EP0353533B1 - Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten - Google Patents

Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten Download PDF

Info

Publication number
EP0353533B1
EP0353533B1 EP89113115A EP89113115A EP0353533B1 EP 0353533 B1 EP0353533 B1 EP 0353533B1 EP 89113115 A EP89113115 A EP 89113115A EP 89113115 A EP89113115 A EP 89113115A EP 0353533 B1 EP0353533 B1 EP 0353533B1
Authority
EP
European Patent Office
Prior art keywords
auxiliary voltage
circuit arrangement
diode
voltage
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89113115A
Other languages
English (en)
French (fr)
Other versions
EP0353533A1 (de
Inventor
Joachim Dipl.-Ing. Morsch (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Technology GmbH
Original Assignee
Hydac Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Technology GmbH filed Critical Hydac Technology GmbH
Publication of EP0353533A1 publication Critical patent/EP0353533A1/de
Application granted granted Critical
Publication of EP0353533B1 publication Critical patent/EP0353533B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Definitions

  • the invention relates to an output stage circuit arrangement for the control of working currents in solenoids, in particular for the actuation of continuous valves, with at least one switching element which can be reversed for current control between the blocking and on-state and at least one inductive component which leads to voltages induced by switch-off processes during the switching element transition into the blocking state .
  • Power amplifier circuit arrangements of this type are known and are widely used for both industrial and automotive control purposes. These circuit arrangements are operated with direct voltage, usually with a voltage of 24 volts to ground, which is grounded as a zero reference point. For the operation of such circuit arrangements Auxiliary voltages are required in controller circuits, for example to generate signals for the actual value or status feedback for the controller. Feedback signals of this type are usually symmetrical ⁇ 10 volt signals to the ground, ie to the zero reference point.
  • auxiliary voltage which is negative with respect to ground, cannot be generated directly from the positive supply voltage.
  • DC converters are therefore provided to obtain the auxiliary voltage.
  • the presence of the DC-DC converter consisting of transformer and associated control circuit hinders the desired goal of making the circuit arrangement so compact that it can itself be accommodated on the actuating magnet to be actuated.
  • the object of the invention is to remedy this in a particularly simple, inexpensive to manufacture and compact circuit arrangement.
  • the inductive component is provided as an energy source for obtaining an auxiliary voltage -UH or + UH and is connected to an auxiliary voltage control or regulating circuit via a decoupling device.
  • an inductive component contained in the circuit arrangement which leads to induced voltages during operation, forms the energy source for the auxiliary voltage generation, eliminates the need to provide and accommodate an additional transformer, as is usually the case Auxiliary voltage generation by means of voltage converter circuits is provided.
  • the invention therefore opens up the possibility of integrating the entire electronics together with an associated control valve into a compact structural unit.
  • the excitation winding of the actuating magnet itself is preferably provided as an energy source, that is to say forms the choke, from which at least part of the switch-off energy converted in it is drawn, which is induced during the switch-off processes taking place during operation.
  • the switch-off processes take place e.g. according to the modulation clock frequency.
  • the switch-off energy is reduced in the known circuit arrangements by means of freewheeling diodes.
  • a switching element is provided which is controlled by the auxiliary voltage control or regulating circuit .
  • the switching element is a thyristor, which is converted into the ignition state by the auxiliary voltage control or regulating circuit as soon as the auxiliary voltage removed from the inductive energy source via the decoupling device reaches the desired value.
  • the switch-off energy of the inductive energy source is only derived in this way for the auxiliary voltage generation via the decoupling device until the desired size of the auxiliary voltage is available and the thyristor ignites, after which it behaves like a freewheeling diode of the excitation winding until the Thyristor blocks again at the following zero crossing of the negative induction voltage.
  • a positive auxiliary voltage can be generated.
  • the generation of a positive auxiliary voltage can be particularly expedient if the positive auxiliary voltage is higher than the supply voltage of the circuit arrangement.
  • the higher positive voltages are required in certain applications, for example when using N-channel switching MOSFETs.
  • the negative auxiliary voltage can also be generated with a voltage value that is higher than the amount of the positive supply voltage.
  • a diode can be provided as the decoupling device.
  • the auxiliary voltage control or regulating circuit can contain a zener diode as a voltage regulator.
  • both excitation windings can be used to generate auxiliary voltage via a diode which serves as a decoupling device, the energy being drawn from the respectively activated winding.
  • the generation of a negative and a positive auxiliary voltage can be provided simultaneously in one and the same circuit arrangement. In no case does the measures for auxiliary voltage generation provided in the invention impair the operating properties of the relevant output stage arrangement.
