WO1997010893A1 - Module a membranes a fibres creuses - Google Patents

Module a membranes a fibres creuses Download PDF

Info

Publication number
WO1997010893A1
WO1997010893A1 PCT/JP1996/002699 JP9602699W WO9710893A1 WO 1997010893 A1 WO1997010893 A1 WO 1997010893A1 JP 9602699 W JP9602699 W JP 9602699W WO 9710893 A1 WO9710893 A1 WO 9710893A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
module
fiber membrane
water
module case
Prior art date
Application number
PCT/JP1996/002699
Other languages
English (en)
French (fr)
Inventor
Tohru Taniguchi
Nobuhiko Suga
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019980702078A priority Critical patent/KR100246013B1/ko
Priority to DE69636704T priority patent/DE69636704T2/de
Priority to EP96931255A priority patent/EP0855212B1/en
Priority to AU70010/96A priority patent/AU696221B2/en
Priority to JP51259997A priority patent/JP3431166B2/ja
Publication of WO1997010893A1 publication Critical patent/WO1997010893A1/ja
Priority to US09/043,963 priority patent/US6331248B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/0221Encapsulating hollow fibres using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/06External membrane module supporting or fixing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Definitions

  • the present invention is applicable to water treatment for obtaining clean water from river water, lake water or groundwater as raw water, or various kinds of water treatment such as treatment of seawater or wastewater, for example, for filtering a large amount of water containing ozone. It relates to a suitable hollow fiber membrane module. Background art
  • a polymer hollow fiber membrane has been put to practical use as a membrane module.
  • a hollow fiber membrane module such a hollow fiber membrane is housed in a module case, and at least one of the ends of the membrane is bonded and fixed with a thermosetting resin such as an epoxy resin or a urethane resin, and unnecessary bonding portions are cut. It can be constructed by opening the hollow part of the yarn.
  • Such ozone treatment is particularly effective when clogging of the membrane is caused by organic substances, but a membrane module that can withstand the strong oxidizing action of ozone is required.
  • the membrane, module case part, and adhesive part constituting this membrane module only have the function of each structural material.
  • at least the parts that come into contact with ozone gas or ozone-containing water must also have ozone resistance.
  • ozone resistance of at least half a year or more, usually one to three years, is required.
  • JP-A-7-265-6771 An external pressure type membrane module which can be discharged by (described as air bubbling) is described in JP-A-7-265-6771. Since these membrane modules use silicone rubber as an adhesive for adhesively fixing the membrane to be used and the module case, their strength is insufficient and they can be used for a short time. Although it can be used with a small module diameter, it is inconvenient when performing stable filtration on an industrial scale for a long period of time, and there is a strong demand for the development of a more improved membrane module.
  • the present invention relates to a hollow fiber membrane module comprising a module case, a bundle of hollow fiber membranes comprising a plurality of hollow fiber membranes adhered and fixed to the module case at at least one end, and a hollow fiber membrane module comprising:
  • the present invention relates to a hollow fiber membrane module in which a bonding portion between a bundle of a yarn membrane and a module case is made of a silicone resin, and a reinforcing rib for reinforcing the bonding portion is directly fixed to at least one of the bonding portions.
  • the reinforcing rib is fixed to the module case by one means selected from the group consisting of screwing, combination with a cutout provided in the module case, welding and welding, or the reinforcing rib is attached to the module case. Molded with the case Have been.
  • the cross section of the reinforcing rib perpendicular to the length direction of the hollow fiber membrane module has a radial shape, a lattice shape, or a combination of the radial shape and the concentric shape.
  • the reinforcing rib is a single flat plate or a combination of multiple flat plates arranged in parallel to the length direction of the hollow fiber membrane module, and a plurality of through holes are formed in the flat plate. have.
  • the module case and the reinforcing rib are made of any of stainless steel, fluorine resin, chlorine resin, or a combination thereof.
  • the hollow fiber membrane is made of a fluororesin.
  • the bonding portion between the bundle of hollow fiber membranes and the module case is made of a silicone resin obtained by curing liquid silicone rubber.
  • the adhesive portion between the bundle of hollow fiber membranes and the module case is a silicone resin obtained by curing an addition-type liquid silicone rubber, and has a viscosity before curing of 10 mPa a'sec to 250 P a.sec, and the weight average molecular weight before curing is in the range of 5,000 to 300,000.
  • the adhesive part between the bundle of hollow fiber membranes and the module case is a silicone resin obtained by curing addition silicone rubber, and the JIS-A according to the measurement method of J SK6301 after curing is used. Hardness is 30 or more and tensile breaking strength is 2 MPa or more.
  • FIG. 1 is a perspective view showing an example of a reinforcing rib having a notch and a module case according to the present invention.
  • FIG. 2 is a perspective view showing an example of a reinforcing rib having a notch and a module case according to the present invention.
  • 3 to 7 are cross-sectional views each showing an example of the reinforcing rib of the present invention.
  • FIG. 8 is a cross-sectional view illustrating an example of the module of the present invention.
  • FIG. 9 is a sectional view taken along the line AA ′ of the module of FIG.
  • FIG. 10 is a cross-sectional view illustrating an example of the module of the present invention.
  • FIG. 11 is a cross-sectional view taken along the line BB ′ of the module of FIG.
  • FIG. 12 is a cross-sectional view illustrating an example of the module of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line C-C ′ of the module of FIG.
  • FIG. 14 is a cross-sectional view illustrating an example of the module of the present invention.
  • FIG. 15 is a cross-sectional view taken along the line DD ′ of the module of FIG.
  • FIG. 16 is a sectional view showing an example of a conventional external pressure type module.
  • FIG. 17 is a cross-sectional view of the module of FIG.
  • the concentration of ozone added to the raw water is determined by taking into account the concentration of organic substances and inorganic ions contained in the raw water, the energy cost for generating ozone, and the like. It is necessary to set the optimum value to stabilize the operation. Usually, such ozone concentration ranges from 0.01 to 20 in water.
  • the ozone resistance of the membrane module is sufficient, but the effect of ozone, which suppresses the permeation rate of treated water over time and suppresses clogging, is not sufficiently exhibited, and The original purpose cannot be achieved. Further, it is not sufficient to recover the lowered permeation flow velocity by using water containing ozone during washing or back washing.
  • ozone concentration exceeds 20 ppm, it is not practical because the cost of processing the ozone is too high. Further, for the purpose of the present invention, no higher ozone concentration is required, and at higher concentrations, the effect cannot be expected to be increased by increasing the concentration. The action promotes deterioration of pumps and piping, including the module, and causes a problem that the life of the equipment is shortened.
  • a preferable range of the ozone concentration is 0.1 to 10 ppm, more preferably 0.2 to 8 ppm.
  • the hollow fiber membrane module of the present invention is applied to water treatment in the presence of ozone is described.
  • oxidizing agents such as sodium hypochlorite, hydrogen peroxide, and the like are used.
  • the present invention can of course be used even when coexisting in water.
  • water treatment refers to water treatment, middle water treatment, sewer treatment, seawater treatment, and the like. More specifically, water treatment is performed by passing river water, lake water, or groundwater as raw water.
  • the present invention is particularly useful for the filtration of surface water or groundwater of rivers containing a large amount of inorganic or suspended substances such as sand and clay, and wastewater such as medium water and sewage containing high concentrations of organic substances. It is suitable. Further, according to the present invention, it is a compact device that can easily secure a stable permeation flow velocity, and is also suitable for a relatively small-scale simple water supply water treatment using river water or groundwater as raw water.
  • the size of the membrane module can be appropriately selected according to the amount of treated water.
  • a membrane module having a module case with an outer diameter of 3 to 20 inches is usually used.
  • the length of the membrane module is generally 0.5 to 2 m.
  • the hollow fiber membrane used in the present invention includes a so-called ultrafiltration membrane and a microfiltration membrane.
  • the molecular weight (hereinafter referred to as the molecular weight cut-off) of macromolecular substances such as proteins that can be fractionated by hollow fiber membranes such as ultrafiltration membranes, and the average pore size of hollow fiber membranes such as microfiltration membranes are determined by the water permeability of the membrane.
  • the molecular weight cut-off is from 1,000 to 200,000 daltons, preferably from 6,000 to 100,000, depending on the performance and filtration performance.
  • the average pore size is 0.01 to 1 m, preferably 0.1 to 0.5 ⁇ m.
  • One of the advantages of performing membrane filtration in the presence of ozone is that by suppressing clogging of the membrane due to organic matter, a significant decrease in the amount of permeated water is prevented, and stable filtration is achieved.
  • the pore size of the membrane must be sufficiently considered. In ordinary filtration of raw water such as river water or groundwater, the smaller the pore size, the less likely the membrane is to be clogged, and the retention rate of the permeated water volume with respect to the initial permeated water volume is relatively high, but the permeation due to the small pore size The absolute amount of water becomes lower.
  • the economic effect for large-volume water treatment which is the object of the present invention, is not substantially large.
  • the pore size is too large, the above-mentioned effect of ozone is exhibited, but inorganic substances other than organic substances As a result of a substance or the like greatly contributing to the blockage, there is a possibility that stable filtration may be hindered. Also, since the amount of substances that permeate the membrane without being filtered increases, a membrane with too large a hole will have an adverse effect on the water quality after relied upon. .
  • the preferred average pore size of the hollow fiber membrane in the present invention is from 0.1 to 1 ⁇ m, more preferably from 0.1 to 0.5 ⁇ m, in the region of the microfiltration membrane.
  • the average pore size in this case can be measured by the air flow method (ASTM: F316-86).
  • the hollow fiber membrane usually has an outer diameter of 0.5 to 5 mm and an inner diameter of 0.2 to 4.5 mm in view of pressure loss, membrane strength and filling efficiency.
  • the hollow fiber membrane is made of a fluorine-based resin in that it can withstand the strong oxidizing action of ozone.
  • the fluororesins are polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroalkylvinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer
  • EPF E tetrafluoroethylene-ethylene copolymer
  • ETFE polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • a ceramic membrane can be mentioned from the viewpoint of ozone resistance. At present, ceramic membranes are not economically preferable because of high cost.
  • the hollow fiber membrane in the present invention can be manufactured by a known method. For example, after using a solvent or the like to prepare a mixed liquid of the raw resin, the liquid is discharged from a nozzle in a hollow shape, and a so-called wet method of forming the discharged material with a coagulant or the like, or a raw resin and a solvent are used. After heating the mixture to obtain a homogeneous solution, the solution is cooled to cause phase separation, etc. By adopting the method, a hollow fiber membrane having a three-dimensional network structure can be produced. It is also possible to produce a porous hollow fiber membrane by a so-called drawing method, an interface separation method, radiation etching or the like.
  • JP-A-3-2-153553 discloses a method for producing a hollow fiber membrane by a mixed extraction method, and such a method can also be mentioned as a preferred method.
  • This method comprises mixing a PVDF resin with an organic liquid and an inorganic fine powder, melt-forming the mixture, and then extracting the organic liquid and the inorganic fine powder from the obtained molded article.
  • hydrophobic silica is preferably used as the inorganic fine powder.
  • stainless steel generally having excellent ozone resistance, for example, SUS—304, SUS—304 L, SUS—316, SUS—3 16 L and the like. Since stainless steel is heavy, it has drawbacks such as poor workability for installation and replacement of the membrane module.However, it has the advantage of easy reuse and can be cited as a preferred material. .
  • the following resins can also be mentioned as the material of the module case because of their excellent ozone resistance, light weight and good workability: polytetrafluoroethylene (PTFE), tetrafluoroethylene Perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-hexafluoropropylene-perfluoro Polyalkyl vinyl ether copolymer (EPE), tetrafluoroethylene monoethylene copolymer (ETFE), polychlorotrifluoroethylene
  • ECTFE fluorine resins such as polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF); chlorine resins such as polyvinyl chloride (PVC) and polyvinyl chloride (PVDC).
  • a module case combining the above stainless steel and resin can also be used for the hollow fiber membrane module of the present invention.
  • the fluororesin used as the material of the module case is preferably ETFE, PVDF, and more preferably PVDF, and the chlorinated resin is preferably PVC.
  • Chlorine-based resins are generally slightly inferior in ozone resistance to fluorine-based resins, but the module case has a certain thickness (1 mm to 10 mm) necessary to maintain its strength.
  • PVC polyvinyl styrene resin
  • a hard type is used in the present invention.
  • the bonding part between the bundle of hollow fiber membranes and the module case has not only excellent ozone resistance, but also the mechanical strength and hardness after bonding, and the bonding between the bundle of hollow fiber membranes and the module case part. It is necessary to have excellent strength, and furthermore, good workability during module production. For example, when a fusion bonding method using a fluorine-based resin having excellent ozone resistance is applied, the hollow fiber membrane and the module case may be deformed due to the high melting point of the resin.
  • some inorganic adhesives have excellent ozone resistance, but have disadvantages such as poor water resistance or workability, so that it is difficult to use them for the bonded part in the present invention.
  • the silicone resin is the most excellent material for the bonded part in the present invention. I found
  • the silicone resin also includes silicone rubber.
  • Silicone-based resins have been conventionally used as adhesives or sealants in the industrial field because they can be cured at low temperatures and have excellent adhesiveness and weather resistance.
  • the adhesive those which are classified into liquid silicone rubber among the silicone resins are used.
  • Liquid silicone rubbers are classified into condensation type and addition type according to their curing mechanism.
  • the addition type is easier to control the curing reaction speed, the uniformity of the curing reaction, the deep curing property, and the like. It is preferable from the viewpoint of reduction of by-products and dimensional stability.
  • the curing reaction rate can be freely changed by the curing temperature, the type and amount of the catalyst, the amount of the reaction inhibitor, and the like. There is no need for the presence of water such as As a result, the curing reaction proceeds uniformly on both the surface and the inside, and the deep part curability is good.
  • the addition type has good dimensional stability because it does not generate by-products during condensation curing, such as water, alcohol, acetic acid, oxime, ketone, amine, amide and hydroxylamine, unlike the condensation type.
  • the linear shrinkage is also relatively small.
  • the addition-type liquid silicone rubber is obtained by using a mechanism in which a polysiloxane having a vinyl group is subjected to an addition reaction with a polysiloxane having a Si—H bond to form a siloxane chain by crosslinking.
  • the following formula (I) shows an example of the reaction formula.
  • a platinum catalyst is used as a curing catalyst for addition-type liquid silicone rubber, but a curing inhibitor such as an amine, an organophosphorus compound, an iodide compound, or an organotin compound that deactivates the catalyst. It is desirable to avoid contact with these substances during molding, since there is a possibility that curing will be poor if there is any.
  • the ozone resistance depends on the molecular weight of the base polymer of the liquid silicone rubber, the content of the base polymer, and the type and content of the additives, and the like.Therefore, it is necessary to take these points into consideration when selecting the liquid silicone rubber. In addition, the viscosity before curing and the mechanical properties after curing must be fully considered. Regarding the relationship between the ozone resistance and the molecular weight of the base polymer, it is preferable that the molecular weight is high because the ozone resistance is excellent, but if the molecular weight is too high, the viscosity before curing becomes high. When preparing, workability is deteriorated due to its high viscosity.
  • the weight-average molecular weight of the base polymer is preferably from 5,000 to 300,000, more preferably from 10,000 to 100,000, Preferably it is 20,000 to 60,000.
  • the weight average molecular weight is measured using a viscosity method.
  • a liquid silicone rubber having a thixotropic property even with the same molecular weight as above decreases in viscosity during centrifugal bonding and its workability is improved, so when a high molecular weight material is used, it has this property. Is preferred. What is thixotropic property? ⁇ It is also called denaturation, and the rheological behavior is such that the viscosity decreases due to the increase in the shearing force, and the original high viscosity is restored when the shearing force is removed.
  • the viscosity before curing is preferably from 10 mPa a'sec to 250 Pa * sec at room temperature, and 1 OmP a ⁇ sec to 100 Pa ⁇ sec is more preferable.
  • the viscosity is measured using a rotational viscometer in accordance with JIS K6833.
  • the viscosity of the liquid silicone rubber having a thixotropic property is measured in accordance with JISZ8803.
  • crosslink density of the liquid silicone rubber polymer the higher the crosslink density of the liquid silicone rubber polymer, the better the ozone resistance of the bonded portion.
  • This crosslinking density can be controlled by changing the amount of the polyfunctional crosslinking agent added to the liquid silicone rubber.
  • a filler such as silica, carbon black, or carbon fluoride can be added to the adhesive in order to increase mechanical properties.
  • the filler content is 5 to 80% by weight, preferably 10 to 50% by weight.
  • Liquid silicone rubber in which a part of side chains of the base polymer is fluorinated is excellent in ozone resistance, and is preferred in the present invention and can be used as an adhesive.
  • the following formula (2) shows an example of the structural formula.
  • n, m and 1 are the number of repeating units determined by the molecular weight of the base polymer.
  • the properties after curing are as follows from the viewpoint of mechanical strength and durability required for the hollow fiber membrane module of the present invention.
  • JIS-A hardness measured by the measuring method of JI SK 630 1 is 30 or more, preferably 40 or more, more preferably 50 or more, and the breaking strength is 2 MPa or more, preferably 5 MPa or more. It is preferably at least 6 MPa.
  • the adhesive in the present invention include, for example, TSE 322, TSE 322 B, TSE 322 K TSE 3 212, TSE 32 53, TSE 326, TSE 326, TSE 3331, and TSE 3337 manufactured by Toshiba Silicone Co., Ltd. , TSE 3033, TSE 3320 and TSE 3315, FE61, KE122, KE1 206 manufactured by Shin-Etsu Silicone Co., Ltd. KE1216, KE1602, KE106, KE1 09, KE109E, KE1204 and KE1302, Toray ⁇ SE1711, SE1750, SE1701 and CY52-237 manufactured by Dow Corning Silicone Co., Ltd. No.
  • FE 61, and the like are preferable because of their originally high mechanical properties and little decrease in physical properties due to ozone.
  • the present inventors have found that by providing a reinforcing rib directly fixed to the inner wall of the module case in the bonding portion between the hollow fiber membrane and the module case, it is possible to prevent cohesive failure at the bonding portion.
  • the amount of silicone rubber used can be reduced, and the reinforcing ribs can be fixed to the module case, for example, by screwing them into the inner wall of the module case, or by using notches provided in the module case. It can be performed by fixing, welding fixing, welding fixing, or integrally molding with the module case. According to such a fixing method, for reinforcement
