WO1996026240A1 - Oberflächenmodifizierte füllstoffzusammensetzung - Google Patents

Oberflächenmodifizierte füllstoffzusammensetzung Download PDF

Info

Publication number
WO1996026240A1
WO1996026240A1 PCT/EP1996/000743 EP9600743W WO9626240A1 WO 1996026240 A1 WO1996026240 A1 WO 1996026240A1 EP 9600743 W EP9600743 W EP 9600743W WO 9626240 A1 WO9626240 A1 WO 9626240A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
weight
halogen
free flame
fatty acid
Prior art date
Application number
PCT/EP1996/000743
Other languages
English (en)
French (fr)
Inventor
Heinz-Dieter Metzemacher
Rainer Seeling
Original Assignee
Martinswerk Gmbh Für Chemische Und Metallurgische Produktion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP8525406A priority Critical patent/JPH11501686A/ja
Priority to DK96905780T priority patent/DK0811035T3/da
Priority to SK1120-97A priority patent/SK281951B6/sk
Priority to HU9801875A priority patent/HU221147B1/hu
Application filed by Martinswerk Gmbh Für Chemische Und Metallurgische Produktion filed Critical Martinswerk Gmbh Für Chemische Und Metallurgische Produktion
Priority to CZ19972632A priority patent/CZ289678B6/cs
Priority to CA002209894A priority patent/CA2209894C/en
Priority to DE59603002T priority patent/DE59603002D1/de
Priority to AU49409/96A priority patent/AU4940996A/en
Priority to EP96905780A priority patent/EP0811035B1/de
Priority to US08/894,377 priority patent/US5827906A/en
Publication of WO1996026240A1 publication Critical patent/WO1996026240A1/de
Priority to PL96322009A priority patent/PL187070B1/pl
Priority to FI973435A priority patent/FI115464B/fi
Priority to NO19973860A priority patent/NO311086B1/no
Priority to GR990403071T priority patent/GR3031978T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the invention relates to a surface-modified filler composition, its use for the flame-retardant treatment of polymers and the flame-retardant polymers produced therefrom.
  • the object could be achieved with the surface-modified filler compositions according to claim 1.
  • hydroxides of aluminum and / or hydroxides of magnesium are optionally mixed with oxides of aluminum, magnesium, titanium or zirconium or with other filler materials such as, for. B. calcium carbonate, talc or calcined or non-calcined clays are used.
  • Suitable hydroxides of aluminum are e.g. B. natural Al (OH) 3 -containing materials such. B. hydrargillite or gibbsite, (AlO (OH) x ) -containing materials such. B. the boehmite or synthetic aluminum hydroxides such as. B. are sold under the trademark Martifin® or Martinal® by Martinswerk GmbH in Bergheim.
  • Suitable hydroxides of magnesium are e.g. B. natural Mg (OH) 2 types such. B. the brucite or seawater types, natural magnesium - nhydroxycarbonate such. B. dawsonite, huntite or hydromagnesite or synthetic magnesium hydroxides such as. B. are sold under the trademark Magnifin® by Magnifin GmbH in Bergheim.
  • the commercially available oxides can be used as the oxides of aluminum, magnesium, titanium or zirconium.
  • a hydroxide of aluminum and / or a hydroxide of magnesium is used alone or in any mixing ratio with the oxides mentioned.
  • the surface modification of the halogen-free flame retardant filler is carried out according to variant a) with a fatty acid derivative from the series of polymer fatty acids, keto fatty acids, fatty alkyl oxazolines or bisoxazolines and optionally a siloxane derivative or according to variant b) with a fatty acid and a siloxane derivative.
  • polymer fatty acids by oligomerization such as. B. understood by dimerization or trimerization of corresponding fatty acids.
  • Suitable representatives are e.g. B. the polystearic acid, the polylauric acid or the polydecanoic acid.
  • Keto fatty acids are understood to mean fatty acids containing keto groups with 10 to 30 carbon atoms.
  • the preferred representative of a keto fatty acid is ketostearic acid.
  • Fatty alkyl oxazolines are those substituted in the 2-position alkyl or hydroxyalkyl
  • the alkyl group expediently has 7 to 21 carbon atoms.
  • the bisoxazolines are compounds which have been synthesized from the hydroxyalkyloxazolines by reaction with diisocyanates.
  • a preferred representative is, for example, undecyl-2-oxazoline.
  • the fatty acid derivatives mentioned are used either individually or in combination in an amount of from 0.01 to 10 parts, preferably from 0.05 to 5 parts, per 100 parts of filler.
  • a siloxane derivative can additionally be added in an amount of 0.01 to 20 parts, preferably 0.05 to 10 parts, per 100 parts of filler.
  • Suitable siloxane derivatives are the oligoalkylsiloxanes, the polydialkylsiloxanes such as e.g. B. the polydimethylsiloxane or polydiethylsiloxane, the polyalkylarylsiloxanes such as. B. the polyphenylmethylsiloxane or the polydiarylsiloxanes such. B. the polyphenylsiloxane.
  • the siloxanes mentioned can with reactive groups such as. B. hydroxy, amino, vinyl, acrylic, methacrylic, carboxy or glycidyl may be functionalized.
  • the halogen-free flame retardant filler can be treated with a fatty acid compound and a siloxane derivative.
  • a fatty acid compound either a classic fatty acid with expedient 10 to 30 carbon atoms, a fatty acid derivative thereof or mono- or polyunsaturated hydroxy fatty acid with is expedient in this variant
  • Suitable classic fatty acids are e.g. B. the stearic acid, lauric acid, myristic acid,
  • Palmitic acid, oleic acid or linolenic acid Palmitic acid, oleic acid or linolenic acid.
  • a fatty acid derivative a fatty acid salt or a modified fatty acid such as. B. that
  • Stearic acid glycidyl methacrylate can be used.
  • the fatty acid compounds are generally used in a uniform manner
  • the advantageous amount is also in the range mentioned in variant a) for the fatty acid derivatives.
  • the siloxane component is mandatory in variant b).
  • siloxane derivative those listed under variant a) can be used in the stated amount
  • High molecular weight polydialkylsiloxanes which have optionally been functionalized with the functional groups mentioned are preferably used.
  • Pyrogenic silicas or precipitated silicas can expediently be used as the carrier material for the surface modifiers mentioned, some of which are in the liquid state.
  • Preferred pyrogenic silicas are the Aerosil® types from Degussa.
  • Preferred precipitated silicas are the Sipernat® grades from Degussa.
  • the carrier materials mentioned are used in an amount of 0.1 to 10 parts per 100 parts of filler, depending on the surface modifier.
  • the halogen-free flame-retardant filler is expediently provided with the coagents mentioned in a suitable mixer, preferably in a mixer which enables high shear forces.
  • the addition can be selected Sequence in certain time intervals at different temperatures and with process parameters adapted to the coagents. It is also possible to premix the coagents together with the halogen-free flame retardant fillers into the mixer.
