WO1996038893A1 - Freilaufkreis mit einstellbarer aus-verzugszeit - Google Patents

Freilaufkreis mit einstellbarer aus-verzugszeit Download PDF

Info

Publication number
WO1996038893A1
WO1996038893A1 PCT/DE1996/000899 DE9600899W WO9638893A1 WO 1996038893 A1 WO1996038893 A1 WO 1996038893A1 DE 9600899 W DE9600899 W DE 9600899W WO 9638893 A1 WO9638893 A1 WO 9638893A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching transistor
parallel
circuit
coil
diode
Prior art date
Application number
PCT/DE1996/000899
Other languages
English (en)
French (fr)
Inventor
Thomas Schuhbauer
Bernhard Streich
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP96919570A priority Critical patent/EP0829123B1/de
Priority to US08/945,920 priority patent/US5933312A/en
Publication of WO1996038893A1 publication Critical patent/WO1996038893A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1811Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current demagnetising upon switching off, removing residual magnetism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1883Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings by steepening leading and trailing edges of magnetisation pulse, e.g. printer drivers

Definitions

  • the invention relates to a freewheeling circuit with a predefinable OFF delay time for a coil, with the following features:
  • the free-wheeling circuit comprises a series circuit lying parallel to the coil and consisting of a first diode and a voltage-dependent resistor, b) the voltage-dependent resistor is connected in parallel with a first switching transistor, c) there is a parallel connection consisting of a capacitor and a for driving the first switching transistor first ohmic resistance at its control input, d) the parallel connection is simultaneously connected to a control supply voltage source.
  • a generic freewheeling circuit is known from DE 33 17 942 C2.
  • a circuit arrangement for protecting mechanical switching devices by an electronic switch is disclosed here.
  • the mechanical switching devices are in series with ohmic inductive loads fed by direct current.
  • the electronic switch can be controlled by a capacitive memory loaded from the load voltage.
  • the electronic switch is parallel to the load and becomes conductive when the switching device is switched off.
  • the electronic switch has a voltage-dependent resistor in parallel and the parallel connection is in turn parallel to the load.
  • the circuit arrangement acts similarly to a freewheeling diode connected in parallel to the load. As long as a control ⁇ supply voltage source connected to the load, the capacitive accumulator is charged and the electronic switch turned on.
  • Such ohmic inductive loads are e.g. Contactor coils that are supplied with direct current by a control supply voltage source. Depending on the size of the contactor and the contactor coil used, the contactor may fall off, e.g. 100 to 300 msec, which is still relatively slow in view of the requirements. The goal is often to achieve shorter or defined waste times for the shooters.
  • a circuit arrangement for controlling a contactor is disclosed in G 94 09 760.7.
  • Parallel to the contactor coil is a freewheeling branch, which contains a switching transistor and a freewheeling diode in series with it.
  • a freewheel control controls the switching transistor, depending on the voltage form of the control voltage.
  • a device for controlling an electromagnetic consumer includes a series connection of the electromagnetic consumer and a first switching means, a freewheeling circuit for the electromagnetic consumer, which comprises a second switching means, and control means for actuating the switching means.
  • the invention has for its object to provide a free-wheeling circuit of the type mentioned above, with which the magnetic energy of a coil, generally a parallel connected ohmic inductive load, can be reduced from a control supply voltage within a short or defined period after it has been switched off .
  • a freewheeling circuit in the case of shooters, the shooters should have a short or defined fall duration According to the invention this is achieved with the features according to claim 1.
  • the advantage of this freewheeling circuit is its self-controlled effect. It stems from the fact that when switch-off overvoltages occur on the coil, the freewheeling transistor, ie the first switching transistor, is reliably blocked and the current flow is thus commutated to the voltage-dependent resistor.
  • the drawing shows a freewheeling circuit connected in parallel with a coil 1.
  • This parallel connection is connected to a control supply voltage source 8 with a positive pole 13 and a negative pole 14.
  • the freewheeling circuit comprises a series circuit directly parallel to the coil 1, comprising a first diode 2 and a first switching transistor 4, to which a voltage-dependent resistor 3 is connected in parallel.
  • the drain terminal D of the switching transistor 4 is connected to the negative pole 14, its source terminal S is connected to the anode of the first diode 2, which in turn is connected to the positive pole 13 with its cathode terminal.
  • the positive pole 13 is connected to the gate terminal G of the first switching transistor 4 via a third diode 15 and a third ohmic resistor 16 connected in series therewith.
  • a parallel circuit 5 consisting of a first ohmic resistor 7 and a capacitor 6 lies between the source terminal S and the gate terminal G of the first switching transistor 4.
  • the parallel circuit 5 has a first Zener diode 17 and a second switching transistor 9 connected in parallel which with its emitter at the source terminal S and with its collector at the gate terminal G of the first switching transistor 4th is present.
  • the base of the second switching transistor 9 is connected to the negative pole 14 via a series circuit comprising a second ohmic resistor 10, a second Zener diode 11 and a second diode 12, the anode connection of the second diode 12 and the two cathode connections being connected to this the second diode 12 and the second zener diode 11 are connected to one another.
  • the coil 1 is e.g. a contactor coil, which an electronic control 18, as shown, can be connected in series.
  • the control supply voltage source 8 is a direct voltage source with which the coil 1, generally an ohmic inductive load, is supplied. At the same time, a control voltage is applied to the series connection of the first zener diode 17, the first ohmic resistor 7 and the capacitor 6 via the diode 15 and the ohmic resistor 16. This switches the first switching transistor 4 into the conductive state, which is maintained as long as the control supply voltage source 8 is switched on. When the control supply voltage source 8 is switched off, the control voltage from the first switching transistor 4 decreases only slowly after the time constant specified by the parallel circuit 5 until it reaches a value at which the first
  • Switching transistor 4 blocks. To avoid the unstable switching state of the first switching transistor 4 in its linear region, the second switching transistor 9 ensures safe blocking of the first switching transistor 4 operating as a free-wheeling transistor.
  • the diode connection of the second switching transistor 9, consisting of the second ohmic resistor 10, the second Zener diode 11 and the second diode 12, is used in the event of overvoltages on the first switching transistor 4 which occur when the first switching transistor 4 is in the linear range works, the second switching transistor 9th to steer safely and thus short-circuit the gate-source path of the first switching transistor 4 and thus to block it.
  • the voltage-dependent resistor 3 serves to protect the drain-source path of the first switching transistor 4. It reduces the switch-off overvoltages on the coil 1 which occur when the control supply voltage source 8 is switched off and protects the first switching transistor 4 against destruction.
  • the switch-off delay time of the contactor can be set as desired. This only applies up to the maximum switch-off delay period in which the contactor would drop out without circuitry.
  • the circuitry can be adapted to various electromagnetic drives.
  • the freewheeling circuit can also be used for an electronically clocked coil control 18.
  • the freewheeling circuit described here is much simpler and has fewer components.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Relay Circuits (AREA)

