WO1996015190A1 - Composition de resine thermoplastique et garnitures pour l'industrie automobile - Google Patents

Composition de resine thermoplastique et garnitures pour l'industrie automobile Download PDF

Info

Publication number
WO1996015190A1
WO1996015190A1 PCT/JP1995/002237 JP9502237W WO9615190A1 WO 1996015190 A1 WO1996015190 A1 WO 1996015190A1 JP 9502237 W JP9502237 W JP 9502237W WO 9615190 A1 WO9615190 A1 WO 9615190A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
resin composition
less
thermoplastic resin
Prior art date
Application number
PCT/JP1995/002237
Other languages
English (en)
French (fr)
Inventor
Shigemi Matsumoto
Akinaga Goda
Original Assignee
Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Kagaku Kogyo Kabushiki Kaisha filed Critical Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority to DE69529815T priority Critical patent/DE69529815T2/de
Priority to EP95936084A priority patent/EP0741165B1/en
Priority to US08/652,476 priority patent/US5741860A/en
Publication of WO1996015190A1 publication Critical patent/WO1996015190A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention has a low rigidity such as a bending strength, a high resistance to heat, a low stress in a town, that is, a high absorption energy during a heat, and a high heat deformation resistance.
  • the present invention relates to a thermoplastic resin composition having excellent moldability and a trim part for an automobile interior obtained by molding the same.
  • Styrene-based resins especially ABS-based II, have been used in various applications because of their excellent rigidity, shochu impact, shochu thermal deformation, and the like.
  • trim parts for automotive interiors include front garnish, side roof garnish, and center villa garnish molded with ABS resin, polypropylene resin, etc., and those with each integrated. These components have been required to have properties such as dimensional stability under high fidelity and surface appearance. In the United States and other countries, safety in the event of a bite collision is required by side impact regulations.
  • Japanese Patent Application Laid-Open No. 59-23046 discloses a method of adding a specific plasticizer to a rubber-reinforced styrene-based resin.
  • the plasticizer volatilizes and bleeds during its operation, changing its properties.
  • the use of polypropylene resin having a specific composition has been wiped out, but the use of sink marks etc. It has the disadvantages of poor appearance, low dimensions due to warpage, lack of 3E properties, and poor adhesion to other materials.
  • it has been found that filling the interior of the trim parts with a foam such as polyethylene is problematic in terms of the complexity and cost of the manufacturing process, which is insufficient.
  • Japanese Patent Publication No. 58-17979257 discloses a composition comprising a rubber-containing styrenic resin and an acrylic ester copolymer having a high gel content. It describes that a composition comprising a rubber-containing maleimide styrene copolymer, an ABS resin and an acrylate copolymer improves chemical resistance.
  • the present invention has solved the above problems, has low rigidity such as bending strength, has a high street S property, has a low stress at impact, that is, has a large absorbed energy at the street S, has a high heat deformation resistance, and has a further forming process.
  • An object of the present invention is to provide a thermoplastic resin composition having excellent heat resistance, and a trim part for automobile mounting obtained by molding the same.
  • the inventors of the present invention deliberately studied to achieve the above object, and found that the specific copolymer (A), ⁇ -methylstyrene-rich resin ( ⁇ ), and no- or maleimide-based ABS resin (C)
  • the resin composition has low rigidity, high impact resistance, low striking stress, that is, high energy absorption at impact, and 9 02237
  • thermoplastic resin composition having high heat deformation resistance and excellent moldability can be obtained, and the present invention has been accomplished. Disclosure of the invention
  • the present invention is a copolymer having a glass transition fi degree is less O'C and (A) 5 to 55 straight weight%, heat distortion humidity (1 8. 6 Kg / cm a load) 1 00 or more hand ⁇ -Methylstyrene high content ABS resin (B) and no or maleimide ABS resin (C) consisting of 95-45S with an Izod mouth g strength (at 23) of 1 Okg ⁇ cm / cm or more of a thermoplastic resin composition.
  • Fig. 1 is a schematic diagram of a front villa-garnish. The unit of the number is mm.
  • FIG. 2 is an enlarged cross-sectional view of the front villa and garnish of FIG. 1 along the line AA.
  • the unit of the number is mm.
  • FIG. 3 is an enlarged cross-sectional view of the front pillar garnish of FIG. 1 taken along line BB.
  • the unit of the number is mm. * Good shape ® for carrying out the invention
  • the glass transition temperature (Tg) of the copolymer (A) is 0 or lower, preferably 110 O'C or lower, more preferably 115 or lower.
  • Tg exceeds O'C
  • the thermoplastic resin composition has high strength such as flexural strength, and the composition of the present invention has low rigidity, low impact stress, and excellent energy absorption. I can't get it.
  • the copolymer (A) used in the present invention include acrylate-based copolymers and olefin-based copolymers, and these may be used alone or in combination of two or more.
  • the acrylate-based copolymers are alkyl (meth) acrylates having a fragrance of 40 to 85 doubles 96, preferably 45 to 85 doubles S3 ⁇ 4, and more preferably 50 to 80 weight ⁇ .
  • Alkyl (meth) acrylates include methyl acrylate, methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, glycidyl acrylate, methyl Examples thereof include methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, and glycidyl methacrylate. These are used alone or in combination of two or more.
  • aromatic vinyl compound examples include styrene, na-methylstyrene, p-styrene, vinylnaphthylene, chlorostyrene, and bromostyrene. These may be used alone or in combination of two or more.