  • An additive concentrate a so-called masterbatch
  • This so-called masterbatch can then be done in a simple manner with a technically less complex mixing unit, e.g. B. at the customer, diluted with the appropriate amount of additional filler and processed to ready-to-use surface-modified filler.
  • the halogen-free flame-retardant filler modified in this way can then be processed to a compound with the desired polymer or with the desired polymers using customary methods.
  • mixing units such as. B. single or double screw kneader, co-kneader, internal mixer or an FCM (farrel continuous mixer).
  • the halogen-free flame-retardant filler which has been surface-treated according to the invention is preferred for the flame-retardant treatment of polymers, preferably thermoplastic polyolefins and thermoplastic elastomers such as, for. B. polyethylene and its copolymers, polypropylene, EVA and its copolymers, polyamides and its copolymers, aliphatic polyketones or polyesters. suitable.
  • the surface-treated hydroxides of aluminum are usually used in polymers that can be processed up to approx. 180 ° C.
  • thermoplastic olefins such as polyethylene and its copolymers or rubber mixtures.
  • the surface-treated magnesium hydroxides are generally used in the high temperature range, ie. H. in polymers that can be processed from 180 to 300 ° C, preferably in thermoplastic polyolefins or thermoplastic elastomers such as. B. polypropylene used.
  • mixtures of the fillers mentioned can also be used for the flame-retardant treatment of the polymers mentioned.
  • one or more oxides of aluminum, magnesium, titanium or zirconium can be added to the fillers mentioned in order to, for. B. to control abrasion behavior, hardness or weathering behavior.
  • the content of surface-treated filler in the polymer matrix in question generally varies between 5 and 90% by weight, preferably between 20 and 70% by weight, depending on the desired level of flame resistance.
  • the filler-containing compounds mentioned can additionally contain fibrous reinforcing materials.
  • the fiber materials include, for example, glass fibers, stone fibers, metal fibers, polycrystalline ceramic fibers, including the single crystals, the so-called “whiskers", as well as all fibers originating from synthetic polymers, such as, for example, B. aramid, carbon, polyamide, polyacrylic, polyester and polyethylene fibers.
  • synthetic polymers such as, for example, B. aramid, carbon, polyamide, polyacrylic, polyester and polyethylene fibers.
  • the compounds can be provided with suitable pigments and / or dyes or with further application-related additives or auxiliaries.
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 10 kg of polymer fatty acid (Pripol 3505 / Unichema) for 12 minutes. The magnesium hydroxide modified in the manner described was then discharged.
  • the product obtained was then processed with a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • a polypropylene homopolymer Vestolen P 8400, Hüls
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 12 kg of ketostearic acid for 32 minutes. The magnesium hydroxide modified in the manner described was then discharged. The product obtained was then processed with a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 10 kg of a polymer fatty acid (Pripol 3505, Unichema) and 5 kg of polydimethylsiloxane (Petrarch Chemicals, MG> 150,000) and 5 kg of polydiethylsiloxane (Wacker ) mixed for 60 min.
  • the magnesium hydroxide modified in the manner described was then discharged.
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 20 kg of undecyl-2-oxazoline for 28 minutes. The magnesium hydroxide modified in the manner described was then discharged. The product obtained was then processed with a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 10 kg of polydialkylsiloxane (CT 6000M, Wacker) and 2.5 kg of a fatty acid mixture (content 70% C-18) for 28 min.
  • C 6000M polydialkylsiloxane
  • the magnesium hydroxide modified in the manner described was then discharged.
  • the product obtained was then processed with a polypropylene homopolymer (Vestolen P 8400, Hüls) in a single-screw device into a compound such that the proportion of filler was 65% by weight and the proportion of polymer was 35% by weight.
  • magnesium hydroxide (Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany) were mixed in an intensive mixer with 18 kg of fatty acid derivative (stearic acid glycidyl methacrylate) and 22 kg of polydimethylsiloxane (Petrarch Chemicals, MW 380 * 000, viscosity 2 • 10 6 cSt) during 60 min mixed.
  • the magnesium hydroxide modified in the manner described was then discharged.
  • the product obtained was then processed with an EVA polymer (Escorene Ultra UL 00119, Exxon) in the presence of 0.3% Irganox 1010 as a stabilizer in a single-screw device to form a compound in such a way that the proportion of filler was 60% by weight and the proportion of polymer was 40 % By weight.
  • EVA polymer Escorene Ultra UL 00119, Exxon
  • magnesium hydroxide Magnifin H 5 / Martinswerk GmbH, Bergheim, Germany
  • 15 kg of fatty acid mixture lauric acid / stearic acid 1: 1
  • 25 kg of polydialkylsiloxane PS 048, Petrarch Chemicals
  • carrier material AEROSIL® R972, Degussa
  • the product obtained was then processed with an EVA polymer (Escorene Ultra UL 00119, Exxon) in the presence of 0.3% Irganox 1010 as a stabilizer in a single-screw device so that the proportion of filler was 60% by weight and the proportion of polymer Is 40% by weight.
  • EVA polymer Escorene Ultra UL 00119, Exxon
  • the magnesium hydroxide modified in the manner described was then discharged.
  • the product obtained was then processed with an EVA polymer (Escorene Ultra UL 00119, Exxon) in the presence of 0.3% Irganox 1010 as a stabilizer in a single-screw device so that the proportion of filler was 60% by weight and the proportion of polymer
  • the product obtained was then processed with an EVA polymer (Escorene Ultra UL 00119, Exxon) in the presence of 0.3% Irganox 1010 as a stabilizer in a single-screw device so that the proportion of filler was 60% by weight and the proportion of polymer Is 40% by weight.
  • EVA polymer Escorene Ultra UL 00119, Exxon
  • Injection molding machine of type BOY 30 T2 processed into injection molding test specimens and subjected to the following standard measurements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Es wird eine Füllstoffzusammensetzung für thermoplastische Olefine oder thermoplastische Elastomeren beschrieben, welche aus einem halogenfreien flammhemmenden Füllstoff besteht, der mit Fettsäurederivaten und gegebenenfalls einem Siloxanderivat oberflächenbehandelt ist.