Abstract

Die in einer Spule (1) gespeicherte magnetische Restenergie soll durch einen parallel geschalteten Freilaufkreis innerhalb kurzer bzw. definierter Dauer abgebaut werden. Der Freilaufkreis umfaßt eine zur Spule (1) parallel liegende Reihenschaltung aus einer ersten Diode (2) und einem ersten Schalttransistor (4), dem ein spannungsabhängiger Widerstand (3) parallel geschaltet ist. Die Ansteuerung des ersten Schalttransistors (4) erfolgt über eine Parallelschaltung aus einem Kondensator (6) und einem ersten ohmschen Widerstand (7), denen ein zweiter Schalttransistor (9) parallel geschaltet ist. Bei Auftreten einer Abschaltüberspannung an der Spule (1) wird der zweite Schalttransistor (9) durchgesteuert und dadurch der erste Schalttransistor (4) sicher gesperrt, so daß in Folge die Restenergie über den spannungsabhängigen Widerstand (3) abgebaut wird.

Description

Beschreibung
Freilaufkreis mit einstellbarer AUS-Verzugszeit
Die Erfindung bezieht sich auf einen Freilaufkreis mit vor¬ gebbarer AUS-Verzugsdauer für eine Spule, mit folgenden Merkmalen:
a) der Freilaufkreis umfaßt eine parallel zur Spule liegende Reihenschaltung aus einer ersten Diode und einem span¬ nungsabhängigen Widerstand, b) dem spannungsabhängigen Widerstand ist ein erster Schalt- transistor parallelgeschaltet, c) zur Ansteuerung des ersten Schalttransistors liegt eine Parallelschaltung aus einem Kondensator und einem ersten ohmschen Widerstand an dessen Steuereingang, d) die Parallelschaltung liegt gleichzeitig an einer Steuer¬ speisespannungsquelle.
Ein gattungsgemäßer Freilaufkreis ist aus der DE 33 17 942 C2 bekannt. Hier ist eine Schaltungsanordnung zum Schutz von mechanischen Schaltgeräten durch einen elektronischen Schal¬ ter offenbart. Die mechanischen Schaltgeräte liegen mit durch Gleichstrom gespeisten ohmschen induktiven Lasten in Reihe. Der elektronische Schalter ist durch einen aus der Lastspan¬ nung geladenen kapazitiven Speicher steuerbar. Dabei liegt der elektronische Schalter parallel zur Last und wird beim Ausschalten des Schaltgeräts leitfähig. Dem elektronischen Schalter liegt ein spannungsabhängiger Widerstand parallel und die Parallelschaltung liegt wiederum zur Last parallel. Die Schaltungsanordnung wirkt ähnlich wie eine zur Last parallel geschaltete Freilaufdiode. Solange eine Steuer¬ speisespannungsquelle an die Last angeschaltet ist, wird der kapazitive Speicher aufgeladen und der elektronische Schalter durchgesteuert. Sobald die Steuerspannungεquelle von der Last abgetrennt wird, entlädt sich der kapazitive Speicher, was einen Übergang des elektronischen Schalters in den Sperrzu- stand bewirkt. Der aufgrund der gespeicherten magnetischen Energie weiterhin durch die ohmsche induktive Last hindurch¬ fließende Strom wird von dem elektronischen Schalter auf den spannungsabhängigen Widerstand kommutiert, und damit wird die in der Induktivität gespeicherte Restenergie endgültig schnell abgebaut.
Derartige ohmsche induktive Lasten sind z.B. Schützspulen, die durch eine Steuerspeisespannungsquelle mit Gleichstrom versorgt werden. Je nach Größe des Schützes und der dabei verwendeten Schützspule ergeben sich für das Abfallen des Schützes Abfalldauern von z.B. 100 bis 300 msek, was im Hin¬ blick auf die Erfordernisse noch relativ langsam ist. Es besteht vielfach das Ziel, kürzere bzw. definierte Abfall- dauern für die Schütze zu erreichen.