  • the output stage arrangement works on positive operating voltage U + to ground with semiconductor switches 3 and 5 located in the load branch, which can be controlled via an input stage 7, the control input 8 of which is connected to a control unit 9.
  • Both winding ends of the excitation winding 1 are connected in a conventional manner to free-wheeling diodes 11 and 13 for the reduction of induction voltages against ground or against the operating voltage U +, which are induced in the excitation winding 1 due to the switching-off processes of the semiconductor switches 3 and 5 taking place during operation.
  • the switch-off processes take place in accordance with the modulation clock frequency, which is approximately in the range from 10 KHz to 200 KHz.
  • Fig. 2 shows the output stage arrangement of Fig. 1 with devices for generating a negative auxiliary voltage -UH. 1 is omitted and replaced by a thyristor 15, which is arranged in the same polarity as the freewheeling diode 11 in FIG. 1, that is to say with its anode side connected to ground and with its cathode side with the winding end point 16 of the excitation winding 1 is connected, which carries the negative induction voltage during operation.
  • Point 16 also connects the cathode side of a decoupling diode 19, the anode of which is connected to the negative terminal 21 of a charging capacitor 22, the positive terminal of which is connected to ground.
  • An auxiliary voltage control circuit 25 connected to the control connection 23 of the thyristor 15 is provided for converting the thyristor 15 into the ignition state.
  • the circuit 25 has a control input 27 connected to the negative terminal 21 of the charging capacitor 22. When a desired charging voltage at the charging capacitor 22, which is present at the control input 27, is reached, the circuit 25 controls the thyristor 15 via its control connection 23 into the on or ignition state.
  • the thyristor 15 behaves in the same way as that after transitioning into the ignition state Free-wheeling diode 11 of Fig. 1.
  • the charging capacitor 22 is charged via the decoupling diode 19 to generate a negative auxiliary voltage until a desired value of the voltage -UH, for example -15 volts, is reached and the thyristor 15 by the Circuit 25 is controlled in the ignition state.
  • the cut-off energy leading to the occurrence of a negative induction voltage at point 16 of the excitation winding 1 is thus diverted via the diode 19 into the auxiliary voltage generation until the desired auxiliary voltage is available and the thyristor 15 ignites.
  • Fig. 3 shows an embodiment similar to Fig.2, but in the form of a double output stage with a second excitation winding 31, which serves to move an actuator in question in the direction of movement that is opposite to the direction of movement in which the actuator by means of the first excitation winding 1 is moved.
  • a control input 38 of the circuit part of the double output stage which actuates the excitation winding 31, like the control input 8 assigned to the first excitation winding 1, is connected to the control unit 9.
  • a second coupling-out diode 39 corresponding to the coupling-out diode 19 is connected, which supplies the switching-off energy to the negative connection 21 of the charging capacitor 22.
  • a second thyristor 35 connected at point 36 which, like the first thyristor 15, has its control terminal 33 connected to the auxiliary voltage regulating circuit 25, is controlled thereby in the same way as the first thyristor 15 and acts in the ignition state like one at point 36 the excitation winding 31 connected freewheeling diode.
  • the negative auxiliary voltage -UH is generated due to the cut-off energies of both excitation windings 1 and 31.
  • FIG. 4 The operation of the example of FIG. 4 corresponds to that of the arrangement of FIG. 2, apart from the fact that not the free-wheeling diode 11 of FIG. 1 is replaced by a thyristor, but the free-wheeling diode 13 is omitted, which at the winding end point carrying a positive induction voltage during shutdown processes 46 of the excitation winding 1 is connected.
  • a device for generating a positive auxiliary voltage + UH is provided in FIG. 4, which is constructed exactly the same as the device shown for this purpose in FIG. 2, only the polarities of the charging capacitor 22, decoupling diode 19 and thyristor 15 are selected in accordance with the positive sign of the voltage generated.
  • the charging capacitor 22 is connected with its positive terminal 41 to the decoupling diode 19 and with its other terminal to the positive operating voltage U +.
  • the generation of a positive auxiliary voltage + UH is interesting, for example, in cases where a positive voltage, for example when using N-channel switching MOSFET'S, is required which is higher than the operating voltage U + of the output stage arrangement.
  • FIGS. 5 and 6 show output stage arrangements of the type shown in FIGS. 2 and 4, but details of the design of the auxiliary voltage control circuit are shown in FIGS. 5 and 6.
  • this has a zener diode 51 as a voltage regulator, which is arranged in series with a resistor 53 so that the induced auxiliary voltage is applied to it.
  • the Zener diode 51 is selected so that its breakdown voltage is that to be generated Auxiliary voltage is adjusted.
  • the control terminal 23 of the thyristor 15 changes in potential, as a result of which the latter comes into the ignition state.
  • the thyristor 15 has the effect of the freewheeling diode 11 in the circuit of FIG. 5 and the effect of the freewheeling diode 13 in FIG. 1 in the circuit of FIG. 6.
  • the thyristor 15 comes into the blocking state. It remains in this if the breakdown voltage of the Zener diode 51 has not been reached. If this is the case, then the thyristor 15 is brought back into the ignition state.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Control Of Eletrric Generators (AREA)

