Vorrichtung zur Verbesserung der Standfestigkeit von Ordnern
Beschreibung
Die Erfindung betrifft ein Compoundierverfahren für die Herstellung selbstverlöschender Poly- mercompounds auf der Basis haiogenfreier flammhemmender Füllstoffe.
Halogenfreie flammhernmende Füllstoffe wie z.B. Magnesium- oder Aluminiumhydroxid werden zum Zweck der optimalen Einarbeitung in Polymere und zur Verbesserung der Compound- eigenschaften an der Füllstoffoberfläche beschichtet. Dies wird z.B. mit Salzen von Fettsäuren gemäss DE-PS 26 59 933 oder z.B. mit Säuregruppen enthaltenden Polymeren gemäss EP-A 92233 durchgeführt.
Es konnte gezeigt werden (WO 96/26240), dass der Einsatz von Fettsäurederivaten und Poly- siloxanen in der Oberflächenbehandlung von Füllstoffen als Kompatibilisatoren zwischen Füllstoffen und Polymermatrix verbesserte Materialeigenschaften mit sich bringt. Weiterhin erlaubt der Einsatz der genannten Kompatibilisatoren die Verwendung preiswerterer, natürlicher oder synthetischer Füllstoffe mit grösseren Eigenschaftstoleranzen. Der durch die Verwendung von billigerem Füllstoffmaterial gewonnene Preisvorteil wird jedoch durch den separaten teuren Beschichtungsschritt teilweise oder ganz wieder kompensiert. Durch die aufwendigen, getrennten Arbeitsschritte der Beschichtung und anschliessenden Compoundierung blieb für die so entstehenden hochwertigen Compounds oft eine breite Anwendung, insbesondere im unteren Preissegment, versagt.
Hieraus ergab sich die Aufgabe, auch für Massenartikel (aber nicht nur für diese) eine kostengünstige Alternative zum Ersatz halogenhaltiger oder phosphorhaltiger, flammhernmender Compounds durch ein billigeres Verfahren für die Modifizierung von halogenfreien flammhemmenden Füllstoffen mit kompatibilitätsfördernden Additiven zu finden.
Überraschenderweise konnte diese Aufgabe mit einem Verfahren nach Patentanspruch 1 gelöst werden, durch eine in s/tw-Compoundierung von Polymeren mit, zum Zeitpunkt der Einarbeitung, nicht oberflächenmodifizierten Füllstoffen und kompatibilitätsfördernden Additiven.
Entgegen der Erwartung, dass bei diesem Vorgehen nur eine unverhältnismässige Erhöhung der
Menge von kompatibilitätsfördernden Additiven zu einer befriedigenden Flammschutzwirkung mit ähnlichen Theologischen und mechanischen Materialeigenschaften wie bei der separaten
Beschichtung der Füllstoffe führen würde, hat sich gezeigt, dass sich bei der in situ-
Compoundierung auch bei identischen Zuschlagsmengen der kompatibilitätsfördernden Additive neben einer deutlichen Kostenreduzierung zum Teil sogar noch bessere Materialeigenschaften der so erhaltenen selbstverlöschenden Compounds erzielen lassen.
Das erfindungsgemässe in sitw-Compoundierverfahren mit halogenfreien flammhemmenden Füllstoffen und kompatibilitätsfördernden Additiven ist bevorzugt für die Flammfestausrüstung thermoplastischer oder vernetzbarer Polyolefine, thermoplastischer Elastomere und Kautschukcompounds geeignet. Einige Beispiele sind Polyethylen und seine Copolymere, Polypropylen und seine Copolymere, Polyamide, aliphatische Polyketone oder Ethylen- Propylen-Dien-Terpolymere (EPDM) und Styrol-Butadien-Kautschuk (SBR).
Geeignete Hydroxide des Magnesiums für eine wirksame Flammschutzausrüstung sind z.B. natürliche Mg(OH)2-Typen wie z.B. Brucit oder Seewasser-Typen, natürliche Magnesiumhydroxy- carbonate wie z.B. Huntit oder Hydromagnesit, oder synthetische Magnesiumhydroxide wie sie z.B. unter dem Warenzeichen MAGNIFIN® von der Martinswerk GmbH vertrieben werden. Die Magnesiumhydroxide werden als Flammfestausrüstung vorzugsweise im Hochtemperaturbereich eingesetzt, d.h. in Polymeren, die bis ca. 340 °C verarbeitbar sind, vorzugsweise in thermoplastischen oder vernetzbaren Polyolefinen, thermoplastischen Elastomeren und Kautschukcompounds.