  • Examples of the cyanide biel compound include acrylonitrile, methacrylonitrile, and the like. These may be used alone or in combination of two or more.
  • Alkyl (meta) acrylate is 40% by weight. In Zhuhai, the rigidity is low, the heat resistance is low, and the stress at the time of impact is high, the energy absorption at the time of impact is low. , Low heat deformation resistance, Become. On the other hand, when the content of the aromatic butyl compound exceeds 25 ⁇ , the bite properties are low, and the energy absorption at the time of drying is low. Further, when the amount of the vinyl cyanide compound is less than 15% by weight, the energy absorption at the time of shock and impact is low. Low, high stress during »», and low energy absorption during street hits.
  • the reduced viscosity of the acrylate copolymer is less than 0.2 dlZg, the impact resistance is low, the energy absorption in town S is low, and if it exceeds 1.5 d1 / g, the moldability Decrease.
  • the olefinic copolymers include ethylene-ethyl acrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, and ethylene-butyl acrylate-carbon monoxide copolymer.
  • examples thereof include polymers, ethylene-propylene-styrene copolymers, propylene-styrene copolymers, etc., which are used alone or in combination of two or more.
  • the melt index of the olefin copolymer is particularly limited. However, it is preferable to use an IE enclosure of l to 100 g / 10 min (190, 2.16 kg load). If it exceeds OO gZl O content, the impact resistance and chemical properties of shochu tend to decrease.
  • Na-methylstyrene high content ABS resin (B) is composed of a copolymer (Bc) and a graft copolymer (Bg), and contains ⁇ -methylstyrene in an amount of 60 to 80% by weight, preferably 63 to 78% by weight, and Preferably 65 to 76 wt%, aromatic vinyl compound 25 fii or less, preferably 15 wt or less, more preferably 10 wt 96 or less, cyanide butyl compound 20 to 35 wt%, preferably 22 to 33 wt%, more preferably Is a reduced viscosity obtained by polymerizing 24 to 33% by weight 0.3 to 1.5 d 1 / g, preferably 0.4 to 1.2 d 1 / g, more preferably 0.45 to 0.9 dl / g (30'C in N.N-dimethylformamide solution) (Be) 30-85 Amount, preferably 35-75% by weight 96, more preferably 40-75% by weight
  • the other S-isomer mixture 70 to 10% consisting of another copolymerizable single ft body 0 to 20% by weight, preferably 0 to 10% by weight, and more preferably 0 to 5% by weight.
  • Graft copolymer (B g) 70 to 1 obtained by polymerizing the weight ⁇ preferably 60 to 20% by weight, more preferably 55
  • Examples of the aromatic vinyl compound used in the copolymer (B e) include styrene, p-styrene, vinylnaphthylene, chlorostyrene, and ⁇ -mustyrene, and examples of the compound of Bürich cyanide include acryloyl. Nitrile, methyl acrylonitrile, etc., and other copolymerizable single JB compounds include methyl methacrylate, butyl methyl acrylate, 2-ethylhexyl methyl acrylate, methyl acrylate, and methyl acrylate. And alkyl (meth) acrylates such as acrylate, butyl acrylate, 2-ethylhexyl acrylate, and glycidyl methacrylate. These may be used alone or in combination of two or more.
  • Co1 In the union (B e), the heat distortion temperature decreases when the amount of a-methylstyrene is less than 60%, and the polymerization stability decreases when the amount exceeds 80% by weight. Also, when the aromatic vinyl compound exceeds 25 weight 96, the heat distortion temperature decreases. . Further, when the content of the cyanide butyl compound is less than 20% by weight, the striking resistance and W-squaring property are reduced. When the weight exceeds 35% by weight, the striking resistance and W # J releasability are reduced, and the rigidity is reduced. Will be higher.
  • Gen-based rubber which is a rubbery polymer used for graft copolymer fi includes boributadiene rubber, butadiene-styrene rubber (SBR), butadiene-styrene block copolymer, butadiene-styrene rubber hydrogenated product (SEBS), butadiene-acrylonitrile rubber, etc., and ethylene rubbers such as ethylene propylene rubber (EPR) and ethylene propylene rubber (EPDR) as olefin-based rubbers; and butyl acrylate rubber, butadiene rubbers as acryl-based rubbers One butyl acrylate rubber and the like are used, and these are used alone or in combination of two or more.
  • Examples of the aromatic vinyl compound used for the graft copolymer (B g) include styrene, ⁇ -methylstyrene, ⁇ -styrene, burnaphthylene, chlorostyrene, and bromostyrene.
  • Examples of the vinyl cyanide compound include acrylonitrile and methacrylic acid.
  • alkyl methacrylates such as lonitrile include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, and glycidyl methacrylate.
  • Examples of the single i-form which can be combined include methacrylic acid, acrylyl, phenylmaleimide, maleimide and the like, all of which are used alone or in combination of two or more. Things 2 0 weight 3 ⁇ 4 raw »in processability is lowered, 9 0 If 3 ⁇ 4 is exceeded, the shochu will be less susceptible. On the other hand, if the vinyl cyanide compound has a weight of more than 40 and 96, the bite resistance and the release property are reduced. Further, when the alkyl methacrylate exceeds 85% S%, the processability decreases. Further, when the amount of the other copolymerizable mono-isomer exceeds 20% by weight, the street resistance decreases.
  • the ratio of the above-mentioned copolymer fi (Be) and the graft copolymer (Bg) is more than 85 parts by weight when the copolymer (B c) is not 30 parts by weight and the groove is not thermally deformed. And Shochu Street »Sex is reduced.
  • the maleimide-based ABS resin (C) is composed of a copolymer (Cc) and a graft copolymer (Cg), and contains 10 to 50% by weight of a maleimide compound, preferably 13 to 45% by weight.
  • a maleimide compound preferably 13 to 45% by weight.
  • Maleimide compounds used in the copolymer (C c) include phenyl maleimide, methyl maleimide, butyl maleimide, cyclohexylmaleimide, p-methylphenylmaleimide, and p-chlorophenylmaleimide.
  • aromatic vinyl compounds include styrene, p-styrene, birnafurene, chlorostyrene, and bromostyrene
  • vinyl cyanide compounds include acrylonitrile and methacrylonitrile, and other copolymers.
