WO1997015625A1 - Composition de resine polyacetalique - Google Patents

Composition de resine polyacetalique Download PDF

Info

Publication number
WO1997015625A1
WO1997015625A1 PCT/JP1996/003065 JP9603065W WO9715625A1 WO 1997015625 A1 WO1997015625 A1 WO 1997015625A1 JP 9603065 W JP9603065 W JP 9603065W WO 9715625 A1 WO9715625 A1 WO 9715625A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
polyacetal resin
polymer
acid
group
Prior art date
Application number
PCT/JP1996/003065
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Fukute
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Priority to KR10-1998-0702938A priority Critical patent/KR100475401B1/ko
Publication of WO1997015625A1 publication Critical patent/WO1997015625A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a polyacetal resin composition
  • a polyacetal resin composition comprising a polyacetal resin and a specific core-shell polymer, which has extremely excellent hinge characteristics, and is excellent in impact resistance and fluidity, and which is molded. And a hinge part made of polyacetal resin.
  • the hinge part is, for example, as shown in FIG. 1, and refers to a thin part to which one or more bending or bending loads are applied at a certain part of the part. ).
  • the shape of the hinge is not particularly limited, and may be a sheet shape, a band shape, a string shape, or the like.
  • the thickness and length of the hinge are not specified, and those having a function substantially as a hinge are included in the hinge part according to the present invention.
  • the hinge characteristic is defined as the durability of the hinge as described above to one or more bendings or bending loads.
  • polyacetal resins have recently been used in a very wide range of fields as engineering resins with excellent physical properties such as mechanical properties and electrical properties, or chemical properties such as chemical resistance and heat resistance. ing.
  • physical properties such as mechanical properties and electrical properties, or chemical properties such as chemical resistance and heat resistance.
  • chemical properties such as chemical resistance and heat resistance.
  • the properties of the material may require further specialty.
  • a material having excellent flexibility that is, a material having excellent hinge characteristics.
  • thermoplastic polyurethane As a method of responding to the requirement of hinge characteristics, a method of adding an elastomer such as thermoplastic polyurethane to polyacetal resin to improve hinge characteristics or impact resistance is known.
  • An object of the present invention is to provide a polyacetal resin composition having hinge characteristics that are more excellent than conventional ones without impairing other physical properties, and a polyacetal resin hinge component.
  • the present inventor has been keen to develop a polyacetal resin material that solves the above-mentioned problems, has excellent hinge characteristics, and maintains toughness, without sacrificing the inherent characteristics of the polyacetal resin as much as possible.
  • it is effective to add a specific saturated fatty acid visamide which has been uniformly mixed in advance with a core-shell polymer, and have completed the present invention.
  • Polyacetal resin composition comprising 1 to 100 parts by weight of core-shell polymer, and the polyacetal resin composition
  • the present invention relates to a hinge part made of polyacetal resin formed by molding.
  • R 3 is an aliphatic alkyl group having 10 to 22 carbon atoms, a substituted alkyl group, Ariru group, a group selected from the substituent Ariru group, each may be the same or different.
  • R 2 is It is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • the resin composition of the present invention contains (A) and (B) as described above, and (B) contains a core-shell polymer and the above-mentioned saturated fatty acid bisamide. All are well mixed. It is a very suitable material for a hinge resin because it has good hinge properties, impact resistance and fluidity, which were difficult with the prior art.
  • the resin composition of the present invention in which a specific lubricant (saturated fatty acid bisamide) is uniformly blended in advance with a core shell polymer and kneaded with a polyacetal resin, has a balanced mechanical property of polyacetal. Hinge characteristics while maintaining the properties ⁇ Excellent fluidity and remarkable effect of maintaining toughness.
  • Examples of applications of hinge parts obtained by molding a hanging polyacetal resin composition include various types of hinge parts in the fields of automobiles, electricity, electronics, building materials, and miscellaneous goods.
  • a connector, a connector for electric equipment, and the like are mentioned, and are suitably used for these applications.
  • Fig. 1 is a schematic view of a test piece used for hinge characteristic measurement, and (a), (b), and (c) show a plan view, a side view, and an enlarged view of a hinge portion, respectively.
  • the unit of other numerical values is mm.
  • the copolymer may be a copolymer having a small amount, a terpolymer, or a block copolymer.
  • the molecule may have not only a linear but also a branched or crosslinked structure.
  • the melt index measured according to the ASTM D 1238-89 E method at a cylinder temperature of 190 ° C is 0.1 to 30 g / 10 minutes, more preferably 0.5 to 15 g / 10 minutes. Things are used.
  • the core-shell polymer (B) used in the present invention is obtained by adding a saturated fatty acid bisamide represented by the following general formula to a core-shell polymer having a rubber-like polymer core and a glass-like polymer shell in advance. 0.35 parts by weight (per 100 parts by weight of core-shell polymer) is uniformly blended.
  • R 3 are groups selected from an aliphatic alkyl group having 10 22 carbon atoms, a substituted alkyl group, an aryl group, and a substituted aryl group, which may be the same or different.
  • 2 is a divalent hydrocarbon group having 1 12 carbon atoms.
  • the core-shell polymer used as a precursor of the core-shell polymer (B) in which the saturated fatty acid bisamide used in the present invention is uniformly blended is a compound having a rubber-like polymer core and a glass-like polymer shell. It can be prepared by a known method, or a commercially available product can be used. Typical examples are Acryloid M330 and KM653 from Rohm Haas Co., Ltd., Paraloid KCA-102 and KCA-301 from Kureha Chemical Co., Ltd., and Staphyloid P0-0143 and PO-0 M8 from Takeda Pharmaceutical Co., Ltd.
  • a core-shell polymer having a rubber-like polymer core and a glass-like polymer shell containing methyl methacrylate as a main component is preferable, and particularly a core-shell polymer in which anion is not substantially detected. It is a polymer.
  • a core-shell polymer in which anion is detected is used, decomposition of polyacetal may be promoted during melt-kneading or injection molding, and a desired hinge property may not be obtained.
  • the core-shell polymer in which anion is not substantially detected means a core-shell polymer to which no anion is detected by a usual qualitative test of anion.
  • a measuring method 5 g of a sample (core-shell polymer) was weighed in a 50 ml Erlenmeyer flask, 20 ml of ion-exchanged water was added, the mixture was stirred for 3 hours with a magnetic stirrer, and then filtered with No. 5C filter paper. The filtrate is divided into two parts, and 0.5 ml of a 1% aqueous barium chloride solution is added to one of the two parts.
  • a method of comparing and observing the occurrence of turbidity (qualitative test for sulfate ion) 0.1 N silver nitrate aqueous solution The presence of anion can be confirmed by a method of comparing the occurrence of turbidity (qualitative test of halogen ions).
  • a shell polymer in which these anions do not exist at all is preferably used.
  • the preferred coasur polymer for use in the present invention is obtained by emulsion polymerization using a nonionic surfactant and a polymerization initiator in which a generated radical is neutral.
  • a core-shell polymer can be produced, for example, by using the emulsion polymerization technique described in JP-A-3-14856.
  • Emulsion polymerization can be carried out using, for example, the following surfactant and polymerization initiator.
  • nonionic surfactants include ester types such as polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, and polyoxyethylene lauryl ether; ester types such as polyoxyethylene monostearate; and polyoxyethylene.
  • nonionic surfactants such as sorbitan ester type such as ethylene sorbitan monolaurate and block polymer type such as polyoxyethylene polyoxypropylene block copolymer can be used.
  • the addition amount is appropriately selected according to the particle stabilizing ability of the surfactant.