Geeignete Hydroxide des Aluminiums sind z.B. natürliche Al(OH)3-haltige Materialien wie z.B. Hydrargillit oder Gibbsit, (Al2O3 • x H2O)-haltige Materialien (mit x < 3) wie z.B. Böhmit oder synthetische Aluminiumhydroxide wie sie z.B. unter den Warenzeichen MARTIFLN® oder
MARTINAL® von der Martinswerk GmbH in Bergheim (Deutschland) vertrieben werden. Zweckmässig kommen die Hydroxide des Aluminiums in Compounds insbesondere mit thermoplastischen oder vernetzbaren Polyolefinen wie z.B. Polyethylen, seine Copolymere wie
z.B. Ethylen-Vinylacetat-Copolymere (EVA), oder auch Kautschukmischungen zum Einsatz, die bis ca. 200 °C verarbeitbar sind.
Je nach gefordertem Eigenschaftsprofü des gefüllten Polymers können die genannten Hydroxide des Aluminiums und/oder Hydroxide des Magnesiums alleine oder in beliebigen Mischungsverhältnissen, sowie auch unter Zumischung eines oder mehrerer Oxide des Aluminiums, des Magnesiums, des Titans oder des Zirkoniums oder mit weiteren Füllstoffmaterialien wie z.B. Calciumcarbonat, Talkum oder calcinierten oder nicht calcinierten Clays verwendet werden, um z.B. Abriebverhalten, Härte oder Bewitterungsverhalten zu steuern. Die genannten Oxide können in handelsüblicher Qualität verwendet werden.
Der Gehalt an Füllstoff in der betreffenden Polymermatrix bewegt sich, abhängig von dem gewünschten Grad an Flammfestigkeit, in der Regel zwischen 5 Gew. % und 90 Gew. % des Compounds, vorzugsweise zwischen 20 Gew. % bis 70 Gew. % des Compounds.
Erfindungsgemäss erfolgt die in sz'tw-Compoundierung des halogenfreien flammhemmenden
Füllstoffs in einer Variante mit einem Fettsäurederivat aus der Gruppe der Polymerfettsäuren, der Ketofettsäuren, der Fettalkyloxazoline oder -bisoxazoline und gegebenenfalls einem Siloxan- derivat oder in einer anderen Variante mit einer Fettsäure und einem Siloxanderivat.
Unter Polymerfettsäuren werden durch Oligomerisierung, wie z.B. durch Di- oder Trimeri- sierung von entsprechenden Fettsäuren hergestellte Verbindungen verstanden. Geeignete Vertreter sind z.B. die Polystearinsäure, die Polylaurinsäure oder die Polydecansäure (Henkel Referate 28, 1992, S. 39ff).
Unter Ketofettsäuren werden ketogruppenhaltige Fettsäuren mit vorzugsweise 10 bis 30 C- Atomen verstanden. Bevorzugter Vertreter einer Ketofettsäure ist die Ketostearinsäure (Henkel Referate 28, 1992, S. 34ff).
Unter Fettalkyloxazolinen werden die in 2-Stellung alkyl- bzw. hydroxyalkylsubstituierten Oxa- zoline verstanden. Die Alkylgruppe weist dabei vorzugsweise 7 bis 21 C-Atome auf. Bisoxazoline sind Verbindungen, die aus den Hydroxalkyloxazolinen durch Umsetzung mit Diisocyanaten synthetisiert werden. Ein bevorzugter Vertreter ist z.B. das 2-Undecyl-oxazolin (Henkel Referate 28, 1992 S. 43ff).
In den folgenden Erläuterungen werden bei Mengenangaben mit Teilen Gewichtsteile bezeichnet.
Die genannten Fettsäurederivate werden entweder einzeln odeπin Kombination in einer Menge von 0,01 bis 10 Teilen, vorzugsweise von 0,05 bis 5 Teilen, pro 100 Teilen Füllstoff eingesetzt.