  • Possible monomers include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxy acrylate , Glycidyl acrylate, methyl methacrylate, Methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, acrylamide, methacrylamide, ⁇ -methylstyrene, etc.
  • the weight of the maleimide compound is 100 weight 96 mm
  • the fidelity of thermal deformation decreases, and when it exceeds 50 weight% S
  • the resistance to street impact decreases.
  • the aromatic vinyl compound is 15-fold S-Zhu
  • the resistance to the street is reduced, and when it exceeds 80 wt-%, the heat deformation temperature is lowered.
  • Low impact resistance When the amount exceeds 35 S, the workability and » ⁇ « ability decrease.
  • the amount of other copolymerizable monomer exceeds 20% by weight, the anti-quenching property is reduced.
  • the reduced viscosity of the copolymer (C c) is 0.3 dl / g3fe » the impact strength decreases, and when it exceeds 5 d1 / g, the processability decreases.
  • the graft copolymer (Cg) may be the same as the above-mentioned graft copolymer (Bg).
  • the ratio of the copolymer (Cc) to the graft copolymer (Cg) is less than 85 parts by weight when the copolymer (Cc) is less than 30 parts by weight because the degree of thermal deformation S and workability decrease. If it exceeds, the balance will decrease.
  • the ripening deformation temperature (18.6 g / cm 2 load) of both ⁇ -methylstyrene high content ABS resin ( ⁇ ) and maleimide ABS resin (C) must be 100 or more. It is. If the heat deformation temperature is 100 and the heat deformation temperature is lower, a resin composition having good heat deformation property cannot be obtained.
  • Copolymer (A), copolymer (Be) of ABS resin (B) with high content of a-methylstyrene (B), graft copolymer S (Bg), and copolymer S of maleimide ABS resin (C) ( The method for producing Cc) and the graft copolymer (Cg) is not particularly limited, and emulsion polymerization, emulsification-suspension, emulsion-bulk polymerization, suspension S polymerization, solution polymerization, and the like can be used promptly.
  • thermoplastic resin composition of the present invention is characterized in that the copolymer (A) has a content of 5 to 55 SS, preferably 7 to 50% by weight, more preferably 7 to 45 weight%, and the a-methylstyrene-rich SABS resin. (B) and / or the above-mentioned maleimide ABS resin (C) 95 to 45 weight ft, preferably 93 to 50 weight, more preferably 93 to 55 weight ⁇ . 5% by weight of copolymer ( ⁇ ) stiffness increases when not dropped, and ripening temperature decreases when it exceeds 55% by weight.-The method for producing the thermoplastic resin of the present invention is carried out by a method known per se. Possible is there.
  • co-S union (A) obtained by emulsion polymerization and -methyl styrene high-containing SABS resin (B) and / or maleimide-based ABS resin (C) were mixed in a latex form, crushed and solidified. It may be used after drying.
  • copolymer (A) and ⁇ -methylstyrene high content ABS resin were mixed in a latex form, crushed and solidified. It may be used after drying.
  • Each powder or pellet of (C) may be used after kneading with a roll, screw, kneader mixer, kneader or the like. It is also possible to add stabilizers, lubricants, plasticizers, light stabilizers, UV absorbers, dyes, filling agents, antibacterial agents, flame retardants, etc., if necessary. is there.
  • polycarbonate resin polyvinyl resin
  • polyethylene terephthalate resin polyethylene terephthalate resin
  • polybutyrene phthalate resin polyamide resin and the like.
  • the rigidity, heat deformation resistance, property and surface properties of the ripe 2S resin composition of the present invention, «* t etc. of the surface layer, and the like are as follows. It also depends on the composition, combination and mixing ratio of each of B) and / or maleimide ABS resin (C).
  • Methyl ethyl ketone soluble cyanide in mid ABS resin (C) Weight (.96) + M of maleimide (96) + (weight of acrylate S (3 ⁇ 4) + weight of methacrylate (3 ⁇ 4)
  • (a) is a measure of the S property of the copolymer (A)
  • (b) is the ME resin in ⁇ -methylstyrene-rich ABS resin (ABS) and ⁇ or maleimide-based ABS resin (C). Represents a measure of the polarity of the melt.
  • (A) — (b) shows the compatibility between the copolymer (A) and the MEK soluble matter in the fiABS resin (B) and / or maleimide ABS resin (C) containing ⁇ -methylstyrene.
  • the polarities (a) and (b) are the polarities of acrylic acid esters, methacrylic acid esters, and maleimide compounds converted to the polarities of vinyl cyanide compounds by fii conversion. That is, the vinyl cyanide compound and the maleimide compound are regarded as having the same level of polarity, and the acrylate and methacrylate are regarded as having 1/10 (weight conversion ratio) the polarity of the vinyl cyanide compound.
  • (a) — (b) can be expressed, for example, as a difference in the content of only the vinyl cyanide compound, when the amount of the vinyl cyanide compound in the copolymer (A) is high, and the amount of the vinyl cyanide-rich SABS resin ( This shows that the difference from the amount of the vinyl cyanide compound in the MEK-soluble component of B) and / or maleimide-based ABS resin (C) is within 10 weight ⁇ .
  • the degree of thermal deformation a is 90 ° C or more
  • the bending strength at 23 ° C is 62 kg / cm * or less
  • Thermoplastic resin composition having an elasticity ratio of not more than 2000 kg / cm 2 and an Izod value of not less than 10 kg ⁇ cmZcm, more preferably having a thermal deformation fi degree of not less than 95′C, 2 Good ripening properties with a flexural strength at 3 of 580 Kg / cm 8 or less, a flexural modulus of 1900 Kg / cm * or less, and an Izod impact »tt of 15 kg / cm / cm or more
  • a resin composition can be obtained.
  • part J and ⁇ J mean“ parts by weight ”and“% by weight j ”, respectively, unless otherwise specified.
  • the polymerization conversion was 9896, the degree of reduction was 0.51 dl / g, and the gel content was 0%.
  • the monomer mixture was prepared by adding 40 parts of butyl acrylate, 40 parts of ethyl acrylate to 20 parts of acrylonitrile, and tertiary decyl mercaptan. Except for changing to 3 parts, the operation was A-I.