In der G 94 09 760.7 ist eine Schaltungsanordnung zur An- steuerung eines Schützes offenbart. Parallel zur Schützspule liegt ein Freilaufzweig, der einen Schalttransistor und eine dazu in Reihe liegende Freilaufdiode enthält. Eine Freilauf¬ steuerung steuert den Schalttransistor, abhängig von der Spannungsform der Steuerspannung.
Weiterhin ist eine Vorrichtung zur Ansteuerung eines elektro- magnetischen Verbrauchers bekannt (siehe DE 43 21 127 AI) . Diese umfaßt eine Serienschaltung des elektromagnetischen Verbrauchers und eines ersten Schaltmittels, einen Freilauf¬ kreis für den elektromagnetischen Verbraucher, der ein zwei¬ tes Schaltmittel umfaßt sowie Ansteuermittel für die Betäti- gung der Schaltmittel.
Der Erfindung liegt die Aufgabe zugrunde, einen Freilaufkreis der obengenannten Art zu schaffen, mit dem man die magneti¬ sche Energie einer Spule, allgemein einer parallel geschalte- ten ohmschen induktiven Last, nach deren Abschaltung von einer Steuerspeisespannung innerhalb kurzer bzw. definierter Dauer abbauen kann. Der Einsatz eines solchen Freilaufkreises bei Schützen soll eine kurze bzw. definierte Abfalldauer der Schütze ermöglichen. Erfindungsgemäß wird dies mit den Merk¬ malen nach Patentanspruch 1 gelöst. Der Vorteil dieses Frei¬ laufkreises besteht in seiner selbstgesteuerten Wirkung. Sie rührt daher, daß bei Auftreten von Abschaltüberspannungen an der Spule der Freilauftransistor, d.h. der erste Schalttran¬ sistor sicher gesperrt wird und damit der Stromfluß auf den spannungsabhängigen Widerstand kommutiert wird.
Eine vorteilhafte Weiterbildung der Erfindung gibt Anspruch 2 wieder.
Ein Ausführungsbeispiel der Erfindung wird im folgenden an¬ hand einer Zeichnung näher erläutert.
Die Zeichnung zeigt einen zu einer Spule 1 parallel geschal¬ teten Freilaufkreis. Diese Parallelschaltung liegt an einer Steuerspeisespannungsquelle 8 mit einem Pluspol 13 und einem Minuspol 14. Der Freilaufkreis umfaßt eine unmittelbar zur Spule 1 parallel liegende Reihenschaltung aus einer ersten Diode 2 und einem ersten Schalttransistor 4, dem ein span¬ nungsabhängiger Widerstand 3 parallel geschaltet ist. Dabei liegt der Drain-Anschluß D des Schalttranεistors 4 am Minus¬ pol 14, sein Source-Anschluß S ist mit der Anode der ersten Diode 2 verbunden, die wiederum mit ihrem Kathodenanschluß an den Pluspol 13 angeschaltet ist. Der Pluspol 13 ist über eine dritte Diode 15 und einen dazu in Reihe liegenden dritten ohmschen Widerstand 16 mit dem Gate-Anschluß G des ersten Schalttransistors 4 verbunden.
Eine aus einem ersten ohmschen Widerstand 7 und einem Konden¬ sator 6 bestehende Parallelschaltung 5 liegt zwischen dem Source-Anschluß S und dem Gate-Anschluß G des ersten Schalt- transistors 4. Der Parallelschaltung 5 liegt eine erste Zenerdiode 17 und ein zweiter Schalttransistor 9 parallel, der mit seinem Emitter am Source-Anschluß S und mit seinem Kollektor am Gate-Anschluß G des ersten Schalttransistors 4 anliegt. Die Basis des zweiten Schalttransistors 9 ist über eine Reihenschaltung aus einem zweiten ohmschen Widerstand 10, einer zweiten Zenerdiode 11 und einer zweiten Diode 12 an den Minuspol 14 geschaltet, wobei an diesem der Anodenan- schluß der zweiten Diode 12 anliegt und die beiden Kathoden- anschlüsse der zweiten Diode 12 und der zweiten Zenerdiode 11 miteinander verbunden sind.
