WO1997014722A1 - Initiateur organique multifonctionnel a metal alcalin, sa synthese, des polymeres anioniques en etoile obtenus par polymerisation anionique et leur preparation - Google Patents

Initiateur organique multifonctionnel a metal alcalin, sa synthese, des polymeres anioniques en etoile obtenus par polymerisation anionique et leur preparation Download PDF

Info

Publication number
WO1997014722A1
WO1997014722A1 PCT/CN1996/000090 CN9600090W WO9714722A1 WO 1997014722 A1 WO1997014722 A1 WO 1997014722A1 CN 9600090 W CN9600090 W CN 9600090W WO 9714722 A1 WO9714722 A1 WO 9714722A1
Authority
WO
WIPO (PCT)
Prior art keywords
initiator
monomer
alkali metal
reaction
group
Prior art date
Application number
PCT/CN1996/000090
Other languages
English (en)
French (fr)
Inventor
Xingying Zhang
Guantai Jin
Suhe Zhao
Original Assignee
China Petrochemical Corporation
Beijing University Of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corporation, Beijing University Of Chemical Technology filed Critical China Petrochemical Corporation
Priority to EP96934324A priority Critical patent/EP0856522B1/en
Priority to JP9515389A priority patent/JPH11513715A/ja
Priority to US09/051,760 priority patent/US6150487A/en
Priority to DE69625612T priority patent/DE69625612T2/de
Priority to TW086100276A priority patent/TW401425B/zh
Publication of WO1997014722A1 publication Critical patent/WO1997014722A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/042Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a polyfunctional initiator