  • the polymerization initiator include azo-based polymerization initiators such as azobisisobutyronitrile, dimethyl 2,2′-azobisisobutyrate, and 2,2′-azobis (2-aminopropane) dihydrochloride, cumenehydrido peroxyside, A peroxide polymerization initiator such as diisopropylbenzene hydroperoxide and hydrogen peroxide is used alone or in combination of two or more.
  • a core-shell polymer that contains substantially no anion or contains a very small amount of anion is contained. can get.
  • a polyacetal resin composition using such a core-shell polymer substantially free of anion has excellent hinge characteristics.
  • the core-shell polymer used as a precursor in the present invention has a core of a rubber-like polymer and a shell of a glassy polymer. It can be obtained by a continuous multi-stage polymerization polymerization method in which the polymer is sequentially coated.
  • the mesophase may be formed by a multi-stage emulsion polymerization method in which the polymer at the later stage enters the polymer at the earlier stage. is there.
  • the emulsion polymerization reaction it is preferable to start the emulsion polymerization reaction by adding a monomer, a surfactant and water to a reactor, and then adding a polymerization initiator.
  • the first stage of polymerization is a reaction that forms a rubbery polymer.
  • the monomer constituting the rubbery polymer include a conjugated gen or an alkyl acrylate having an alkyl group having 2 to 8 carbon atoms, or a mixture thereof.
  • These monomers are polymerized to form a rubbery polymer having a glass transition temperature of less than 30 ° C.
  • a conjugated diene include butadiene, isoprene, and chloroprene.
  • alkyl acrylate having an alkyl group having 2 to 8 carbon atoms include ethyl acrylate, propyl acrylate, butyl acrylate, cyclohexyl / reacrylate, and 2-ethylhexyl acrylate. Can be mentioned.
  • monomers copolymerizable with conjugated gens and alkyl acrylates for example, aromatic biels such as styrene, vinylinole toluene, ⁇ -methynolestyrene, aromatic vinylidene, acrylonitrile, methacrylonitrile, etc. It is also possible to copolymerize vinyl cyanide, vinylidene cyanide, alkyl methacrylate such as methyl methacrylate and butyl methacrylate.
  • the total amount of all monomers in the first-stage is 20 wt.
  • a polymer having high impact resistance can be obtained by using a small amount of a crosslinkable monomer and a grafting monomer.
  • crosslinkable monomers include aromatic divinyl monomers such as dibutylbenzene, ethylene glycol resin acrylate, ethylene glycol resin methacrylate, butylene glycol diacrylate, and hexanediol diacrylate.
  • Alkane polyol polyacrylate or alkane polyol polymethacrylate such as trimethylolpropane trimethacrylate, trimethylolpropane dimethacrylate, trimethylol mouth-to-mouth mouth pantoacrylate, trimethylolpropane trimethacrylate, etc.
  • butylene glycol diatalylate and hexane diol diacrylate are particularly preferably used.
  • grafted monomers examples thereof include unsaturated carboxylic acid esters such as arylaryl acrylate, aryl methacrylate, diaryl maleate, diaryl fumarate, and diaryl itaconate. Of these, aryl methacrylate is particularly preferably used.
  • Such a crosslinkable monomer and a grafted monomer each weigh 0 to 5 weight of the total amount of the first monomer. / 0 , preferably in the range of 0.1 to 2% by weight.
  • the core of the rubbery polymer preferably ranges from 50 to 90% by weight of the total core-shell polymer.
  • weight of the core is less than this range or more than this range, the effect of improving the impact resistance of the resin composition obtained by melt-mixing the formed core-shull polymer may not be sufficient.
  • glass transition temperature of the core is higher than -30 ° C, the effect of improving the low-temperature impact resistance may not be sufficient.
  • the outermost shell layer (shell phase) is formed of a glassy polymer.
  • the monomers constituting the glassy polymer are methyl methacrylate, a mixture of monomers copolymerizable with methyl methacrylate, and form a glassy polymer having a glass transition temperature of 60 ° C or higher.
  • Examples of monomers that can be copolymerized with methyl methacrylate include, for example, alkyl acrylates such as ethyl methacrylate, buty methacrylate, and the like, alkyl acrylates such as ethyl acrylate and butyl acrylate, styrene, and vinyl.
  • aromatic polymer such as toluene and ⁇ -methylstyrene
  • aromatic vinylidene aromatic vinylidene
  • acrylonitrile methacrylonitrile
  • vinyl polymerizable monomers such as vinyl cyanide and vinylidene cyanide
  • ethyl acrylate, styrene, acrylonitrile and the like are used.
  • the outermost shell layer weighs 10-50 weight of the entire core-shell polymer. /. Is preferred. When the weight of the shell phase is smaller than or larger than the above range, the effect of improving the impact resistance of the resin composition obtained by melt-mixing the formed core-shell polymer may not be sufficient.
  • an intermediate phase may be present between the first stage and the final polymerization phase.
  • a polymerized monomer having a functional group such as glycidyl methacrylate, methacrylic acid, or hydroxyshethyl methacrylate, or a polymerized monomer that forms a glassy polymer such as methyl methacrylate
  • the intermediate phase is formed by the side emulsion polymerization of a polymerizable monomer that forms a rubbery polymer such as methyl acrylate. Is done.
  • Such an intermediate phase can be selected variously depending on the desired properties of the core-shell polymer.
  • the polymerization ratio may be appropriately selected depending on the monomer used. For example, when a glassy polymer is used as the intermediate layer, the polymerization ratio may be calculated as a part of the shell, and in the case of a rubbery polymer, it may be calculated as a part of the core.
  • the structure of a core-shell polymer having such a mesophase is, for example, a multi-layer structure in which another layer exists between the core and the shell, or a mesophase dispersed in the core as fine particles.
  • One that has a salami structure is used.
  • the mesophase to be dispersed may form a new core in the center of the core.
  • a core-shell polymer having such a structure may occur when a monomer represented by styrene is used as a monomer constituting a medium phase.
  • the impact resistance is improved, the flexural modulus is increased, the heat distortion temperature is increased, the appearance (suppression of surface peeling and pearl luster, color tone due to refractive index change) is improved. Change) may be improved.
  • a method of imparting impact resistance to a polyacetal resin As a method of imparting impact resistance to a polyacetal resin, a method of adding a core-shell polymer or the like to a polyacetal resin is conventionally known as a method other than the addition of a rubber-like substance. Certainly, the conditions other than the hinge characteristics are satisfied by this method, but the polyacetal resin itself has poor hinge characteristics, and further has the disadvantage that the addition of the core shell polymer further reduces the hinge characteristics. A polyacetal resin composition that maintains the fluidity, non-peelability, etc., and also has a sufficient hinge property has not yet been provided.
  • the toughness can be improved without deteriorating the excellent mechanical properties of the polyacetal resin, but the hinge properties are quite poor, and could not be used.
  • the present invention is characterized in that a mixture (B) of a specific lubricant (saturated fatty acid bisamide) previously blended with the above-mentioned coaffle polymer component and (A) a polyacetal resin are kneaded, In this way, the two components (A) and (B) are blended. Therefore, it is extremely effective in improving hinge properties without deteriorating the balanced properties inherent in polyacetal resin.
  • a specific lubricant saturated fatty acid bisamide
  • a method in which a polyacetal resin and a lubricant are kneaded, and then a core shell polymer is further added and kneaded may be considered.
  • a lubricant-containing polyacetal resin and a core-shell polymer It is difficult to uniformly disperse the core-shell polymer, and a hinge part obtained by molding the obtained polyacetal resin composition is also inferior in function as a hinge.
  • a hinge part obtained by molding the obtained polyacetal resin composition is inferior in function as a hinge, as described above.
  • a hinge part obtained by molding the polyacetal resin composition obtained as described above is not preferable because it has a poor function as a hinge.
  • a lubricant-containing core-shell polymer obtained by uniformly mixing the entire amount of the lubricant to be blended in the polyacetal resin composition with the core-shell polymer is polymer-blended with the polyacetal resin.
