves, electron beams, extreme ultraviolet rays (EUV), and X-rays.
  • Laser light such as a 248 nm excimer laser, a 193 nm excimer laser, and a 172 nm excimer laser can also be used. These lights may be monochromatic light (single wavelength light) that has passed through an optical filter, or may be light having a plurality of different wavelengths (composite light).
  • the number average molecular weight (Mn) is defined as a polystyrene equivalent value in gel permeation chromatography (GPC) measurement unless otherwise specified.
  • the number average molecular weight (Mn) is, for example, using HLC-8220 (manufactured by Tosoh Corporation) and guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, Alternatively, it can be obtained by using TSKgel Super HZ2000 (all manufactured by Tosoh Corporation). Unless otherwise stated, the eluent is measured using THF (tetrahydrofuran). In addition, unless otherwise stated, an ultraviolet (UV) 254 nm detector is used for detection.
  • UV ultraviolet
  • Photocurable composition of the present invention is a monofunctional (meth) acrylate represented by the following general formula (I) (hereinafter sometimes referred to as “specific monofunctional (meth) acrylate”), It contains a photopolymerization initiator.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group which may be substituted with a fluorine atom
  • R 3 represents a hydrogen atom, a linear alkyl group that may be substituted with a fluorine atom, or a branched alkyl group that may be substituted with a fluorine atom
  • R 4 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms;
  • the total number of carbon atoms contained in R 2 and R 3 is 1-6; R 2 and R 3 , or R 2 and R 4 may be bonded to each other to form a ring.
  • the photocurable composition which can suppress both the deformation
  • the photocurable composition used for imprinting is required to have applicability (for example, inkjet dischargeability) on a substrate and imprintability (for example, filling property, releasability).
  • etching resistance is also required for applications such as semiconductor applications for dry etching. As the etching resistance, it is necessary that the etching rate is low under the etching processing conditions and that the pattern after the etching is not deformed.
  • the conventional photocurable composition is not necessarily sufficient to achieve both a low etching rate and suppression of pattern deformation ( ⁇ LWR) after etching.
  • ⁇ LWR pattern deformation
  • the present invention by adopting a predetermined structure for the R 2 and R 3 portions of the general formula (I), which is a monofunctional (meth) acrylate, a cured film obtained with Low Onishi P The high glass transition temperature (Tg) is successfully achieved, and both the disconnection and deformation of the pattern after etching have been successfully suppressed.
  • Tg glass transition temperature
  • the photocurable composition of the present invention contains a monofunctional (meth) acrylate represented by the general formula (I).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group which may be substituted with a fluorine atom
  • R 3 represents a hydrogen atom, a linear alkyl group that may be substituted with a fluorine atom, or a branched alkyl group that may be substituted with a fluorine atom
  • R 4 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms
  • the total number of carbon atoms contained in R 2 and R 3 is 1-6; R 2 and R 3 , or R 2 and R 4 may be bonded to each other to form a ring.
  • R 1 represents a hydrogen atom or a methyl group. From the viewpoint of reactivity, R 1 is preferably a hydrogen atom.
  • R 2 represents an alkyl group which may be substituted with a fluorine atom.
  • the alkyl group may be linear, branched or cyclic.
  • the linear alkyl group preferably has 1 to 6 carbon atoms.
  • the number of carbon atoms of the branched alkyl group is preferably 3-6.
  • Examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, and a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group are more preferable.
  • These alkyl groups are preferably not substituted with a fluorine atom, but may be substituted with a fluorine atom. That is, some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms.
  • the alkyl group When the alkyl group is substituted with a fluorine atom, the alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group, and the linear alkyl group is More preferred. Moreover, when the alkyl group is substituted with a fluorine atom, it is preferably a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms. Examples of the perfluoroalkyl group include a trifluoromethyl group. Among these, R 2 is preferably a methyl group or a trifluoromethyl group, and particularly preferably a methyl group.
  • R 3 represents a hydrogen atom, a linear alkyl group that may be substituted with a fluorine atom, or a branched alkyl group that may be substituted with a fluorine atom.
  • the linear alkyl group preferably has 1 to 5 carbon atoms.
  • the branched alkyl group preferably has 3 to 5 carbon atoms. Examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and a pentyl group.
  • the linear or branched alkyl group is preferably not substituted with a fluorine atom, but may be substituted with a fluorine atom.
  • the alkyl group may be either a linear or branched alkyl group, but a linear alkyl group is preferred.
  • a perfluoroalkyl group is preferable.
  • the perfluoroalkyl group a trifluoromethyl group is preferable.
  • R 3 is preferably a hydrogen atom, a methyl group, or a trifluoromethyl group, and particularly preferably a hydrogen atom.
  • the total number of carbon atoms contained in R 2 and R 3 is 1 to 6, preferably 1 to 5, and more preferably 1 to 4.
  • R 4 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms. .
  • a halogen atom a chlorine atom or a fluorine atom is preferable, and a fluorine atom is more preferable.
  • the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a tert-butyl group. Among these, a hydrogen atom or a methyl group is preferable.
  • R 2 and R 3 , or R 2 and R 4 may be bonded to each other to form a ring.
  • the ring formed by combining R 2 and R 4 with each other is preferably a ring having 3 to 6 carbon atoms, and more preferably a ring having 4 to 6 carbon atoms.
  • Specific examples of the ring formed by combining R 2 and R 4 with each other include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the monofunctional (meth) acrylate represented by the general formula (I) is preferably represented by the general formula (II) described later.
  • R 2 and R 3 are each independently a methyl group optionally substituted with a fluorine atom Is exemplified.
  • R 5 to R 8 are preferably hydrogen atoms.
  • R 4 is a linear alkyl group having 1 to 4 carbon atoms, or a group having 3 or 4 carbon atoms. Examples thereof include a branched alkyl group (more preferably, R 4 is a methyl group), R 5 to R 7 are hydrogen atoms, and R 8 is a hydrogen atom or a methyl group.
  • R 1 represents a hydrogen atom or a methyl group
  • L represents a linear alkylene group or a branched alkylene group
  • R 32 represents a hydrogen atom, a linear alkyl group or a branched alkyl group
  • R 5 to R 8 each independently represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, or a branched alkyl group having 3 or 4 carbon atoms
  • the total number of carbon atoms contained in L and R 32 is 1-6.
  • R 1 is the same as R 1 in the general formula (I).
  • R 32 represents a hydrogen atom, a linear alkyl group or a branched alkyl group, and is preferably a hydrogen atom.
  • the linear alkyl group preferably has 1 to 5 carbon atoms.
  • the branched alkyl group preferably has 3 to 5 carbon atoms. Examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and a pentyl group.
  • the preferred ranges of R 5 to R 8 are each independently the same as R 5 to R 8 in general formula (I).
  • L represents a linear or branched alkylene group.
  • the alkylene group has 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • the alkylene group is preferably a linear alkylene group.
  • Specific examples of the alkylene group include methylene group, ethylene group, 1,3-propylene group, 1,4-butylene group, 1,1-dimethylethylene group and the like. Among these, an ethylene group is more preferable.
  • the molecular weight of the monofunctional (meth) acrylate represented by the general formula (I) is preferably 175 to 500, more preferably 190 to 250.
  • the viscosity of the monofunctional (meth) acrylate represented by the general formula (I) at 25 ° C. is preferably 3 to 50 mPa ⁇ s, more preferably 4 to 20 mPa ⁇ s, and 7 to 10 mPa ⁇ s. -More preferably, it is s. By setting it as such a range, an inkjet discharge precision can be improved more.
  • the measuring method of a viscosity follows the method as described in the Example mentioned later.
  • Onishi P of the monofunctional (meth) acrylate represented by the general formula (I) is preferably 3.2 or less, more preferably 3.0 or less, further preferably 2.9 or less, and even more preferably 2.8 or less.
  • the Tg of the monofunctional (meth) acrylate homopolymer represented by the general formula (I) is preferably 25 ° C. or higher, more preferably 45 ° C. or higher, and further preferably 65 ° C. or higher. .
  • the monopolymer (meth) acrylate represented by the general formula (I) can be kept at a low Onishi P, while the resulting homopolymer can have a relatively high Tg.
  • the resulting cured film can have both high Tg and a photocurable composition having excellent etching resistance.
  • the measuring method of Tg of a homopolymer follows the method prescribed
  • the content of the monofunctional (meth) acrylate represented by the general formula (I) is 20 to 80% by mass with respect to all components excluding the solvent in the photocurable composition. It is preferable that The lower limit is more preferably 25% by mass or more, further preferably 30% by mass or more, and particularly preferably 40% by mass. The upper limit is more preferably 75% by mass or less, further preferably 70% by mass or less, and particularly preferably 60% by mass or less.
  • the monofunctional (meth) acrylate represented by the general formula (I) may contain only one kind or two or more kinds. When 2 or more types are included, the total amount is preferably within the above range.
  • the photocurable composition of the present invention may contain an aliphatic monofunctional (meth) acrylate.
  • the term “aliphatic monofunctional (meth) acrylate” as used herein is intended to exclude those corresponding to the fluorine-containing monofunctional (meth) acrylate described below.
  • the aliphatic monofunctional (meth) acrylate is preferably an ester of a linear or branched aliphatic alcohol having 9 to 16 carbon atoms and (meth) acrylic acid.
  • the molecular weight of the aliphatic monofunctional (meth) acrylate is preferably 195 to 315, more preferably 210 to 285, and still more preferably 225 to 270.
  • aliphatic monofunctional (meth) acrylate examples include n-nonyl (meth) acrylate, i-nonyl (meth) acrylate, n-decyl (meth) acrylate, i-decyl (meth) acrylate, 2-propylheptyl (Meth) acrylate, n-undecyl (meth) acrylate, n-dodecyl (meth) acrylate, 2-butyloctyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-hexadecyl ( And (meth) acrylate.
  • n-decyl acrylate, 2-propylheptyl acrylate, n-undecyl acrylate, n-dodecyl acrylate, 2-butyloctyl acrylate, n-tridecyl acrylate, and n-tetradecyl acrylate are preferable, and n-undecyl is preferable.
  • n-dodecyl acrylate, 2-butyloctyl acrylate, n-tridecyl acrylate, and n-tetradecyl acrylate are more preferable, and n-dodecyl acrylate, n-tridecyl acrylate, and n-tetradecyl acrylate are particularly preferable.
  • the content thereof should be 5 to 30% by mass with respect to all components excluding the solvent in the photocurable composition. It is preferably 10 to 25% by mass, more preferably 15 to 20% by mass.
  • the photocurable composition of the present invention can also be configured to be substantially free of aliphatic monofunctional (meth) acrylate. “Substantially free” means, for example, 5% by mass or less, further 3% by mass or less, and particularly 1% by mass or less of the total polymerizable compound contained in the photocurable composition of the present invention. .
  • the aliphatic monofunctional (meth) acrylate may contain only 1 type, and may contain 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the photocurable composition of the present invention may further contain a monofunctional (meth) acrylate containing a fluorine atom.
  • the monofunctional (meth) acrylate containing a fluorine atom described here does not include the compound represented by the general formula (I).
  • the molecular weight of the fluorine-containing monofunctional (meth) acrylate is preferably 300 to 600, more preferably 350 to 550, and still more preferably 400 to 500.
  • the fluorine-containing monofunctional (meth) acrylate is preferably a fluorine-containing (meth) acrylate represented by the following general formula (IV).
  • R 1 represents a hydrogen atom or a methyl group
  • Rf represents a fluorine-containing alkyl group having 1 to 9 carbon atoms in which at least one hydrogen atom of the alkyl group is substituted with a fluorine atom
  • L represents Represents a single bond, —O—, —OC ( ⁇ O) —, or —C ( ⁇ O) O—
  • n represents an integer of 0 to 8.
  • R 1 represents a hydrogen atom or a methyl group. From the viewpoint of reactivity, R 1 is preferably a hydrogen atom.
  • Rf represents a fluorine-containing alkyl group having 1 to 9 carbon atoms in which at least one hydrogen atom of the alkyl group is substituted with a fluorine atom.
  • Rf may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
  • a fluorine-containing alkyl group having 1 to 9 carbon atoms in which at least one hydrogen atom of the alkyl group is substituted with a fluorine atom means a carbon atom having 1 to 9 carbon atoms containing a fluorine atom as a substituent.
  • the alkyl group is not limited to the group synthesized by substituting the hydrogen atom of the alkyl group with a fluorine atom.
  • the number of carbon atoms in Rf is preferably 2 to 9, more preferably 4 to 9, still more preferably 5 to 8, and particularly preferably 6 to 8.
  • the fluorine atom substitution rate of Rf is preferably 40 to 100%, more preferably 50 to 90%, and even more preferably 65 to 85%. According to this aspect, mold releasability can be improved.
  • the substitution rate of fluorine atoms refers to the ratio (%) of the number of substituted hydrogen atoms in the total number of hydrogen atoms of the alkyl group having 1 to 9 carbon atoms.
  • Rf is a fluorine-containing alkyl group comprising a perfluoroalkyl group having 4 to 6 carbon atoms and an alkylene group having 1 to 3 carbon atoms, or an ⁇ -H-perfluoroalkyl group having 4 to 6 carbon atoms and one to 1 carbon atoms.
  • a fluorine-containing alkyl group comprising 3 alkylene groups is preferred, and a fluorine-containing alkyl group comprising a perfluoroalkyl group having 4 to 6 carbon atoms and an alkylene group having 1 to 3 carbon atoms is more preferred.
  • Rf examples include CF 3 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 (CF 2 ) 2 CH 2 —, CF 3 (CF 2 ) 3 CH 2 CH 2 —, CF 3 (CF 2 ) 4 CH 2 CH 2 CH 2 —, CF 3 (CF 2 ) 4 CH 2 —, CF 3 (CF 2 ) 5 CH 2 CH 2 —, CF 3 (CF 2 ) 5 CH 2 CH 2 CH 2 —, ( CF 3 ) 2 CH—, (CF 3 ) 2 C (CH 3 ) CH 2 —, (CF 3 ) 2 CF (CF 2 ) 2 CH 2 CH 2 —, (CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 —, H (CF 2 ) 2 CH 2 —, H (CF 2 ) 4 CH 2 —, H (CF 2 ) 6 CH 2 —, H (CF 2 ) 8 CH 2 — and the like.
  • CF 3 (CF 2 ) 4 CH 2 —, CF 3 (CF 2 ) 5 CH 2 —, CF 3 (CF 2 ) 5 CH 2 CH 2 —, CF 3 (CF 2 ) 5 CH 2 CH 2 CH 2 —, H (CF 2 ) 6 CH 2 — are preferred, CF 3 (CF 2 ) 5 CH 2 CH 2 — or CF 3 (CF 2 ) 5 CH 2 CH 2 CH 2 — is more preferred, and CF 3 ( CF 2 ) 5 CH 2 CH 2 — is particularly preferred.
  • L represents a single bond, —O—, —OC ( ⁇ O) —, or —C ( ⁇ O) O—, and is preferably a single bond or —O—.
  • n is preferably 1 to 5, and more preferably 1 to 3.
  • L is a single bond, n is preferably 0 to 6, more preferably 0 to 4, and still more preferably 0.
  • fluorine-containing monofunctional (meth) acrylate include the following compounds, but are not limited to these compounds.
  • R 1 is a hydrogen atom or a methyl group, and preferably a hydrogen atom.
  • the photocurable composition of the present invention contains a fluorine-containing monofunctional (meth) acrylate
  • the content thereof is 1 to 5% by mass with respect to all components excluding the solvent in the photocurable composition. It is preferably 1 to 3% by mass.
  • the content of the fluorine-containing monofunctional (meth) acrylate is 1% by mass or more, the releasability is further improved.
  • content of a fluorine-containing monofunctional (meth) acrylate is 5 mass% or less, it is excellent in pattern roughness. Only 1 type may be used for a fluorine-containing monofunctional (meth) acrylate, and 2 or more types may be used together. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • the photocurable composition of the present invention is a monofunctional other than the monofunctional (meth) acrylate, aliphatic monofunctional (meth) acrylate, and fluorine-containing monofunctional (meth) acrylate represented by the general formula (I) described above.
  • (Meth) acrylate (referred to as other monofunctional (meth) acrylate) may also be included.
  • Other monofunctional (meth) acrylates include monofunctional (meth) acrylates having an aromatic group other than the monofunctional (meth) acrylate represented by the general formula (I), and monofunctionals having an alicyclic hydrocarbon group. Examples thereof include (meth) acrylate, monofunctional (meth) acrylate having a hydroxyl group or an ether group.
  • Suitable substituents include alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and cyano groups), 1- or 2-naphthyl (meth) acrylate, 1- or 2-naphthylmethyl (meth) acrylate, 1- or 2-naphthylethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2-adamantyl ( (Meth) acrylate, 2-methyl-2
  • the content thereof is preferably 5 to 40% by mass with respect to all components except the solvent in the photocurable composition. 10 to 30% by mass is more preferable.
  • Other monofunctional (meth) acrylates may contain only 1 type, and may contain 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the photocurable composition of the present invention can also be configured to be substantially free of other monofunctional (meth) acrylates. “Substantially free” means, for example, 5% by mass or less, further 3% by mass or less, and particularly 1% by mass or less of the total polymerizable compound contained in the photocurable composition of the present invention. .
  • the photocurable composition of the present invention preferably contains a bifunctional or higher polyfunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate is preferably an ester of an aromatic polyhydric alcohol or aliphatic polyhydric alcohol and (meth) acrylic acid.
  • the polyfunctional (meth) acrylate preferably has 2 to 6 (meth) acrylate groups, more preferably 2 or 3, and particularly preferably 2.
  • the molecular weight of the polyfunctional (meth) acrylate is preferably 170 to 600, more preferably 190 to 300, and further preferably 210 to 270. When the molecular weight is in the above range, both suppression of volatility and low viscosity can be achieved.
