WO1997013002A1 - Procede de nitruration d'une surface d'aluminium et adjuvant de nitruration - Google Patents

Procede de nitruration d'une surface d'aluminium et adjuvant de nitruration Download PDF

Info

Publication number
WO1997013002A1
WO1997013002A1 PCT/JP1996/002912 JP9602912W WO9713002A1 WO 1997013002 A1 WO1997013002 A1 WO 1997013002A1 JP 9602912 W JP9602912 W JP 9602912W WO 9713002 A1 WO9713002 A1 WO 9713002A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
aluminum
aluminum material
weight
metal powder
Prior art date
Application number
PCT/JP1996/002912
Other languages
English (en)
French (fr)
Inventor
Hirohisa Miura
Yasuhiro Yamada
Haruzo Katoh
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Toyo Aluminium Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Toyo Aluminium Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP96932835A priority Critical patent/EP0795621B1/en
Priority to DE69625464T priority patent/DE69625464T2/de
Priority to CA002206202A priority patent/CA2206202C/en
Priority to US08/849,555 priority patent/US6074494A/en
Publication of WO1997013002A1 publication Critical patent/WO1997013002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to a method for nitriding a surface of an aluminum material and an auxiliary for nitriding.
  • the present invention relates to a nitriding method for forming a nitride layer on the surface of an aluminum material and a nitriding aid used for nitriding.
  • aluminum is a material that has a lower hardness than steel or the like, and is very easy to seize and wear when sliding on a net. For this reason, various surface treatments using plating, thermal spraying, and anodic oxidation are being studied and used for aluminum materials. Most of them form an aluminum oxide layer on the surface of aluminum material, and although there is an attempt at nitriding, the nitrided layer formed on the surface is too thin to be satisfactory as a surface-treated aluminum substrate. . The reason for this was that aluminum was a very active and easily oxidizable metal, and there was always a slight oxide layer on the surface.
  • the present inventor disclosed in Japanese Patent Application Laid-Open No. 7-166321 that at least a part of the aluminum material was brought into contact with a nitriding treatment aid containing aluminum powder, and in that state, the melting point of the aluminum material was reduced.
  • a method is proposed in which the surface of an aluminum material is nitrided by an atmosphere gas substantially consisting of nitrogen gas at the following processing temperature. According to this method, when aluminum powder used as a nitriding aid is brought into contact with nitrogen gas at a predetermined temperature, the aluminum powder itself is nitrided, and at that time, nascent nitrogen (N *) is generated. It diffuses into the inside of the rubber material and forms a nitrided layer.
  • magnesium is contained in the aluminum material to be nitrided or the aluminum material constituting the nitriding aid, nitriding is promoted, the nitriding speed is increased, and a thicker nitride layer is preferably formed. This is probably because magnesium acts as an oxygen getter.
  • Aluminum is used only with pure aluminum, but is industrially used as aluminum alloy containing aluminum, copper, zinc, silicon, magnesium and the like. In particular, aluminum-silicon alloys are often used as aluminum alloys for fabrication because of their good structurability (fluidity).
  • the aluminum alloy material is purified at a processing temperature of 500 to 550 by using an aluminum alloy powder containing magnesium having a strong nitriding power as a nitriding aid. When nitriding is performed for 5 to 10 hours using nitrogen gas, a nitride layer of 50 to 300 m is obtained.
  • the obtained nitrided layer is 1Z5 to I / 10 of an aluminum alloy material containing no silicon. Become.
  • An object of the present invention is to provide a nitriding method for an aluminum material capable of obtaining a thick nitrided layer relatively easily even on such an aluminum alloy material containing silicon, and a nitriding aid used for the nitriding.
  • Another object of the present invention is to provide an aluminum material which can be processed at a temperature lower than the conventional nitriding temperature (500 to 550) and can obtain the same nitride layer depth in a shorter processing time. It is an object of the present invention to provide a nitriding treatment method and a nitriding aid used for nitriding.
  • the present inventor has conducted various studies on the reason why aluminum alloy materials containing silicon are less susceptible to nitriding treatment.
  • Silicon has a strong bonding force with magnesium to form a magnesium 'Shirisai preparative (M g 2 S i). For this reason, it combines with magnesium contained in the nitriding aid or the material to be nitrided, and eliminates the "oxygen getter effect" that would have worked if it was elemental magnesium.
  • the melting point of the nitriding aid is about 560 ° C. Therefore, when the nitriding treatment is performed at 500 to 550, the reaction near the start of nitriding is a “solid-solid” reaction.
  • Use nitriding aid which is a melt at nitriding temperature For example, the reaction near the start of nitridation is a “liquid-solid” reaction, which is much more reactive than the “solid-solid” reaction, and a deep nitride layer can be formed even when disturbed by silicon. Be expected.
  • Aluminum alloys and magnesium alloys are examples of metals that act as a nitriding aid for aluminum and form a melt at 550 or less, and materials that form a melt at 400 in accordance with alloys. It is known to exist.
  • Another means to solve the problem is to add a metal having an oxygen gettering effect which is not hindered by silicon in a nitriding aid or to a material to be nitrided, which has an excellent bonding force with oxygen, and
  • the inventors have found that lithium and boron are suitable as elements having a small bonding force with silicon, and have completed the present invention.
  • the method for nitriding an aluminum material and the processing aid for nitriding according to the present invention are characterized by using a nitriding processing aid containing a first metal powder having a melting point lower than the processing temperature and exothermic reaction with nitrogen gas. I do.
  • Another method for nitriding an aluminum material and a processing aid for nitriding according to the present invention comprise the steps of: converting aluminum and a third element which has a strong bonding force with oxygen and which does not substantially form a silicide in coexistence with silicon; It is characterized in that a nitriding treatment aid is used.
  • Another method of nitriding an aluminum material according to the present invention is characterized in that an aluminum alloy containing 0.5% by weight or more of lithium element is used as the aluminum material.
  • the first metal powder that has a melting point lower than the processing temperature and exothermicly reacts with nitrogen gas together assuming that the entire alloy powder is 100% by weight, aluminum is 80 to 30% by weight and magnesium is 20 to 70%.
  • A1-Mg-Cu alloy powder, magnesium 40-20% by weight Mg—Zn alloy powder composed of 0% by weight and 60 to 40% by weight of zinc; Mg—Zn composed of 60% to 40% by weight of zinc and 30% by weight or less of copper and the balance of magnesium — Cu alloy powder can be used.
  • the oxygen content of the first metal powder is preferably 0.1% by weight or less, and a powder having less oxide on the powder surface is preferable.
  • the nitriding aid containing the first metal powder has a melting point higher than the processing temperature and nitrogen gas.
  • An exothermic second metal powder can be blended. Elements constituting the second metal powder include aluminum, copper, silicon and iron.
  • the second metal powder suppresses nitriding of the first metal powder, and is used when it is desired to adjust the nitriding speed.
  • the amount of the second metal powder is preferably not more than the amount of the first metal powder by weight.
  • the nitriding aid used in another method of nitriding an aluminum material of the present invention comprises aluminum and a third element which has a strong bonding force with oxygen and does not substantially form a silicide with silicon.
  • the third element is preferably at least one of lithium and boron.