  • the polymerization conversion was 9996, the reduced viscosity was 0.40 d1 Zg, and the gel-containing S was 0%.
  • the polymerization conversion was 98%, the reduced viscosity was 0.45 d1 / g, and the gel content was 06.
  • the rate of polymerization was 98%, the reduced viscosity was 0.43 d1 / g, and the gel content was 0.9%.
  • an olefin copolymer comprising 70 parts of ethylene, 10 parts of carbon monoxide and 20 parts of butyl acrylate was produced.
  • the polymerization conversion was 98%, and the melt index was 6 g / 10 minutes.
  • Table 1 shows the glass transition degree, reduced viscosity, and (a) value of the copolymers (A-1) to (A-5). 1
  • B-11 G 70 parts of polybutadiene latex with a weight-average particle diameter of 0.25 m (in terms of solid content) and 250 parts of water were charged to an S-Machine equipped with stirring, and ⁇ oxygen and 70 parts in a nitrogen stream. After heating and stirring at 0 ° C, 0.2 part of potassium persulfate was charged, and a mixture of a simple S-body composed of 9 parts of acrylonitrile and 21 parts of styrene and 1 part of potassium oxalate were successively applied at 4 K. After the dropping was completed, the mixture was stirred at 1 ffl at 70 and the polymerization was terminated.
  • B-2-G The same operation as (B-11G) was performed except that the monomer mixture was changed to 5 parts of methyl methacrylate, 10 parts of butyl acrylate, and 25 parts of styrene.
  • B-2-F Same as above ( ⁇ ⁇ -1-F) except that the monomer mixture was changed to 65 parts of ⁇ -methylstyrene, 30 parts of methyl methacrylate, 5 parts of acrylonitrile, and 0.2 part of tertiary decyl mercaptan Operated.
  • the obtained ( ⁇ —2—G) and ( ⁇ —2—F>) were mixed at a weight ratio of 4: 6 (in terms of solid content).
  • C-11-F Same as above (B-11) except that the monomer mixture was changed to 22 parts of phenylmaleimide, 22 parts of acrylonitrile, 56 parts of styrene, and 0.3 part of tertiary decyl mercaptan. Operated.
  • D-11F The same operation as in (B-11F) was performed except that the monomer mixture was changed to 70 parts of styrene, 30 parts of acrylonitrile, and 0.45 part of tertiary decyl mercaptan.
  • the above (B-1-1G) and (D-1-1F) were mixed at a weight ratio of 3 (solid content).
  • Table 2 shows the composition of KABS resin (B-1), (B-2), (C-1), and (D-1), thermal deformation fi degree, reduced viscosity, and (b) furnace.
  • Table 3 shows the (A-1) to (A-5) and the ABS resins (B-1), (B-2), (C-1), and (D-1) produced as described above in the latex state.
  • the mixture was mixed at the ratios shown, a fuanol-based antioxidant was added, and the mixture was coagulated with calcium oxide, washed with water, filtered, and dried to obtain a powder.
  • the resulting powder was extruded with a vented extruder at a set temperature of 260, pelletized and subjected to measurement of various physical properties. Table 3 shows the measurement results.
  • copolymers (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) are Further, the copolymers (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (A) of Examples 1 to 6 and Comparative Examples 1 to 7, ABS resin (
  • Tables 4 and 5 summarize the compositions and properties of the copolymer (B e ') and the graft copolymer (Bg') of D).
  • the physical properties were measured by the following methods.
  • Heat deformation temperature ASTM D-64 8-5 6 18.6 KgZcm 'load (te) Vicat softening point: IS 0 R-30 65 g / cm 8 load (de)
  • Izod impact S strength ASTM D-25 6 23 * C (Kg-cm / cm)
  • Spiral ⁇ -value Using a 3 oz injection molding machine, nozzle angle 250, injection pressure 1 000 Kg / cm 2 , gold Molding measured at 40 mm (mm)
  • Starvation resistance A flat plate with a length of 150 lots, a width of 100 lots, and a thickness of 2.5 mm was molded by an injection molding machine, and a drop weight test was performed at 23 digits. The fracture surface was visually observed.
  • thermosetting 3SB resin composition of the present invention has low rigidity such as flexural strength, high elastic modulus such as flexural modulus, and also has heat deformation resistance, shochu resistance, etc. It can be seen that they are excellent, and that they have excellent moldability and surface properties of molded products. Examples 7 to 10, Comparative Examples 8 to 10
  • thermoplastic resin compositions of Examples 1, 4, 5, and 6 and Comparative Examples 1, 2, and 5 shown in Table 3 Using the thermoplastic resin compositions of Examples 1, 4, 5, and 6 and Comparative Examples 1, 2, and 5 shown in Table 3, a front pillar garnish as shown in FIG. 1 was molded using an injection molding machine. And used for measurement of various physical properties. Table 6 shows the measurement results.
  • the physical properties were measured by the following methods.
  • Heat resistance test Fix the molded product shown in Fig. 1 to a jig equivalent to the actual vehicle panel, and irradiate an infrared lamp so that the surface temperature of the molded product becomes 105 at 80 ambient temperatures. (4 hours) After cooling, the wavy shape was visually judged.
  • Impact absorption energy Measured simultaneously with the measurement of the maximum impact stress (J: joule).
  • Molded product appearance The appearance of the molded product was visually observed, and evaluated in three steps based on the following evaluation criteria.
  • Table 6 shows that the trim for automobile interiors obtained by molding the resin composition of the present invention has good appearance of the molded product, little deformation at high temperature, small stress at S, large absorption energy, and excellent safety. You can see that it is.
  • thermoplastic resin composition was produced by the method described in Japanese Patent Application Laid-Open No. 58-1797957, and Japanese Patent Application No. 63-179954, and various physical properties were measured. Using the resin composition, a front villa ganish as shown in FIG. 1 was molded, and various physical properties were measured.
  • Table 7 shows the composition of the copolymer, graft copolymer S, and maleimide copolymer.
  • Table 8 shows the blending of the thermoplastic resin composition and the measurement results of various physical properties.
  • Table 9 shows. 9/02237