Description

Oherflächenmodifizierte Füllstoffzusammensetzung
Die Erfindung betrifft eine oberflächenmodifizierte Füllstoffzusammensetzung, deren Verwendung zur Flammfestausrüstung von Polymeren sowie die daraus hergestellten flammgeschützten Polymere.
Es ist seit einiger Zeit bekannt, halogenfreie flammhemmende Füllstoffe wie z. B.
Magnesium- oder Aluminiumhydroxid zum Zweck der optimalen Einarbeitung in Polymere an der Füllstoffoberfläche zu beschichten. Dies konnte z. B. mit Salzen von Fettsäuren gemäss DE-PS 26 59 933 oder z. B. mit Säuregruppen enthaltenden Polymeren gemäss EP-A 292 233 geschehen.
Wesentliche Voraussetzung für diese Oberflächenbeschichtungen war regelmässig ein hochwertiges Füllstoffmaterial mit exakt definiertem Eigenschaftsprofil (DE-PS 26 59 933).
Solch hochwertige Füllstoffmaterialien konnten aufgrund ihres relativ hohen Preises schwerpunktmässig nur für Spezialanwendungen eingesetzt werden, obwohl ein grosser
Bedarf an hochwertigen halogenfreien, flammhemmenden Füllstoffen auch für klassische
Anwendungen wie z. B. für Kabelmassen besteht.
Es stellte sich folglich die Aufgabe^üllstoffzusammensetzungen so zu modifizieren, dass auch mit qualitativ minderwertigeren und damit preislich vorteilhafteren Füllstoffen optimale Eigenschaften im Kunststoff erzielt werden können.
Die Aufgabe konnte gelöst werden mit den oberflächenmodifizierten Füllstoffzusammen- setzungen gemäss Anspruch 1.
Als halogenfreie flammhemmende Füllstoffe werden Hydroxide des Aluminiums und / oder Hydroxide des Magnesiums gegebenenfalls in Mischung mit Oxiden des Aluminiums, des Magnesiums, des Titans oder des Zirkoniums oder mit weiteren Füllstoffmaterialien wie z. B. Calciumcarbonat, Talkum oder calcinierte oder nicht calcinierte Clays eingesetzt.
Geeignete Hydroxide des Aluminiums sind z. B. natürliche Al(OH)3 -haltige Materialien wie z. B. Hydrargillit oder Gibbsit, (AlO(OH)x)-haltige Materialien wie z. B. das Böhmit oder synthetische Aluminiumhydroxide wie sie z. B. unter dem Warenzeichen Martifin® oder Martinal® von der Martinswerk GmbH in Bergheim vertrieben werden.
Geeignete Hydroxide des Magnesiums sind z. B. natürliche Mg(OH)2-Typen wie z. B. das Brucit oder Seewasser-Typen, natürliche Magnesiu--nhydroxycarbonate wie z. B. Dawsonit, Huntit oder Hydromagnesit oder synthetische Magnesiumhydroxide wie sie z. B. unter dem Warenzeichen Magnifin® von der Magnifin GmbH in Bergheim vertrieben werden. Als Oxide des Aluminiums, des Magnesiums, des Titans oder des Zirkoniums können die handelsüblichen Oxide verwendet werden. Je nach gefordertem Eigenschaftsprofil im Kunststoff wird ein Hydroxid des Aluminiums und / oder ein Hydroxid des Magnesiums alleine oder in beliebigen Mischungsverhältnissen mit den genannten Oxiden eingesetzt.
Erfindungs gemäss erfolgt die Oberflächenmodifizierung des halogenfreien flammhemmenden Füllstoffs gemäss Variante a) mit einem Fettsäurederivat aus der Reihe der Polymerfettsäuren, der Ketofettsäuren, der Fettalkyl-oxazoline oder -bisoxazoline und gegebenenfalls einem Siloxanderivat oder gemäss Variante b) mit einer Fettsäure und einem Siloxanderivat.
Unter Polymerfettsäuren werden durch Oligomerisierung, wie z. B. durch Di- oder Trimerisierung von entsprechenden Fettsäuren hergestellte Verbindungen verstanden. Geeignete Vertreter sind z. B. die Polystearinsäure, die Polylaurinsäure oder die Polydecansäure. (Henkel Referate 28, 1992, S. 39ff)
Unter Ketofettsäuren werden ketogruppenhaltige Fettsäuren mit 10 bis 30 C- Atomen verstanden. Bevorzugter Vertreter einer Ketofettsäure ist die Ketostearinsäure.
(Henkel Referate 28, 1992, S. 34ff)
Unter Fettalkyloxazoline werden die in 2-Stellung alkyl- bzw. hydroxyalkyl-substiruierten
Oxazoline verstanden.
Die Alkylgruppe weist dabei zweckmässig 7 bis 21 C- Atome auf.
Die Bisoxazoline sind Verbindungen, die aus den Hydroxalkyloxazolinen durch Umsetzung mit Diisocyanaten synthetisiert worden sind.
Ein bevorzugter Vertreter ist z, B. das Undecyl-2-Oxazolin.
(Henkel Referate 28, 1992 S. 43ff)
Die genannten Fettsäurederivate werden entweder einzeln oder in Kombination in einer Menge von 0,01 bis 10 Teilen vorzugsweise von 0,05 bis 5 Teilen pro 100 Teilen Füllstoff eingesetzt.
Gemäss Variante a) kann zusätzlich in einer Menge von 0,01 bis 20 Teilen vorzugsweise 0,05 bis 10 Teilen pro 100 Teilen Füllstoff ein Siloxanderivat zugesetzt werden.
Geeignete Siloxanderivate sind die Oligoalkylsiloxane, die Polydialkylsiloxane wie z. B. das Polydimethylsiloxan oder Polydiethylsiloxan, die Polyalkylarylsiloxane wie z. B. das Polyphenylmethylsiloxan oder die Polydiarylsiloxane wie z. B. das Polyphenylsiloxan. Die genannten Siloxane können mit reaktionsfähigen Gruppen wie z. B. Hydroxy, Amino, Vinyl, Acryl, Methacryl, Carboxy oder Glycidyl funktionalisiert sein.
Erfindungsgemäss kann gemäss Variante b) der halogenfreie flammhemmende Füllstoff mit einer Fettsäureverbindung und einem Siloxanderivat behandelt werden.
Unter einer Fettsäureverbindung wird bei dieser Variante entweder eine klassische Fettsäure mit zweckmäßig 10 bis 30 C-Atcmen, ein Fettsäurederivat davon oder ein- oder mehrfach ungesättigte Hydroxyfettsäure mit zweckmäßig
10 bis 30 C-Atcmen verstanden.
Geeignete klassische Fettsäuren sind, z. B. die Stearinsäure, Laurinsäure, Myristinsäure,
Palmitinsäure, Ölsäure oder Linolensäure.
Als Fettsäurederivat kann ein Fettsäuresalz oder eine modifizierte Fettsäure wie z. B. das
Stearinsäureglycidylmethacrylat eingesetzt werden.
Bevorzugt werden gesättigte Fettsäuren oder Hydroxyfettsäuren bzw. Derivate von gesättigten
Fettsäuren eingesetzt.
Die Anwendung der Fettsäureverbindungen erfolgt generell als einheitliche
Verbindung oder als Mischung verschiedener Fettsäureverbindungen.
Die vorteilhafte Menge liegt ebenfalls in der bei Variante a) für die Fettsäurederivate genannten Bereich.
Um das geforderte Eigenschaftsprofil zu erzielen, ist in Variante b) die Siloxankomponente zwingend.
Als Siloxanderivat können in der genannten Menge die unter Variante a) aufgeführten
Verbindungen verwendet werden.
Bevorzugt werden hochmolekulare Polydialkylsiloxane, die gegebenenfalls mit den genannten ftmktionellen Gruppen funktionalisiert worden sind, eingesetzt.
Zweckmässig kann als Trägermaterial für die genannten Oberflächenmodifizierungsmittel, die zum Teil in flüssigem Aggregatzustand vorliegen, pyrogene Kieselsäuren oder Fällungskiesel¬ säuren verwendet werden.
Bevorzugte pyrogene Kieselsäuren sind die Aerosil®-Typen von Degussa. Bevorzugte Fällungskieselsäuren sind die Sipernat®-Typen von Degussa.
Die genannten Trägermaterialien werden abhängig vom Oberflächenmodifizierungsmittel in einer Menge von 0,1 bis 10 Teilen pro 100 Teilen Füllstoff eingesetzt.
Gegebenenfalls können weitere Verarbeitungshilfsmittel, wie z. B. Stabilisatoren zugesetzt werden.
Zur Oberflächenmodifizierung wird der halogenfreie flammhemmende Füllstoff zweckmässig in einem geeigneten Mischer, vorzugsweise in einem Mischer, der hohe Scherkräfte ermöglicht, mit den erwähnten Coagenzien versehen. Dabei kann die Zugabe in gewählter Reihenfolge in bestimmten Zeitintervallen bei unterschiedlichen Temperaturen und bei den Coagenzien angepassten Prozessparametern erfolgen. Es ist ebenso möglich, eine Vormischung der Coagenzien zusammen mit den halogenfreien flammhemmenden Füllstoffen dem Mischer zuzuführen.
Vorteilhaft kann auch zunächst ein Additivkonzentrat, ein sogenanntes Masterbatch, hergestellt werden, indem nur eine Teilmenge des Füllstoffes mit den betreffenden Coagenzien gemäss dem genannten Verfahren in einem Mischer mit hohen Scherkräften vermischt wird. Dieses sogenannte Masterbatch kann dann auf einfache Weise mit einem technisch weniger aufwendigen Mischaggregat z. B. beim Kunden, mit der entsprechenden Menge zusätzlichen Füllstoffes verdünnt und zum einsatzbereiten oberflächenmodifizierten Füllstoff verarbeitet werden.
Der auf diese Weise modifizierte halogenfreie flammhemmende Füllstoff kann darauf mit dem gewünschten Polymer bzw. mit den gewünschten Polymeren nach gängigen Methoden zu einem Compound verarbeitet werden.