  • the ribs can be easily processed, which can be a cost suitable for industrial use.
  • welding means that the material of both the module case and the reinforcing ribs is melted by ultrasonic waves, heat or a solvent and bonded together with the reinforcing ribs inserted in the module case.
  • Welding refers to fixing by heat using a welding rod or the like with the reinforcing ribs inserted in the module case.
  • a method of storing the bundle of hollow fiber membranes in the module case a method of storing the bundle of hollow fiber membranes after fixing the reinforcing ribs to the module case, or installing a bundle of hollow fiber membranes in at least one of the reinforcing ribs Later, there is a method of storing a bundle of hollow fiber membranes together with reinforcing ribs in a module case.
  • the latter method is particularly effective when the catching rib is fixed by screwing or by a combination of notches.
  • the bundle of hollow fiber membranes is protected by a protective net made of plastic such as ETFE, PVDF, PCTFE, PTFE, PVC, or metal such as stainless steel or titanium. May be wound.
  • the entire reinforcing rib is buried in the bonding portion.
  • the reason is that even if the bonding strength of the bonding part is reduced due to long-term use, etc., the entire reinforcing ribs are embedded in the bonding part, and if the bonding part does not break, the bonding part is used for reinforcement. This is because the inconvenience of separating from the rib does not occur.
  • the structure is such that the capturing ribs protrude from the cross section of the hollow fiber membrane, after the module is assembled, the reinforcing ribs are used when the adhesive fixing part is cut by a cutter to open the hollow part of the hollow fiber membrane. It is easy to damage the blade of the cutting machine. If the reinforcing ribs are protruded into the module, the hollow fiber membrane may rub against the end of the reinforcing ribs or the like due to the vibration of the hollow fiber membrane due to the fluid flow during operation, and may be damaged.
  • the materials used for the reinforcing ribs include stainless steel such as SUS-304, SUS-304L, SUS-316, SUS-316L, and polytetrafluoride.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • EPE tetraflu
  • ECTFE fluorine resins such as polyvinylidene fluoride (PVDF), and chlorine resins such as polyvinyl chloride (PVC) and polyvinylidene chloride (PVDC).
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • the shape of the reinforcing rib provided on the bonding portion is a shape that is radial, lattice, or a combination of radial and concentric when viewed from the cross-sectional direction of the hollow fiber membrane module. Is preferred. If the reinforcing rib having such a shape is arranged and fixed in the module case, and the reinforcing rib is formed in a flat plate shape parallel to the fiber axis direction of the hollow fiber membrane, as a result, the reinforcing rib is used. It is preferable because the number of fillings and the packing density of each bundle of the divided hollow fiber membranes are substantially the same, and the number of fillings can be reduced. Further, it is more preferable to form a plurality of through-holes in the reinforcing rib, since the adhesive fixing between the reinforcing rib and the silicone resin becomes stronger.
  • Figs. 1 and 2 show examples of fixing by combining the reinforcing ribs 1 with the cutouts 2 provided on the inner wall of the module case 3, and Figs. 3 to 7 show examples of the cross-sectional shapes of the reinforcing ribs 1. .
  • the hollow fiber membrane module according to the present invention includes an internal pressure filtration method in which raw water is supplied to the hollow portion of the hollow fiber membrane and filtration is performed from the inner surface side to the outer surface side of the membrane, or raw water is supplied from the outer surface of the hollow fiber membrane. It can also be used for the external pressure filtration method, L, which feeds and filters from the outer surface of the membrane to the inner surface side.
  • the internal pressure filtration method the area of the flow passage for raw water per unit cross-sectional area of the module is smaller than that of the external pressure filtration method, so the advantage that less power is required to maintain the same linear velocity is required.
  • the opening of the hollow fiber membrane may be clogged.
  • the internal pressure filtration method can be applied to raw water with a turbidity of 5 NTU or less, preferably 3 NTU or less. Limited to processing Is done.
  • external pressure filtration is applicable to the treatment of raw water with high turbidity.
  • the external pressure filtration type membrane module a number of hollow fiber membranes are bonded and fixed to a module case, and a plurality of openings for supplying raw water, Z, or gas are provided at the bonding portion.
  • FIGS. 1-10 Examples of cross-sectional views of an external pressure filtration type module of the present invention are shown in FIGS.
  • the conventional external pressure filtration type module is provided with a raw water supply nozzle 7 perpendicular to the longitudinal direction of the hollow fiber membrane 4 as shown in Figs. 16 and 17, and the raw water is supplied to the outer periphery of the yarn bundle. Flow from the section to the center, and then to the longitudinal direction of the yarn bundle. Therefore, in a large-diameter module used for a large amount of water treatment, the diameter of the hollow fiber membrane bundle becomes large, Pressure loss occurs in the radial direction, and the entire yarn bundle cannot evenly contribute to filtration, and the amount of filtered water decreases over time. This effect is particularly significant in modules where ozone is added to raw water to significantly increase the amount of filtered water.
  • Air flushing means that suspended matter deposited on the membrane surface and suspended matter accumulated between the Z or hollow fiber membranes are stripped off with an air rate, and further flushing is performed on the deposited matter and Z or accumulated matter. This refers to the operation of discharging objects out of the system, that is, out of the module or device. Air-airing and flushing may be performed sequentially or simultaneously.
  • Examples of the cross-sectional shape of the opening provided in the bonding portion include a circle, an ellipse, a sector, a triangle, a square, a hexagon, and a slit.
  • those having a circular or elliptical cross-sectional shape are preferable because the liquid contact surface area per opening cross-sectional area is minimized and the pressure loss of the fluid is reduced.
  • the number of hollow fiber membranes that can be filled in the module is reduced, and the permeation is reduced accordingly.
  • the amount of water decreases.
  • the number of openings depends on the diameter of the module and the opening The strength varies depending on the shape, for example, about 3 to 30 for a 3 inch diameter module and about 4 to 80 for a 5 inch diameter module.
  • the opening area ratio of the opening provided in the bonding portion is represented by the following equation (3), and is 10 to 40%, preferably 15 to 35%.
  • K is the opening area ratio
  • S is the cross-sectional area of one opening
  • N is the number of openings
  • R is the outer radius of the hollow fiber membrane
  • M is the number of hollow fiber membranes.
  • both the one-end collecting method and the both-end collecting method can be used.
  • the one-end water collecting method one end of the hollow fiber membrane 4 is adhered in a state where the hollow fiber is opened as shown in FIGS. 8 to 13, and the other end is sealed with an adhesive.
  • An opening for supplying raw water and / or gas is provided in an adhesive portion 5 'in which the hollow fiber membrane is sealed with an adhesive.
  • the double-ended water collection method as shown in Figs. 14 and 15, a hollow fiber membrane is bonded with both ends open, and at the lower end of the module, the drainage collection chamber 11 and the surrounding area are enclosed.
  • the opening 6 provided in the lower end bonding portion is communicated with the gap between the scar-shaped cover 11 and the module case 3 through a through hole in the side surface of the module case.
  • the openings 6 provided in the bonding portions 5 and 5 'of the present invention are preferably provided inside the bundle of hollow fiber membranes.
  • the raw water and Z or gas supplied to the module spread evenly throughout the hollow fiber membrane, and the accumulation of suspended solids in the gaps between the force, the force, and the hollow fiber membrane becomes less likely to occur.
  • a stable amount of filtered water is obtained. If this opening is provided outside the bundle of hollow fiber membranes, the raw water and / or gas supplied to the module tends to drift, and as a result, the accumulation of suspended solids inside the bundle of hollow fiber membranes will occur. It is more likely to occur, reducing the effective membrane area and causing the problem of reduced permeate volume.
  • the openings 6 provided in the bonding portions 5 and 5 ′ of the present invention are preferably The opening end face is provided so as to be flush with the interface of the bonding portion inside the module. This suppresses accumulation of suspended solids near the interface of the hollow fiber membrane at the bonding portion, and provides a long-term stable amount of filtered water. If this opening end surface protrudes into the module from the bonding interface, the flow tends to stay at the portion below the opening end surface, and it becomes difficult for gas to enter, so the inside of the bundle of hollow fiber membranes Suspended matter is likely to accumulate in the air, which may reduce the effective membrane area and cause a problem of a decrease in the amount of permeated water.
  • a problem that the hollow fiber membrane is damaged during the filtration operation may occur.
  • the membrane breakage that occurs during operation often occurs near the interface of the bonded part at both ends of the hollow fiber membrane.
  • a cylindrical rectifying cylinder may be provided at one end or both ends of the hollow fiber membrane in order to prevent damage to the hollow fiber membrane.
  • stainless steel, fluorine resin or chlorine resin can be preferably used as in the case of the module case.
  • a jig for forming an opening is set at an end of the hollow fiber membrane, and is fixed together with the hollow fiber membrane inside the module case with an adhesive.
  • the end face of the opening forming jig is set so as to protrude into the module from the interface of the bonding portion.
  • an opening is formed by cutting the unnecessary end portion of the bonded portion or by removing the opening forming jig remaining in the bonded portion without being cut.
  • the opening forming jig may be made of any material that does not impregnate the adhesive, has good releasability, and can withstand the temperature at the time of bonding.
  • the jig may be hollow or non-hollow as long as the jig has the same outer shape as the opening. However, a hollow jig is preferable because the operation is easy when cutting or removing.
  • the module of the present invention includes not only a rack type used by connecting to piping, but also a force-trigger type module used by being housed in an outer casing / tank.
  • a typical operation method will be described with reference to FIGS.
  • raw water containing ozone which is water to be treated
  • the raw water passes through the bonding part opening 6 provided in the bonding part 5 ′, the suspended material in the raw water is captured on the outer surface of the hollow fiber membrane 4, and the filtered water passes through the hollow part of the hollow fiber membrane to the upper part.
  • the sampling nozzle 8 On the other hand, the circulating concentrated water concentrated by the hollow fiber membrane is discharged from the circulating concentrated water discharge nozzle 9 or the outlet 10.
  • the filtrate is used as the backwash water
  • the backwash water is supplied from the drainage nozzle 8
  • the hollow fiber membrane is filtered from the inner surface side to the outer surface side. Washing wastewater is discharged from the raw water supply nozzle 7 through the circulating concentrated water discharge nozzle 9 or the discharge port 10 and Z, or the bonding portion opening 6.
  • a gas that does not substantially dissolve in the raw water for example, air with a volume flow rate of 50 to 200% of the raw water supply volume, is mixed into the raw water by a compressor or the like, This is supplied as a multiphase flow through the raw water supply nozzle 7 from the bonding portion opening 6 and the washing wastewater is discharged from the circulating concentrated water discharge nozzle 9 or the discharge port 10.
  • the raw water has a parallel force to the hollow fiber membrane and a uniform flow over the entire yarn bundle.
  • the effect can be more remarkably exhibited.
  • suspended substances accumulated on the outer surface of the membrane and gaps between the membranes are easily discharged to the outside of the module by backwashing and air flushing, and a longer-lasting filtration that reduces the amount of permeated water over time is suppressed. Over time, this can be achieved without damaging the bond.
  • the hollow fiber membrane was prepared by the method disclosed in JP-A-3-2-151553, outer diameter 2 mm, inner diameter lmm, porosity 66%, calculated by electron micrograph.
  • the ratio of the average pore diameter of the outer surface to the average pore diameter of the cross section and the ratio of the average pore diameter of the inner surface to the average pore diameter of the cross section determined from the average pore diameter of the outer surface, the inner surface and the cross section are 1.75 and 0.8, respectively.
  • the average pore diameter according to the air flow method is 0.25 ⁇ m
  • the maximum pore diameter according to the bubble point method is 0.35 m
  • the ratio of the maximum pore diameter to the average pore diameter is 4
  • the water permeability is 250 liters Zm 2 ' ⁇ 350 kPa PVDF membranes with 100 kPa (25.C)
  • a breaking strength of 15 MPa and a breaking elongation of 280% this Six membrane bundles were prepared.
  • Each of the six bundles of hollow fiber membranes is stored in the space of 6 places divided by the reinforcing ribs in the module case, and adhesive jigs are attached to both ends, and additional liquid silicone rubber (Toshiba Silicone Co., Ltd.) ) Made: The hollow fiber membrane and the module case to which the reinforcing ribs were fixed were adhered and fixed by TSE3222). In addition, 19 tubes of high-density polyethylene with a diameter of 10 mm and a length of 55 mm were distributed uniformly in the hollow fiber membrane bundle at the side end where no reinforcing ribs were installed. And bonded.
  • the side on which the reinforcing ribs are installed (drainage water sampling side) is used to open the hollow part, and the other side is used to remove 19 tubular objects.
  • the side on which the reinforcing ribs are installed (drainage water sampling side) is used to open the hollow part, and the other side is used to remove 19 tubular objects.
  • pipes are also connected to the drainage nozzle to filter and backwash at a supply pressure of 300 kPa and a backwash pressure of 450 kPa using river water with a turbidity of 3 to 12 as raw water.
  • the raw water is adjusted so that the ozone concentration of the filtered water is 0.3 ppm.
  • Ozone gas was added to the inside, and air rate flashing was performed every 1,000 cycles.
  • the bonded portion was observed, but no deformation of the bonded portion occurred and no crack was observed in the bonded portion.
  • leakage was observed by an airtight test, but no leak was observed from the bonded part.
  • the airtightness test was performed by immersing the module in water, applying air pressure of 1 Z2 at the bubble point of the membrane, and checking for air leak from the bonded part.
  • a reinforcing rib made of PVDF as shown in FIG. 5 was installed in one end of a module case made of PVDF having an outer diameter of 89 mm and a length of 110 mm, and was fixed by welding.
  • the above four bundles of hollow fiber membranes are housed in four spaces separated by reinforcing ribs in the module case, and adhesive jigs are attached to both ends, and additional liquid silicone rubber (Toshiba Silicone Co., Ltd.) ) Made:
  • the hollow fiber membrane and the module case to which the reinforcing rib was fixed were bonded and fixed by TSE 3 3 3 7).
  • an aluminum cylindrical object with an outer diameter of 10 mm and a length of 45 mm is attached to an aluminum disk at 5 points.
  • the surface was coated with Teflon.
  • the side where the reinforcing ribs are installed (draining water sampling side) is cut to open the hollow part, and the other side is removed with an adhesive jig.
  • the opening is opened in the adhesive portion, and the cartridge type hollow fiber of the present invention as shown in FIG.
  • the creation of the membrane module was completed. At this time, the reinforcing rib did not protrude from the end face of the bonding portion, but was completely buried.
  • the hollow fiber membrane module prepared as described above was housed in a stainless steel tank, subjected to a hydrophilization treatment with ethanol, and then the ethanol in the membrane was replaced with pure water. After replacement with water, a raw water supply pipe is installed at the bottom of the tank and a concentrated water discharge pipe is installed at the top of the side of the tank. Pressurization and filtration were performed at a supply pressure of 500 kPa. Deformation of the bonded part was confirmed with a strain gauge, but no deformation was observed in either the center of each of the four strength points divided by the reinforcing ribs or the part where the reinforcing ribs were embedded. .
  • pipes are also connected to the drainage nozzle to filter and backwash at a supply pressure of 300 kPa and a backwash pressure of 450 kPa using river water with turbidity of 3 to 12 as raw water Was repeated 40,000 times.
  • ozone gas was added to the raw water so that the ozone concentration in the filtered water was 0.3 ppm, and air flushing was performed every 1,000 cycles.
  • the bonded portion was observed, but there was no particular change. Further, the presence or absence of leakage was observed by an airtight test, but no leakage from the bonded portion was observed.
  • the air tightness test was performed by immersing the module in water, applying air pressure of 12 at the bubble point of the membrane, and checking the air leak from the bonded part.
  • Example 2 The same hollow fiber membranes used in Example 1 were bundled into 300 bundles, and seven bundles were prepared.
  • a notch as shown in FIG. 1 was provided in the inner wall at both ends of the PVC module case having an outer diameter of 140 mm and a length of 1100 mm.
  • a notch was formed on the outer periphery of a stainless steel rib having a cross-sectional shape as shown in FIG. 4 so as to correspond to the notch on the inner periphery of the module case.
  • the bundle was stored in the module case from the other side end, and the notches were aligned so that the bundle did not come off the module case.
  • the module case was bonded and fixed.
  • the hollow fiber membranes on both sides were cut to open the hollow portions, and caps were attached to both end portions of the membrane module.
  • the hollow fiber membrane module after replacement with water was attached to the evaluation machine, and the internal pressure filtration method was used to supply river water with a turbidity of 1 to 3 as raw water, supply pressure 300 kPa, backwash pressure 500 Filtration at kPa and backwashing were repeated 30,000 times. At this time, ozone gas was added to the raw water so that the ozone concentration in the filtered water was 0.4 ppm.
  • the module was subjected to an air tightness test, and the presence or absence of a leak was observed. However, no leak from the bonded portion was observed.
  • the airtightness test was performed by immersing the module in water, applying air pressure of 12 at the bubble point of the membrane, and checking the air leak from the bonded part.
  • a hollow fiber membrane module was prepared under the same conditions as in Example 1 except that no reinforcing ribs were attached to the module case.
  • a hollow fiber membrane module was prepared under the same conditions as in Example 2 except that no reinforcing rib was attached to the module case.
  • a pipe is also connected to the drainage nozzle, and the river water with a turbidity of 3 to 12 is used as raw water, filtered at a supply pressure of 300 kPa and a backwash pressure of 450 kPa. Washing was repeated 40,000 times. At this time, ozone gas was added to the raw water so that the ozone concentration in the filtered water was 0.3 ppm, and air flushing was performed every 1,000 cycles. After the above test was repeated, the bonded part was observed, and it was found that a part of the bonded part (about half of the entire circumference) was strong and came off the module case.
  • a hollow fiber membrane module was prepared under the same conditions as in Example 3 except that a reinforcing rib was not attached to the module case.
  • the hollow fiber membrane module after replacement with water was attached to an evaluation machine, and the internal pressure filtration method was used to supply river water with a turbidity of 1 to 3 as raw water. Filtration at 0 kPa and backwashing were repeated 30,000 times. At this time, ozone gas was added to the raw water so that the ozone concentration in the filtered water was 0.4 ppm.
  • the hollow fiber membrane module of the present invention enables long-term membrane filtration of ozone-containing water and repeated washing (including backwashing) with ozone-containing water, it is used in the field of water treatment using ozone, particularly in the field of waterworks. The effect is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