Unter einer Fettsäure wird bei der zweiten Variante entweder eine gesättigte oder ungesättigte natürliche Fettsäure mit vorzugsweise 10 bis 30 C- Atomen, eine ein- oder mehrfach ungesättigte Hydroxyfettsäure mit vorzugsweise 10 bis 30 C- Atomen wie z.B. Hydroxynervonsäure oder Ricinolsäure oder eine gesättigte Hydroxyfettsäure wie z.B. Hydroxystearinsäure oder ein Derivat der vorstehenden Verbindungen verstanden. Geeignete natürliche Fettsäuren sind z.B. Stearinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Ölsäure oder Linolensäure. Als Fettsäurederivate können Fettsäuresalze oder modifizierte Fettsäuren wie z.B. Stearinsäure- glycidylmethacrylat eingesetzt werden. Bevorzugt werden gesättigte Fettsäuren oder Hydroxyfettsäuren bzw. Derivate davon eingesetzt. Die genannten Fettsäuren können entweder einzeln oder in Kombination in einer Menge von 0,01 bis 10 Teilen, vorzugsweise von 0,05 bis 5 Teilen, pro 100 Teilen Füllstoff eingesetzt werden.
Um das geforderte Eigenschaftsprofil zu erzielen, ist in der Variante mit Fettsäuren die Siloxan- komponente zwingend erforderlich.
Die Zuschlagsmenge der Siloxankomponente liegt bei 0,01 bis 20 Teilen, vorzugsweise bei 0,05 bis 10 Teilen, pro 100 Teilen Füllstoff.
Geeignete Siloxanderivate sind Oligoalkylsiloxane, Polydialkylsiloxane wie z.B. Polydimethyl- siloxan, Polydiethylsiloxan, Polyalkylarylsiloxane wie z.B. Polyphenylmethylsiloxan oder Polydiarylsiloxane wie z.B. Polyphenylsiloxan.
Die genannten Siloxane können mit reaktionsfähigen Gruppen wie z.B. Hydroxy-, Amino- Vinyl-, Acryl-, Methacryl-, Carboxy- oder Glycidylgruppen funktionalisiert sein.
Als Siloxanderivate werden bevorzugt hochmolekulare Polydialkylsiloxane, die gegebenenfalls mit den genannten Gruppen funktionalisiert worden sind, eingesetzt.
Für die Herstellung besonders preisgünstiger Compounds kann, unter Abnahme der Flamm: schutzwirkung, in einer bevorzugten Ausführungsform der halogenfreie flammhemmende
Füllstoff bis zu einer Menge von 70 Gew. % Füllstoff, vorzugsweise bis zu einer Menge von
50 Gew. % Füllstoff, durch Calciumcarbonat ersetzt werden.
Die kompatibilitätsfördernden Additive, die zum Teil in flüssigem Aggregatzustand vorliegen, können beispielsweise zusammen mit Trägermaterialien wie pyrogene Kieselsäure oder Fällungskieselsäure verwendet werden.
Bevorzugte pyrogene Kieselsäuren sind die Aerosil®-Typen von Degussa. Bevorzugte Fällungskieselsäuren sind die Sipernat® -Typen von Degussa.
Die genannten Trägermaterialien können abhängig vom kompatibilitätsfördernden Additiv in einer Menge von 0,1 bis 10 Teilen pro 100 Teilen Füllstoff eingesetzt werden.
Die gemäss Patentanspruch 1 erhaltenen gefüllten Compounds können zusätzlich faserföπnige Verstärkerstoffe enthalten.
Zu den Faserstoffen zählen beispielsweise Glasfasern, Steinfasern, Metallfasern, polykristalline keramische Fasern, einschliesslich der Einkristalle, den sogenannten "whiskers" und ebenso alle aus synthetischen Polymeren herrührenden Fasern, wie z.B. Aramid-, Kohlenstoff-, Polyamid-, Polyacryl- und Polyesterfasern.
Falls gewünscht, können die Compounds mit geeigneten Pigmenten und/oder Farbstoffen und/oder mit weiteren anwendungsbezogenen Zusätzen oder Hilfsstoffen wie z.B. Polyethylen- wachse, oder auch Stabilisatoren zur Stabilisierung des Kunststoffsystems oder Mischungen daraus versehen sein.
Ferner können Vernetzungsmittel wie z.B. Triallyl-cyanurat und/oder Peroxide zugegeben werden, falls das Compound in einem weiteren Verarbeitungsschritt vernetzt werden soll.