  • These metals can be used as a simple metal powder or mixed with aluminum powder as an alloy powder with another metal, but it is practical to use as an aluminum alloy powder containing a third element. is there.
  • the content of lithium is preferably 0.5% by weight or more, preferably about 1.0% to 4.0% by weight, and the content of boron is preferably 0.1% or more.
  • the metal powder of the nitriding aid When only aluminum-lithium alloy powder is used as the metal powder of the nitriding aid, it is preferable to use it together with aluminum-magnesium alloy powder because the effect of accelerating nitridation is slightly insufficient. It is desirable that the aluminum-magnesium alloy be composed of 98 to 30% by weight of aluminum and 2 to 70% by weight of magnesium.
  • the metal powder that constitutes the nitriding aid is nitrided prior to the aluminum material to be nitrided, and is in contact with the generation of nitrogen gas and the generation of a large amount of heat of reaction (about 300 kJ Zmo1). It plays a role in causing a nitriding reaction inside the aluminum material to be nitrided.
  • the metal powder constituting the nitriding aid preferably has a large specific surface area in order to increase its reactivity.
  • the particle size of the metal powder is preferably about 3 to 200 m.
  • the powder may be in the form of granules or foils, or a mixture of both, with a surface area of about 0.1 to: I about 5 m 2 , preferably about 0.4 to 10 m 2 Zg. Is particularly preferred from the viewpoint of reactivity.
  • the film-forming agent used in the nitriding aid serves to adhere the metal powder onto the material to be nitrided.
  • the film-forming agent can be composed of a binder made of an organic polymer compound and a solvent, which has tackiness and is thermally decomposed at 400 to 600 to leave no decomposition residue.
  • Polybutene resin, polyvinyl butyral, polyproprolactam, nitrocellulose, ethylcellulose, polyethylene oxide, etc. are recommended as the organic polymer compound forming the binder. It is also desirable to add a small amount of thixotropic agent.
  • Any solvent may be used as long as it dissolves or disperses these organic polymer compounds, and forms a paste in which the metal powder is dispersed.
  • the auxiliary agent for nitriding the aluminum material has a composition of 5 to 70% by weight of a metal powder which substantially promotes nitridation, 1 to 30% by weight of a binder, and a balance of a solvent. No.
  • the nitriding aid does not have to include a binder or a solvent.
  • the aluminum material to be nitrided may be any of powder, plate material, steel material and the like. Also, an aluminum material containing any alloy composition may be used.
  • an aluminum material containing 0.5% or more by weight of lithium element contains oxygen getter in the material to be treated and is easily nitrided. Even an aluminum material containing silicon in addition to 0.5% or more of the lithium element can be easily nitrided by the action of lithium.
  • the aluminum material may be embedded in the metal powder constituting the nitriding aid. Further, the surface of the aluminum material may be coated with a metal powder constituting a nitriding aid. Further, as described above, a paste or a paint-like nitriding aid may be used to cover the surface of the aluminum material. This coating is preferably a coating having a thickness of 5 to 1000 m. As a coating method, a method such as brush coating, debbing, spray coating, and one-roller coating can be applied.
  • the nitriding aid for screen printing, spray coating or injection can be prepared, for example, as follows. First, dissolve the metal material of the specified composition A powder having a predetermined particle size is formed by spraying or pulverization, and if necessary, a second metal powder is added thereto. Stearinic acid or oleic acid is blended and mixed with a ball mill to make the metal powder into a flake shape. Subsequently, the mixture is transferred to a kneading machine, where a thickener, an adhesive, a thixotropic agent, a solvent and the like are added and kneaded to obtain a paint-like nitriding aid. When obtaining metal powder, care must be taken not to oxidize the powder surface.
  • Nitrogen gas is used as an atmosphere gas for nitriding.
  • the nitrogen gas preferably has a low content of moisture or oxygen gas. There is no problem even if an inert gas such as argon gas is mixed. Purity nitrogen gas is measured by dew point minus 5 0 hands below (moisture content 6 X 1 0 - 6 vol% or less) is desirable.
  • the nitriding temperature is preferably high from the viewpoint of reactivity.
  • aluminum must be treated in a substantially solid state.
  • the heat treatment furnace used for this surface nitriding method may be a very common furnace, for example, a tube furnace made of quartz, a bell type atmosphere furnace, or a box type atmosphere furnace.
  • the depth of the nitrided layer obtained by nitriding the aluminum material by the surface nitriding method and the nitriding aid of the present invention is at least 5 m or more and about 200 m.
  • the surface hardness of this nitrided layer is in the range of 250 to 1200 in terms of micro Vickers hardness (mHV).
  • This nitride layer is composed of a mixed phase of aluminum and aluminum nitride.
  • Aluminum nitride mainly has an extremely fine needle-like shape with a diameter of 5 to 50 nm. When the ratio of aluminum nitride is large, a nitride layer having high Vickers hardness is obtained.
  • metal powder when the whole alloy powder is 100% by weight, A1 comprising 80 to 30% by weight of aluminum and 20 to 70% by weight of magnesium. Mg alloy powder, aluminum 80-30% by weight, magnesium 20-70% by weight and copper of 25% by weight or less A1-M-Cu alloy powder, magnesium 40-60% Mg—Zn alloy powder consisting of 40% by weight and 60% to 40% by weight of zinc and 60% to 40% by weight of zinc and 30% to 30% by weight of zinc.
  • the metal powder partially melts at the nitriding temperature and immediately reacts with the nitrogen gas in the atmosphere to form nitrides. .
  • the nascent nitrogen (N *) generated at this time significantly promotes nitriding. Therefore, a nitride layer can be easily formed at a knock pin nitriding temperature of 500 or less.
  • this third element such as lithium or boron that has a strong bonding force with oxygen and does not substantially form a silicide coexisting with silicon is added, this third element is contained in the aluminum material to be treated. It weakens the effect of suppressing the nitridation of silicon contained. For this reason, a thick nitride layer can be formed also on the surface of the aluminum material containing silicon.
  • FIG. 1 is a photomicrograph showing a metallographic structure of a cross section of a surface portion of an aluminum material having a nitrided layer formed thereon in Example 2.
  • FIG. 2 is a photomicrograph showing a metal structure of a cross section of a surface portion of the aluminum material having a nitrided layer formed thereon in Example 3.
  • FIG. 3 is a condylar micrograph showing a metal structure of a cross section of a surface portion of the aluminum material having a nitrided layer of Example 4 formed thereon.
  • FIG. 4 is a photomicrograph showing a metal structure of a cross section of another surface portion of the aluminum material on which the nitride layer of Example 4 was formed.
  • FIG. 5 is a chart showing the intensities of the N, A 1, and S i elements which were line-analyzed by EPM A along the cross section of the aluminum material shown in FIG. 3 of Example 4.
  • An alloy powder having the composition shown in Table 1 was produced by grinding with a micro grinder from a commercially available aluminum alloy plate or a material having a required composition. Then, these alloy powders were screened with 150 mesh. The alloy powder (30.0 parts by weight) obtained by the screen was mixed with ethyl cellulose N-7. (Hercules) (10.0 parts by weight) and a butyldaricol-based solvent (Nippon Emulsifier) (60.0 parts by weight). Five types of nitriding aids were produced.
  • a test piece having a size of 20 mm x 30 mm and a thickness of 10 mm was cut out from a commercially available aluminum alloy plate or a forged material, and the upper surface thereof was polished.
  • the above various nitriding auxiliaries were applied at a thickness of 50 / m to the polished surface of the aluminum material to be nitrided, and then subjected to 1 O Hr treatment at a predetermined nitriding treatment temperature.