Als Compoundieraggregate bieten sich dafür handelsübliche Mischaggregate an, wie z. B. Ein- oder Doppel-Schneckenkneter, Ko-Kneter, Innenmischer oder ein FCM (farrel continuous mixer).
Der erfindungsgemäss oberflächenbehandelte halogenfreie flammhemmende Füllstoff ist für die Flammfestausrüstung von Polymeren bevorzugt von thermoplastischen Polyolefinen und thermoplastischen Elastomeren wie z. B. Polyethylen und seine Copolymere, Polypropylen, EVA und seine Copolymere, Polyamide und seine Copolymere, aliphatischen Polyketonen oder Polyestern. geeignet.
Üblicherweise werden die oberflächenbehandelten Hydroxide des Aluminiums in Polymeren eingesetzt, die bis ca. 180 °C verarbeitbar sind.
Geeignete Vertreter solcher Polymere sind insbesondere thermoplastische Olefine wie z. B. EVA und seine Copolymere oder Polyethylen und seine Copolymere oder auch Gummi- mischungen.
Die oberflächenbehandelten Magnesiumhydroxide dagegen werden in der Regel im Hochtem¬ peraturbereich, d. h. in Polymeren, die ab 180 bis 300 °C verarbeitbar sind, vorzugsweise in thermoplastischen Polyolefinen oder thermoplastischen Elastomeren wie z. B. Polypropylen eingesetzt.
Gegebenenfalls können auch Mischungen der genannten Füllstoffe für die Flammfestausrüstung der genannten Polymere eingesetzt werden. Je nach gefordertem Eigenschaftsprofil können den genannten Füllstoffen ein oder mehrere Oxide des Aluminiums, des Magnesiums, des Titans oder des Zirkoniums zugemischt werden, um z. B. Abriebverhalten, Härte oder Bewitterungsverhalten zu steuern.
Der Gehalt an oberflächenbehandeltem Füllstoff in der betreffenden Polymermatrix bewegt sich, abhängig von dem gewünschten Grad an Flammfestigkeit, in der Regel zwischen 5 und 90 Gew. -% , vorzugsweise zwischen 20 bis 70 Gew.-% .
Die genannten Füllstoff-enthaltenden Compounds können zusätzlich faserförmige Verstärkerstoffe enthalten.
Zu den Faserstoffen zählen beispielsweise Glasfasern Steinfasem, Metallfasern, polykristalline keramische Fasern, einschliesslich der Einkristalle, den sogenannten "whiskers", ebenso alle aus synthetischen Polymeren herrührenden Faser, wie z. B. Aramid-, Kohlenstoff-, Polyamid-, Polyacryl-, Polyester- und Polyethylen-Fasern.
Falls gewünscht, können die Compounds mit geeigneten Pigmenten und / oder Farbstoffen oder mit weiteren anwendungsbezogenen Zusätzen oder Hilfsstoffen versehen sein.
Beispiele
Beispiel 1
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 10 kg Polymerfettsäure (Pripol 3505 / Unichema), während 12 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 2
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 12 kg Ketostearinsäure während 32 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen. Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 3
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 10 kg einer Polymerfettsäure (Pripol 3505, Unichema) und 5 kg Polydimethylsiloxan (Petrarch Chemicals, MG >150'000) und 5 kg Polydiethylsiloxan (Wacker) während 60 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt. Beispiel 4
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 20 kg Undecyl-2-oxazolin während 28 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen. Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 5
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 10 kg Polydialkylsiloxan (CT 6000M, Wacker) und 2,5 kg einer Fettsäuremischung (Gehalt 70% C- 18) während 28 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen. Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 6
1000 kg eines natürlichen Brucits (spez. Oberfläche n. BET 6,3 m^/g; dso 2,6 μm) wurden in einem Intensivmischer mit 10 kg Fettsäuremischung (Gehalt 70% C- 18) und 10 kg
Polydimethylsiloxan (Silanol terminiert, PS 349.5, Petrarch Chemicals) während 30 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.% der Anteil Polymer 35 Gew.% beträgt. Beispiel 7
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 18 kg Fettsäurederivat (Stearinsäure-glycidylmetacrylat) und 22 kg Polydimethylsiloxan (Petrarch Chemicals, MG 380*000, Viskosität 2 • 106 cSt) während 60 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3 % Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Beispiel 8
1000 kg Magnesiumhydroxid (Magnifin H 5 / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 15 kg Fettsäuregemisch (Laurinsäure / Stearinsäure 1 :1) und 25 kg Polydialkylsiloxan (PS 048, Petrarch Chemicals) und mit 2 kg Trägermaterial (AEROSIL® R972, Degussa) während 12 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3 % Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Beispiel 9
1000 kg eines natürlichen, gemahlenen Brucits (spez. Oberfläche n. BET 6,3 m^/g; d5o 2,6 μm) wurden in einem Intensivmischer mit 8 kg Polymerfettsäure (Pripol 1009, Unichema) und 8 kg Polydialkylsiloxan (GE1046, General Electric) und 12,5 kg Polydialkylsiloxan (PS
340.5, Petrarch Chemicals) und mit AEROSIL® A 380, Degussa) während 10 min vermischt.
Danach wurde das auf die beschriebene Weise modifizierte Magnesiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3 % Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer
40 Gew.% beträgt. Beispiel 10
1000 kg Aluminiumhydroxid (Martinal® OL 104 LE / Martinswerk GmbH, Bergheim, Deutschland) wurden in einem Intensivmischer mit 19 kg eines Gemisches Laurinsäure / Polydimethylsiloxan (PS 347.5, Petrarch Chem.) und 4 kg Trägermaterial (AEROSIL® R 972, Degussa) während 48 min vermischt. Danach wurde das auf die beschriebene Weise modifizierte Aluminiumhydroxid ausgetragen.
Das erhaltene Produkt wurde darauf mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3 % Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Beispiel 11 ( ergleic
10 kg Magnesiumhydroxid Kisuma 5A (Kyowa Chemical) wurden mit einem Polypropylen- Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 12 rVergleic
10 kg Magnesiumhydroxid FR 20/108 (Dead Sea Periclase Ltd.) wurden mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt.
Beispiel 13 rVergleic
10 kg Magnesiumhydroxid Duhor N (Duslo) wurden mit einem Polypropylen-Homopolymer (Vestolen P 8400, Hüls) in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 65 Gew.%, der Anteil Polymer 35 Gew.% beträgt. Beispiel 14 (Vergleich)
10 kg Magnesiumhydroxid Kisuma 5 A (Kyowa Chemical) wurden mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3% Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Beispiel 15 ('Vergleich'-
10 kg Magnesiumhydroxid FR 20/108 (Dead Sea Periclase Ltd.) wurden mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3 % Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Beispiel 16 (Vergleich)
10 kg Magnesiumhydroxid Duhor N (Duslo) wurden mit einem EVA Polymer (Escorene Ultra UL 00119, Exxon) in Gegenwart von 0,3% Irganox 1010 als Stabilisator in einem Einschneckengerät so zu einem Compound verarbeitet, dass der Anteil an Füllstoff 60 Gew.%, der Anteil Polymer 40 Gew.% beträgt.
Die in den vorstehenden Beispielen hergestellten Compounds wurden in einer
Spritzgussmaschine des Typs BOY 30 T2 zu Spritzgussgiesstestkörpern verarbeitet und nachfolgenden Standard-Messungen unterzogen.
Meltflow Index (MFI) nach DIN 53 735
Zugfestigkeit nach DIN 53 455
Reissdehnung nach DIN 53 455
Zug E-Modul nach DIN 53 457
Limiting oxygen Index (LOI) nach ASTM D-2863-77
Schlagzähigkeitsprüfung nach nach DIN 53 453
spez. Durchgangswiderstand nach DIN 53 482
Brandverhalten gemäss UL-94 Test Standard der Unde Tabelle;
Beispiel MFI Zugfestig¬ Reissdeh¬ LOI Zug-E- Charpy UL-94 spez.
(230 °C / keit nung Modul (230 °C) (Klasse) Durch-
5 kg) gangs- widerst.
[g/lO min] [N/mm2] [m/m] [N/mm2] [KJ/m2] [Ohm cm ]
1 (PP) 5 18 1 ,7 - 2800 ohne V-0 1015 Bruch
2 (PP) 9 18 1,8 - 2500 "
3 (PP) 10 20 2,0 - 2300 ••
4 (PP) 5 20 1,5 - 2800
5 (PP) 9 23 1,8 - 3000
6 (PP) 8 15 2,0 - 2100 π
7 (EVA) 3 10 4,8 60 - - -
8 (EVA) 2,5 1 1 4,0 75 - - -
9 (EVA) 3,5 8 3,0 50 - - -
10 (EVA) 4,0 10 5,0 40 - - -
11 (PP) 3,5 15 0,1 - 1700 45 V-l -
12 (PP) nicht 17 0,01 - 2400 8 - - messbar
13 (PP) 17 0,04 - 1600 30 - -
14 (EVA) 2,5 8 1,2 45 - - - 1013
15 (EVA) «1 6 0,9 40 - - - lOH
16 (EVA) 2,0 6 1,2 38 - - - ιoi ι
Vestolen 7 23 >0,5 23 800 ohne n.e.* 1015
P8400 (PP) Bruch
Escorene 10 25 >0,5 23 - - n.e.*
Ultra UL
001 19 (EVA)
* nicht erreicht