Zur in sz'tw-Compoundierung wird das ungefüllte Polymer zusammen mit dem unbehandelten halogenfreien flammhemmenden Füllstoff zweckmässig in einem geeigneten Mischer, vorzugsweise in einem Mischer der hohe Scherkräfte ermöglicht, mit den erwähnten Additiven versehen. Dabei kann die Zugabe in gewählter Reihenfolge in bestimmten Zeitintervallen bei unterschiedlichen Temperaturen und bei den Additiven angepassten Prozessparametern erfolgen. Es ist ebenso möglich dem Mischer, eine Vormischung der Additive zusammen mit den halogenfreien flammhemmenden Füllstoffen zuzuführen.
In einer bevorzugten Ausführungsform wird die Compoundierung in einem Innenmischer, wie z.B. GK E 5 mit ineinandergreifendem Rotorsystem der Fa. Werner & Pfleiderer ausgeführt.
In einer weiteren bevorzugten Ausführungsform wird die Compoundierung auf einem heizbaren Walzwerk, z.B. von der Fa. Collin, Typ W150M, ausgeführt. Dabei werden die unbehandelten Füllstoffe mit den kompatibilitätsfördernden Additiven und eventuell weiteren Zuschlägen dem vorher auf dem Walzwerk aufgeschmolzenen Polymer zugegeben. Die Zugabe in gewählter
Reihenfolge kann in bestimmten Zeitintervallen bei unterschiedlichen Temperaturen und bei den Additiven angepassten Prozessparametern erfolgen.
Als weitere Compoundierungsaggregate bieten sich für das erfindungsgemässe Verfahren weitere handelsübliche Mischaggregate an, wie z.B. Doppelschneckenextruder oder Ko-Kneter, wie sie beispielsweise von der Fa. Buss Compounding Systems AG (Pratteln, Schweiz) hergestellt werden oder sog. Continuous Mixer, wie sie beispielsweise von der Fa. Farrel (Ansonia, Connecticut, U.S.A.) vertrieben werden.
Beispiele
In den Anwendungsbeispielen bezeichnet phr Gew. -Teile pro 100 Gew. -Teile Polymer.
Beispiel VI (Vergleich)
150 phr unbeschichteter Magnesiumhydroxid-Füllstoff (MDH) MAGNIFIN® H 5 (Martinswerk
GmbH) wurden mit 100 phr Ethylen/Vinylacetat-Polymer (EVA) Escorene Ultra® UL00119 (EVA, 19 Gew. % VA-Copolymer, Exxon) in einem Innenmischer GK 5 E (Werner & Pfleiderer, Rotordrehzahl 50 U/min, Kühlwassertemperatur 50 °C, Maschinenfüllgrad 75%) in situ unter Zugabe von 0,4 phr Alterungsschutzmittel Irganox® 1010 (Ciba) zu einem Compound verarbeitet. Bei einer Compoundtemperarur von 180 °C wurde die Mischung ausgeworfen.
Beispiel V2 (Vergleich)
Wie in WO 96/26240 beschrieben, wurden im Henschel-Mischer 10 kg MDH-Füllstoff MAGNIFIN® H 5 mit dem Fettsäuregemisch Pristerene® 4900 (1,5 Gew. % bezogen auf den Füllstoff, Unichema Chemie) und Silikonöl AK150 (0,3 Gew. % bezogen auf den Füllstoff, Wacker Chemie) beschichtet.
150 phr derart beschichteter MDH-Füllstoff wurden mit 100 phr Escorene Ultra® UL00119 und
0,4 phr Irganox® 1010 wie in Beispiel VI zu einem Compound verarbeitet. Bei einer Com- poundtemperatur von 180 °C wurde die Mischung ausgeworfen.
Beispiel 1
150 phr unbeschichteter MDH-Füllstoff MAGNIFIN® H 5 wurden mit 100 phr Escorene Ultra® UL00119 in situ unter Zugabe von 0,4 phr Irganox® 1010, Silikonöl AK150 (0,3 Gew. % bezogen auf den Füllstoff) und Pristerene® 4900 (1 ,5 Gew. % bezogen auf den Füllstoff) im
Innenmischer wie in Beispiel VI zu einem Compound verarbeitet: Bei einer Compound- temperatur von 180 °C wurde die Mischung ausgeworfen.