明 細 書 中空糸膜モジュール 技術分野
本発明は、 原水としての河川水、 湖沼水若しくは地下水から上水を得るための 水処理、 又は海水若しくは廃水の処理等の各種水処理において、 オゾンを含む水 を大量に濾過する等の用途に適した中空糸膜モジュールに関するものである。 背景技術
河川水、 湖沼水、 海水又は工業廃水等を浄化するにあたり、 従来はポリ塩化ァ ルミニゥム等の凝集剤を用いて、 水中の濁度物質を凝集させ、 フロック形成させ ていた。 凝集剤の添加による水の浄化法 (凝集沈殿法) については、 例えば、 丹 保憲二、 小笠原紘一共著 「浄水の技術」 技報堂 ( 1 9 8 5 ) 第 2章に詳しい記述 がある。 しかしこのような方法では、 河川水、 地下水、 廃水等の原水の水質が変 動すると、 有効な処理を行うためには、 その変動に応じて添加する凝集剤の量や P H等を最適化する必要があり、 いわゆるジャーテストといった予備テス卜が要 求される。 従来の水の浄化法では、 このように操作が煩雑であるだけでなく、 フ ロック形成池、 沈殿池、 砂濾過設備等の大型設備が必要であった。
凝集沈殿法の持つ上述の欠点を克服し、 原水の水質の変動に大きく左右される ことなく安定した水質を、 コンパクトな設備で得るために、 膜を用いた新たな水 処理プロセスが提案されている。
膜は、 単独で工業的用途に使用することは困難である。 しかし、 膜を用いれば 単位容積当たりの高い処理能力を安価に確保することができるという観点から、 高分子製の中空糸膜が膜モジュールとして実用化されている。 中空糸膜モジユー ルは、 かかる中空糸膜をモジュールケースに収納し、 膜の端部の少なくとも一方 をエポキシ樹脂、 ウレタン樹脂等の熱硬化性樹脂で接着固定した後、 不要な接着 部を切断し、 糸の中空部を開口させることにより構築することができる。
しかし、 上述の膜モジュールを用いると、 処理水の透過流速が経時的に低下す るという問題があった (ニューメンブレンテクノロジ—シンポジウム' 9 2、 日 本膜学会 · (社) 日本能率協会主催、 予稿集、 SES S I ON3、 1 992年) c これらの問題を解決するために、 近年、 オゾンによって原水をあらかじめ処理 することにより処理水の透過速度の経時的減少を抑制する方法 [J o u r.
Ame r i c a n Wa t e r Wo r k s A s s o c i a t i o n
(AWWA) , 77 ( 60 - 6 5 ) ( 1 985 ) ] 、 膜濾過の前に原水にオゾン を注入し、 ォゾンを含んだ原水を濾過することにより濾過膜の目詰まりを抑える 方法 (J P— A— 4— 1 085 1 8 ) 、 含油廃液から油水を分離するにあたり、 膜濾過の前にオゾン又は過酸化水素を供給する油水分離装置 (J P— A - 6 3 - 933 1 0 ) 、 あるいは分離膜の洗浄時にオゾンを含む水を用いることにより低 下した透過流速を回復させる方法 (J P— A— 3— 24 9927) 等が提案され ている。
こうしたオゾン処理は膜の目詰まりが有機物質に起因する場合に特に有効であ るが、 オゾンの強い酸化作用に耐え得る膜モジュールが要求される。 例えば、 有 機系中空糸膜を用いてオゾンを含む水を濾過する場合には、 この膜モジュールを 構成する膜、 モジュールケース部及び接着部が各々の構造材としての機能を有し ているだけでなく、 少なくともオゾンガス又はオゾン含有水と接触する部分にお いては耐オゾン性をも兼ね備えていなくてはならない。 しかも膜モジュ一ルの寿 命という工業的見地から、 少なくとも半年以上、 通常は 1〜 3年の耐オゾン性が 要求される。
従来、 耐オゾン性を有する膜モジュールとしては、 例えば、 セラミック膜を用 いた無機系膜モジュールや ULTRAPURE WATER, 丄 (6) , 32 - 3 6, 3 8 - 4 0 ( 1 9 9 0 ) に記載されているポリビニリデンフルオリ ド (PVDF) 製の平膜状限外濾過膜を使用した ALL— PVDF
U 1 t r a s t a c k TM等が知られている。 しかしながら、 セラミック膜を用い たモジュールは高価であり、 設備のコンパク ト化に限界があるという問題がある c また、 ALL— PVDF U 1 t r a s t a c を用いた膜濾過システムも、 設備のコンパク ト化が難しいだけでなく、 透過流速を安定に維持するという点に おし、て優れているクロスフ口一濾過方式を採用しょうとしても、 その適用が難し いという問題がある。 さらに、 原水が砂や粘土のような無機物質を多く含んでいる場合には、 オゾン 処理を行つても膜表面に無機物質が堆積してしまい、 透過流速が経時的に低下す るという問題がある。 この問題を解決するために、 膜表面に目詰まりの原因とな る物質が堆積しにく く、 膜表面積を大きくすることができる外圧クロスフロー濾 過、 及び中空糸膜間に堆積した懸濁物質を定期的にエアレーションフラッシング
(エアバブリングとして記載されている) により排出することができる外圧式膜 モジュールが J P - A - 7 - 2 6 5 6 7 1に記載されている。 し力、し、 これらの 膜モジュールは、 使用される膜とモジュールケースとを接着固定するための接着 剤にシリコーンゴムを使用しているので、 強度が不足しており、 短時間の使用又 は小さなモジュール径での使用は可能であるが、 長期間にわたって安定した濾過 を工業的規模で行う場合には不都合であり、 より改良された膜モジユールの開発 が強く望まれている。
発明の開示
本発明は、 有機系中空糸膜を用いて大量の水の濾過処理を行うに際し、 オゾン の有する強い酸化力によって劣化することが少なく、 かつ懸濁物質のモジュール 内への堆積がおこりにく く、 長期間安定した水処理が可能であり、 さらには、 中 空糸膜とモジュールケースとを接着固定するための接着剤が耐圧強度に優れてい る中空糸膜モジュールを提供することを目的とする。
本発明者らは鋭意研究の結果、 本発明の膜モジュールにより、 上記目的を達成 することができることを見出した。
本発明は、 モジュールケースと、 該モジュールケースに少なくとも一方の端部 で接着固定された複数本の中空糸膜からなる中空糸膜の束と力、らなる中空糸膜モ ジュールであって、 中空糸膜の束とモジュールケースとの接着部がシリコーン系 樹脂からなり、 該接着部の少なくとも一方に接着部を補強するための補強用リブ がモジュールケースに直接固定されている中空糸膜モジュールに関する。
また、 本発明の好ましい態様として以下のものを挙げることができる。
( 1 ) 補強用リブがモジュールケースに、 ねじ込み、 モジュールケース内に 設けた切り欠き部との組み合わせ、 溶着及び溶接からなる群より選ばれる一つの 手段により固定されているか、 又は補強用リブがモジュールケースと一体成形さ れている。
(2) 補強用リブの、 中空糸膜モジュールの長さ方向に対して垂直な断面が、 放射形状、 格子形状又は放射形状と同心円形状とが組み合わされた形状である。
(3) 補強用リブが、 中空糸膜モジュールの長さ方向に対して平行に配置さ れた、 一枚の平板又は複数枚の平板の組合せであり、 かつ、 その平板上に複数の 貫通穴を有している。
( 4 ) 補強用リブ全体が接着部内に埋設されている。
(5) モジュールケースと補強用リブとがステンレス鋼、 フッ素系樹脂、 塩 素系樹脂のいずれか、 またはそれらの組み合わせにより構成されている。
(6) 中空糸膜がフッ素系樹脂からなる。
(7) 中空糸膜の束とモジュールケースとの接着部が液状シリコーンゴムを 硬化させて得られるシリコーン系樹脂からなる。
(8) 中空糸膜の束とモジュールケースとの接着部が付加型液状シリコーン ゴムを硬化させて得られるシリコーン系樹脂であって、 硬化前の粘度が 1 0 mP a ' s e c〜2 5 0 P a . s e cであり、 かつ、 硬化前の重量平均分子量が 5, 0 0 0〜 3 0 0, 0 0 0の範囲にある。
( 9 ) 中空糸膜の束とモジュールケースとの接着部が付加型シリコーンゴム を硬化させて得られたシリコーン系樹脂であって、 硬化後の J SK 6 30 1の測 定方法による J I S— A硬度が 3 0以上であり、 引張り破断強度が 2 MP a以上 である。
図面の簡単な説明
図 1は本発明の切り欠き部を有する補強用リブ及びモジュールケースの例を表 す斜視図である。
図 2は本発明の切り欠き部を有する補強用リブ及びモジュールケースの例を表 す斜視図である。
図 3〜 7はそれぞれ本発明の補強用リブの一例を表す断面図である。
図 8は本発明のモジュールの一例を表す断面図である。
図 9は図 8のモジュールの A— A' 断面図である。
図 1 0は本発明のモジュールの一例を表す断面図である。 図 1 1は図 1 0のモジュールの B— B ' 断面図である。
図 1 2は本発明のモジュールの一例を表す断面図である。
図 I 3は図 1 2のモジュールの C一 C ' 断面図である。
図 1 4は本発明のモジュールの一例を表す断面図である。
図 1 5は図 1 4のモジュールの D— D' 断面図である。
図 1 6は従来の外圧式モジュールの一例を表す断面図である。
図 1 7は図 1 6のモジュールの E— E ' 断面図である。
発明を実施するための最良の形態
本発明の膜モジユールを用いた水処理において、 原水に添加するォゾンの濃度 は、 原水中に含まれる有機物質や無機イオンの濃度、 及びオゾン発生のためのェ ネルギーコスト等を考慮して、 濾過の運転が安定となるような最適の値とする必 要がある。 通常、 かかるオゾン濃度は、 水中濃度で 0 . 0 1〜2 0 でぁる。
オゾン濃度が 0 . 0 1 p p m未満では膜モジュールの耐オゾン性は充分にある ものの、 処理水の透過速度の経時的減少を抑制したり目詰まりを抑えるオゾンの 効果が十分に発現せずオゾンの本来の目的を達成し得ない。 また、 洗浄時や逆洗 時にオゾンを含む水を用 、て低下した透過流速の回復を図る目的でも不十分であ る。
—方、 オゾン濃度が 2 0 p p mを超えると、 オゾンの発生とに処理にコストが かかりすぎるため、 実際的ではない。 また本発明の目的のためにはこれ以上のォ ゾン濃度は必要とせず、 またこれ以上の濃度では、 濃度を高くすることによる効 果の増大は望めず、 かえつて高濃度のォゾンの強い酸化作用によってモジュール を含めたポンプ、 配管等の装置の劣化が促進され、 装置の寿命が短くなるという 問題が生じる。 これらの点を考慮すると、 好ましいオゾン濃度の範囲は 0 . 1〜 1 0 p p m、 より好ましくは 0 . 2〜8 p p mである。 ここでは、 オゾン存在下 における水処理に本発明の中空糸膜モジュールを適用する場合を述べているが、 オゾン以外の他の薬剤、 例えば次亜塩素酸ナトリウム、 過酸化水素等の酸化剤等 が水に共存していても、 もちろん本発明を用いることができる。
本発明において水処理とは、 上水道処理、 中水道処理、 下水道処理、 海水処理 等をいい、 より詳細には、 原水としての河川水、 湖沼水又は地下水を濂過して上
訂正された用紙 則 91) 水を得るための上水道処理、 ビルの用水、 一般家庭用雑用水を濾過するための中 水道処理、 廃水を処理又は再生するための下水処理、 工業用水の製造のための水 処理、 海水を濾過して冷却水、 脱塩水又は塩生成電気透析用海水を得るための海 水処理等をいう。 本発明は特に、 砂や粘土のような無機物質又は懸濁物質を多く 含んでいる河川の表流水又は地下水、 及び、 高濃度の有機物を含有する中水 ·下 水等の廃水等の濾過に好適である。 また本発明によれば、 コンパク トな装置で、 安定した透過流速を容易に確保できること力、ら、 河川水や地下水を原水とした比 較的規模の小さい簡易上水道用水処理にも好適である。
本発明の膜モジュールを使用するにあたり、 膜モジュールの大きさは、 処理水 量に応じて適宜選択できる。 上水処理のように、 大量の水を処理する場合、 通常 は外径 3〜2 0ィンチのモジュールケースを有する膜モジュールが使用される。 また膜モジュールの長さは一般的に 0 . 5〜2 mである。
本発明に使用される中空糸膜としては、 いわゆる限外濾過膜や精密濾過膜が挙 げられる。
限外濾過膜等の中空糸膜によって分画することができるタンパク質等の高分子 物質の分子量 (以下、 分画分子量という) 及び精密濾過膜等の中空糸膜の平均孔 径は、 膜の透水性能及び濂過性能にもよるが、 限外濾過膜の場合、 分画分子量は 1, 0 0 0〜2 0 0, 0 0 0ダルトン、 好ましくは 6, 0 0 0〜 1 0 0, 0 0 0 ダル卜ンであり、 精密濾過膜の場合、 平均孔径は 0 . 0 1〜 1 m、 好ましくは 0 . 1〜0 . 5 ^ mである。
オゾンの存在下で膜濾過を行う利点の 1つは、 有機物に起因する膜の目詰まり を抑えることにより、 透過水量の大幅な低下を防止し、 安定した濾過を達成する ことにある。 この利点を工業的に顕著に活かすためには膜の孔径を充分に考慮す る必要がある。 河川水又は地下水等の原水の通常の濾過においては、 一般に孔径 が小さい方が膜の閉塞がおこりにくく、 初期の透過水量に対する透過水量の保持 率が比較的高いものの、 孔径が小さいことにより、 透過水量の絶対量は低くなる。 従って、 孔径が小さ過ぎるとオゾンによる閉塞抑制の効果を発現させても、 実質 的には本発明の目的である大量水処理用としての経済的効果は大きくない。 一方、 孔径が大き過ぎると、 上述のオゾンの効果は発現するものの、 有機物以外の無機 物等が閉塞に大きく関与する結果、 安定した濾過に支障をきたす虞が出てくる。 また濾過されることなく膜を透過する物質の量が増加するため、 大き過ぎる孔経 の膜は據過後の水質に悪影響を及ぼし、 特に上水道用に使用する場合には、 水質 の確保が難しくなる。