  • EG DM ethylene glycol dimethacrylate copolymer
  • the vinyl cyanide compound was not used for the copolymer A ′, and the ⁇ -methylstyrene-rich S-containing copolymer was not used for the copolymer Be ′. Therefore, it is inferior to shochu heat deformability.
  • the composition of Comparative Example 12 was inferior in bite resistance because the vinyl cyanide compound was not used in the copolymer A ′ and the cyanide butyl compound was not used in the copolymer C ′. , Town S Low energy absorption. Further, in both Comparative Examples 11 and 12, (a) and (b) the number of colleagues exceeds 10, and the absorbed energy in town 8 tends to be low. Industrial applicability
  • thermoplastic fiS flS composition of the present invention provides a molded article having excellent moldability and low rigidity, and excellent heat resistance, heat resistance, street resistance, and surface properties. I do.
  • the trim part for automobile interior obtained by molding the heat-resistant S3 resin composition of the present invention has a good surface appearance, little deformation at high fi, little stress at impact, and therefore, the Energy absorbed at the time is large, and it is convenient for safety ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 熱可整性樹脂組成物及び自動車内装用トリム部品 技 分野
本発明は、 曲げ強度等の剛性が低く、 耐««性が高く、 街擊時の応力 が低く、 即ち «»時の吸収エネルギーが大きく、 かつ耐熱変形性が高く
、 さらに成形加工性に優れた熱可塑性樹 ΒΪ組成物及びそれを成形してな る自動車内装用トリム部品に関するものである。 背景技術
スチレン系樹脂、 特に A B S系榭 IIはその優れた剛性、 酎衝 性、 酎 熱変形性等を有するため、 種々の用途に供されている。 一方、 自動車内 装用トリム部品として、 A B S樹脂、 ボリプロピレン樹脂等で成形され たフロントビラ一ガーニッシュ、 サイ ドルーフガーニッシュ、 センター ビラ一ガー二ッシュ及び各々が一体化されたもの等かある。 これらの部 品においては、 従来より、 高 fi下での寸法安定性、 表面外観等の特性が 必要とされている。 さらに米国等では、 側突規制による銜突時の安全性 確保が まれている。
これらの特性を潸足させるために種々の検肘が行われているが、 満足 できるものが得られていないのが現伏である。
例えば、 特開昭 5 9 - 2 0 3 4 6号ではゴム強化スチレン系樹脂に特 定の可塑剤を添加する方法が開示されているが、 この方法においても酎 熱変形性が低く、 更に使用中に可塑剤が揮発、 ブリードして特性が変化 し »足できるものではない。 また、 特定の組成を有するボリプロピレン 系樹脂を用いることも拭みられているが、 成形品表面のヒケ等による外 観不良、 ソリによる寸法安 3E性の不足、 他材料との接着性に劣るという 欠点を有している。 さらに、 トリム部品の内側にボリエチレン等の発泡 体を充墳することが検肘されているが、 製造工程の ¾雑さ、 コストの点 から問理があり、 不»足なものであった。
一方、 近年、 A B S系樹脂とアクリルエステル系共重合体の組成物に ついては、 近年、 酎薬品性を向上させる事で知られている。 例えば、 特 開昭 5 8— 1 7 9 2 5 7ではゴム含有スチレン系樹脂とゲル含有率の离 いアクリル酸エステル系共重合体からなる組成物、 特 M昭 6 3 - 1 7 9 5 4ではゴム含有マレイミ ドースチレン系共重合体と A B S樹脂とァク リル酸エステル系共重合体からなる組成物が耐薬品性を向上することが 記載されている。 しかし、 これらの組成物では、 本発明の目的とする街 «時の応力が低く、 即ち衝黟時吸収エネルギーが大きく、 かつ酎衝孳性 が高く、 耐熱変形性が高く、 成形加工性に優れた組成物は得られない。 すなわち、 これら提案されている組成物は耐薬品性を向上させるために 設計されており、 前者の組成物では耐熱変形性、 加工性に劣る、 後者の 組成物では銜擊時吸収ェネルギ一が低く、 酎街 S性に劣るという欠点が め ΤΖο
本発明は上記の如き を解消し、 曲げ強度等の剛性が低く、 街 S 性が高く、 衝撃時応力が低く、 即ち街 S時吸収エネルギーが大きく、 か つ耐熱変形性が高く、 さらに成形加工性に優れた熱可塑性树脂組成物、 及びそれを成形してなる自動車內装用トリム部品を提供することを目的 とするものである。
本発明者らは、 上記目的を達成するべく锐意検肘した結果、 特定の共 重合体 (A) と α —メチルスチレン高含量樹脂 (Β) 及びノ又はマレイ ミ ド系 A B S樹脂 ( C ) からなる樹脂組成物が、 剛性が低く、 耐衝 »性 が高く、 衢撃性応力が低く、 即ち衝撃時吸収エネルギーが大きく、 かつ 9 02237
耐熱変形性が髙く、 成形加工性に優れた熱可塑性樹脂組成物が得られる ことも見い出し本発明に至った。 発明の開示
即ち、 本発明は、 ガラス転移 fi度が O'C以下である共重合体 (A) 5 〜55直量%と、 熱変形湿度 ( 1 8. 6 Kg/cma 荷重) が 1 00て以上 である、 α—メチルスチレン高含量 A BS樹脂 (B) 及びノ又はマレイ ミ ド系 ABS樹脂 (C) 95〜45S量 からなり、 アイゾッ ト銜 g強 度 (23で) が 1 Okg · cm/cm以上であることを特徴とする熱可塑性榭 脂組成物を内容とする。 図面の簡単な説明
図 1は、 フロントビラ一ガー二ッシュの概略図である。 数字の単位は mmでめ ¾。
図 2は、 図 1のフロントビラ一ガー二ッシュの A— A拡大断面図であ る。 数字の単位は mmである。
図 3は、 図 1のフロントピラーガーニッシュの B— B拡大断面図であ る。 数字の単位は mmである。 発明を実施するための *良の形 ®
本発明において特に重要なのは、 共重合体 (A) のガラス転移温度 ( Tg) (示差熱分析で測定) である。 即ち、 共重合体 (A) のガラス転 移温度 (Tg) は 0で以下であり、 好ましくは一 1 O'C以下、 更に好ま しくは一 1 5で以下である。 Tgが O'Cを超えると熱可塑性樹脂組成物 の曲げ強度等の ¾度が高くなり、 本発明の目的とする剛性が低く、 衝» 時応力が低く、 エネルギー吸収力に優れた組成物が得られな 、。 本発明に用いられる共重合体 (A) としては、 アクリル酸エステル系 共重合体、 ォレフィン系共重合体等が挙げられ、 これらは単独又は 2種 以上組み合わせて用いられる。
共重合体 (A) のうち、 アクリル酸エステル系共重合体は、 アルキル (メタ) アタリレート 40〜 85重暈 96、 好ましくは 45〜85重 S¾ 、 更に好ましくは 50〜80重量 κと、 芳香族ビニル化合物 25 S量 κ 以下、 好ましくは 2 Ofi量%以下、 更に好ましくは 15重量 ί以下と、 シアン化ビニル化合物 1 5〜35重量 、 好ましくは 1 7〜33重 S% を重合してなる速元粘度 0. 2〜1. 5 d lZg、 好ましくは 0. 3〜 1. 3 d 1/g、 更に好ましくは 0. 35〜し 0 d l/g (30'C、 N、 N-ジメチルホルムアミ ド溶液中〉 のものが好ましい。
アルキル (メタ) ァクリレートとしては、 メチルアタリレート、 ェチ ルァクリレート、 プチルアタリレート、 2—ェチルへキシルァクリレー ト、 ラウリルァクリレート、 ステアリルアタリレート、 2—ヒドロキシ ェチルァクリレート、 グリシジルアタリレート、 メチルメタクリレート 、 ラウリルメタクリレート、 ステアリルメタクリレート、 2—ヒドロキ シェチルメタクリレート、 グリシジルメ夕クリレート等が挙げられ、 こ れらは単独又は 2 ¾以上組み合わせて用いられる。
芳香族ビュル化合物としては、 スチレン、 なーメチルスチレン、 p 一スチレン、 ビニルナフ夕レン、 クロルスチレン、 プロムスチレン等が 挙げられ、 これらは単独又は 2種以上組み合わせて用いられる。
シアン化ビエル化合物としては、 アクリロニトリル、 メタクリロニト リル等が挙げられ、 これらは単独又は 2種以上組み合わせて用 t、られる。 アルキル (メタ〉 アタリレートが 40重量 ¾朱海では、 剛性が Sく、 耐¾»性が低く、 また、 衝 S時の応力が高く、 衝撃時のエネルギー吸収 が低くなり、 85重量 を超えると、 耐熱変形性が低く、 剁雜しゃすく なる。 また芳香族ビュル化合物が 25重最 κを超えると、 »銜«性が低 く、 ¾孳時のエネルギー吸収が低い。 更にシアン化ビニル化合物が 15 重量%未«では、 剝«しゃすく、 衝»時のエネルギー吸収が低くなり、 35重 S%を超えると、 剁離しゃすく、 剛性が高く、 酎衢 »性が低く、 また、 »»時の応力が高く、 街撃時のエネルギー吸収が低くなる。
また、 アクリル酸エステル系共重合体の還元粘度が 0. 2d lZg未 «では、 耐衝撃性が低く、 街 S時のエネルギー吸収が低くなり、 1· 5 d 1/gを超えると成形加工性が低下する。
共重合体 (A〉 のうち、 ォレフィン系共重合体としては、 エチレン一 アクリル酸ェチル共重合体、 エチレンーァクリル酸ェチルー無水マレイ ン酸共重合体、 エチレン—アクリル酸プチル一一酸化炭素共重合体、 ェ チレン一プロピレン一スチレン共重合体、 プロピレン一スチレン共重合 体等が例示され、 これらは単独又は 2種以上組み合わせて用いられる。 . また、 ォレフィン系共重合体のメルトインデックスは特に限定されな いが、 l〜1 00g/1 0分 (1 90で、 2. 1 6 Kg荷重) の IE囲が好 ましい。 1 g/1 0分朱»では成形性が低下し、 また l O O gZl O分 を超えると耐衝撃性、 酎薬品性が低下する傾向がある。
なーメチルスチレン高含量 ABS樹脂 (B) は、 共重合体 (B c) と グラフト共重合体 (Bg) とからなり、 α—メチルスチレン 60〜80 重量 ¾、 好ましくは 63〜78重量 ¾、 更に好ましくは 65〜76重量 ¾、 芳香族ビニル化合物 25fii¾以下、 好ましくは 15重 以下、 更に好ましくは 1 0重量 96以下、 シアン化ビュル化合物 20〜35重量 ¾、 好ましくは 22〜33重量 ¾、 更に好ましくは 24〜33重量 ½を 重合してなる還元粘度 0. 3〜1. 5 d 1/g、 好ましくは 0. 4〜1 . 2 d 1/g、 更に好ましくは 0. 45〜0· 9 d l/g (30'C、 N . N—ジメチルホルムアミ ド溶液中) の共重合体 (Be) 30〜85重 量 、 好ましくは 3 5〜 7 5重量 96、 更に好ましくは 4 0〜 7 5重量%
、 及び、 ジェン系ゴム、 ォレフィン系ゴム及びアクリル系ゴムからなる 群から選ばれる少なくとも 1種のゴム状重合体 3 0〜9 0重量 ¾、 好ま しくは 4 0〜8 0重 fi¾、 更に好ましくは 4 5〜了 5 S量 κに、 芳香族 ビニル化合物 2 0〜 9 0重量 、 好ましくは 2 5〜 8 0重置 ¾、 更に好 ましくは 3 0〜7 8重量%、 シアン化ビニル化合物 4 0重量%以下、 好 ましくは 3 5重 1¾以下、 更に好ましくは 3 3童量%以下、 アルキルメ タクリレート 8 5重量%以下、 好ましくは 8 0重量 κ以下、 更に好まし くは 7 5重量 ¾以下、 他の共重合可能な単 ft体 0〜 2 0 ¾量¾、 好まし くは 0〜1 0重量 ¾、 更に好ましくは 0〜5重量%からなる単 S体混合 物 7 0〜1 0重量 ¾、 好ましくは 6 0〜2 0重量%、 更に好ましくは 5 5〜2 5重暈 ¾を重合してなるグラフト共重合体 (B g ) 7 0〜1 5 fi 量 ¾、 好ましくは 6 5〜 2 5 «%、 更に好ましくは 6 0〜 2 5 からなるものが好ましい。
共重合体 (B e ) に用いられる芳香族ビニル化合物としては、 スチレ ン、 p —スチレン、 ビニルナフ夕レン、 クロルスチレン、 ブ αムスチレ ン等が挙げられ、 またシアン化ビュルィヒ合物としては、 ァクリロ二トリ ル、 メ夕クリロ二トリル等が挙げられ、 他の共重合可能な単 JB体として は、 メチルメタクリレート、 プチルメ夕クリレート、 2—ェチルへキシ ルメ夕クリレート、 メチルアタリレート、 ェチルァクリレート、 ブチル ァクリレート、 2—ェチルへキシルァクリレート、 グリシジルメタクリ レート等アルキル (メタ) ァクリレート等が举げられる。 これらは単独 又は 2種以上組み合わせて用いられる。