  • 99.99% pure nitrogen gas was introduced into the furnace at a flow rate of 1 liter, and the dew point in the furnace was kept at 140 ° C or less.
  • Example 1 As the aluminum material for nitriding treatment, four kinds of A 1 —Si alloys containing 0 wt%, 7 wt%, 12 wt%, and 17 wt% of Si were used. In addition, No. 1 auxiliaries in Table 1 were used as nitriding auxiliaries. The melting point of the metal powder (A1-33Mg-3Cu alloy powder) used for this No. 1 auxiliary is 450, and the above four types of aluminum materials for nitriding should be treated at 500 or less. It is aimed at. Thenitriding was performed at a nitriding temperature of 495.
  • nitride layer was formed on the surface of each of the aluminum materials to be subjected to nitriding treatment in which the amount of styrene was 0% by weight, 7% by weight, 12% by weight, and 17% by weight.
  • Table 2 shows the obtained nitrided layer depth and surface layer hardness of the nitrided layer.
  • Table 2 shows that all of the aluminum materials for nitriding treatment have a nitrided layer of 70 m or more, and the hardness of the high Si material tends to be higher. Therefore, according to the present embodiment, when the alloy powder of aluminum magnesium monocopper having the above composition is used as the main metal powder of the nitriding aid, the Si content varies within the range of 0 to 17% by weight. It was found that nitrided layers were formed on various A 1 -Si alloys at a nitriding temperature of 500 ° C or less.
  • the aluminum material for nitriding treatment three kinds of alloys of JIS110, 5052 and 606] were used among various non-heat-treated aluminum alloy materials.
  • the No. 2 assistant in Table 1 was used as a nitriding aid.
  • the melting point of the gold powder (A1-5Zn-lCu alloy powder) used for the N0.2 auxiliary agent was 350, and the above-mentioned three kinds of aluminum materials for nitriding treatment were used. It is intended to be processed at low temperature.
  • nitriding was performed at a nitriding temperature of 460 ° C. By this nitriding, a nitride layer was formed on the surface of each of the JIS 110, 5052, and 6061 materials.
  • Table 2 shows the obtained nitride layer depth and the surface layer hardness of the nitride layer.
  • the pure aluminum material, 110 had a shallow nitride layer thickness of 20 to 50 m, and the Katasa had HV 144 to 330. Also, the cross section of the 5052 aluminum material was cut, and the obtained nitrided layer was observed with a metallographic microscope.
  • Fig. 1 shows a cross-sectional micrograph. Approximately 50 m of nitriding aid layer, followed by 100-120 m It was found that there was a smooth nitrided layer (Katasa; Hvl 50-322), which was connected to the inner kumio with a thin border.
  • the non-heat treated aluminum alloy material was nitrided at a nitriding temperature of 500 or less by including the A 1 -53 Zn-1 Cu alloy powder having the above composition in the nitriding aid. It was found that a layer was formed.
  • nitriding treatment As an aluminum material for nitriding treatment, a die-cast alloy JIS AD C14 (containing 17% by weight Si, 4.5% by weight Cu, and 0.5% by weight Mg) was used. The No. 3 auxiliary in Table 1 was used as the nitriding aid. This N0.3 auxiliary uses A1 alloy powder containing 2.5 wt% Li, 1.3 wt% Cu, and 1 wt% Mg, aiming at nitriding of high Si A1 material. And As the nitriding temperature, 495 ° C, which is recommended as the solution treatment temperature of JIS AD C14, was used. This nitridation formed a nitrided layer on the entire upper surface of the aluminum material. The obtained nitrided layer was cut into a cross section of an aluminum material and observed with a metallographic microscope. Figure 2 shows a photograph of the cross-sectional micrograph.
  • the nitrided layer is observed as a fine cloud-like slightly dark part (observed as a brownish color in the actual product) above the white and gray mottled parts (aluminum-silicon tissue) inside.
  • the darker part of the outermost layer is the nitriding hardened part of the nitriding aid of about 60 / m (the hardness is HV420).
  • the depth of the nitride layer is 100 to 1
  • the hardness was 30 m, and the hardness was HV 542 to 574. Note that the primary silicon portion in the nitrided layer is not nitrided and remains in a gray island shape in the figure.
  • An aluminum-lithium-silicon alloy (Li; 2.5%, Si; 12%) was used as the aluminum material for nitriding treatment.
  • the No. 5 auxiliary (A 1-50% by weight Mg material) shown in Table 1 was used as the nitriding aid.
  • the nitriding treatment temperature the recommended solution treatment temperature of aluminum-lithium-silicon alloy JISAC8A alloy was used, that is, 52 ° C.
  • This nitridation formed a nitrided layer on the entire upper surface of the aluminum material.
  • the obtained nitrided layer was cut in a cross section of an aluminum material and observed with a metallographic microscope.
  • Figures 3 and 4 show micrographs of the nitrided portion (two locations) of the aluminum monolithium-silicon alloy.
  • line analysis of each element of N, A 1 and S i was performed by EPMA (elect port probe microanalyzer) analysis of the cross section shown in FIG. Figure 5 shows the element strength chart.
  • nitrided layer In the cross section of FIG. 3, a thin nitriding aid layer is seen, under which a nitride layer is formed. The thickness of this nitrided layer is between 400 and 500 m. In the cross section of FIG. 4, a thick nitriding treatment auxiliary layer is seen, and below this, a nitride layer with a thickness of 400 to 500 m is seen.
  • the nitrided layers shown in FIGS. 3 and 4 cannot be much thicker than usual.
  • the hardness of the nitrided layer of aluminum-lithium-silicon alloy is
  • Fig. 5 shows the measured elemental strength (relative element concentration) of nitrogen, aluminum, and silicon from the nitrided surface to the internal aluminum base material.
  • Nitrogen is high in the nitriding aid layer (paste part) and in the nitride layer, and the strength rapidly decreases after passing through the nitride layer.
  • the nitrogen concentration of the nitride layer near the surface is 15 to 16%, which is higher than the nitrogen concentration of the nitride layer formed on the lithium-free aluminum-silicon alloy material of 12 to 14%. In the presence of primary crystal silicon, the nitrogen intensity decreases extremely. From this, it is estimated that silicon is not nitrided.
  • the oxygen gettering effect of lithium is used to load the aluminum foil lithium-silicon alloy ribbon-shaped foil material used in this embodiment into a furnace for nitriding treatment, whereby oxygen in the furnace is reduced. It can also be used as a cleaning agent.
  • JIS 5052 was used as the aluminum material for nitriding treatment.
  • No. 4 assistants in Table 1 were used as nitriding aids.
  • this nitriding aid use a mixed alloy powder in which A 1 -2.5 wt% L i -12 wt% Si powder and A 1 -2.5 double fi% Mg alloy powder are mixed in equal amounts. It aims to reduce the amount of oxygen in the nitrided layer when applied to various non-heat-treated aluminum alloy materials by utilizing the oxygen gettering effect of lithium. Then, a nitriding treatment was performed at a nitriding temperature of 520 ° C.
  • a nitrided layer having a thickness of 150 to 200 im and a surface layer hardness of Hv 350 to 500 was formed on the surface of the aluminum material to be nitrided.
  • the hardness of the surface layer is almost the same as that of the treated material, a smooth nitrided layer having a hardness of Hv 43 to 32 2 was formed toward the internal structure.
  • the surface nitriding method or nitriding aid of the aluminum material of the present invention can be obtained at a lower treatment temperature as compared with the case where a conventional nitriding aid is used. Therefore, heat treatment distortion of the aluminum material for nitriding treatment is reduced. Also, a thick and high hardness surface nitrided layer can be formed on an aluminum alloy material having a high silicon content. For this reason, the surface nitriding method or nitriding aid for aluminum materials of the present invention can be used for the sliding parts of automobiles requiring abrasion resistance, for example, the surfaces of cylinder sliding parts, engines, ring grooves of pistons, etc. Ideal for processing.
  • a portion not coated with a nitriding aid is not nitrided.
  • the nitriding treatment can be limited to the necessary parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