Claims

Patentansprüche;
1. Oberflächenmodifizierte Füllstoffzusammensetzung für thermoplastische Olefine oder thermoplastische Elastomere bestehend aus einem halogenfreien flammhemmenden Füllstoff der mit a) einem oder mehreren der Fettsäurederivate aus der Reihe der
Polymerfettsäuren, der Ketofettsäuren oder der Fettalkyl-oxazoline oder -bisoxazoline und gegebenenfalls einem Siloxanderivat oder b) einer Fettsäure und einem Siloxan¬ derivat oberflächenbehandelt ist.
2. Füllstoffzusammensetzung nach Patentanspruch 1, dadurch gekennzeichnet, dass eine pyrogene Kieselsäure oder eine Fällungskieselsäure in einer Menge von 0,1 bis 10 Teilen pro 100 Teilen halogenfreier flammhemmender Füllstoff enthalten ist.
3. Füllstoffzusammensetzung nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, das als halogenfreier flammhemmender Füllstoff ein oder mehrere Hydroxide des Alumi¬ niums und / oder ein oder mehrere Hydroxide des Magnesiums, gegebenenfalls in Mischung mit einem oder mehreren Oxiden des Aluminiums, des Magnesiums, des Titans oder des Zirkoniums oder mit weiteren Füllstoffmaterialien enthalten sind.
4. Füllstoffzusammensetzung nach einem der Patentansprüche 1 bis 3, dadurch gekenn¬ zeichnet, dass die Fettsäurederivate in einer Menge von 0,01 bis 10 Teilen pro 100 Teilen halogenfreier flammhemmender Füllstoff enthalten sind.
5. Füllstoffzusammensetzung nach einem der Patentansprüche 1 bis 4, dadurch gekenn- zeichnet, dass die Siloxanderivate in einer Menge von 0,01 bis 20 Teilen pro 100 Teilen halogenfreier flammhemmender Füllstoff enthalten sind.
6. Verwendung einer oberflächenmodifizierten Füllstoffzusammensetzung gemäss einem der Patentansprüche 1 bis 5 als halogenfreier flammhemmender Füllstoff in einer Menge von 5 Gew.% bis 90 Gew.% in thermoplastischen Olefinen oder thermoplastischen Elastomeren.
7. Thermoplastische Olefine oder thermoplastische Elastomeren enthaltend eine oberflächenmodifizierte Füllstoffzusammensetzung gemäss einem der Patentansprüche 1 bis 5.
PCT/EP1996/000743 1995-02-23 1996-02-22 Oberflächenmodifizierte füllstoffzusammensetzung WO1996026240A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA002209894A CA2209894C (en) 1995-02-23 1996-02-22 Surface-modified filler composition
SK1120-97A SK281951B6 (sk) 1995-02-23 1996-02-22 Povrchovo upravená plnidlová kompozícia
HU9801875A HU221147B1 (en) 1995-02-23 1996-02-22 Surface-modified filler composition
AU49409/96A AU4940996A (en) 1995-02-23 1996-02-22 Surface-modified filler composition
CZ19972632A CZ289678B6 (cs) 1995-02-23 1996-02-22 Povrchově upravená plnivová kompozice
DK96905780T DK0811035T3 (da) 1995-02-23 1996-02-22 Overflademodificeret fyldstofsammensætning
DE59603002T DE59603002D1 (de) 1995-02-23 1996-02-22 Oberflächenmodifizierte füllstoffzusammensetzung
JP8525406A JPH11501686A (ja) 1995-02-23 1996-02-22 表面を修飾した充填剤組成物
EP96905780A EP0811035B1 (de) 1995-02-23 1996-02-22 Oberflächenmodifizierte füllstoffzusammensetzung
US08/894,377 US5827906A (en) 1995-02-23 1996-02-22 Surface-modified filler composition
PL96322009A PL187070B1 (pl) 1995-02-23 1997-07-08 Kompozycja wypełniaczowa do termoplastycznych olefin lub termoplastycznych elastomerów oraz mieszanka termoplastycznej olefiny lub termoplastycznego elastomeru z kompozycją wypełniaczową
FI973435A FI115464B (fi) 1995-02-23 1997-08-21 Pintamuunnettu täyteainekoostumus
NO19973860A NO311086B1 (no) 1995-02-23 1997-08-22 Overflatemodifisert fyllstoffsammensetning, samt anvendelse derav
GR990403071T GR3031978T3 (en) 1995-02-23 1999-11-29 Surface-modified filler composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH53095 1995-02-23
CH530/95-5 1995-02-23