共 1:合体 (B e ) において、 a—メチルスチレンが 6 0童量¾未«で は熱変形温度が低下し、 8 0重量 ¾を超えると重合安定性が低下する。 また芳香族ビニル化合物が 2 5重量 96を超えると熱変形温度が低下する 。 更にシアン化ビュル化合物が 2 0重量%未»では耐衢撃性、 W剝雕性 が低下し、 3 5重量 9ίを超えると耐衡撃性、 W#J離性が低下するととも に、 剛性が高くなる。
共重合体 (B e ) の還元粘度が 0 . 3 d 1 Zg朱 »では酎衡繆性が低 下し、 1 . 5 d 1 /gを超えると加工性が低下する。
グラフト共 fi合体 (B g) に用いられるゴム状重合体であるジェン系 ゴムとしては、 ボリブタジエンゴム、 ブタジエン一スチレンゴム (S B R) 、 ブタジエン一スチレンプロック共重合体、 ブタジエン一スチレン ゴム水添物 (S E B S ) 、 ブタジエン一アクリロニトリルゴム等、 ォレ フィン系ゴムとしては、 エチレンプロピレンゴム (E P R) 、 エチレン 一プロピレン一ジェンゴム (E P D R) 等、 またァクリル系ゴムとして は、 ボリプチルァクリレートゴム、 ブタジエン一プチルァクリレートゴ ム等が挙げられ、 これらは単独又は 2種以上組み合わせて用いられる。 グラフト共重合体 (B g〉 に用いられる芳香族ビニル化合物としては 、 スチレン、 α—メチルスチレン、 ρ—スチレン、 ビュルナフ夕レン、 クロルスチレン、 ブロムスチレン等、 シアン化ビニル化合物としては、 アクリロニトリル、 メタクリロニトリル等、 アルキルメタクリレートと しては、 メチルメタクリレート、 ェチルメタクリレート、 プチルメタク リレート、 2—ェチルへキシルメタクリレート、 ラウリルメタクリレー ト、 ステアリルメタクリレート、 2—ヒドロキシェチルメタクリレート 、 グリシジルメタクリレート等、 その他の共 合可能な単 i体としては 、 メタクリル酸、 ァクリル¾、 フ ニルマレイミ ド、 マレイミ ド等が举 げられ、 これらはいずれも単独又は 2種以上組み合わせて用いられる。 芳香族ビニル化合物が 2 0重量 ¾未»では加工性が低下し、 9 0 ¾を超えると酎 «撃性が低下する。 またシアン化ビニル化合物が 40重 量 96を超えると耐銜 »性、 »剝離性が低下する。 更にアルキルメタタリ レートが 85重 S%を超えると加工性が低下する。 更にまた、 その他の 共重合可能な単 i体が 20重量 ίを超えると耐街擎性が低下する。
グラフト共霣合体 (Bg) において、 ゴム状 S合体が 30重量 5«未清 又は 9 0重 i¾を超える場合は、 耐街 S性が低下する。
上記共 fi合体 (Be) とグラフト共重合体 (Bg) との割合は、 共重 合体 (B c)が 30重量部未溝では熱変形 fi度、 加工性が低下し、 85 重量部を超えると酎街 »性が低下する。
マレイミ ド系 ABS樹脂 (C〉 とは、 共重合体 (Cc) とグラフト共 重合体 (Cg) とからなり、 マレイミ ド化合物 1 0〜50重量%、 好ま しくは 1 3〜45重量 6、 更に好ましくは 1 5〜40重量 ¾、 芳香族ビ ニル化合物 80〜 1 5 Ϊ量 κ、 好ましくは 75〜 20重 S¾、 更に好ま しくは 70〜 25 S量 ½、 シァン化ビニル化合物 1 0〜 35箧量 ¾、 好 ましくは 1 3〜30重量 ¾、 更に好ましくは 1 5〜 25重量《、 その他 の共重合可能な単 i体 0〜20重量 96、 好ましくは 0〜1 0重量%、 更 に好ましくは 0〜5fil:¾iを重合してなる還元粘度 0. 3〜1. 5 d l Zg好ましくは 0. 4〜1. 2 d lZg、 更に好ましくは 0. 45〜0 . 9 d lZg (30で、 N、 N-ジメチルホルムアミ ド溶液中) の共重 合体 (Cc) 30〜85fiS¾i、 好ましくは 35〜 75重量 ¾、 更に好 ましくは 4 0〜75重 i%、 及び、 ジェン系ゴム、 ォレフィン系ゴム及 びアクリル系ゴムからなる群から ばれる少なくとも 1種のゴム状 St合 体 30〜90重 ft部、 好ましくは 40〜80fii¾、 更に好ましくは 4 5〜75fii 6に、 芳香族ビニル化合物 20〜90重惫¾、 好ましくは 25〜80重量 96、 更に好ましくは 30〜78重量 ¾、 シアン化ビニル 化合物 40重量 ¾以下、 好ましくは 35重量%以下、 更に好ましくは 3 3重量 9ί以下、 アルキルメタクリレート 8 5童量 ¾以下、 好ましくは 8 0童量¾以下、 更に好ましくは 7 5 SS i以下、 他の共 合可能な単量 体 0〜2 0重量 ¾、 好ましくは 0〜1 0重 ft%、 更に好ましくは 0〜5 重 i¾からなる単量休 a合物 7 0〜1 Ο ϊϋκ、 好ましくは 6 0〜2 0 重量 ¾、 更に好ましくは 5 5〜2 5 ¾量%を重合してなるグラフト共重 合体 (C g ) 7 0〜 1 5重 i%からなり、 好ましくは 6 5〜2 5重 ft¾ 、 更に好ましくは 6 0〜2 5重量 からなるものが好ましい。
共重合体 (C c〉 に用いられるマレイミ ド化合物としては、 フエニル マレイミ ド、 メチルマレイミ ド、 プチルマレイミ ド、 シクロへキシルマ レイミ ド、 p—メチルフエニルマレイミ ド、 p—クロルフエニルマレイ ミ ド等、 また芳香族ビニル化合物としては、 スチレン、 p—スチレン、 ビュルナフ夕レン、 ク oルスチレン、 ブロムスチレン等、 更にシアン化 ビニル化合物としては、 アクリロニトリル、 メタクリロニトリル等、 更 にまた、 その他の共重合可能な単量体としては、 メチルァクリレート、 ェチルァクリレート、 ブチルァクリレート、 2—ェチルへキシルァクリ レート、 ラウリルァクリレート、 ステアリルァクリレート、 2—ヒドロ キシェチルァクリレート、 グリシジルアタリレート、 メチルメタクリレ ート、 ェチルメタクリレート、 プチルメタクリレート、 2—ェチルへキ シルメタクリレート、 ラウリルメタクリレート、 ステアリルメタクリレ ート、 2—ヒドロキシェチルメ夕クリレート、 グリシジルメタクリレー ト、 アクリルアミ ド、 メタクリルァミ ド、 α—メチルスチレン等が挙げ られ、 これらはいずれも単独又は 2種以上組み合わせて用いられる。 マレイミ ド化合物が 1 0重量 96朱¾では熱変形 fi度が低下し、 5 0重 S¾を超えると耐街撃性が低下する。 また芳香族ビュル化合物が 1 5重 S¾朱潢では耐街羣性が低下し、 8 0重量 ¾を超えると熱変形温度が低 下する。 更にシアン化ビニル化合物が 1 0 Si%朱 »では耐衝擎性が低 下し、 35 S量 ¾ίを超えると加工性、 »剝«性が低下する。 更にまた、 その他の共重合可能な単量体が 20重量%を超えると耐衢 »性が低下す る。 共重合体 (C c) の還元粘度が 0. 3 d l/g3fe»では酎衝撃性が 低下し、 5 d 1/gを超えると加工性が低下する。
グラフト共重合体 (Cg) は、 上記したグラフト共重合体 (Bg) と 同じものでよい。
また、 共重合体 (Cc) とグラフト共重合体 (Cg) との割合は、 共 重合体 (Cc) が 30重 ¾部未满では熱変形 S度、 加工性が低下し、 8 5重量部を超えると 衡 »性が低下する。
σ—メチルスチレン高含量 ABS榭脂 (Β)、 マレイミ ド系 ABS樹 脂 (C) は、 いずれも熟変形温度 (1 8. 6 g/cm2 荷重) が 1 00て 以上であることが必要である。 熱変形温度が 100で未潸では酎熱変形 性の良好な樹脂組成物を得ることができない。
共重合体 (A)、 a—メチルスチレン高含量 A BS樹脂 (B) の共重 合体 (Be)、 グラフト共 S合体 (Bg)、 及びマレイミ ド系 ABS樹 脂 (C) の共 S合体 (Cc)、 グラフト共重合体 (Cg) の製造方法は 特に限定されるものではなく、 乳化重合、 乳化ー懸 合、 乳化-塊状 重合、 懸 S重合、 溶液重合等が速用可能である。
本発明の熱可塑性樹脂組成物は、 上記共重合体 (A) 5〜55SS½ 、 好ましくは 7〜50重量%、 更に好ましくは 7〜45重暈 ¾と、 上記 a—メチルスチレン高含 SABS榭脂 (B)及び/又は上記マレイミ ド 系 ABS樹脂 (C) 95〜45重 ft½、 好ましくは 93〜 50重量 、 更に好ましくは 93〜55重量 κとからなる。 共重合体 (Α)が 5重量 ½未滴では剛性が高くなり、 55重量 ¾を超えると熟変形温度が低下す る- 本発明の熱可塑性樹脂の製造法は、 それ自体公知の方法で実施可能で ある。 例えば、 乳化重合で得た、 共 S合体 (A) となーメチルスチレン 高含 SABS樹脂 (B)及び/又はマレイミ ド系 ABS榭脂 (C) とを ラテツクス状で混合し、 壞析し凝固したものを乾垛させてから使用して もよい。 また、 共重合体 (A) と α—メチルスチレン高含量 A BS樹脂
(B)及び Z又はマレイミ ド系 ABS樹脂 (C) とを简一の重合機内で S造することも可能である。
更に、 共重合体 (A) と a—メチルスチレン高含量 A BS樹脂 (B) 及び/又はマレイミ ド系 ABS樹!! (C) の各々の粉末あるいはペレツ トをロール、 スクリュー、 ノくンバリーミキサー、 ニーダ一等で混練した 後、 使用してもよい。 また必要に応じ、 ¾合に »し、 安定剤、 滑剤、 可 塑剤、 光安定剤、 UV吸収剂、 染 «料、 充墳剤、 抗菌剤、 齄燃剤等を添 加することも可能である。
更に、 ボリカーボネート樹脂、 ボリ ¾ビニル樹脂、 ボリエチレンテレ フ夕レート榭脂、 ボリブチレンチレフタレート樹脂、 ポリアミ ド樹脂等 を混合することも可能である。
本発明の熟可 2S性樹脂組成物の剛性、 耐熱変形性、 財街鼕性及び表面 性、 表面層の «*t等は、 共重合体 (A) となーメチルスチレン离含量 A BS樹脂 (B)及び/又はマレイミ ド系 ABS樹脂 (C)の各々の組成 及び組み合わせ、 混合割合によつても左右される。
共重合体 (A) と α—メチルスチレン高含量 ABS樹脂 (Β)及び Ζ 又はマレイミ ド系 ABS樹脂 (C)の組成の組み合わせについては、
(a) -共重合体 (A) のシアン化ビュルの S量 (¾) + 〔アクリル酸
エステルの重 ft (,% +メタクリル酸エステルの重量 (9 〕 /10
(b) =なーメチルスチレン高含量 ABS樹脂 (B)及び 又はマレイ
ミ ド系 ABS樹脂 (C〉 のメチルェチルケトン可溶分のシアン 化ビュルの重量 (.96) +マレイミ ドの M (96) + 〔アクリル 酸エステルの重 S (¾) +メタクリル酸エステルの重量 (¾)
3 /10
とした場合において、
- 10≤ (a) - (b) ≤ 10
の範囲内が (A) と (B)及び/又は (C) との相港性が良好となるた め、 耐街 S性、 表面性、 耐剝離性の全ての面において良好な成形品を与 える。
上記において、 (a) は共重合体 (A) の S性の尺度、 (b) は α— メチルスチレン高含量 ABS樹脂 (Β)及び Ζ又はマレイミ ド系 ABS 樹脂 (C) 中の ME Κ可溶分の極性の尺度を表す。
そして、 (a) — (b) は、 共重合体 (A) と α—メチルスチレン高 含 fiABS樹脂 (B)及び/又はマレイミ ド系 ABS樹脂 (C) 中の M EK可溶分との 性の差、 即ち相溶性の差を表し、 (a) — (b)の差 が小さい程相溶性が高いことを示す。
極性の尺度である (a)、 (b) は、 アクリル酸エステル、 メタクリ ル酸エステル、 マレイミ ド化合物の ¾性をシアン化ビニル化合物の極性 に fii換算して現したものである。 即ち、 シアン化ビニル化合物とマレ イミ ド化合物は同じレベルの極性、 アクリル酸エステル、 メタアクリル 酸エステルは、 シアン化ビニル化合物の 1/10 (重量換算比) の極性 とみなしている。
換言すれば、 (a) — (b) は、 例えばシアン化ビニル化合物だけの 含有量差で現すと、 共重合体 (A) 中のシアン化ビニル化合物量とな一 メチルスチレン高含 SABS樹脂 (B)及び/又はマレイミ ド系 ABS 樹脂 (C)の ME K可溶分中のシアン化ビニル化合物量との差が 10重 量 κ以内であることを示している。 上記の如くして、 好ましくは熱変形 a度が 9 0 'C以上、 2 3 'Cでの曲 げ強度が 6 2 0 Kg/cm* 以下、 かつ曲げ? ί性率が 2 0 0 0 0 Kg/cm2 以 下、 アイゾッド»»値が 1 0 Kg · cmZcm以上の熱可塑性 脂組成物、 更 に好ましくは熱変形 fi度が 9 5 'C以上、 2 3ででの曲げ強度が 5 8 0 Kg /cm8 以下、 かつ曲げ弾性率が 1 9 0 0 0 Kg/cm* 以下、 アイゾッド衝 »ttが 1 5 Kg · cm/cm以上の良好な熟可塑性樹脂組成物を得ることがで きる。
以下、 実施例及び比較例を挙げて本発明を更に詳細に锐明するが、 こ れらは本発明を限定するものではない。
尚、 以下の記載において、 「部 J 及び 「《J は、 特に断らない限り、 それぞれ 「重量部」 、 「重量%j を意味する。
実施例 1〜 6、 比較例 1〜 7
(ィ) 共重合体 (Α) の製造
アクリル酸エステル系共重合体 (Α— 1〉 〜 (Α— 4〉 の製造
Α— 1 :
損拌接付 S合接に水 2 5 0部、 アルキルベンゼンスルホン酸ソーダ 2 部を仕込み、 脱酸素後、 窒素気流中で 7 0でで加熱授拌した後、 通硫酸 カリウム 0 . 3郎を仕込み、 プチルアタリレート 7 0部、 アタリロニト リル 3 0部、 及び夕ーシャリ一ドデシルメルカブ夕ン 0 . 2 5部からな る単 S体混合物を 6時 Mかけて连抹的に滴下し、 新下終了後、 更に 7 0 でで 1時 Iffl*拌を鍵けた後、 重合を終了させた。
重合転化率は 9 8 96、 還元拈度は 0 . 5 1 d l / g、 ゲル含有量は 0 %であった。
Α - 2 :
単量体混合物をプチルァクリレート 4 0部、 ェチルアタリレート 4 0 部- アクリロニトリル 2 0部、 ターシャリードデシルメルカプタン 0 . 3部に変更した以外は A— Iと問様に操作した。
重合転化率は 9 9 96、 還元粘度は 0 . 4 0 d 1 Z g、 ゲル含有 Sは 0 ίであった。