  • the polyfunctional (meth) acrylate does not have a polyfunctional (meth) acrylate having an aromatic group, a polyfunctional (meth) acrylate having an alicyclic hydrocarbon group, or an aromatic group and an alicyclic hydrocarbon group. It is preferably a chain aliphatic polyfunctional (meth) acrylate, more preferably a polyfunctional (meth) acrylate having an aromatic group or a polyfunctional (meth) acrylate having an alicyclic hydrocarbon group, More preferably, it is a polyfunctional (meth) acrylate having an aromatic group.
  • the polyfunctional (meth) acrylate that can be used in the present invention is: POLLRRLOP
  • P is a (meth) acryloyl group
  • L is a single bond or a linking group
  • R is an aromatic group, an alicyclic hydrocarbon group, or a linear or branched hydrocarbon group.
  • L is preferably a single bond or an alkylene group, more preferably a single bond, a methylene group or an ethylene group, and even more preferably a methylene group.
  • R is preferably a phenylene group, a cyclohexane group, or a linear or branched hydrocarbon group having 2 to 6 carbon atoms.
  • polyfunctional (meth) acrylate having an aromatic group examples include o-, m-, p-phenylene di (meth) acrylate, o-, m-, p-xylylene di (meth) acrylate, bisphenol A di ( (Meth) acrylate, ethyleneoxy (EO) modified bisphenol A di (meth) acrylate, propyleneoxy (PO) modified bisphenol A di (meth) acrylate, EO modified bisphenol F di (meth) acrylate, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene is exemplified.
  • m-xylylene diacrylate is particularly preferably used in the present invention.
  • the polyfunctional (meth) acrylate having an alicyclic hydrocarbon group include trans-1,2-cyclohexanediol di (meth) acrylate, cis-1,2-cyclohexanediol di (meth) acrylate, 1, 3-cyclohexanediol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1,2-cyclohexanedimethanol di (meth) acrylate, 1,3-cyclohexanedimethanol di (meth) acrylate, 1, Examples include 4-cyclohexanedimethanol di (meth) acrylate, norbornane dimethanol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, and 1,3-adamantanediol di (meth) acrylate.
  • chain aliphatic polyfunctional (meth) acrylate having no aromatic group and alicyclic hydrocarbon group examples include ethylene glycol di (meth) acrylate and 1,3-butanediol di (meth) acrylate 1,4-butanediol di (meth) acrylate, cis-2-butene-1,4-diol diacrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 3- Methyl-1,5-pentanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, 1,10- Decanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethyleneglycol Di (me)
  • 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, cis-2-butene-1,4-diol diacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate 3-methyl-1,5-pentanediol diacrylate is particularly preferably used in the present invention.
  • Examples of commercially available products include Kyoeisha Chemical Co., Ltd. trade name Light Acrylate NP-A, Osaka Organic Chemical Industry Co., Ltd. Biscoat # 195, and Biscoat # 230.
  • the polyfunctional (meth) acrylate is preferably contained in an amount of 20 to 79% by mass with respect to all components except the solvent in the photocurable composition.
  • the lower limit is more preferably 25% by mass or more, further preferably 30% by mass or more, and particularly preferably 40% by mass.
  • the upper limit is more preferably 75% by mass or less, further preferably 70% by mass or less, and particularly preferably 60% by mass or less. If content of polyfunctional (meth) acrylate is the said range, the pattern excellent in film
  • the total of the polyfunctional (meth) acrylate having an aromatic group and the polyfunctional (meth) acrylate having an alicyclic hydrocarbon group is 20 to 80 with respect to all components excluding the solvent in the photocurable composition. It is preferable to contain by mass.
  • the mass ratio of monofunctional (meth) acrylate to polyfunctional (meth) acrylate is preferably 20:80 to 80:20, more preferably 30:70 to 70:30, and even more preferably 40:60 to 60:40 .
  • the photocurable composition of the present invention contains a photopolymerization initiator.
  • Any photopolymerization initiator may be used as long as it is a compound that generates an active species that polymerizes a polymerizable compound by light irradiation.
  • a photoinitiator a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is more preferable.
  • photo radical polymerization initiator for example, a commercially available initiator can be used.
  • a commercially available initiator for example, those described in paragraph No. 0091 of JP-A-2008-105414 can be preferably used.
  • acetophenone compounds, acylphosphine oxide compounds, and oxime ester compounds are preferable from the viewpoints of curing sensitivity and absorption characteristics.
  • Irgacure registered trademark
  • Irgacure 184 Irgacure 2959
  • Irgacure 127 Irgacure 907
  • Irgacure 369 Irgacure 379
  • Lucyrin registered trademark
  • Irgacure 819 Irgacure OXE-01, Irgacure OXE-02, Irgacure 651, Irgacure 754, etc. (above, manufactured by BASF) may be mentioned.
  • a photoinitiator may be used individually by 1 type, it is also preferable to use 2 or more types together. When using 2 or more types together, it is more preferable to use 2 or more types of radical photopolymerization initiators together.
  • Irgacure 1173 and Irgacure 907, Irgacure 1173 and Lucilin TPO, Irgacure 1173 and Irgacure 819, Irgacure 1173 and Irgacure OXE01, Irgacure 907 and Lucilin TPO, Irgacure 907 and Irgacure 819 are exemplified. With such a combination, the exposure margin can be expanded.
  • the ratio (mass ratio) when two photopolymerization initiators are used in combination is preferably 9: 1 to 1: 9, more preferably 8: 2 to 2: 8, and 7: 3 to 3: 7. Further preferred.
  • the content of the photopolymerization initiator is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably based on all components except the solvent in the photocurable composition. Is 1 to 5% by mass.
  • the photocurable composition may contain only one type of photopolymerization initiator, or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity (fast curability), resolution, line edge roughness, and film strength tend to be further improved, which is preferable.
  • content of a photoinitiator is 15 mass% or less, it exists in the tendency for a light transmittance, coloring property, a handleability, etc. to improve, and it is preferable.
  • the photocurable composition of the present invention may contain a non-polymerizable compound having a polyoxyalkylene structure in order to improve the releasability.
  • the non-polymerizable compound refers to a compound having no polymerizable group.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure, a polyoxypropylene structure, a polyoxybutylene structure, or a mixed structure thereof, more preferably a polyoxyethylene structure or a polyoxypropylene structure, and particularly preferably a polyoxypropylene structure. .
  • the branched structure has a polyhydric alcohol such as glycerin or pentaerythritol as a core.
  • the polyoxyalkylene structure preferably has 3 to 30 polyoxyalkylene structural units, more preferably 5 to 20, more preferably 7 to 15, It is particularly preferable to have 9 to 13.
  • the terminal hydroxyl group of the polyoxyalkylene structure may not be substituted, at least one may be substituted with an organic group, or all may be substituted with an organic group.
  • the organic group is preferably an organic group having 1 to 20 carbon atoms, and may have an oxygen atom, a fluorine atom, or a silicon atom, but preferably does not have a fluorine atom or a silicon atom.
  • the organic group is preferably linked to the polyoxyalkylene structure by an ether bond, an ester bond, or a divalent linking group.
  • the organic group include a hydrocarbon group such as a methyl group, an ethyl group, a butyl group, an octyl group, a benzyl group, and a phenyl group, a fluorinated alkyl group, a fluorinated alkyl ether group, and a polysiloxane group.
  • the number average molecular weight of the non-polymerizable compound is preferably 300 to 3000, more preferably 400 to 2000, and further preferably 500 to 1500.
  • non-polymerizable compounds include polyoxyethylene (also referred to as polyethylene glycol), polyoxypropylene (also referred to as polypropylene glycol), polyoxybutylene, polyoxyethylene / polyoxypropylene (block and random), and polyoxyethylene.
  • PEG polyoxypropylene
  • PPG polyoxypropylene
  • PEG glyceryl ether PEG / PPG glyceryl ether
  • PEG bisphenol A ether PEG trimethylolpropane ether
  • PEG pentaerythritol ether PEG neopentyl glycol ether
  • PEG Trimethylol propane ether PEG methyl ether, PEG butyl ether, PEG 2-ethylhexyl ether, PEG lauryl ether PEG oleyl ether, PPG methyl ether, PPG butyl ether, PPG lauryl ether, PPG oleyl ether, PEG phenyl ether, PEG octyl phenyl ether, PEG nonyl phenyl ether, PEG naphthyl ether, PEG styrenated phenyl ether, PPG
  • the description in paragraphs 0105 to 0106 of JP2013-036027A can be referred to, and the contents thereof are incorporated herein.
  • the content thereof is preferably 1 to 10% by mass with respect to all components excluding the solvent in the photocurable composition.
  • the lower limit is more preferably 2% by mass or more.
  • the upper limit is more preferably 8% by mass or less, further preferably 6% by mass or less, and particularly preferably 4% by mass or less.
  • the photocurable composition may contain only one type of non-polymerizable compound or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the photocurable composition of the present invention preferably contains a polymerization inhibitor.
  • a polymerization inhibitor When a polymerization inhibitor is included, the content thereof is preferably 0.001 to 0.1% by mass, more preferably 0.005 to 0.08, based on all components except the solvent in the photocurable composition. % By mass, more preferably 0.01 to 0.05% by mass.
  • the photocurable composition may contain only one type of polymerization inhibitor or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range. By blending an appropriate amount of the polymerization inhibitor, it is possible to suppress a change in viscosity over time while maintaining high curing sensitivity.
  • the polymerization inhibitor may be added when all the polymerizable compounds are mixed, or may be added later to the photocurable composition of the present invention.
  • Specific examples of the polymerization inhibitor include 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical.
  • Specific examples of other polymerization inhibitors include those described in paragraph No. 0121 of JP2012-169462A, the contents of which are incorporated herein.
  • the photocurable composition of the present invention can contain a surfactant, if necessary.
  • a surfactant is a substance that has a hydrophobic part and a hydrophilic part in the molecule and significantly changes the properties of the interface when added in a small amount.
  • the surfactant in the present invention is a substance that has a hydrophobic part and a hydrophilic part in the molecule and significantly reduces the surface tension of the photocurable composition when added in a small amount.
  • it is a substance that lowers the surface tension of the photocurable composition to 40 mN / m to 30 mN / m or less with an addition amount of 1% by mass or less.
  • the surfactant is preferably a nonionic surfactant, and preferably contains at least one of a fluorine-based surfactant, a Si-based surfactant, and a fluorine / Si-based surfactant, and a fluorine-based nonionic surfactant. Agents are particularly preferred.
  • the “fluorine / Si-based surfactant” refers to one having both the requirements of both a fluorine-based surfactant and a Si-based surfactant.
  • fluorine-based nonionic surfactants include FLORAD FC-4430 and FC-4431 manufactured by Sumitomo 3M Limited, Surflon S-241, S-242 and S-243 manufactured by Asahi Glass Co., Ltd., Mitsubishi Materials Electronics F-top EF-PN31M-03, EF-PN31M-04, EF-PN31M-05, EF-PN31M-06, MF-100, OMNOVA Polyfox PF-636, PF-6320, PF-656 manufactured by Kasei Co., Ltd. PF-6520, Neos's Footgent 250, 251, 222F, 212M DFX-18, Daikin Industries, Ltd.
  • the photocurable composition of the present invention contains a surfactant
  • the content thereof is preferably, for example, 0.01 to 5% by mass with respect to all components excluding the solvent in the photocurable composition.
  • the content is more preferably 0.1 to 4% by mass, and further preferably 1 to 3% by mass. Only one surfactant may be used, or two or more surfactants may be used in combination. When using 2 or more types of surfactant, the total amount becomes the said range.
  • a low release force can be achieved even in an embodiment that does not substantially contain a surfactant.
  • it is preferably 0.001% by mass or less, and more preferably 0.0001% by mass or less, based on the total mass of the photocurable composition of the present invention.
  • the photocurable composition of the present invention if necessary, a photosensitizer, an antioxidant, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, an adhesion promoter, Thermal polymerization initiator, photobase generator, colorant, inorganic particles, elastomer particles, basic compound, photoacid generator, photoacid growth agent, chain transfer agent, antistatic agent, flow regulator, antifoaming agent, dispersion An agent or the like may be included.
  • Specific examples of such components include those described in JP-A-2008-105414, paragraph numbers 0092 to 0093 and paragraph numbers 0113 to 0137, the contents of which are incorporated herein.
  • the corresponding descriptions in WO 2011/126101 pamphlet, WO 2013/051735 pamphlet, JP 2012-041521 A and JP 2013-093552 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a polymer preferably a non-polymerizable polymer having a weight average molecular weight of more than 1000, more preferably a weight average molecular weight of more than 2000, and still more preferably a weight average molecular weight of 10,000 or more. It can also be set as the aspect which does not contain. “Containing substantially no polymer” means, for example, that the polymer content is 5% by mass or less and 3% by mass or less with respect to all components except the solvent of the photocurable composition of the present invention. 1% by mass or less.
  • the photocurable composition of the present invention may contain a solvent.
  • the content of the solvent in the photocurable composition of the present invention is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably substantially no solvent.
  • substantially not containing a solvent means, for example, 1% by mass or less based on the total mass of the photocurable composition of the present invention.
  • the photocurable composition of the present invention is applied on a substrate by an ink jet method, it is preferable that the amount of the solvent is small because a change in the viscosity of the composition accompanying the volatilization of the solvent can be suppressed.
  • the photocurable composition may contain only 1 type of solvent, and may contain 2 or more types.
  • the photocurable composition of the present invention does not necessarily contain a solvent, but may be optionally added when finely adjusting the viscosity of the composition.
  • the kind of solvent that can be preferably used in the photocurable composition of the present invention is a solvent that is generally used in a photocurable composition for imprints or a photoresist, and dissolves and uniformly disperses the compound used in the present invention. It is not particularly limited as long as it can be used and it does not react with these components. Examples of the solvent that can be used in the present invention include those described in paragraph No. 0088 of JP-A-2008-105414, the contents of which are incorporated herein.
  • Onishi P is preferably 3.6 or less, and more preferably 3.3 or less. According to this aspect, it is easy to form a cured film that is less likely to be disconnected after etching.
  • the lower limit value of Onishi P is not particularly defined, but for example, 2.5 or more, and further 2.8 or more is sufficiently practical.
  • the glass transition temperature (Tg) of the cured film of the photocurable composition of the present invention is preferably 85 ° C. or higher, and more preferably 105 ° C. or higher. According to this aspect, it is easy to form a cured film in which deformation of the line width roughness after etching hardly occurs.
  • the upper limit value of Tg is not particularly defined, but can be, for example, 170 ° C. or lower, and further 160 ° C. or lower.
  • the glass transition temperature of the cured film in the present invention is a value measured by the following method. A photocurable composition is sandwiched between quartz plates, a high pressure mercury lamp is used as a light source, UV cured under conditions of a wavelength of 300 to 400 nm, an illuminance of 10 mW / cm 2 , and an exposure time of 100 seconds, and a strip having a thickness of 150 ⁇ m and a width of 5 mm.
  • a cured film as a sample is prepared, and a strip sample is obtained using a dynamic viscoelasticity measuring device under conditions of a distance between chucks of 20 mm, a temperature range of 20 ° C. to 220 ° C., a temperature rising rate of 5 ° C./min, and a frequency of 1 Hz.
  • the dynamic viscoelasticity is measured in the tension sine wave mode, and the maximum temperature of the obtained loss tangent curve is defined as the glass transition temperature.
  • the photocurable composition of the present invention preferably has a viscosity of 5.5 to 15.0 mPa ⁇ s at 23 ° C.
  • the lower limit is more preferably 6.0 mPa ⁇ s or more, still more preferably 6.5 mPa ⁇ s or more, and even more preferably 7.0 mPa ⁇ s or more.
  • the upper limit is, for example, preferably 12.5 mPa ⁇ s or less, more preferably 11.8 mPa ⁇ s or less, still more preferably 10.5 mPa ⁇ s or less, even more preferably 9.0 mPa ⁇ s or less, and 8.5 mPa ⁇ s or less. Even more preferably s or less.
  • the value of the viscosity in this invention is the value measured by the method as described in the Example mentioned later.
  • the photocurable composition of the present invention preferably has a surface tension of 27 to 33 mN / m at 23 ° C.
  • the lower limit is more preferably 28 mN / m or more, and further preferably 29 mN / m or more.
  • the upper limit is more preferably 32 mN / m or less, and still more preferably 31 mN / m or less.
  • the value of the surface tension in this invention is a value measured by the method as described in the Example mentioned later.
  • the photocurable composition of the present invention can be prepared by mixing the above-described components.
  • the mixing of each component is usually performed in the range of 0 ° C to 100 ° C.
  • the filtered liquid can also be refiltered. Any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • fluororesins such as PTFE (polytetrafluoroethylene), polyamide resins such as nylon-6 and nylon-6, 6, polyolefin resins such as polyethylene and polypropylene (PP) (polyolefin resins with high density and ultra high molecular weight)
  • a filter using a material such as a material such as
  • polypropylene (including high density polypropylene) and nylon are preferable.
  • the pore size of the filter is suitably about 0.003 to 5.0 ⁇ m, for example. By setting it within this range, it becomes possible to reliably remove fine foreign matters such as impurities and aggregates contained in the composition while suppressing filtration clogging.