Publications (1)

Publication Number Publication Date
WO1996026240A1 true WO1996026240A1 (de) 1996-08-29

Family

ID=4189125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000743 WO1996026240A1 (de) 1995-02-23 1996-02-22 Oberflächenmodifizierte füllstoffzusammensetzung

Country Status (20)

Country Link
US (1) US5827906A (de)
EP (1) EP0811035B1 (de)
JP (1) JPH11501686A (de)
KR (1) KR100386867B1 (de)
CN (1) CN1175967A (de)
AT (1) ATE184301T1 (de)
AU (1) AU4940996A (de)
CA (1) CA2209894C (de)
CZ (1) CZ289678B6 (de)
DE (1) DE59603002D1 (de)
DK (1) DK0811035T3 (de)
ES (1) ES2137673T3 (de)
FI (1) FI115464B (de)
GR (1) GR3031978T3 (de)
HU (1) HU221147B1 (de)
IL (1) IL117216A (de)
NO (1) NO311086B1 (de)
PL (1) PL187070B1 (de)
SK (1) SK281951B6 (de)
WO (1) WO1996026240A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751535A2 (de) * 1995-06-30 1997-01-02 AT&T IPM Corp. Kabel mit hoher Flammfestigkeit und Rauchentwicklungsbeständigkeit
WO1998046673A1 (en) 1997-04-17 1998-10-22 Duslo, A.S. S^¿Ala A polymeric composite material with improved flame resistance
WO2000068312A1 (de) * 1999-05-07 2000-11-16 Süd-Chemie AG Flammgeschützte polymerzusammensetzung
EP1063655A1 (de) * 1999-06-25 2000-12-27 Degussa-Hüls Aktiengesellschaft Funktionelle Organylorganyloxysilane auf Trägerstoffen in Kabelcompounds
EP1200498A1 (de) * 1998-08-13 2002-05-02 Wm. MARSH RICE UNIVERSITY Verfahren und materialien zur herstellung von alumoxan-polymeren
WO2002055596A1 (de) * 2001-01-12 2002-07-18 Omya Ag Procede de traitement d'une charge minerale par un polydialkylsiloxane et un acide gras, charges hydrophobes ansi obtenues, et leurs applications dans des polymers pour films 'respirables'
WO2002070598A1 (de) * 2001-03-02 2002-09-12 Albemarle Corporation Vorrichtung zur Verbesserung der Standfestigkeit von Ordnern
WO2002072685A2 (de) * 2001-01-26 2002-09-19 Albemarle Corporation Verfahren zur herstellung flammhemmender kunststoffe
WO2002079320A1 (de) * 2001-03-02 2002-10-10 Albemarle Corporation Flammhemmende propylenpolymercompounds
US6576160B1 (en) 1998-09-14 2003-06-10 Hans-Jurgen Eichler Surface-modified filling material composition
WO2004015002A2 (en) * 2002-08-07 2004-02-19 Dow Corning Toray Silicone Co., Ltd. Thermoconductive filler, thermocoductive silicone elastomer composition, and semiconductor devices
US6887517B1 (en) 2002-06-12 2005-05-03 Tda Research Surface modified particles by multi-step Michael-type addition and process for the preparation thereof
US6933046B1 (en) 2002-06-12 2005-08-23 Tda Research, Inc. Releasable corrosion inhibitor compositions
US6986943B1 (en) 2002-06-12 2006-01-17 Tda Research, Inc. Surface modified particles by multi-step addition and process for the preparation thereof
EP1739125A1 (de) * 2004-04-20 2007-01-03 Yazaki Corporation Polyolefinharzzusammensetzung und damit hergestellte elektrische drähte
US7244498B2 (en) 2002-06-12 2007-07-17 Tda Research, Inc. Nanoparticles modified with multiple organic acids
DE19941181B4 (de) * 1998-08-31 2010-09-23 Riken Technos Corp. Feuerhemmende Harzzusammensetzung Verfahren zur Herstellung, Verwendung und Formteil unter Verwendung derselben

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949304A3 (de) * 1998-04-10 2002-07-10 Kyowa Chemical Industry Co., Ltd. Verfahren zur Stabilizierung einer mit ungesattigte Fettsäure behandelte anorganische Verbindung und seine Verwendung
US20050009974A1 (en) * 1999-02-19 2005-01-13 Flexman Edmund Arthur Toughened high modulus mineral filled polyoxymethylene polymers
ES2249251T3 (es) * 1999-02-19 2006-04-01 E.I. Du Pont De Nemours And Company Poliamidas endurecidas de alto modulo.
CA2371300C (en) 1999-04-30 2011-04-05 Alcan International Limited Fire retardant compositions
US6593400B1 (en) * 1999-06-30 2003-07-15 Minerals Technologies Inc. Talc antiblock compositions and method of preparation
US6414059B1 (en) * 1999-08-27 2002-07-02 Riken Technos Corporation Fire-retardant resin composition and molded part using the same
JP4557193B2 (ja) * 1999-10-05 2010-10-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 高配向性薄片状顔料およびその製造方法
JP4399061B2 (ja) * 1999-10-13 2010-01-13 東レ・ダウコーニング株式会社 難燃性ポリオレフィン系樹脂組成物、その製造方法および難燃性ケーブル
US6559207B1 (en) * 2000-03-14 2003-05-06 Si Corporation Flame resistant polymer composition and method for rendering polymers flame resistant
JP4201573B2 (ja) * 2002-10-29 2008-12-24 矢崎総業株式会社 電線被覆用樹脂組成物およびそれを用いた電線
WO2004063260A2 (de) * 2003-01-08 2004-07-29 Süd-Chemie AG Zusammensetzung auf der basis präexfolierter nanoclays und ihre verwendung
EP1560879B1 (de) * 2003-06-12 2006-06-07 Süd-Chemie Ag Verfahren zur herstellung von nanocomposit-additiven mit verbesserter delaminierung in polymeren
JP2005126626A (ja) * 2003-10-27 2005-05-19 Fuji Xerox Co Ltd 難燃性樹脂組成物及びその製造方法、難燃樹脂成型物
JP4894263B2 (ja) * 2003-12-19 2012-03-14 日本電気株式会社 難燃性熱可塑性樹脂組成物
GB0402627D0 (en) * 2004-02-06 2004-03-10 Imerys Minerals Ltd Ultrafine Ground Natural Brucite
US7338995B2 (en) * 2004-03-06 2008-03-04 E.I. Du Pont De Nemours And Company Titanium dioxide—containing polymers and films with reduced melt fracture
WO2005103203A1 (ja) * 2004-04-20 2005-11-03 Yazaki Corporation 難燃剤
DE102004039451A1 (de) * 2004-08-13 2006-03-02 Süd-Chemie AG Polymerblend aus nicht verträglichen Polymeren
JP4997704B2 (ja) * 2005-02-24 2012-08-08 富士ゼロックス株式会社 表面被覆難燃性粒子及びその製造方法、並びに難燃性樹脂組成物及びその製造方法
US20060293435A1 (en) * 2005-06-10 2006-12-28 Marens Marvin M Light-emitting diode assembly housing comprising high temperature polyamide compositions
JP2007002120A (ja) * 2005-06-24 2007-01-11 Fuji Xerox Co Ltd 難燃性樹脂組成物及び難燃性樹脂成形品
US7601780B2 (en) * 2005-07-18 2009-10-13 E.I. Du Pont De Nemours And Company Increased bulk density of fatty acid-treated silanized powders and polymers containing the powders
AU2007263533A1 (en) * 2006-06-21 2008-01-03 Martinswerk, Gmbh A process for producing aluminum hydroxide particles
WO2008004133A2 (en) * 2006-06-21 2008-01-10 Martinswerk Gmbh Coated magnesium hydroxide particles produced by mill-drying
GB0622106D0 (en) * 2006-11-06 2006-12-20 Imerys Minerals Ltd Grinding and beneficiation of brucite
CN101392107B (zh) * 2007-09-21 2012-07-04 中国矿业大学(北京) 一种具有阻燃和电绝缘功能的无机复合超细活性填料的制备方法
TWI330651B (en) * 2007-12-04 2010-09-21 Ind Tech Res Inst Modified inorganic particles and methods of preparing the same
WO2009119860A1 (ja) * 2008-03-27 2009-10-01 宇部興産株式会社 フィルム用ポリアミド樹脂組成物
JP2013079318A (ja) * 2011-10-04 2013-05-02 Kohjin Holdings Co Ltd ポリオレフィン樹脂用オキサゾリン系フィラー分散促進剤
JP6060681B2 (ja) * 2012-09-11 2017-01-18 富士ゼロックス株式会社 樹脂組成物、および樹脂成形体
JP5886775B2 (ja) * 2013-03-04 2016-03-16 株式会社フジクラ 難燃剤、及びこれを用いた難燃性樹脂組成物の製造方法
EP2843005A1 (de) 2013-08-26 2015-03-04 Omya International AG Erdalkalicarbonat, oberflächenmodifizierte durch mindestens ein Polywasserstoffsiloxan
TWI685524B (zh) 2013-12-17 2020-02-21 美商畢克美國股份有限公司 預先脫層之層狀材料
US10178756B1 (en) * 2014-10-29 2019-01-08 National Technology & Engineering Solutions Of Sandia, Llc Multifunctional composite coatings for metal whisker mitigation
EP3246359A1 (de) 2016-05-19 2017-11-22 Nanosync Sp Z O O Verfahren zur herstellung halogenfreier flammhemmender polymerverbundstoffe
US20210395490A1 (en) * 2018-10-11 2021-12-23 Basell Polyolefine Gmbh Composition comprising polyolefin and gibbsite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276354A (en) * 1975-12-22 1977-06-27 Asahi Chem Ind Co Ltd Polyolefin composition
DE2659933B1 (de) * 1975-05-30 1980-10-30 Kyowa Chem Ind Co Ltd Feste,mit anionischen oberflaechenaktiven Stoffen ueberzogene Magnesiumhydroxidteilchen und deren Verwendung
EP0292233A2 (de) * 1987-05-22 1988-11-23 Imperial Chemical Industries Plc Füllstoffe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514081A (en) * 1975-05-30 1978-06-14 Kyowa Chem Ind Co Ltd Particulate magnesium hydroxide
US4145404A (en) * 1975-05-30 1979-03-20 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
JPS5847030A (ja) * 1981-09-14 1983-03-18 Adeka Argus Chem Co Ltd 安定化された合成樹脂組成物
DE3685121D1 (de) * 1985-01-19 1992-06-11 Asahi Glass Co Ltd Magnesiumhydroxyd, verfahren zu seiner herstellung und eine dasselbe enthaltende harzzusammensetzung.
IE64663B1 (en) * 1989-11-01 1995-08-23 Lonza Ag Surface-modified fillers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2659933B1 (de) * 1975-05-30 1980-10-30 Kyowa Chem Ind Co Ltd Feste,mit anionischen oberflaechenaktiven Stoffen ueberzogene Magnesiumhydroxidteilchen und deren Verwendung
JPS5276354A (en) * 1975-12-22 1977-06-27 Asahi Chem Ind Co Ltd Polyolefin composition
EP0292233A2 (de) * 1987-05-22 1988-11-23 Imperial Chemical Industries Plc Füllstoffe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 77-56441Y, XP002005662 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751535A3 (de) * 1995-06-30 1997-05-28 At & T Corp Kabel mit hoher Flammfestigkeit und Rauchentwicklungsbeständigkeit
EP0751535A2 (de) * 1995-06-30 1997-01-02 AT&T IPM Corp. Kabel mit hoher Flammfestigkeit und Rauchentwicklungsbeständigkeit
WO1998046673A1 (en) 1997-04-17 1998-10-22 Duslo, A.S. S^¿Ala A polymeric composite material with improved flame resistance
EP1200498A1 (de) * 1998-08-13 2002-05-02 Wm. MARSH RICE UNIVERSITY Verfahren und materialien zur herstellung von alumoxan-polymeren
EP1200498A4 (de) * 1998-08-13 2002-09-25 Univ Wm Marsh Rice Verfahren und materialien zur herstellung von alumoxan-polymeren
DE19941181B4 (de) * 1998-08-31 2010-09-23 Riken Technos Corp. Feuerhemmende Harzzusammensetzung Verfahren zur Herstellung, Verwendung und Formteil unter Verwendung derselben
US6576160B1 (en) 1998-09-14 2003-06-10 Hans-Jurgen Eichler Surface-modified filling material composition
WO2000068312A1 (de) * 1999-05-07 2000-11-16 Süd-Chemie AG Flammgeschützte polymerzusammensetzung
EP2050786A1 (de) * 1999-05-08 2009-04-22 Rockwood Clay Additives GmbH Flammgeschützte Polymerzusammensetzung
US6403228B1 (en) 1999-06-25 2002-06-11 Degussa Ag Functional organylorganyloxysilanes on a carrier in cable compounds
EP1063655A1 (de) * 1999-06-25 2000-12-27 Degussa-Hüls Aktiengesellschaft Funktionelle Organylorganyloxysilane auf Trägerstoffen in Kabelcompounds
CZ306958B6 (cs) * 2001-01-12 2017-10-11 Omya International Ag Způsob úpravy minerálního plniva polydialkylsiloxanem a mastnou kyselinou, takto získaná hydrofobní plniva a jejich aplikace v polymerech pro prodyšné fólie
WO2002055596A1 (de) * 2001-01-12 2002-07-18 Omya Ag Procede de traitement d'une charge minerale par un polydialkylsiloxane et un acide gras, charges hydrophobes ansi obtenues, et leurs applications dans des polymers pour films 'respirables'
US7312258B2 (en) 2001-01-12 2007-12-25 Omya Development Ag Method for treating a mineral filler with a polydialkylsiloxane and a fatty acid, resulting hydrophobic fillers and uses thereof in polymers for breathable films
WO2002072685A3 (de) * 2001-01-26 2002-11-07 Albemarle Corp Verfahren zur herstellung flammhemmender kunststoffe
WO2002072685A2 (de) * 2001-01-26 2002-09-19 Albemarle Corporation Verfahren zur herstellung flammhemmender kunststoffe
WO2002079320A1 (de) * 2001-03-02 2002-10-10 Albemarle Corporation Flammhemmende propylenpolymercompounds
WO2002070598A1 (de) * 2001-03-02 2002-09-12 Albemarle Corporation Vorrichtung zur Verbesserung der Standfestigkeit von Ordnern
US6887517B1 (en) 2002-06-12 2005-05-03 Tda Research Surface modified particles by multi-step Michael-type addition and process for the preparation thereof
US6933046B1 (en) 2002-06-12 2005-08-23 Tda Research, Inc. Releasable corrosion inhibitor compositions
US6986943B1 (en) 2002-06-12 2006-01-17 Tda Research, Inc. Surface modified particles by multi-step addition and process for the preparation thereof
US7244498B2 (en) 2002-06-12 2007-07-17 Tda Research, Inc. Nanoparticles modified with multiple organic acids
WO2004015002A3 (en) * 2002-08-07 2005-01-06 Dow Corning Toray Silicone Thermoconductive filler, thermocoductive silicone elastomer composition, and semiconductor devices
WO2004015002A2 (en) * 2002-08-07 2004-02-19 Dow Corning Toray Silicone Co., Ltd. Thermoconductive filler, thermocoductive silicone elastomer composition, and semiconductor devices
EP1739125A1 (de) * 2004-04-20 2007-01-03 Yazaki Corporation Polyolefinharzzusammensetzung und damit hergestellte elektrische drähte
EP1739125A4 (de) * 2004-04-20 2010-09-15 Yazaki Corp Polyolefinharzzusammensetzung und damit hergestellte elektrische drähte

Also Published As

Publication number Publication date
CA2209894A1 (en) 1996-08-29
NO311086B1 (no) 2001-10-08
EP0811035A1 (de) 1997-12-10
CA2209894C (en) 2006-10-31
FI973435A0 (fi) 1997-08-21
FI973435A (fi) 1997-08-21
PL187070B1 (pl) 2004-05-31
NO973860D0 (no) 1997-08-22
PL322009A1 (en) 1998-01-05
CN1175967A (zh) 1998-03-11
EP0811035B1 (de) 1999-09-08
ATE184301T1 (de) 1999-09-15
SK281951B6 (sk) 2001-09-11
NO973860L (no) 1997-08-22
KR19980702052A (ko) 1998-07-15
GR3031978T3 (en) 2000-03-31
CZ289678B6 (cs) 2002-03-13
DE59603002D1 (de) 1999-10-14
HU221147B1 (en) 2002-08-28
IL117216A0 (en) 1996-06-18
CZ263297A3 (en) 1997-12-17
JPH11501686A (ja) 1999-02-09
IL117216A (en) 2003-10-31
ES2137673T3 (es) 1999-12-16
HUP9801875A2 (hu) 1998-11-30
KR100386867B1 (ko) 2003-08-21
DK0811035T3 (da) 1999-12-20
AU4940996A (en) 1996-09-11
HUP9801875A3 (en) 1999-03-01
SK112097A3 (en) 1998-01-14
FI115464B (fi) 2005-05-13
US5827906A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
EP0811035B1 (de) Oberflächenmodifizierte füllstoffzusammensetzung
FI103345B (fi) Pinnaltaan modifioituja täyteaineita
EP1124895B1 (de) Oberflächenmodifizierte füllstoffzusammensetzung
EP1183306B1 (de) Flammgeschützte polymerzusammensetzung
WO2004111122A1 (de) Verfahren zur herstellung von nanocomposit-additiven mit verbesserter delaminierung in polymeren
US6114454A (en) Use of styrene and maleic anhydride copolymers as dispersing agents and/or for treatment of mineral fillers and thermoplastic compounds containing same
EP1360229B1 (de) Verfahren zur herstellung flammhemmender kunststoffe
WO2002070598A1 (de) Vorrichtung zur Verbesserung der Standfestigkeit von Ordnern
WO2002079320A1 (de) Flammhemmende propylenpolymercompounds
DE112011100431B4 (de) Flammhemmendes Mittel, flammhemmende Harzzusammensetzung und deren Verwendung zur Herstellung einer isolierten Leitung
EP2626382B1 (de) Flammbeständige halogenfreie Polymermischung
DE60020836T2 (de) Flammhemmende zusammensetzungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96192115.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996905780

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2209894

Country of ref document: CA

Ref document number: 2209894

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970705447

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112097

Country of ref document: SK

ENP Entry into the national phase

Ref document number: 1996 525406

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV1997-2632

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 973435

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 08894377

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996905780

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1997-2632

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019970705447

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996905780

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1997-2632

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1019970705447

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 973435

Country of ref document: FI