明細書
アルミニウム材の表面窒化処理方法および窒化処理用助剤 技術分野
本発明は、 アルミニゥム材の表面部に窒化層を形成する窒化処理方法および窒 化に使用される窒化処理用助剤に関する。
背景技術
アルミニウム材は、 周知のように鋼等に比べて硬さが低く、 網などと摺動した 場合、 非常に焼付き易く、 摩耗しやすい材料である。 このためアルミニウム材に は、 メツキ、 溶射、 陽極酸化を利用した各種表面処理が検討、 使用されている。 これらはアルミニウム材の表面にアルミ酸化物層を形成するものが殆どで、 窒化 処理の試みはあるが、 表面に形成される窒化層が薄く表面処理アルミニウム基材 として満足すべきものは得られていない。 その理由として、 アルミニウム材は非 常に活性で酸化しやすい金属であり、 表面には常に若干の酸化層があるためとさ れていた。
本発明者は特開平 7 - 1 6 6 3 2 1号公報で、 アルミニゥム材の少なく とも一 部表面にアルミニゥム粉末を含む窒化処理用助剤を接触させ、 その状態で該アル ミニゥ厶材の融点以下の処理温度で実質的に窒素ガスからなる雰囲気ガスにより アルミニウム材の表面を窒化する方法を提案している。 この方法では、 窒化処理 用助剤として使用されるアルミニウム粉末が所定温度で窒素ガスと接触すると、 アルミニウム粉末自体が窒化され、 その際、 発生期の窒素 (N * ) が発生し、 ァ ルミ二ゥム材内部に拡散し、 窒化層を形成する。
被窒化用アルミニウム材または窒化処理用助剤を構成するアルミニゥム材にマ グネシゥムを含有すると窒化が促進され窒化速度が速くなり、 より厚い窒化層が 形成され、 望ましい。 その理由はマグネシウムが酸素ゲッターとして作用するた めと考えられる。
アルミ二ゥムは純アルミニウムのみでも使用されるが、 工業的にはアルミニゥ ムに銅、 亜鉛、 シリコン、 マグネシウム等を含むアルミニウム合金として使用さ れる。 特に、 铸造して使用するアルミニウム合金としては、 その铸造性 (湯流れ 性) の良さで、 アルミニウム一シリコン合金が多用される。 一方、 前記のアルミニウム材の表面窒化処理法で、 窒化処理用助剤として窒化 力の強いマグネシウムを含むアルミニウム合金粉末を使用してアルミニウム合金 材を、 5 0 0〜 5 5 0 の処理温度で純窒素ガスを使用し、 5〜 1 0時間の窒化 処理を施した場合では、 5 0〜 3 0 0 mの窒化層が得られる。 しかしながら、 被窒化アルミニウム合金材にシリコンを含む場合には同一の窒化条件で窒化処理 を施しても、 得られる窒化層はシリコンを含まないアルミニゥ厶合金材の 1 Z 5 〜: I / 1 0となる。
本発明は、 かかるシリコンを含むアルミニゥム合金材にも比較的容易に厚い窒 化層が得られるアルミニウム材の窒化処理方法および窒化に使用される窒化処理 用助剤を提供することを目的とする。
本発明のもう一つの目的は、 従来の窒化処理温度 ( 5 0 0〜 5 5 0 ) より低 い温度で処理でき、 より少ない処理時間で同一の窒化層深さが得られるアルミ二 ゥム材の窒化処理方法および窒化に使用される窒化処理用助剤を提供することで ある。
発明の開示
本発明者はシリコンを含むアルミニゥム合金材が窒化処理を受けにくい原因に つき種々検討した結果、 次の 2点のためと考えた。
1 ) 窒化処理後のシリコンを含むアルミニウム材料の窒化層を観察すると、 アル ミニゥ厶部分は窒化されているが、 シリコンは窒化されず、 シリコン単体で存在 する。 このため、 シリコンは表面から侵入してく る窒素原子の通路を狭め、 窒化 層深さの減少をもたらす。
2 ) シリコンはマグネシウムとの結合力が強く、 マグネシウム ' シリサイ ト (M g 2 S i ) を形成する。 このため、 窒化処理用助剤または被窒化材に含まれるマ グネシゥ厶と結合し、 単体マグネシウムであれば、 作用したであろう " 酸素ゲッ ター効果" が消去される。
従来の窒化処理用助剤として、 2 0 %のマグネシウムを含むアルミニウム合金 粉末を使用した場合でも、 この窒化処理用助剤の融点は約 5 6 0 °C程度である。 このため窒化処理を 5 0 0〜 5 5 0てで実施した場合では窒化開始近傍の反応は " 固相一固相" 反応である。 窒化処理温度で融体である窒化処理用助剤を使用し たとすれば窒化開始近傍の反応は" 液相一固相" 反応となり、 " 固相一固相" 反 応と比較して格段に反応性が向上し、 シリコンに妨害されても深い窒化層が期待 される。
アルミニウムに対して窒化処理用助剤として作用し、 かつ 5 5 0 以下で融体 となる金属としては、 アルミニウム合金やマグネシウム合金が挙げられ、 合金に よれば 4 0 0 で融体となる材料が存在することが知られている。
今一つの課題を解決するための手段はシリコンに妨害されない酸素ゲッタ一の 効果をもつ金属を窒化処理助剤中、 または被窒化処理材料に添加する方法で、 酸 素との結合力に優れ、 かつシリコンとの結合力の小さい元素としてリチウム、 ボ 口ンが適していることを見いだし本発明を完成させたものである。
本発明のアルミニゥム材の窒化処理方法および窒化用処理助剤は、 処理温度よ り低い融点をもっととともに窒素ガスと発熱反応する第一金属粉末を含む窒化処 理用助剤を用いることを特徴とする。
本発明のもう一つのアルミニゥム材の窒化処理方法および窒化用処理助剤は、 アルミニウムと、 酸素との結合力が強くかつシリコンと共存して実質的にシリサ ィ ドを形成しない第三元素とを含む窒化処理用助剂を用いることを特徴とする。 本発明のもう一つのアルミ二ゥム材の窒化処理方法は、 アルミニウム材として 0 . 5重量%以上のリチウム元素を含むアルミニゥ厶合金を使用することを特徴 とする。
処理温度より低い融点をもっと共に窒素ガスと発熱反応する第一金属粉末とし ては、 合金粉末全体を 1 0 0重量%としたとき、 アルミニウム 8 0〜 3 0重量% とマグネシウム 2 0〜 7 0重量%とよりなる A 1 - M g合金粉末、 マグネシゥム 2 0〜 7 0重量%と 2 5重量%以下の銅と残部アルミニウムよりなる A 1 - M g 一 C u合金粉末、 マグネシウム 4 0〜 6 0重量%と亜鉛 6 0〜 4 0重量%とより なる M g— Z n合金粉末、 亜鉛 6 0〜 4 0重量%と 3 0重量%以下の銅と残部マ グネシゥムよりなる M g— Z n— C u合金粉末等を採用できる。 なお、 第一金属 粉末の酸素量は 0 . 1重量%以下が好ましく、 粉末表面に酸化物が少ない粉末が 好ましい。
第一金属粉末を含む窒化処理用助剤に、 処理温度よりも融点が高く窒素ガスと 発熱反応する第二金属粉末を配合することができる。 この第二金属粉末を構成す る元素としては、 アルミニウム、 銅、 シリコンまたは鉄をあげることができる。 なお、 第二金属粉末は第一金属粉末の窒化を抑制するもので、 窒化速度を調節し たい場合に使用する。 そして、 第二金属粉末の配合量は、 重量で第一金属粉末の 配合量以下とすることが好ましい。
本発明のもう一つのアルミ二ゥム材の窒化処理方法に使用する窒化処理用助剤 は、 アルミニウムと、 酸素との結合力が強くかつシリコンと実質的にシリサイ ド を形成しない第三元素とを含む。 この第三元素としては、 リチウムおよびボロン の中の少なく とも一種が好ましい。 これらの金属は金属単体粉末として、 あるい は他の金属との合金粉末としてアルミニゥム粉末に混合して使用することもでき るが、 第三元素を含むアルミニゥム合金粉末として使用するのが実用的である。 配合量としては、 リチウムでは 0. 5重量%以上、 好ましくは 1. 0重量%から 4. 0重量%程度が好ましく、 ボロンでは 0. 1 %以上の配合が推奨される。 なお、 窒化処理用助剤の金属粉末としてアルミ二ゥム-リチウム合金粉末のみ を使用する場合は窒化促進効果が若干不足するのでアルミニゥ厶-マグネシウム 合金粉末と併用することが望ましい。 アルミニゥム—マグネシウム合金はアルミ ニゥ厶 9 8〜 3 0重量%とマグネシゥム 2〜 70 &%とよりなるものが望まし い。
アルミニウムと、 酸素との結合力が強くかつシリコンと実質的にシリサイ ドを 形成しない第三元素の他に、 添加元素としては窒素ガスと発熱反応する元素" 丁 i , Z r , T a , B, C a , S i , B a , C r , F e , V、 等" を加えても構わ ない。
窒化処理用助剤を構成する金属粉末は被窒化用アルミニウム材に先んじて窒化 され、 発生期の窒素ガスの発生と多大な反応熱 (約 300 k J Zmo 1 ) の発生 により、 接触している被窒化用アルミニゥム材内部に窒化反応を引き起こす役割 を担う。 このため、 窒化処理用助剤を構成する金属粉末はその反応性を高めるた め、 比表面積が大きいものがよい。 具体的には金属粉末の粒度は、 3〜 2 00 m程度が好ましい。 粉末は粒状でも箔状でも、 また両者の混合物でもよく、 その 表面積が 0. 1〜: I 5m2 程度、 好ましくは 0. 4〜 1 0m2 Zg程度のも のが反応性の点から特に好ましい。
窒化処理用助剤に使用される皮膜形成剤は金属粉末を被窒化材上に接着する役 目を担う。 この皮膜形成剤として、 粘着性を有し 4 0 0〜6 0 0 で熱分解して 分解残渣を残さな 、有機高分子化合物からなる粘結剤と溶剤とで構成することが できる。 粘結剤を形成する有機高分子化合物として、 ポリブテン樹脂、 ポリ ビニ 一ルブチラール、 ポリ力プロラクタム、 ニトロセルロース、 ェチルセルロース、 ポリエチレンオキサイ ド等が推奨される。 また、 若干のチクソ剤の添加が望まし い。
溶剤としては、 これら有機高分子化合物を溶解もしくは分散するものであれば 良く、 金属粉末が分散したペース トを形成する。
また、 アルミニウム材の窒化処理用助剤は、 実質的に窒化を促進する金属粉末 5〜7 0重量%、 粘結剤 1〜3 0重量%、 残部が溶剤からなる組成とするのが好 ましい。
なお、 窒化処理用助剤には、 粘結剤や溶剤が含まれていなくても良い。
被窒化用アルミニウム材としては、 粉体、 板材、 铸造材など、 いずれでも良い。 また、 いかなる合金組成を含むアルミ二ゥム材でも良い。
特に、 重量%で 0 . 5 %以上のリチウム元素を含むアルミニウム材は被処理材 中に酸素ゲッターを含むことになり、 容易に窒化される。 0 . 5 %以上のリチウ 厶元素以外にシリコンを含むアルミニゥム材であっても、 リチウムの作用で容 に窒化できる。
アルミニウム材の表面と窒化処理用助剤の接触方法は、 窒化処理用助剤を構成 する金属粉末中にアルミニウム材を埋設してもよい。 また、 アルミニウム材の表 面に窒化処理用助剤を構成する金属粉末を被覆してもよい。 さらに上記したよう にペーストまたは塗料状とした窒化処理用助剤を使用しこれをアルミニウム材の 表面に被覆してもよい。 この塗布は 5〜 1 0 0 0 mの厚さの塗膜とするのが好 ましい。 塗布方法は刷毛塗り、 デッ ビング、 スプレーコー ト、 ローラ一塗りなど の方法が適用できる。
スクリーン印刷用、 スプレー塗装用あるいはィンジェクション用の窒化処理用 助剤は、 例えば、 次のようにして調製できる。 まず、 所定組成の金属材料を溶解 噴霧あるいは粉砕等で所定粒度の粉末とし、 必要に応じて第二金属粉末を加え、 それにステアリ ン酸あるいはォレイン酸等を配合しボールミルで混合し金属粉末 をフレーク状とする。 続いて混練機に移し、 増粘剤、 接着剤、 チクソ剤、 溶剤等 を加えて混練して塗料状の窒化処理用助剤とするものである。 なお、 金属粉末を 得る場合に粉末表面が酸化されないように注意する必要がある。
窒化用の雰囲気ガスとしては窒素ガスが使用される。 この窒素ガスは水分とか 酸素ガスの含有量の少ないものがよい。 アルゴンガス等の不活性ガスは混入して いても問題にならない。 窒素ガスの純度は露点で測定し、 マイナス 5 0て以下 (水分量 6 X 1 0 — 6体積%以下) が望ましい。
窒化処理温度は、 反応性の点からは温度が高いことが望ましい。 しかしアルミ 二ゥム材は実質的に固相状態で処理する必要がある。 また、 あまり深い窒化層の 形成を望まない場合とか、 熱処理歪みを少なく したい場合は、 低い温度でおこな うのが好ましい。 通常は 4 0 0〜 6 0 0て程度の温度で 2〜 2 0時間の処理が標 準である。
この表面窒化処理方法に使用する熱処理炉は極くありふれた炉、 例えば石英製 管状炉、 ベル型雰囲気炉、 箱型雰囲気炉でよい。
本発明のアルミニゥム材の表面窒化処理方法および窒化処理用助剂で窒化され て得られる窒化層の深さは、 少なく とも 5 m以上で、 ¾大 2 0 0 0 m 度で ある。 また、 この窒化層の表面硬さはマイクロビィカース硬度 ( m H V ) で 2 5 0〜 1 2 0 0の範囲にある。 そしてこの窒化層はアルミニゥ厶と窒化アルミニゥ ムとの混合相で構成されている。 窒化アルミニゥ厶は主として 5〜 5 0 n m径と 極めて微細径の針状の形状をなす。 この窒化アルミニゥムの割合が多いと高いビ ッカース硬度をもつ窒化層となる。
本発明の窒化処理方法の中で金属粉末として、 合金粉末全体を 1 0 0重量%と したとき、 アルミニウム 8 0〜 3 0重量%とマグネシウム 2 0〜 7 0重量%とよ りなる A 1 — M g合金粉末、 アルミニウム 8 0〜 3 0重量%とマグネシウム 2 0 〜 7 0重量%と 2 5重量%以下の銅とよりなる A 1 - M - C u合金粉末、 マグ ネシゥム 4 0〜 6 0重量%と亜鉛 6 0〜 4 0重量%とよりなる M g — Z n合金粉 末、 マグネシウム 4 0〜 6 0重量%と亜鉛 6 0〜 4 0重量%と 3 0重量%以下の 銅とよりなる M g — Z n— C u合金粉末の少なく とも一種を用いる場合、 金属粉 末は窒化処理温度で一部融解し、 ただちに雰囲気中の窒素ガスと反応し、 窒化物 を形成する。 この時発生する発生期窒素 (N * ) が窒化を著しく促進する。 この ため 5 0 0 以下ノ ックピン窒化処理温度で窒化層を容易に形成することができ る。
また、 リチウム、 ボロン等の酸素との結合力が強くかつシリコンと共存して実 質的にシリサイ ドを形成しない第三元素を配合した場合には、 この第三元素が被 処理アルミニゥム材中に含まれるシリコンの窒化抑制作用を弱める。 このためシ リコンを含むアルミニゥム材の表面にも厚い窒化層を形成できる。
また、 被処理材としてのアルミニウム材に、 0 . 5重量%以上のリチウム元素 を配合することにより窒化処理の容易なアルミニウム材とすることができる。
図面の簡単な説明
図 1は、 実施例 2の窒化層を形成したアルミニゥム材の表面部分の断面の金厲 組織を示す顕微鏡写真図である。
図 2は、 実施例 3の窒化層を形成したアルミニゥム材の表面部分の断面の金属 組織を示す顕微鏡写真図である。
図 3は、 実施例 4の窒化層を形成したアルミニゥム材の表面部分の断面の金属 組織を示す顆微铙写真図である。
図 4は、 実施例 4の窒化層を形成したアルミニゥ厶材の他の表面部分の断面の 金属組織を示す顕微鏡写真図である。
図 5は、 実施例 4の図 3に示すアルミニゥム材の表面部分の断面にそって E P M Aで線分析された N、 A 1 および S i の各元素の強度を示すチヤ一 卜である。
発明を実施するための最良の形態
以下実施例により具体的に説明する。
( 1 ) 窒化処理用助剤の調製
表 1に示す組成の合金粉末を、 市販のアルミニウム合金板、 または必要組成の 铸造材からマイクログラインダ一により研削することによりそれぞれ製造した。 ついで、 これらの合金粉末を 1 5 0メ ッシュでスクリーンした。 スクリーンによ つて得られた合金粉末 ( 3 0 . 0重量部) を、 ェチルセルロース N— 7 (Hercules製) ( 1 0. 0重量部) とブチルダリコール系溶剤 (日本乳化剤製) (60. 0重量部) とで配合して表 1に示す N o . :!〜 N o. 5の 5種類の窒化 処理用助剤を製作した。
【表 1】
Figure imgf000010_0001
( 2 ) 窒化処理
被窒化処理用アルミニゥム材としては市販のアルミニゥム合金板、 または铸造 素材から、 サイズ 20mmx 30 mm、 厚さ ; 1 0 mmの試験片を切り出し、 上 面を研磨加工したものを使用した。
窒化処理はこの被窒化処理用アルミ二ゥム材の研磨面に、 上記各種窒化処理用 助剤を厚さ 50 / mで塗布後、 所定の窒化処理温度で各 1 O H r処理した。 また 窒化処理条件としては 9 9. 99 %の純窒素ガスを 1 リ ッ トルノ分の流量で炉内 に導入し、 炉内露点を一 4 0°C以下に保った。
(実施例 1 ) 被窒化処理用アルミニゥム材としては、 A 1 — S i合金のうち、 含まれる S i 量が 0重量%、 7重量%、 1 2重量%、 1 7重量%の 4種類の合金を用いた。 ま た、 窒化処理用助剤としては表 1の No. 1助剤を用いた。 この N o. 1助剤に 使用した金属粉末 (A 1 - 3 3Mg - 3 C u合金粉末) の融点は 450てであり、 前記 4種類の被窒化処理用アルミニウム材を 500 以下で処理することを狙い としたものである。 そして、 495 の窒化処理温度によって窒化処理を行った。 この窒化により、 3 !量が0重量%、 7重量%、 1 2重量%、 1 7重量%の被 窒化処理用アルミニウム材において、 それぞれ表面に窒化層が形成された。 得ら れた窒化層深さおよび窒化層の表面層硬さを表 2に示す。
表 2により、 いずれの被窒化処理用アルミニゥム材においても 70 m以上の 窒化層を有し、 硬さは高 S i材の方が高め傾向にあることがわかった。 従って、 本実施例により上記組成のアルミニゥムーマグネシゥム一銅の合金粉末を窒化処 理用助剤の主要金属粉末とすることによって、 S i量が 0〜 1 7重量%の範囲で 異なる各種 A 1 - S i合金を 500 °C以下の窒化処理温度で窒化層が形成される ことがわかった。
(実施例 2 )
被窒化処理用アルミ二ゥム材としては、 各種非熱処理型アルミニゥム合金材の うち、 J I S 1 1 0 0材、 5052材、 6 0 6 】材の 3 類の合金を用いた。 また、 窒化処理用助剤としては表 1の N o . 2助剂を用いた。 この N 0. 2助剤 に使用した金厲粉末 (A 1 - 5 3 Z n— l C u合金粉末) の融点は 3 5 0 てあ り、 前記 3種類の被窒化処理用アルミニゥム材をより低温で処理することを狙い としたものである。 そして、 460 °Cの窒化処理温度によって窒化処理を行った。 この窒化により、 J I S 1 1 0 0材、 50 5 2材、 6 06 1材のそれぞれ表 面に窒化層が形成された。 得られた窒化層深さおよび窒化層の表面層硬さを表 2 に示す。
純アルミニゥム材である 1 1 00材では窒化層厚さが 2 0〜 5 0 mと浅く、 カタサは H V 1 43〜 3 30であった。 また、 5 05 2材のアルミニウム材の断 面を切断し、 得られた窒化層を金属顕微鏡により観察した。 その断面顕微鏡写真 を図 1に示す。 約 50 mの窒化処理用助剤層に続いて、 1 00〜 1 20 mの 滑らかな窒化層 (カタサ; H v l 5 0〜3 22) があり、 細い境界を挟んで内部 組雄につながつていることがわかった。 従って、 本実施例により上記組成の A 1 一 53 Z n— 1 C u合金粉末を窒化処理用助剤に含ませることによって、 非熱処 理型アルミニウム合金材を 500 以下の窒化処理温度で窒化層が形成されるこ とがわかった。
【表 2】 実施例 窒化処理条 被窒化材 窒化深さ 窒化層硬さ
件 (H V )
4 95て A 1 - 0 S i 8 0〜: L 2 0 29 2〜 360 X 1 0 H
A 1 - 7 S i 0〜 80 30 0〜 4 2 1
A 】 一 1 2 S i 1 2 0〜: 1 5 0 592〜 6 9 1
A 1 - 1 7 S i 1 3 0〜 2 1 0 60 6〜 6 65
4 6 0て J I S 1 1 0 0 2 0〜 50 1 4 3〜 3 3 0 x 1 0 H J I S 5 0 5 2 1 0 0〜 1 2 0 1 5 0〜 3 2 2
J I S 6 0 6 1 5 0〜 80 1 7 2〜 3 6 6
(実施例 3)
被窒化処理用のアルミニウム材としてはダイキャスト合金 J I S AD C 1 4 ( 1 7重量% S i、 4. 5重量%C u、 0. 5重量%Mg含有) を用いた。 また、 窒化処理用助剤としては表 1の N o. 3助剤を用いた。 この N 0 . 3助剤は 2. 5重量%L i、 1. 3重量%C u、 1重量%Mg含有の A 1合金粉末を使用して おり高 S iの A 1材の窒化を狙いとしている。 窒化処理温度としては J I S AD C 1 4の溶体化処理温度として推奨されている 4 95 °Cを採用した。 この窒化によりアルミニウム材の全上面に窒化層が形成された。 得られた窒化 層をアルミニウム材の断面を切断し、 金属顕微鏡により観察した。 その断面顕微 鍊写真を図 2に示す。
図 2において、 内部の白色および灰色まだら部分 (アルミニウムーシリコン組 織) の上に細かい雲状の少し暗い部分 (実物では茶褐色として観察される。 ) と して窒化層が観察される。 最表層部のより黒い部分は約 6 0 / mの窒化処理用助 剤の窒化硬化部分 (その硬さは H V 4 2 0 ) である。 窒化層の深さは 1 0 0 〜 1
3 0 mであり、 その硬さは H V 5 4 2 〜 5 7 4であった。 なお、 窒化層内の初 晶シリコン部は窒化されず、 図中灰色の島状のままである。
(実施例 4 )
被窒化処理用アルミニゥム材としてはアルミニウム—リチウムーシリコン合金 ( L i ; 2 . 5 % , S i ; 1 2 %含有) を用いた。 また、 窒化処理用助剤として は表 1の N o . 5助剤 ( A 1 — 5 0重量%M g材) を使用した。 そして、 窒化処 理温度としてアルミニウム一リチウムーシリコン合金 J I S A C 8 A合金の溶 体化処理温度として推奨されている 5 2 0 °Cを採用した。
この窒化によりアルミニゥ厶材の全上面に窒化層が形成された。 得られた窒化 層をアルミニウム材の断面を切断し、 金属顕微鏡により観察した。 アルミニウム 一リチウム—シリコン合金の窒化部分 ( 2ケ所) の顕微鏡写真を図 3および図 4 に示す。 また、 図 3に示す断面の E P M A (エレク ト口 プローブ マイクロア ナライザ一) 分析による N、 A 1 および S i の各元素の線分析を実施した。 元素 強度のチヤ一トを図 5に示す。
図 3の断面には、 薄い窒化処理用助剤層が見られ、 この下に窒化層が形成され ている。 この窒化層の厚さは 4 0 0 〜 5 0 0 mである。 図 4の断面には、 厚い 窒化処理用助剤層が見られ、 この下に厚さ 4 0 0 〜 5 0 0 mの窒化層がみられ る。 これら図 3および図 4に示す窒化層は、 いずれも通常よりかなり厚いもので めな。
また、 アルミニウム一リチウムーシリコン合金の窒化層硬さは H V 6 4 8 〜 7
4 4であり、 リチウムを含まないアルミニゥム—シリコン合金材に形成される窒 1層および実施例 1で形成された窒化層の硬さ (H v 5 4 2 〜 5 7 4 ) よりも硬 い。 このことは次に記述する図 5の元素強度のチヤ一卜で示される窒素濃度が相 対的に高いことからも説明される。
なお、 図 5は、 窒化表面から内部のアルミニウム母材に向かって、 窒素、 アル ミニゥム、 シリコンの元素強度 (相対元素濃度) を測定したものである。 窒素は 窒化処理用助剤層 (ペースト部) 、 窒化層で高く、 窒化層を越すと急激に強さが 滅少する。 表面付近の窒化層の窒素濃度は 1 5〜 1 6%であり、 リチウムを含ま ないアルミニウムーシリコン合金材に形成された窒化層の窒素濃度 1 2〜 1 4 % より高い。 初晶シリコンの存在部では窒素強さが極端に減少する。 この事より、 シリコンは窒化されていないと推定される。
以上のように、 被窒化用アルミニゥム材にリチウムを含む合金を使用すること により、 同一窒化処理条件でも、 強くかつ深い窒化層が得られる。
なお、 リチウムの酸素ゲッター作用を利用して、 この実施例で使用したアルミ 二ゥムーリチウムーシリコン合金のリボン状箔材を窒化処理用の炉中に装入する ことにより、 炉内の酸素ク リ一二ング剤として使用することもできる。
(実施例 5 )
被窒化処理用アルミニウム材としては J I S 5052材を用いた。 また、 窒 化処理用助剤としては表 1の N o. 4助剤を用いた。 この窒化処理用助剤は A 1 - 2. 5重量% L i - 1 2重量% S i粉末と A 1 - 2. 5重 fi%Mg合金粉末と をそれぞれ等量混合した混合合金粉末を使用したもので、 リチウムの酸素ゲッ夕 一作用を利用し各種非熱処理型アルミニゥム合金材に適用した場合の窒化層内の 酸素量の低減を狙いとするものである。 そして、 5 20 °Cの窒化処理温度によつ て、 窒化処理を行った。
この窒化により、 厚さが 1 50〜 2 00 im, 表層部の硬さが H v 3 5 0〜 5 00の窒化層が被窒化処理用アルミニウム材の表面に形成された。 表層部の硬さ は通常処理材とほぼ同じであるが、 内部組織に向かって H v l 4 3〜3 2 2の硬 さを有する滑らかな窒化層が形成された。 産業上の利用可能性
本発明のアルミニウム材の表面窒化処理方法または窒化処理用助剤を採用する と、 従来の窒化処理用助剤を使用した場合に比較して低い処理温度で厚くかつ硬 ぃ窒化層が得られる。 このため被窒化処理用アルミニゥム材の熱処理歪みが軽減 される。 また、 シリコンの含有量の多いアルミニウム合金材にも厚くかつ硬さの 高い表面窒化層を形成することができる。 このため、 本発明のアルミニウム材の 表面窒化処理方法または窒化処理用助剤は、 耐摩耗性が要求される自動車の摺動 部分、 例えばシリンダー摺動部、 エンジン、 ビストンのリ ング溝などの表面処理 として最適である。
また、 本発明のアルミニウム材の表面窒化処理方法では、 窒化処理用助剤を塗 布しない部位は窒化されない。 この事を利用して、 必要な部分に限定し窒化処理 することができる。

Claims

請求の範囲
1 . アルミニウム材の少なくとも一部表面に窒化処理用助剤を接触させ、 その状 態で該アルミニウム材料の融点以下の処理温度で実質的に窒素ガスからなる雰囲 気ガスにより該アルミニウム材の表面を窒化させる窒化処理方法において、 前記窒化処理用助剤は、 該処理温度より低い融点をもっととともに窒素ガスと 発熱反応する第一金属粉末を含むことを特徴とするアルミニウム材の窒化処理方 法。
2 . 前記第一金属粉末は、 合金粉末全体を 1 0 0重量%としたとき、 アルミニゥ ム 8 0〜 3 0重量%とマグネシウム 2 0〜 7 0重量%とよりなる A 1 一 M g合金 粉末、 マグネシウム 2 0〜 7 0重量%と 2 5重量%以下の銅と残部がアルミニゥ ムよりなる A 】 一 M g— C u合金粉末、 マグネシウム 4 0〜 6 0重量%と亜鉛 6 0〜 4 0重量%とよりなる M g— Z n合金粉末、 亜鉛 6 0〜 4 0重量%と 3 0重 量%以下の銅と残部がマグネシウムよりなる M g— Z n— C u合金粉末の少なく とも一種である請求項 1記載のアルミ二ゥム材の窒化処理方法。
3 . 前記窒化処理用助剤は前記第一金属粉末とともに前記処理温度よりも融点が 高く窒素ガスと発熱反応する第二金属粉末を含む請求項 1記載のアルミニゥム材 の窒化処理方法。
4 . 前記第二金厲粉末を構成する元素はアルミニウム、 銅、 シリ コンおよび鉄の 少なく とも一種であり、 該第二金属粉末の配合量は重量で前記第一粉末の配合量 以下である請求項 1記載のアルミニゥ厶材の窒化処理方法。
5 . アルミニウム材の少なく とも一部表面に窒化処理用助剤を接触させ、 その状 態で該アルミニウム材料の融点以下の処理温度で実質的に窒素ガスからなる雰囲 気ガスにより該アルミニウム材の表面を窒化させる窒化処理方法において、 前記窒化処理用助剤は、 アルミニウムと、 酸素との結合力が強くかつシリ コン と実質的にシリサイ ドを形成しない第三元素とを含むことを特徴とするアルミ二 ゥム材の窒化処理方法。
6 . 前記第三元素はリチウムおよびポロンの中の少なく とも一種である請求項 5 記載のアルミニゥム材の窒化処理方法。
7 . 前記アルミニゥムと前記第三元素は合金を形成している請求項 5記載のアル ミニゥム材の窒化処理方法。
8 . アルミニウム材の少なく とも一部表面に窒化処理用助剤を接触させ、 その状 態で該アルミニウム材料の融点以下の処理温度で実質的に窒素ガスからなる雰囲 気ガスにより該アルミニウム材の表面を窒化させる窒化処理方法において、 前記アルミニウム材は、 0 . 5重量%以上のリチウム元素を含むアルミニウム 合金であることを特徴とするアルミニウム材の窒化処理方法。
9 . アルミニウム材の少なく とも一部表面を覆い該アルミニウム材料の融点以下 の処理温度で該アルミニゥム材の表面に窒化層の形成を促進する窒化処理用助剤 であって、
該処理温度より低い融点をもっととともに窒素ガスと発熱反応する第一金属粉 末と皮膜形成剤とを含有することを特徴とするアルミニウム材の窒化処理用助剤。
1 0 . 前記第一金属粉末は、 合金粉末全体を 1 0 0重量%としたとき、 アルミ二 ゥム 8 0〜 3 0重量%とマグネシウム 2 0〜 7 0重量%とよりなる A 1 — M g合 金粉末、 アルミニゥム 8 0〜 3 0重量%とマグネシゥ厶 2 0〜 7 0重量%と 2 5 重量%以下の銅とよりなる A 1 一 M g — C u合金粉末、 マグネシウム 4 0〜 6 0 重量%と亜鉛 6 0〜 4 0重量%とよりなる M g — Z n合金粉末、 マグネシウム 4 0〜 6 0重量%と亜鉛 6 0〜 4 0重量%と 3 0重 fi %以下の銅とよりなる M g - Z n - C u合金粉末の少なく とも一種である請求項 9記載のアルミニウム材の窒 化処理用助剤。
1 1 . 前記第一金属粉末とともに前記処理温度よりも融点が高く窒素ガスと発熱 反応する第二金属粉末を含む請求項 9記載のアルミニゥム材の窒化処理用助剤。
1 2 . 前記第二金属粉末を構成する元素はアルミニウム、 銅、 シリコンおよび鉄 の少なく とも一種であり、 該第二金属粉末の配合量は重量で前記第一粉末の配合 量以下である請求項 1 1記載のアルミ二ゥム材の窒化処理用助剤。
1 3 . アルミニウム材の少なく とも一部表面を覆い該アルミニウム材料の融点以 下の処理温度で該アルミ二ゥム材の表面に窒化層の形成を促進する窒化処理用助 剤であって、
アルミニウムと、 酸素との結合力が強くかつシリコンと実質的にシリサイ ドを 形成しない第三元素と皮膜形成剤とを含有することを特徴とするアルミニウム材 の窒化処理用助剤。
1 4 . 前記第三元素はリチウムおよびボロンの中の少なく とも一種である請求項 1 3記載のアルミニウム材の窒化処理用助剤。
1 5 . 記アルミニウムと前記第三元素は合金を形成している請求項 1 4記載のァ ルミニゥム材の窒化処理用助剤。
PCT/JP1996/002912 1995-10-02 1996-10-02 Procede de nitruration d'une surface d'aluminium et adjuvant de nitruration WO1997013002A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96932835A EP0795621B1 (en) 1995-10-02 1996-10-02 Method for nitriding surface of aluminum material
DE69625464T DE69625464T2 (de) 1995-10-02 1996-10-02 Verfahren zur nitrierung der oberfläche von aluminiummaterial
CA002206202A CA2206202C (en) 1995-10-02 1996-10-02 A surface nitriding method of an aluminum material, and an agent for nitriding
US08/849,555 US6074494A (en) 1995-10-02 1996-10-02 Surface nitriding method of an aluminum material, and an auxiliary agent for nitriding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25511595 1995-10-02
JP7/255115 1995-10-02
JP08056529A JP3098705B2 (ja) 1995-10-02 1996-03-13 アルミニウム材の表面窒化処理方法および窒化処理用助剤
JP8/56529 1996-03-13