  • filters different filters may be combined.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent pore diameters are the same or smaller than the pore diameter of the first filtering.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the photocurable composition of the present invention can be used as a UV ink or a UV adhesive. Further, it can be used as a material for producing a recording medium such as an optical disk, and an optical component such as an antireflection film, a color filter, a diffraction grating, a relief hologram, a microlens array, and an optical waveguide. Furthermore, it can be used as a resist material for manufacturing semiconductor integrated circuits, micro electro mechanical systems (MEMS), sensor elements, imprint molds, bit patterned media (BPM), and the like. Since the photocurable composition of the present invention has excellent etching resistance, it is particularly suitable as a resist material for imprint lithography. Further, the photocurable composition of the present invention is particularly suitable as a photocurable composition for imprinting for UV (ultraviolet) inkjet ink or inkjet coating because of its excellent inkjet ejection accuracy.
  • UV ultraviolet
  • the pattern forming method of the present invention includes a step of applying the photocurable composition of the present invention on a substrate or a mold having a pattern, and the photocurable composition is applied to the mold and the above.
  • a method for applying the photocurable composition of the present invention on a substrate or a mold having a pattern generally known methods such as a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, By using a gravure coating method, an extrusion coating method, a spin coating method, a slit scanning method, an ink jet method, or the like, a coating film, droplets, or the like can be disposed on the substrate.
  • the photocurable composition of the present invention is excellent in inkjet ejection accuracy, it is suitable for the inkjet method.
  • helium gas may be introduced between the mold and the substrate.
  • a condensable gas may be introduced between the mold and the substrate instead of helium.
  • the condensable gas refers to a gas that condenses due to temperature or pressure, and for example, trichlorofluoromethane, 1,1,1,3,3-pentafluoropropane, or the like can be used.
  • the condensable gas for example, the description in paragraph 0023 of JP-A-2004-103817 and paragraph 0003 of JP-A-2013-247883 can be referred to, and the contents thereof are incorporated in the present specification.
  • the exposure illuminance is preferably in the range of 1 to 200 mW / cm 2 .
  • the exposure time can be shortened, so that productivity is improved.
  • the exposure dose is desirably in the range of 5 to 1000 mJ / cm 2 .
  • an inert gas such as nitrogen, helium, argon, carbon dioxide or the like to control the oxygen concentration in the atmosphere to 10 kPa or less. More preferably, the oxygen concentration in the atmosphere is 3 kPa or less, more preferably 1 kPa or less.
  • the pattern forming method of the present invention may include a step of further curing the cured pattern by applying heat, if necessary, after curing the photocurable composition of the present invention by light irradiation.
  • the heating temperature is preferably 150 to 280 ° C, more preferably 200 to 250 ° C.
  • the heating time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • Specific examples of the pattern forming method include those described in JP-A-2012-169462, paragraph numbers 0125 to 0136, the contents of which are incorporated herein.
  • the pattern forming method of the present invention can be applied to a pattern inversion method. Specifically, a resist pattern is formed on a substrate to be processed having a carbon film (SOC (Spin On Carbon)) by the pattern forming method of the present invention. Next, after covering the resist pattern with a Si-containing film (SOG (Spin on Glass)), the upper part of the Si-containing film is etched back to expose the resist pattern, and the exposed resist pattern is exposed to oxygen plasma or the like. By removing, an inverted pattern of the Si-containing film is formed. Furthermore, the reverse pattern of the Si-containing film is transferred to the carbon film by etching the carbon film underneath using the reverse pattern of the Si-containing film as an etching mask.
  • SOC Spin On Carbon
  • the substrate is etched using the carbon film to which the reverse pattern is transferred as an etching mask.
  • a method reference can be made to paragraphs 0016 to 0030 of JP-A-5-267253, JP-A-2002-110510, JP-T 2006-521702, and JP-T 2010-541193. This content is incorporated herein.
  • the pattern forming method of the present invention includes a step of applying a lower layer film composition on a substrate to form a lower layer film, a step of applying the photocurable composition of the present invention to the surface of the lower layer film, and a photocurable property of the present invention.
  • the composition and the lower layer film may be irradiated with light in a state of being sandwiched between the substrate and the mold having the pattern, and may include a step of curing the photocurable composition of the present invention and a step of peeling the mold. .
  • a part of the lower layer film composition may be cured by heat or light irradiation, and then the photocurable composition of the present invention may be applied.
  • Examples of the lower layer film composition include a composition containing a curable main agent.
  • the curable main agent may be thermosetting or photocurable, and is preferably thermosetting.
  • the molecular weight of the curable main agent is preferably 400 or more.
  • the curable main agent may be a low molecular compound or a polymer, but a polymer is preferred.
  • the molecular weight of the curable main agent is preferably 500 or more, more preferably 1000 or more, and still more preferably 3000 or more.
  • the upper limit of the molecular weight is preferably 200000 or less, more preferably 100000 or less, and still more preferably 50000 or less.
  • R is an alkyl group
  • L 1 and L 2 are each a divalent linking group
  • P is a polymerizable group
  • n is an integer of 0 to 3.
  • R is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
  • L 1 is preferably an alkylene group, more preferably an alkylene group having 1 to 3 carbon atoms, and still more preferably —CH 2 —.
  • L 2 is preferably a divalent linking group consisting of —CH 2 —, —O—, —CHR (R is a substituent) —, and combinations of two or more thereof.
  • R is preferably an OH group.
  • P is preferably a (meth) acryloyl group, more preferably an acryloyl group.
  • n is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • Examples of commercially available products include NK Oligo EA-7140 / PGMAc (manufactured by Shin-Nakamura Chemical Co., Ltd.). Further, for example, those described in paragraph Nos. 0040 to 0056 of JP-T-2009-503139 can be cited, and the contents thereof are incorporated in the present specification.
  • the content of the curable main agent is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more in all components excluding the solvent of the lower layer film composition.
  • the upper limit is not particularly defined, but may be 100% by mass. Two or more curable main agents may be used, and in this case, the total amount is preferably within the above range.
  • the underlayer film composition preferably contains a solvent.
  • a preferable solvent is a solvent having a boiling point of 80 to 200 ° C. at normal pressure. Any solvent can be used as long as it can dissolve the lower layer film composition, but a solvent having any one or more of an ester structure, a ketone structure, a hydroxyl group, and an ether structure is preferable.
  • preferred solvents are propylene glycol monomethyl ether acetate, cyclohexanone, 2-heptanone, gamma butyrolactone, propylene glycol monomethyl ether, ethyl lactate alone or mixed solvents, and solvents containing propylene glycol monomethyl ether acetate Is particularly preferable from the viewpoint of coating uniformity.
  • the content of the solvent in the lower layer film composition is optimally adjusted according to the viscosity of the component excluding the solvent, the coating property, and the target film thickness, but from the viewpoint of improving the coating property, 70% by mass in the lower layer film composition. % Or more, preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more.
  • the upper limit is not particularly defined, but can be, for example, 99.9% by mass or less.
  • the lower layer film composition may contain at least one of a surfactant, a thermal polymerization initiator, a polymerization inhibitor, and a catalyst as other components. As these compounding quantities, 50 mass% or less is preferable with respect to all the components except a solvent.
  • a surfactant for example, the compositions described in paragraph numbers 0017 to 0054 of JP-A-2014-192178 and paragraph numbers 0017 to 0068 of JP-A-2014-024322 can be used. The contents are incorporated herein.
  • the underlayer film composition can be prepared by mixing the above-described components. Further, after mixing the above-mentioned components, it is preferable to filter with a filter having a pore size of 0.003 ⁇ m to 5.0 ⁇ m, for example. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can also be refiltered. Examples of the filter include those described in the preparation of the photocurable composition described above.
  • Examples of the coating method of the lower layer film composition include a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spin coating method, a slit scanning method, and an inkjet method. Is mentioned. It is preferable to dry after applying the lower layer film composition on the substrate.
  • a preferred drying temperature is 70 ° C to 130 ° C.
  • further curing is performed by active energy (preferably heat and / or light). Heat curing is preferably performed at a temperature of 150 ° C. to 250 ° C. You may perform the process of drying a solvent, and the process of hardening
  • the thickness of the lower layer film varies depending on the application to be used, but is about 0.1 nm to 100 nm, preferably 1 to 20 nm, more preferably 2 to 10 nm. Further, the underlayer film composition may be applied by multiple coating. The obtained underlayer film is preferably as flat as possible.
  • the base material can be selected depending on various applications, for example, quartz, glass, optical film, ceramic material, vapor deposition film, magnetic film, reflection film, metal such as Ni, Cu, Cr, Fe, etc.
  • Base materials polymer base materials such as paper, polyester film, polycarbonate film, polyimide film, thin film transistor (TFT) array base materials, plasma display (PDP) electrode plates, ITO (Indium Tin Oxide) and conductive base materials such as metals Insulating base materials such as glass and plastic, semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, amorphous silicon, SOG (Spin On Glass) and SOC (Spin On Carbon) are not particularly limited.
  • the pattern formed by the pattern forming method of the present invention can be used as a permanent film used for a liquid crystal display (LCD) or the like, or as an etching resist for semiconductor processing.
  • a semiconductor integrated circuit a micro electro mechanical system (MEMS), a recording medium such as an optical disk or a magnetic disk, a light receiving element such as a solid-state imaging element, a light emitting element such as a light emitting diode (LED) or an organic electroluminescence (EL), etc.
  • MEMS micro electro mechanical system
  • a recording medium such as an optical disk or a magnetic disk
  • a light receiving element such as a solid-state imaging element
  • a light emitting element such as a light emitting diode (LED) or an organic electroluminescence (EL)
  • LED light emitting diode
  • EL organic electroluminescence
  • Flat panel display members such as optical devices, diffraction gratings, relief holograms, optical waveguides, optical filters, microlens arrays, etc., thin film transistors, organic transistors, color filters, antireflection films, polarizing elements, optical films, pillar materials, etc. , Nanobiodevice, immunoassay chip, deoxyribonucleic acid (DNA) separation chip, microreactor, photonic liquid crystal, guide for self-assembly of block copolymer (directed self-assembly, DSA) It can be preferably used for producing a pattern or the like. Moreover, the pattern obtained using the photocurable composition of the present invention also has good solvent resistance.
  • the pattern preferably has high resistance to a solvent, but it is particularly preferable that the film thickness does not change when immersed in a solvent used in a general substrate manufacturing process, for example, an N-methylpyrrolidone solvent at 25 ° C. for 10 minutes. .
  • the pattern formed by the pattern forming method of the present invention is particularly useful as an etching resist.
  • a nano-order fine pattern is formed on a substrate by the pattern forming method of the present invention.
  • a desired pattern can be formed on the substrate by etching using an etching gas such as hydrogen fluoride in the case of wet etching or CF 4 in the case of dry etching.
  • the photocurable composition of the present invention has good etching resistance against dry etching using fluorocarbon or the like.
  • the device manufacturing method of the present invention includes the pattern forming method described above. That is, this invention discloses the manufacturing method of a device including the process of etching the said base material using the pattern produced with the said pattern formation method as a mask.
  • the pattern may be included in the device as a permanent film.
  • the substrate can be etched using the pattern as an etching mask. For example, dry etching is performed using the pattern as an etching mask, and the upper layer portion of the substrate is selectively removed.
  • a device can also be manufactured by repeating such a process on the substrate. Examples of the device include semiconductor devices such as LSI (large-scale integrated circuit).
  • Onishi P total number of atoms / (number of carbon atoms ⁇ number of oxygen atoms) (1)
  • Tg homopolymer glass transition temperature
  • V-65 Waako Pure Chemical Industries
  • Tg measurement a differential scanning calorimeter (DSC Q1000 manufactured by TA Instruments) was used. About 2 mg of a Tg measurement sample was packed in an aluminum pan, measured with a differential scanning calorimeter at a heating rate of 10 ° C./min, and the inflection point of the obtained DSC (Differential Scanning Calibration) curve was defined as Tg.
  • DSC Q1000 Different Scanning Calibration
  • R-1 Biscoat # 160 manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • R-2 Osaka Organic Chemical Industry Co., Ltd.
  • R-3 Aronix M-106 manufactured by Toagosei Co., Ltd.
  • R-4 Osaka Organic Chemical Industry Co., Ltd. Viscoat # 155
  • R-5 Osaka Organic Chemical Industry Co., Ltd.
  • IBXA R-6 MADA manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • R-7 NOAA made by Osaka Organic Chemical Industry Co., Ltd.
  • a polymerizable compound and a photopolymerization initiator shown in the following table are mixed, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical (manufactured by Tokyo Chemical Industry Co., Ltd.) is polymerized as a polymerization inhibitor. It was prepared by adding 200 ppm (0.02% by mass) with respect to the active compound. This was filtered through a polytetrafluoroethylene (PTFE) filter having a pore size of 0.1 ⁇ m to prepare a photocurable composition.
  • PTFE polytetrafluoroethylene
  • B1-1 m-xylylene diacrylate (synthesized from ⁇ , ⁇ '-dichloro-m-xylene and acrylic acid)
  • B1-2 o-xylylene diacrylate (synthesized from 1,2-benzenedimethanol and acryloyl chloride)
  • B1-3 trans-1,2-cyclohexanediol diacrylate (synthesized from trans-1,2-cyclohexanediol and acryloyl chloride)
  • B2-1 Light acrylate NP-A manufactured by Kyoeisha Chemical Co., Ltd.
  • B2-2 cis-2-butene-1,4-diol diacrylate (synthesized from cis-2-butene-1,4-diol and acryloyl chloride)
  • ⁇ Viscosity of photocurable composition The viscosity at 23 ° C. of the photocurable composition of the present invention and the comparative photocurable composition was measured at 23 ⁇ 0.1 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd. . The rotation speed at the time of measurement was as follows according to the viscosity. The results are shown in the column of “Viscosity (mPa ⁇ s)” in Tables 4 and 5.
  • Onishi P total number of atoms / (number of carbon atoms ⁇ number of oxygen atoms) (1) The results are shown in the column “Onishi P” in Tables 4 and 5.
  • ⁇ Glass transition temperature of cured film of photocurable composition (cured film Tg)> A photocurable composition is sandwiched between quartz plates and cured by ultraviolet (UV) curing (light source: high-pressure mercury lamp, wavelength: 300 to 400 nm, illuminance: 10 mW / cm 2 , exposure time: 100 s) (film thickness 150 ⁇ m) was made.
  • UV ultraviolet
  • DMS-6100 dynamic viscoelasticity measuring device
  • ⁇ Change in line width roughness ( ⁇ LWR)> A quartz mold having a line / space having a line width of 30 nm and a depth of 60 nm was used.
  • the photocurable composition was applied onto a silicon wafer using an inkjet apparatus (inkjet printer DMP-2831 manufactured by FUJIFILM Dimatix) and sandwiched between the molds in a helium atmosphere.
  • the film was exposed and cured under the condition of 100 mJ / cm 2 , and then the quartz mold was released to obtain a cured film pattern.
  • the resulting cured film pattern was exposed to a reactive ion etching atmosphere with an etching apparatus.
  • etching gas As the etching gas, a CHF 3 / CF 4 / Ar mixed gas was selected, and the sample was cooled to 20 ° C. during the etching. The upper surface of the pattern before and after etching was observed with a scanning electron microscope (SEM) (magnification: 100,000 times), and the line width roughness (LWR) was measured from the obtained image. The difference in LWR before and after etching ( ⁇ LWR) was calculated. The unit is nm. The results are shown in the “ ⁇ LWR” column of Tables 4 and 5.
  • ⁇ LWR (LWR after etching) ⁇ (LWR before etching) A: ⁇ LWR ⁇ 1.0 B: 1.0 ⁇ LWR ⁇ 2.5 C: 2.5 ⁇ LWR ⁇ 3.0 D: 3.0 ⁇ LWR
  • Inkjet (IJ) ejection accuracy On the silicon wafer, the photocurable composition adjusted to a temperature of 23 ° C. is ejected onto the silicon wafer with a droplet amount of 1 pl per nozzle using an ink jet printer DMP-2831 (manufactured by Fujifilm Dimatics). The droplets were applied so as to form a square array with a spacing of 100 ⁇ m. A 2500 mm square of 5 mm square of the coated substrate was observed, a deviation from the square arrangement was measured, and a standard deviation ⁇ was calculated. Inkjet ejection accuracy was evaluated as A to E as follows. The results are shown in the column of “IJ discharge accuracy” in Tables 4 and 5.
  • the photocurable compositions of Examples (X-1) to (X19) suppress both the disconnection of the pattern after etching and the deformation of the line width roughness ( ⁇ LWR) after the etching.
  • the photocurable compositions of Comparative Examples (Y-2), (Y-4), (Y-5), (Y-6), and (Y-7) are disconnected from the pattern after etching.
  • the photocurable compositions of Comparative Examples (Y-1), (Y-2), (Y-3), (Y-4), and (Y-7) have large ⁇ LWR, and the line after etching The deformation of width roughness could not be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