Description

  • Die Erfindung betrifft eine Endstufen- Schaltungsanordnung für die Steuerung von Arbeitsströmen in Stellmagneten, insbesondere zur Betätigung von Stetigventilen, mit zumindest einem zur Stromregelung zwischen Sperr- und Durchlaßzustand umsteuerbaren Schaltelement und zumindest einem induktiven, durch Abschaltvorgänge beim Übergang Schaltelementes in den Sperrzustand induzierte Spannungen führenden Bauelement.
  • Endstufen-Schaltungsanordnungen dieser Art sind bekannt und finden sowohl für industrielle als auch für fahrzeugtechnische Steuerungszwecke verbreitet Anwendung. Diese Schaltungsanordnungen werden mit Gleichspannung betrieben, üblicherweise mit einer Spannung von 24 Volt gegen Masse, welche als 0-Bezugspunkt geerdet ist. Für den Betrieb solcher Schaltungsanordnungen in Reglerschaltungen benötigt man Hilfsspannungen, beispielsweise zur Erzeugung von Signalen für die Istwert- oder Statusrückmeldung zur Steuerung. Derartige Rückmeldungssignale sind üblicherweise zur Masse, d.h. zum 0-Bezugspunkt, symmetrische ± 10 Volt Signale.
  • Zumindest die bezüglich Masse negative Hilfsspannung ist nicht unmittelbar aus der positiven Versorgungsspannung generierbar. Bei den bekannten Schaltungsanordnungen sind daher Gleichspannungswandler zur Gewinnung der Hilfsspannung vorgesehen. Das Vorhandensein der aus Transformator und zugehöriger Regelschaltung bestehenden Gleichspannungswandler steht dem anzustrebenden Ziel, die Schaltungsanordnung so kompakt auszubilden, daß sie an dem zu betätigenden Stellmagneten selbst unterzubringen ist, hindernd im Wege.
  • Der Erfindung liegt die Aufgabe zugrunde, diesbezüglich durch eine besonders einfache, billig herstellbare und kompakte Schaltungsanordnung Abhilfe zu schaffen.
  • Bei einer Schaltungsanordnung der eingangs genannten Art ist dies Aufgabe erfindungsgemäß dadurch gelöst, daß das induktive Bauelement als Energiequelle für die Gewinnung einer Hilfsspannung -UH oder +UH vorgesehen und über eine Auskoppeleinrichtung mit einer Hilfsspannungs-Steuer- oder Regelschaltung verbunden ist.
  • Dadurch, daß erfindungsgemäß ein in der Schaltungsanordnung enthaltenes induktives Bauelement, das im Betrieb induzierte Spannungen führt, die Energiequelle für die Hilfsspannungserzeugung bildet, entfällt die Notwendigkeit der Bereitstellung und Unterbringung eines zusätzlichen Transformators, wie er üblicherweise zur Hilfsspannungserzeugung mittels Spannungswandlerschaltungen vorgesehen ist. Die Erfindung eröffnet daher die Möglichkeit, die gesamte Elektronik zusammen mit einem zugeordneten Regelventil zu einer kompakten Baueinheit zu integrieren.
  • Vorzugsweise ist die Erregerwicklung des Stellmagneten selbst als Energiequelle vorgesehen, bildet also die Drossel, von der zumindest ein Teil der in ihr umgesetzten Abschaltenergie abgenommen wird, welche bei den im Betrieb stattfindenden Abschaltvorgängen induziert wird. Bei einer Pulsbreiten-Modulation der Endstufenanordnung erfolgen die Abschaltvorgänge z.B. entsprechend der Modulations-Taktfrequenz. Die Abschaltenergie wird bei den bekannten Schaltungsanordnungen mittels Freilaufdioden abgebaut.