Definitions

  • the present invention relates to a polyfunctional group for synthesizing various star polymers having a metal initiator and a synthesis method thereof, and an olefin anionic polymerization star polymer prepared by using the initiator and a method for preparing the polymer.
  • the present invention relates to a polyfunctional * us3 ⁇ 4 metal initiator having an anionic homopolymerization or copolymerization of a monoolefin and / or diene solution and a method for synthesizing the same, and relates to the polymerization of monoolefin and / or diene polymerization initiated by the initiator Methods and polymerization products.
  • (SB) réelleR coupling star-shaped styrene-isoprene block copolymer ((SI) n R) to coupling star-shaped random solution polystyrene butadiene (S-SBR), low cis Polybutadiene (LSBR), medium vinyl polybutadiene (MVBR), high vinyl polybutadiene (HVBR), and even the latest styrene-isoprene-butadiene rubber (S- SIBR), etc.
  • S-SBR star-shaped random solution polystyrene butadiene
  • LSBR low cis Polybutadiene
  • MVBR medium vinyl polybutadiene
  • HVBR high vinyl polybutadiene
  • S- SIBR latest styrene-isoprene-butadiene rubber
  • Organic initiators are widely used in anionic polymerization. According to the number of active centers contained in each molecule after initiation, they can be divided into single initiators, such as RLi; double lithium initiators, such as lithium naphthalene; and polyfunctional organic lithium initiators. Agents (the number of active centers per molecule> 2).
  • Polyfunctional organolithium initiators are mainly used in the synthesis of star polymers. Compared with linear polymers, star polymers have their own characteristics. After tire making, it has better comprehensive mechanical properties, which are mainly manifested in low rolling resistance and good wet skid resistance. It is an energy-saving rubber. It is also similar to the star-shaped vinyl polybutadiene in its processing properties and resistance. Cold flow is significantly better than linear products, and for thermoplastic elastomers, star-shaped SBS has higher Mooney viscosity, tensile strength, and heat resistance than linear SBS. In addition, it has special Star polymers with end groups are also widely used in adhesives, liquid rubber, etc.
  • this initiator should be rarely used in practice, and is generally used for the synthesis of star block copolymers.
  • the initiator is obtained by the addition of an alkyl group with divinylarene.
  • the functionality of the initiator is affected by the type of RLi (n-BuLi, s-BuLi, t-BuLi), the position of the DVB substituent (p-DVB), and RLi and DVB Controlled by the feed ratio.
  • polyvinylarene compounds 1, 2, 4-trivinylbenzene, 1, 3, 5-trivinylnaphthalene, etc .
  • Polyethylene Base compounds methyldivinyl phosphorus, trivinyl, etc .
  • polyvinyl silicon total methyltrivinyl, diethyldiethylfluorinated silicon, etc. Patents in this area include
  • Multi-functional organic initiators are prepared by using RLi as the initial initiator in aromatics or alkanes. Related patents have also been reported, such as:
  • Polyfunctional organolithium initiators such as USP4091198 can also be prepared by using RLi to initiate a small amount of diene via a mixture with DVB.
  • a polyfunctional organolithium initiator can also be prepared.
  • This oligomer can be a polydiene D.D.PaU50,469;
  • DDPat.158,781 can also be a "micro rubber core" with multiple double bonds formed by copolymerization of wrong ethylene and DVB.
  • the functionality of the initiator is mainly affected by the molecular weight of the active polymer used, the smaller the molecular weight, The higher the initiator's functionality, the general functionality ranges from 3 to 100.
  • USP4 742 124 describes an organic The polyfunctional initiator is subjected to a solution copolymerization reaction, and then coupled with a material including R 2 S n X 2 to prepare a co-dadiene-vinyl substituted aromatic hydrocarbon random copolymer, and is formulated to contain the copolymer at least A 20% composition provides a rubber composition for improving tire performance.
  • the invention relates to an initiator for preparing various star polymers by anionic polymerization, and the general formula is M a (RMe) b
  • the M element is selected from the group consisting of Sn, Ti, Al, Si, and / or B; preferably Sn and / or Si; R is a hydrocarbon group having 8 to 100 carbon atoms, preferably 20 to 60 fluorene atoms;
  • Me is an alkali metal, preferably selected from Na and / or Li
  • a 0.7 ⁇ 3, preferably 1 ⁇ 3,
  • the invention also relates to a method for preparing the above-mentioned initiator.
  • the method includes the following steps: In the presence of an organic alkali metal initial initiator in an amount of 0.2 to 2 moles / 100 grams of monomer, the first step is to initiate the diene in a hydrocarbon solvent. And / or mono-olefin monomers to form a hydrocarbon group with an active center at the end of the molecular chain having 8-100 carbon atoms, preferably 20 to 60; the second step is to add a hydrocarbon group with multiple reactive groups Compound MXj or MR'Xj reacts with the active site.
  • A is the number of active centers formed in the first reaction
  • B is the total number of groups that can react with the active center when added to MXj or MR'Xw, and a polyfunctional group has a metal initiator M a (RMe) b ,
  • M is selected from Sn, Ti, Al, Si and / or B;
  • X is selected from F, C1 and / or Br;
  • R ' is a base of d- ⁇ : 8 ;
  • the value of j is equal to the price of the M element used
  • MXj escapes from SnCl 4 , TiCl 4 , AlCl 3 , BF 3 and / or SiCl 4; MXj is preferably SnCl 4 and / or SiC;
  • MR'Xj is selected from SnR'Cl 3 and / or SiR'CI 3 , MR'Xj., Preferably SnCH 3 Cl 3 and / or SiCH 3 Cl 3 .
  • the present invention also relates to an anionic polymerized star polymer.
  • the polymer is made from a mono-olefin and / or a di-olefin as a monomer raw material and is polymerized by anionic solution in the presence of an anionic polyfunctional group having a tM3 ⁇ 4 metal initiator.
  • the invention also relates to a method for preparing a star polymer, which method comprises subjecting a mono-olefin and / or a di-olefin to anionic solution polymerization in a hydrocarbon solvent in the presence of a polyfunctional metal initiator having a ⁇ 3 ⁇ 4 metal initiator.
  • the agent is a compound of the general formula M a (RMe) b ,
  • M element escapes from Sn, Ti, Al, Si and / or B;
  • R is a hydrocarbon group having 8 to 100 carbon atoms, preferably 20 to 60;
  • Me is an alkali metal, preferably Na and / or Li;
  • a 0.7 ⁇ 3, preferably 1 ⁇ 3;
  • b 2.5-6.5, preferably 3 ⁇ 5.
  • the object of the present invention is to provide a new type of polyfunctional group fluorinated metal initiator, which contains heteroatoms other than carbon, hydrogen, and alkali metal, and the initiator is used for synthesis
  • Various star polymers have the characteristics of low cost, simple process, low energy consumption, and good product performance.
  • Another object of the present invention is to provide a method for synthesizing the above-mentioned polyfunctional fluorene metal initiator, so that the synthesis method It has the characteristics of simple process, and the functionality can be easily adjusted according to needs.
  • Yet another object of the present invention is to provide a method for anionic polymerization using the polyfunctional organic alkali metal initiator, and to provide a polymerization product produced by this method.
  • Figure 1 is a GPC diagram of the molecular weight distribution of the star polymer synthesized in the present invention
  • Figures 2 to 6 are made using the coupled S-SBR products of Shell, JSR, Asahi Kasei, and Ruiwon respectively GPC spectrum of molecular weight distribution.
  • star polymer refers to a polymer with a radial structure of a plurality of polymer chain arms extending in the radial direction in the molecule. Star polymers are Difference, and has its own different characteristics.
  • linear S-SBR Soluble SBR
  • star-shaped S_SBR is linked by chemical bonds at the ends of the molecular chain, and the number of freely movable molecular chain ends in the macromolecular network after tritiation is greatly reduced, thereby reducing rolling resistance.
  • star-shaped S-SBR because of its high 1,2-structure content, it maintains good wet skid resistance. Compared with linear S-SBR, it is a new type of "energy-saving rubber".
  • LCBR polybutadiene
  • MVBR polybutadiene
  • HVBR polybutadiene
  • the processing performance and cold flow resistance of the star-shaped products are significantly better than the linear products. It is also a kind of low rolling resistance and wet skid resistance. Good "energy-saving rubber”.
  • star-shaped LCBR used in HIPS synthesis, can achieve high ML, low solution viscosity. The best match, the product is a high gloss HIPS (high impact polystyrene) that can replace ABS.
  • the star structure also shows better characteristics than the linear structure.
  • the star structure has higher Mooney viscosity, tensile strength, and better heat resistance than linear structure products.
  • star polymers with special end groups are also widely used in adhesives, liquid rubber, etc.
  • the present inventors have conducted many years of research and a large number of experiments in this technical field, and have finally completed the present invention, creating a method that does not require a coupling step and can control And adjust the functionality to achieve a smooth and efficient synthesis of star polymer synthesis route and widely applicable initiators, and thus made a new high-performance star polymer.
  • an initiator widely applicable to anionic polymerization.
  • the initiator provided by the present invention for preparing various star polymers for anionic polymerization is composed of a hetero atom M and a hydrocarbon-based metal-reducing moiety ( RMe) compounds of the general formula:
  • the hetero atom M is an element selected from Sn, Ti, Al, Si, and / or B;
  • R is a hydrocarbon group having 8 to 100 carbon atoms, preferably 20 to 60, formed by the reaction of a mono-olefin and / or a di-olefin;
  • the initiator is synthesized in two steps according to the following reaction formula:
  • a two-step synthesis method for providing the initiator is also an aspect of the present invention.
  • the synthesis method includes: using a metal as an initial initiator, and the initial initiator is added in an amount of 0.2 to 2 moles per 100 grams of the monomer, preferably per 100 grams of the monomer. 0.5 to 1.5 moles of monomers; the first step is to induce the diene and / or monoolefin monomer to form a hydrocarbon group with an active center at the molecular chain end in a hydrocarbon solvent;
  • the reactive group compound MXj or MR'X reacts with the active center.
  • the amount of MXj or MR'Xj.i added should be such that
  • a / B 1.5-3; preferably 1.5 ⁇ 2.5
  • A is the number of active centers formed in the first reaction
  • B is the total number of groups that can react with the active center when added to MXj or MR'X, where: M is selected from Sn, Ti, Al, Si and / or B;
  • X is selected from F, C1 and / or Br;
  • the value of j is equal to the price of the M element used
  • R ' is d-(: 8 alkyl
  • the final reaction product is a polyfunctional organic alkali metal initiator, M a (RMe) b .
  • the organic alkali metal initial initiator [ArH] Me + can be synthesized on-site, or the finished product can be used.
  • a finished initiator such as lithium naphthalene, naphthalene Na, anthracene lithium, anthracene sodium, etc., especially lithium naphthalene and sodium sulfonium are the preferred organic metal reducing initiators.
  • the monomers used in this reaction include dioxane and / or monoolefins; the diolefins may be butadiene, isoprene and their derivatives; and the monoolefins may be vinyl-based monomers such as styrene , ⁇ -methylstyrene, etc. and acrylic vinegar, methacrylic vinegar, etc.
  • these mono-olefins and di-olefins are not strictly limited, and the selection range is very wide. This choice is for those of ordinary skill in the art. Language is not difficult.
  • the amount of monomer The amount of monomer used in most anionic polymerization is close, generally based on the total weight of the reaction system, the monomer content is about 1 ⁇ 10%, preferably about 2-8%.
  • the control of the initial amount of organic metal reducing initiator can depend on the required molecular weight of the hydrocarbon group and the requirements of the microstructure of the final polymer. A large amount of initiator will result in a small molecular weight of the formed hydrocarbon group, while a small amount of initiator will result in a formed hydrocarbon group. Large molecular weight.
  • the amount of the organic metal reducing initial initiator is based on 100 grams of monomer, the alkali metal content is preferably about 0.2-2 moles, preferably about 0.5-1.5 moles.
  • the synthetic reaction of the reaction formula (1) is a typical anionic chemical reaction, and the solvent used therein can be various solvents commonly used in such reactions, such as hydrocarbon solvents, including benzene, toluene, cyclohexane, hexane, Pentane, heptane, raffinate, etc. can be used singly or as a mixed solvent in two or more types.
  • the amount is generally 90-99% by weight of the reaction system, especially about 92-98%. Better.
  • the reaction is generally irreversible. Under appropriate temperature and pressure conditions, such as 5-50 X and atmospheric pressure, it can be completed in a short time, such as 15-30 minutes, that is, the reaction is initiated in a hydrocarbon solvent.
  • the olefin and / or mono-olefin monomers form a low-molecular-weight oligomer with an active center at the molecular chain end.
  • the reaction time is not strictly limited, and it can also take several hours, even days, the reaction system is still active. There can also be no obvious demarcation between the two reactions in the first step and the second step, and the two can be performed under the same reaction conditions.
  • the second step is to add MXj or
  • M represents elements such as Sn, Ti, Al, Si and / or B;
  • X is halogen F, CI, Br and / or I;
  • R ′ is an alkyl group having 1 to 8 carbon atoms.
  • the reactant is a heteroatom-containing compound containing three to four groups that can react with the active center, and may be, for example, SnCl 4 , TiC, A1C1 3 , BF 3, SiCl 4, SnBr 4, preferably SnCl 4 and / or SiCl 4, and SnR'Cl 3 and / or SiR'C, preferably from SnCH 3 Cl 3, SiCH 3 CI 3, which is preferably SnCl 4.
  • the feed can be added all at once, or several times or continuously over a period of time. It can be added separately or mixed with solvents.
  • the reaction time is 0.5-2 hours, but there is no strict limit.