エッチング後のパターンの変形(ライン幅ラフネスの変化(ΔLWR))およびエッチング後のパターンの断線の両者の抑制が可能な光硬化性組成物、パターン形成方法およびデバイスの製造方法を提供する。 下記一般式(I)で表される単官能(メタ)アクリレートと、光重合開始剤とを含有する、光硬化性組成物;式中、Rは、水素原子またはメチル基を表し、Rは、フッ素原子で置換されていてもよいアルキル基を表し、Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表し、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;RとRに含まれる炭素原子数の合計は、1~6である; RとR、または、RとRは、互いに結合して環を形成していても良い。

Description

光硬化性組成物、パターン形成方法およびデバイスの製造方法
 本発明は、光硬化性組成物に関する。また、光硬化性組成物を用いた、パターン形成方法およびデバイスの製造方法に関する。
 インプリント法は、光ディスクの作製で知られているエンボス技術を発展させたもので、凹凸のパターンを形成した金型原器(一般的にモールド、スタンパ、テンプレートと呼ばれる)の微細パターンを精密に転写する技術である。モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返し成型できるために経済的であり、近年、さまざまな分野への応用が期待されている。
 インプリント法として、熱可塑性樹脂を用いる熱インプリント法(例えば、非特許文献1参照)と、光硬化性組成物を用いる光インプリント法(例えば、非特許文献2、非特許文献3参照)が提案されている。熱インプリント法は、ガラス転移温度以上に加熱した熱可塑性樹脂にモールドを高圧でプレスした後、ガラス転移温度以下に冷却してからモールドを剥離することで微細構造を樹脂に転写するものである。
 一方、光インプリント法は、光硬化性組成物を基板とモールドで挟持した状態で、光透過性モールドまたは光透過性基板を通して紫外線(UV)露光して光硬化性組成物を硬化させた後、モールドを剥離することで微細パターンを硬化物に転写するものである。この方法は、室温でのインプリントが可能になるため、半導体集積回路の作製などの超微細パターンの精密加工分野に応用することができる。
 インプリントパターンをエッチングマスクに用いて基板を微細加工する方法は、ナノインプリントリソグラフィー(NIL)と呼ばれ、開発が進められている(例えば、特許文献1、特許文献2参照)。
 一方、非特許文献4には、レジスト材料のエッチングレートは、大西パラメータ(大西P)と相関関係があることが記載されている。
特開2010-159369号公報 特開2010-186979号公報
S. Chou et al., Appl. Phys. Lett. 67, 3114 (1995) J. Haisma et al., J. Vac. Sci. Technol. B 14(6), 4124 (1996) M. Colbun et al., Proc. SPIE 3676, 379 (1999) J. Electrochem. Soc. 130, 143 (1983)
 ここで、近年、半導体用途など、ドライエッチング加工する用途に用いられるインプリント用光硬化性組成物は、エッチング後のパターンの変形(ライン幅ラフネスの変化(ΔLWR))およびエッチング後のパターンの断線の両者の抑制が求められる傾向にある。しかしながら、従来の光硬化性組成物は、この点が必ずしも十分とは言えなかった。
 本発明はかかる課題を解決することを目的としたものであって、エッチング後のパターンの変形(ΔLWR)およびエッチング後のパターンの断線の両者の抑制が可能な光硬化性組成物を提供することを目的とする。
 かかる状況のもと本発明者らが鋭意検討を行った結果、後述する特定の単官能の(メタ)アクリレートを用いることで上記目的を達成できることを見出し、本発明を完成させるに至った。具体的には、下記手段<1>により、好ましくは<2>~<14>により、上記課題は解決された。
<1>下記一般式(I)で表される単官能(メタ)アクリレートと、光重合開始剤とを含有する、光硬化性組成物;
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、水素原子またはメチル基を表し、
 Rは、フッ素原子で置換されていてもよいアルキル基を表し、 
 Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
 RとRに含まれる炭素原子数の合計は、1~6である;
 RとR、または、RとRは、互いに結合して環を形成していても良い。
<2>上記一般式(I)において、Rが炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基である、<1>に記載の光硬化性組成物。
<3>上記一般式(I)において、Rが水素原子である、<1>または<2>に記載の光硬化性組成物。
<4>上記一般式(I)において、RおよびRが、それぞれ独立に、フッ素原子で置換されていてもよいメチル基である、<1>または<2>に記載の光硬化性組成物。
<5>上記単官能(メタ)アクリレートが、下記一般式(II)で表される、<1>または<2>に記載の光硬化性組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは、水素原子またはメチル基を表し、
 Lは、直鎖のアルキレン基または分岐のアルキレン基を表し、
 R32は、水素原子、直鎖のアルキル基または分岐のアルキル基を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
 LとR32に含まれる炭素原子数の合計は、1~6である。
<6>上記単官能(メタ)アクリレートを、光硬化性組成物中の溶剤を除く全成分に対して20~80質量%含有する、<1>~<5>のいずれかに記載の光硬化性組成物。
<7>さらに多官能(メタ)アクリレートを、光硬化性組成物中の溶剤を除く全成分に対して20~79質量%含有する、<1>~<6>のいずれかに記載の光硬化性組成物。
<8>上記多官能(メタ)アクリレートが、芳香族基を有する、<7>に記載の光硬化性組成物。
<9>上記光硬化性組成物の大西パラメータが3.6以下であり、上記光硬化性組成物の硬化膜のガラス転移温度が85℃以上である、<1>~<8>のいずれかに記載の光硬化性組成物;但し、硬化膜のガラス転移温度は、以下の方法で測定した値である;
 光硬化性組成物を石英板に挟み、光源として高圧水銀ランプを用い、波長300~400nm、照度10mW/cm、露光時間100秒の条件で紫外線硬化して、膜厚150μm、幅5mmの短冊サンプルである硬化膜を作製し、短冊サンプルを、動的粘弾性測定装置を用いて、チャック間距離20mm、温度範囲20℃~220℃、昇温速度5℃/分、周波数1Hzの条件で、引っ張り正弦波モードにて動的粘弾性を測定し、得られた損失正接曲線の極大値の温度を、ガラス転移温度とする;
 大西パラメータは、以下の数式(1)で表される値である;
大西パラメータ=全原子数/(炭素原子数-酸素原子数)・・・(1)。
<10>上記光硬化性組成物の23℃における粘度が5.5~15.0mPa・sである、<1>~<9>のいずれかに記載の光硬化性組成物。
<11>インプリント用である、<1>~<10>のいずれかに記載の光硬化性組成物。
<12><1>~<11>のいずれかに記載の光硬化性組成物を、基材上またはパターンを有するモールド上に適用する工程と、
 上記光硬化性組成物を上記モールドと上記基材とで挟持する工程と、
 上記光硬化性組成物を上記モールドと上記基材とで挟持した状態で光照射して、上記光硬化性組成物を硬化させる工程と、
 上記モールドを剥離する工程とを含む、パターン形成方法。
<13>上記光硬化性組成物を、インクジェット法により、上記基材上または上記パターンを有するモールド上に適用する、<12>に記載のパターン形成方法。
<14><12>または<13>に記載のパターン形成方法で作製したパターンをマスクとして、上記基材をエッチングする工程を含む、デバイスの製造方法。
 本発明によれば、エッチング後のパターンの変形(ライン幅ラフネスの変化(ΔLWR))およびエッチング後のパターンの断線の両者の抑制が可能な光硬化性組成物、パターン形成方法およびデバイスの製造方法を提供することが可能になった。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを表し、「(メタ)アクリル」は、アクリルおよびメタクリルを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルを表す。
 本明細書において「インプリント」は、好ましくは、1nm~100μmのサイズのパターン転写をいい、より好ましくは、10nm~1μmのサイズ(ナノインプリント)のパターン転写をいう。
 本明細書中の基(原子団)の表記において、後述する一般式(I)および(II)で表される単官能(メタ)アクリレートを除き、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「光」には、紫外、近紫外、遠紫外、可視、赤外等の領域の波長の光や、電磁波だけでなく、放射線も含まれる。放射線には、例えばマイクロ波、電子線、極端紫外線(EUV)、X線が含まれる。また248nmエキシマレーザー、193nmエキシマレーザー、172nmエキシマレーザーなどのレーザー光も用いることができる。これらの光は、光学フィルタを通したモノクロ光(単一波長光)でもよいし、複数の波長の異なる光(複合光)でもよい。
 本明細書において、数平均分子量(Mn)は、特に述べない限り、ゲルパーミエーションクロマトグラフィー(GPC)測定でのポリスチレン換算値として定義される。本明細書において、数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、またはTSKgel Super HZ2000(全て、東ソー(株)製)を用いることによって求めることができる。溶離液は特に述べない限り、THF(テトラヒドロフラン)を用いて測定したものとする。また、検出は特に述べない限り、紫外線(UV)254nm検出器を使用したものとする。
光硬化性組成物
 本発明の光硬化性組成物は、下記一般式(I)で表される単官能(メタ)アクリレート(以下、「特定単官能(メタ)アクリレート」ということがある)と、光重合開始剤とを含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 式中、Rは、水素原子またはメチル基を表し、
 Rは、フッ素原子で置換されていてもよいアルキル基を表し、 
 Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
 RとRに含まれる炭素原子数の合計は、1~6である;
 RとR、または、RとRは、互いに結合して環を形成していても良い。
 このような構成とすることにより、エッチング後のパターンの変形(ΔLWR)およびエッチング後のパターンの断線の両者の抑制が可能な光硬化性組成物が得られる。
 インプリントに用いる光硬化性組成物には、一般的には、基板上への適用性(例えば、インクジェット吐出性)やインプリント適性(例えば、充填性、離型性)などが求められる。さらに、上述のとおり、半導体用途など、ドライエッチング加工する用途については、エッチング耐性も要求される。エッチング耐性としては、エッチング加工条件において、エッチングレートが低いこと、および、エッチング後のパターンの変形が生じないことが必要である。レジストパターンのエッチングレートが高いと、被加工基板とのエッチング選択比を十分に確保できず、エッチング後のパターンに断線が生じる。
 ここで、従来の光硬化性組成物は、低エッチングレートとエッチング後のパターンの変形(ΔLWR)の抑制とを両立することについて必ずしも十分ではなかった。
 かかる状況のもと、本発明では、単官能(メタ)アクリレートである、一般式(I)のRおよびRの部分に所定の構造を採用することによって、低大西Pと得られる硬化膜の高ガラス転移温度(Tg)とを両立し、エッチング後のパターンの断線および変形の両者の抑制に成功したものである。
 以下、本発明の光硬化性組成物の各成分について説明する。
<一般式(I)で表される単官能(メタ)アクリレート>
 本発明の光硬化性組成物は、一般式(I)で表される単官能(メタ)アクリレートを含有する。
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、水素原子またはメチル基を表し、
 Rは、フッ素原子で置換されていてもよいアルキル基を表し、 
 Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
 RとRに含まれる炭素原子数の合計は、1~6である;
 RとR、または、RとRは、互いに結合して環を形成していても良い。
 一般式(I)において、Rは、水素原子またはメチル基を表す。反応性の観点から、Rは、水素原子が好ましい。
 一般式(I)において、Rは、フッ素原子で置換されていてもよいアルキル基を表す。
 アルキル基は、直鎖、分岐、環状のいずれであってもよい。
 直鎖のアルキル基の炭素数は、1~6が好ましい。分岐のアルキル基の炭素数は、3~6が好ましい。直鎖または分岐のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられ、シクロプロピル基、シクロブチル基、シクロペンチル基がより好ましい。
 また、これらのアルキル基は、フッ素原子で置換されていない方が好ましいが、フッ素原子で置換されていてもよい。すなわち、アルキル基が有する水素原子の一部または全部がフッ素原子で置換されていてもよい。アルキル基がフッ素原子で置換されている場合、アルキル基は、直鎖、分岐、環状のいずれのアルキル基であっても良いが、直鎖または分岐のアルキル基が好ましく、直鎖のアルキル基がより好ましい。また、アルキル基がフッ素原子で置換されている場合、アルキル基が有する全ての水素原子がフッ素原子で置換された、パーフルオロアルキル基であることが好ましい。パーフルオロアルキル基としては、トリフルオロメチル基が挙げられる。
 Rは、これらの中でも、メチル基、トリフルオロメチル基が好ましく、メチル基が特に好ましい。
 一般式(I)において、Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表す。
 直鎖のアルキル基の炭素数は、1~5が好ましい。分岐のアルキル基の炭素数は、3~5が好ましい。
 直鎖または分岐のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ペンチル基等が挙げられる。直鎖または分岐のアルキル基は、フッ素原子で置換されていない方が好ましいが、フッ素原子で置換されていてもよい。アルキル基がフッ素原子で置換されている場合、アルキル基は、直鎖、分岐のいずれのアルキル基であっても良いが、直鎖のアルキル基が好ましい。また、アルキル基がフッ素原子で置換されている場合、パーフルオロアルキル基であることが好ましい。パーフルオロアルキル基としては、トリフルオロメチル基が好ましい。
 Rは、これらの中でも、水素原子、メチル基、トリフルオロメチル基が好ましく、水素原子が特に好ましい。
 一般式(I)において、RとRに含まれる炭素原子数の合計は、1~6であり、1~5であることが好ましく、1~4であることがより好ましい。このような範囲とすることにより、粘度をより低くすることができ、エッチング後のパターンの断線をより効果的に抑制することが可能になる。
 一般式(I)において、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す。
 ハロゲン原子としては、塩素原子またはフッ素原子が好ましく、フッ素原子がより好ましい。
 上記直鎖または分岐のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基が挙げられる。これらの中でも、水素原子またはメチル基が好ましい。
 一般式(I)において、RとR、または、RとRは、互いに結合して環を形成していても良い。
 RとRが互いに結合して形成される環としては、炭素数3~6の環が好ましく、炭素数4~6の環がより好ましい。RとRが互いに結合して形成される環の具体例としては、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 RとRが互いに結合して環を形成する場合、一般式(I)で表わされる単官能(メタ)アクリレートが、後述する一般式(II)で表されることが好ましい。
 本発明における一般式(I)で表わされる単官能(メタ)アクリレートの好ましい実施形態の一例として、RおよびRが、それぞれ独立に、フッ素原子で置換されていても良いメチル基である態様が例示される。本態様において、R~Rが、水素原子であることが好ましい。
 本発明における一般式(I)で表わされる単官能(メタ)アクリレートの好ましい実施形態の他の一例として、Rは炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基であり(より好ましくは、Rはメチル基であり)、R~Rは水素原子であり、Rは水素原子またはメチル基である態様が例示される。
 本発明における一般式(I)で表わされる単官能(メタ)アクリレートの好ましい実施形態の他の一例として、R~Rが、水素原子である態様が例示される。
 一般式(I)で表わされる単官能(メタ)アクリレートの好ましい実施形態の他の一例として、一般式(II)で表される単官能(メタ)アクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式中、Rは、水素原子またはメチル基を表し、
 Lは、直鎖のアルキレン基または分岐のアルキレン基を表し、
 R32は、水素原子、直鎖のアルキル基または分岐のアルキル基を表し、
 R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
 LとR32に含まれる炭素原子数の合計は、1~6である。
 一般式(II)において、Rの好ましい範囲は、一般式(I)におけるRと同様である。
 一般式(II)において、R32は、水素原子、直鎖のアルキル基または分岐のアルキル基を表し、水素原子が好ましい。直鎖のアルキル基の炭素数は、1~5が好ましい。分岐のアルキル基の炭素数は、3~5が好ましい。直鎖または分岐のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ペンチル基等が挙げられる。
 また、一般式(II)において、R~Rの好ましい範囲は、それぞれ独立に、一般式(I)におけるR~Rと同様である。
 一般式(II)において、Lは、直鎖または分岐のアルキレン基を表す。アルキレン基の炭素数は、1~6であり、1~4が好ましい。アルキレン基は直鎖のアルキレン基であることが好ましい。
 アルキレン基の具体例としては、メチレン基、エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,1-ジメチルエチレン基等が挙げられる。これらの中でも、エチレン基がより好ましい。
 一般式(I)で表される単官能(メタ)アクリレートの分子量は、175~500が好ましく、190~250がより好ましい。
 また、一般式(I)で表される単官能(メタ)アクリレートの25℃における粘度は、3~50mPa・sであることが好ましく、4~20mPa・sであることがより好ましく、7~10mPa・sであることがさらに好ましい。このような範囲とすることにより、インクジェット吐出精度をより向上させることができる。粘度の測定方法は、後述する実施例に記載の方法に従う。実施例で用いられる測定機器等が廃版等の場合、他の同等の性能を有する機器を使用することができる。以下、他の測定方法についても同様である。
 一般式(I)で表される単官能(メタ)アクリレートの大西Pは、3.2以下が好ましく、3.0以下がより好ましく、2.9以下がさらに好ましく、2.8以下が一層好ましい。
 一般式(I)で表される単官能(メタ)アクリレートのホモポリマーのTgは、25℃以上であることが好ましく、45℃以上であることがより好ましく、65℃以上であることがさらに好ましい。本発明では、一般式(I)で表される単官能(メタ)アクリレートの大西Pを低く保ちつつ、得られるホモポリマーのTgを比較的高くできるので、光硬化性組成物の低大西Pと得られる硬化膜の高Tgを両立でき、エッチング耐性に優れた光硬化性組成物が得られる。
 ホモポリマーのTgの測定方法は、後述する実施例で規定する方法に従う。
 一般式(I)で表される単官能(メタ)アクリレートの具体例としては、以下の(メタ)アクリレートを挙げることができる。本発明がこれらに限定されるものではないことは言うまでもない。
Figure JPOXMLDOC01-appb-C000008
 本発明の光硬化性組成物における、一般式(I)で表される単官能(メタ)アクリレートの含有量は、光硬化性組成物中の溶剤を除く全成分に対して20~80質量%であることが好ましい。下限は、25質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%が特に好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましく、60質量%以下が特に好ましい。
 一般式(I)で表される単官能(メタ)アクリレートは、1種のみ含んでいても良いし、2種以上含んでいても良い。2種以上含む場合は、合計量が上記範囲となることが好ましい。
<脂肪族単官能(メタ)アクリレート>
 本発明の光硬化性組成物は、脂肪族単官能(メタ)アクリレートを含有していても良い。ここでいう脂肪族単官能(メタ)アクリレートは、後述する含フッ素単官能(メタ)アクリレートに該当するものは除く趣旨である。
 脂肪族単官能(メタ)アクリレートは、炭素数9~16の直鎖または分岐の脂肪族アルコールと、(メタ)アクリル酸とのエステルであることが好ましい。
 脂肪族単官能(メタ)アクリレートの分子量は、195~315が好ましく、210~285がより好ましく、225~270がさらに好ましい。
 脂肪族単官能(メタ)アクリレートの具体例としては、n-ノニル(メタ)アクリレート、i-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、i-デシル(メタ)アクリレート、2-プロピルヘプチル(メタ)アクリレート、n-ウンデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、2-ブチルオクチル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ヘキサデシル(メタ)アクリレートが挙げられる。これらの中でも、n-デシルアクリレート、2-プロピルヘプチルアクリレート、n-ウンデシルアクリレート、n-ドデシルアクリレート、2-ブチルオクチルアクリレート、n-トリデシルアクリレート、n-テトラデシルアクリレートが好ましく、n-ウンデシルアクリレート、n-ドデシルアクリレート、2-ブチルオクチルアクリレート、n-トリデシルアクリレート、n-テトラデシルアクリレートがより好ましく、n-ドデシルアクリレート、n-トリデシルアクリレート、またはn-テトラデシルアクリレートが特に好ましい。
 本発明の光硬化性組成物が脂肪族単官能(メタ)アクリレートを含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して5~30質量%であることが好ましく、10~25質量%がより好ましく、15~20質量%がさらに好ましい。
 本発明の光硬化性組成物は、また、脂肪族単官能(メタ)アクリレートを実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、本発明の光硬化性組成物に含まれる全重合性化合物の5質量%以下、さらには3質量%以下、特には、1質量%以下であることをいう。
 脂肪族単官能(メタ)アクリレートは、1種のみ含んでいても良いし、2種以上含んでいても良い。2種以上含む場合は、合計量が上記範囲となることが好ましい。
<含フッ素単官能(メタ)アクリレート>
 本発明の光硬化性組成物は、フッ素原子を含む単官能(メタ)アクリレートをさらに含有しても良い。ただしここで説明するフッ素原子を含む単官能(メタ)アクリレートには、一般式(I)で表される化合物は含まないものとする。
 含フッ素単官能(メタ)アクリレートの分子量は、300~600が好ましく、350~550がより好ましく、400~500がさらに好ましい。
 含フッ素単官能(メタ)アクリレートは、下記一般式(IV)で表される含フッ素(メタ)アクリレートであることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、Rは、水素原子またはメチル基を表し、Rfは、アルキル基の水素原子の少なくとも一つがフッ素原子で置換された、炭素数1~9の含フッ素アルキル基を表し、Lは、単結合、-O-、-OC(=O)-、または、-C(=O)O-を表し、nは、0~8の整数を表す。
 一般式(IV)において、Rは、水素原子またはメチル基を表す。反応性の観点から、Rは、水素原子が好ましい。
 一般式(IV)において、Rfは、アルキル基の水素原子の少なくとも一つがフッ素原子で置換された、炭素数1~9の含フッ素アルキル基を表す。Rfは、直鎖状、分岐状および環状のいずれであってもよいが、直鎖状または分岐状が好ましく、直鎖状がより好ましい。 なお、本明細書において、「アルキル基の水素原子の少なくとも一つがフッ素原子で置換された、炭素数1~9の含フッ素アルキル基」とは、フッ素原子を置換基として含む炭素数1~9のアルキル基を意味し、アルキル基の水素原子をフッ素原子で置換して合成した基のみに限定されるものではない。
 Rfの炭素数は、2~9が好ましく、4~9がより好ましく、5~8がさらに好ましく、6~8が特に好ましい。
 Rfのフッ素原子の置換率は、40~100%であることが好ましく、50~90%であることがより好ましく、65~85%であることがさらに好ましい。この態様によれば、モールド離型性を向上できる。フッ素原子の置換率とは、炭素数1~9のアルキル基が有する全水素原子の数のうち、フッ素原子に置換されている数の比率(%)をいう。
 Rfは、炭素数4~6のパーフルオロアルキル基と炭素数1~3のアルキレン基からなる含フッ素アルキル基、または、炭素数4~6のω-H-パーフルオロアルキル基と炭素数1~3のアルキレン基からなる含フッ素アルキル基が好ましく、炭素数4~6のパーフルオロアルキル基と炭素数1~3のアルキレン基からなる含フッ素アルキル基がより好ましい。
 Rfの具体例としては、CFCH-、CFCFCH-、CF(CFCH-、CF(CFCHCH-、CF(CFCHCHCH-、CF(CFCH-、CF(CFCHCH-、CF(CFCHCHCH-、(CFCH-、(CFC(CH)CH-、(CFCF(CFCHCH-、(CFCF(CFCHCH-、H(CFCH-、H(CFCH-、H(CFCH-、H(CFCH-等が挙げられる。これらの中でも、CF(CFCH-、CF(CFCH-、CF(CFCHCH-、CF(CFCHCHCH-、H(CFCH-が好ましく、CF(CFCHCH-またはCF(CFCHCHCH-がより好ましく、CF(CFCHCH-が特に好ましい。
 一般式(IV)において、Lは、単結合、-O-、-OC(=O)-、または、-C(=O)O-を表し、単結合または-O-が好ましい。
 Lが、-O-、-OC(=O)-、または、-C(=O)O-の場合、nは、1~5が好ましく、1~3がより好ましい。
 Lが、単結合の場合、nは、0~6が好ましく、0~4がより好ましく、0がさらに好ましい。
 含フッ素単官能(メタ)アクリレートの好ましい具体例として、以下の化合物が挙げられるが、これらの化合物に限定されるものではない。Rは水素原子またはメチル基であり、水素原子が好ましい。
Figure JPOXMLDOC01-appb-C000010
 市販品としては、ユニマテック(株)製商品名FAAC-6を用いることもできる。
 本発明の光硬化性組成物が、含フッ素単官能(メタ)アクリレートを含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して、1~5質量%であることが好ましく、1~3質量%がより好ましい。含フッ素単官能(メタ)アクリレートの含有量を1質量%以上にすると、離型性がより向上する。また、含フッ素単官能(メタ)アクリレートの含有量を5質量%以下にすると、パターンラフネスに優れる。含フッ素単官能(メタ)アクリレートは、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上を用いる場合は、その合計量が上記範囲となることが好ましい。
<その他の単官能(メタ)アクリレート>
 本発明の光硬化性組成物は、上述した一般式(I)で表される単官能(メタ)アクリレート、脂肪族単官能(メタ)アクリレート、および含フッ素単官能(メタ)アクリレート以外の単官能(メタ)アクリレート(その他の単官能(メタ)アクリレートという)を含んでもよい。
 その他の単官能(メタ)アクリレートとしては、一般式(I)で表される単官能(メタ)アクリレート以外の芳香族基を有する単官能(メタ)アクリレート、脂環式炭化水素基を有する単官能(メタ)アクリレート、水酸基またはエーテル基を有する単官能(メタ)アクリレート等を挙げることができる。
 その他の単官能(メタ)アクリレートの具体例として、例えば、ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、芳香環上に置換基を有するベンジル(メタ)アクリレート(好ましい置換基としては炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)、1-または2-ナフチル(メタ)アクリレート、1-または2-ナフチルメチル(メタ)アクリレート、1-または2-ナフチルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレートが例示される。
 本発明の光硬化性組成物が、その他の単官能(メタ)アクリレートを含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して、5~40質量%が好ましく、10~30質量%がより好ましい。
 その他の単官能(メタ)アクリレートは、1種のみ含んでいても良いし、2種以上含んでいても良い。2種以上含む場合は、合計量が上記範囲となることが好ましい。
 本発明の光硬化性組成物は、また、その他の単官能(メタ)アクリレートを実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、本発明の光硬化性組成物に含まれる全重合性化合物の5質量%以下、さらには3質量%以下、特には、1質量%以下であることをいう。
<多官能(メタ)アクリレート>
 本発明の光硬化性組成物は、2官能以上の多官能(メタ)アクリレートを含有することが好ましい。
 多官能(メタ)アクリレートは、芳香族多価アルコールまたは脂肪族多価アルコールと、(メタ)アクリル酸とのエステルであることが好ましい。
 多官能(メタ)アクリレートは、(メタ)アクリレート基を2~6個有することが好ましく、2個または3個有することがより好ましく、2個有することが特に好ましい。
 多官能(メタ)アクリレートの分子量は、170~600が好ましく、190~300がより好ましく、210~270がさらに好ましい。分子量が上記範囲であれば、揮発性の抑制と、低粘度とを両立することができる。
 多官能(メタ)アクリレートは、芳香族基を有する多官能(メタ)アクリレート、脂環式炭化水素基を有する多官能(メタ)アクリレート、または芳香族基および脂環式炭化水素基を有さない鎖状脂肪族の多官能(メタ)アクリレートであることが好ましく、芳香族基を有する多官能(メタ)アクリレートまたは脂環式炭化水素基を有する多官能(メタ)アクリレートであることがより好ましく、芳香族基を有する多官能(メタ)アクリレートであることがさらに好ましい。
 本発明で用いることができる多官能(メタ)アクリレートは、より具体的には、
P-O-L-R-L-O-P
で表されることが好ましい。ここで、Pは(メタ)アクリロイル基であり、Lは単結合または連結基であり、Rは芳香族基、脂環式炭化水素基、直鎖または分岐の炭化水素基である。Lは、単結合またはアルキレン基が好ましく、単結合、メチレン基またはエチレン基がより好ましく、メチレン基がさらに好ましい。Rは、フェニレン基、シクロヘキサン基、直鎖または分岐の炭素数2~6の炭化水素基が好ましい。
 芳香族基を有する多官能(メタ)アクリレートの具体例としては、o-、m-、p-フェニレンジ(メタ)アクリレート、o-、m-、p-キシリレンジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エチレンオキシ(EO)変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシ(PO)変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンが例示される。これらの中でも、m-キシリレンジアクリレートが、本発明に特に好適に用いられる。
 脂環式炭化水素基を有する多官能(メタ)アクリレートの具体例としては、trans-1,2-シクロヘキサンジオールジ(メタ)アクリレート、cis-1,2-シクロヘキサンジオールジ(メタ)アクリレート、1,3-シクロヘキサンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、1,2-シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-シクロヘキサンジメタノールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレートが例示される。これらの中でも、1,2-シクロヘキサンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレートが、本発明に好適に用いられる。
 芳香族基および脂環式炭化水素基を有さない鎖状脂肪族の多官能(メタ)アクリレートの具体例としては、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、cis-2-ブテン-1,4-ジオールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、2,2-ジメチル-3-((メタ)アクリロイルオキシ)プロピオン酸2,2-ジメチル-3-((メタ)アクリロイルオキシ)プロピル、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレートが例示される。
 これらの中でも、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、cis-2-ブテン-1,4-ジオールジアクリレート、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、3-メチル-1,5-ペンタンジオールジアクリレートが、本発明に特に好適に用いられる。
 市販品としては、共栄社化学(株)製商品名ライトアクリレートNP-A、大阪有機化学工業(株)製ビスコート#195、ビスコート#230なども例示される。
 多官能(メタ)アクリレートは、光硬化性組成物中の溶剤を除く全成分に対して20~79質量%含有することが好ましい。下限は、25質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%が特に好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましく、60質量%以下が特に好ましい。多官能(メタ)アクリレートの含有量が上記範囲であれば、膜強度に優れたパターンが得られる。
 多官能(メタ)アクリレートは、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上を用いる場合は、その合計量が上記範囲となることが好ましい。
 特に、芳香族基を有する多官能(メタ)アクリレートおよび脂環式炭化水素基を有する多官能(メタ)アクリレートの合計で、光硬化性組成物中の溶剤を除く全成分に対して20~80質量%含有することが好ましい。
 単官能(メタ)アクリレートと多官能(メタ)アクリレートとの質量比は、20:80~80:20が好ましく、30:70~70:30がより好ましく、40:60~60:40がさらに好ましい。このような範囲とすることで、インクジェット吐出精度、モールド充填性、硬化性、離型性、硬化膜の強度、エッチング耐性を向上することができる。
<光重合開始剤>
 本発明の光硬化性組成物は、光重合開始剤を含有する。光重合開始剤は、光照射により重合性化合物を重合する活性種を発生させる化合物であれば、いずれのものでも用いることができる。光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤が好ましく、光ラジカル重合開始剤がより好ましい。
 光ラジカル重合開始剤としては、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。この中でもアセトフェノン系化合物、アシルホスフィンオキサイド系化合物、オキシムエステル系化合物が、硬化感度、吸収特性の観点から好ましい。市販品としては、イルガキュア(登録商標)1173、イルガキュア184、イルガキュア2959、イルガキュア127、イルガキュア907、イルガキュア369、イルガキュア379、ルシリン(登録商標)TPO、イルガキュア819、イルガキュアOXE-01、イルガキュアOXE-02、イルガキュア651、イルガキュア754等(以上、BASF社製)が挙げられる。
 光重合開始剤は、1種単独で用いてもよいが、2種以上を併用して用いることも好ましい。2種以上を併用する場合、光ラジカル重合開始剤を2種以上併用することがより好ましい。具体的には、イルガキュア1173とイルガキュア907、イルガキュア1173とルシリンTPO、イルガキュア1173とイルガキュア819、イルガキュア1173とイルガキュアOXE01、イルガキュア907とルシリンTPO、イルガキュア907とイルガキュア819との組み合わせが例示される。このような組み合わせとすることにより、露光マージンを拡げることができる。
 光重合開始剤を2種併用する場合の 比率(質量比)は、9:1~1:9であることが好ましく、8:2~2:8がより好ましく、7:3~3:7がさらに好ましい。
 光重合開始剤の含有量は、光硬化性組成物中の溶剤を除く全成分に対して、0.1~15質量%が好ましく、より好ましくは0.5~10質量%であり、さらに好ましくは1~5質量%である。光硬化性組成物は、光重合開始剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。光重合開始剤の含有量を0.1質量%以上にすると、感度(速硬化性)、解像性、ラインエッジラフネス性、膜強度がより向上する傾向にあり好ましい。また、光重合開始剤の含有量を15質量%以下にすると、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。
<ポリオキシアルキレン構造を有する非重合性化合物>
 本発明の光硬化性組成物は、離型性をより良好にするため、ポリオキシアルキレン構造を有する非重合性化合物を含有しても良い。ここで、非重合性化合物とは、重合性基を持たない化合物をいう。
 ポリオキシアルキレン構造としては、ポリオキシエチレン構造、ポリオキシプロピレン構造、ポリオキシブチレン構造、またはこれらの混合構造が好ましく、ポリオキシエチレン構造またはポリオキシプロピレン構造がより好ましく、ポリオキシプロピレン構造が特に好ましい。また、グリセリンやペンタエリスリトールなどの多価アルコールをコアとして、分岐した構造であることも好ましい。
 ポリオキシアルキレン構造としてはポリオキシアルキレン構成単位を3~30個有していることが好ましく、5~20個有していることがより好ましく、7~15個有していることがさらに好ましく、9~13個有していることが特に好ましい。
 ポリオキシアルキレン構造の末端の水酸基は、置換されていなくても良く、少なくとも一つが有機基で置換されていても良く、全てが有機基で置換されていても良い。有機基は、炭素数1~20の有機基が好ましく、酸素原子、フッ素原子、またはケイ素原子を有していても良いが、フッ素原子またはケイ素原子を有さないことが好ましい。有機基は、エーテル結合、エステル結合、または2価の連結基でポリオキシアルキレン構造と連結されることが好ましい。有機基の具体例としては、メチル基、エチル基、ブチル基、オクチル基、ベンジル基、フェニル基等の炭化水素基、含フッ素アルキル基、含フッ素アルキルエーテル基、ポリシロキサン基である。
 非重合性化合物の数平均分子量は、300~3000が好ましく、400~2000がより好ましく、500~1500がさらに好ましい。
 非重合性化合物の具体例としては、ポリオキシエチレン(ポリエチレングリコールともいう)、ポリオキシプロピレン(ポリプロピレングリコールともいう)、ポリオキシブチレン、ポリオキシエチレン・ポリオキシプロピレン(ブロックおよびランダム)、ポリオキシエチレン(以下PEGと略す)グリセリルエーテル、ポリオキシプロピレン(以下PPGと略す)グリセリルエーテル、PEG・PPGグリセリルエーテル、PEGビスフェノールAエーテル、PEGトリメチロールプロパンエーテル、PEGペンタエリスリトールエーテル、PEGネオペンチルグリコールエーテル、PEGトリメチロールプロパンエーテル、PEGメチルエーテル、PEGブチルエーテル、PEG2-エチルヘキシルエーテル、PEGラウリルエーテル、PEGオレイルエーテル、PPGメチルエーテル、PPGブチルエーテル、PPGラウリルエーテル、PPGオレイルエーテル、PEGフェニルエーテル、PEGオクチルフェニルエーテル、PEGノニルフェニルエーテル、PEGナフチルエーテル、PEGスチレン化フェニルエーテル、PPGフェニルエーテル、PPGオクチルフェニルエーテル、PPGノニルフェニルエーテル、PEGジメチルエーテル、PEGジベンジルエーテル、PPGジメチルエーテル、PPGジベンジルエーテル、PEG・PPGジメチルエーテル、PEGグリセリルエーテルトリメチルエーテル、PPGグリセリルエーテルトリメチルエーテル、PEGモノアセテート、PEGモノラウレート、PEGモノオレート、PPGモノアセテート、PPGモノラウレート、PPGモノオレート、PEGジアセテート、PEGジラウレート、PEGジオレート、PPGジアセテート、PPGジラウレート、PPGジオレート、PEGグリセリン脂肪酸エステル、PEGソルビタン脂肪酸エステル、PEGソルビトール脂肪酸エステル、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール等のエチレンオキサイド付加物(例えば、日信化学工業社製オルフィンE1004、E1010、E1020等、エアープロダクツアンドケミカルズ社製サーフィノール420、440、465,485、2502、2505等)が挙げられる。
 非重合性化合物については、特開2013-036027号公報の段落0105~0106の記載を参酌することができ、この内容は本明細書に組み込まれる。
 本発明の光硬化性組成物が、非重合性化合物を含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して、1~10質量%が好ましい。下限は、2質量%以上がより好ましい。上限は、8質量%以下がより好ましく、6質量%以下がさらに好ましく、4質量%以下が特に好ましい。光硬化性組成物は、非重合性化合物を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。
<重合禁止剤>
 本発明の光硬化性組成物には、重合禁止剤を含有することが好ましい。重合禁止剤を含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して、0.001~0.1質量%が好ましく、より好ましくは0.005~0.08質量%であり、さらに好ましくは0.01~0.05質量%である。光硬化性組成物は、重合禁止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。重合禁止剤を適切な量配合することで高い硬化感度を維持しつつ経時での粘度変化が抑制できる。重合禁止剤は全重合性化合物の混合時に添加してもよいし、本発明の光硬化性組成物に後から添加してもよい。重合禁止剤の具体例としては、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカルが挙げられる。また、その他の重合禁止剤の具体例としては、特開2012-169462号公報の段落番号0121に記載のものが挙げられ、この内容は本明細書に組み込まれる。
<界面活性剤>
 本発明の光硬化性組成物は、必要に応じて、界面活性剤を含有することができる。一般的に、界面活性剤とは、分子内に疎水部と親水部とを有し、少量の添加で界面の性質を著しく変化させる物質である。本発明における界面活性剤は、分子内に疎水部と親水部とを有し、少量の添加で光硬化性組成物の表面張力を著しく低下させる物質であり、例えば、光硬化性組成物に対して1質量%以下の添加量で、光硬化性組成物の表面張力を40mN/m~30mN/m以下に低下させる物質である。本発明の光硬化性組成物に界面活性剤を含有させると、塗布の均一性を向上させる効果や離型性を向上させる効果が期待できる。
 界面活性剤としては、非イオン性界面活性剤が好ましく、フッ素系界面活性剤、Si系界面活性剤およびフッ素・Si系界面活性剤の少なくとも一種を含むことが好ましく、フッ素系非イオン性界面活性剤が特に好ましい。ここで、「フッ素・Si系界面活性剤」とは、フッ素系界面活性剤およびSi系界面活性剤の両方の要件を併せ持つものをいう。
 フッ素系非イオン性界面活性剤の市販品としては、住友スリーエム(株)製フロラードFC-4430、FC-4431、旭硝子(株)製サーフロンS-241、S-242、S-243、三菱マテリアル電子化成(株)製エフトップEF-PN31M-03、EF-PN31M-04、EF-PN31M-05、EF-PN31M-06、MF-100、OMNOVA社製Polyfox PF-636、PF-6320、PF-656、PF-6520、(株)ネオス製フタージェント250、251、222F、212M DFX-18、ダイキン工業(株)製ユニダインDS-401、DS-403、DS-406、DS-451、DSN-403N、DIC(株)製メガファックF-430、F-444、F-477、F-553、F-556、F-557、F-559、F-562、F-565、F-567、F-569、R-40、DuPont社製Capstone FS-3100、Zonyl FSO-100が挙げられる。
 本発明の光硬化性組成物が、界面活性剤を含む場合、その含有量は、光硬化性組成物中の溶剤を除く全成分に対して、例えば、0.01~5質量%が好ましく、0.1~4質量%がより好ましく、1~3質量%がさらに好ましい。界面活性剤は、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上の界面活性剤を用いる場合は、その合計量が上記範囲となる。
 本発明では、界面活性剤を実質的に含まない態様としても、低い離型力を達成することができる。実質的に含まないとは、例えば、本発明の光硬化性組成物の総質量に対して0.001質量%以下が好ましく、0.0001質量%以下がさらに好ましい。
<その他の成分>
 本発明の光硬化性組成物は、上述した成分の他に、必要に応じて、光増感剤、酸化防止剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、光塩基発生剤、着色剤、無機粒子、エラストマー粒子、塩基性化合物、光酸発生剤、光酸増殖剤、連鎖移動剤、帯電防止剤、流動調整剤、消泡剤、分散剤等を含んでいてもよい。このような成分の具体例としては、特開2008-105414号公報の段落番号0092~0093、および段落番号0113~0137に記載のものが挙げられ、これらの内容は本明細書に組み込まれる。また、WO2011/126101号パンフレット、WO2013/051735号パンフレット、特開2012-041521号公報および特開2013-093552号公報の対応する記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、本発明では、ポリマー(好ましくは、重量平均分子量が1000を超える、より好ましくは重量平均分子量が2000を超える、さらに好ましくは重量平均分子量が10,000以上の非重合性ポリマー)を実質的に含有しない態様とすることもできる。ポリマーを実質的に含有しないとは、例えば、ポリマーの含有量が本発明の光硬化性組成物の溶剤を除く全成分に対し、5質量%以下であり、3質量%以下とすることもでき、1質量%以下とすることもできる。
<溶剤>
 本発明の光硬化性組成物は、溶剤を含有していてもよい。本発明の光硬化性組成物中の溶剤の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、実質的に溶剤を含有しないことが特に好ましい。ここで、実質的に溶剤を含有しないとは、例えば、本発明の光硬化性組成物の総質量に対して1質量%以下であることをいう。本発明の光硬化性組成物をインクジェット法で基板上に塗布する場合、溶剤の配合量が少ないと、溶剤の揮発に伴う組成物の粘度変化を抑制できるため、好ましい。光硬化性組成物は、溶剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。
 本発明の光硬化性組成物は、必ずしも、溶剤を含むものではないが、組成物の粘度を微調整する際などに、任意に添加してもよい。本発明の光硬化性組成物に好ましく使用できる溶剤の種類は、インプリント用光硬化性組成物やフォトレジストで一般的に用いられている溶剤であり、本発明で用いる化合物を溶解および均一分散することができるものであればよく、かつ、これらの成分と反応しないものであれば特に限定されない。本発明で用いることができる溶剤の例としては、特開2008-105414号公報の段落番号0088に記載のものが挙げられ、この内容は本明細書に組み込まれる。
<光硬化性組成物の特性>
 本発明の光硬化性組成物は、大西Pが、3.6以下であることが好ましく、3.3以下がより好ましい。この態様によれば、エッチング後も断線などが生じにくい硬化膜を形成しやすい。大西Pの下限値については、特に定めるものではないが、例えば、2.5以上、さらには、2.8以上としても十分実用レベルである。
 本発明の光硬化性組成物の硬化膜のガラス転移温度(Tg)は85℃以上であることが好ましく、105℃以上であることがより好ましい。この態様によれば、エッチング後のライン幅ラフネスの変形が生じにくい硬化膜を形成しやすい。Tgの上限値については、特に定めるものではないが、例えば、170℃以下、さらには、160℃以下とすることができる。
 本発明における硬化膜のガラス転移温度は、以下の方法で測定した値である。
 光硬化性組成物を石英板に挟み、光源として高圧水銀ランプを用い、波長300~400nm、照度10mW/cm、露光時間100秒の条件で紫外線硬化して、膜厚150μm、幅5mmの短冊サンプルである硬化膜を作製し、短冊サンプルを、動的粘弾性測定装置を用いて、チャック間距離20mm、温度範囲20℃~220℃、昇温速度5℃/分、周波数1Hzの条件で、引っ張り正弦波モードにて動的粘弾性を測定し、得られた損失正接曲線の極大値の温度を、ガラス転移温度とする。
 本発明の光硬化性組成物は、23℃において、粘度が5.5~15.0mPa・sであることが好ましい。下限は、例えば、6.0mPa・s以上がより好ましく、6.5mPa・s以上がさらに好ましく、7.0mPa・s以上が一層好ましい。上限は、例えば、12.5mPa・s以下がより好ましく、11.8mPa・s以下がさらに好ましく、10.5mPa・s以下が一層好ましく、9.0mPa・s以下がより一層好ましく、8.5mPa・s以下がさらに一層好ましい。このような範囲とすることにより、インクジェット吐出精度やモールドの凹凸パターンへの充填性を向上させることができる。なお、本発明における粘度の値は、後述する実施例に記載の方法で測定した値である。
 本発明の光硬化性組成物は、23℃において、表面張力が27~33mN/mであることが好ましい。下限は、例えば、28mN/m以上がより好ましく、29mN/m以上がさらに好ましい。上限は、例えば、32mN/m以下がより好ましく、31mN/m以下がさらに好ましい。このような範囲とすることにより、インクジェット吐出精度やモールド離型性を向上させることができる。なお、本発明における表面張力の値は、後述する実施例に記載の方法で測定した値である。
<光硬化性組成物の調製方法>
 本発明の光硬化性組成物は、上述の各成分を混合して調製することができる。各成分の混合は、通常、0℃~100℃の範囲で行われる。また、各成分を混合した後、例えば、フィルタでろ過することが好ましい。ろ過は、多段階で行ってもよいし、多数回繰り返してもよい。また、ろ過した液を再ろ過することもできる。
 フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
 フィルタの孔径は、例えば、0.003~5.0μm程度が適している。この範囲とすることにより、ろ過詰まりを抑えつつ、組成物に含まれる不純物や凝集物など、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせても良い。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は、1回目のフィルタリングの孔径より2回目以降の孔径が同じ、もしくは小さい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)または株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
<用途>
 本発明の光硬化性組成物は、UVインク、UV接着剤として用いることができる。また、光ディスク等の記録媒体や、反射防止膜、カラーフィルタ、回折格子、レリーフホログラム、マイクロレンズアレイ、光導波路等の光学部品を作製するための材料として用いることができる。さらに、半導体集積回路、マイクロ電気機械システム(MEMS)、センサ素子、インプリント用モールド、ビットパターンドメディア(BPM)等を作製するためのレジスト材料として用いることができる。本発明の光硬化性組成物は、エッチング耐性が優れるため、特に、インプリントリソグラフィー用のレジスト材料として好適である。また、本発明の光硬化性組成物は、インクジェット吐出精度に優れているため、UV(紫外線)インクジェットインクやインクジェット塗布用のインプリント用光硬化性組成物として特に好適である。
<パターン形成方法>
 次に、本発明のパターン形成方法を説明する。本発明のパターン形成方法は、本発明の光硬化性組成物を用いて、光インプリント法によりパターンを形成する。
 より具体的には、本発明のパターン形成方法は、本発明の光硬化性組成物を、基材上またはパターンを有するモールド上に適用する工程と、上記光硬化性組成物を上記モールドと上記基材とで挟持する工程と、上記光硬化性組成物を上記モールドと上記基材とで挟持した状態で光照射して、上記光硬化性組成物を硬化させる工程と、上記モールドを剥離する工程と、を含む。
 さらに、本発明では、光硬化性組成物を、インクジェット法により、上記基材上または上記パターンを有するモールド上に塗布することが好ましい。
 本発明の光硬化性組成物を基材またはパターンを有するモールド上に塗布する方法として、一般によく知られた方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法、あるいはインクジェット法などを用いることで、基材上に塗膜あるいは液滴等を配置することができる。特に、本発明の光硬化性組成物は、インクジェット吐出精度に優れるので、インクジェット法に好適である
 本発明の光硬化性組成物をモールドと基材とで挟む際には、ヘリウムガスをモールドと基材との間に導入してもよい。このような方法を用いることにより、気体の石英モールドの透過を促進して、残留気泡の消失を促進させることができる。また、光硬化性組成物中の溶存酸素を低減することで、露光におけるラジカル重合阻害を抑制することができる。また、ヘリウムの替わりに、凝縮性ガスをモールドと基材との間に導入してもよい。このような方法を用いることにより、導入された凝縮性ガスが凝縮して体積が減少することを利用し、残留気泡の消滅をさらに促進させることができる。凝縮性ガスとは、温度や圧力により凝縮するガスのことをいい、例えば、トリクロロフルオロメタン、1,1,1,3,3-ペンタフルオロプロパン等を用いることができる。凝縮性ガスについては、例えば、特開2004-103817号公報の段落0023、特開2013-254783号公報の段落0003の記載を参酌することができ、これらの内容は本明細書に組み込まれる。
 露光に際しては、露光照度を1~200mW/cmの範囲にすることが望ましい。露光照度を1mW/cm以上とすることにより、露光時間を短縮することができるため生産性が向上する。露光照度を200mW/cm以下とすることにより、副反応を抑制でき、硬化膜の特性の劣化を抑止できる傾向にある。露光量は5~1000mJ/cmの範囲にすることが望ましい。
 露光に際しては、酸素によるラジカル重合阻害を抑制するため、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスを流して、大気中の酸素濃度を10kPa以下に制御することが好ましい。より好ましくは、大気中の酸素濃度は3kPa以下、さらに好ましくは、1kPa以下である。
 本発明のパターン形成方法は、光照射により本発明の光硬化性組成物を硬化させた後、必要に応じて硬化させたパターンに熱を加えてさらに硬化させる工程を含んでいてもよい。光照射後に本発明の光硬化性組成物を加熱硬化させる場合、加熱温度は、150~280℃が好ましく、200~250℃がより好ましい。また、加熱時間は、5~60分間が好ましく、15~45分間がより好ましい。
 パターン形成方法の具体例としては、特開2012-169462号公報の段落番号0125~0136に記載のものが挙げられ、この内容は本明細書に組み込まれる。
 本発明のパターン形成方法は、パターン反転法に応用することができる。具体的には、炭素膜(SOC(Spin On Carbon))を備えた被加工基板上に、本発明のパターン形成方法でレジストパターンを形成する。次に、上記レジストパターンをSi含有膜(SOG(Spin on Glass))で被覆した後、上記Si含有膜の上部をエッチングバックしてレジストパターンを露出させ、露出した上記レジストパターンを酸素プラズマ等により除去することで、Si含有膜の反転パターンを形成する。さらにSi含有膜の反転パターンをエッチングマスクとして、その下層にある炭素膜をエッチングすることで、炭素膜に上記反転パターンが転写される。最後に、上記反転パターンが転写された炭素膜をエッチングマスクとして、基材をエッチング加工する方法である。このような方法の例としては、特開平5-267253号公報、特開2002-110510号公報、特表2006-521702号公報の段落0016~0030、特表2010-541193号公報を参酌することができ、この内容は本明細書に組み込まれる。
 本発明のパターン形成方法は、基材上に下層膜組成物を塗布して下層膜を形成する工程、下層膜表面に本発明の光硬化性組成物を塗布する工程、本発明の光硬化性組成物と下層膜を、基材とパターンを有するモールドの間に挟んだ状態で光照射し、本発明の光硬化性組成物を硬化する工程、およびモールドを剥離する工程を含んでいてもよい。さらに、基材上に下層膜組成物を塗布した後、熱または光照射によって、下層膜組成物の一部を硬化した後、本発明の光硬化性組成物を塗布するようにしてもよい。
 下層膜組成物は、例えば、硬化性主剤を含む組成物が挙げられる。硬化性主剤は、熱硬化性であっても光硬化性であってもよく、熱硬化性が好ましい。硬化性主剤の分子量は400以上であることが好ましい。硬化性主剤は、低分子化合物でもポリマーでもよいが、ポリマーが好ましい。硬化性主剤の分子量は、好ましくは500以上であり、より好ましくは1000以上であり、さらに好ましくは3000以上である。分子量の上限としては、好ましくは200000以下であり、より好ましくは100000以下であり、さらに好ましくは50000以下である。分子量を400以上とすることで、成分の揮発をより効果的に抑制できる。硬化性主剤としては、例えば、下記一般式で表される構成単位を主成分とするポリマーを用いることができる。
Figure JPOXMLDOC01-appb-C000011
 一般式において、Rはアルキル基であり、LおよびLは、それぞれ、2価の連結基であり、Pは重合性基である。nは0~3の整数である。
 Rは炭素数1~5のアルキル基であることが好ましく、メチル基であることがより好ましい。
 Lは、アルキレン基であることが好ましく、炭素数1~3のアルキレン基であることがより好ましく、-CH-であることがさらに好ましい。
 Lは、-CH-、-O-、-CHR(Rは置換基)-、およびこれらの2以上の組み合わせからなる2価の連結基であることが好ましい。RはOH基が好ましい。
Pは、(メタ)アクリロイル基が好ましく、アクリロイル基がより好ましい。
nは0~2の整数であることが好ましく、0または1であることがより好ましい。
 市販品としては、NKオリゴ EA-7140/PGMAc(新中村化学工業社製)などが挙げられる。また、例えば、特表2009-503139号公報の段落番号0040~0056に記載のものが挙げられ、この内容は本明細書に組み込まれる。
 硬化性主剤の含有量は、下層膜組成物の溶剤を除く全成分中、30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。上限値については、特に定めるものではないが、100質量%であってもよい。硬化性主剤は2種以上であってもよく、この場合は、合計量が上記範囲となることが好ましい。
 下層膜組成物は、溶剤を含有していることが好ましい。好ましい溶剤としては、常圧における沸点が80~200℃の溶剤である。溶剤の種類としては下層膜組成物を溶解可能な溶剤であればいずれも用いることができるが、好ましくはエステル構造、ケトン構造、水酸基、エーテル構造のいずれか1つ以上を有する溶剤である。具体的に、好ましい溶剤としては、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、2-ヘプタノン、ガンマブチロラクトン、プロピレングリコールモノメチルエーテル、乳酸エチルから選ばれる単独あるいは混合溶剤であり、プロピレングリコールモノメチルエーテルアセテートを含有する溶剤が塗布均一性の観点で特に好ましい。
 下層膜組成物中における上記溶剤の含有量は、溶剤を除く成分の粘度、塗布性、目的とする膜厚によって最適に調整されるが、塗布性改善の観点から、下層膜組成物中70質量%以上の範囲で添加することができ、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは99質量%以上である。上限値については、特に定めるものではないが、例えば、99.9質量%以下とすることができる。
 下層膜組成物は、他の成分として、界面活性剤、熱重合開始剤、重合禁止剤および触媒の少なくとも1種を含有していても良い。これらの配合量としては、溶剤を除く全成分に対し、50質量%以下が好ましい。
 下層膜組成物は、例えば、特開2014-192178号公報の段落番号0017~0054や、特開2014-024322号公報の段落番号0017~0068に記載された組成物を用いることもができ、この内容は本明細書に組み込まれる。
 下層膜組成物は、上述の各成分を混合して調製することができる。また、上述の各成分を混合した後、例えば、孔径0.003μm~5.0μmのフィルタでろ過することが好ましい。ろ過は、多段階で行ってもよいし、多数回繰り返してもよい。また、ろ過した液を再ろ過することもできる。フィルタは、上述した光硬化性組成物の調製で説明したものが挙げられる。
 下層膜組成物の塗布方法としては、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法、インクジェット法などが挙げられる。下層膜組成物を基材上に塗布した後、乾燥することが好ましい。好ましい乾燥温度は70℃~130℃である。好ましくはさらに活性エネルギー(好ましくは熱および/または光)によって硬化を行う。好ましくは150℃~250℃の温度で加熱硬化を行う。溶剤を乾燥する工程と硬化する工程を同時に行っても良い。このように、下層膜組成物を塗布した後、熱または光照射によって、下層膜組成物の一部を硬化した後、本発明の光硬化性組成物を塗布することが好ましい。このような手段を採用すると、本発明の光硬化性組成物の光硬化時に、下層膜組成物も完全に硬化し、密着性がより向上する傾向にある。
 下層膜の膜厚は、使用する用途によって異なるが、0.1nm~100nm程度であり、好ましくは1~20nmであり、より好ましくは2~10nmである。また、下層膜組成物を、多重塗布により適用してもよい。得られた下層膜はできる限り平坦であることが好ましい。
 基材(基板または支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基材、紙、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基材、薄膜トランジスタ(TFT)アレイ基材、プラズマディスプレイ(PDP)の電極板、ITO(Indium Tin Oxide)や金属などの導電性基材、ガラスやプラスチック等の絶縁性基材、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコン、SOG(Spin On Glass)、SOC(Spin On Carbon)などの半導体作製基材など特に制約されない。
<パターン>
 上述のように本発明のパターン形成方法によって形成されたパターンは、液晶ディスプレイ(LCD)などに用いられる永久膜や、半導体加工用のエッチングレジストとして使用することができる。
 例えば、半導体集積回路、マイクロ電気機械システム(MEMS)、光ディスク、磁気ディスク等の記録媒体、固体撮像素子等の受光素子、発光ダイオード(LED)や有機エレクトロルミネセンス(EL)等の発光素子等の光デバイス、回折格子、レリーフホログラム、光導波路、光学フィルタ、マイクロレンズアレイ等の光学部品、薄膜トランジスタ、有機トランジスタ、カラーフィルタ、反射防止膜、偏光素子、光学フィルム、柱材等のフラットパネルディスプレイ用部材、ナノバイオデバイス、免疫分析チップ、デオキシリボ核酸(DNA)分離チップ、マイクロリアクター、フォトニック液晶、ブロックコポリマーの自己組織化を用いた微細パターン形成(directed self-assembly、DSA)のためのガイドパターン等の作製に好ましく用いることができる。
 また、本発明の光硬化性組成物を用いて得られるパターンは、耐溶剤性も良好である。パターンは溶剤に対する耐性が高いことが好ましいが、一般的な基板製造工程時に用いられる溶剤、例えば、25℃のN-メチルピロリドン溶媒に10分間浸漬した場合に膜厚変動を起こさないことが特に好ましい。
 本発明のパターン形成方法によって形成されたパターンは、エッチングレジストとして特に有用である。本発明の光硬化性組成物をエッチングレジストとして利用する場合には、基材上に本発明のパターン形成方法によってナノオーダーの微細なパターンを形成する。その後、ウェットエッチングの場合にはフッ化水素等、ドライエッチングの場合にはCF等のエッチングガスを用いてエッチングすることにより、基材上に所望のパターンを形成することができる。本発明の光硬化性組成物は、フッ化炭素等を用いるドライエッチングに対するエッチング耐性が良好である。
<デバイスの製造方法>
 本発明のデバイスの製造方法は、上述したパターン形成方法を含む。すなわち、本発明は、上記パターン形成方法で作製したパターンをマスクとして、上記基材をエッチングする工程を含む、デバイスの製造方法を開示する。
 上記パターンは、永久膜としてデバイスに含まれていてもよい。また、上記パターンをエッチングマスクとして用い、基材に対してエッチング処理を施すこともできる。例えば、パターンをエッチングマスクとしてドライエッチングを施し、基材の上層部分を選択的に除去する。基材に対してこのような処理を繰り返すことにより、デバイスを製造することもできる。デバイスとしては、LSI(large-scale integrated circuit:大規模集積回路)などの半導体デバイスが挙げられる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
(合成例1)単官能アクリレート(A1-1)の合成
Figure JPOXMLDOC01-appb-C000012
 1-フェニル-1-プロパノール27.2g(0.2モル)、N-エチルジイソプロピルアミン28.4g(DIPEA、0.22モル)、およびアセトニトリル(Acetonitrile)200mLの混合溶液に対して、水浴下で内温を30℃以下に保ちながら、アクリロイルクロリド19.9g(0.22モル)を滴下した。滴下終了後、25℃にて1時間攪拌した後、水200mL、および酢酸エチル400mLを加えて分液抽出を行った。有機層を水200mLで2回洗浄した後、減圧濃縮して粗生成物を得た。得られた粗生成物をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=9/1(質量比))にて精製することにより、芳香族基を有する単官能アクリレート(A1-1)を得た。(収量23.2g、収率61%)。
<単官能(メタ)アクリレートの粘度>
 東機産業(株)製のRE-80L型回転粘度計を用い、25±0.1℃で、単官能(メタ)アクリレートの粘度を測定した。測定時の回転速度は、粘度に応じて以下の通りとした。
Figure JPOXMLDOC01-appb-T000013
<大西パラメータ(大西P)の算出>
 単官能アクリレートの大西パラメータ(大西P)を、下記数式(1)により算出した。
 大西P=全原子数/(炭素原子数-酸素原子数)   ・・・(1)
<ホモポリマーガラス転移温度(Tg)の測定>
 合成例1で得た単官能アクリレート(A1-1)5.0gおよび2-ブタノン15mLの溶液に、熱重合開始剤V-65(和光純薬工業)25mgを加え、窒素雰囲気下80℃で3時間加熱攪拌して重合した。得られた溶液を、メタノール300mLに滴下してホモポリマーを析出させ、取り出した。取り出したホモポリマーを、減圧下60℃で4時間乾燥して、Tg測定用サンプルとした。
 Tg測定には、示差走査熱量計(ティー・エイ・インスツルメント製DSC Q1000)を用いた。Tg測定用サンプル約2mgをアルミパンに詰め、示差走査熱量計にて昇温速度10℃/分で測定し、得られたDSC(Differential Scanning Calorimetry)曲線の変曲点を、Tgとした。
 合成例1と同様にして、(A1-2)~(A1-11)を合成し、粘度、大西パラメータ(大西P)、ホモポリマーTgを評価した。
 比較として、市販のモノマー(R-1)~(R-7)を評価した。
 R-1:大阪有機化学工業(株)製ビスコート#160
 R-2:大阪有機化学工業(株)製ビスコート#192
 R-3:東亞合成(株)製アロニックスM-106
 R-4:大阪有機化学工業(株)製ビスコート#155
 R-5:大阪有機化学工業(株)製IBXA
 R-6:大阪有機化学工業(株)製MADA
 R-7:大阪有機化学工業(株)製NOAA
Figure JPOXMLDOC01-appb-T000014
 表2から明らかのように、一般式(I)で表される単官能アクリレートである、(A1-1)~(A1-11)は、大西Pが2.8以下、かつホモポリマーのTgが25℃以上であった。
<光硬化性組成物の調製>
 下記表に示す重合性化合物、光重合開始剤を混合し、さらに重合禁止剤として4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル(東京化成社製)を重合性化合物に対して200ppm(0.02質量%)となるように加えて調製した。これを孔径0.1μmのポリテトラフルオロエチレン(PTFE)製フィルターでろ過し、光硬化性組成物を調製した。なお、表は、質量比で示した。
 実施例および比較例で用いた、含フッ素単官能(メタ)アクリレート、2官能以上の多官能アクリレート、光重合開始剤の詳細は、下記のとおりである。
<含フッ素単官能(メタ)アクリレート>
A3-1:ユニマテック(株)製、FAAC-6
A3-2:下記(合成例2)の方法で合成
Figure JPOXMLDOC01-appb-C000015
(合成例2)含フッ素単官能アクリレート(A3-2)の合成
Figure JPOXMLDOC01-appb-C000016
 tert-ブトキシドカリウム100g(0.89モル)をtert-ブタノール700mLに溶解させた溶液に対して、水浴下で内温を30℃以下に保ちながら、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール316.9g(0.87モル)を滴下して、アルコキシド溶液を調製した。
 ブロモ酢酸tert-ブチル171.7g(0.88モル)とtert-ブタノール300mLの混合液に対して、水浴下で内温を30℃以下に保ちながら、先に調製したアルコキシド溶液を滴下した。滴下終了後、25℃にて1時間攪拌した後、ノルマルヘキサン500mL、および0.1mol/L塩酸水500mLを加えて分液抽出を行った。有機層を水500mLで2回洗浄した後、減圧濃縮して、中間体(A3-2-a)を得た(収量406.1g、収率97.6%)。
 中間体(A3-2-a)382.6g(0.80モル)とメタノール800mLを混合した溶液に対して、28質量%ナトリウムメトキシド溶液154.3gを加えた後、テトラヒドロホウ酸ナトリウム23.9g(0.63モル)を加え、40℃で4時間反応させた。反応終了後、反応液を2mol/L塩酸水1Lにゆっくりと加え、過剰のテトラヒドロホウ酸ナトリウムを分解させた後、酢酸エチル300mLとn-ヘキサン800mLを加えて分液抽出を行った。有機層を水1000mLで洗浄した後、減圧濃縮した。得られた濃縮物を減圧蒸留して、中間体(A3-2-b)を得た(沸点:80~84℃/0.40kPa、収量326.2g、収率99.9%)。
 中間体(A3-2-b)326.2g(0.799モル)とトルエン800mLを混合した溶液に、トリエチルアミン100.3g(0.96モル)を加えた後、氷浴下で内温を15℃以下に保ちならが、アクリロイルクロリド83.2g(0.92モル)を滴下した。滴下終了後、2時間攪拌した後、2質量%重曹水800mLを加えて分液抽出を行った。有機層を1mol/L塩酸水800mLで2回、次いで水800mLで洗浄した後、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル(4-HO-TEMPO)38mgを加えて減圧濃縮した。得られた濃縮物に、安息香酸4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル(4-BzO-TEMPO)380mgを加えて減圧蒸留して、目的の含フッ素単官能アクリレート(A3-2)を得た(沸点:107℃/0.67kPa、収量230.0g、収率62.3%)。
<2官能(メタ)アクリレート>
B1-1:m-キシリレンジアクリレート(α,α'-ジクロロ-m-キシレンとアクリル酸から合成)
B1-2:o-キシリレンジアクリレート(1,2-ベンゼンジメタノールとアクリロイルクロリドから合成)
B1-3:trans-1,2-シクロヘキサンジオールジアクリレート(trans-1,2-シクロヘキサンジオールと、アクリロイルクロリドから合成)
B2-1:共栄社化学(株)製、ライトアクリレートNP-A
B2-2:cis-2-ブテン-1,4-ジオールジアクリレート(cis-2-ブテン-1,4-ジオールとアクリロイルクロリドから合成)
Figure JPOXMLDOC01-appb-C000017
<光重合開始剤>
 C-1:BASF社製、イルガキュア819
 C-2:BASF社製、イルガキュア907
<光硬化性組成物の粘度>
 本発明の光硬化性組成物および比較用光硬化性組成物の23℃における粘度を、東機産業(株)製のRE-80L型回転粘度計を用い、23±0.1℃で測定した。測定時の回転速度は、粘度に応じて以下の通りとした。結果は表4、5の「粘度(mPa・s)」の欄に示した。
Figure JPOXMLDOC01-appb-T000018
<光硬化性組成物の大西パラメータの算出>
 下記数式(1)により、の大西パラメータ(大西P)を算出した。
 大西P=全原子数/(炭素原子数-酸素原子数)   ・・・(1)
 結果は表4、5の「大西P」の欄に示した。
<光硬化性組成物の硬化膜のガラス転移温度(硬化膜Tg)>
 光硬化性組成物を石英板に挟み、紫外線(UV)硬化(光源:高圧水銀ランプ、波長:300~400nm、照度:10mW/cm、露光時間:100s)して硬化膜(膜厚150μm)を作製した。
 硬化膜の短冊サンプル(幅5mm)を、動的粘弾性測定装置DMS-6100(セイコーインスツル株式会社製)を用いて、引っ張り正弦波モードにて動的粘弾性を測定した(チャック間距離:20mm、温度範囲:20℃~220℃、昇温速度:5℃/分、周波数:1Hz)。得られた損失正接(tanδ)曲線の極大値の温度を、ガラス転移温度(Tg)とした。
 結果は表4、5の「硬化膜Tg(℃)」の欄に示した。
<エッチング後のパターンの断線(エッチング後の断線)>
 上記にて得られたエッチング後のサンプルのSEM画像から、パターンの断線の状態を評価した。結果は表4、5の「エッチング後の断線」の欄に示した。
 A:全面に渡って、ラインの細りおよび断線は見られなかった。
 B:一部領域にてラインの細りが見られたが、ラインの断線は見られなかった。
 C:一部領域にてラインの断線が見られた。
 D:全面に渡りラインの断線が見られた。
<ライン幅ラフネスの変化(ΔLWR)>
 線幅30nm、深さ60nmのライン(Line)/スペース(Space)を有する石英モールドを使用した。インクジェット装置(FUJIFILM Dimatix社製インクジェットプリンター DMP-2831)を用いて、光硬化性組成物をシリコンウエハ上に塗布し、ヘリウム雰囲気下にて、上記モールドで挟んだ。石英モールド面から高圧水銀ランプを用いて、100mJ/cmの条件で露光して硬化させた後、石英モールドを離型して硬化膜のパターンを得た。
 得られた硬化膜のパターンを用い、エッチング装置にて反応性イオンエッチング雰囲気に暴露した。エッチングガスはCHF/CF/Ar混合ガスを選択し、エッチング中はサンプルを20℃に冷却した。
 エッチング前およびエッチング後のパターンの上面を、走査型電子顕微鏡(SEM)で観察(倍率:100,000倍)して、得られた画像からライン幅ラフネス(LWR)を測定した。エッチング前後のLWRの差(ΔLWR)を算出した。単位は、nmである。結果は表4、5の「ΔLWR」の欄に示した。
ΔLWR=(エッチング後のLWR)-(エッチング前のLWR)
 A:ΔLWR≦1.0
 B:1.0<ΔLWR≦2.5
 C:2.5<ΔLWR≦3.0
 D:3.0<ΔLWR
<インクジェット(IJ)吐出精度>
 シリコンウエハ上に、23℃に温度調整した光硬化性組成物を、インクジェットプリンターDMP-2831(富士フイルムダイマティックス製)を用いて、ノズルあたり1plの液滴量で吐出して、シリコンウエハ上に液滴が100μm間隔の正方配列となるように塗布した。
 塗布された基板の5mm角の2500ドットを観察し、正方配列からのずれを測定し、標準偏差σを算出した。インクジェット吐出精度は、以下の通りA~Eで評価した。結果は表4、5の「IJ吐出精度」の欄に示した。
 A:σ<3μm
 B:3μm≦σ<5μm
 C:5μm≦σ<10μm
 D:10μm≦σ
 E:吐出できないノズルが生じた。 
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 上記結果から明らかな通り、実施例(X-1)~(X19)の光硬化性組成物は、エッチング後のパターンの断線と、エッチング後のライン幅ラフネスの変形(ΔLWR)との両者を抑制することができた。
 これに対し、比較例(Y-2)、(Y-4)、(Y-5)、(Y-6)、および(Y-7)の光硬化性組成物は、エッチング後のパターンの断線を抑制できなかった。
 また、比較例(Y-1)、(Y-2)、(Y-3)、(Y-4)、および(Y-7)の光硬化性組成物は、ΔLWRが大きく、エッチング後のライン幅ラフネスの変形を抑制できなかった。
 上記実施例X-1~X-19において、光重合開始剤をイルガキュア907に変更した以外は同様にして評価したところ、実施例X-1~X-19と同様の効果が得られた。