  • a solution in which a saturated fatty acid bis amide is dissolved in a solvent and a commercially available core-shell polymer are mixed using a Henschel mixer, and then mixed.
  • the saturated fatty acid bisamide can be uniformly dispersed in the core-shell polymer in advance. it can.
  • the saturated fatty acid bisamide used for such a purpose has a general formula: R C0NH-R2-HC0-R 3
  • R 3 is an aliphatic alkyl group having 10 to 22 carbon atoms, a substituted alkyl group, Ariru group, a group selected from the substituent Ariru group, each may be the same or different.
  • R 2 is It is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • Is a saturated fatty acid bisamide represented by It is derived from certain alkylenediamines and certain saturated fatty acids.
  • the saturated fatty acid component of the saturated fatty acid bis amide has 11 to 23 carbon atoms, and includes pendecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, normitic acid, margaric acid, stearic acid, and nonadecanoic acid. Arachidic acid and behenic acid. Of these, stearic acid is particularly preferred.
  • Preferred examples of the divalent hydrocarbon group of the saturated fatty acid bisamide include alkylene groups such as a monomethylene group, a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Of these, a monomethylene group and a dimethylene group are particularly preferred.
  • the addition amount of the saturated fatty acid bisamide is suitably from 0.3 to 5 parts by weight, preferably from 1 to 5 parts by weight, particularly preferably from 2 to 4 parts by weight, per 100 parts by weight of the core-shell polymer. If the amount is less than 0.3 part by weight, the effect of improving the hinge characteristics is small, and if the amount is more than 5 parts by weight, the effect of improvement reaches saturation and adversely affects the original characteristics of the polyacetal resin.
  • Such a saturated fatty acid bisamide can be obtained by kneading and blending (A) a polyacetal resin and a core-shell polymer to obtain a polyacetal resin composition having excellent toughness, but a hinge molded part having excellent hinge properties. Cannot be obtained. There Thus, a significant improvement effect is exhibited by adding a saturated fatty acid bisamide to the core-shell polymer in advance, and an effect of having excellent hinge characteristics is recognized.
  • the core-shell polymer is dispersed in the form of particles on the surface, and when the molded part is bent, the core-shell polymer becomes a starting point and breaks or breaks. .
  • (A) a compound obtained by blending a core-shell polymer with a polyacetal resin has significantly poor hinge properties.
  • a saturated fatty acid bisamide to the core-shell polymer in advance, a remarkable improvement effect is exhibited, and an effect of having excellent hinge characteristics is recognized.
  • the effect is that even if the primary particles are a core / shell polymer of a few particles, the secondary particles are usually agglomerated to several tens of particles, so that the primary particles are merely kneaded with the polyacetal resin.
  • the secondary particles are usually agglomerated to several tens of particles, so that the primary particles are merely kneaded with the polyacetal resin.
  • it is not uniformly dispersed, it is presumed that by mixing the saturated fatty acid bisamide in the core-shell polymer in advance and kneading with the polyacetal resin, it is possible to uniformly disperse the primary particles.
  • the effect of using a saturated fatty acid bisamide as a lubricant is great because the ability to disperse the core-shell polymer was enhanced due to its high affinity with the Schul component of the core-shell polymer.
  • the operation and effect are not always clear, and the present invention is not limited by this.
  • the addition amount of the core-shell polymer (B) containing the saturated fatty acid bisamide of the present invention to 100 parts by weight of the polyacetal resin is 1 to 100 parts by weight, preferably 5 to 50 parts by weight. If the added amount of the core seal polymer is too small, the hinge properties or impact resistance will not be sufficiently exhibited, and even if added unnecessarily, the mechanical properties, especially the rigidity, will be greatly reduced, and the heat stability will be improved. Has an unfavorable effect on sex.
  • composition of the present invention is preferably further added with various known stabilizers to reinforce the thermal stability.
  • known antioxidants nitrogen-containing compounds, alkali or alkaline earth metal compounds, and the like are used. It is desirable to use one or more types together.
  • additives such as a lubricant other than the saturated fatty acid bisamide, a nucleating agent, a release agent, an antistatic agent, W It is possible to add one or more kinds of other surfactants, organic polymer materials, inorganic or organic fibrous, powdery or plate-like fillers and the like.
  • the composition of the present invention can be prepared by equipment and a method generally known as a method for preparing a synthetic resin composition. That is, the necessary components are mixed, kneaded using a single-screw or twin-screw extruder, extruded to form a pellet, and then molded, and the composition is prepared by a molding machine. It is also possible to carry out simultaneously with molding. Further, in order to improve the dispersion and mixing of the components, a method in which a part or all of the resin component is pulverized, mixed, and molded into a melt-extruded pellet may be used.
  • the compounds such as the stabilizers and additives may be added at any arbitrary stage, and may be added or mixed immediately before obtaining a final molded article.
  • the resin composition according to the present invention can be molded by any of extrusion molding, injection molding, compression molding, vacuum molding, blow molding and foam molding.
  • Nonionic surfactant Korean Emargen 950
  • a monomer-emulsion liquid containing 10 g of a core monomer mixture having the following composition, and 210 g of surfactant A, 900 g of DIW, and 2.80 g of 25% aqueous ammonia was added and mixed. . /.
  • a mixed solution of 21.0 g of a V50 aqueous solution and 0.63 g of 1% aqueous ammonia was continuously fed over 180 minutes to perform seed polymerization.
  • This latex was frozen at 115 ° C, filtered through a glass filter, and dried by blowing air at 60 for 24 hours to obtain a core-shell polymer B′-1.
  • This core-shell polymer was mixed with a solution prepared by dissolving 60 g of ethylenebisstearic acid amide (trade name: wax wax, manufactured by Lion Axo Co., Ltd.) in 100 ml of DMF. After mixing using a Henschel mixer, the solvent was removed under reduced pressure to obtain a core-shell polymer B-11.
  • ethylenebisstearic acid amide trade name: wax wax, manufactured by Lion Axo Co., Ltd.
  • the filtrate filtered with a No. 5C filter paper was divided into two parts, and 0.5 ral of a 1% barium chloride aqueous solution was added to one of the two parts.
  • the POM copolymer resin Dyuracon manufactured by Polyplastics Co., Ltd. with the composition shown in Table 3 and the core-shell polymer B'-1 to 4 manufactured as described above were dried until the water content became 0.3% or less. Thereafter, using a twin screw extruder PCM-30 manufactured by Ikegai Iron Works Co., Ltd., the mixture was melt-kneaded at a cylinder temperature of 190 ° C and a die head temperature of 200 ° C, and pelletized. A test piece was prepared using this pellet in the same manner as in the example, and the following evaluation was performed. Table 3 shows the results.
  • Test method The sample was left in an environment of 10 ° C and 50% RH for 24 hours or more, and then the hinge was repeatedly bent 100 times at a 180 ° angle under the same conditions.
  • Evaluation B The state of the hinge part after bending 100 times was evaluated according to the following criteria and expressed as an average score.
  • a thin hinge part is cut and is about to be cut.
  • the resin pellets prepared in Examples and Comparative Examples were molded into test samples (a rectangular parallelepiped having a width of 12.7 mm, a thickness of 6.4 tnm, and a length of 64) using an inline injection molding machine. A notch according to 256 methods was attached and the Izod impact value was measured. The higher the Izod impact value, the better.
  • test pieces used for evaluation of hinge characteristics and mechanical properties is as follows.
  • Nozzle C 1 C 2 C 3 Cylinder temperature (° C) 200 190 180 160 Injection pressure 650 (kg m 2 ) Injection speed 1.0 (m / min)
  • a thin test piece (width 5 mm x thickness 0.5 sleep) was formed, and the fluidity was evaluated based on its flow length (length filled with resin). .
  • Nozzle C 1 C 2 C 3 Cylinder temperature (° C) 200 190 180 160 Injection pressure 1000 (kg / cm 2 )