Α— 3 :
単量体混合物をプチルアタリレート 7 0部、 スチレン 3 0部、 ターシ ャリードデシルメルカブタン 0 . 2部に変更した以外は A— 1と同様に 操作した。
重合転化率は 9 8 ¾、 還元粘度は 0 . 4 5 d 1 / g、 ゲル含有量は 0 6であった。
A - 4 :
プチルァクリレート 3 0部、 アクリロニトリル 2 0部、 メチルメ夕ク リレート 5 0部、 ターシャリードデシルメルカブタン 0 . 3部に変更し た以外は A— 1 と同様に操作した。
重合耘化率は 9 8 ¾、 還元粘度は 0 . 4 3 d 1 / g、 ゲル含有量は 0 9ίであった。
ォレフィ ン系共重合体 (Α— 5 ) の製造
Α - 5 :
特開平 4 - 1 2 5 7号に従って、 エチレン 7 0部、 一酸化炭素 1 0部 、 プチルァクリレート 2 0部からなるォレフィ ン系共重合体を製造した ο
重合転化率は 9 8 ¾、 メルトインデックスは 6 g / l 0分であった。 上記共重合体 (A— 1 ) 〜 (A— 5 ) のガラス転移 »度、 還元粘度、 及び (a ) 値を表 1に示す。 ほ 1】
Figure imgf000017_0001
(a) -共重合体 (A〉 のシアン化ビニルの重量 (96〉 + (アクリル酸
エステルの fi量 (½) +メ夕クリル駿エステルの重 S (¾)〕 /\ 0
表 1中、 BA:プチルァクリレート
EA:ェチルアタリレート
MMA: メチルメ夕クリレート
AN:ァクリロニトリル
S t :スチレン
(口) ABS榭脂 (B), (C), (D) の製造
B— 1 (α—メチルスチレン系髙含量 A BS樹脂) :
B— 1一 G:重量平均粒子径 0. 25 mのボリブタジエンラテック ス 70部 (固形分換算) と水 250部を擾拌接付き S合機に仕込み、 胜 酸素後、 窒素気流中で 70 'C加熱 «拌した後、 過硫酸力リウム 0. 2部 を仕込み、 アクリロニトリル 9部、 スチレン 21部からなる単 S体混合 物及び口ジン酸カリウ厶 1部を 4時 Kかけ連铳的に痏下し、 滴下終了後 さらに 70でで 1時 ffl撮拌を铵けた後、 重合を終了させた。
B— 1一 F :7k250部、 アルキルベンゼンスルホン酸ソーダ 2部を 7
擾拌機付き重合機に仕込み脱酸素後、 窒素気流中で 70で、 加熱 a拌し た後、 過硫酸カリウム 0. 3部を仕込み、 なーメチルスチレン 70部、 アクリロニトリル 30部、 夕ーシャリードデシメルカブタン 0. 45部 からなる単 fi体混合物を 6時間かけ連垸的に苗下し、 滴下終了後さらに 70でで 1時胡攬捽を技けた後、 重合を終了させた。
得られた (B— 1 -G) と (B— 1— F) とを 33 : 67 (固形分換 算) の重量比で混合した。
B— 2 (α—メチルスチレン高含 SABS樹脂) :
B— 2— G:単量体混合物をメチルメタクリレート 5部、 プチルァク リレート 1 0部、 スチレン 25部とした以外は上記 (B— 1一 G) と同 様に操作した。
B— 2— F :単量体混合物を α—メチルスチレン 65部、 メチルメタ クリレート 30部、 アクリロニトリル 5部、 ターシャリードデシルメル カブタン 0. 2部とした以外は上記 (Β— 1— F) と同様に操作した。 得られた (Β— 2— G) と (Β— 2— F〉 とを 4 : 6 (固形分換算) の重量比で混合した。
C一 1 (マレイミ ド系 ABS榭脂) :
C一 1— F :単量体混合物をフ ニルマレイミ ド 22部、 ァクリロニ トリル 22部、 スチレン 5 6部、 ターシャリードデシルメルカブタン 0 . 3部とした以外は上 (B— 1一 F) と同様に操作した。
上記 (B— 1— G) と (C - 1一 F) とを 3 : 7 (固形分換算) の重 量比で港合した。
D— 1 (a—メチルスチレン非含有 ABS榭脂) :
D— 1一 F :単量体混合物をスチレン 70部、 アクリロニトリル 30 部、 ターシャリードデシルメルカブタン 0. 4 5部とした以外は上記 ( B— 1一 F) と同様に操作した。 上記 (B - 1一 G) (D— 1一 F) とを 3 (固形分換算) の重 量比で混合した。
上 KABS樹脂 (B— 1〉、 (B— 2) 、 (C一 1) 、 (D - 1〉 の 組成、 熱変形 fi度、 還元粘度及び (b)爐を表 2に示す。
【表 2】
Figure imgf000019_0001
(b) =ABS樹脂 (B). (C). (D) のメチルェチルケトン可溶分の シアン化ビニルの重:! (%) +マレイミ ドの重量 (¾〉 + 〔ァ クリル酸エステルの重量 (9 十メタタリル酸エステルの ¾量 (96) ) /1 0
表 2中、 PBD: ボリブタジエン
P I : フエニルマレイミ ド
aS : なーメチルスチレン
(ハ) 熱可塑性樹脂組成物の製造 F95/02237
上記の如く製造した (A— 1) 〜 (A— 5) と ABS樹脂 (B— 1 ) 、 (B— 2) 、 (C一 1) 、 (D— 1〉 とをラテックス状態で表 3に示 す割合で混合し、 フユノール系酸化防止剤を加え、 馑化カルシウムで凝 固した後、 水洗、 ¾過、 乾燥し、 パウダーを得た。
尚、 共重合体 CA— 5) を用いた場合は、 ABS樹脂とパウダー状で 涯合した。
得られたパウダーをベント式押出機で 260での設定温度で押出し、 ベレツト化し各種物性の測定に供した。 測定結果を表 3に示す。
また、 実施例 1〜6、 比較例 1〜7の共重合体 (A) 、 ABS樹脂 (
B) の共重合体 (Be) 及びグラフト共重合体 (Bg) 、 ABS樹脂 (
C) の共重合体 (C c) 及びグラフト共重合体 (Cg) 、 ABS樹脂 (
D) の共重合体 (B e')及びグラフ卜共重合体 (Bg')の組成及び猪特 性をまとめて表 4及び表 5に示す。
尚、 物性の測定は下記の方法で行った。
曲げ強度 : ASTM D— 790 23で (Kg/cm* )
曲げ弾性率: AS TM D - 7 90 23で x 1 03 (Kg/cm2 ) 引張強度 : ASTM D- 683 23 'C (Kg/cm* )
熱変形温度: ASTM D- 64 8 - 5 6 1 8. 6 KgZcm' 荷重 (て〉 ビカット軟化点: I S 0 R- 30 6 5 g/cm8 荷重 (で)
アイゾット衝 S強度: ASTM D- 25 6 23 *C (Kg - cm/cm) スパイラルフ α—値: 3オンス射出成形機を用い、 ノズル ¾度 250て、 射出圧力 1 000 Kg/cm2 、 金型 度 40てで測定(mm) 耐剝饑性:長さ 1 50跏、 幅 1 00跏、 厚み 2. 5鯽の平板を射出成 形機で成形し、 23てで落錘テストし、 その破断面を目視 で観察した。
〇:剝餱が嫁められない。
Figure imgf000021_0001
【表 MA c a E PS B E p 4】
MMAAON BsIt
A D I
実施例 1 実 tfeW2 実 実
A-l B-l A-2 C-1 A-5 1-2 A-l A-1 C-1 A-l C 1 共 共 共
合体 重共合体
A B c グラフ B卜 A C c A B c Λ C c A C c Cg A C c
共台 £体 8
70 70 60 70 70
30 30 9 体共雷台 20 22 9 5 30 22 9 30 22 9 30 22
21 56 21 25 56 21 56 21 56
M 70 65
共合体重
O 22 22 22 22
70 40 20 10 70 70 70
40 フ Cグラト
共合体 8 30 5
共合体重 en 転移 £度で -25 -20 80 -25 25 -25
体台
熱変形 &度 108 114 109 114 114 114
フグラ Βト
還元 »度 dt/g 0.51 0.60 0.40 0.67 0.48 重合体共 β 0.51 0.67 0.51 0.67 0.51 0.67
(a ) 37 28 合体 37 37 37
(b) 29 33 33 33 33 共体重合 Cラフグト
重共合体《- 共重合体 重共合体 グラフト
共重合体
共重合体 体共合重 ラグフ C卜 72 重合共体 ο 91 β 【表 5】 比較 Wl 比 M2 比校 W4 比 BW5 JittM6 比は M7
1.9 腸 w一, A-1 c _垂 r .1 A 一 1 ■ λ 1 II一 1 it ゲ t ゲ it ゲ せ i 0f
Λ V 憂 ゲノ 扉 厘 * 盧 會 爐 鳙
フ yx 扁 饊飄 S it 會
墨 皿 フ 麗 羅 フ Λ 疆 厘 1雇 諷 翼 フ≠ 誊
邐 飄
1會
D a ノ麗 つ A.
a a つノ镛麗 a ノ麗 Ό fa 7鼉 8 フ s S β 7麗 α ノ麗 it L A.
Γ B Γ B P & Γ S I* r A
Γ & Γ B
A B c B g A C c c β A C c C 8 A C c C g A B c B g A C c c β Be' Β|·
P B D 圓 TO . 70 70 . , 70 70 70 70
AN 20 30 9 22 » 20 22 9 30 22 9 30 9 n 9 30 9
S 1 70 21 30 56 21 30 56 21 56 21 21 56 21 Τ參 21 a S 11 22 22 70 22
PM I
B A 40 70 一 70 ― 一 一
E A
MM A 50
E t
C 0
fix S移 て
熟 £形 iS度 75 114 114 114 10B 114 75
Sicttft Hi 0.40 0.61 0.4S 0.67 0.43 0.67 0.51 0.67 0.60 0.67 0.61
( a ) 28 7 28 3?
( b ) 29 33 33 33 29 33 2»
表 3に示したように、 本発明の熱可 3SB性樹脂組成物は、 曲げ強度等の 剛性が低く、 曲げ弹性率等の彈性率が高く、 かつ耐熱変形性、 酎衝鼕性 等にも優れ、 成形加工性、 成形品の表面性にも優れていることがわかる。 実施例 7〜 1 0、 比較例 8〜 1 0
表 3に示した実施例 1、 4、 5、 6及び比較例 1、 2、 5の熱可塑性 樹脂組成物を用いて、 図 1に示すようなフロントピラーガー二ッシュを 射出成形機を用い成形し、 各種物性の測定に供した。 測定桔果を表 6に 示す。
尚、 物性の測定は下記の方法で行った。
耐熱テスト :実車パネルに相当する治具に、 図 1に示す成形品を固定 し、 8 0ての雰囲気温度で成形品の表面温度が 1 0 5でになる様に赤外 線ランプを照射し (4時間) 、 冷却後、 波打状憨を目視で判定した。
〇:波打が «察されない。
X :波打が観察される。
衝擎時最大応力:図 1に示す成形品を固定し、 A— Aの部分に 5 Kgの 錘 (先端 R - 3 0 ) を 1 . 5 mの高さから落下させ、 計装化衝擎試験に て測定した 〔K N:キロニュートン (2 3で) 〕 0
衝撃吸収エネルギー:衝 時最大応力の測定と同時に測定した (J : ジュール) 。
成形品外観:成形品の外観を目視で観察し、 下記の轷価基準により 3 段 評価した。
〇:焼け、 フローマーク、 ゲートマーク、 剝糠時の不良が認められ ない。
厶:焼け、 フローマーク、 ゲ一トマーク、 剝雜時の不良が認められ る 0
X :焼け、 フローマーク、 ゲートマーク、 剝離時の不良が著しい。 ほ 6】
Figure imgf000025_0001
表 6より本発明の樹脂組成物を成形してなる自動車内装用トリムは、 成形品外観が良好で、 高温時の変形も少なく、 ¾S時の応力が小さく、 吸収エネルギーが大きく、 安全性に優れていることがわかる。
比較例 1 1、 1 2
特開昭 5 8 - 1 7 9 2 5 7 , 特 M昭 6 3 - 1 7 9 5 4に記載された方 法で熱可塑性樹脂組成物を製造し各種物性を測定した。 また該樹脂組成 物を用いて図 1に示すようなフ oントビラ一ガニッシュを成形し、 各種 物性の測定した。
共重合体、 グラフト共 S合体、 マレイミ ド共重合体の組成を表 7に、 熱可塑性樹脂組成物の配合及び各種物性の測定結果を表 8に、 またフロ ントビラーガー二ッシュの各種物性測定結果を表 9に示す。 9 /02237
【表 7】
共重合体 ^共重合体 グラフ Β卜
共合体重οο,
Figure imgf000026_0001
EG DM: エチレングリコールジメタクリ レ合共重体ート
【表 8】 比较例 1 1 比較例ラフグ卜 1 2
共重合体
マイレミド 系樹脂
A' A' Be* Bg
BS合割合 (重 i〉 10 52 S8 23 40 30 曲げ強度 55 6 0
曲げ »性率 (X10 1 20
引張強度 39 80
熱変形溢度 k 1 3
ビカツト軟化点 8 32
アイゾット銜孳強度 3 1 7
スパイラルフロー健 58 50
W剝離性 O 〇
(a) 一 (b) 20 30-56 【表 9〕
Figure imgf000027_0001
比較例 1 1の組成物は、 共重合体 A ' にシアン化ビニル化合物が使用 されておらず、 また共重合体 B e ' に α—メチルスチレン高含 Sの共重 合体が使用されていないため、 酎熱変形性に劣る。 比較例 1 2の組成物 は、 共重合体 A ' にシアン化ビニル化合物が使用されておらず、 また共 重合体 C ' にシアン化ビュル化合物が使用されていないため、 耐銜擎性 に劣り、 街 S吸収エネルギーが低い。 更に、 比較例 1 1、 1 2とも (a ) 一 (b ) の艳対僚が 1 0を越えるため街 8吸収エネルギーがー躕低く なる傾向がある。 産業上の利用可能性
叙上のとおり、 本発明の熱可 fi性樹 flS組成物は、 成形加工性に優れて いるとともに、 剛性が低く、 かつ耐熱変形性、 耐街》性、 表面性に優れ た成形品を提供する。
また、 本発明の熱可 S3性樹脂組成物を成形して得られる自動車内装用 トリム部品は表面外観が良好であり、 高 fi時の変形が少なく、 衝 S時の 応力が小さく、 従って街 »時の吸収エネルギーが大きく、 安全性に便れ ている β