以上のことから本発明における中空糸膜の好ましい平均孔径は 0. 0 1〜1 〃m、 より好ましくは 0. 1〜0. 5〃mの精密濾過膜の領域の膜である。 この 場合の平均孔径はエアフロー法 (ASTM : F 3 1 6— 86) によって測定する ことができる。
中空糸膜のサイズは、 圧力損失、 膜強度及び充塡効率の点から、 通常、 外径が 0. 5〜5mm、 内径が 0. 2〜4. 5 mmである。
本発明において、 中空糸膜は、 オゾンの強い酸化作用に耐え得るという点でフ ッ素系樹脂からなる。 具体的には、 フッ素系樹脂は、 ポリテトラフルォロェチレ ン (PTFE) 、 テトラフルォロエチレンーパ一フルォロアルキルビニルェ一テ ル共重合体 (PFA) 、 テトラフルォロエチレン—へキサフルォロプロピレン共 重合体 (FEP) 、 テトラフルォロエチレン一へキサフルォロプロピレン一パー フルォロアルキルビニルエーテル共重合体 (EPE) 、 テトラフルォロエチレン 一エチレン共重合体 (ETF E) 、 ポリクロ口トリフルォロエチレン
(PCTFE) 、 クロ口トリフルォロエチレン—エチレン共重合体
(ECTFE) 、 ポリビニリデンフルオリ ド (PVDF) 等が挙げられる。 特に 耐オゾン性及び膜としての機械的強度に優れているという観点から、 ETFE、 PCTFE及び PVDFが好ましく、 さらに成形加工性に優れているという観点 から、 PVDFがより好ましい。
中空糸膜の他の材質として、 耐オゾン性の観点からセラミック膜を挙げること もできる力 現状ではセラミック膜はコストが高いため、 経済的に好ましいもの ではない。
本発明における中空糸膜は、 公知の方法で製造することができる。 例えば、 溶 媒等を用 、て原料樹脂の混合液を作製した後、 該液を中空状にノズルから吐出さ せ、 吐出物を凝固剤等で成形するいわゆる湿式法、 又は原料樹脂と溶媒との混合 物を加熱して均質な溶液とした後、 該溶液を冷却し、 相分離を生じさせる等の方 法を採用することにより、 三次元網目構造の中空糸膜を作製することができる。 また、 いわゆる延伸法や、 界面剝離法、 放射線エッチング等により多孔膜の中空 糸膜を作製することも可能である。 また、 J P— A— 3— 2 1 5535には混合 抽出法による中空糸膜の製造方法が開示されており、 かかる方法も好ましい方法 として挙げることができる。 この方法は、 PVDF樹脂と有機液状体及び無機微 粉体を混合した後、 混合物を溶融成形し、 次いで得られた成形物から有機液状体 及び無機微粉体を抽出することからなる。 この場合、 無機微粉体として疎水性シ リカが好ましく使用される。
次に、 本発明の中空糸膜モジユールに使用されるモジユールケースの材質とし て、 一般に耐オゾン性に優れるステンレス鋼、 例えば SUS— 304、 SUS— 304 L、 SUS— 3 1 6、 SUS— 3 1 6 L等を挙げることができる。 ステン レス鋼は重量が大きいことから、 膜モジュールの据付け、 交換等に係る作業性が 悪くなる等の欠点があるが、 再利用が容易であるという利点もあり、 好ましい材 質として挙げることができる。
一方、 耐オゾン性に優れ、 軽量で作業性が良いという点で、 次に挙げる樹脂も、 モジュールケースの材質として挙げることができる :ポリテトラフルォロェチレ ン (PTFE) 、 テトラフルォロエチレン一パーフルォロアルキルビニルエーテ ル共重合体 (PFA) 、 テトラフルォロエチレン—へキサフルォロプロピレン共 重合体 (FEP) 、 テトラフルォロエチレン一へキサフルォロプロピレン一パー フルォロアルキルビニルエーテル共重合体 (EPE) 、 テトラフルォロエチレン 一エチレン共重合体 (ETFE) 、 ポリクロロトリフルォロェチレン
(PCTFE) 、 クロ口トリフルォロエチレン一エチレン共重合体
(ECTFE) 、 ポリビニリデンフルオリ ド (PVDF) 、 ポリビニルフルオリ ド (PVF) 等のフッ素系樹脂;ポリ塩化ビニル (PVC) 、 ポリ塩化ビニリデ ン (PVDC) 等の塩素系樹脂等。
また、 成形加工性やコスト等の観点から、 上記ステンレス鋼と樹脂とを組み合 わせたモジユールケースも本発明の中空糸膜モジュールに用いることができる。 耐オゾン性、 成形加工性及び機械的強度等の観点から、 モジュールケースの材 質として用いるフッ素系榭脂は好ましくは ETFE、 PVDF, より好ましくは P V D Fであり、 塩素系樹脂は好ましくは P V Cである。 塩素系樹脂はフッ素系 樹脂に比べて一般に耐オゾン性ではやや劣るものの、 モジュールケースはその強 度維持等のために必要な、 ある程度の厚み (l mm〜l O mm) を有しているた めに、 表層部のわずかな劣化がおこっても、 それが使用される条件、 例えば、 ォ ゾン濃度、 温度、 使用期間によっては充分使用可能である。 P V Cは一般に高価 なフッ素系樹脂に比べて安価であり、 力、つ、 機械的強度、 成形加工性に優れてい るため、 本発明のモジュールケースの好ましい材質となり得る。 なお、 P V Cに は硬質及び軟質の種類があるが、 本発明には硬質タイプが使用される。
次に、 中空糸膜の束とモジュールケースとの接着部は、 耐オゾン性に優れるこ とはもちろんのこと、 接着後の機械的強度、 硬度、 中空糸膜の束及びモジュール ケース部との接着強度、 更にはモジュール製造時の加工性等に優れることが必要 である。 例えば、 耐オゾン性に優れるフッ素系樹脂を用いた溶融接着法を適用し た場合、 その樹脂の融点が高いために中空糸膜及びモジュールケースが変形する 虞がある。 また、 無機系接着剤の中にも耐オゾン性に優れるものもあるが、 耐水 性又は加工性に劣る等の欠点を有しているため、 本発明における接着部に使用す ることは難しい。
本発明者らは、 接着剤としての必要な要件を充分に考慮し、 硬化挙動と硬化物 の特性について検討した結果、 シリコーン系樹脂が本発明における接着部用の材 料として最も優れていることを見い出した。
本発明においてシリコーン系樹脂は、 シリコーンゴムをも包含する。 シリコー ン系樹脂は、 低温での硬化が可能であり、 接着性、 耐候性が優れると言う点から、 従来より工業分野で接着剤又はシ一ル剤として使用されている。
本発明において接着剤としては、 リコーン系樹脂の中でも液状シリコーンゴム に分類されるものが使用される。 液状シリコーンゴムは、 その硬化機構により縮 合型と付加型とに分類されるが、 本発明においては付加型の方が硬化反応速度の コントロールの容易性、 硬化反応の均質性、 深部硬化性、 副生物の発生の低減、 寸法安定性等の面から好ましい。 付加型であれば、 例えば、 硬化反応速度は、 硬 化温度、 触媒の種類及び量、 反応抑制剤の量等で自由に変化させることができる また、 付加型は縮合型のように硬化に際し空気中の水分等の水の存在は不要であ るため、 硬化反応が表面、 内部とも均質に進行し、 深部硬化性も良好である。 さ らに、 付加型は、 縮合型のように、 水、 アルコール、 酢酸、 ォキシム、 ケトン、 ァミン、 アミ ド、 ヒ ドロキシルァミン等の縮合硬化時の副生物が発生しないので、 寸法安定性が良好で、 線収縮率も比較的小さい。
付加型液状シリコーンゴムは、 ビニル基を有するポリシロキサンと、 S i—H 結合を有するポリシロキサンとを付加反応させて、 シロキサン鎖を架橋により形 成する機構を用いて得られる。 下式 (I ) はその反応式の一例を示す。
S i - C H = C H 2 + H S i - ~ S i - C H 2C H 2- S
I 白余触媒 I 付加型液状シリコーンゴムの硬化触媒としては白金触媒が使用されるが、 この 触媒を失活させるようなァミ ン、 有機リン化合物、 ィォゥ化合物、 有機スズ化合 物等の硬化阻害物質が存在すると硬化不良になる慮があるため、 成形に際しては これらの物質との接触は避けることが望ましい。
また、 耐オゾン性は、 液状シリコーンゴムのベースボリマーの分子量、 ベース ポリマーの含有量及び添加剤の種類とその含有量等により異なるので、 液状シリ コーンゴムの選択にあたりこれらの点を充分に考慮する必要があるとともに、 硬 化前の粘性、 硬化後の機械的特性等をも充分に考慮する必要がある。 耐オゾン性 とベースポリマーの分子量との関係に関しては、 分子量が高い方が耐オゾン性に 優れるので好ましいが、 分子量が高すぎると硬化前の粘度が高くなり、 例えば遠 心接着機を用いてモジュールを作成する際に、 その高粘度のために加工性が悪く なる。 これらの点を考慮すると、 ベースポリマーの重量平均分子量は、 好ましく は 5, 0 0 0〜 3 0 0, 0 0 0、 より好ましくは 1 0, 0 0 0〜 1 0 0, 0 0 0、 さらに好ましくは 2 0, 0 0 0〜6 0, 0 0 0である。 重量平均分子量は粘度法 を用いて測定する。
一方、 上記と同程度の分子量でもチキソトロピック性を有する液状シリコーン ゴムは遠心接着の際に粘度が低下し、 その加工性が向上するので、 高分子量のも のを用いる場合は、 この特性を有することが好ましい。 チキソトロピック性とは、 摇変性ともいわれ、 剪断力の増加により粘度が減少し、 剪断力を取り除くと、 元 の高い粘度を回復するようなレオロジ一挙動である。
遠心接着機を用いてモジュールを作製する際に、 成形加工性の観点から、 硬化 前の粘度は室温で 1 0mP a ' s e c〜2 5 0 P a * s e cであることが好まし く、 1 OmP a · s e c〜 1 0 0 P a · s e cであることがより好ましい。 粘度 は、 回転粘度計を用い J I SK 6 8 3 3に準拠して測定する。 ただし、 チキソト 口ピック性を有する液状シリコーンゴムの粘度は、 J I SZ 8 8 0 3に準拠して 測定する。
また、 液状シリコーンゴムのポリマーの架橋密度が高い方が、 接着部は耐ォゾ ン性に優れる。 この架橋密度は、 液状シリコーンゴムに添加する多官能性架橋剤 の量を変化させることにより制御することができる。
本発明において、 接着剤には、 機械的特性を増すためにシリカ、 カーボンブラ ック、 フッ化カーボン等のフィラーを添加することができる。 この場合、 そのフ ィラ一含量が高すぎると、 ベースポリマ一の含有量の低下から接着性が低下し、 接着部からの水の漏洩等の虞がある。 通常フイラ一含量は、 5〜8 0重量%、 好 ましくは 1 0〜5 0重量%である。
ベースポリマーの側鎖の一部がフッ素化された液状シリコーンゴムは、 耐ォゾ ン性の面で優れており、 本発明において好まし 、接着剤として使用することがで きる。 下式 (2) にその構造式の一例を示す。
C H: C H: C H:
Figure imgf000013_0001
式中、 n, m及び 1は上述のベースポリマーの分子量によって決まる繰返し単 位の数である。
接着部に用いるシリコーン系樹脂を選択する場合、 本発明の中空糸膜モジユー ルに要求される機械的強度及び耐久性の面から、 その硬化後の特性としては、 J I SK 630 1の測定方法で測定した J I S— A硬度が 30以上、 好ましくは 4 0以上、 より好ましくは 50以上であり、 また、 破断強度が 2MPa以上、 好 ましくは 5 MP a以上、 より好ましくは 6MP a以上である。
本発明において接着剤の具体例としては、 例えば、 東芝シリコーン (株) 製の TSE 322、 TSE 322 B、 TS E 322 K TSE 3 2 1 2、 TSE 32 53、 TSE 326、 TSE 333 1、 TSE 3337、 TSE 3033、 TS E 3320及び TS E 33 1 5、 信越シリコーン (株) 製の F E 6 1、 KE 1 2 02、 KE 1 206. KE 1 2 1 6、 KE 1 602、 KE 1 06、 KE 1 09、 KE 1 09 E、 KE 1 204及び KE 1 302、 東レ♦ダウコーニング · シリコ ーン (株) 製の SE 1 7 1 1、 SE 1 750、 SE 1 70 1及び C Y 52 -23 7等が挙げられる。 特に、 TSE 322、 TS E 3337. FE 6 1等が、 もと もとの機械的物性が高い点、 及びオゾンによる物性の低下が少ない点より好まし い。
し力、しな力 ら、 上記のような、 比較的高強度のシリコーンゴムを接着剤として 使用した場合でも、 工業用途に使用する大型のモジュールは、 接着部の厚みにも よる力 接着部で凝集破壊が生じ、 長期間の使用に耐えられない場合がある。 接 着部の厚みを凝集破壊が生じないように充分に厚くすれば、 そのような場合に対 処することができる力 \ 通常用いられる接着剤、 例えば、 エポキシ樹脂、 ウレタ ン樹脂等に比べるとシリコーンゴムは非常に高価であり、 その使用量が多くなれ ば生産コストが大幅に上昇し、 また、 中空糸膜の長さ方向において濾過に寄与し ない部位が多くなり、 膜モジュール当たりの採水量が低下し、 ランニングコスト をアップさせるのでこのような対処法は好ましい方法とは言い難い。
それに対し、 本発明者らは、 中空糸膜とモジュールケースとの接着部内に、 モ ジユールケース内壁に直接固定された補強用リブを設けることにより、 接着部で の凝集破壊を防止できることを見出した。 この方法によれば、 シリコーンゴムの 使用量を減らすことができ、 さらに、 補強用リブのモジュールケースへの固定も、 例えばモジュールケース内壁へのねじ込み固定、 モジュールケース内に設けた切 り欠き部との組み合わせによる固定、 溶着固定、 溶接固定又はモジュールケース と一体成形することにより行うことができる。 かかる固定方法によれば、 補強用 リブを容易に加工することができ、 工業的な用途に適したコストとなり得る。 こ こで、 溶着とは、 モジュールケース内に補強用リブを差し込んだ状態でモジユー ルケースと補強用リブの両方の素材どうしを超音波、 熱又は溶剤により溶融させ、 接着することをいう。 また、 溶接とは、 モジュールケース内に補強用リブを差し 込んだ状態で、 溶接棒等を使用して、 熱により固定する事をいう。
モジュールケースに中空糸膜の束を収納する方法としては、 モジュールケース に補強用リブを固定した後に中空糸膜の束を収納する方法又は少なくとも一方の 補強用リブに中空糸膜の束を設置した後にモジュールケースに中空糸膜の束を補 強用リブごと収納させる方法がある。 後者の方法は、 捕強用リブがねじ込み固定 により固定される場合、 又は切り欠きの組み合わせにより固定される場合に特に 有効である。 また、 中空糸膜の束をモジュールケースに収納する際、 中空糸膜の 束に、 ETFE、 PVDF、 PCTFE、 PTFE、 PVC等のプラスチック又 はステンレス鋼、 チタン等の金属で作られた保護ネッ 卜を巻いてもよい。
本発明において、 補強用リブは全体が接着部内に埋設されていることが好まし い。 それは、 たとえ長期間の使用等によって接着部の接着力が低下しても、 補強 用リブ全体が接着部内に埋設されてレ、れば接着部が破断しない限り、 使用時に接 着部が補強用リブから離脱してしまうという不都合が起こらないからである。 中 空糸膜の開口断面より捕強用リブが突出した構造にするとモジュールを組み立て た後、 中空糸膜の中空部を開口させるために接着固定部を切断機で切断する際に、 補強用リブにより切断機の刃を痛めやすい。 補強用リブがモジュールの内部に飛 び出した構造にすると、 運転中の流体流れによる中空糸膜の揺れで中空糸膜が、 補強用リブの端部等とこすれて、 破損する虞がある。
しかしながら、 補強用リブがモジュ一ルの接着部から突出しているモジュール であっても、 条件によっては使用可能である。 例えば、 補強用リブが樹脂製であ る場合には、 切断機の刃を痛めることはほとんどない。 また、 補強用リブと膜の 材質が同一であれば、 膜の強度によっては、 膜と補強用リブとのこすれによる傷 力くあまり発生しない場合もある。
また、 補強用リブに使用される材料としては、 SUS— 304、 SUS- 30 4 L、 SUS— 3 1 6、 SUS- 3 1 6 L等のステンレス鋼、 ポリテトラフルォ 口エチレン (PTFE) 、 テトラフルォロエチレン一パーフルォロアルキルビニ ルェ一テル共重合体 (PFA) 、 テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体 (FEP) 、 テトラフルォロエチレン一へキサフルォロプロピレ ン—パーフルォロアルキルビニルエーテル共重合体 (EPE) 、 テトラフルォロ エチレン一エチレン共重合体 (ETF E) 、 ポリクロ口トリフルォロエチレン (PCTFE) 、 クロロトリフルォロェチレン—エチレン共重合体
(ECTFE) 、 ポリビニリデンフルオリ ド (PVDF)等のフッ素系樹脂、 ポ リ塩化ビニル (PVC) 、 ポリ塩化ビニリデン (PVDC) 等の塩素系樹脂等が 挙げられる。
さらに、 本発明における、 接着部に設置される補強用リブの形状は、 中空糸膜 モジュールの切断断面方向から見て、 放射状、 格子状、 又は放射状と同心円状と が組み合わされた形状であることが好ましい。 かかる形状の補強用リブをモジュ 一ルケ一ス内に配置、 固定し、 さらに、 補強用リブを中空糸膜の繊維軸方向に対 して平行な平板状とすれば、 結果として補強用リブにより分割された中空糸膜の 各々の束の充填本数及び充塡密度がほぼ同一となり、 また、 充填本数を增やすこ とが可能となるので好ましい。 さらに、 上記捕強用リブに複数の貫通穴を開口さ せれば、 補強用リブとシリコーン系榭脂との接着固定がより強固になるので、 よ り好ましい。
補強用リブ 1とモジュールケース 3の内壁に設けた切り欠き部 2との組み合わ せによる固定の例を図 1及び図 2に、 補強用リブ 1の断面形状の例を図 3〜図 7 に示す。
本発明の中空糸膜モジュールは、 中空糸膜の中空部に原水を供給し、 膜の内表 面側から外表面側へ向かつて濾過を行う内圧濾過方式又は中空糸膜の外表面から 原水を供給し、 膜の外表面から内表面側へ向かつて濾過を行う外圧濾過方式の L、 ずれにも使用可能である。 内圧濾過方式の場合、 モジュールの単位断面積当たり の、 原水が流れる流路の面積が、 外圧濾過方式に比べて小さくなるので、 同じ線 速を維持するために必要な動力が小さくて済むという利点がある力 <、 中空糸膜開 口部の閉塞を生ずることがあるので、 高度な前処理を行わないのであれば、 内圧 濾過方式は、 濁度が 5 N T U以下、 好ましくは 3 N T U以下の原水の処理に制限 される。 これに対し、 外圧型濾過方式は、 高濁度の原水の処理においても適用可 能である。 外圧濾過方式の膜モジュールは、 多数本の中空糸膜をモジュールケー スに接着固定し、 接着部に原水及び Z又は気体を供給するための複数の開口を設 けている。
本発明の外圧濾過方式のモジユールの断面図の例を図 8〜 1 3に示す。
従来の外圧濾過方式のモジュールには、 図 1 6、 1 7に示すように中空糸膜 4 の長手方向に対して、 垂直に原水供給ノズル 7が設けられており、 原水は、 糸束 の外周部から中心に向かって流れ、 それから、 糸束の長手方向に向かって流れる そのため大量の水処理用途に使用される大口径のモジユールでは、 中空糸膜の束 の径が大きくなるため、 膜束の径方向に圧力損失を生じ、 糸束全体が均等に濾過 に寄与できなくなり、 濾過水量の経時的低下が起こる。 特にオゾンを原水に添加 し、 濾過水量を大幅に向上させたモジュールでは、 この影響が大きい。 また、 中 空糸膜の束内に堆積した懸濁物質を排出するためにエアレーシヨンフラッシング という操作を行っても、 従来のモジュール構造では、 ノズルと 1 8 0度反対の方 向や糸束の中心部に蓄積した懸濁物質を除去する効果が低く、 特に、 オゾンを原 水に添加した水を濾過する場合には、 無機系の懸濁物質が多く膜に付着するため、 エアレーションフラッシングの効果が高いモジュール構造にする必要がある。 こ こでいうエアレーシヨンフラッシングとは、 膜表面に堆積した懸濁物質、 及び Z 又は中空糸膜間に蓄積した懸濁物質をエアレーシヨンによりはぎ取り、 さらにフ ラッシングにより、 その堆積物及び Z又は蓄積物を系外、 すなわちモジュール外 又は装置外に排出する操作をいう。 エアレ一シヨンとフラッシングとを順次行つ てもよいし、 同時に行ってもよい。
接着部に設けられる開口の断面形状としては、 円形、 楕円形、 扇形、 三角形、 四角形、 六角形、 スリット状等が挙げられる。 特に、 円形、 楕円形の断面形状を 有しているものが、 開口断面積当たりの接液表面積が最小となり、 流体の圧力損 失が小さくなるため、 好ましい。
また、 接着部に設けられる開口の数が多いほどモジュール内の懸濁物の蓄積が 起こりにくいが、 その一方でモジュール内に充塡可能な中空糸膜の充塡本数が少 なくなり、 その分透過水量が減少する。 開口の数は、 モジュールの直径や開口の 形状によって異なる力く、 例えば、 3インチ径のモジュールでは 3〜3 0個、 5ィ ンチ径のモジュールでは 4〜8 0個程度である。
接着部に設けられた開口の開口面積率は下記の数式 (3 ) で表され、 1 0〜4 0 %、 好ましくは、 1 5〜3 5 %である。 S
= X 1 0 0 ( 3 )
R >τ X M
ここで、 Kは開口面積率、 Sは開口 1個の断面積、 Nは開口の個数、 Rは中空 糸膜の外半径、 そして Mは中空糸膜の本数である。
濾水の集水方式は、 片端集水方式又は両端集水方式の両方が使用できる。 片端 集水方式では、 図 8〜1 3に示すように中空糸膜 4の一端は中空糸が開口した状 態で接着され、 他端は接着剤により密封されている。 原水及び 又は気体を供給 するための開口は、 中空糸膜が接着剤で密封された接着部 5 ' に設けられる。 両 端集水方式では、 図 1 4及び 1 5に示すように中空糸膜が、 両端とも開口した状 態で接着され、 モジュールの下端には、 濾水の集水室 1 1とそれを囲んだスカー ト状カバー 1 2があり、 集水室 1 1の濾水を上端に抜き出すための集水管 1 3が 設けられている。 下端接着部に設けられた開口 6は、 モジュールケース側面の貫 通穴を通りスカー卜状カバ一 1 2とモジュールケース 3との隙間に連通されてい る。
本発明の接着部 5及び 5 ' に設けられている開口 6は、 好ましくは中空糸膜の 束の内部に設けられる。 これにより、 モジュールに供給される原水及び Z又は気 体は、 中空糸膜全体に均一に行き渡り、 力、つ、 中空糸膜どうしの隙間に懸濁物質 の堆積が起こりにく くなり、 長期間安定した濾過水量が得られる。 この開口が中 空糸膜の束の外側に設けらると、 モジュールに供給された原水及び/又は気体に 偏流が起こり易くなり、 その結果中空糸膜の束の内部に懸濁物質の蓄積が起こり 易くなり、 有効な膜面積が減少し、 透過水量の低下という問題を引き起こす虞が あな
また、 本発明の接着部 5及び 5 ' に設けられている開口 6は、 好ましくはその 開口端面がモジユール内側の接着部界面と同一面になるように設けられる。 これ により中空糸膜の接着部界面近傍の懸濁物質の蓄積が抑えられ、 長期間安定した 濾過水量が得られる。 この開口端面が接着部界面よりモジュール内側に飛び出し ている場合は、 開口端面より下側の部分で流れが滞留し易く、 また、 気体は侵入 することが難しくなるため、 中空糸膜の束の内部に懸濁物質の蓄積が起こり易く なり、 その結果、 有効な膜面積が減少し、 透過水量の低下という問題を引き起こ す虞がある。
また、 使用される中空糸膜の機械的強度が弱い場合には、 濾過運転中に中空糸 膜の破損という問題が発生する場合がある。 運転中に発生する膜破損部位は、 中 空糸膜両端の接着部の界面付近で発生することが多い。 本発明のモジュールにお いても、 中空糸膜の破損を防ぐために中空糸膜の片端又は両端に円筒状の整流筒 を設けてもよい。 整流筒の素材としては、 モジュールケースの部材と同様に、 ス テンレス鋼、 フッ素系樹脂又は塩素系樹脂が好ましく使用できる。
接着部に設けられている開口は、 まず中空糸膜の端部に開口形成用治具をセッ 卜し、 中空糸膜と一緒にモジュールケースの内側に接着剤で接着固定する。 この 時、 開口形成用治具の端面が接着部界面よりもモジュールの内側に飛び出すよう にセッ卜する。 その後、 不要な接着部端部を切断した後、 又は切断せずにそのま ま、 接着部内に残った開口形成用治具を取り除くことにより開口が形成される。 開口形成用治具としては、 接着剤が含浸せず、 剝離性が良く、 接着時の温度に 耐える素材であればいずれでもよい。 例えば、 紙、 又はボリエチレン、 ポリプロ ピレン、 ポリエステル、 フッ素系樹脂、 塩素系樹脂、 ゴム等の樹脂類、 又はステ ンレス鋼、 アルミニウム等の金属類に剝離性に優れたフッ素榭脂をコーティング したもの等が用いられる。 該治具は、 外形が開口の形状と同じであれば、 中空状 であっても又は中空でなくてもょ 、が、 中空状の方が切断時や取り除く時に操作 が容易なので好ましい。
本発明のモジュールは、 配管に接続して使用するラック型だけでなく、 外郭ケ 一シングゃタンクに収納して使用される力一トリッジ型のモジュールも包含する 次に、 本発明のモジュールの標準的な運転方法について図 8及び図 1 0を用い て説明する。 まず、 濾過運転モードでは、 被処理水であるオゾンを含有した原水を原水供給 ノズル 7から供給する。 原水は、 接着部 5 ' に設けられた接着部開口 6を通り、 中空糸膜 4の外表面で原水中の懸濁物質が捕捉され、 濾水は、 中空糸膜の中空部 を通って上部の濾水採水ノズル 8より採取される。 一方、 中空糸膜により濃縮さ れた循環濃縮水は、 循環濃縮水排出ノズル 9又は排出口 1 0力、ら排出される。 次に、 逆洗運転モードでは、 濾水を逆洗水として用い、 濾水採水ノズル 8から 逆洗水を供給し、 中空糸膜の内表面側から外表面側に向かって濾過し、 逆洗排水 は、 循環濃縮水排出ノズル 9若しくは排出口 1 0、 及び Z又は、 接着部開口 6を 経て原水供給ノズル 7より排出される。
さらに、 エアレーンヨンフラッシングモードでは、 コンプレッサー等により、 実質的に原水に溶解しない量のガス、 例えば原水供給量の 5 0〜2 0 0 %の体積 流量の空気を原水に混入し、 気 ·液混相流として、 これを原水供給ノズル 7を経 て接着部開口 6から供給し、 洗浄排水を循環濃縮水排出ノズル 9又は排出口 1 0 から排出する。
本発明の膜モジュールを使用して、 以上の運転モードを適宜繰り返すことによ り、 原水が中空糸膜に対し平行力、つ糸束全体に渡って均一な流れとなり、 外圧式 クロスフロー方式の効果をより顕著に発現させることができる。 さらに、 逆洗や エアレーシヨンフラッシングによって膜外表面や膜どうしの隙間に蓄積した懸濁 物質をモジュール外に排出し易くなり、 透過水量の経時的な低下を抑えた、 より 安定した濾過を長期間に渡って、 接着部を損傷せずに達成することができる。
例 1 (本発明)
中空糸膜として、 J P— A— 3— 2 1 5 5 3 5に開示されている方法により作 製した、 外径 2 mm、 内径 l mm、 気孔率 6 6 %、 電子顕微鏡写真により計算さ れた外表面、 内表面及び断面の平均孔径から求めた外表面の平均孔径と断面の平 均孔径の比及び内表面の平均孔径と断面の平均孔径の比がそれぞれ 1 . 7 5及び 0 . 8 5であり、 またェアフロ一法による平均孔径が 0 . 2 5〃m、 バブルボイ ント法による最大孔径が 0 . 3 5 mであり、 最大孔径と平均孔径の比がし 4 であり、 透水量が 2 4 0 0 リッ トル Zm2 '時 · 1 0 0 k P a ( 2 5。C) であり、 破断強度 1 5 M P a、 破断伸度 2 8 0 %である P V D F膜を 3 5 0本束ね、 この 膜束を 6束用意した。
次に、 外径 1 4 0 mm, 長さ 1 1 0 0 mmのステンレス鋼製モジュールケース の片側端部に内ネジ加工を施した。 また、 図 3に示すようなステンレス鋼製の補 強用リブの側面に外ネジ加工を施し、 上記モジュールケースに補強用リブをねじ 込み固定した。
モジュールケース内の補強用リブで分割された 6力所の空間に、 中空糸膜の束 6束をそれぞれ収納し、 両側端部に接着治具を取り付け、 付加型液状シリコーン ゴム (東芝シリコーン (株) 製: T S E 3 2 2 ) により、 中空糸膜と補強用リブ が固定されたモジュールケースとを接着固定した。 また、 補強用リブを設置して いない側端部には外径 1 0 mm、 長さ 5 5 mmの高密度ポリエチレン製のチュー ブ状物を 1 9本、 中空糸膜束内に均一に分布するように配置し、 接着を行った。 シリコーン接着部が充分硬化した後、 補強用リブが設置された側 (濾水採水側) は中空部を開口させるために、 他方の側は、 1 9本のチューブ状物を取り除くた めに中空糸膜の束を切断し、 1 9力所のチューブ状物を取り除くことにより原水 供給のための開口を 1 9力所、 接着部に開口させ、 図 8に示すような、 本発明の 中空糸膜モジュールの作成を完了した。 この時、 補強用リブは接着部端面に突出 しておらず、 完全に埋設されていた。
以上のように作成した中空糸膜モジュ一ルにェタノ一ルで親水化処理を施した 後、 純水で膜中のエタノールを置換した。
水で置換した後の中空糸膜モジュールを評価機に、 原水供給ノズル及び循環濃 縮水排出ノズルを装置の配管につなぎ込み、 濾水採水ノズルを配管継ぎ手を取り 付けない状態で水温 2 6 °Cの純水により、 供給圧力 5 0 0 k P aで加圧 ·濾過を 行った。 歪みゲージにより、 接着部の変形状況を確認したところ、 補強用リブで 分割された 6力所の部位のそれぞれの中心部において、 およそ 1 mmの膨らみが 観察された。 また、 補強リブが埋設されている部分近傍では、 膨らみは観察され なカヽつた。
次に、 濾水採水ノズルにも配管をつなぎ、 濁度 3〜1 2の河川水を原水として、 供給圧力 3 0 0 k P a、 逆洗圧力 4 5 0 k P aで濾過 ·逆洗の繰り返しを 3 0, 0 0 0回行った。 この際、 濾水のオゾン濃度が 0 . 3 p p mとなるように、 原水 中にオゾンガスを添加し、 さらに 1, 0 0 0サイクル毎にエアレーシヨンフラッ シングを行った。 上記、 繰り返し試験を終了後、 接着部を観察したが、 接着部の 変形は発生しておらず、 また、 接着部の亀裂も観察されなかった。 さらに、 気密 試験によってリ一クの有無について観察したが、 接着部からのリークは観察され なかった。 なお、 気密試験は、 モジュールを水中に浸漬し、 膜のバブルポイント の 1 Z 2の空気圧を加え、 接着部からの空気のリークをチ ックする方法により 行った。
例 2 (本発明)
中空糸膜として、 J P— A _ 3 - 2 1 5 5 3 5に開示されている方法により作 製した、 外径 1 . 3 mm、 内径 0 . 7 mm、 気孔率 6 8 %、 電子顕微鏡写真によ り計算された外表面、 内表面及び断面の平均孔径から求めた外表面の平均孔径と 断面の平均孔怪の比及び内表面の平均孔径と断面の平均孔径の比がそれぞれ 1 . 7 5及び 0 . 8 5であり、 またエアフロー法による平均孔径が 0 . 2 5 m、 バ ブルポイント法による最大孔径が 0 . 3 5 mであり、 最大孔径と平均孔径の比 力く 1 . 4であり、 透水量が 2 4 0 0 リッ トル Zm 2 ·時 · 1 0 0 k P a ( 2 5 °C) であり、 破断強度 1 7 M P a、 破断伸度 2 4 0 %である P V D F膜を 4 0 0本束 ね、 この膜束を 4束用意した。
次に、 外径 8 9 mm, 長さ 1 1 0 0 mmの P V D F製モジュールケースの片側 端部内に、 図 5に示すような P V D F製の補強用リブを設置し、 溶接固定した。 上記の中空糸膜束 4束をモジユールケースの補強用リブで分割された 4力所の 空間にそれぞれ収納し、 両側端部に接着治具を取り付け、 付加型液状シリコーン ゴム (東芝シリコーン (株) 製: T S E 3 3 3 7 ) により、 中空糸膜と補強用リ ブが固定されたモジュールケースとを接着固定した。 また、 補強用リブを設置し ていない側端部に取り付けた接着治具としては、 外径 1 0 mm、 長さ 4 5 mmの アルミニウム製の円柱状物がアルミニウム製の円盤に 5力所取り付けられ、 表面 をテフロンコーティングしたものを使用した。
シリコーン接着部が充分硬化した後、 補強用リブが設置された側 (濾水採水側) は中空部を開口させるために切断し、 他方の側は、 接着治具を取り外し、 5力所 の開口を接着部に開口させ、 図 9に示すような本発明のカートリッジ型の中空糸 膜モジュールの作成を完了した。 この時、 補強用リブは接着部端面に突出してお らず、 完全に埋設されていた。
以上のように作成した、 中空糸膜モジュールをステンレス鋼製のタンクに収納 し、 エタノールで親水化処理を施した後、 純水で膜中のエタノールを置換した。 水で置換した後、 タンク下部に原水供給配管を、 タンク側面上部に濃縮水排出 管を取り付け、 濾水採水側は、 配管を取り付けない状態で水温 2 5 °Cの純水によ り、 供給圧力 5 0 0 k P aで加圧 ·濾過を行った。 歪みゲージにより、 接着部の 変形状況を確認したが、 補強用リブで分割された 4力所の部位のそれぞれの中心 部及び補強リブが埋設されている部分のいずれにも変形は観察されなかった。 次に、 濾水採水ノズルにも配管をつなぎ、 濁度 3〜1 2の河川水を原水として、 供給圧力 3 0 0 k P a、 逆洗圧力 4 5 0 k P aで濾過 ·逆洗の繰り返しを 4 0, 0 0 0回行った。 この際、 濾水中のオゾン濃度が 0 . 3 p p mとなるように、 原 水中にオゾンガスを添加し、 さらに、 1, 0 0 0サイクル毎にエアレーシヨンフ ラッシングを行った。 上記、 繰り返し試験を終了後、 接着部を観察したが、 特に 変化はなかった。 さらに、 気密試験によってリークの有無について観察したが、 接着部からのリークは観察されなかった。 なお、 気密試験は、 モジュールを水中 に浸漬し、 膜のバブルポイントの 1 2の空気圧を加え、 接着部からの空気のリ ークをチェックする方法により行った。
例 3 (本発明)
例 1で用いたのと同じ中空糸膜を 3 0 0本に束ね、 この膜束を 7束用意した。 次に、 外径 1 4 0 mm、 長さ 1 1 0 0 mmの P V C製モジュールケースの両側 端部内壁に、 図 1に示すような切り欠きを設けた。 また、 図 4に示すような断面 形状を有するステンレス製のリブ外周に、 上記モジュールケースの内周の切り欠 きに対応するように切り欠き加工を施した。 モジュールケースの片側端部に、 あ らかじめ切り欠きのついた図 4に示す補強用リブを取り付け、 その後、 図 4に示 す補強用リブの 7力所の空間に上記の 7束の膜束を収納した状態で他方の側端部 からモジュールケースに収納し、 切り欠きを合わせ、 モジュールケースから外れ ないようにした。 両側端部に接着治具を取り付け、 付加型液状シリコーンゴム (信越シリコーン (株) 社製: F E _ 6 1 ) により、 中空糸膜、 補強用リブ及び モジュールケースとを接着固定した。
接着部が充分硬化した後、 両側の中空糸膜の中空部を開口させるために切断し、 膜モジュールの両側端部にキヤップを取り付けた。
以上のように作成した中空糸膜モジュ一ルにェタノ一ルで親水化処理を施した 後、 純水で膜中のエタノールを置換した。
水で置換した後の中空糸膜モジユールを評価機に取り付け、 内圧濾過方式によ り、 濁度 1〜3の河川水を原水として、 供給圧力 3 0 0 k P a、 逆洗圧力 5 0 0 k P aで濾過 ·逆洗の繰り返しを 3 0 , 0 0 0回行った。 この際、 濾水中のォゾ ン濃度が 0 . 4 p p mとなるように、 原水中にオゾンガスを添加した。
上記繰り返し試験を終了後、 接着部を観察したが、 接着部の変形は発生してお らず、 また、 接着部の亀裂も観察されなかった。
さらに、 上記モジュールの気密試験を行い、 リークの有無について観察したが、 接着部からのリークは観察されなかった。 なお、 気密試験は、 モジュールを水中 に浸漬し、 膜のバブルポイントの 1 2の空気圧を加え、 接着部からの空気のリ ークをチェックすることにより行った。
例 4 (比較)
モジュールケースに補強用リブを取り付けない以外は、 例 1 と同様の条件で中 空糸膜モジユールの作成を行なつた。
上記、 中空糸膜モジュールにエタノールで親水化処理を施した後、 純水で膜中 のエタノールを置換した。
水で置換した後の中空糸膜モジュールを評価機に、 原水供給ノズル及び循環濃 縮水排出ノズルを装置の配管につなぎ込み、 濾水採水ノズルを配管継ぎ手を取り 付けない状態で水温 2 6 °Cの純水により、 供給圧力 5 0 O k P aで加圧 ·濾過を 行った。 歪みゲージにより、 接着部の変形状況を確認したところ、 中心部でおよ そ 6 mmの膨らみが観察された。
今度は、 濾水採水ノズルにも配管をつなぎ、 濁度 3〜1 2の河川水を原水とし て、 供給圧力 3 0 0 k P a、 逆洗圧力 4 5 0 k P aで濾過 '逆洗の繰り返しを 3 0, 0 0 0回行った。 この際、 濾水中のオゾン濃度が 0 . 3 p p mとなるように、 原水中にオゾンガスを添加し、 さらに、 1, 0 0 0サイクル毎にエアレ一シヨン フラッシングを行った。 上記、 繰り返し試験を終了後、 接着部を観察したところ、 接着部の中央部に、 中空糸膜束を含む一部分が盛り上がった状態で凝集破壊を起 こしていた。 また、 その破壊部分を起点として、 接着部の亀裂が 3ケ所確認され た。
例 5 (比較)
モジュールケースに補強用リブを取り付けない以外は、 例 2と同様の条件で中 空糸膜モジュ一ルの作成を行つた。
上記、 中空糸膜モジュールにエタノールで親水化処理を施した後、 純水で膜中 のエタノールを置換した。
水で置換した後、 タンク下部へ原水供給配管を、 タンク側面上部に濃縮水排出 管を取り付け、 濾水採水側は、 配管を取り付けない状態で水温 2 5 °Cの純水によ り、 供給圧力 5 0 0 k P aで加圧 ·濾過を行った。 歪みゲージにより、 接着部の 変形状況を確認したところ、 中心部でおよそ 3 mmの膨らみが観察された。
今度は、 濾水採水ノズルにも配管をつなぎ、 濁度 3〜 1 2の河川水を原水とし て、 供給圧力 3 0 0 k P a、 逆洗圧力 4 5 0 k P aで濾過 ·逆洗の繰り返しを 4 0 , 0 0 0回行った。 この際、 濾水中のオゾン濃度が 0 . 3 p p mとなるように、 原水中にオゾンガスを添加し、 さらに、 1, 0 0 0サイクル毎にエアレーシヨン フラッシングを行った。 上記、 繰り返し試験を終了後、 接着部を観察したところ、 接着部の一部 (全周の半分程度) 力く、 モジュールケースから抜けていた。
例 6 (比較)
モジュールケースに補強用リブを取り付けな 、以外は、 例 3と同様の条件で中 空糸膜モジユールの作成を行つた。
上記中空糸膜モジュールにエタノ一ルで親水化処理を施した後、 純水で膜中の エタノールを置換した。
水で置換した後の中空糸膜モジユールを評価機に取り付け、 内圧濾過方式によ り、 濁度 1 〜 3の河川水を原水として、 供袷圧力 3 0 0 k P a、 逆洗圧力 5 0 0 k P aで濾過 '逆洗の繰り返しを 3 0, 0 0 0回行った。 この際、 濾水中のォゾ ン濃度が 0 . 4 p p mとなるように、 原水中にオゾンガスを添加した。
上記繰り返し試験を終了後、 モジュールを評価機から取り外し、 接着部を観察 したところ、 接着部の外周部 (モジュールケースの壁面からおよそ 1 O mmの部 分) で 2 Z 3周にわたって凝集破壊を生じていた。
産業上の利用可能性
本発明の中空糸膜モジュールは、 長期にわたるオゾン含有水の膜濾過処理及び オゾン含有水による繰り返し洗浄 (逆洗を含む) を可能とするため、 オゾンを用 いた水処理分野、 特に上水道分野等へ与える効果は極めて大き 、。