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

明細書
ポリアセタール樹脂組成物
【発明の属する技術分野】
本発明は、 ポリアセタール樹脂と特定のコアシェルポリマーとを配合してなる, 極めて倭れたヒンジ特性を有し、 しかも耐衝 性及び流動性に優れるポリアセタ ール樹脂組成物、 及びその組成物を成形してなるポリアセタール樹脂製ヒンジ部 品を提供するものである。
尚、 ここで言うヒンジ部品とは、 例えば図 1に示す如きものであり、 部品のあ る部分において 1回以上の曲げ又は折り曲げ荷重が加えられる薄肉部を称してヒ ンジ (図中 1で示す) と呼ぶ。 ヒンジの形状については、 特に制約はなく、 シー ト状、 帯状、 ひも状等であることができる。 ヒンジの厚み、 長さについても規定 されるものではなく、 実質的にヒンジと しての機能を有するものは本発明にいう ヒンジ部品に含まれる。
また、 本明細書中、 ヒンジ特性とは、 上記の如きヒンジにおける 1回以上の曲 げ又は折り曲げ荷重に対する耐久性と定義する。
【従来の技術】
周知の如く、 ポリアセタール樹脂は、 機械的性質、 電気的性質などの物理的特 性、 或いは耐薬品性、 耐熱性などの化学的特性の優れたエンジニアリング樹脂と して近年きわめて広汎な分野において利用されている。 しかし、 ポリアセタール 樹脂が利用される分野の拡大に伴い、 その材料としての性質にもさらに特殊性が 要求される場合がある。 このような性質の一つとして、 屈曲性に優れる材料、 即 ちヒンジ特性に優れる材料の開発が要望される場合がある。
取りわけ近年、 部品点数の削減による原価低減の必要性から、 いくつかの部品 をヒンジをもって一体化せしめ組付けを容易且つ安価に行うことが望まれる場合 が増えており、 さらには、 ヒンジ部品の低温下での使用、 或いは構造上好ましい ヒンジ形状が取り得ないもの等、 ヒンジ特性を低下させる要因も多く、 本質的に 優れたヒンジ特性の要求は一層厳しいものとなっている。
また、 一般の電気機器、 建材等の分野においても、 その目的に応じて各種材料 を組み合わせて使用する機会が増加しているが、 ポリアセタール樹脂の一層の耐 衝擎性向上が求められている。
ヒンジ特性の要求に応える方法として、 ポリアセタール榭脂に熱可塑性ポリゥ レタン等のエラス トマ一を添加してヒンジ特性或いは耐衝擎性の向上を図る等の 方法が知られている。
この方法でも、 ヒンジ特性の向上を示すことは可能ではあるが、 エラス トマ一 成分を配合することにより成形品表面で剥離現象が起こり易くなり、 成形品の外 観を著しく損なう問題があり、 又、 熱安定性の低下、 さらに成形品のウエルド強 伸度が著しく低下し、 流動性も低下する等のことからヒンジ設計の自由度が小さ くなる等種々の問題点があり、 その改善が求められていた。
更に、 近年ヒンジに要求される機能が増すと共に形状は複雑化し、 コス トダウ ン、 軽量化を目的として薄肉化しつつある。 又、 射出成形時の生産性向上の為に、 成形サイクルの短縮と一回の射出成形により得られる成形品数を増すための金型 の多数個取り化が必要とされる。 このような要求に対応するためには、 材料の高 流動性の改善が必要である。
【発明の開示】
本発明は、 他の物性を損なうこと無く、 従来のものよりも更に優れたヒンジ特 性を有するポリアセタール樹脂組成物と、 ポリアセタール樹脂製ヒンジ部品を提 供することを目的とするものである。
本発明者は、 ポリアセタール樹脂本来の特性を可能な限り犠牲にすることなく、 上記の問題が解決され、 優れたヒンジ特性を有し、 かつ靭性を維持するポリアセ タール樹脂材料の開発をすべく鋭意研究を重ねた結果、 ある特定の飽和脂肪酸ビ スァマイ ドを予めコアシェルポリマーに均一に配合したものの添加が有効である ことを見出し、 本発明を完成するに至ったものである。
即ち、 本発明は、
(A) ポリアセタール樹脂 100重量部に
(B) ゴム状ポリマーのコアとガラス状ポリマーのシェルからなり、 下記一般式 で表される飽和脂肪酸ビスアマィ ド 0. 3 〜 5重量部 (対コアシヱルポリマ一 100 重量部当たり) を予め均一に配合したコアシェルポリマ一 1〜100 重量部 を配合してなるポリアセタール樹脂組成物、 及び当該ポリアセタール樹脂組成物 を成形してなるポリアセタ一ル樹脂製ヒンジ部品に関するものである。
一般式: R - C0NH- R2- HC0-R3
(但し、 と R3は炭素数 10〜22の脂肪族アルキル基、 置換アルキル基、 ァリール 基、 置換ァリール基より選ばれる基であり、 各々同一であっても異なっていても 良い。 R2は炭素数 1 〜12の 2価の炭化水素基である。 )
本発明の樹脂組成物は上記のように(A)と(B)を含み、 (B)は、 コアシェルポリマ 一と上記飽和脂肪酸ビスアマイ ドを含む。 いずれもよく混合されている。 それは、 従来技術では困難であった、 良好なヒンジ特性と耐衝擎性及び流動性を備えてい るため、 ヒンジ用樹脂として極めて好適な材料である。
以上の説明のように、 特定の滑剤 (飽和脂肪酸ビスアマイ ド) を予めコアシェ ルポリマーに均一に配合し、 ポリアセタール樹脂と混練させてなる本発明の樹脂 組成物は、 ポリアセタールのバランスのとれた機械的物性を保持しながらヒンジ 特性 ·流動性に優れ、 かつ靭性を維持させるという顕著な効果を示す。
懸かるポリアセタール樹脂組成物を成形してなるヒンジ部品の用途例として、 自動車、 電気 '電子、 建材、 雑貨等の分野に於ける各種のヒンジ部品が挙げられ るが、 より具体的には、 自動車用コネクター、 電気機器用コネクタ一等が挙げら れ、 これらの用途に好適に用いられる。
【図面の簡単な説明】
図 1 は、 ヒンジ特性測定に用いた試験片の略図であり、 (a) , (b) , (c) は各々 平面図、 側面図及びヒンジ部の拡大図を示す。 その他の数値の単位は mmである。
【発明の実施の形態】
以下本発明の構成成分について詳しく説明する。
まず、 本癸明において用いられる(A) ポリアセタール樹脂はォキシメチレン基 (-CH20-)を主たる構成単位とする高分子化合物で、 ポリオキシメチレンホモポリ マー、 ォキシメチレン基以外に他の構成単位を少量有するコポリマー、 タ一ポリ マ一、 ブロックコポリマーいずれにてもよく、 又、 分子が線状のみならず分岐、 架橋構造を有するものであっても良い。 本発明では、 好ましくはシリンダー温度 190 °Cでの ASTM D 1238-89 E 法に準じて測定したメルトインデックスが 0. 1〜30 g/10分、 更に好ましくは 0. 5〜15g/10分のものが用いられる。 次に、 本発明において用いられる(B) コアシェルポリマーとは、 下記一般式で 表される飽和脂肪酸ビスアマィ ドを、 ゴム状ポリマーのコアとガラス状ポリマー のシェルを有するコアシェルポリマ一に対して、 予め均一に 0. 3 5重量部 (対 コアシェルポリマー 100 重量部当たり) 配合したものである。
—般式: R C0 H- R2_NHC0-R3
(但し、 と R3は炭素数 10 22の脂肪族アルキル基、 置換アルキル基、 ァリ一ル 基、 置換ァリール基より選ばれる基であり、 各々同一であっても異なっていても 良い。 R2は炭素数 1 12の 2価の炭化水素基である。 )
本発明において用いられる飽和脂肪酸ビスアマィ ドを予め均一に配合したコア シェルポリマー(B) の、 前駆体として用いられるコアシェルポリマ一とは、 ゴム 状ポリマーのコアとガラス状ポリマーのシェルを有する化合物であり、 公知の方 法によって調製することもできるし、 又、 市販品を用いることもできる。 その典 型例はローム ·ハース社のァクリロイ ド M330 及び KM653 、 呉羽化学 (株) のパ ラロイ ド KCA-102 及び KCA- 301 、 武田薬品工業 (株) のスタフイロィ ド P0- 0143 及び PO-0 M8 、 鐘淵化学工業 (株) のカネエース FM、 三菱レーヨン (株) のメタ ブレン C- 102 E-901 W-800 S- 2001等が挙げられる。 かかるコアシェルポリ マ一の内、 好ましいのは、 ゴム状のポリマーのコアとメチルメタクリ レー卜を主 成分とするガラス状ポリマーのシェルを有するコアシュルポリマーであり、 特に 実質的にァニオンが検出されないコアシェルポリマーである。 ァニオンが検出さ れるコアシェルポリマーを用いた場合、 溶融練り込み時や射出成形時にポリアセ タールの分解を促進することがあり、 所望のヒンジ特性が得られないことがある。 また、 分解が多すぎて溶融練り込みが不可能な場合もある。 ここで、 実質的にァ 二オンが検出されないコアシェルポリマーとは、 通常のァニオンの定性試験によ つてはァニオンが検出されない程度のコアシュルポリマ一を意味する。 例えば、 その測定方法としては、 試料 (コアシェルポリマ一) 5 gを 50ml三角フラスコに 秤量し、 イオン交換水 20mlを加え、 マグネチックスターラーで 3時間攪拌し、 次 いで No. 5 C濾紙で濾過した濾液を二分し、 一方に 1 %塩化バリウム水溶液 0. 5ml を加え、 濁りの発生を比較観察する方法 (硫酸イオンの定性試験) 、 または、 同 様の処理を行い、 1 %塩化バリウム水溶液の替わりに 0. 1 N硝酸銀水溶液を加え、 濁りの発生を比較する方法 (ハロゲンイオンの定性試験) によってァニオンの存 在を確認することができる。 好ましくは、 これらのァニオンが全く存在しないコ ァシェルポリマ一が好適に用いられる。
本発明に用いるのに好ましいコアシュルポリマ一は、 ノニオン性界面活性剤及 び発生するラジカルが中性である重合開始剤を用い乳化重合して得られるもので ある。 かかるコアシェルポリマーは、 例えば特開平 3—14856 号公報に記載され た乳化重合技術を用いて製造することができる。 乳化重合は、 例えば次のような 界面活性剤および重合開始剤を用いて行うことができる。 ノニオン性界面活性剤 としてはポリオキシエチレンノニルフエニルエーテル、 ポリオキシエチレンステ ァリルエーテル、 ポリオキシエチレンラウリルエーテルなどのェ一テル型、 ポリ ォキシエチレンモノステアレ一トなどのエステル型、 ポリォキシエチレンソルビ タンモノラウレー トなどのソルビタンエステル型、 ポリオキシエチレンポリオキ シプロピレンプロックコポリマーなどのブロックポリマ一型など広く一般に使用 されているノニオン性界面活性剤のほとんどが使用可能である。 その添加量は界 面活性剤の粒子安定化能力によって適宜選択される。 重合開始剤としては、 ァゾ ビスイソブチロニ トリル、 2, 2'—ァゾビスイソ酪酸ジメチル、 2, 2'—ァゾビス ( 2—ァミノプロパン) 二塩酸塩などのァゾ系重合開始剤、 クメンハイ ド口パー ォキサイ ド、 ジイ ソプロピルベンゼンハイ ドロパーォキサイ ド、 過酸化水素など の過酸化物系重合開始剤が単独または 2種以上を組み合わせて用いられる。 この ようにァニオンを含まない界面活性剤と過硫酸塩ではないような反応系で乳化重 合を行えば、 実質的にァニオンを含まないか、 含んでいても極く少量であるコア シェルポリマ一が得られる。 このような実質的にァニオンを含まないコアシェル ポリマーを用いたポリアセタール樹脂組成物はヒンジ特性に優れたものとなる。 本発明において前駆体として用いられるコアシェルポリマ一とは、 ゴム状ポリ マーのコアとガラス状ポリマーのシェルを有し、 シード乳化重合法のうち、 通常、 先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階轧 化重合法によって得られる。 コアシェルポリマーが後述の中間相を有する場合に おいては、 先の段階の重合体の中へ後の段階の重合体が侵入するような多段階乳 化重合法によって中間相が形成されることもある。 粒子発生重合時には、 モノマー、 界面活性剤および水を反応器へ添加し、 次に 重合開始剤を添加することにより、 乳化重合反応を開始させることが好ましい。 第一段目の重合はゴム状ポリマーを形成する反応である。 ゴム状ポリマーを構成 するモノマーとしては、 例えば共役ジェンまたはアルキル基の炭素数が 2〜8で あるアルキルァクリ レー トあるいはそれらの混合物などが挙げられる。 これらの モノマ一を重合させてガラス転移温度一 30°C以下のゴム状ポリマーを形成する。 このような共役ジェンとして、 例えばブタジエン、 イソプレン、 クロ口プレン等 を挙げることができる。 又、 アルキル基の炭素数が 2〜8であるアルキルァクリ レー トと して、 例えばェチルァク リ レート、 プロピルアタ リ レート、 ブチルァク リ レート、 シクロへキシ /レアク リ レー ト、 2 _ェチルへキシルァク リ レート等を 挙げることができる。
第一段目の重合には共役ジェンおよびアルキルァクリレートなどと共重合可能 なモノマー、 例えばスチレン、 ビニノレ トルエン、 α —メチノレスチレン等の芳香族 ビエル、 芳香族ビニリデン、 アクリロニトリル、 メタクリロニトリル等のシアン 化ビニル、 シアン化ビニリデン、 メチルメタクリ レー ト、 ブチルメタクリレー ト 等のアルキルメタクリ レート等を共重合させることもできる。
第一段目の重合が共役ジェンを含まない場合あるいは共役ジェンを含んでいて も第一段目の全モノマ一量の 20重量。 /0以下である場合は、 架撟性モノマ一および グラフ ト化モノマーを少量用いることにより高い耐衝擊性をもつポリマ一とする ことができる。 架橋性モノマ一として、 例えばジビュルべンゼン等の芳香族ジビ 二ノレモノマ一、 エチレングリ コーノレジァク リ レー ト、 エチレングリコーノレジメタ ク リ レ一 ト、 ブチレングリ コールジァク リ レ一ト、 へキサンジオールジァク リ レ ―ト、 へキサンジォ一ルジメタク リ レート、 オリ ゴエチレングリコールジァク リ レ—ト、 オリゴエチレングリ コーノレジメタク リ レー ト、 ト リメチローズレブロノ、。ン ジァク リ レー ト、 トリメチロールプロパンジメタク リ レー ト、 トリメチ口一ルプ 口パント リァク リ レ一ト、 ト リメチロールプロパン 卜リメタク リ レート等のアル カンポリオールポリアクリ レートまたはアルカンポリオールポリメタク リレー ト 等を挙げることができるが、 特にブチレングリコ一ルジアタリ レート、 へキサン ジオールジァクリ レートが好ましく用いられる。 グラフト化モノマ一として、 例 えばァリルアタリレート、 ァリルメタクリ レート、 ジァリルマレエ一ト、 ジァリ ルフマレート、 ジァリルイタコネート等の不飽和カルボン酸ァリルエステル等を 挙げることができるが、 特にァリルメタクリレートが好ましく用いられる。 この ような架橋性モノマ一、 グラフト化モノマ一は、 それぞれ第一段目の全モノマ一 量の 0〜5重量。 /0、 好ましくは 0. 1〜 2重量%の範囲で用いられる。
このゴム状ポリマ一のコアはコアシェルポリマー全体の 50〜90重量%の範囲が 好ましい。 コアがこの重量範囲よりも少ないとき、 或いはこれを越えて多い時は 生成するコアシュルポリマ一を溶融混合して得られる樹脂組成物の耐衝犟性改良 の効果が十分でないことがある。 また、 コアのガラス転移温度が— 30°Cよりも高 い場合は、 低温耐衝撃性改良の効果が十分ではないことがある。
最外殻層 (シェル相) はガラス状ポリマーが形成されている。 ガラス状ポリマ 一を構成するモノマーとしては、 メチルメタクリレート、 メチルメタクリレート と共重合可能なモノマーの混合物であり、 ガラス転移温度 60°C以上のガラス状ポ リマ一を形成する。 メチルメタクリレートと共重合可能なモノマーとしては、 例 えば、 エチ^^メタタ リ レート、 ブチ メタク リ レート等のァノレキ メタク リ レー ト、 ェチルァク リ レート、 ブチルァク リ レート等のアルキルァク リ レート、 スチ レン、 ビニルトルエン、 α—メチルスチレン等の芳香族ビュル、 芳香族ビニリデ ン、 アク リロニ ト リル、 メタク リ ロニ トリル等のシアン化ビエル、 シアン化ビニ リデン等のビニル重合性モノマーを挙げることができるが、 特に好ましくはェチ ルアタ リ レー ト、 スチレン、 アク リ ロニ ト リル等が用いられる。
この最外殻層 (シェル相) はコアシェルポリマ一全体の 10〜50重量。/。の範囲が 好ましい。 このシェル相がこの重量範囲よりも少ないとき、 あるいは越えて多い とき、 生成するコアシェルポリマーを溶融混合して得られる樹脂組成物の耐衝繫 性改良の効果が十分でないことがある。
また、 第一段と最終の重合相の間には中間相が存在していてもよい。 例えば、 グリシジルメタク リ レート、 メタク リル酸、 ヒ ドロキシェチルメタク リ レートな どのような官能基を有する重合モノマ一、 メチルメタクリ レー卜などのようなガ ラス状ポリマ一を形成する重合モノマ一、 メチルァク リレートなどのゴム状ポリ マ一を形成する重合モノマーなどをシ一ド乳化重合することによって中間相が形 成される。 このような中間相は所望のコアシェルポリマ一の性質によって種々選 択することができる。 また、 その重合割合も使用するモノマ一によって適宜選択 すれば良い。 例えば、 ガラス状ポリマ一を中間層とする場合は、 その重合割合を シェルの一部として算出すればよく、 ゴム状ポリマーの場合はコアの一部として 算出すれば良い。
このような中間相を有するコアシェルポリマーの構造は、 例えばコアとシェル の間にもう一つの層が存在している多層系構造をとるものや、 中間相がコア中で 細かな粒状となって分散しているサラミ構造をとるものが挙げられる。 サラミ構 造を有するコアシェルポリマーにおいては更に極端な場合は、 分散するべき中間 相がコアの中心部において新たな芯を形成していることもある。 このような構造 のコアシェルポリマーはスチレンに代表されるモノマーを中問相構成モノマーと して使用した場合に生じることがある。 また、 中間相を有するコアシェルポリマ 一を使用した場合、 耐衝擎性の改良、 曲げ弾性率の向上、 熱変形温度の上昇、 外 観 (表面剥離およびパール光沢の抑制、 屈折率変化による色調の変化) が改善さ れることがある。
ポリアセタール樹脂への耐衝撃性を付与する手法として、 ゴム状物質の添加以 外の方法では、 従来よりポリアセタール樹脂に対してコアシェルポリマ一等を添 加する方法が知られている。 確かにヒンジ特性以外の条件は、 この方法で満足す るものの、 ポリアセタール樹脂自体にヒンジ特性が良くないことに加え、 更にコ ァシェルポリマ一を加える結果、 いっそうヒンジ特性が低下するという欠点を有 する。 流動性、 非剥離性等を保持しつつヒンジ特性も满足するポリアセタール樹 脂組成物は未だ提供されていない。
この様に、 従来のコアシェルポリマーをポリアセタール樹脂中に添加配合する ことにより、 ポリアセタール樹脂の優れた機械的性質を低下させることなく、 靭 性の向上をさせるが、 ヒンジ特性は全く劣り、 ヒンジ部品用途には使用する事は できなかった。
そこで、 本発明は、 上記コアシュルポリマー成分に特定の滑剤 (飽和脂肪酸ビ スアマイ ド) を予め配合したもの(B) と、 (A) ポリアセタール樹脂と混練するこ とを特徴とするものであり、 かかる手法で(A) 、 (B) の 2成分を配合することに より、 ポリアセタール樹脂本来のもつ、 バランスのとれた特性を損なわず、 ヒン ジ特性の改善に極めて有効である。
ポリアセタール樹脂、 コアシュルポリマ一及び滑剤等の 3成分を混合する方法 として、 いずれか 2成分を混練り した後に更に残り 1成分を加えて混練りする方 法と、 3成分を同時に混練りする方法とが考えられる。
例えば、 ポリアセタール樹脂とコアシェルポリマーとを混練り した後に更に滑 剤を加えて混練りする方法では、 滑剤の影響で混練り状態が悪く滑剤の分散性も 悪くなり、 得られるポリアセタール樹脂組成物は均一性に劣っている。 その結果、 得られたポリアセタ一ル樹脂組成物を成形してなるヒンジ部品はヒンジと しての 機能に劣るので好ましくない。
他の方法としては、 ポリアセタール樹脂と滑剤とを混練り した後に更にコアシ エルポリマ一を加えて混練りする方法が考えられるが、 滑剤を含有するポリアセ タール樹脂とコアシェルポリマーとを混練りするために、 コアシェルポリマーが 均一に分散しにく く、 得られるポリアセタール樹脂組成物を成形してなるヒンジ 部品もまたヒンジと しての機能に劣るので好ましくない。
また、 3成分を同時に混練り しても上記と同じく、 得られたポリアセタ一ル樹 脂組成物を成形してなるヒンジ部品はヒンジとしての機能に劣るので好ましくな レ、。
これら 3成分を上記いずれの方法で混練り しても、 得られるポリアセタール樹 脂組成物の中でコアシュルポリマ一、 滑剤は分散性が悪く均一性に劣っている。 従って、 このようにして得られたポリアセタール樹脂組成物を成形してなるヒン ジ部品は、 ヒンジとしての機能に劣るので好ましくない。
しかしながら本発明者らは、 飽和脂肪酸ビスアマィ ドを予めコアシェルポリマ 一に均一に配合し、 これをポリアセタール樹脂に添加する方法がヒンジ部品とし て有効であることを見出した。
本発明においては、 ポリァセタール樹脂組成物に配合すべき滑剤の全量をコア シェルポリマーに均一に配合した滑剤含有コアシェルポリマーをポリアセタール 樹脂にポリマ一ブレンドする。 例えば、 飽和脂肪酸ビスアマィ ドを溶媒に溶解さ せた溶液と市販のコアシェルポリマーとをヘンシェルミキサーを用いて混合後に 溶媒を除去する方法、 コアシェルポリマーの乳化重合の乾燥工程時に飽和脂肪酸 ビスアマィ ドを添加する方法、 等の方法を用いる事により、 予め飽和脂肪酸ビス ァマイ ドをコアシェルポリマーに均一に分散させておくことができる。
本発明において、 かかる目的で用いられる飽和脂肪酸ビスアマィ ドは、 一般式: R C0NH-R2- HC0- R3
(但し、 と R3は炭素数 10〜22の脂肪族アルキル基、 置換アルキル基、 ァリール 基、 置換ァリール基より選ばれる基であり、 各々同一であっても異なっていても 良い。 R2は炭素数 1〜12の 2価の炭化水素基である。 )
で表される飽和脂肪酸ビスアマィ ドである。 これは特定のアルキレンジァミンと 特定の飽和脂肪酸から得られるものである。
飽和脂肪酸ビスアマィ ドの飽和脂肪酸成分は炭素数 11〜23のものであり、 ゥン デカン酸、 ラウリン酸、 トリデカン酸、 ミ リスチン酸、 ペンタデカン酸、 ノ ルミ チン酸、 マルガリン酸、 ステアリン酸、 ノナデカン酸、 ァラキジン酸及びべヘン 酸等が挙げられる。 このうち特にステアリン酸が好ましい。
飽和脂肪酸ビスアマィ ドの 2価の炭化水素基として好ましくは、 モノメチレン 基、 ジメチレン基、 トリメチレン基、 テトラメチレン基、 ペンタメチレン基及び へキサメチレン基のアルキレン基等が挙げられる。 このうち特に、 モノメチレン 基、 ジメチレン基が好ましい。
以上の飽和脂肪酸ビスアマイ ドのうち、 特に、 エチレンビスステアリン酸アマ ィ ド (C17H35- C0NH- CH2- CH2- NHC0-C17H35 ) 及びメチレンビスステアリン酸アマ イ ド (C17H35-C0NH-CH2- NHC0- C17H35 ) が好ましい。
飽和脂肪酸ビスアマィ ドの添加量は、 コアシェルポリマー 100重量部に対し、 0.3 〜 5重量部が適当であり、 好ましくは 1〜 5重量部、 特に 2〜4重量部が好 ましい。 0.3 重量部より少ない量ではヒンジ特性の改善効果が小さく、 5重量部 より多い量では改善効果が飽和に達し、 ポリァセタール樹脂本来の特性に悪影響 を生じる。
かかる飽和脂肪酸ビスアマイ ドは、 (A) ポリアセタール樹脂とコアシェルポリ マ一と共に混練 ·配合しても優れた靭性を有するポリァセタール樹脂組成物が得 られるが、 優れたヒンジ特性をも付与されたヒンジ成形部品は得られない。 そこ で、 予めコアシェルポリマーに飽和脂肪酸ビスアマィ ドを配合することにより顕 著な改善効果を発揮し、 優れたヒンジ特性を有するという効果が認められる。 コアシェルポリマーをポリアセタール樹脂中に添加配合して得られる成形品で は、 その表面にコアシェルポリマーが粒子状で分散し、 成形部品を屈曲させる時 そのコアシェルポリマーが起点となって破壊或いは破断してしまう。 従って、 (A) ポリアセタール樹脂にコアシェルポリマ一を配合したものはヒンジ特性が大幅に 劣る。 しかしながら、 予めコアシェルポリマーに飽和脂肪酸ビスアマイ ドを配合 することにより顕著な改善効果を発揮し、 優れたヒンジ特性を有するという効果 が認められる。
かかる作用効果は、 一次粒子は数 /程度のコアシェルポリマーであっても、 通 常は数十 程度に凝集した二次粒子塊となる為に、 単にポリアセタール樹脂と混 練しただけでは一次粒子までに均一に分散されないが、 コアシェルポリマーに予 め飽和脂肪酸ビスアマィ ドを配合しておく ことにより、 ポリアセタール樹脂と混 練した場合、 均一に一次粒子で分散するためによるものと推測される。 滑剤とし て飽和脂肪酸ビスアマィ ドを用いるとその効果が大きいのは、 コアシェルポリマ 一のシュル成分との親和性が大きい為に、 コアシェルポリマーを分散させる能力 が高くなつたからであると推測される。 尚、 この作用効果は、 必ずしも明確では なく、 これにより本発明が何等制限を受けるものではない。
本発明の飽和脂肪酸ビスアマィ ドが配合されたコアシェルポリマー(B) のポリ ァセタール樹脂 100重量部に対する添加量は 1〜100 重量部、 好ましくは 5〜50 重量部である。 コアシヱルポリマーの添加量が少なすぎるとヒンジ特性或いは耐 衝 性が十分発揮されず、 またいたずらに過大に添加しても、 機械的性質特に剛 性の大巾低下が認められ、 また、 熱安定性に好ましくない影響が生じる。
本発明の組成物は更に公知の各種安定剤を添加し、 熱安定性を補強することが 望ましく、 この目的のため公知の酸化防止剤や窒素含有化合物、 アルカリ又はァ ルカリ土類金属化合物等を 1種類又は 2種類以上合わせて使用することが望まし レ、。
本発明組成物には更にその目的に応じ所望の特性を付与するため、 従来公知の 添加剤、 例えば飽和脂肪酸ビスアマィ ド以外の滑剤、 核剤、 離型剤、 帯電防止剤、 W その他の界面活性剤、 有機高分子材料、 無機、 有機の繊維状、 粉粒状、 板状の充 填剤等を 1種又は 2種以上添加含有させることが可能である。
本発明の組成物は、 一般に合成樹脂組成物の調製法として公知の設備と方法に より調製することができる。 即ち、 必要な成分を混合し、 1軸又は 2軸の押出機 を使用して混練し、 押出して成形用ペレッ トとした後成形することができ、 又組 成物の調製を成形機にて成形と同時に行うことも可能である。 また各成分の分散 混合を良くするため樹脂成分の一部又は全部を粉砕し、 混合して溶融押出したぺ レッ トを成形する方法等、 いずれも可能である。
また前記安定剤、 添加剤等の配合物は任意のいかなる段階で加えてもよく、 又 最終成形品を得る直前で添加、 混合することももちろん可能である。
また本発明にかかる樹脂組成物は、 押出し成形、 射出成形、 圧縮成形、 真空成 形、 吹き込み成形、 発泡成形のいずれによっても成形可能である。
【実施例】
以下に実施例および比較例を挙げて本発明を説明するが、 本発明はこれら実施 例により何ら限定されるものではない。 なお実施例、 比較例中の 「部」 はすべて 重量部を表す。 実施例、 比較例中に用いる略語は下記の通りである。
ェチルァクリ レ一ト EA
メチルメタク リ レート 醒
1 , 4 —ブチレングリコールァクリレート BGA
ァリルメタク リ レー ト AIMA
メタク リルァミ ド MAM
2—ェチノレへキシルァク リ レート EHA
ブタジエン BD
ノニオン性界面活性剤 (花王製ェマルゲン 950) E950
オリゴマー型ァニオン性界面活性剤 界面活性剤 A
(特開昭 53— 10682 号公報、 実施例 13の記載に従って合成し、 アンモニア水で pH7. 5 に調整後、 純水にて固形分率 10%とした。 n ドデシルー S 一 H
Figure imgf000015_0001
(式中、 a b = 7 : 3、 a + b =約 1 3. 6)
<組 成 >
メタクリル酸 155g
匪 360g
n -ドデシルメルカプタン 109g
ァゾビスィソブチロニト リル 4.4g
ィソプロパノール 314g
分子量 1310) 脱イオン水 DIW
2,2'—ァゾビス (2—ァミノプロパン) 二塩酸塩 V50
(和光純薬 (製) V50 )
エチレンビスステアロアミ ド EBS
C Hss -CON'H-CH 2-CH2-NHCO-C17H35
メチレンビスステアロアミ ド BS
Ci7H35 -CO H-CH2 -NHC0-C H3 5
ペンタエリスリ ト一ルテ トラステアレート PETS
ポリアセタール樹脂 POM 樹脂
くコアシェルポリマー B— 1及び B ' — 1の製造 >
5 リ ツ トル還流冷却器付重合容器内に DIW 1200 g、 25%アンモニア水 1.68 g、 界面活性剤 A 7 g、 MAM 0.14gを仕込み、 窒素気流下で攪拌しながら 70°Cに昇温 した。 次の組成からなるシードモノマ一混合物の 27.86 gを添加し、 10分間かけ て分散させた後、 V50 の 10%水溶液 21 gを添加してシード粒子を重合した。
シ一ドモノマー
EA 27.664g 7 1
AIMA 0. 14 g
BGA 0. 056g
続いて AM 7 gを添加し、 次の組成からなるコア部モノマー混合物 1500 gに界 面活性剤 A 210 g、 DIW 900g、 25%アンモニゥム水 2. 80 gを添加混合したモノマ 一乳化液および 10。/。V 50水溶液 21. 0 g、 1 %アンモニア水 0. 63 gの混合液を 180 分かけて連続フィードし、 シード重合を行った。
コア部モノマー混合物
EHA 1040. 2g
BD 450. 0g
BGA 2. 8g
AIMA 7. Og
80°Cに昇温して 1時間熟成後、 冷却して 70°Cとした。
次に、 V50 の 10 %水溶液を 9 g、 1 %アンモニア水 0. 27 gを添加し、 次の組成 のシェル部モノマ一乳化液および V50 の 10%水溶液を 12 g、 1 %アンモニア水 0. 36 gを 60分かけて連続フィ一ドし、 乳化重合を行った。
シェル部モノマ一乳化液
MMA 438. 8g
EA 60. Og
界面活性剤 A 30. Og
DIW 500. Og
25%アンモニゥム水 0. 72g
BGA 1. 2g
MAM 3. Og
80。Cに昇温して 1時間熟成後、 冷却した後、 300メ ッシュのステンレス金網で 濾過し、 コアシェルポリマーラテックスを得た。
このラテックスを一 15°Cにて凍結させ、 グラスフィルタ一で濾過した後、 60 にて一昼夜送風乾燥して、 コアシェルポリマー B ' — 1を得た。
このコアシェルポリマ一と、 エチレンビスステアリ ン酸アマイ ド 〔ライオンァ クゾ (株) 製 商品名ァ一モワックス〕 60 gを D M F 100mlに溶かした溶液とを ヘンシェルミキサーを用いて混合後に溶媒を減圧除去し、 コアシェルポリマー B 一 1を得た。
く コアシェルポリマ一 B— 2〜 5、 B ' ー 2〜3 の製造〉
表 1に示されるような組成のモノマーを用いた以外は B— 1 と同様にして重合 を行い、 コアシェルポリマ— B— 2〜 5、 B ' ー 2〜3を得た。
くコアシェルポリマー B ' —4の製造 >
表 1に示されるような組成のモノマーを用いて、 滑剤添加しない以外は B— 1 と同様にして重合を行い、 コアシェルポリマー B ' —4を得た。
表 1
Figure imgf000018_0001
〔硫酸ィオンの定性試験〕
コアシェルポリマ一 B— 1 〜 5、 および B ' — 1 〜 4について、 それらに含ま れる硫酸イオンを検出した。
すなわち、 試料 5 gを 50ml三角フラスコに秤量し、 イオン交換水 20mlを加え、 マグネチックススターラーで 3時間攪拌した。
次いで、 No. 5 C濾紙で濾過した濾液を二分して、 一方に 1 %塩化バリウム水溶 液 0. 5ralを加え、 濁りの発生を比較観察した。
本定性試験において、 コアシェルポリマー B—;!〜 5、 および B ' — 1〜4力 らは硫酸イオンが検出されなかった。
ポリアセタール
ポリプラスチックス (株) 製 POMコポリマ一樹脂 商品名 ジユラコン
A— 1 メルトインデックス (190 。C) 2. 5 (g/10min)
A - 2 メノレトインデックス (190 。C) 9. 0 (g/10min)
実施例 1 〜 8
表 2に示されるような組成でポリプラスチックス (株) 製 POMコポリマー樹脂 ジユラコンと前記のように製造したコアシェルポリマー B—:! 〜 5を、 水分量 0. 3 %以下となるまで乾燥した後、 池貝鉄工 (株) 製の二軸押出機 PCM— 30を用い て、 シリンダ一温度 190。C、 ダイへッ ド温度 200。Cで溶融混練し、 ペレツ ト化し た。 このペレツ トを 180 °Cで 3時間以上乾燥し、 射出成形機により成形して試験 片を作製し、 下記評価を行った。 結果を表 2に示す。
比較例 1 〜11
表 3に示されるような組成でポリプラスチックス (株) 製 POMコポリマー樹脂 ジユラコンと前記のように製造したコアシェルホリマー B ' — 1 〜 4を、 水分量 0. 3 %以下となるまで乾燥した後、 池貝鉄工 (株) 製の二軸押出機 PCM— 30を用 いて、 シリンダー温度 190°C、 ダイヘッド温度 200°Cで溶融混練し、 ペレッ ト化 した。 このペレッ トを用いて実施例と同様に試験片を作製し、 下記評価を行った。 結果を表 3に示す。
尚、 実施例、 比較例における特性評価は、 以下の方法に従って行った。
(1) ヒンジ特性の評価 図 1に示した形状の試験片を成形し、 次に示す基準に基づき評価した。
'数: n = 10
テスト方法:サンプルを一 10°C、 50% R Hの環境下に 24時間以 上放置した後、 同条件下でヒンジ部を 180度の角度で 100回繰り 返し折り曲げた。
評価 A 100回の折り曲げの間にヒンジ部が破壊した個数。
(数値の小さいほど優れる)
評価 B : 100 回折り曲げを行った後のヒンジ部状態を次の 様な判定基準で評価し、 平均点で表したもの。
(数値の大きいほど優れる)
5 :殆ど異常が認められなかったもの。
: ヒンジ部の表面に微小クラックが発生したもの。
3 ヒンジ部表面のクラックが成長し、 大きくなつたもの。
2 ヒンジ部のクラックが更に中心部に向かって成長し、 ヒンジ部 が極めて薄くなったもの。
1 薄くなつたヒンジ部に切れ目が入り、 切断しかかったもの。
0 破断したもの。
(2) アイゾッ ト衝繫強度
実施例および比較例で調製された樹脂ペレツ 卜を、 インライン射出成形機を用 いて試験用サンプル (幅 12. 7mm、 厚さ 6. 4tnm 、 長さ 64關の直方体) を成形し、 AS TM D 256の方法に準拠したノツチを付け、 アイゾッ ト衝 値を測定した。 アイゾ ッ ト衝撃値が高い方が良好であると判断される。
又、 実施例において、 ヒンジ特性、 機械物性の評価に用いた試験片の成形方法 は以下の通りである。
* 成形機 ;東芝 (株) 製 I S 8 0
* 成形条件
ノズノレ C 1 C 2 C 3 シリンダー温度 (°C) 200 190 180 160 射出圧力 650 (kgん m2 ) 射出速度 1. 0 (m/min)
金型温度 70 (°C)
(3) 流動性 (薄肉棒流動長) の測定法
下記の条件に設定した成形機を用い、 薄肉の試験片 (幅 5瞧 X厚さ 0. 5睡)を成 形し、 その流動長 (樹脂の充填された長さ) から流動性を評価した。
* 成形機 ; 日精 (株) 製 P S 2 0 E
* 成形条件
ノズノレ C 1 C 2 C 3 シリンダー温度 (°C ) 200 190 180 160 射出圧力 1000 (kg/cm2)
射出速度 4. 0 (m/min)
金型温度 70 (°C )
表 2 実 施 例
1 2 3 4 5 6 7 8 ポ リ ア セ タ ール m Λ - 1 Λ - 2 Λ-2 Λ-2 Λ - 2 A - 2 Λ-2 Λ-2 樹脂
糾 m量部 100 100 100 100 100 100 100 100 成 コ ア シ ェ ノレ 種類 B - 1 B - 1 B-1 B- 1 B-2 B-3 B-4 B-5 ポ リ マ ー
30 30 10 50 30 30 30 30 ヒ ン ジ特性 評価 A 0 0 0 0 0 0 0 0
Π
"11 — 1 ()。C , 50 % H 評価 B 5. 0 4.1 3. 8 5. 0 4. 0 5. 0 5. 0 4. 0 質 衝撃強度 ( kg · cm/cm) 25. 1 18. 6 12. 2 36. 3 17. 9 21. 9 20. 5 18. 8 流動性 (mm) P=1000kgf/cm2 26. 2 43. 0 >50 31. 3 42. 0 43. 6 42. 5 42. 6
表 3 比 蛟 例
1 2 3 4 5 6 7 8 9 10 11 ポリ アセタール 種 類 Λ - 1 Λ - 1 Λ - 2 Λ - 2 Λ - 2 Λ-2 Λ-2 Λ-2 Λ-2 Λ - 2 Λ-2 m /J口
ΑΪΛ部 100 100 100 100 100 100 100 100 100 100 100 コ アシェノレ m 額 B, - 1 [?' -1 13' - 1 B' - 1 W -2 B' - 3 B' -l B' -l ir -l W -4 Β' -4 小 ソ ·<
組 ffiffi部 30 30 30 30 30 30 30 10 50 30 30 滑剤 m 類 一 EBS 一 EBS 一 一 MBS EBS EBS 一 EBS ffi量部 一 0.9 一 0.9 一 一 0.9 0. 3 1.5 一 0.9
ヒ ンジ特性 評 iii!i Λ 10 6 10 6 10 10 8 10 8 10 8
- 50°C , 50%RI1 価 B 0 2. 1 0 1.9 0 0 0.7 0 0.9 0 0.6 衝 強度 (kg · cm/cm) 20.6 19.9 17. 2 16.3 17. 5 16.2 15. 1 9. 2 32. 5 15.7 15.5 流動性 (mm) P=1000kgf/cm2 22.2 23. 4 38.0 38.7 38. 5 38.9 38.5 >50 28.9 37. 5 38. 1

Claims

請求の範囲
1、 (A) ポリアセタール樹脂 100重量部に
(B) ゴム状ポリマーのコアとガラス状ポリマーのシェルからなり、 下記 一般式で表される飽和脂肪酸ビスアマィ ド 0. 3〜5重量部 (対コアシュルポリマ 一 100 重量部当たり) を予め均一に配合したコアシェルポリマー 1〜100 重量部 を配合してなるポリアセタ一ル樹脂組成物。
一般式: R , - C0NH- R2- NHC0- R3
(但し、 と R3は炭素数 10〜22の脂肪族アルキル基、 置換アルキル基、 ァリール 基、 置換ァリール基より選ばれる基であり、 各々同一であっても異なっていても 良い。 R2は炭素数 1〜12の 2価の炭化水素基である。 )
2、 コアシェルポリマ一(B) 力 実質的にァニオンが検出されないコアシェ ルポリマーである請求項 1記載のポリアセタール樹脂組成物。
3、 コアシェルポリマー(B) 力';、 ノニオン性界面活性剤及び発生するラジカ ルが中性である重合開始剤を用い乳化重合して得られるものである請求項 1又は 2記載のポリァセタール樹脂組成物。
4、 コアシェルポリマー(B) のシェルが、 メチルメタクリ レー トを主成分と するポリマ一である請求項 1〜 3の何れか 1項記載のポリアセタール樹脂組成物。
5、 飽和脂肪酸ビスアマイ ドが、 その飽和脂肪酸成分がゥンデカン酸、 ラウ リン酸、 トリデカン酸、 ミ リスチン酸、 ペンタデカン酸、 ノ、。ルミチン酸、 マルガ リン酸、 ステアリン酸、 ノナデカン酸、 ァラキジン酸及びべヘン酸から選ばれた 飽和脂肪酸ビスアマィ ドである請求項 1〜 4の何れか 1項記載のポリアセタール 樹脂組成物。
6、 飽和脂肪酸ビスアマイ ドが、 その 2価の炭化水素基がモノメチレン基、 ジメチレン基、 トリメチレン基、 テトラメチレン基、 ペンタメチレン基及びへキ サメチレン基から選ばれた飽和脂肪酸ビスアマィ ドである請求項 1〜 4の何れか 1項記載のポリアセタール樹脂組成物。
7、 飽和脂肪酸ビスアマィ ドが、 エチレンビスステアリン酸ァマイ ド
(C! H -C0 H-CH -CH 2 -NHCO-C! 7 H 3 5 ) 及び/又はメチレンビスステアリン酸ァ マイ ド (C 1 7H3 5- C0NH_CH2-NHC0-C1 7H3 5 ) である請求項:!〜 4の何れか 1項記載 のポリアセタ一ル樹脂組成物。
8、 請求項 1〜 7の何れか 1項記載のポリアセタール樹脂組成物を成形して なるポリアセタール樹脂製ヒンジ部品。
PCT/JP1996/003065 1995-10-24 1996-10-22 Composition de resine polyacetalique WO1997015625A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0702938A KR100475401B1 (ko) 1995-10-24 1996-10-22 폴리아세탈수지조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/275490 1995-10-24
JP27549095A JP3255567B2 (ja) 1995-10-24 1995-10-24 ポリアセタール樹脂組成物

Publications (1)

Publication Number Publication Date
WO1997015625A1 true WO1997015625A1 (fr) 1997-05-01

Family

ID=17556244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003065 WO1997015625A1 (fr) 1995-10-24 1996-10-22 Composition de resine polyacetalique

Country Status (5)

Country Link
JP (1) JP3255567B2 (ja)
KR (1) KR100475401B1 (ja)
CN (1) CN1131280C (ja)
CA (1) CA2230632A1 (ja)
WO (1) WO1997015625A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563004B2 (ja) * 2003-07-08 2010-10-13 ポリプラスチックス株式会社 ポリアセタール樹脂製摺動部品
WO2021002316A1 (ja) * 2019-07-03 2021-01-07 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
JPWO2021002314A1 (ja) * 2019-07-03 2021-01-07
JPWO2021002315A1 (ja) * 2019-07-03 2021-01-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255569A (ja) * 1992-03-16 1993-10-05 Polyplastics Co ポリアセタール樹脂組成物
JPH06100759A (ja) * 1992-09-16 1994-04-12 Polyplastics Co クリップ用樹脂組成物
JPH0718157A (ja) * 1993-07-06 1995-01-20 Polyplastics Co ポリアセタール樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255569A (ja) * 1992-03-16 1993-10-05 Polyplastics Co ポリアセタール樹脂組成物
JPH06100759A (ja) * 1992-09-16 1994-04-12 Polyplastics Co クリップ用樹脂組成物
JPH0718157A (ja) * 1993-07-06 1995-01-20 Polyplastics Co ポリアセタール樹脂組成物

Also Published As

Publication number Publication date
KR19990067002A (ko) 1999-08-16
JP3255567B2 (ja) 2002-02-12
KR100475401B1 (ko) 2005-05-16
CN1131280C (zh) 2003-12-17
JPH09118805A (ja) 1997-05-06
CN1200752A (zh) 1998-12-02
CA2230632A1 (en) 1997-05-01

Similar Documents

Publication Publication Date Title
EP0222924A1 (en) Process for producing maleimide copolymer and thermoplastic resin composition comprising the copolymer
JPS61190548A (ja) 衝撃性変性用組成物
JP2999318B2 (ja) ポリアセタール樹脂用光沢低減剤
EP0482352B1 (en) Core-shell polymer and its use
WO1997015625A1 (fr) Composition de resine polyacetalique
JP3590463B2 (ja) ポリアセタール樹脂組成物
JPH0770255A (ja) コアシェルポリマー
JP3281242B2 (ja) ポリアセタール樹脂組成物
JPH0517514A (ja) コアシエルポリマー
JPH06100759A (ja) クリップ用樹脂組成物
JP3658457B2 (ja) ポリアセタール樹脂組成物
JPH09216980A (ja) 樹脂組成物
JP3590447B2 (ja) ポリアセタール樹脂組成物
JP3462888B2 (ja) 耐候性ポリアセタール樹脂組成物
JP3488753B2 (ja) 長繊維強化樹脂構造体及びその成形品
KR100371521B1 (ko) 유동성이우수한내HCFC141b성수지조성물
KR100853432B1 (ko) 기계적 물성 및 저광택성이 우수한 스티렌계 열가소성 수지조성물
JP3162153B2 (ja) ポリアセタール樹脂成形品
KR100546768B1 (ko) 도장 밀착성이 우수한 abs 수지 조성물
JPH04126745A (ja) 耐衝撃性熱可塑性樹脂組成物
JP2000053842A (ja) 低光沢性ポリアセタ―ル樹脂組成物
KR100552379B1 (ko) 피로강도가 우수한 열가소성수지 조성물
JPH08325431A (ja) ポリアセタール樹脂製ヒンジ部品
JP2987975B2 (ja) 低光沢熱可塑性樹脂組成物
JPH1046003A (ja) マレイミド系abs樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197846.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR MX SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2230632

Country of ref document: CA

Ref document number: 2230632

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/003165

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980702938

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019980702938

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702938

Country of ref document: KR