  • the present invention triggers The type and number of heteroatoms M in the agent (a value) and the functionality of the active alkali metal (b value) can be conveniently adjusted by changing the type of the reactant M and controlling the ratio between the reactants.
  • the multifunctionality The degree b value is generally controlled between 3 and 5.
  • the monomer is succinimidine
  • the solvent is benzene
  • the first reaction is performed at a temperature of 5-50 X for 0.5-2 hours, and then Heteroatom compound SnCl 4 is added , and the reaction is continued at a temperature of 5-50 for 0.5 to 2 hours. After the reaction is completed, it is stored under nitrogen protection for use. This completes the preparation of the initiator of the present invention.
  • the reaction product is Sn a (R " Li) b , where a is 1-3 and b is
  • R " is a hydrocarbon group having 30 to 50 carbon atoms.
  • the functionality (b value) of the polyfunctional metal initiator in the present invention can be controlled by controlling the number of active centers A value formed in the first step of the reaction system with the active center added in the second step.
  • the ratio of the total number of heteroatom groups B is adjusted.
  • an experiment is performed with organolithium and SnCl 4. There is a corresponding relationship between the two as shown in Table 1 below.
  • the calculation method of the active alkali metal functionality of the initiator of the present invention is to determine the molecular weight of the synthesized polyfunctional metal initiator with a membrane osmotic pressure method, and then calculate it according to the following formula:
  • [Me] is the total remaining active minus metals after the reaction in the system
  • W is the monomer feed amount
  • Mn (measured value) is the number-average molecular weight of the measured initiator.
  • a star polymer prepared by anionic solution polymerization of diolefins and / or monoolefins using the above-mentioned polyfunctional fluorene-containing metal initiator of the present invention.
  • the star polymer has a plurality of A radial molecular structure of a polymerized chain arm produced by a monomer reaction that is elongated in a radial direction with the initiator of the present invention as a core, wherein the initiator has Polyfunctional organic alkali metal initiator of general formula M a (RMe) b , where M is an element selected from Sn, Ti, Al, Si and / or B;
  • R is a hydrocarbon group having 8 to 100 carbon atoms, preferably 20 to 60;
  • Me is an alkali metal, preferably Na and / or Li;
  • a 0.7 ⁇ 3, preferably 1-3;
  • the monomer is a diene and / or a monoolefin.
  • the monomer used in the anionic polymerization reaction of the present invention may be any monomer that can be used for anionic solution polymerization, and may be a diene such as butadiene, isoprene, pentadiene and their homologues, etc .; or Monoolefins such as vinyl aromatic hydrocarbons, including styrene, ⁇ -methylstyrene, and their homologues.
  • the proportion of each monomer can be arbitrarily adjusted, such as in the reaction monomer It can be arbitrarily changed in the range of 0.1% to 99.9% of the total body weight, especially 10% to 90% is a more commonly used adjustment range.
  • the star polymer of the present invention can be basically any monomer that can be anionic polymerized. Synthetic products can be used to transform different monomers at different times during the synthesis reaction to synthesize products with various properties, thereby realizing the molecular design and final product properties. Different synthesis control methods can be made according to requirements. .
  • the star polymer can be directly completed without having to go through subsequent coupling steps as in the prior art.
  • One of the important signs of the polymerization product produced by this one-step synthesis process is that the GPC spectrum of the molecular weight distribution of the polymerization product has a uniform unimodal distribution distribution feature, as shown in FIG. 1.
  • the GPC spectra made by the molecular weight distributions of many different coupled star polymers do not show a uniform unimodal shape like the star polymer of the present invention, but a multimodal shape distribution. This is an important sign of the significant difference in molecular weight caused by subsequent coupling steps.
  • the initiator of the present invention can produce a wide variety of polymerization products with different properties according to the different monomers used and the different ratios of the monomers through the anionic polymerization process.
  • It is a star homopolymer such as LCBR, MVBR, HVBR, etc .; it can also be a star copolymer such as (SB) n R, (SI) n R, S-SBR, HIPS, and monomers with partial polarity (such as MMA ) Star polymers of chain links; even a series of known and unknown star polymer products such as "Integrated Rubber" (S-SIBR), which is newly developed in the world.
  • S-SIBR Integrated Rubber
  • the average number of polymerized chain arms contained in each molecule of the star polymer synthesized by the present invention is
  • the polyfunctional group of the present invention has a metal initiator molecule itself containing Sn, Ti, Al, Si, B and other heteroatoms, it is also included in the corresponding star polymers. Contains the same heteroatoms.
  • the introduction of heteroatoms is conducive to the uniform distribution of carbon black, which in turn makes the product The comprehensive mechanical properties have been improved. This kind of improvement is not easy for polymers synthesized by hetero atom-free initiation systems. It has excellent economic benefits and industrial applicability for improving product performance and simplifying production processes .
  • a method for preparing a star polymer in the presence of a metal initiator of the polyfunctional group of the present invention, a method for preparing a star polymer is also an important aspect of the present invention.
  • the method of preparing a star polymer of the present invention includes a polyfunctional group having a metal Conducting anionic solution polymerization of mono-olefins and / or di-olefins in a hydrocarbon solvent in the presence of an initiator, said initiator being a compound of the general formula M a (RMe) b ;
  • the hetero atom M is an element selected from Sn, Ti, Al, Si, and / or B;
  • R is a hydrocarbon group having 8 to 100 carbon atoms, preferably 20 to 60 carbon atoms, formed by the reaction of a mono-olefin and / or a di-olefin;
  • Me is a reduced metal, preferably sodium and / or lithium;
  • a 0.7 ⁇ 3, preferably 1 *-3;
  • the amount of the polyfunctional metal initiator in the polymerization reaction system is generally about 0.5-10 milligrams per 100 grams of monomer based on the millimolar amount of the active alkali metal. Molar, preferably about 0.7 to 6 mmol.
  • the reaction temperature is 5-100 It is preferably 10-90.
  • the reaction pressure is generally from normal pressure to 0.5 MPa.
  • the reaction time is not critical, and generally ranges from 0.5 to 8 hours.
  • the alcohol is added to deactivate the active center according to conventional techniques, and the reaction is ended.
  • the selection of monomers can be any monomer that can be used for anionic polymerization as described above. It can be a diolefin such as butadiene, isoprene, pentadiene, and their homologues. It can also be a monoolefin such as ethylene. Aromatic hydrocarbons such as phenethylhydrazone, ⁇ -methylstyrene, and their homologues, as well as acrylic monomers such as acrylic vinegar, methacrylate, etc., can be used as monomers in the polymerization method of the present invention.
  • the proportion of each monomer can be arbitrarily adjusted, such as arbitrarily changed in the range of 0.1% to 99.9% of the total weight of the reaction monomer, especially 10% to 90% is more commonly used. Adjustment range.
  • the selection of the monomer is easy for those skilled in the art.
  • the amount of monomer used is also close to the amount of monomer used in most anionic polymerization, that is, based on the total weight of the reaction system, the monomer content is about It is about 5-20%, preferably about 8-15%.
  • the solvent used in the method of the present invention may be any solvent or mixed solvent that can be used in the field of anionic polymerization.
  • a hydrocarbon solvent is used as the solvent in the polymerization method of the present invention, such as cyclohexane, pentane, hexane, and heptane. , Raffinate, benzene, toluene, etc. or their mixed solvents.
  • the amount is generally about 80%-95% (weight) of the reaction system, especially about 85%-92%.
  • auxiliary reagents such as Lewis base modifiers, such as diethylene glycol dimethylarsine (2G), triethylene glycol dicarboxylic acid (3G), dimethoxy
  • Lewis base modifiers such as diethylene glycol dimethylarsine (2G), triethylene glycol dicarboxylic acid (3G), dimethoxy
  • Ethane (DME) hexamethylphosphonium triamine ( ⁇ MPTA), tetramethylethylenediamine (TMEDA), tetrahydrofuran (THF), dioxane (DOX), triethylamine and other fluorene and amine compounds .
  • ⁇ MPTA hexamethylphosphonium triamine
  • TEZ tetramethylethylenediamine
  • THF tetrahydrofuran
  • DOX dioxane
  • triethylamine and other fluorene and amine compounds .
  • the amount is well known to those skilled in the art, it is easy to make decisions based on different requirements without
  • the anionic polymerization reaction process is as follows: Before adding the reaction materials, the reactor is baked at high temperature, purged with nitrogen three or more times, and then the monomer solution and the Measured Lewis base conditioner, and finally multi-functional organic metal reducing initiator is metered in. At 40-90 temperature under nitrogen protection, the reaction is carried out under normal pressure for 2 to 5 hours. Then the reaction is terminated with methanol, and the solvent is distilled off by water vapor and dried. The star polymer was obtained.
  • the above-mentioned initiator of the present invention can It is suitable for the synthesis of a variety of different monomers. It can change the polymerization product at any time, has great flexibility, and does not require out-of-class equipment investment to change the product; and because there is no coupling step, the performance of the polymerization product is also improved. This is because the coupling reaction occurs between the macromolecular chain and the small molecule coupling agent.
  • the steric hindrance caused by the viscosity of the macromolecular system and the curling of the molecular chain will affect the coupling effect (generally around 50%).
  • the present invention does not require a coupling step, a star polymer is obtained by one-step polymerization, the molecular weight distribution is relatively uniform, and basically no linear macromolecules are present. Therefore, both its mechanical properties and dynamic mechanical properties have been comprehensively improved. The same conclusion can be reached in the performance comparison made in the examples.
  • the present invention will be further described below with reference to the examples, but these examples do not limit the present invention in any form.
  • the relevant performance tests are tested according to the national standard GB 528, "300% elongation strength", tensile strength (breaking) Strength) and elongation at break; while testing Shore A hardness according to GB531-83; and using a dynamic viscoelastic analyzer to measure the 3 ⁇ 4 ⁇ value.
  • the experimental device is the same as in Example 1.
  • the average functionality of the product was 6.5.
  • the average number of tin atoms per molecule was 2.6.
  • the experimental device is the same as in Example 1. 30 ml of cyclohexane, 1.8 g of isoprene, 8 mmol of sodium naphthalene initial initiator, 25: reaction for 1 hour. 0.9 mmol of silicon tetrachloride solution was added, and 25 X continued to react 1 The reaction was stopped after hours. The average functionality of the obtained polyfunctional organic sodium initiator was 2.5. The average number of silicon atoms per molecule was 0.7.
  • the experimental device is the same as in Example 1. 30 ml of cyclohexane, 2.4 g of styrene, 12 mmol of lithium initial initiator, and 25 X were reacted for 1 hour. SiCH 3 Cl 3 was added for 2 hours, and the reaction was continued for 1 hour to stop the reaction. The average functionality of the functional organolithium initiator is 2.9. The average number of silicon atoms per molecule is 1
  • the obtained product was 130 grams of star S-SIBR.
  • the molecular weight was 290,000, the molecular weight distribution was 1.46, and the average number of arms was 3.8.
  • the properties are shown in Table 3.
  • the Sn-SBR star polymer of the present invention As a comparative example of the performance of the star polymer in the prior art, the Sn-SBR star polymer of the present invention and the commercially available SL-557 R (JSR (Company), Japan FT S-SBR, and Linear S-SBR and E-SBR-1500 products for comparison.
  • JSR Joint Photographic Experts Group
  • the test results are listed in Table 5 below.
  • the tg ⁇ value at 0 X indicates wet skid resistance. The higher the value, the better the wet skid resistance.
  • the tg ⁇ value at 50 indicates rolling resistance. The lower the value, the rolling resistance. The lower the molecular weight distribution, compared with the narrow distribution of linear polymers (anionic polymerization), the star polymer of the present invention has a wider distribution, indicating that it has much better cold flow properties and processability.
  • Table 5 Mechanical and dynamic properties of several SBRs
  • the molecular weight distribution test of the Sn-SBR star-shaped polymerization product prepared in Example 6 was also performed by measuring the molecular weight by membrane osmotic pressure method and measuring the molecular weight distribution by gel permeation chromatography (tetrahydrofuran as a solvent, 10 mg / 10 ml).
  • NS-110 R and NS-114 are coupled S-SBR, and their GPC spectra are shown in Figures 5 and 6, respectively.
  • the method for synthesizing the polyfunctional group with a metal initiator according to the present invention has more practical industrial applications due to the readily available raw materials, low cost, simple synthesis process, and easy adjustment of functionality. Value.
  • star polymers such as star styrene-butadiene random copolymers (energy-saving solvent-soluble styrene-butadiene rubber); star styrene-isoprene random copolymers; Stupid ethylene-butadiene-isoprene terpolymer; star Type medium vinyl, high vinyl polybutadiene; star type medium polyisoprene or 3, 4-and 1, 2-polyisoprene; star type (SI) 11 or (SB) n R (thermoplastic elastomer); K-resin; star polymer (functional elastomer) with special end groups, these end groups can be-OH,-COOH,-X,-NR 2 (R: H or Alkyl) etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