  • Bei einem zur Erzeugung einer negativen Hilfsspannung vorgesehenen Ausführungsbeispiel der Erfindung ist anstelle der Freilaufdiode, wie sie bei den bekannten Schaltungsanordnungen zum Abbau der negativen Induktionsspannung an der Erregerwicklung des Stellmagneten vorgesehen ist, ein Schaltelement vorgesehen, das durch die Hilfsspannungs-Steuer- oder Regelschaltung gesteuert ist. Bei einem vorteilhaften Ausführungsbeispiel handelt es sich bei Schaltelement um einen Thyristor, der durch die Hilfsspannungs-Steuer- oder Regelschaltung in den Zündzustand übergeführt wird, sobald die über die Auskoppeleinrichtung von der induktiven Energiequelle abgenommene Hilfsspannung den gewünschten Wert erreicht. Die Abschaltenergie der induktiven Energiequelle wird auf diese Weise nur solange für die Hilfsspannungserzeugung über die Auskoppeleinrichtung abgeleitet, bis gerade die gewünschte Größe der Hilfsspannung zur Verfügung steht und der Thyristor zündet, wonach sich dieser wie eine Freilaufdiode der Erregerwicklung verhält, bis der Thyristor beim folgenden Nulldurchgang der negativen Induktionsspannung wieder sperrt.
  • Wird diejenige Freilaufdiode, die bei den bekannten Schaltungsanordnungen die positive Induktionsspannung abbaut, in entsprechender Weise durch ein von der Hilfsspannungs-Steuer- oder Regelschaltung steuerbares Schaltelement, beispielsweise einen Thyristor, ersetzt, ist eine positive Hilfsspannung erzeugbar. Die Erzeugung einer positiven Hilfsspannung kann insbesondere zweckmäßig sein, wenn die positive Hilfsspannung höher ist als die Versorgungsspannung der Schaltungsanordnung. Der artige höhere positive Spannungen werden bei bestimmten anwendungsfällen benötigt, beispielsweise beim Einsatz von N-Kanal-Schalt MOSFETS. Es versteht sich, daß auch die negative Hilfsspannung mit einem Spannungswert erzeugt werden kann, der höher ist, als der Betrag der positiven Versorgungsspannung.
  • Als Auskoppeleinrichtung kann eine Diode vorgesehen sein.
  • Die Hilfsspannungs-Steuer- oder Regelschaltung kann eine Zenerdiode als Spannungsregeler enthalten.
  • Bei Doppelendstufen für zwei Magnet-Erregerwicklungen können beide Erregerwicklungen über je eine als Auskoppeleinrichtung dienende Diode zur Hilfsspannungserzeugung herangezogen werden, wobei die Energie von der jeweils aktivierten Wicklung abgenommen wird. Außerdem kann bei ein und derselben Schaltungsanordnung gleichzeitig die Generierung einer negativen und einer positiven Hilfsspannung vorgesehen sein. In keinem Fall entsteht durch die bei der Erfindung vorgesehen Maßnahmen zur Hilfsspannungserzeugung eine Beeinträchtigung der Betriebseigenschaften der betreffenden Endstufenanordnung.
  • Nachstehend ist die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen im einzelnen erläutert.
  • Es zeigen:
    • Fig. 1 ein Prinzipschaltbild einer üblichen Endstufenanordnung zur Ansteuerung eines Stellmagneten
    • Fig. 2 ein der Fig. 1 ähnliches Schaltbild eines Ausführungsbeispiels der Erfindung in Form einer Endstufenanordnung mit Einrichtungen zum Erzeugen einer negativen Hilfsspannung;
    • Fig. 3 ein Prinzipschaltbild eines abgewandelten Ausführungsbeispiels in Form einer Doppelendstufenanordnung mit Einrichtungen zur Erzeugung einer negativen Hilfsspannung;
    • Fig. 4 ein Prinzipschaltbild eines weiteren Ausführungsbeispiels in Form einer der Fig. 2 entsprechenden Endstufenanordnung, jedoch mit Einrichtungen zur Erzeugung einer positiven Hilfsspannung,
      und