Publications (1)

Publication Number Publication Date
WO1997013002A1 true WO1997013002A1 (fr) 1997-04-10

Family

ID=26397489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002912 WO1997013002A1 (fr) 1995-10-02 1996-10-02 Procede de nitruration d'une surface d'aluminium et adjuvant de nitruration

Country Status (7)

Country Link
US (1) US6074494A (ja)
EP (1) EP0795621B1 (ja)
JP (1) JP3098705B2 (ja)
KR (1) KR980700449A (ja)
CA (1) CA2206202C (ja)
DE (1) DE69625464T2 (ja)
WO (1) WO1997013002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652803B2 (en) * 2000-07-31 2003-11-25 Ngk Insulators, Ltd. Process and an apparatus for nitriding an aluminum-containing substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290767A (ja) * 1999-02-04 2000-10-17 Ngk Insulators Ltd アルミニウム含有部材の製造方法及びアルミニウム含有部材
JP2002038252A (ja) 2000-07-27 2002-02-06 Ngk Insulators Ltd 耐熱性構造体、耐ハロゲン系腐食性ガス材料および耐ハロゲン系腐食性ガス性構造体
GB0100297D0 (en) * 2001-01-05 2001-02-14 Castex Prod Zinc based alloy bolus for veterinary use
JP4889947B2 (ja) * 2005-01-14 2012-03-07 パナソニック株式会社 気体吸着合金
TW200700144A (en) 2005-01-14 2007-01-01 Matsushita Electric Ind Co Ltd Gas-absorbing substance, gas-absorbing alloy and gas-absorbing material
JP5061289B2 (ja) * 2005-03-25 2012-10-31 パナソニック株式会社 気体吸着性物質および気体吸着材
WO2013090987A1 (en) * 2011-12-22 2013-06-27 The University Of Queensland Method of treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136116A (ja) * 1990-09-25 1992-05-11 Nichia Chem Ind Ltd 金属表面硬化方法
JPH07166321A (ja) * 1993-10-05 1995-06-27 Toyota Motor Corp 表面窒化アルミニウム材とその表面窒化処理方法およびその窒化処理用助剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615372A (en) * 1970-01-05 1971-10-26 Nalco Chemical Co Method of preparing aluminum-magnesium alloys
US4451302A (en) * 1982-08-27 1984-05-29 Aluminum Company Of America Aluminum nitriding by laser
JPS60211061A (ja) * 1984-04-05 1985-10-23 Toyota Central Res & Dev Lab Inc アルミニウム材のイオン窒化方法
JPH0621326B2 (ja) * 1988-04-28 1994-03-23 健 増本 高力、耐熱性アルミニウム基合金
JPH01319665A (ja) * 1988-06-17 1989-12-25 Toyota Central Res & Dev Lab Inc アルミニウム材のイオン窒化方法
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
US5221376A (en) * 1990-06-13 1993-06-22 Tsuyoshi Masumoto High strength magnesium-based alloys
US5272015A (en) * 1991-12-19 1993-12-21 General Motors Corporation Wear resistant hyper-eutectic aluminum-silicon alloys having surface implanted wear resistant particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136116A (ja) * 1990-09-25 1992-05-11 Nichia Chem Ind Ltd 金属表面硬化方法
JPH07166321A (ja) * 1993-10-05 1995-06-27 Toyota Motor Corp 表面窒化アルミニウム材とその表面窒化処理方法およびその窒化処理用助剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0795621A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652803B2 (en) * 2000-07-31 2003-11-25 Ngk Insulators, Ltd. Process and an apparatus for nitriding an aluminum-containing substrate

Also Published As

Publication number Publication date
DE69625464T2 (de) 2003-06-05
JP3098705B2 (ja) 2000-10-16
EP0795621A4 (en) 1999-02-10
CA2206202A1 (en) 1997-04-10
KR980700449A (ko) 1998-03-30
EP0795621B1 (en) 2002-12-18
US6074494A (en) 2000-06-13
EP0795621A1 (en) 1997-09-17
JPH09157829A (ja) 1997-06-17
DE69625464D1 (de) 2003-01-30
CA2206202C (en) 2002-12-10

Similar Documents

Publication Publication Date Title
WO1997013002A1 (fr) Procede de nitruration d'une surface d'aluminium et adjuvant de nitruration
GB1600439A (en) Process for manufacturing sintered compacts of aluminium-based alloys
JP3214786B2 (ja) 表面窒化アルミニウム材とその表面窒化処理方法およびその窒化処理用助剤
JP3174005B2 (ja) 金属拡散層を有するアルミニウム材およびその製造方法、並びに金属拡散処理用ペースト
JP3084512B2 (ja) 金属間化合物強化マグネシウム基複合材料及びその製造方法
JP4150700B2 (ja) 耐酸化性に優れる表面処理チタン材の製造方法、エンジン排気管
JPH0790517A (ja) アルミニウム基合金
JP2005298832A (ja) カラー金合金
JP3192914B2 (ja) アルミニウムの表面窒化処理方法、窒化処理用助剤および表面窒化アルミニウム材
EP0053301A2 (en) Method of producing aluminium base sintered body containing graphite
JPH0441601A (ja) 複合粉末製造法
US5888269A (en) Nitriding agent
JP3460968B2 (ja) 溶射方法
JP2767972B2 (ja) TiAl系金属間化合物層の製造方法
JP2824507B2 (ja) チタン‐アルミニウム系金属間化合物粉末の製造方法
JPH10140265A (ja) 耐摩耗性複合材料
JP3048143B1 (ja) 摺動特性に優れた溶射層
JPS63227757A (ja) 耐摩耗性セラミツクスの溶射方法
JPS62227057A (ja) 耐摩耗性に優れたアルミニウム基複合材およびその製造方法
JP2514684B2 (ja) 半導体装置用基板材料
JP4736222B2 (ja) マグネシウム合金の製造方法
JPH086167B2 (ja) 高強度部材およびその製造法
JP2003342660A (ja) 強度および耐摩耗性に優れた焼結アルミニウム合金
JPH0949042A (ja) 耐摩耗性複合材料
SU1726549A1 (ru) Шихта дл получени порошкового сплава на основе алюмини

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref document number: 2206202

Country of ref document: CA

Ref country code: CA

Ref document number: 2206202

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019970703614

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08849555

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996932835

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996932835

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703614

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970703614

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996932835

Country of ref document: EP