Claims

铕 求 の 範 囲
1. ガラス転移 fi度が O'C以下である共重合体 (A) 5〜55重量% と、 熱変形 fi度 (1 8. 6 g/cma 荷重) が 1 00で以上であるなーメ チルスチレン高含量 ABS樹脂 (B) 及び Z又はマレイミ ド系 ABS樹 脂 (C) 95〜45重量 ¾からなり、 アイゾット街 g強度 (23て) が 1 Okg- cm/cm以上であることを特徴とする熱可塑性樹脂組成物。
2. 下記に示される (a) 及び (b)が、 一 1 0 (a) — (b) ≤ 1 0の範囲にある請求項 1記載の熱可塑性樹脂組成物。
(a) ==共重合体 (A)のシアン化ビニルの重量 (κ〉 + 〔アクリル酸 エステルの重量 (96) +メタクリル酸エステルの重量 (9ί) 〕 /1 0
(b) =α—メチルスチレン高含量 ABS樹脂 (B〉 及び/又はマレイ
ミ ド系 ABS榭脂 (C) のメチルェチルケトン可溶分のシアン 化ビニルの重量 (¾) 十マレイミ ドの重量 (96〉 + 〔アクリル 酸エステルの重量 (%) +メタクリル酸エステルの重量 (96) 〕 1 0
3. a—メチルスチレン高含量 ABS樹脂 (Β)が、 crーメチルスチ レン 60〜80重量 ¾、 芳香族ビニル化合物 25 fi量 ½以下、 シアン化 ビニル化合物 20〜35S量 ¾を S合してなる還元枯度 0. 3〜1. 5 d 1/g (30て、 N、 N—ジメチルホルムアミ ド溶液中〉 の共重合体 (Be) 30〜85¾fi½、 及び、 ジェン系ゴム、 ォレフィン系ゴム及 びアクリル系ゴムからなる群から選ばれる少なくとも 1種のゴム状重合 体 30〜90重量 9ίに芳香族ビニル化合物 20〜90¾量%、 シアン化 ビニル化合物 40重量 ¾以下、 アルキルメタクリレート 85重量 ¾以下 、 その他の共 S合可能な単量体 0〜 20重量 ½からなる単量体混合物 7 0〜1 0重量 ¾を重合してなるグラフト共 ί合体 (Bg) 70〜1 5重 量 ( (からなる請求項 1記載の熱可塑性樹脂組成物。
4. マレイミ ド系 ABS樹脂 (C) が、 マレイミ ド化合物 10〜50 重量 ¾、 芳香族ビニル化合物 80〜15重量 κ、 シアン化ビニル化合物
1 ο〜35重量¾、 その他の共重合可能な単 i体 o〜20重量 κを重合 してなる還元粘度 0. 3〜1. 5 d l /g (30'C、 N、 N—ジメチル ホルムァミ ド溶液中) の共重合体 (C c〉 30〜85重量 κ、 及びジェ ン系ゴム、 ォレフィン系ゴム及びアクリル系ゴムからなる群から選ばれ る少なくとも 1種のゴム状 S合体 30〜90重量 ¾に芳香族ビニル化合 物 2 ο〜90重 *κ、 シアン化ビニル化合物 40重量 κ以下、 アルキル メタクリレート 85重量%以下、 その他の共重合可能な単 S体 0〜 20 重量%からなる単 S体混合物 70〜1 0重量 6を重合してなるグラフト 共重合体 (Cg) 70〜1 5重 S%からなる靖求項 1記載の熟可塑性樹 脂組成物。
5. 共 ¾合体 (A) が、 アルキル (メタ) ァクリレート 4 (!〜 85£ 量 ¾、 芳香族ビニル化合物 25重量%以下、 シアン化ビニル化合物 15 〜 35重量 9ίを重合してなる還元粘度 0. 2〜 1. 5 d lZg (30'C 、 N、 N—ジメチルホルムアミ ド溶液中) であるアクリル酸エステル系 共重合体である請求項 1 載の熱可塑性樹脂組成物。
6. 熱可塑性樹脂組成物の熱変形 fi度が 90で以上であり、 23でで の曲げ強度が 620 Kg/cm2 以下であり、 かつ曲げ »性率が 20000 Kg/cm2 以下である »求項 1記載の熱可塑性樹脂組成物。
7. 熱可塑性樹脂組成物の熱変形温度が 95 'C以上であり、 23でで の曲げ強度が 580 Kg/cm2 以下であり、 かつ曲げ弹性率が 1 9000 Kg/cm* 以下である »求項 1記載の熱可塑性樹脂組成物。
8. 靖求項 1〜 7の各項記載の熱可 88性榭脂組成物を成形してなる自 動車内装用トリム部品。
PCT/JP1995/002237 1994-11-11 1995-11-01 Composition de resine thermoplastique et garnitures pour l'industrie automobile WO1996015190A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69529815T DE69529815T2 (de) 1994-11-11 1995-11-01 Thermoplastische harzzusammensetzung und kraftfahrzeuginnenverkleidung
EP95936084A EP0741165B1 (en) 1994-11-11 1995-11-01 Thermoplastic resin composition and automotive trim parts
US08/652,476 US5741860A (en) 1994-11-11 1995-11-01 Thermoplastic resin composition and trim parts for interior decoration of automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30306494 1994-11-11
JP6/303064 1994-11-11

Publications (1)

Publication Number Publication Date
WO1996015190A1 true WO1996015190A1 (fr) 1996-05-23

Family

ID=17916475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002237 WO1996015190A1 (fr) 1994-11-11 1995-11-01 Composition de resine thermoplastique et garnitures pour l'industrie automobile

Country Status (7)

Country Link
US (1) US5741860A (ja)
EP (1) EP0741165B1 (ja)
KR (1) KR100380528B1 (ja)
DE (1) DE69529815T2 (ja)
MY (1) MY114399A (ja)
TW (1) TW354327B (ja)
WO (1) WO1996015190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507927A (ja) * 2015-12-10 2018-03-22 エルジー・ケム・リミテッド 熱可塑性樹脂組成物及び成形品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508934A1 (de) * 1995-03-13 1996-09-19 Basf Ag Formmasse mit matter Oberfläche
US6454974B1 (en) * 1998-12-21 2002-09-24 Magna International Of America, Inc. Method for vacuum pressure forming reinforced plastic articles
US6977115B1 (en) 1998-12-21 2005-12-20 Magna International Of America, Inc. Low pressure compression molded parts having nano-particle reinforced protrusions and method of making the same
US6988305B1 (en) 1999-12-17 2006-01-24 Magna International Of America, Inc. Method and apparatus for blow molding large reinforced plastic parts
MY124925A (en) 2000-07-26 2006-07-31 Toray Industries Rubber-reinforced styrene transparent resin composition and method of producing the same
US7169467B2 (en) * 2001-06-21 2007-01-30 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
KR102298296B1 (ko) 2018-10-31 2021-09-07 주식회사 엘지화학 열가소성 수지 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202456A (ja) * 1990-11-30 1992-07-23 Asahi Denka Kogyo Kk 耐熱abs樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229079A1 (de) * 1982-08-04 1984-02-09 Bayer Ag, 5090 Leverkusen Formmassen aus vinylchloridpolymerisat, pfropfpolymeren und polymeren weichmachern mit hoher alterungsbestaendigkeit
CA1272321A (en) * 1985-08-27 1990-07-31 Mune Iwamoto Rubber dispersed copolymer resin
DE3545609A1 (de) * 1985-12-21 1987-06-25 Bayer Ag Verfahren zur herstellung thermoplastischer formmassen mit flammwidrigen eigenschaften
JPH07116340B2 (ja) * 1989-03-10 1995-12-13 鐘淵化学工業株式会社 射出成形用難燃性樹脂組成物
JPH0441548A (ja) * 1990-06-07 1992-02-12 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
DE4122870A1 (de) * 1990-11-29 1992-06-04 Bayer Ag Abs-formmassen
JP2906696B2 (ja) * 1991-01-24 1999-06-21 豊田合成株式会社 ポリプロピレン樹脂組成物
JPH06287379A (ja) * 1993-03-30 1994-10-11 Showa Denko Kk マレイミド系樹脂組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202456A (ja) * 1990-11-30 1992-07-23 Asahi Denka Kogyo Kk 耐熱abs樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507927A (ja) * 2015-12-10 2018-03-22 エルジー・ケム・リミテッド 熱可塑性樹脂組成物及び成形品

Also Published As

Publication number Publication date
EP0741165A1 (en) 1996-11-06
TW354327B (en) 1999-03-11
US5741860A (en) 1998-04-21
EP0741165A4 (en) 1998-12-02
DE69529815D1 (de) 2003-04-10
MY114399A (en) 2002-10-31
DE69529815T2 (de) 2003-12-04
KR100380528B1 (ko) 2003-10-11
EP0741165B1 (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP3828447B2 (ja) アクリル系重合体組成物
WO1996015190A1 (fr) Composition de resine thermoplastique et garnitures pour l'industrie automobile
JP3996716B2 (ja) 熱可塑性樹脂組成物
CA2605425A1 (en) Polycarbonate compositions with modified resilience, related production methods and molded elements containing said compositions
JP2002212376A (ja) 振動溶着用熱可塑性樹脂組成物、合成樹脂製部品及び自動車用ランプ
JP2000212373A (ja) 熱可塑性樹脂組成物
JP2000017170A (ja) 熱可塑性樹脂組成物
JP3626288B2 (ja) 顔料分散性に優れる低剛性のスチレン系樹脂組成物
JP3558373B2 (ja) 熱可塑性樹脂組成物
US5516842A (en) Polycarbonate resin composition and molded product thereof
US20060111514A1 (en) Thermoplastic resin composition, thermoplastic resin composition for exterior automotive molding, exterior automotive molding, and process for producing exterior automotive molding
JP2002212377A (ja) 振動溶着用熱可塑性樹脂組成物、合成樹脂製部品及び自動車用ランプ
JP4951421B2 (ja) 熱可塑性樹脂組成物
JPH0417230B2 (ja)
JP3812965B2 (ja) 永久帯電防止性樹脂組成物
JP4404970B2 (ja) 自動車の内外装材用熱可塑性樹脂組成物
JPH04145110A (ja) 熱可塑性樹脂組成物およびそれに適した多段階硬質重合体
JPH11343380A (ja) 熱可塑性樹脂組成物
JP2000198902A (ja) 熱可塑性樹脂組成物
JPH04185663A (ja) 高衝撃高剛性aas系樹脂組成物
JPH10330425A (ja) スチレン系樹脂用加工助剤およびそれを用いたスチレン系樹脂組成物
JP4117974B2 (ja) 車両灯具用ランプボディ用樹脂、その製造法およびそれを用いた車両用灯具
JP2000302936A (ja) 耐傷付き性に優れた熱可塑性樹脂組成物
JPH0129218B2 (ja)
JPH03243652A (ja) 耐衝撃強度の高いポリエステル‐ポリカーボネート系樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 08652476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019960703701

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995936084

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995936084

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995936084

Country of ref document: EP