Die Spule 1 ist z.B. eine Schützspule, der eine elektronische Ansteuerung 18, wie dargestellt, in Reihe geschaltet sein kann.
Die Steuerspeisespannungsquelle 8 ist eine Gleichspannungs- quelle, mit der die Spule 1, allgemein eine ohmsche induktive Last, versorgt wird. Zugleich wird über die Diode 15 und den ohmschen Widerstand 16 die in Reihe liegende Parallelschal¬ tung aus der ersten Zenerdiode 17, dem ersten ohmschen Wider¬ stand 7 und dem Kondensator 6 mit einer SteuerSpannung beauf¬ schlagt. Durch diese wird der erste Schalttransistor 4 in den leitenden Zustand geschaltet, der solange beibehalten wird, wie die Steuerspeisespannungsquelle 8 zugeschaltet ist. Bei Abschalten der Steuerspeisespannungsquelle 8 baut sich die AnsteuerSpannung vom ersten Schalttransistor 4 nach der durch die Parallelschaltung 5 vorgegebenen Zeitkonstante nur lang- sam ab, bis sie einen Wert erreicht, bei dem der erste
Schalttransistor 4 sperrt. Zur Vermeidung des labilen Schalt¬ zustandes des ersten Schalttransistors 4 in seinem linearen Bereich wird durch den zweiten Schalttransistor 9 ein siche¬ res Sperren des als Freilauftransistor arbeitenden ersten Schalttransistors 4 gewährleistet.
Die Diodenbeschaltung des zweiten Schalttransistors 9, beste¬ hend aus dem zweiten ohmschen Widerstand 10, der zweiten Zenerdiode 11 und der zweiten Diode 12 dient dazu, beim Auftreten von Überspannungen an dem ersten Schalttransistor 4, welche entstehen, wenn der erste Schalttransistor 4 im linearen Bereich arbeitet, den zweiten Schalttransistor 9 sicher durchzusteuern und damit die Gate-Source-Strecke des ersten Schalttransistors 4 kurzzuschließen und diesen damit zu sperren.
Der spannungsabhängige Widerstand 3 dient zum Schutz der Drain-Source-Strecke des ersten Schalttransistors 4. Er baut die bei Abschaltung der Steuerspeisespannungsquelle 8 entste¬ henden Abschaltüberspannungen an der Spule 1 ab und schützt den ersten Schalttransistor 4 vor Zerstörung.
Durch Varianten des ersten ohmschen Widerstands 7 und des Kondensators 6 kann die in der Spule 1 gespeicherte Restener¬ gie mehr oder weniger schnell abgebaut werden bzw. bei Anwen¬ dung für eine Schützspule die Ausschaltverzugszeit des Schüt- zes beliebig eingestellt werden. Dies gilt nur bis zur maxi¬ malen Ausschaltverzugsdauer, in der das Schütz ohne Beschal¬ tung abfallen würde.
Durch die Dimensionierung der ersten Diode 2, die auch als Freilaufdiode bezeichnet wird, des ersten Schalttransistors 4 und des spannungsabhängigen Widerstands 3 ist die Beschaltung an verschiedene elektromagnetische Antriebe anpaßbar.
Der Freilaufkreis kann auch für eine elektronisch getaktete Spulenansteuerung 18 verwendet werden.
Gegenüber bisher bekannten Schaltungsanordnungen ist der hier beschriebene Freilaufkreis wesentlich einfacher und mit weniger Bauelementen aufgebaut.
Selbstverständlich läßt sich statt des beschriebenen ersten Schalttransistors 4 und des zweiten Schalttransistors 9 ein anderer Schalttransistortyp verwenden.

Claims

Patentansprüche
1. Freilaufkreis mit vorgebbarer AUS-Verzugsdauer für eine Spule (1) , mit folgenden Merkmalen: a) der Freilaufkreis umfaßt eine parallel zur Spule (1) lie¬ gende Reihenschaltung aus einer ersten Diode (2) und einem spannungsabhängigen Widerstand (3), b) dem spannungsabhängigen Widerstand (3) ist ein erster Schalttransistor (4) parallelgeschaltet, c) zur Ansteuerung des ersten Schalttransistors (4) liegt eine Parallelschaltung (5) aus einem Kondensator (6) und einem ersten ohmschen Widerstand (7) an dessen Steuerein¬ gang (6) , d) die Parallelschaltung (5) liegt gleichzeitig an einer Steuerspeisespannungsquelle (8) , d a du r c h g e k e nn z e i c hn e t , e) der Parallelschaltung (5) ist ein zweiter Schalttransistor (9) parallelgeschaltet ist, und daß f) bei Auftreten einer AbsehaltüberSpannung an der Spule (1) der zweite Schalttransistor (9) durchgesteuert und dadurch der erste Schalttransistor (4) gesperrt wird.
2. Freilaufkreis nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Ansteuerkreis des zweiten Schalttransistors (9) eine Reihenschaltung aus einem zweiten ohmschen Widerstand (10), einer Zenerdiode (11) und einer zweiten Diode (12) enthält, wobei die Zenerdiode (11) und die zweite Diode (12) entgegengesetzt gepolt geschaltet sind.
PCT/DE1996/000899 1995-05-30 1996-05-23 Freilaufkreis mit einstellbarer aus-verzugszeit WO1996038893A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96919570A EP0829123B1 (de) 1995-05-30 1996-05-23 Freilaufkreis mit einstellbarer aus-verzugszeit
US08/945,920 US5933312A (en) 1995-05-30 1996-05-23 Free-wheel circuit with an adjustable off delay time

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19519757A DE19519757C2 (de) 1995-05-30 1995-05-30 Freilaufkreis mit vorgebbarer AUS-Vorzugszeit für eine Spule
DE19519757.7 1995-05-30

Publications (1)

Publication Number Publication Date
WO1996038893A1 true WO1996038893A1 (de) 1996-12-05

Family

ID=7763194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000899 WO1996038893A1 (de) 1995-05-30 1996-05-23 Freilaufkreis mit einstellbarer aus-verzugszeit

Country Status (5)

Country Link
US (1) US5933312A (de)
EP (1) EP0829123B1 (de)
CN (1) CN1080014C (de)
DE (1) DE19519757C2 (de)
WO (1) WO1996038893A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066632A (zh) * 2018-10-18 2018-12-21 广东电网有限责任公司 一种快速灭磁装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19725317B4 (de) * 1997-06-09 2005-06-23 Vickers Systems Zweigniederlassung Der Trinova Gmbh Schaltungsanordnung zur Ansteuerung eines mit Gleichspannung betätigbaren Magnetventiles
JP3926720B2 (ja) * 2002-10-09 2007-06-06 株式会社ケーヒン 励磁制御回路
DE102009043415B3 (de) * 2009-09-29 2010-10-14 Siemens Aktiengesellschaft Freilaufkreis
US8982527B2 (en) 2010-09-28 2015-03-17 Nxp B.V. System and method for driving a relay circuit
CN103887783B (zh) * 2012-12-20 2017-06-13 海洋王(东莞)照明科技有限公司 一种过压保护电路
JP5744144B2 (ja) * 2013-09-26 2015-07-01 三菱電機株式会社 誘導性負荷の給電制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3317942A1 (de) * 1983-05-17 1984-11-22 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung
DE4229440A1 (de) * 1992-09-03 1994-03-10 Bosch Gmbh Robert Schaltungsanordnung zum Ein- und Ausschalten einer elektrischen Last

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8402470D0 (en) * 1984-01-31 1984-03-07 Lucas Ind Plc Drive circuits
DE4321252C2 (de) * 1993-06-25 1996-09-12 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Schützes
DE4321127A1 (de) * 1993-06-25 1995-01-05 Bosch Gmbh Robert Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
JP3018857B2 (ja) * 1993-09-07 2000-03-13 富士電機株式会社 電磁石装置の駆動回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3317942A1 (de) * 1983-05-17 1984-11-22 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung
DE4229440A1 (de) * 1992-09-03 1994-03-10 Bosch Gmbh Robert Schaltungsanordnung zum Ein- und Ausschalten einer elektrischen Last

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066632A (zh) * 2018-10-18 2018-12-21 广东电网有限责任公司 一种快速灭磁装置及方法
CN109066632B (zh) * 2018-10-18 2024-01-23 广东电网有限责任公司 一种快速灭磁方法

Also Published As

Publication number Publication date
DE19519757C2 (de) 1997-04-24
EP0829123B1 (de) 1999-02-03
DE19519757A1 (de) 1996-12-12
US5933312A (en) 1999-08-03
EP0829123A1 (de) 1998-03-18
CN1080014C (zh) 2002-02-27
CN1185240A (zh) 1998-06-17

Similar Documents

Publication Publication Date Title
DE102009043415B3 (de) Freilaufkreis
EP1527470B1 (de) Steueranordnung für einen elektromagnetischen antrieb
EP0756782B2 (de) Gleichstrom-steuerschaltung
EP0287166B1 (de) Schaltungsanordnung zur Begrenzung der Einschaltstromspitzen bei einem Schalttransistor
EP0829123B1 (de) Freilaufkreis mit einstellbarer aus-verzugszeit
DE69822397T2 (de) Vorrichtung zur Steuerung eines Schutzschalters
DE2423258A1 (de) Schaltungsanordnung zur stromversorgung eines induktiven verbrauchers
DE102019116344B3 (de) Schutzvorrichtung
EP0965140B1 (de) Stromgeregelte endstufe für elektromagnetische stellantriebe
DE19747033A1 (de) Elektronische Schalteinrichtung für Magneten
EP1366502B1 (de) Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt
DE10341582B4 (de) Schaltungsanordnung zum schnellen Schalten induktiver Lasten
EP2994929A1 (de) Relais
DE2447199A1 (de) Schaltungsanordnung zur steuerung eines relais
DE69921076T2 (de) Elektronische Steuerschaltung für eine bistabile Betätigungsvorrichtung
EP0489935B1 (de) MOSFET-Schalter für eine induktive Last
EP1203389B1 (de) Beschaltung für ein elektromagnetisches schaltgerät
DE2260011C3 (de)
EP0353533B1 (de) Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten
EP0941550B1 (de) Elektromagnet für magnetventil
DE19725317B4 (de) Schaltungsanordnung zur Ansteuerung eines mit Gleichspannung betätigbaren Magnetventiles
EP0210495B1 (de) Freilaufschaltung
DE2827282A1 (de) Steuervorrichtung
DE2854587A1 (de) Steuerschaltung fuer einen kontaktgeber
CH425948A (de) Schaltungsanordnung zur Ein- und Ausschaltung von Elektromagneten, insbesondere für Werkzeugmaschineneinrichtungen mit grosser Genauigkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194128.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996919570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08945920

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996919570

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996919570

Country of ref document: EP