Claims (14)

  1.  下記一般式(I)で表される単官能(メタ)アクリレートと、光重合開始剤とを含有する、光硬化性組成物;
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは、水素原子またはメチル基を表し、
     Rは、フッ素原子で置換されていてもよいアルキル基を表し、 
     Rは、水素原子、フッ素原子で置換されていてもよい直鎖のアルキル基、または、フッ素原子で置換されていてもよい分岐のアルキル基を表し、
     R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
     RとRに含まれる炭素原子数の合計は、1~6である;
     RとR、または、RとRは、互いに結合して環を形成していても良い。
  2.  前記一般式(I)において、Rが炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基である、請求項1に記載の光硬化性組成物。
  3.  前記一般式(I)において、Rが水素原子である、請求項1または2に記載の光硬化性組成物。
  4.  前記一般式(I)において、RおよびRが、それぞれ独立に、フッ素原子で置換されていてもよいメチル基である、請求項1または2に記載の光硬化性組成物。
  5.  前記単官能(メタ)アクリレートが、下記一般式(II)で表される、請求項1または2に記載の光硬化性組成物;
    Figure JPOXMLDOC01-appb-C000002
     式中、Rは、水素原子またはメチル基を表し、
     Lは、直鎖のアルキレン基または分岐のアルキレン基を表し、
     R32は、水素原子、直鎖のアルキル基または分岐のアルキル基を表し、
     R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~4の直鎖のアルキル基、または、炭素数3または4の分岐のアルキル基を表す;
     LとR32に含まれる炭素原子数の合計は、1~6である。
  6.  前記単官能(メタ)アクリレートを、光硬化性組成物中の溶剤を除く全成分に対して20~80質量%含有する、請求項1~5のいずれか1項に記載の光硬化性組成物。
  7.  さらに多官能(メタ)アクリレートを、光硬化性組成物中の溶剤を除く全成分に対して20~79質量%含有する、請求項1~6のいずれか1項に記載の光硬化性組成物。
  8.  前記多官能(メタ)アクリレートが、芳香族基を有する、請求項7に記載の光硬化性組成物。
  9.  前記光硬化性組成物の大西パラメータが3.6以下であり、前記光硬化性組成物の硬化膜のガラス転移温度が85℃以上である、請求項1~8のいずれか1項に記載の光硬化性組成物;但し、硬化膜のガラス転移温度は、以下の方法で測定した値である;
     光硬化性組成物を石英板に挟み、光源として高圧水銀ランプを用い、波長300~400nm、照度10mW/cm、露光時間100秒の条件で紫外線硬化して、膜厚150μm、幅5mmの短冊サンプルである硬化膜を作製し、短冊サンプルを、動的粘弾性測定装置を用いて、チャック間距離20mm、温度範囲20℃~220℃、昇温速度5℃/分、周波数1Hzの条件で、引っ張り正弦波モードにて動的粘弾性を測定し、得られた損失正接曲線の極大値の温度を、ガラス転移温度とする;
     大西パラメータは、以下の数式(1)で表される値である;
    大西パラメータ=全原子数/(炭素原子数-酸素原子数)・・・(1)。
  10.  前記光硬化性組成物の23℃における粘度が5.5~15.0mPa・sである、請求項1~9のいずれか1項に記載の光硬化性組成物。
  11.  インプリント用である、請求項1~10のいずれか1項に記載の光硬化性組成物。
  12.  請求項1~11のいずれか1項に記載の光硬化性組成物を、基材上またはパターンを有するモールド上に適用する工程と、
     前記光硬化性組成物を前記モールドと基材とで挟持する工程と、
     前記光硬化性組成物を前記モールドと基材とで挟持した状態で光照射して、前記光硬化性組成物を硬化させる工程と、
     前記モールドを剥離する工程とを含む、パターン形成方法。
  13.  前記光硬化性組成物を、インクジェット法により、前記基材上または前記パターンを有するモールド上に適用する、請求項12に記載のパターン形成方法。
  14.  請求項12または13に記載のパターン形成方法で作製したパターンをマスクとして、前記基材をエッチングする工程を含む、デバイスの製造方法。
PCT/JP2016/069205 2015-06-30 2016-06-29 光硬化性組成物、パターン形成方法およびデバイスの製造方法 WO2017002833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177037214A KR101995749B1 (ko) 2015-06-30 2016-06-29 광경화성 조성물, 패턴 형성 방법 및 디바이스의 제조 방법
JP2017526383A JPWO2017002833A1 (ja) 2015-06-30 2016-06-29 光硬化性組成物、パターン形成方法およびデバイスの製造方法
US15/852,363 US10739678B2 (en) 2015-06-30 2017-12-22 Photocurable composition, pattern forming method, and method for manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132094 2015-06-30
JP2015-132094 2015-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/852,363 Continuation US10739678B2 (en) 2015-06-30 2017-12-22 Photocurable composition, pattern forming method, and method for manufacturing device

Publications (1)

Publication Number Publication Date
WO2017002833A1 true WO2017002833A1 (ja) 2017-01-05

Family

ID=57608888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069205 WO2017002833A1 (ja) 2015-06-30 2016-06-29 光硬化性組成物、パターン形成方法およびデバイスの製造方法

Country Status (5)

Country Link
US (1) US10739678B2 (ja)
JP (1) JPWO2017002833A1 (ja)
KR (1) KR101995749B1 (ja)
TW (1) TWI725036B (ja)
WO (1) WO2017002833A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188882A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 インプリント用硬化性組成物、離型剤、硬化物、パターン形成方法およびリソグラフィー方法
KR20200095988A (ko) * 2019-02-01 2020-08-11 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
WO2021182049A1 (ja) * 2020-03-10 2021-09-16 東洋合成工業株式会社 インプリントモールド用光硬化性樹脂組成物、樹脂モールド、該樹脂モールドを用いたパターン形成方法、該樹脂モールドを有する複合体、該複合体の製造方法及び光学部材の製造方法
WO2023068234A1 (ja) * 2021-10-18 2023-04-27 東洋合成工業株式会社 インプリント用硬化性組成物、パターン形成方法及び部品の製造方法
US11762289B2 (en) 2017-10-27 2023-09-19 Samsung Sdi Co., Ltd. Composition including quantum dot, manufacturing method quantum dot and color filter
US11760926B2 (en) 2019-07-26 2023-09-19 Samsung Sdi Co., Ltd. Quantum dot, curable composition comprising the same, cured layer using the composition, color filter including the cured layer, and display device including the cured layer
US11773318B2 (en) 2019-04-24 2023-10-03 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device including the resin layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220236640A1 (en) * 2021-01-28 2022-07-28 Canon Kabushiki Kaisha Photocurable composition comprising an organic ionic compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868743A (ja) * 1981-10-21 1983-04-23 Hitachi Ltd 放射線感応性有機高分子材料
JPH09110790A (ja) * 1995-10-16 1997-04-28 Mitsubishi Rayon Co Ltd 新規な(メタ)アクリル酸エステル
WO1997036196A1 (fr) * 1996-03-28 1997-10-02 Mitsubishi Rayon Co., Ltd. Fibre optique a indice de refraction reparti et procede de fabrication
JP2010256853A (ja) * 2009-03-31 2010-11-11 Dainippon Printing Co Ltd 光学シート、光学部材、面光源装置、透過型表示装置および発光装置
JP2014530277A (ja) * 2011-09-27 2014-11-17 スリーエム イノベイティブプロパティズカンパニー 重合性組成物、重合組成物、物品、及びその製造方法
WO2015159442A1 (en) * 2014-04-17 2015-10-22 Henkel Ag & Co. Kgaa A light-curable resin composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134337A (ja) * 1988-11-15 1990-05-23 Toagosei Chem Ind Co Ltd 含フッ素芳香族化合物
EP1835342A3 (en) * 2006-03-14 2008-06-04 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1906239A3 (en) * 2006-09-29 2009-02-18 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
JP2010037541A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp インプリント用硬化性組成物、パターン形成方法およびパターン
JP2010186979A (ja) * 2008-12-03 2010-08-26 Fujifilm Corp インプリント用硬化性組成物、パターン形成方法およびパターン
JP5481861B2 (ja) 2009-01-09 2014-04-23 日立化成株式会社 光硬化性樹脂組成物、これを用いたパターン形成方法及び微細構造体
JP5740168B2 (ja) 2010-07-01 2015-06-24 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、並びに、それを用いたレジスト膜、及び、パターン形成方法
JP5696017B2 (ja) 2011-09-27 2015-04-08 富士フイルム株式会社 インプリント用硬化性組成物、パターン形成方法およびパターン
JP5767615B2 (ja) * 2011-10-07 2015-08-19 富士フイルム株式会社 インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP5846974B2 (ja) * 2012-03-13 2016-01-20 富士フイルム株式会社 光インプリント用硬化性組成物、パターン形成方法およびパターン
US8945814B2 (en) * 2012-09-15 2015-02-03 Rohm And Haas Electronic Materials Llc Acid generators and photoresists comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868743A (ja) * 1981-10-21 1983-04-23 Hitachi Ltd 放射線感応性有機高分子材料
JPH09110790A (ja) * 1995-10-16 1997-04-28 Mitsubishi Rayon Co Ltd 新規な(メタ)アクリル酸エステル
WO1997036196A1 (fr) * 1996-03-28 1997-10-02 Mitsubishi Rayon Co., Ltd. Fibre optique a indice de refraction reparti et procede de fabrication
JP2010256853A (ja) * 2009-03-31 2010-11-11 Dainippon Printing Co Ltd 光学シート、光学部材、面光源装置、透過型表示装置および発光装置
JP2014530277A (ja) * 2011-09-27 2014-11-17 スリーエム イノベイティブプロパティズカンパニー 重合性組成物、重合組成物、物品、及びその製造方法
WO2015159442A1 (en) * 2014-04-17 2015-10-22 Henkel Ag & Co. Kgaa A light-curable resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11762289B2 (en) 2017-10-27 2023-09-19 Samsung Sdi Co., Ltd. Composition including quantum dot, manufacturing method quantum dot and color filter
WO2019188882A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 インプリント用硬化性組成物、離型剤、硬化物、パターン形成方法およびリソグラフィー方法
US20210018833A1 (en) * 2018-03-27 2021-01-21 Fujifilm Corporation Curable composition for imprinting, release agent, cured product, pattern forming method, and lithography method
JPWO2019188882A1 (ja) * 2018-03-27 2021-02-25 富士フイルム株式会社 インプリント用硬化性組成物、離型剤、硬化物、パターン形成方法およびリソグラフィー方法
JP7057421B2 (ja) 2018-03-27 2022-04-19 富士フイルム株式会社 インプリント用硬化性組成物、離型剤、硬化物、パターン形成方法およびリソグラフィー方法
KR20200095988A (ko) * 2019-02-01 2020-08-11 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
KR102296792B1 (ko) 2019-02-01 2021-08-31 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
US11866624B2 (en) 2019-02-01 2024-01-09 Samsung Sdi Co., Ltd. Non-solvent type curable composition, cured layer using the same, color filter including the cured layer, display device including the cured layer and manufacturing method of the cured layer
US11773318B2 (en) 2019-04-24 2023-10-03 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device including the resin layer
US11760926B2 (en) 2019-07-26 2023-09-19 Samsung Sdi Co., Ltd. Quantum dot, curable composition comprising the same, cured layer using the composition, color filter including the cured layer, and display device including the cured layer
WO2021182049A1 (ja) * 2020-03-10 2021-09-16 東洋合成工業株式会社 インプリントモールド用光硬化性樹脂組成物、樹脂モールド、該樹脂モールドを用いたパターン形成方法、該樹脂モールドを有する複合体、該複合体の製造方法及び光学部材の製造方法
WO2023068234A1 (ja) * 2021-10-18 2023-04-27 東洋合成工業株式会社 インプリント用硬化性組成物、パターン形成方法及び部品の製造方法

Also Published As

Publication number Publication date
KR20180012309A (ko) 2018-02-05
TW201706715A (zh) 2017-02-16
US20180120698A1 (en) 2018-05-03
KR101995749B1 (ko) 2019-07-03
TWI725036B (zh) 2021-04-21
JPWO2017002833A1 (ja) 2018-04-19
US10739678B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
US10739678B2 (en) Photocurable composition, pattern forming method, and method for manufacturing device
JP5696017B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5767615B2 (ja) インプリント用下層膜組成物およびこれを用いたパターン形成方法
KR101798445B1 (ko) 광임프린트용 경화성 조성물, 패턴 형성 방법, 미세 패턴, 및 반도체 디바이스의 제조 방법
WO2014069552A1 (ja) インプリント用密着膜の製造方法およびパターン形成方法
TW201506096A (zh) 噴墨吐出方法、圖案形成方法及圖案
US10261413B2 (en) Photocurable composition for imprints, pattern forming method, and method for manufacturing device
WO2016047657A1 (ja) 硬化性組成物、パターン形成方法、パターンおよびデバイスの製造方法
JP6379220B2 (ja) インプリント用光硬化性組成物、パターン形成方法およびデバイスの製造方法
JP6267802B2 (ja) パターン形成体の製造方法
JP6114221B2 (ja) 光インプリント用硬化性組成物、パターン形成方法およびパターン
WO2015146709A1 (ja) 光インプリント用硬化性組成物、パターン形成方法、パターンおよび含フッ素化合物
JP6363215B2 (ja) パターン形成体の製造方法
JP2012175071A (ja) インプリント用硬化性組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177037214

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817941

Country of ref document: EP

Kind code of ref document: A1