    • Fig. 5 und 6 Schaltbilder der Ausführungsbeispiele gemäß Fig. 2 bzw. 4, wobei zusätzlich Einzelheiten einer Hilfsspannungs-Regelschaltung eingezeichnet sind.
  • Fig. 1 zeigt eine übliche Endstufe für nach dem Pulsbreiten-Modulationsprinzip erfolgendes, also digitalisiertes, Regeln des Stromes einer Erregerwicklung 1 eines Magnetventils. Die Endstufenanordnung arbeitet an positiver Betriebsspannung U+ gegen Masse mit im Lastzweig liegenden Halbleiterschaltern 3 und 5, die über eine Eingangsstufe 7 steuerbar sind, deren Steuereingang 8 mit einer Ansteuereinheit 9 verbunden ist.
  • Beide Wicklungsenden der Erregerwicklung 1 sind in üblicher Weise mit Freilaufdioden 11 bzw. 13 für den Abbau von Induktionsspannungen gegen Masse bzw. gegen die Betriebsspannung U+ verbunden, die aufgrund der im Betrieb stattfindenden Abschaltvorgänge der Halbleiterschalter 3 und 5 in der Erregerwicklung 1 induziert werden. Bei der Pulsbreiten-Modulation erfolgen die Abschaltvorgänge entsprechend der Modulations-Taktfrequenz, die etwa im Bereich von 10 KHz bis 200 KHz gelegen ist.
  • Fig. 2 zeigt die Endstufenanordnung von Fig. 1 mit Einrichtungen zur Erzeugung einer negativen Hilfsspannung -UH. Dabei ist die Freilaufdiode 11 von Fig. 1 weggelassen und durch einen Thyristor 15 ersetzt, der in gleicher Polung wie die Freilaufdiode 11 in Fig. 1 angeordnet ist, also mit seiner Anodenseite auf Masse liegt und mit seiner Kathodenseite mit dem Wicklungsendpunkt 16 der Erregerwicklung 1 verbunden ist, der im Betrieb die negative Induktionsspannung führt. Mit dem Punkt 16 ist außerdem die Kathodenseite einer Auskoppeldiode 19 verbunden, deren Anode mit dem negativen Anschluß 21 eines Ladekondensators 22 in Verbindung steht, dessen positiver Anschluß mit Masse verbunden ist.
  • Eine am Steueranschluß 23 des Thyristors 15 angeschlossene Hilfsspannungs-Regelschaltung 25 ist zum Überführen des Thyristors 15 in den Zündzustand vorgesehen. Die Schaltung 25 weist einen mit dem negativen Anschluß 21 des Ladekondensators 22 verbundenen Steuereingang 27 auf. Bei Erreichen einer gewünschten Ladespannung am Ladekondensator 22, die am Steuereingang 27 anliegt, steuert die Schaltung 25 den Thyristor 15 über dessen Steueranschluß 23 in den Durchlaß- oder Zündzustand.
  • Bei der Schaltungsanordnung von Fig. 2 verhält sich der Thyristor 15 nach Übergehen in den Zündzustand in gleicher Weise wie die Freilaufdiode 11 von Fig. 1. Bevor der Thyristor 15 zündet, wird der Ladekondensator 22 über die Auskoppeldiode 19 zur Erzeugung einer negativen Hilfsspannung aufgeladen, bis ein gewünschter Wert der Spannung -UH, z.B. -15 Volt, erreicht ist und der Thyristor 15 durch die Schaltung 25 in den Zündzustand gesteuert wird. Die zum Auftreten einer negativen Induktionsspannung am Punkt 16 der Erregerwicklung 1 führende Abschaltenergie wird also über die Diode 19 solange in die Hilfsspannungserzeugung umgeleitet, bis gerade die gewünschte Hilfsspannung zur Verfügung steht und der Thyristor 15 zündet.
  • Fig. 3 zeigt ein der Fig.2 ähnliches Ausführungsbeispiel, jedoch in Form einer Doppelendstufe mit einer zweiten Erregerwicklung 31, die dazu dient, ein betreffendes Stellglied in derjenigen Bewegungsrichtung zu bewegen, die der Bewegungsrichtung entgegengesetzt ist, in der das Stellglied mittels der ersten Erregerwicklung 1 bewegt wird. Ein Steuereingang 38 des die Erregerwicklung 31 betätigenden Schaltungsteils der Doppelendstufe ist, ebenso wie der der ersten Erregerwicklung 1 zugeordnete Steuereingang 8, an der Ansteuereinheit 9 angeschlossen.
  • An dem die negative Induktionsspannung bei Abschaltvorgängen führenden Wicklungsendpunkt 36 der zweiten Erregerwicklung 31 ist eine wirkungsmäßig der Auskoppeldiode 19 entsprechende zweite Auskoppeldiode 39 angeschlossen, die die Abschaltenergie zum negativen Anschluß 21 des Ladekondensators 22 zuführt. Ein am Punkt 36 angeschlossener zweiter Thyristor 35, der ebenso wie der erste Thyristor 15 mit seinem Steueranschluß 33 mit der Hilfsspannungs-Regelschaltung 25 verbunden ist, wird durch diese in gleicher Weise gesteuert wie der erste Thyristor 15 und wirkt im Zündzustand wie eine am Punkt 36 der Erregerwicklung 31 angeschlossene Freilaufdiode. Bei dem Beispiel von Fig. 3 wird also die negative Hilfsspannung -UH aufgrund der Abschaltenergien beider Erregerwicklungen 1 und 31 erzeugt.
  • Die Wirkungsweise des Beispiels von Fig 4 entspricht derjenigen der Anordnung von Fig. 2, abgesehen davon, daß nicht die Freilaufdiode 11 von Fig. 1 durch einen Thyristor ersetzt ist, sondern die Freilaufdiode 13 weggelassen ist, die am bei Abschaltvorgängen eine positive Induktionsspannung führenden Wicklungsendpunkt 46 der Erregerwicklung 1 angeschlossen ist. Anstelle dieser Freilaufdiode ist in Fig. 4 eine Einrichtung zur Erzeugung einer positiven Hilfsspannung +UH vorhanden, die genau gleich aufgebaut ist, wie die in Fig. 2 zu diesem Zweck gezeigte Einrichtung, wobei lediglich die Polungen von Ladekondensator 22, Auskoppeldiode 19 und Thyristor 15 entsprechend dem positiven Vorzeichen der erzeugten Spannung gewählt sind. Dabei ist der Ladekondensator 22 mit seinem positiven Anschluß 41 mit der Auskoppeldiode 19 und mit seinem anderen Anschluß mit der positiven Betriebsspannung U+ verbunden. Die Erzeugung einer positiven Hilfsspannung +UH ist beispielsweise in solchen Fällen interessant, wo eine positive Spannung, beispielsweise beim Einsatz von N-Kanal-Schalt MOSFET'S, benötigt wird, die höher ist als die Betriebsspannung U+ der Endstufenanordnung.
  • Figuren 5 und 6 zeigen Endstufenanordnungen der in den Figuren 2 bzw. 4 gezeigten Art, wobei jedoch in Figuren 5 und 6 nähere Einzelheiten der Gestaltung der Hilfsspannungs-Regelschaltung gezeigt sind. Diese weist, wie den Figuren 5 und 6 zu entnehmen ist, als Spannungsregler eine Zenerdiode 51 auf, die in Reihenschaltung mit einem Widerstand 53 so angeordnet ist, daß die induzierte Hilfsspannung an ihr anliegt. Die Zenerdiode 51 ist so ausgewählt, daß ihre Durchbruchspannung der zu erzeugenden Hilfsspannung angepaßt ist. Wenn der gewünschte Spannungswert erreicht ist, so daß die Zenerdiode 51 in den Durchbruchzustand gelangt, erfolgt eine Potentialänderung des Steueranschlusses 23 des Thyristors 15, durch die dieser in den Zündzustand kommt. Der Thyristor 15 hat bei der Schaltung von Fig. 5 die Wirkung der Freilaufdiode 11 und bei der Schaltung gemäß Fig. 6 die Wirkung der Freilaufdiode 13 von Fig. 1. Bei Nulldurchgängen der Induktionsspannung an der Erregerwicklung 1 gelangt der Thyristor 15 in den Sperrzustand. In diesem verbleibt er, falls nicht die Durchbruchspannung der Zenerdiode 51 erreicht ist. Ist dies der Fall, dann wird der Thyristor 15 wieder in den Zündzustand überführt.

Claims (9)

  1. Endstufen- Schaltungsanordnung für die Steuerung von Arbeitsströmen in Stellmagneten, insbesondere zur Betätigung von Stetigventilen, mit zumindest einem zur Stromregelung zwischen Sperr- und Durchlaßzustand umsteuerbaren Schaltelement (3,5) und zumindest einem induktiven, durch Abschaltvorgänge beim Übergang des Schaltelementes in den Sperrzustand induzierte Spannungen führenden Bauelement(1; 31), dadurch gekennzeichnet, daß das induktive Bauelement (1; 31) als Energiequelle für die Gewinnung einer positive oder negativen Hilfsspannung ( -UH oder +UH ) vorgesehen und über eine Auskoppeleinrichtung mit einer Hilfsspannungs-Steuer- oder Regelschaltung (25) verbunden ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Erregerwicklung (1; 31) des Stellmagneten die Energiequelle bildet.
  3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Auskoppeleinrichtung durch eine Diode (19; 39) gebildet ist.
  4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß bei einer an positiver Versorgungsspannung gegen Masse arbeitenden Endstufe die Diode (19; 39) zur Erzeugung einer gegenüber Masse negativen Hilfsspannung ( -UH ) mit ihrer Kathodenseite mit einem Wicklungspunkt (16) der Energiequelle verbunden ist, der eine gegenüber Masse negative Induktionsspannung führt.
  5. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß bei einer an positiver Versorgungsspannung gegen Masse arbeitenden Endstufe die Diode (19; 39) zur Erzeugung einer gegenüber Masse positiven Hilfsspannung (+UH) mit ihrer Anodenseite mit einem Wicklungspunkt (46) der Energiequelle verbunden ist, der eine gegenüber Masse positive Induktionsspannung führt.
  6. Schaltungsanordnung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Hilfsspannungs-Steuer- oder Regelschaltung (25) mit einem mit der Diode (19; 39) in Reihe geschalteten Kondensator (22) zusammenwirkt.
  7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Hilfsspannungs-Steuer- oder Regelschaltung (25) mit einem Thyristor (15; 35) zusammenwirkt und einen diesen in Abhängigkeit von der Höhe der erzeugten Hilfsspannung in den Zündzustand überführenden Spannungsregler aufweist und daß der Thyristor (15; 35) am Anschlußpunkt (16; 46) der als Auskoppeleinrichtung dienenden Diode (19; 39) mit der Energiequelle verbunden und so geschaltet ist, daß er im Zündzustand als der Energiequelle zugeordnete Freilaufdiode wirkt.
  8. Schaltungsanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß bei einer Doppelendstufe für zwei Magnet-Erregerwicklungen (1; 31) jede Erregerwicklung (1 und 31) als Energiequelle vorgesehen und über je eine Auskoppeleinrichtung mit der oder mit je einer Hilfsspannungs-Steuer- oder Regelschaltung (25) verbunden ist.
  9. Schaltungsanordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Hilfsspannungs-Steuer- oder Regelschaltung (25) eine als Spannungsregler vorgesehene Zenerdiode (51) aufweist.
EP89113115A 1988-08-01 1989-07-18 Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten Expired - Lifetime EP0353533B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3826087 1988-08-01
DE3826087A DE3826087A1 (de) 1988-08-01 1988-08-01 Schaltungsanordnung bei endstufen fuer die steuerung von stellmagneten

Publications (2)

Publication Number Publication Date
EP0353533A1 EP0353533A1 (de) 1990-02-07
EP0353533B1 true EP0353533B1 (de) 1992-10-21

Family

ID=6360006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89113115A Expired - Lifetime EP0353533B1 (de) 1988-08-01 1989-07-18 Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten

Country Status (2)

Country Link
EP (1) EP0353533B1 (de)
DE (2) DE3826087A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434179A1 (de) * 1994-09-24 1996-03-28 Teves Gmbh Alfred Schaltungsanordnung zur Überwachung einer Steuerschaltung
FR2786914B1 (fr) * 1998-12-07 2001-01-12 Schneider Electric Ind Sa Dispositif de commande d'un electro-aimant, avec un circuit d'alimentation alimente par le courant de maintien de l'electro-aimant
DE19911863A1 (de) * 1999-03-17 2000-09-21 Philips Corp Intellectual Pty Schaltungsanordnung zum Steuern eines Aktuators
DE10040275A1 (de) * 2000-08-14 2002-02-28 Braun Gmbh Schaltungsanordnung und Elektrogerät mit einem Elektromotor und einem Drosselwandler

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1409461A (fr) * 1964-07-17 1965-08-27 Alcatel Sa Procédé d'alimentation économique pour l'établissement rapide d'un courant dans une bobine, et ses applications
DE2203883A1 (de) * 1971-02-08 1972-08-24 Zentronik Veb K Einrichtung zum Laden von Energiespeicherkondensatoren für impulsmäßig angesteuerte Elektromagnete
US3754166A (en) * 1971-06-14 1973-08-21 Centronics Data Computer A driver circuit for actuating print wire solenoids
DD106119A1 (de) * 1973-07-09 1974-05-20
DE3213515A1 (de) * 1982-04-10 1983-10-20 Honeywell and Philips Medical Electronics B.V., 5611 Eindhoven Erregerschaltung fuer magnetventile
DE3240352C2 (de) * 1982-11-02 1985-07-18 Danfoss A/S, Nordborg Elektronische Schaltvorrichtung
FR2569239A1 (fr) * 1984-03-05 1986-02-21 Mesenich Gerhard Procede pour commander une soupape d'injection electromagnetique
DE3628988A1 (de) * 1986-08-26 1988-03-03 Cornelius Lungu Anwendungsbeispiele einer kapazitiv energie speichernden induktiven wicklung
DE3604579A1 (de) * 1986-02-14 1987-08-27 Cornelius Lungu Energiespeichernde induktive wicklung
DE3702680A1 (de) * 1986-02-18 1987-10-29 Bosch Gmbh Robert Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
FR2599183B1 (fr) * 1986-05-21 1988-08-26 Telemecanique Electrique Procede et dispositif de commande d'un electro-aimant dont l'excitation par un courant periodique monoarche, provoque l'actionnement d'une piece mobile
DE3624231A1 (de) * 1986-07-18 1988-01-28 Honeywell Regelsysteme Gmbh Verfahren zur anzeige einer magnetventilbetaetigung und schaltungsanordnung zur durchfuehrung des verfahrens

Also Published As

Publication number Publication date
DE3826087A1 (de) 1990-02-08
DE58902496D1 (de) 1992-11-26
EP0353533A1 (de) 1990-02-07

Similar Documents

Publication Publication Date Title
DE4234725B4 (de) Gleichspannungswandler
DE19808637A1 (de) Gleichspannungs-/Gleichspannungswandler mit einem Transformator und einer Drossel
EP0283842B1 (de) Umrichterschaltung mit einem Eintakt-Sperrumrichter
DE69838991T2 (de) Treiber für piezoelektrische motoren
EP1710898B1 (de) Umschaltbarer Spannungswandler
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
EP0521901B1 (de) Einrichtung zur unterbrechungsfreien stromversorgung
DE3813672C2 (de) Wechselrichter für eine induktive Last
EP0246491A2 (de) DC/DC-Eintaktdurchflusswandler
EP1438784B1 (de) Synchrongleichrichterschaltung
EP0353533B1 (de) Schaltungsanordnung bei Endstufen für die Steuerung von Stellmagneten
DE19747033A1 (de) Elektronische Schalteinrichtung für Magneten
DE3243660A1 (de) Schaltungsanordnung fuer eine potentialgetrennte ansteuerung wenigstens eines feldeffekttransistors
WO2002015374A1 (de) Schaltungsanordnung und elektrogerät mit einer induktiven last und einem drosselwandler
EP1658676B1 (de) Schaltung und verfahren zum verarbeiten einer speisespannung mit spannungsspitzen
EP0893884A2 (de) Verfahren und Vorrichtung zum Ansteuern eines Abschaltthyristors
DE2448218A1 (de) Zerhackerschaltung
CH663866A5 (de) Selbstschwingender wechselrichter.
EP0829123B1 (de) Freilaufkreis mit einstellbarer aus-verzugszeit
DE2739387A1 (de) Schaltregler, insbesondere doppelpulsiger schaltregler
EP0027171A1 (de) Durchfluss-Gleichstromumrichter
EP0792538A1 (de) Schaltungsanordnung zur mehrfachausnutzung eines übertragerkerns
EP0415485A2 (de) Anordnung zur Erzeugung von Strompulsen vorgegebener Form in einem induktiven Verbraucher
DE3709150C2 (de)
DE3923311A1 (de) Elektrischer wandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 19920319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58902496

Country of ref document: DE

Date of ref document: 19921126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89113115.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950622

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950725

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

EUG Se: european patent has lapsed

Ref document number: 89113115.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050718