Claims

請 求 の 範 囲
1. モジュールケースと該モジュールケースに少なくとも一方の端部で接着固 定された複数本の中空糸膜からなる中空糸膜の束とからなる中空糸膜モジュール であって、 中空糸膜の束とモジュールケースとの接着部がシリコーン系樹脂から なり、 該接着部の少なくとも一方に接着部を補強するための補強用リブがモジュ 一ルケースに直接固定されている中空糸膜モジュール。
2. 補強用リブがモジュールケースに、 ねじ込み、 モジュールケース内に設け た切り欠き部との組み合わせ、 溶着及び溶接からなる群より選ばれる一つの手段 により固定されている力、、 又は補強用リブがモジュールケースと一体成形されて いる請求項 1に記載の中空糸膜モジュール。
3. 補強用リブの、 中空糸膜モジュールの長さ方向に対して垂直な断面が、 放 射形状、 格子形状又は放射形状と同心円形状とが組み合わされた形状である請求 項 1又は 2に記載の中空糸膜モジユール。
4. 補強用リブが、 中空糸膜モジュールの長さ方向に対して平行に配置された、 一枚の平板又は複数枚の平板の組合せであり、 かつ、 その平板上に複数の貫通穴 を有している請求項 1〜3のいずれか一項に記載の中空糸膜モジュール。
5. 補強用リブ全体が接着部内に埋設されている請求項 1〜 4のいずれか一項 に記載の中空糸膜モジユール。
6. モジュールケースと補強用リブとがステンレス鋼、 フッ素系樹脂、 塩素系 樹脂の 、ずれか、 またはそれらの組み合わせにより構成されている請求項 1〜 5 のいずれか一項に記載の中空糸膜モジュール。
7. 中空糸膜がフッ素系樹脂からなる請求項 1〜 6のいずれか一項に記載の中 空糸膜モジュール。
8. 中空糸膜の束とモジュールケースとの接着部が液状シリコーンゴムを硬化 させて得られるシリコーン系樹脂からなる請求項 1〜 7のいずれか一項に記載の 中空糸膜モジュール。
9. 中空糸膜の束とモジュールケースとの接着部が付加型液状シリコーンゴム を硬化させて得られるシリコーン系樹脂であって、 硬化前の粘度が 1 O m P a · s e c〜250 P a * s e cであり、 かつ、 硬化前の重量平均分子量が 5, 00 0〜300, 000の範囲にある、 請求項 〜 8のいずれか一項に記載の中空糸 膜モジュール。
10. 中空糸膜の束とモジュールケースとの接着部が付加型シリコーンゴムを硬 化させて得られたシリコーン系樹脂であって、 硬化後の J I SK 630 1の測定 方法による J I S— A硬度が 30以上であり、 引張り破断強度が 2 MP a以上で ある請求項 1〜9のいずれか一項に記載の中空糸膜モジュール。
PCT/JP1996/002699 1995-09-21 1996-09-19 Module a membranes a fibres creuses WO1997010893A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019980702078A KR100246013B1 (ko) 1995-09-21 1996-09-19 중공사막 모듈
DE69636704T DE69636704T2 (de) 1995-09-21 1996-09-19 Hohlfasermembranmodul
EP96931255A EP0855212B1 (en) 1995-09-21 1996-09-19 Hollow fiber membrane module
AU70010/96A AU696221B2 (en) 1995-09-21 1996-09-19 Hollow fiber membrane module
JP51259997A JP3431166B2 (ja) 1995-09-21 1996-09-19 中空系膜モジュール
US09/043,963 US6331248B1 (en) 1995-09-21 1998-03-20 Hollow fiber membrane module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/242758 1995-09-21
JP24275895 1995-09-21
JP29400295 1995-11-13
JP7/294002 1995-11-13

Publications (1)

Publication Number Publication Date
WO1997010893A1 true WO1997010893A1 (fr) 1997-03-27

Family

ID=26535911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002699 WO1997010893A1 (fr) 1995-09-21 1996-09-19 Module a membranes a fibres creuses

Country Status (8)

Country Link
US (1) US6331248B1 (ja)
EP (1) EP0855212B1 (ja)
JP (1) JP3431166B2 (ja)
KR (1) KR100246013B1 (ja)
CN (1) CN1102425C (ja)
AU (1) AU696221B2 (ja)
DE (1) DE69636704T2 (ja)
WO (1) WO1997010893A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044928A4 (en) * 1998-11-05 2001-01-24 Asahi Chemical Ind WATER TREATMENT PROCESS
WO2003039720A1 (fr) 2001-11-05 2003-05-15 Asahi Kasei Kabushiki Kaisha Module a membranes a fibres creuses
JP2005230814A (ja) * 2004-01-20 2005-09-02 Daicen Membrane Systems Ltd 中空糸型膜モジュールの製造方法
JP2008502465A (ja) * 2004-06-17 2008-01-31 コッホ・メンブラーネ・システムズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 浸漬作業のための膜モジュール
KR100893308B1 (ko) * 2004-06-17 2009-04-15 코흐 멤브라네 시스템즈 게엠베하 침지시킨 상태로 작동하는 맴브레인 모듈
US9802842B2 (en) 2014-01-10 2017-10-31 Asahi Kasei Chemicals Corporation Hollow fiber membrane module and filtering method
US9987595B2 (en) 2011-12-27 2018-06-05 Kolon Industries, Inc. Header for filtration membrane and filtration membrane module comprising the same
WO2018235871A1 (ja) * 2017-06-20 2018-12-27 旭化成株式会社 中空糸膜モジュールおよびろ過方法
EP3450000A1 (en) * 2017-08-18 2019-03-06 Hamilton Sundstrand Corporation High temperature and pressure liquid degassing systems
WO2021131145A1 (ja) * 2019-12-25 2021-07-01 住友電工ファインポリマー株式会社 中空糸膜モジュールの製造方法及び中空糸膜モジュール

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148932B1 (en) 1999-01-29 2005-06-08 Mykrolis Corporation Method for manufacturing hollow fiber membranes
US6802972B1 (en) 1999-01-29 2004-10-12 Mykrolis Corporation Microporous hollow fiber membranes from perfluorinated thermoplastic polymers
DE60033135T2 (de) * 1999-01-29 2007-10-11 Entegris, Inc., Chaska Verfahren zur herstellung eines gesamtthermoplastischen, perfluorierten harz hohlfasernmembran moduls
US6582496B1 (en) 2000-01-28 2003-06-24 Mykrolis Corporation Hollow fiber membrane contactor
KR100816232B1 (ko) * 1999-01-29 2008-03-21 엔테그리스, 아이엔씨. 중공섬유막 접촉기
US6921482B1 (en) 1999-01-29 2005-07-26 Mykrolis Corporation Skinned hollow fiber membrane and method of manufacture
KR20010028598A (ko) * 1999-09-22 2001-04-06 조민호 중공사막 수처리 장치
ES2270976T3 (es) * 2000-01-18 2007-04-16 Asahi Kasei Kabushiki Kaisha Metodo para la purificacion de agua por filtrado por membrana.
US7347937B1 (en) 2000-01-28 2008-03-25 Entegris, Inc. Perfluorinated thermoplastic filter cartridge
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
EP1439898A1 (en) * 2001-11-01 2004-07-28 AKZO Nobel N.V. Treatment of polyaluminium compounds
US6818126B2 (en) * 2002-03-25 2004-11-16 Heritage-Crystal Clean, L.L.C. Filter system
KR100379042B1 (en) * 2002-04-10 2003-04-08 Dongguk Environment Co Ltd Immersion type hollow fiber membrane module
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
KR100646001B1 (ko) * 2002-06-20 2006-11-13 김정학 중공사막 모듈을 이용한 침지형 여과장치 및 시스템
KR100535301B1 (ko) * 2003-05-13 2005-12-08 연세대학교 산학협력단 중공사막 모듈과 중공사막 모듈 제조방법
JP4491691B2 (ja) * 2003-06-17 2010-06-30 旭化成ケミカルズ株式会社 膜カートリッジ、膜分離装置及び膜分離方法
JP4611982B2 (ja) 2003-08-29 2011-01-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション 逆洗方法
EP1687078B1 (en) 2003-11-14 2012-03-14 Siemens Industry, Inc. Improved module cleaning method
KR20050056293A (ko) * 2003-12-10 2005-06-16 주식회사 코오롱 침지형 중공사막 모듈
EP1706699B1 (en) * 2003-12-22 2011-02-09 Entegris, Inc. Exchange device with potted hollow conduits and methods of application
WO2005092799A1 (en) 2004-03-26 2005-10-06 U.S. Filter Wastewater Group, Inc. Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP4857538B2 (ja) * 2004-08-25 2012-01-18 Nok株式会社 中空糸膜モジュール
WO2006026814A1 (en) 2004-09-07 2006-03-16 Siemens Water Technologies Corp. Reduction of backwash liquid waste
EP1799334B1 (en) 2004-09-14 2013-12-11 Siemens Water Technologies LLC Methods and apparatus for removing solids from a membrane module
JP4954880B2 (ja) 2004-09-15 2012-06-20 シーメンス・ウォーター・テクノロジーズ・コーポレーション 連続的に変化する通気
TWI277440B (en) * 2004-12-14 2007-04-01 Asahi Kasei Chemicals Corp Hollow fiber membrane cartridge
SG150505A1 (en) 2004-12-24 2009-03-30 Siemens Water Tech Corp Cleaning in membrane filtration systems
NZ555987A (en) 2004-12-24 2009-08-28 Siemens Water Tech Corp Simple gas scouring method and apparatus
JP4951860B2 (ja) * 2005-01-31 2012-06-13 東洋紡績株式会社 選択透過性膜モジュールの製造方法および選択透過性膜モジュール
WO2006116797A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
CN101287538B (zh) 2005-08-22 2013-03-06 西门子工业公司 使用歧管以减少回洗的水过滤装置
JP2009509731A (ja) * 2005-09-27 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレイション 化学洗浄剤および濾過膜洗浄方法
KR100695573B1 (ko) * 2006-06-22 2007-03-14 (주)필로스 분리막 모듈 및 분리막 모듈 제조방법
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
JP5023738B2 (ja) * 2007-02-28 2012-09-12 富士通株式会社 プリント配線板の製造方法
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR101179351B1 (ko) * 2007-05-22 2012-09-03 아사히 가세이 케미칼즈 가부시키가이샤 중공사막 모듈과 그 제조 방법 및 중공사막 모듈 조립체와 이를 사용한 현탁수의 정화 방법
ES2384694T3 (es) 2007-05-29 2012-07-11 Siemens Industry, Inc. Limpieza de membranas con bomba impulsada por aire
CA2694223C (en) * 2007-07-26 2012-01-31 Fpinnovations Process for treating pulp mill condensates using a hollow fiber contactor
EP2271418B1 (de) * 2008-04-08 2012-01-25 Knappe, Holger Modulare membrangehäuseelemente und verfahren zu deren herstellung
CN102112213B (zh) 2008-07-24 2016-08-03 伊沃夸水处理技术有限责任公司 用于膜过滤模块的框架系统
AU2009282912B2 (en) 2008-08-20 2014-11-27 Evoqua Water Technologies Llc Improved membrane system backwash energy efficiency
FR2936784B1 (fr) * 2008-10-08 2010-10-08 Gaztransp Et Technigaz Cuve a membrane ondulee renforcee
HUE040459T2 (hu) 2009-06-05 2019-03-28 Kolon Inc Üreges szálmembrán-modul modulfoglalattal
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
KR101180722B1 (ko) * 2010-01-28 2012-09-10 웅진코웨이주식회사 중공사막 모듈
WO2011136888A1 (en) 2010-04-30 2011-11-03 Siemens Industry, Inc Fluid flow distribution device
AU2011305377B2 (en) 2010-09-24 2014-11-20 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP5596178B2 (ja) * 2010-12-27 2014-09-24 旭化成ケミカルズ株式会社 吸着分離膜モジュール、吸着分離膜モジュールの製造方法、及び仕切部材
KR101904213B1 (ko) * 2011-03-13 2018-11-21 삼성전자주식회사 충진된 다공성 막
CN102366711A (zh) * 2011-06-29 2012-03-07 苏州顶裕水务科技有限公司 一种带有隔板的中空纤维超滤膜组件
AU2013200833B2 (en) 2011-09-30 2015-09-17 Evoqua Water Technologies Llc Improved manifold arrangement
WO2013049109A1 (en) 2011-09-30 2013-04-04 Siemens Industry, Inc. Isolation valve
SG11201402430SA (en) 2011-11-25 2014-06-27 Central Gippsland Region Water Corp A method for accelerated testing of a membrane module
WO2013130753A1 (en) * 2012-03-01 2013-09-06 Carelton Life Support Systems, Inc. Hollow fiber membrane separator with integral ozone converter
US20150053602A1 (en) * 2012-04-09 2015-02-26 Pritchard Ip Limited Container for water and hollow fibre filter module therefore
EP2866922B1 (en) 2012-06-28 2018-03-07 Evoqua Water Technologies LLC A potting method
WO2014052071A1 (en) 2012-09-26 2014-04-03 Evoqua Water Technologies Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
AU2013101765A4 (en) 2012-09-27 2016-10-13 Evoqua Water Technologies Llc Gas Scouring Apparatus for Immersed Membranes
US9227160B2 (en) * 2013-01-31 2016-01-05 The Boeing Company Gas separation modules and methods for forming
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN103599702A (zh) * 2013-10-31 2014-02-26 天津濮泽科技有限公司 一种多内孔膜制备的管筒式膜组件
US9339770B2 (en) * 2013-11-19 2016-05-17 Applied Membrane Technologies, Inc. Organosiloxane films for gas separations
KR101486884B1 (ko) * 2013-12-16 2015-01-28 주식회사 휴비스 중공사막 고정 및 유체 분배용 캡
KR101486886B1 (ko) * 2013-12-16 2015-01-28 주식회사 휴비스 중공사막 고정 및 유체 분배용 캡
KR101486885B1 (ko) 2013-12-16 2015-01-28 주식회사 휴비스 중공사막 고정 및 유체 분배용 캡
KR101486883B1 (ko) * 2013-12-16 2015-01-28 주식회사 휴비스 중공사막 고정 및 유체 분배용 캡
WO2017011068A1 (en) 2015-07-14 2017-01-19 Evoqua Water Technologies Llc Aeration device for filtration system
WO2017105356A1 (en) * 2015-12-18 2017-06-22 Ak-Kim Kimya Sanayi Ve Ticaret Anonim Sirketi Hollow fiber membrane module
CN108463282B (zh) 2016-01-07 2021-08-17 吉普斯兰中心地区自来水公司 膜分离处理方法
KR102175623B1 (ko) * 2016-08-08 2020-11-06 아사히 가세이 가부시키가이샤 기체 분리용 막 모듈
WO2018146788A1 (ja) * 2017-02-10 2018-08-16 旭化成株式会社 中空糸膜モジュールおよびろ過方法
CN107469626B (zh) * 2017-07-25 2023-04-28 珠海格力电器股份有限公司 滤芯
CN107349790B (zh) * 2017-07-25 2023-05-23 珠海格力电器股份有限公司 滤芯、粘接端头及滤芯的制作方法
CN107433135B (zh) * 2017-07-25 2023-05-23 珠海格力电器股份有限公司 一种滤芯的制作方法
CN109647196A (zh) * 2018-12-04 2019-04-19 天津膜天膜科技股份有限公司 中空纤维膜组件静态浇注工艺及设备
CN111013394B (zh) * 2019-11-15 2022-02-08 河北工业大学 中空平板陶瓷膜mbr反应池及其膜清洗方法
CN115159670A (zh) * 2022-05-25 2022-10-11 宁波建嵘科技有限公司 一种圆柱膜组件与安装有圆柱膜组件的膜单元及运行工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073882A (ja) * 1973-11-02 1975-06-18
JPS5853202U (ja) * 1981-09-30 1983-04-11 株式会社クラレ 中空糸型混合液体分離装置
JPS5895202U (ja) * 1981-12-22 1983-06-28 株式会社クラレ 流体分離装置
JPS60110390A (ja) * 1983-11-21 1985-06-15 Kuraray Co Ltd 無菌水製造装置
JPS61157309A (ja) * 1984-12-28 1986-07-17 Daicel Chem Ind Ltd 中空糸型モジユ−ル
JPS63171606A (ja) * 1986-12-30 1988-07-15 Sumitomo Electric Ind Ltd 高圧用中空糸膜流体分離モジユ−ル
JPS63171607A (ja) * 1986-12-30 1988-07-15 Sumitomo Electric Ind Ltd 中空糸膜端部の封止方法
JPH03131324A (ja) * 1989-10-18 1991-06-04 Asahi Chem Ind Co Ltd 中空糸膜モジュールの製造方法
JPH03165818A (ja) * 1989-08-23 1991-07-17 Asahi Chem Ind Co Ltd 中空糸膜分離モジュールおよび中空糸膜分離装置
JPH04322730A (ja) * 1991-04-22 1992-11-12 Asahi Chem Ind Co Ltd 中空糸膜モジュールケース

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898670A (en) * 1985-06-17 1990-02-06 A/G Technology Corporation Cartridge bonding
JPS6399310A (ja) 1986-10-15 1988-04-30 Tanaka Kikinzoku Kogyo Kk 紡糸口金
JPS6490005A (en) * 1987-10-01 1989-04-05 Asahi Chemical Ind Method for fixing and sealing hollow yarn-type module
JPH01157309A (ja) 1987-12-11 1989-06-20 Yanmar Agricult Equip Co Ltd コンバインの刈取装置
JPH0347271A (ja) * 1989-07-14 1991-02-28 Terumo Corp 液体処理器
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
EP0519132A1 (en) * 1989-10-18 1992-12-23 Exxon Research And Engineering Company Hollow fiber module
FR2655642B1 (fr) 1989-12-11 1992-02-28 Anjou Rech Installation de traitement des eaux par une boucle de filtration tangentielle.
JPH03249927A (ja) 1990-02-28 1991-11-07 Takaoka Electric Mfg Co Ltd スライムの除去方法
JP3276987B2 (ja) * 1992-07-07 2002-04-22 三菱レイヨン株式会社 中空糸膜モジュール
FR2699424B1 (fr) * 1992-12-21 1995-02-03 Dumez Lyonnaise Eaux Module de filtration à fibres creuses et son procédé de fabrication.
JP3315452B2 (ja) * 1993-02-01 2002-08-19 旭化成株式会社 中空糸膜モジュールの製造方法
JP3628035B2 (ja) * 1993-02-19 2005-03-09 旭化成ケミカルズ株式会社 耐オゾン性膜モジュール
JPH06296834A (ja) * 1993-04-20 1994-10-25 Kanegafuchi Chem Ind Co Ltd 中空糸型フィルター
US5622857A (en) * 1995-08-08 1997-04-22 Genespan Corporation High performance cell culture bioreactor and method
JP3575824B2 (ja) * 1994-03-31 2004-10-13 旭化成ケミカルズ株式会社 水処理用耐オゾン性膜モジュール

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073882A (ja) * 1973-11-02 1975-06-18
JPS5853202U (ja) * 1981-09-30 1983-04-11 株式会社クラレ 中空糸型混合液体分離装置
JPS5895202U (ja) * 1981-12-22 1983-06-28 株式会社クラレ 流体分離装置
JPS60110390A (ja) * 1983-11-21 1985-06-15 Kuraray Co Ltd 無菌水製造装置
JPS61157309A (ja) * 1984-12-28 1986-07-17 Daicel Chem Ind Ltd 中空糸型モジユ−ル
JPS63171606A (ja) * 1986-12-30 1988-07-15 Sumitomo Electric Ind Ltd 高圧用中空糸膜流体分離モジユ−ル
JPS63171607A (ja) * 1986-12-30 1988-07-15 Sumitomo Electric Ind Ltd 中空糸膜端部の封止方法
JPH03165818A (ja) * 1989-08-23 1991-07-17 Asahi Chem Ind Co Ltd 中空糸膜分離モジュールおよび中空糸膜分離装置
JPH03131324A (ja) * 1989-10-18 1991-06-04 Asahi Chem Ind Co Ltd 中空糸膜モジュールの製造方法
JPH04322730A (ja) * 1991-04-22 1992-11-12 Asahi Chem Ind Co Ltd 中空糸膜モジュールケース

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044928A4 (en) * 1998-11-05 2001-01-24 Asahi Chemical Ind WATER TREATMENT PROCESS
WO2003039720A1 (fr) 2001-11-05 2003-05-15 Asahi Kasei Kabushiki Kaisha Module a membranes a fibres creuses
JP2005230814A (ja) * 2004-01-20 2005-09-02 Daicen Membrane Systems Ltd 中空糸型膜モジュールの製造方法
JP4526960B2 (ja) * 2004-01-20 2010-08-18 ダイセン・メンブレン・システムズ株式会社 中空糸型膜モジュールの製造方法
JP2008502465A (ja) * 2004-06-17 2008-01-31 コッホ・メンブラーネ・システムズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 浸漬作業のための膜モジュール
KR100893308B1 (ko) * 2004-06-17 2009-04-15 코흐 멤브라네 시스템즈 게엠베하 침지시킨 상태로 작동하는 맴브레인 모듈
US9987595B2 (en) 2011-12-27 2018-06-05 Kolon Industries, Inc. Header for filtration membrane and filtration membrane module comprising the same
US9802842B2 (en) 2014-01-10 2017-10-31 Asahi Kasei Chemicals Corporation Hollow fiber membrane module and filtering method
WO2018235871A1 (ja) * 2017-06-20 2018-12-27 旭化成株式会社 中空糸膜モジュールおよびろ過方法
US11364469B2 (en) 2017-06-20 2022-06-21 Asahi Kasei Kabushiki Kaisha Hollow fiber membrane module and filtering method
EP3450000A1 (en) * 2017-08-18 2019-03-06 Hamilton Sundstrand Corporation High temperature and pressure liquid degassing systems
WO2021131145A1 (ja) * 2019-12-25 2021-07-01 住友電工ファインポリマー株式会社 中空糸膜モジュールの製造方法及び中空糸膜モジュール
JP7476462B2 (ja) 2019-12-25 2024-05-01 住友電工ファインポリマー株式会社 脱気用中空糸膜モジュールの製造方法及び脱気用中空糸膜モジュール

Also Published As

Publication number Publication date
CN1102425C (zh) 2003-03-05
JP3431166B2 (ja) 2003-07-28
AU7001096A (en) 1997-04-09
KR100246013B1 (ko) 2000-03-02
DE69636704T2 (de) 2007-10-18
EP0855212A4 (en) 1999-02-24
AU696221B2 (en) 1998-09-03
EP0855212B1 (en) 2006-11-15
EP0855212A1 (en) 1998-07-29
KR19990063629A (ko) 1999-07-26
DE69636704D1 (de) 2006-12-28
CN1197408A (zh) 1998-10-28
US6331248B1 (en) 2001-12-18

Similar Documents

Publication Publication Date Title
JP3431166B2 (ja) 中空系膜モジュール
JP4371412B2 (ja) 中空糸膜モジュール
JP4932492B2 (ja) 中空糸膜カートリッジ
JP4445862B2 (ja) 中空糸膜モジュール、中空糸膜モジュールユニット及びこれを用いた膜濾過装置と、その運転方法
JP4951860B2 (ja) 選択透過性膜モジュールの製造方法および選択透過性膜モジュール
EP2537807A1 (en) Separation membrane module for processing of oil-containing waste water, method for processing oil-containing waste water, and apparatus for processing oil-containing waste water
AU3837900A (en) Method for purifying turbid water
JP2010253355A (ja) 膜分離活性汚泥処理装置
JP5795459B2 (ja) 浸漬濾過用中空糸膜、これを用いた浸漬濾過用中空糸膜モジュール、浸漬濾過装置、及び浸漬濾過方法
JP2006247540A (ja) 中空糸膜モジュールおよびその運転方法
EP1640057B1 (en) Membrane cartridge, membrane separating device, and membrane separating method
JP2016068046A (ja) 縦置き型外圧型中空糸膜モジュールおよびその運転方法
JP3575824B2 (ja) 水処理用耐オゾン性膜モジュール
JP4437527B2 (ja) 膜ろ過モジュール
JP3628035B2 (ja) 耐オゾン性膜モジュール
JPH11300173A (ja) 中空糸膜モジュール
JP4433276B2 (ja) 中空糸膜ろ過モジュールおよびその洗浄方法
JP2010253354A (ja) 膜分離活性汚泥処理装置
JP2000271454A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
WO2022114222A1 (ja) 中空糸膜モジュールの洗浄方法
JP2000084375A (ja) 中空糸膜モジュ−ルおよび水の処理方法
JP2005342690A (ja) 中空糸膜カートリッジ
JP7213711B2 (ja) 水処理装置および水処理方法
JPH10180053A (ja) スパイラル型膜エレメント
CN116568384A (zh) 中空纤维膜组件的清洗方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197140.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996931255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980702078

Country of ref document: KR

Ref document number: 09043963

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996931255

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702078

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702078

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996931255

Country of ref document: EP