多官能团有机碱金属引发剂及其合成方法
以及阴离子聚合星型聚合物及其制备方法
技术领域
本发明涉及一种用于合成各种星型聚合物的多官能团有^ «金属 引发剂及其合成方法以及用该引发剂制备的烯烃阴离子聚合星型聚合物 和该聚合物的制备方法. 更具体说本发明涉及单烯烃和 /或二烯烃溶液阴 离子均聚合或共聚合的多官能团有 *us¾金属引发剂及其合成方法, 并涉 及由此引发剂引发单烯烃和 /或二烯烃聚合的聚合方法及聚合产物.
背景技术
近年来采用阴离子聚合技术合成星型聚合物日益受到人们重视, 研 究范围不断扩大, 品种日益增多, 有的已实现了工业化生产. 涉及的领 域已从最初的星型热塑性弹性体偶联星型苯乙烯 -丁二晞嵌段共聚物
( ( SB ) „R ) ,偶联星型苯乙烯-异戊二埽嵌段共聚物( ( SI ) nR ) 发展到偶联星型无规溶聚丁苯( S - SBR ) , 低顺式聚丁二烯 (LSBR), 中乙烯基聚丁二烯( MVBR ) , 高乙烯基聚丁二烯( HVBR ) , 甚至 到最新的笨乙烯-异戊二烯-丁二烯橡胶 ( S - SIBR ) 等.
用阴离子法合成星型聚合物一般有两种方法. 一种是以多官能团有 金属引发剂合成, 尤其是多官能团有机锂引发剂; 然而到目前为止 以阴离子法合成星型聚合物都采用以单官能团烷基锂为引发剂的合成方 法, 先合成出线型聚合物, 然后再加入多官能团偶联剂进行偶联反应得 到最终产物的路线.
有机裡引发剂广泛应用于阴离子聚合中. 依其引发后每一分子所含 活性中心数目, 可分为单裡引发剂, 如 RLi ; 双锂引发剂, 如萘锂; 和 多官能团有机锂引发剂 (每一分子活性中心数目 >2 ) 几种.
多官能团有机锂引发剂主要用于星型聚合物的合成. 与线型高分子 相比, 星型聚合物有其自身的特点. 如星型溶聚丁苯与线型溶聚丁苯相 比, 制胎后具有更佳的综合力学性能, 主要表现在滚动阻力低, 抗湿滑 性好, 为一种节能型橡胶. 又如星型中乙烯基聚丁二烯的加工性能和抗 冷流性要明显优于线型产品, 而对热塑性弹性体而言, 星型 SBS与线型 SBS相比具有更高的门尼粘度、 拉伸强度, 且耐热性好. 此外带有特殊 端基的星型聚合物在粘合剂, 液体橡胶等方面也有广泛的用途.
但这种引发剂由于存在着原料难得, 制备工艺复杂, 官能度不易控 制和调节等问题, 实际中应 的很少, 一般多用于星型嵌段共聚物的合 成.如 EP0210016; USP4161494; USP4196153; USP172190等, 用 于其它星型聚合物的合成则很少.如 GB2124228 , 其引发剂是以烷基裡 与二乙烯基芳烃加成制得.
以 RLi为引发剂在芳烃溶剂中引发少量二乙烯基苯( DVB )制备 多官能团有机锂的方法已有文献报道, 如英国专利 BP.2124228 ;
Helmut Esch ey,WaIther Burchard,Polymer,Vol.16.181,1975 .引发剂的 官能度受 RLi种类( n-BuLi,s-BuLi,t-BuLi ) , DVB取代基位置( p- DVB )及 RLi与 DVB的投料比例所控制.
在上述方法中, 也可用其它含多个双键的化合物代替 DVB . 如多 乙烯基芳烃化合物: 1, 2 , 4 -三乙烯基苯, 1 , 3, 5 -三乙烯基 萘等; 多乙烯基礫化合物: 甲基二乙烯基磷, 三乙烯基 等; 多乙烯基 硅: 甲基三乙烯基总, 二乙基二乙埽基硅等, 这方面的专利有
USP4091198 .
为使所制出的多官能团有扭 金属引发剂在非极性溶剂中有较好 的溶解性, 采用类似的方法, 用分子量大得多的含二个或三个双键的有 机化合物代替 DVB , 在芳烃或烷烃中用 RLi为初始引发剂制备多官能 团有机裡引发剂, 有关专利也已报道, 如:
Figure imgf000004_0001
Figure imgf000004_0002
USP4, 161,494, 从理论上讲, 随反应的逐步进行, 官能度会不断上升. 但从报道看, 一般在三左右.
亦可用 RLi引发少量二烯经与 DVB的混合物来制备多官能团有机 锂引发剂, 如 USP4091198 .
更进一步, 使 RLi与含有多个双键的低聚物反应, 亦可制备出多官 能团有机锂引发剂. 这种低聚物可以是聚二烯烃 D.D.PaU50,469;
D.D.Pat.158,781 , 也可以是笨乙烯与 DVB共聚所形成的带有多个双键 的 "微胶核. " ( Koji Ishizu,Shinichi Gamoo,Takashi Fukutomi,Toshio Kakurai,Polymer J,, Vol.12,399, 1980 ; 殷锐, 刘皓, 沈家聪, 全国高分 子学术论文报告会影印集, 124, 1987 ) .
另一方面,也可用低分子量的活性聚合物代替 RLi与 DVB等反应, 形成多官能团有 金属引发剂. ( Rempp.P.,Iranta.E.,Pure
Appl.Chem.30,229,1972;殷锐, 沈家聪, 全国高分子学术论文报告会影印 集, 126, 1987 ) . 引发剂的官能度主要受所用活性聚合物分子量大小 的影响,分子量越小,引发剂的官能度就越高.一般官能度的范围在 3 - 100 .
星型 S - SBR , 国外已有数家公司实现了工业化生产,基本采用上 述第二种工艺路线. 如 BP2160207 ; USP4397994; USP4519431; USP4540749; USP4603772;JP 8 2205414等;偶联剂多为含多个卤原子 的金属卤化物及二乙埽基苯等. 如采用双锂引发剂, 为防止凝胶, 一般 用 R2SnX2型偶联剂, 如 USP4742174 . 在 USP4 742 124中介绍了一种 用有机裡多官能团引发剂进行溶液共聚合反应,再与包括 R2SnX2的物料 进行偶合反应, 制备共抚二烯 -乙烯基取代的芳烃无规共聚物, 并配成 含该共聚物至少 20 %的组合物, 提供用于改善轮胎性能的橡胶组合物. 这些现有技术中存在着如下丞待解决的问题:
( 1 ) 官能度不能稳定地控制和调节, 如 RLi + DVB , 难以用于 工业化的星型聚合物合成,
( 2 ) 某些原料本身合成工艺复杂, 纯度不易保证, 影响最终产物 的官能度, 如:
Figure imgf000006_0001
( 3 ) RLi的生产成本偏高,
( 4 ) 引发剂中除破、 氢、 减金属外不存在其它杂原子. 而对星型 聚合物而言, 当大分子链上含有杂原子, 如大分子链上含 Sn - C键的 星形 S - SBR ,加工时有良好的炭黑吸附性和分散性,利于强度的提高. 正是由于上述现有技术的不足, 使得现有星形聚合物的合成技术中 很少采用多官能团有机锂, 而多采用 RLi为引发剂, 先合成出活性线型 高分子, 然后加入偶联剂进行偶联, 最后形成星形聚合物. 这种合成方 法存在着很大的局限性, 工艺复杂, 设备利用率低、 投资大、 对设备及 聚合条件要求高, 能耗高, 偶联度低, 产品性能也不令人满意.
为了寻找解决上述问题的方法, 本发明人进行了深入研究和大量试 验, 终于有所突破, 完成了本发明.
发明内容:
本发明涉及一种用于阴离子聚合制备各种星形聚合物的引发剂, 其 通式为 Ma(RMe)b
式中 M元素选自 Sn、 Ti、 Al、 Si和 /或 B; 优选 Sn和 /或 Si; R为碳原子数在 8 - 100的烃基, 优选瑗原子数在 20 - 60 ;
Me为碱金属, 优选选自 Na和 /或 Li
a=0.7~3,优选为 1 ~ 3 ,
b=2.5~6.5, 优选为 3 ~ 5 .
本发明还涉及上述引发剂的制备方法, 该方法包括下列步骤: 在用 量为 0.2~2摩尔 /100克单体的有机碱金属初始引发剂存在下, 第一步在 烃类溶剂中引发二烯烃和 /或单烯烃类单体形成分子链端带有活性中心 的碳原子数在 8― 100 , 优选在 20 ~ 60的烃基; 第二步加入带有多个 可与活性中心反应的基团的化合物 MXj或 MR'Xj与活性中心反应, 加 入的 MXj或 MR'X 的用量应使得: A/B = 1.5-3 , 优选为 A/B = 1.5-2.5;
A为第一步反应中形成活性中心数;
B为加入 MXj或 MR'Xw中可与活性中心发生反应的基团总数, 形 成多官能团有 金属引发剂 Ma(RMe)b
其中: M选自 Sn, Ti,Al,Si和 /或 B;
X选自 F, C1和 /或 Br ;
R'为 d一 <:8的 基;
j的取值与所用 M元素的价位相等;
一般, MXj逸自 SnCl4,TiCl4,AlCl3,BF3和 /或 SiCl4;MXj优选为 SnCl4和 /或 SiC ;
MR'Xj选自 SnR'Cl3和 /或 SiR'CI3, MR'Xj.,优选为 SnCH3Cl3和 / 或 SiCH3Cl3.
本发明还涉及一种阴离子聚合的星型聚合物, 该聚合物以单烯烃和 /或二烯烃为单体原料在一种阴离子多官能团有 tM¾金属引发剂存在下 经阴离子溶液聚合而成,该星型聚合物具有多 条以本发明多官能团有机 碱金属引发剂为核心向径向方向伸长的经单体反应产生的聚合链臂的放 射状分子结构, 其中所述引发剂为具有通式为 Ma(RMe)b的化合物, 式 中 M元素选自 811,11, 1, 和/或8;11是碳原子数在8 - 100,优选为 20 - 60的烃基, Me为减金属,优选为 Na和 /或 Li, a=0.7〜3,优选为 1 ~ 3; b=2.5~6.5,优选为 3 ~ 5 .
本发明还涉及星型聚合物的制备方法, 该方法包括在一种多官能团 有 *^¾金属引发剂存在下使单烯烃和 /或二烯烃在烃类溶剂中进行阴离 子溶液聚合, 所述引发剂是通式为 Ma(RMe)b的化合物,
式中: M元素逸自 Sn,Ti,Al,Si和 /或 B;
R是碳原子数在 8 - 100 , 优选为 20 ~ 60的烃基;
Me为碱金属, 优选为 Na和 /或 Li ;
a=0.7~3 , 优选为 1 ~ 3;
b=2.5-6.5, 优选为 3 ~ 5 .
由此可见, 本发明的目的在于提供一种新型的多官能团有枳 金属 的引发剂, 其中含有除碳、 氢、 碱金属外的杂原子, 该引发剂用于合成 各种星形聚合物时具有成本低、 工艺简单、 能耗低、 产品性能好的特点. 本发明的另一目的在于提供一种合成上述多官能团有枳 金属引 发剂的方法, 使得该合成方法具有工艺简单, 官能度可根据需要方便地 调节的特点.
本发明的再一目的在于提供用该多官能团有机碱金属引发剂进行 阴离子聚合的方法, 以及提供由此方法生产的聚合产物.
本发明的其它目的通过参阅以下说明, 将很容易体现和理解.
附图概述:
图 1是对本发明合成的星型聚合物所做分子量分布的 GPC语图; 图 2至图 6分别是以 Shell公司、 JSR公司、 旭化成公司和瑞翁公 司的偶联型 S - SBR产品所做分子量分布的 GPC谱图.
本发明的详细说明:
在阴离子聚合领域, 生产线型聚合物的合成工艺是比较成熟的. 如 以蓁钠、 茶裡、 烷基锂等为引发剂引发聚合苯乙烯等的聚合反应. 但线 型聚合物产品性能往往达不到更高性能的要求, 必须代之以具有更优性 能的星型聚合物.
本文所涉及的 "星型聚合物" 这一术语是指分子中具有多条向径向 方向伸长的聚合链臂的放射状结构的聚合物. 星型聚合物由于与线型聚 合物结构上的差异, 而产生了其自身不同的特性.
例如, 线型 S - SBR (溶聚丁苯橡胶)由于其分子链末端和胶中低 分子物不易被破化, 在硤化胶中形成可自由运动的大倒基, 增加了轮胎 的滚动阻力.相比之下, 星型 S _ SBR由于其分子链末端已为化学键连 结在一起, 砥化后大分子网络中可自由运动的分子链末端数目大为减 少, 进而降低了滚动阻力. 另一方面, 由于星型 S - SBR中 1, 2 -结 构含量较高, 保持了良好的抗湿滑性, 与线型 S - SBR相比, 为一种新 型 "节能橡胶" ·
而对于阴离子法合成的聚丁二烯( LCBR , MVBR、 HVBR ) , 其星型结构产物的加工性能和抗冷流性能要明显优于线型产物. 同样为 一种滚动阻力低、 抗湿滑性好的 "节能型橡胶" . 此外, 还有一些其它 特性. 如星型 LCBR , 用于 HIPS合成, 可实现高 ML、 低溶液粘度的 最佳匹配, 产物为一种可代替 ABS的高光泽 HIPS (高抗冲击聚苯乙 烯) .
对于国际上最新开发的 "集成橡胶" S - SIBR而言, 星型结构同 样比线型结构呈现出更佳特色.
对热塑性弹性体 SBS、 SIS来说, 星型结构比线型结构产物有更高 的门尼粘度, 拉伸强度, 且耐热性好.
此外, 带有特殊端基的星型聚合物在粘合剂、 液体橡胶等方面亦有 广泛用途.
在星型聚合物的制备方面, 则比线型聚合物更为复杂. 一种方法是 采用单官能团烷基裡引发剂先合成出线型聚合物, 然后再加入多官能团 偶联剂进行倘联反应得到最终产物; 另一种方法是采用多官能团有^ « 金属引发剂, 尤其是多官能团有机裡引发剂, 直接引发单体合成星型聚 合物. 相比之下, 前一路线比较成熟, 但由于多数偶联反应不易充分进 行, 产物结构上不完全是星型聚合物, 性能不能得到充分的提高, 生产 方法效率低, 能耗大. 而后一路线存在着引发剂原料难获得, 官能度不 易控制和调节而易于形成凝胶, 而且制备工艺复杂等问題, 实际中应用 不多, 仅有少数关于星型嵌段共聚物合成方面的应用, 用于其它星型聚 合物的合成则很少.
为了解决目前阴离子聚合工艺中上述两种路线的这些问题, 本发明 人在该技术领域进行了多年的研究和大量实验, 终于完成了本发明, 开 创了既不需要进行偶合步稞, 又能控制和调节官能度而达到平稳高效合 成星型聚合物的合成路线及广泛适用的引发剂, 并由此制成了全新的高 性能星型聚合物.
因此, 根据本发明的一个方面是提供一种广泛适用于阴离子聚合 的引发剂. 本发明提供的用于阴离子聚合制备各种星型聚合物的引发剂 是由杂原子 M与烃基减金属部分( RMe )构成的通式如下的化合物:
Figure imgf000009_0001
式中杂原子 M是选自 Sn,Ti,Al,Si和 /或 B的元素;
R是由单烯烃和 /或二烯烃反应形成的碳原子数在 8 - 100 , 优选为 20 ~ 60的烃基;
Me为碱金属, 优选为钠和 /或锂; a=0.7~3 , 优选为 1 ~ 3;
b=2.5~^.5 , 优选为 3 - 5;
根据本发明, 该引发剂是按如下反应式分两步合成的:
( 1 ) 〔 ArH〕 : Me+ +二烯烃和 /或单烯烃单体
溶剂 Me+C― C M +
( 2 ) bMe + C― C " Me + + aMXj― Ma ( MeR ) b 式中 ArH代表稠环芳烃, 如萘, 蒽, 菲等
提供该引发剂的两步合成方法也是本发明的一个方面, 该合成方法 包括: 以有 金属为初始引发剂, 初始引发剂的加入量为每 100克单 体 0.2 ~ 2摩尔, 优选为每 100克单体 0.5~1.5摩尔; 第一步在烃类溶剂 中引发二烯烃和 /或单烯烃类单体形成分子链端带有活性中心的烃基, 第 二步加入带有多个可与活性中心反应的基团的化合物 MXj或 MR'X 与 活性中心反应, 加入的 MXj或 MR'Xj.i的用量应使得
A/B = 1.5-3; 优选为 1.5~2.5
A为第一步反应中形成活性中心数;
B为加入 MXj或 MR'X 中可与活性中心发生反应的基团总数, 其中: M选自 Sn,Ti, Al,Si和 /或 B;
X选自 F, C1和 /或 Br ;
j的取值与所用 M元素的价位相等;
R'为 d - (:8的烷基;
形成最终反应产物为多官能团有机碱金属引发剂, Ma(RMe)b .
在上述反应式( 1 ) 的反应中, 有机碱金属初始引发剂〔 ArH〕 Me+ 既可现场合成, 也可用已制成的成品, 在本发明中优逸使用成品引 发剂, 诸如萘锂、 萘納、 蒽基锂、 蒽基钠等, 尤以萘锂和蓁钠为优选的 有机减金属初始引发剂.
在该反应中使用的单体包括二晞烃和 /或单烯烃;其中二烯烃可以是 丁二烯, 异戊二烯及它们的衍生物; 而单烯烃可以是乙烯基类单体如苯 乙烯、 α -甲基苯乙烯等以及丙烯酸醋、 甲基丙烯酸醋等. 原則上这些 单烯烃及二烯烃并无严格的限制, 其选择范围是很广泛的, 该逸择对本 技术领域普通技术人员而言是毫无困难的. 同样, 单体的用量范围也与 大多数阴离子聚合中单体用量接近, 一般基于反应体系总重量计, 单体 含量为约 1 ~ 10 %, 优选为约 2 - 8 % .
有机减金属初始引发剂用量的控制可取决于所要求的烃基的分子 量及最终聚合物的微观结构的要求. 引发剂用量大, 形成的烃基的分子 量小; 而引发剂用量小, 则形成的烃基分子量大. 在本发明中, 有机减 金属初始引发剂的用量基于每 100克单体计, 碱金属含量为约 0.2 - 2 摩尔为宜, 优选为约 0.5 - 1.5摩尔.
该反应式( 1 )的合成反应是典型的阴离子化学反应, 其中使用的 溶剂可以是这类反应中常用的各种溶剂, 诸如烃类溶剂等, 包括苯, 甲 苯, 环己烷、 己烷、 戊烷、 庚烷、 抽余油等, 既可以单独使用, 也可以 两种或数种作为混合溶剂使用,其用量一般为反应体系的 90 - 99 % (重 量), 尤以约 92 - 98 %为宜.
该反应一般是不可逆的, 在适宜的温度和压力条件下, 如 5 - 50 X和常压下, 可在 ^艮短的时间, 如 15 - 30分钟内完成, 即在烃类溶剂 中引发二烯经和 /或单烯烃类单体形成分子链端带有活性中心的低分子 量齐聚物. 当然, 该反应时间无严格限制, 也可经数小时, 甚至数天, 反应体系仍具有活性. 而在第一步和第二步两反应之间也可以无明显的 分界, 二者可在同样的反应条件下进行.
第二步反应是通过向第一步反应得到的反应体系中加入 MXj或
MR'Xw等杂原子卤化物或它们的烷基卤化物来进行的. 这里的 M表示 Sn、 Ti、 Al、 Si和 /或 B等元素; X为鹵素 F、 CI、 Br和 /或 I; 而 R'为具有 1 - 8个碳原子的烷基. 该反应物为含三到四个可与活性中 心反应的基团的含杂原子化合物, 可以是诸如 SnCl4、 TiC 、 A1C13、 BF3、 SiCl4、 SnBr4 , 优选为 SnCl4和 /或 SiCl4 , 以及 SnR'Cl3和 /或 SiR'C , 优选为 SnCH3Cl3、 SiCH3CI3 , 其中以 SnCl4为最好. 其加料 可一次加入,也可在一段时间内分几次加入或连续加入, 既可单独添加, 也可与溶剂等混合加入. 反应时间为 0.5 - 2小时, 但并无严格限制. 其用量可根据最终引发剂的 a、 b等数值, 按化学计算量按比例确 定; 即应使得 A/B = 1.5 - 3 , A为第一步反应中形成活性中心数; B 为加入 M 或 MR'X 中可与活性中心发生反应的基团总数; 一般是, 每 100克单体该杂原子化合物用量为 0.017 - 0.44摩尔, 优选为 0.02 - 0.44摩尔, 从而能满足 a=0.7~3,b=2.5^.5的控制比例的要求. 因此说, 本发明引发剂中杂原子 M的种类、数量( a值)和活性碱金属官能度( b 值), 可以通过改变反应物 M种类和控制反应物间的比例方便地加以调 节. 在本发明中该多官能度 b值一般是控制在 3~5之间.
根据本发明的一个具体实施方案, 其中使用萘裡作为有积^金属引 发剂,单体为丁二晞,溶剂为苯,在 5 - 50 X温度下进行第一步反应 0 . 5 - 2小时, 随后加入杂原子化合物 SnCl4, 在 5 - 50 温度下继续反 应 0.5~2小时, 反应结束后在氮气保护下保存待用. 如此即完成了本发 明引发剂的制备. 反应产物为 Sna(R"Li)b , 其中 a为 1 - 3, b为
2.5-6.5 , R"为碳原子数在 30~50的烃基.
根据本发明, 本发明多官能团有 金属引发剂的官能度( b值) 可通过控制反应体系中第一步反应中形成的活性中心数 A值与第二步中 所加可与活性中心发生反应的杂原子基团总数 B值之间的比例而得到调 节. 如以有机锂和 SnCl4进行实验为例, 二者存在着如下表 1所示的对 应关系.
表 1
A/B(mol比) 2.4 2.2 2 1.8 1.6
平均官能度 f 2.8 3.3 3.8 4.1 4.4
本发明引发剂的活性碱金属官能度的计算方法是使用膜渗透压法 测定所合成多官能团有 金属引发剂的分子量, 再按下式进行计算:
〔 Me〕
官能度( b值) =
W/Mn (测量值)
式中〔 Me〕为体系中反应结束后剩余活性减金属总数, W为单体 投料量, Mn (测量值) 为所测引发剂的数均分子量.
根据本发明的另一方面, 是提供一种用本发明上述多官能团有枳 金属引发剂引发二烯烃和 /或单烯烃进行阴离子溶液聚合制备的星型聚 合物, 该星型聚合物具有多条以本发明引发剂为核心向径向方向伸长的 经单体反应产生的聚合链臂的放射状分子结构, 其中所述引发剂为具有 通式为 Ma(RMe)b的多官能团有机碱金属引发剂, 式中 M元素是选自 Sn, Ti,Al,Si和 /或 B的元素;
R是碳原子数在 8 - 100 , 优选为 20 ~ 60的烃基;
Me为碱金属, 优选为 Na和 /或 Li ;
a=0.7~3 , 优选为 1 - 3;
b=2.5~6.5, 优选为 3 ~ 5;
其中所述单体为二烯烃和 /或单烯烃.
本发明进行阴离子聚合反应中所使用的单体可以是任何可用于阴 离子溶液聚合的单体, 可以是二烯烃如丁二烯、 异戊二晞, 戊二烯及它 们的同系物等; 也可以是单烯烃如乙烯基芳香烃, 包括苯乙烯, α -甲 基苯乙烯及它们的同系物等. 而当进行共聚反应生产共聚产物时, 各单 体的比例均可任意调整, 如在反应单体总重量的 0.1 %至99.9 %范围内 任意变化, 尤以 10 %至 90 %为较常用的调整范围. 因此, 本发明的星 型聚合物基本上可以是任何可进行阴离子聚合的单体的合成产物, 可在 合成反应的过程中, 在不同时间, 变换不同的单体, 合成出具有各种不 同性能的产物, 从而实现了分子设计与最终产物性能可按要求做不同变 化的合成控制手段.
更重要的还在于, 由于使用了本发明的多官能团碱金属引发剂, 通 过阴离子聚合反应, 可以直接完成星型聚合物的合成, 而无需象现有技 术那样必须经过后续的偶联步琛. 由此一步合成工艺所产生的聚合产物 的重要标志之一就在于该聚合产物分子量分布的 GPC谱图具有均匀的 单峰分布的分布特征, 如附图 1所示. 而对现有技术中的多种不同偶联 型星型聚合物的分子量分布所做的 GPC谱图均不能表现出如本发明星 型聚合物那样的均匀的单峰型状的谙图, 而是多峰型状分布的语图, 这 是后续偶联步骤造成分子量产生极大差异的重要标志. 如附图 2 -图 6 分别是 S - 1215 ( Shell公司)、 SL - 552 ( JSR公司)、 1204 (旭 化成公司) 以及 NS - 110和 NS - 114 (瑞翁公司) 的分子量分布的 GPC语图, 都有很明显的多重峰. '当然, 通过两批或多批料共混等后续 处理手段, 也可使本发明的聚合产物具有这样的多重峰分布, 但本发明 直接的聚合产物的分子量分布的 GPC谱图则只可能是这样的单重峰. 从以上的说明可以看出, 由本发明的引发剂, 通过阴离子聚合反应 工艺,根据使用的单体不同, 和各单体不同的配比可以生产出种类繁多、 性能各异的聚合产物, 它们可以是星型均聚物如 LCBR、 MVBR、 HVBR等;也可以是星型共聚物如( SB ) nR, ( SI ) nR, S - SBR , HIPS及带部分极性的单体(如 MMA )链节的星型聚合物; 甚至可以 是诸如目前国际上最新开发的 "集成橡胶" ( S - SIBR ) 等一系列已 知和未知而正在开发的各种星型聚合物产品.
本发明合成的星型聚合物每个分子中所含聚合链臂数平均为
2.5-6.5 , 可由引发剂的官能度加以调节. 而且由于本发明的多官能团有 金属引发剂分子本身含有 Sn,Ti, Al,Si, B等杂原子, 因此在相应的星 型聚合物中亦含有同样的杂原子. 而对于橡胶类的星型聚合物(诸如 LCBR , MVBR , HVBR , S - SBR, S - SIBR等)来说, 杂原子 的引入有利于碳黑的均匀分布, 进而使制品的综合力学性能得到提高. 这种提高对于不含杂原子的引发体系所合成的聚合物来说是不容易做到 的. 对于提高产品性能, 简化生产工艺有其优异的经济效益和工业化实 用性.
根据本发明, 在本发明多官能团有 金属引发剂存在下, 制备星 型聚合物的方法也是本发明的一个重要方面. 本发明制备星型聚合物的 方法包括在一种多官能团有 ^¾金属引发剂存在下使单烯烃和 /或二烯 烃在烃类溶剂中进行阴离子溶液聚合, 所述引发剂是通式为 Ma(RMe)b 的化合物;
式中杂原子 M是选自 Sn , Ti,Al,Si和 /或 B的元素;
R是由单烯烃和 /或二烯烃反应形成的碳原子数在 8 - 100 , 优选为 20 - 60的烃基;
Me为减金属, 优选为钠和 /或锂;
a=0.7~3 , 优选为 1 *- 3;
b=2.5~6.5, 优选为 3 ~ 5;
在本发明制备星型聚合物的方法中, 所述多官能团有^ ¾金属引发 剂在聚合反应体系中的用量以活性碱金属毫摩尔量计一般是每 100克单 体使用约 0.5— 10毫摩尔,优选为约 0.7 ~ 6毫摩尔.反应温度为 5 - 100 优选为 10 - 90 反应压力一般为常压至 0.5MPa . 反应时间要 求并不严格, 一般在 0.5小时至 8小时范围均可. 最后按常规技术加入 醇类使活性中心失活, 结束反应.
单体的选择如上文所述可以是任何可用于阴离子聚合的单体, 可以 是二烯烃如丁二烯, 异戊二烯, 戊二晞及它们的同系物等; 也可以是单 烯烃如乙烯基芳香烃诸如苯乙晞, α -甲基苯乙烯,及它们的同系物等, 还有丙烯酸类单体如丙烯酸醋, 甲基丙烯酸酯等, 均可作为本发明聚合 方法中的单体使用. 而当进行共聚反应生产共聚产物时, 各单体的比例 均可任意调整,如在反应单体总重量的 0.1 %至 99.9 %范围内任意变化, 尤以 10 %至90 %为较常用的调整范围. 该单体的选用对本技术领域人 员来说是很容易的. 同样, 单体的用量范围也与大多数阴离子聚合中单 体用量接近, 即基于反应体系总重量计, 单体含量约为约 5 - 20 %, 优 选为约 8 ~ 15 % .
本发明方法中使用的溶剂可选用阴离子聚合领域中任何可以使用 的溶剂或混合溶剂. 一般是用烃类溶剂作为本发明聚合方法中的溶剂, 如环己烷、 戊烷、 己烷、 庚烷、 抽余油、 苯、 甲苯等或它们的混合溶剂. 其用量一般为反应体系的约 80 % - 95 % (重量), 尤以约 85 % - 92 %为宜.
在该聚合反应中, 为了满足不同最终产物要求, 还可使用其它辅助 试剂, 如路易斯碱调节剂, 诸如二甘醇二甲鲢 ( 2G ) , 三甘醇二甲酸 ( 3G ) 、 二甲氧基乙烷( DME ) 、 六甲基磷跣三胺 ( ΗΜΡΤΑ ) 、 四甲基乙二胺( TMEDA )、 四氢呋喃( THF )、 二氧六环( DOX )、 三乙胺等瞇类及胺类化合物. 其用量是本技术领域人员所熟知的, 很容 易根据不同要求做出决定, 而无需对其做出进一步限制.
在本发明一个具体实施方案中, 该阴离子聚合反应过程如下进行: 在加入反应物料之前, 先将反应器高温烘烤, 以氮气吹扫三次或三次以 上, 然后加入单体溶液和必要时加入的计量的路易斯碱调节剂, 最后计 量加入多官能团有机减金属引发剂. 在 40 - 90 温度下于氮气保护下 常压反应 2 ~ 5小时. 然后用甲醇终止反应, 水蒸汽蒸出溶剂, 脱水干 燥后即得到星型聚合物. 根据本发明, 由于使用了新开发的阴离子聚合多官能团有 ^金属 引发剂, 合成工艺中不需要附加的偶联反应, 简化了工艺流程, 设备简 单, 能耗降低; 同时本发明上述引发剂能适用于多种不同单体的合成反 庆, 能随时改变聚合产品, 灵活性强, 而且改变产品不需要類外的设备 投资; 并且, 因为没有偶联步稞, 聚合产物性能也得到了提高, 这是由 于偶联反应是发生在大分子链和小分子偶联剂之间, 由于大分子体系粘 度大和分子链卷曲而造成的空间位阻作用都会影响到偶联效果(一般在 50 %左右) . 而本发明无需偶联步稞, 一步聚合得到星型聚合物, 分子 量分布比较均匀, 基本没有线型大分子存在. 从而无论其机械性能还是 动态力学性能都得到了全面提高, 从下面列举的实施例中所做的性能对 比中也可以得出同样的结论.
下面将结合实施例对本发明做更进一步的说明, 但这些实施例不以 任何形式限制本发明. 有关性能测试均为根据国家标准 GB 528测试 " 300 %定伸强度"、抗张强度(扯断强度)及断裂伸长; 而根据 GB531 - 83测试邵氏 A硬度; 并使用动态粘弹语仪测定 ¾ δ值.
实施例 1
在净化好的带电磁搅拌的 100ml聚合瓶中加入苯 30ml , 丁二烯 1.2 克, 萘裡初始引发剂 12毫摩尔, 20 TC反应 1小时. 加入 1.44毫摩尔四 氯化锡, 20 继续反应 1小时后停止反应.产物为多官能团有机裡引发 剂, 平均官能度为 3.8 . 平均每分子含锡原子数为 1 .
实施例 2
实验装置同实施例 1 . 加入抽余油 30ml, 异戊二烯 1.8克, 萘锂初 始引发剂 3.5毫摩尔, 20 X反应 1小时. 加入 0.6毫摩尔四氯化锡, 20 C继续反应 1小时后停止反应. 产物平均官能度为 6.5 . 平均每分子含 锡原子数为 2.6 .
实施例 3
实验装置同实施例 1 . 加入环己烷 30ml, 异戊二烯 1.8克, 萘钠初 始引发剂 8毫摩尔, 25 :反应 1小时. 加入 0.9毫摩尔四氯化硅溶液, 25 X继续反应 1小时后停止反应. 所得多官能团有机钠引发剂的平均官 能度为 2.5 . 平均每分子含硅原子数为 0.7 . 实施例 4
实验装置同实施例 1, 加入环己烷 30ml, 苯乙烯 2.4克, 锂初始 引发剂 12毫摩尔, 25 X反应 1小时, 加入 SiCH3Cl32毫摩尔, 继续反 应 1小时停止反应, 所得多官能团有机锂引发剂的平均官能度为 2.9. 平均每分子含硅原子数为 1
实施例 5
在一净化好的 10立升不锈钢釜中加入环己烷 4000ml, 丁二烯 400 克, 苯乙烯 100克, 四氢呋喃 25ml, 实施例 1所合成多官能团有机锂 引发剂 240ml, 50 下进行正常的阴离子聚合反应. 反应 4小时后加 入含 2, 6 -二叔丁基 - 4 -甲基苯聆 0.7克的甲醇 10ml终止反应. 于 90 X:去离子水中脱去溶剂, 干燥至恒重. 产物重量: 500克.
所得聚合物为星型无规丁苯共聚物, 1, 2 -结构 45 %,平均臂数 3.8, 数均分子量 302, 000, Mw/Mn=1.81.
实施例 6 - 8
在氮气吹扫净化好的 2立升不锈钢釜中加入环己烷 1140ml, 丁二 烯 112g, 笨乙烯 28g, 四氢呋 6.6ml, 分别加入多官能团有机锂引发 剂各 2ml, 引发剂平均官能度见表 2. 50 常压反应 2小时加入 10ml 含 1克 2, 6 -二叔丁基 4 -甲基酚的甲醇溶液终止反应. 产物于 90 去离子水中蒸出溶剂、 干燥. 产物为星型 S - SBR. 产物重量: 140 克.
Figure imgf000017_0001
Figure imgf000018_0001
实施例 9
在氮气吹扫净化好的 2立升不锈钢釜中加入环己烷 1140ml , 丁二 晞 53克, 异戊二烯 53克, 苯乙烯 35克, 四氢呋喃 2ml, 引发剂制备 实例 1中制成的多官能团有机裡 12ml (平均官能度 3.8 ) . 50 常压 反应 4小时. 产品后处理同实施例 5.
所得产物为星型 S - SIBR130克. 分子量 290, 000, 分子量分 布 1.46, 平均臂数 3.8. 其性能见表 3.
表 3
机械性能
拉伸强度( MPa ) 19.0
300 %定伸强度( MPa ) 12.0
扯断伸长(% ) 400
硬度(邵氏 A ) 60
回弹(% ) 26
实施例 10
在氮气吹扫净化好的 2立升不锈钢釜中加入环己烷 1100ml , 丁二 晞 80g, 引发剂制备实施例 1中制备的多官能团有机锂 16ml, 80 常 压反应 2小时, 加入苯乙烯 43g继续反应 2小时后, 用甲 8终止反应, 产品后处理同实施例 5. 所得产品为星型嵌段共聚物( SB ) nR. 产物 重量: 123克. 分子量 170, 000, 分子量分布 1.17, 平均臂数 3.8, 1, 2 -结构含量 19 %.
实施例 11
在氮气吹扫的净化好的 2立升不锈钢釜中加入环己烷 1100ml , 异 戊二烯 100g, 引发剂制备例 1中制成的多官能团有机裡 16ml (平均官 能度 3.8 ) 50 常压聚合 2小时, 加入笨乙烯 18g继续反应 2小时后, 用甲醇终止反应. 产品后处理同实施例 1. 所得产品为星型嵌段共聚物 ( SI ) nR. 产物重量: 118克. 分子量 160, 000, 3, 4 -结构 25 %分子量分布 1.36, 平均臂数 3.7.
实施例 12
在氮气吹扫净化好的 2立升不锈钢釜中加入环已烷 920ml, 丁二烯 110克, 引发剂制备例 1中制成的多官能团有机锂引发剂 12ml (平均官 能度 3.8 ) . 80 下常压反应 2小时. 产品后处理同实施例 5. 所得产 物为星型聚丁二烯. 产物重量: 110克. 1 , 2 -结构含量 16 %, 顺- 1 , 4结构含量 35 %, 反 - 1, 4结构含量 49 %. 分子量 270, 000, 分子量分布 1.4, 平均臂数 3.8.
实施例 13 - 15
在净化好的 2立升不锈钢釜中加入抽余油 920ml , 丁二烯 110克, 引发剂制备实施例 1的多官能团有机锂引发剂 12ml (平均官能度 3.8 ), 路易斯减加入种类和加入量见表 4. 如表中温度常压下反应 2小时后结 束反应, 产品后处理同实施例 1. 产物为星型聚丁二烯.
表 4
Figure imgf000019_0001
作为与现有技术中的星型聚合物的性能对比实例, 本实施例中选用 了以上实施例 5制备的本发明的 Sn-SBR星型聚合物与市售的 SL - 557R (曰本 JSR公司) , 日本 F.T.的 S - SBR , 及线型 S一 SBR和 E - SBR - 1500产品进行对比.
试验结果列于下表 5 ,其中 0 X时的 tg δ值表征抗湿滑性,值越高, 抗湿滑性越好. 而 50 时的 tg δ值表征滚动阻力, 值越低, 滚动阻力 越低. 而就分子量分布的对比而言, 与线型聚合物(阴离子聚合) 的窄 分布相比, 本发明的星型聚合物分布更宽, 表明具有冷流性及加工性能 要好得多. 表 5 , 几种 SBR的机械、 动态性能
Figure imgf000020_0001
本例中还对实施例 6制备的 Sn-SBR星型聚合产物进行分子量分布 的测试, 方法是用膜透压法测分子量, 凝胶渗透色谱测分子量分布(四 氢呋喃为溶剂, 10mg/10ml ) .
最终结果的 GPC谙图见附图 1 .
同时还选用了如下几种市售产品做对比测试, 它们是:
① S - 1215 R ( Shell公司) -一种偶联型 S - SBR, 其 GPC谱 图见附图 2 ,
② SL - 552R ( JSR公司) -一种偶联型 S - SBR , 其 GPC谱图 见附图 3,
③ 1204R (旭化成公司) -一种偶联型 S - SBR, 其 GPC谙图见 附图 4 ,
④ NS - 110R及 NS - 114 (瑞翁公司 ) -均为偶联型 S - SBR , 其 GPC谱图分别见附图 5和 6 .
工业应用性: 根据本发明, 与现有技术相比, 本发明所述多官能团有 金属引 发剂的合成方法由于原料易得、 价廉、 合成工艺简单、 官能度便于调节 而更具有实际工业化应用价值. 它可用于星型聚合物的合成, 如星型苯 乙烯 -丁二烯无规共聚物(节能型溶聚丁苯橡胶); 星型苯乙烯-异戊 二烯无规共聚物; 星型笨乙烯-丁二烯-异戊二烯三元无规共聚物; 星 型中乙烯基、 高乙烯基聚丁二烯; 星型中堠式聚异戊二烯或 3, 4 -和 1, 2 -聚异戊二烯;星型( SI ) „11或( SB ) nR(热塑性弹性体); K -树脂; 带有特殊端基的星型聚合物(功能弹性体), 这些端基可以 是- OH, - COOH, - X, - NR2 ( R: H或烷基)等. 与先聚合 后偶联的传统工艺相比, 使用本发明的多官能团有 金属合成上述各 种聚合物, 有生产成本低、 设备需求少、 工艺流程简单等明显优点.

Claims

权 利 要 求
1. 一种用于阴离子聚合制备星型聚合物的引发剂, 其特征在于其通 式表示如下:
Figure imgf000022_0001
式中: M元素选自 Sn,Ti,Al,Si,和 /或 B;
R为碳原子数在 8 - 100的烃基;
Me为碱金属,
a=0.7~3
b=2.5~6.5 .
2. 根据权利要求 1所述的引发剂, 其特征在于其中所述的烃基是单 烯烃和 /或二埽烃的碳原子数为 20 - 60的聚合产物.
3. 根据权利要求 1所述的引发剂,其特征在于其中 a=l~3及 b=3~5 .
4. 根据权利要求 1所述的引发剂, 其特征在于其中碱金属为 Na和 / 或 Li .
5. 根据权利要求 1所述的引发剂, 其特征在于其中 M元素为 Sn和 / 或 Si .
6. 制备权利要求 1所述引发剂的方法, 其特征在于该方法包括下列 步骤, 在用量为 0.2 - 2摩尔 /100克单体的有 金属初始引发剂存在 下, 第一步在烃类溶剂中引发二烯烃和 /或单烯烃类单体形成分子链端带 有活性中心的碳原子数在 8 ~ 100的烃基; 第二步加入带有多个可与活 性中心反应的基团的化合物 Μ 和 /或 MR'XH与活性中心反应, 加入的 Mxj、 MR'Xj !的用量应使得:
A/B=1.5~3
A : 为第一步反应中形成活性中心数
B: 为加入 MXj或 MR'X l中可与活性中心发生反应的基团总数, 形成多官能团有机锂引发剂 Ma(RMe)b,其中:
M选自 Sn、 Ti、 Al、 Si和 /或 B;
X选自 F,C1和 /或 Br;
R'为 d - C8的烷基; j的取值与所用 M元素的价位相等;
而11、 Me、 a及 b的定义与权利要求 1相同.
7. 根据权利要求 6的方法, 其特征在于其中所述 ΜΧ』选自 SnCl4、 TiCl4、 AlC 、 BF3和 /或 SiCl4; MR Xj !选自 SnCH3Cl3和 /或
SiCH3Cl3.
8. 根据权利要求 6的方法, 其特征在于第一步中初始引发剂用量为 0.3 - 1.5摩尔每 100克单体, A/B为 1.5-2.5 ·
9. 根据权利要求 6的方法, 其特征在于所述的有机碱金属为稠环芳 烃与碱金属的反应产物, 稠环芳烃选自萘、 蒽、 菲碱金属选自 Na和 /或 Li .
10. 根据权利要求 6的方法, 其特征在于所述的有机械金属为蓁锂.
11. 根据权利要求 6的方法, 其特征在于所述的二烯烃选自丁二烯、 异戊二烯及其衍生物, 单烯烃类单体选自苯乙烯、 α -甲基苯乙烯及其 衍生物.
12. 根据权利要求 6的方法,其特征在于所述烃类溶剂选自苯、甲苯、 环己烷、 戊烷、 己烷、 庚烷、 抽余油、 以及它们的混合物.
13. 根据权利要求 6的方法,其特征在于每 100克二烯烃和 /或单烯烃 类单体中 MXj和 /或 MR'Xj j的用量为 0.017~0.44摩尔 .
14. 根据权利要求 6的方法, 其特征在于当使用茶锂, 丁二烯, 四氯 化锡为反应物时, 其步骤为以阴离手反应的方法净化反应器, 在反应器 中加入丁二烯的笨,蔡裡引发剂, 5 - 50 X反应 0.5 - 2小时,加入 SnCl4 溶液, 在 5 - 50 下继续反应 0.5-2小时, 得
Sna(R"Li)b
其中 a为 1 - 3, b为 2.5 .5 , R"为碳原子数在 30 ~ 50的烃基.
15. 一种星型聚合物, 其特征在于该聚合物在一种多官能团有 «金 属引发剂存在下使单烯烃和 /或二烯烃单体进行阴离子溶液聚合制成;该 星型聚合物具有多条以上述引发剂为核心向径向方向伸长的经单体反应 产生的聚合链臂的放射状分子结构, 其中所述引发剂为具有通式为
Ma(RMe)b的多官能团有 金属引发剂,式中 M元素是选自 Sn,Ti,Al,Si 和 /或 B的元素; R是碳原子数在 8 - 100的烃基;
Me为减金属;
a=0.7~3,
b=2.5~6.5 .
16. 一种星型聚合物, 其特征在于该聚合物在一种多官能团有机碱金 属引发剂存在下使单烯烃和 /或二烯烃单体进行阴离子溶液聚合制成,该 聚合物具有多条以一种多官能团有 金属引发剂为核心向径向方向伸 长的经单体反应产生的聚合链臂的放射状分子结构, 该聚合物分子量分 布的 GPC谱图为均匀的单峰分布;所述引发剂为具有通式为 Ma(RMe)b 的多官能团有枳^金属引发剂, 式中 M元素是选自 Sn,Ti,Al,Si和 /或 B 的元素;
R是碳原子数在 8 - 100的烃基;
Me为碱金属;
a=0.7~3;b=2.5~^.5 .
其中所述单体为二烯烃和 /或单烯烃.
17. 根据权利要求 15或 16所述的星型聚合物, 其特征在于所述单体 选自丁二烯、 异戊二烯、 戊二烯及它们的同系物、 笨乙烯、 α -甲基苯 乙烯及它们的同系物、 丙烯酸醏、 甲基丙烯酸酯及它们的混合物.
18. 根据权利要求 15或 16所述的星型聚合物, 其特征在于所述聚合 物是单体选自丁二烯、 异戊二烯、 戊二烯及它们的同系物、 苯乙烯、 α -甲基苯乙烯及它们的同系物、 丙烯酸酯、 甲基丙烯酸 81的均聚物.
19. 根据权利要求 15或 16所述的星型聚合物, 其特征在于所述聚合 物是二种或二种以上选自丁二烯、 异戊二烯、 戊二烯及它们的同系物、 苯乙烯、 α -甲基笨乙烯及它们的同系物、 丙烯酸醋、 甲基丙烯酸醏的 单体的共聚物.
20. 一种星型聚合物的制备方法, 其特征在于该方法包括在一种多官 能团有机碱金属引发剂存在下,使单烯烃和 /或二烯烃单体在烃类溶剂中 进行阴离子溶液聚合, 所述引发剂是通式为 Ma(RMe)b的化合物,
式中: M元素选自 Sn,Ti,Al,Si和 /或 B;
R是碳原子数在 8 - 100的烃基; Me为碱金属,
a=0.7~3
b=2.5^.5 .
21. 根据权利要求 20所述的方法, 其特征在于所述的炫基是单烯烃 和 /或二烯烃单体的碳原子数为 20 - 60的聚合产物; 所述单体选自丁二 烯、 异戊二烯、 戊二浠及它们的同系物、 苯乙烯、 α -甲基苯乙烯及它 们的同系物、 丙烯酸癍、 甲基丙烯酸醻及它们的混合物.
22. 根据权利要求 20所述的方法, 其特征在于所述碱金属为 Na和 / 或 Li .
23. 根据权利要求 20所述的方法, 其特征在于所述 M元素选自 Sn 和 /或 Si .
24. 根据权利要求 20所述的方法, 其特征在于所述单体选自丁二烯、 异戊二烯、 戊二烯及它们的同系物, 苯乙烯, a -甲基苯乙烯及它们的 同系物、 丙烯酸醋, 甲基丙烯酸醋及它们的混合物.
25. 根据权利要求 20所述的方法, 其特征在于所述烃类溶剂选自笨、 甲苯、 环己烷、 戊烷、 己烷、 庚烷、 抽余油、 及它们的混合物.
26. 根据权利要求 20所述的方法, 其特征在于所述引发剂的用量范 围以活性碱金属毫摩尔量计为每 100克单体使用 0.5 - 10毫摩尔.
27. 根据权利要求 20所述的方法, 其特征在于反应体系中单体的含 量范围为 5 - 20 % (重量) .
28. 根据权利要求 20所述的方法, 其特征在于该阴离子溶液聚合中 加有路易斯减调节剂, 该调节剂选自二甘醇二甲鲢、 三甘醇二甲鲢、 二 甲氧基乙烷、 六甲基碑酰三胺、 四甲基乙二胺、 四氢呋喃、 二氧六环和 / 或三乙胺.
PCT/CN1996/000090 1995-10-17 1996-10-17 Initiateur organique multifonctionnel a metal alcalin, sa synthese, des polymeres anioniques en etoile obtenus par polymerisation anionique et leur preparation WO1997014722A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP96934324A EP0856522B1 (en) 1995-10-17 1996-10-17 A multifunctional organic alkali metal initiator and its synthesis, anonic polymerised star polymers and their preparation
JP9515389A JPH11513715A (ja) 1995-10-17 1996-10-17 多官能価有機アルカリ金属開始剤およびその合成、アニオン重合された星形重合体およびそれらの調製
US09/051,760 US6150487A (en) 1995-10-17 1996-10-17 Multifunctional organic alkali metal initiator and its synthesis, anionic polymerized star polymers and their preparation
DE69625612T DE69625612T2 (de) 1995-10-17 1996-10-17 Multifunktioneller organischer alkalimetallinitiator und seine synthese, anionisch polymerisierte sternförmige polymere und ihre herstellung
TW086100276A TW401425B (en) 1995-10-17 1997-01-13 Polyfunctional organic alkali metal initiator, process for synthesizing the same and star polymer polymerized in anionic polymerization as well as its preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN95116575.5 1995-10-17
CN95116575A CN1048989C (zh) 1995-10-17 1995-10-17 多官能团有机碱金属引发剂及其合成方法

Publications (1)

Publication Number Publication Date
WO1997014722A1 true WO1997014722A1 (fr) 1997-04-24

Family

ID=5080953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1996/000090 WO1997014722A1 (fr) 1995-10-17 1996-10-17 Initiateur organique multifonctionnel a metal alcalin, sa synthese, des polymeres anioniques en etoile obtenus par polymerisation anionique et leur preparation

Country Status (7)

Country Link
US (1) US6150487A (zh)
EP (1) EP0856522B1 (zh)
JP (2) JPH11513715A (zh)
CN (1) CN1048989C (zh)
DE (1) DE69625612T2 (zh)
TW (1) TW401425B (zh)
WO (1) WO1997014722A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462137B2 (en) 2000-10-19 2002-10-08 China Petroleum And Chemical Corporation Star-block interpolymers and preparation of the same
JP5160016B2 (ja) * 2001-10-31 2013-03-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤトレッドコンパウンド用ブロックコポリマーの製造方法及び該コポリマー
CN1181101C (zh) 2001-12-31 2004-12-22 中国石油化工股份有限公司 含锡有机锂化合物及其制备方法
FR2854635B1 (fr) * 2003-05-07 2006-07-14 Michelin Soc Tech Procede de preparation de copolymeres a blocs pour compositions de bande de roulement de pneumatique, et ces copolymeres
FR2854636B1 (fr) * 2003-05-07 2006-07-14 Michelin Soc Tech Procede de preparation de copolymeres a blocs pour compositions de bande de roulement de pneumatique, et ces copolymeres
CN101045756B (zh) * 2006-03-30 2011-01-12 北京化工大学 一种阴离子聚合用多官能团有机碱金属引发剂的制备方法
EP2070952A1 (en) * 2007-12-14 2009-06-17 Continental Aktiengesellschaft Vulcanizable rubber mixture and its use for rubber products
JP5692067B2 (ja) 2009-05-11 2015-04-01 日本ゼオン株式会社 末端変性放射状共役ジエン重合体の製造方法
KR102121881B1 (ko) * 2013-03-29 2020-06-11 제온 코포레이션 방사상 공액 디엔계 고무의 제조 방법
DE102015221529A1 (de) * 2015-11-03 2017-05-04 Cht R. Beitlich Gmbh Kontinuierliches Verfahren für Reaktionen mit feinteiligen Alkalimetall-Dispersionen
JP6901198B2 (ja) 2015-11-16 2021-07-14 株式会社ブリヂストン アニオン重合のための官能性開始剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519431A (en) * 1981-11-30 1985-05-28 Bridgestone Tire Company Limited Styrene-butadiene copolymers with high styrene content

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3122527A (en) * 1956-08-17 1964-02-25 Firestone Tire & Rubber Co Polymerization of olefins with catalyst containing adduct of alkali metal and polynuclear aromatic compound
US4020258A (en) * 1971-11-04 1977-04-26 Phillips Petroleum Company Addition of coupling agent during organolithium initiated polymerizations
GB1555729A (en) * 1976-06-17 1979-11-14 Charbonnages Ste Chimique Bifunctional and trifunctional organo-lithium initiators and their use
US4091198A (en) * 1976-09-10 1978-05-23 Phillips Petroleum Company Suppressing gel in the continuous solution polymerization of a conjugated diene with a monovinyl aromatic compound
DD150469A1 (de) * 1977-02-24 1981-09-02 Christoph Roth Verfahren zur herstellung multifunktioneller polymerisationsinitiatoren
US4196153A (en) * 1977-08-15 1980-04-01 The Dow Chemical Company Polyfunctional lithium containing initiator
DD158781A1 (de) * 1980-04-01 1983-02-02 Elisabeth Anton Verfahren zur herstellung von multifunktionellen lithiumhaltigen polymerisationsinitiatoren
NL86588C (zh) * 1980-09-20
FR2498193B1 (fr) * 1981-01-19 1986-03-21 Poudres & Explosifs Ste Nale Nouvelles associations de bases resultant de la combinaison d'un alkyl ou aryl lithien avec un amidure ou un hydrure alcalin, procede de polymerisation les utilisant et produit obtenu
JPS57205414A (en) * 1981-06-10 1982-12-16 Japan Synthetic Rubber Co Ltd Production of styrene/butadiene rubber
US4526934A (en) * 1982-03-19 1985-07-02 Bridgestone Tire Company Limited Branched styrene-butadiene copolymers and pneumatic tires using the same
DE3309748A1 (de) * 1982-07-23 1984-03-01 Veb Chemische Werke Buna, Ddr 4212 Schkopau Verfahren zur herstellung mehrfunktioneller polymerisationsinitiatoren
JPS5978214A (ja) * 1982-10-27 1984-05-07 Japan Synthetic Rubber Co Ltd ブタジエン系ゴム材料
JPS60255838A (ja) * 1984-06-01 1985-12-17 Japan Synthetic Rubber Co Ltd タイヤ用ゴム組成物
EP0210016B1 (en) * 1985-07-12 1992-01-22 The Dow Chemical Company Polymerization process and initiator system therefor
GB9002804D0 (en) * 1990-02-08 1990-04-04 Secr Defence Anionic polymerisation
US5268439A (en) * 1991-01-02 1993-12-07 Bridgestone/Firestone, Inc. Tin containing elastomers and products having reduced hysteresis properties
US5587420A (en) * 1992-06-04 1996-12-24 Bridgestone Corporation Diene polymer obtained by adding a tin compound in the polymerization with an organolithium initiator
US5527753A (en) * 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519431A (en) * 1981-11-30 1985-05-28 Bridgestone Tire Company Limited Styrene-butadiene copolymers with high styrene content

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HECHENG XIANGJIAO GONGYE, Vol. 14(6), 1991, (Beijing), ZHANG XINGYING, JIN GUANTAI, "Synthesis of Energy-Saving Solution- Polymerized SBR", page 393. *
See also references of EP0856522A4 *
SHIYOU HUAGONG, Vol. 19(9), 1990, (Beijing), ZHANG LEI et al., "Synthesis and Characterization of Star-Shaped Isoprene-Styrene Block Copolymer", pages 604-605. *

Also Published As

Publication number Publication date
CN1148053A (zh) 1997-04-23
JPH11513715A (ja) 1999-11-24
US6150487A (en) 2000-11-21
EP0856522B1 (en) 2003-01-02
EP0856522A4 (en) 1998-11-18
JP2007262428A (ja) 2007-10-11
DE69625612T2 (de) 2003-11-13
DE69625612D1 (de) 2003-02-06
TW401425B (en) 2000-08-11
CN1048989C (zh) 2000-02-02
EP0856522A1 (en) 1998-08-05

Similar Documents

Publication Publication Date Title
JP3452094B2 (ja) インサイチユー連続分散アニオン重合方法
CA2112003C (en) Process for the preparation of in situ dispersion of copolymers
US5614579A (en) Process for the preparation of tapered copolymers via in situ dispersion
KR100258271B1 (ko) 음이온성 중합 개질제
JP2628822B2 (ja) 連続漸減ポリマー類およびコポリマー類の製造方法およびそれを用いて製造した製品
JP2007262428A (ja) 多官能価有機アルカリ金属開始剤およびその合成、アニオン重合された星型ポリマーおよびそれらの調製
JP4213468B2 (ja) 星形−ブロックインターポリマー及びそれらの製造
CN109181813B (zh) 一种用于润滑油的星形黏度指数改进剂及其制备方法
WO1997006194A1 (fr) Copolymeres blocs thermoplastiques d&#39;elastomere et leurs procedes de fabrication
JPS5871909A (ja) 共役ジエン又はビニル置換芳香族炭化水素及びアクリルエステルのブロツク共重合体及びその製造方法
JPH07304810A (ja) 工業的に用いうる二官能性陰イオン重合開始剤の製造方法およびその使用
JP2003506504A (ja) ブタジエン/イソプレン/モノビニル芳香族モノマーのヘプタブロックコポリマーおよびそれを製造する方法
KR20210068516A (ko) 적어도 하나의 폴리(알파-메틸스티렌) 블록을 포함하는 열가소성 엘라스토머의 합성 방법
US6777499B2 (en) Multiblock interpolymers and processes for the preparation thereof
US6756448B2 (en) Styrene copolymer
CA1220588A (en) PROCESS FOR PREPARATION OF DIENE STYRENE .alpha.- METHYLSTYRENE BLOCK POLYMERS AND POLYMERS THEREFROM
CN113307913A (zh) 一种星形偶联结构的含氮/硅氧功能化sibr集成橡胶及其制备方法
CN1137174C (zh) 用多螯型引发剂制备共轭二烯烃和单乙烯基芳轻二嵌段溶聚橡胶
EP1266916A1 (en) Multiblock copolymer the preparing method thereof
CN114539492A (zh) 单乙烯基芳烃-共轭二烯烃嵌段共聚物及其制备方法和充油橡胶及应用
CN115806721A (zh) 丁苯嵌段共聚物混合物及其制备方法与应用
CN117186326A (zh) 一种苯乙烯-共轭二烯-苯乙烯三嵌段共聚物及其偶合物复合弹性体及其制备方法和应用
CN114605601A (zh) 一种活性纳米乳胶及其制备方法
GB2516233A (en) Microstructure modification of polydienes using polar modifiers
CN114539491A (zh) 单乙烯基芳烃-共轭二烯烃嵌段共聚物及其制备方法和充油橡胶及应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 515389

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996934324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09051760

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996934324

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996934324

Country of ref document: EP