Beispiel 2 80 phr Escorene Ultra® UL00328 (EVA, 27 Gew.-% VA-Copolymer, Exxon) und 20 phx mLLDPE ML2518FL (Exxon) wurden in situ auf einem Walzwerk bei einer Walzentemperatur von 130 °C mit 150 phr unbeschichtetem Aluminiumliydroxid-Füllstoff (ATH) MARTINAL® ON4608 (Martinswerk GmbH), Silikonöl AK150 (0,5 Gew. % bezogen auf den Füllstoff),
Pristerene® 4912 (2,5 Gew. % bezogen auf den Füllstoff, Unichema Chemie) und 0,5 phr Irganox® 1010 compoundiert. Zuerst wurde das Polymersystem auf der Walze aufgeschmolzen bis sich ein Fell gebildet hatte. Anschliessend wurden der unbeschichtete Füllstoff und die Additive zugegeben. Die Compoundierzeit betrug 35 Minuten.
Beispiel V3 (Vergleich) Wie in WO 96/26240 beschrieben, wurden im Henschel-Mischer 10 kg unbeschichteter ATH-
Füllstoff MARTINAL® ON4608 mit Pristerene® 4912 (2,5 Gew.-% bezogen auf den Füllstoff) und Silikonöl AK150 (0,5 Gew.-% bezogen auf den Füllstoff) beschichtet.
Auf einem Walzwerk wurden 150 phr derart beschichteter ATH-Füllstoff mit 80 phr Escorene
Ultra® UL00328 und 20 phr mLLDPE ML2518FL bei einer Walzentemperatur von 130 °C compoundiert. Zuerst wurde das Polymersystem auf der Walze aufgeschmolzen bis sich ein Fell gebildet hat. Anschliessend wurden der beschichtete Füllstoff und 0,5 phr Irganox® 1010 zugegeben. Die Compoundierzeit betrug 35 Minuten.
Beispiel V4 (Vergleich) 186 phr unbeschichteter MDH-Füllstoff (MDH) MAGNIFIN® H 5 und 100 phr Novolen® 3200 H (BASELL) wurden auf einem Walzwerk bei einer Walzentemperatur von 175 °C compoundiert. Zuerst wurde das Polymer auf der Walze aufgeschmolzen bis sich ein Fell gebildet hat. Anschliessend wurde der unbeschichtete Füllstoff zugegeben. Die Compoundierzeit betrug 35 Minuten.
Beispiel 3
186 phr unbeschichteter MDH-Füllstoff MAGNIFIN® H 5 und 100 phr Novolen® 3200 H wurden in situ unter Zugabe von Silikonöl AK150 (0,5 Gew. % bezogen auf den Füllstoff) und Pristerene® 4912 (1 ,0 Gew. % bezogen auf den Füllstoff) auf einem Walzwerk bei einer Wal- zentemperatur von 175 °C compoundiert. Zuerst wurde das Polymerauf der Walze aufgeschmolzen bis sich ein Fell gebildet hat. Anschliessend wurden der unbeschichtete Füllstoff und die Beschichtungsmittel zugegeben. Die Compoundierzeit betrug 35 Minuten.
Beispiel V5 (Vergleich) Im Henschel-Mischer wurden 10 kg MDH-Füllstoff MAGNIFIN® H 5, wie in WO 96/26240 beschrieben, mit Pristerene® 4912 (1,0 Gew. % bezogen auf den Füllstoff) und Silikonöl AK150 (0,5 Gew. % bezogen auf den Füllstoff) beschichtet.
186 phr derart hergestellter beschichteter MDH-Füllstoff wurde mit 100 phr Novolen® 3200 H auf einem Walzwerk bei einer Walzentemperatur von 175 °C compoundiert. Zuerst wurde das Polymersystem auf der Walze aufgeschmolzen bis sich ein Fell gebildet hat. Anschliessend wurde der beschichtete Füllstoff zugegeben. Die Compoundierzeit betrug 35 Minuten.
Die Messergebnisse der untersuchten Parameter der Anwendungsbeispiele werden in Tabelle 1 gezeigt.
Erläuterungen zur Tabelle und den Bestimmungsmethoden: Zugfestigkeit/Reissdehnung an gespritzten Probekörpern für die Polypropylen-Compounds nach DIN 53 455 Zugfestigkeit/Reissdehnung an extrudierten, gestanzten Probekörpern für die EVA-Compounds nach DIN 53 504 Schmelzindex (MFI, Meltflow Index) nach DIN 53 735 Spez. Widerstand nach DIN 53 482 n.b. nicht bestimmt
Tabelle 1: