WO1995034789A1 - Dispositif de refroidissement/chauffage a eau par absorption et procede de commande d'un tel dispositif - Google Patents

Dispositif de refroidissement/chauffage a eau par absorption et procede de commande d'un tel dispositif Download PDF

Info

Publication number
WO1995034789A1
WO1995034789A1 PCT/JP1995/001151 JP9501151W WO9534789A1 WO 1995034789 A1 WO1995034789 A1 WO 1995034789A1 JP 9501151 W JP9501151 W JP 9501151W WO 9534789 A1 WO9534789 A1 WO 9534789A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot water
heater
exhaust heat
absorption chiller
Prior art date
Application number
PCT/JP1995/001151
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kojima
Makoto Nakamura
Masaru Edera
Masahiro Oka
Original Assignee
Tokyo Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6128469A external-priority patent/JP2839179B2/ja
Priority claimed from JP6291736A external-priority patent/JP2842566B2/ja
Priority claimed from JP6291664A external-priority patent/JP2842550B2/ja
Priority claimed from JP6291845A external-priority patent/JP2935643B2/ja
Priority claimed from JP6291572A external-priority patent/JP2842549B2/ja
Application filed by Tokyo Gas Co., Ltd. filed Critical Tokyo Gas Co., Ltd.
Priority to US08/592,292 priority Critical patent/US5678414A/en
Priority to EP95921137A priority patent/EP0713062A4/en
Publication of WO1995034789A1 publication Critical patent/WO1995034789A1/ja
Priority to US08/881,075 priority patent/US5878587A/en
Priority to US08/881,078 priority patent/US5865035A/en
Priority to KR1019997001220A priority patent/KR100244110B1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/001Crystallization prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an absorption chiller / heater or an absorption refrigerator equipped with a high-quality fuel system and a waste heat utilization system, and provided with a heat exchanger in which waste heat is supplied to the piping of the waste heat utilization system from outside.
  • absorption chiller / heater including the absorption refrigerator and a control method thereof.
  • the solution pump may stop in response to various signals generated during operation (such as a detection signal of a chilled water temperature lower than a predetermined value).
  • the absorption chiller / heater 1 is provided with an evaporator 2, an absorber 3, a condenser 4, a high-temperature regenerator 10 and an exhaust heat exchanger 20. Supplying water. Further, a cooling water line 6 for supplying cooling water to the absorber 3 and the condenser 4 is provided.
  • an exhaust heat input line 22 for supplying exhaust heat from the exhaust heat line 21 to the heat exchanger 20 is provided, and at a junction of the exhaust heat input line 22 and the exhaust heat line 21, a flow rate is set.
  • An adjustable three-way valve V1 is provided.
  • the specifications of the chilled / hot water line 5 in the absorption chilled / hot water machine 1 include, for example, a chilled / hot water inlet temperature T L in of 12 ° C. and a chilled / hot water outlet temperature T L out of 7 ° C.
  • the high-temperature regenerator 10 and the high-quality fuel burner 11 installed in the high-temperature regenerator 10 are designed on the basis of these temperature conditions without supplying exhaust heat.
  • the temperature of the high-temperature regenerator 10 increases as compared with the case where the operation is performed according to the above-mentioned standard or standard.
  • the chilled / hot water inlet temperature TL in becomes higher than 12 ° C (eg, 13 ° C).
  • T Loop In order to set the cold / hot water outlet temperature T Loop to 7 ° C during such an overload condition, it is necessary to perform a higher load operation or an overload operation than during the standard operation. Is higher than during the standard operation (specified value at).
  • the temperature of the high-temperature regenerator 10 becomes the specified value. More than rise.
  • FIG. 27 a diagram showing one embodiment of the present invention.
  • the chilled / hot water inlet temperature T L in of the chilled / hot water line 5 is 12, and the chilled / hot water outlet temperature T L 0 ut is 7 ° C.
  • the high-temperature regenerator 10 and the burner 11 for high-quality fuel combustion installed therein are also designed on the basis of this.
  • the temperature of the high-temperature regenerator 10 increases as compared with the case where the operation is performed according to the above-mentioned standard or standard.
  • the chilled / hot water inlet temperature TLin becomes higher (for example, 13 ° C) than when the TLin is 12.
  • a higher load operation is performed than in the standard operation, so that the temperature of the high-temperature regenerator 10 is higher than in the standard operation (the specified value in the standard operation).
  • the temperature of the high-temperature regenerator 10 also rises above the specified value when the temperature of the cooling water returning to the chiller / heater 1 from a cooling tower (not shown) provided in the cooling water line 6 rises above a set value. .
  • the liquid-phase refrigerant sent from the condenser 4 to the evaporator 2 has an amount corresponding to the amount of heat supplied, and in the exhaust heat input mode, the heat transfer area of the evaporator 2 is larger than the amount of the refrigerant.
  • a liquid-phase refrigerant (ineffective refrigerant) that moves to the absorber 3 before vaporization is generated.
  • This ineffective refrigerant is sent to the absorber 3 without depriving the heat of vaporization from the cold and hot water in the evaporator 2, and thus does not serve any purpose for cooling, but merely acts to dilute the refrigerant solution in the absorber 3.
  • the presence of the ineffective refrigerant indicates that the absorption chiller / heater is not operating efficiently.
  • FIG. 62 is yet another drawing showing a conventional absorption chiller / heater.
  • the temperature of the high-temperature regenerator 10 rises as compared with the case where the operation is performed according to the above-mentioned standard or standard. For example, if an excessive load is applied by the refrigeration load connected to the chilled / hot water line 5, the chilled water inlet temperature TL in becomes higher than 12 ° C (for example, 13 ° C). In order to set the chilled water outlet temperature TL 0 ut to 7 ° C, a higher load operation is performed than during the standard operation, so that the temperature of the high-temperature regenerator 10 is higher than during the standard operation (specified value in the standard operation).
  • the temperature of the high-temperature regenerator 10 rises above a specified value. .
  • Such a temperature rise of the high-temperature regenerator 10 is remarkable in an exhaust heat input operation mode in which external heat is input.
  • the chiller / heater 1 is in an overload state, the heat transfer area of each element (for example, the evaporator 2) becomes insufficient even if the waste heat held by the hot effluent is supplied to the chiller / heater 1. Therefore, the input exhaust heat is wastefully released to a cooling tower (not shown) provided in the cooling water system 6.
  • the present invention relates to an absorption chiller / heater equipped with a high-quality fuel system and a waste heat utilization system, and having a heat exchanger in which waste heat is introduced from the outside into a pipe of the waste heat utilization system when exhaust heat is supplied. It has been proposed in view of the species problems.
  • the present invention effectively prevents crystallization from occurring in a heat exchanger which is interposed in the exhaust heat utilization system piping of such an absorption chiller / heater and receives external heat.
  • the purpose of the present invention is to provide an absorption chiller / heater which can be prevented and a control method thereof.
  • Another object of the present invention is to provide an absorption chiller / heater that prevents a rise in the temperature of a high-temperature regenerator and the accompanying corrosion, and that does not drastically reduce its performance. It is another object of the present invention to provide a chiller / heater that prevents a rise in the temperature of a high-temperature regenerator and the accompanying corrosion without generating an ineffective refrigerant and that does not drastically reduce its capacity.
  • the present invention can meet the demand for energy saving even in the exhaust heat input operation mode in which external exhaust heat is input. It aims to provide an absorption chiller / heater whose refrigeration capacity is guaranteed.
  • a method for controlling an absorption chiller / heater includes an absorption chiller / heater provided with a high-quality fuel system and a waste heat utilization system, and provided with a heat exchanger in which waste heat is externally supplied to piping of the waste heat utilization system. Detecting the generation of a solution pump or combustion parner operation stop signal in the machine control method, and determining whether a predetermined time has elapsed since the operation of the solution pump or combustion parner was stopped after the detection. And a step of bypassing the heat exchanger with a fluid containing exhaust heat after the predetermined time has elapsed.
  • the step of detecting the temperature of the fluid containing the exhaust heat, and the step of supplying the fluid having a flow rate corresponding to the temperature to the heat exchanger side Determining a bypass amount of the fluid (or determining whether a fluid containing waste heat is supplied to or bypassed to the heat exchanger in response to the temperature).
  • the absorption chiller / heater of the present invention includes a high-quality fuel system and a waste heat utilization system, and an absorption chiller / heater provided with a heat exchanger in which waste heat is supplied from outside to piping of the waste heat utilization system.
  • a branch means is interposed in the piping system of the fluid containing the exhaust heat, the operation stop detecting means for detecting that the operation stop signal of the solution pump or the combustion panner is generated, and the operation of the solution pump or the combustion panner.
  • Timer means for determining whether a predetermined time has elapsed since the stop of operation, and exhaust heat when output signals from the stop operation detecting means and the timer means are transmitted.
  • Control means for outputting a control signal to the branch means so that the contained fluid bypasses the heat exchanger.
  • the absorption chiller / heater has a temperature detecting means for detecting a temperature of the fluid containing exhaust heat and outputting a detection result to the control means, wherein the control means It is preferable that a control output is transmitted to the branch means so as to adjust a flow rate of the fluid supplied to the heat exchanger in response to a temperature.
  • the solution pump operation stop signal includes a start / stop signal, a signal for detecting that the chilled water temperature is lower than a predetermined temperature during cooling, and detecting that the hot water temperature is higher than a predetermined temperature during heating. There are signals, etc.
  • the stop signal of the combustion parner there are an ON-OFF signal, a signal for detecting that the cold water temperature is lower than a predetermined temperature during cooling, and a signal for detecting that the hot water temperature is higher than the predetermined temperature during heating. .
  • the control means causes the fluid to bypass the heat exchanger, and the operation of the absorption chiller / heater is stopped.
  • the stop signal due to an operation error is a regeneration system abnormality signal (regeneration pressure is higher than the reference value, exhaust gas temperature is higher than the reference value, regeneration temperature is higher than the reference value, regenerator liquid level is ) Combustion system abnormal signal (such as abnormal gas pressure), Motor system abnormal signal (Solution pump overcurrent, Refrigerant blower overcurrent, Burner blower overcurrent, etc.), Equipment system abnormal signal ( There is a cold water pump interlock of 0FF and a cooling water pump interlock of 0FF.
  • the term “fluid containing waste heat” is a term used to mean not only “warm waste water” but also “exhaust gas ⁇ discharge steam”.
  • absorption chiller / heater is used to include an absorption chiller.
  • the operation stop detecting means detects that the solution pump operation stop signal or the combustion panner operation stop signal is generated
  • the operation of the solution pump or the combustion panner is measured by a timing means. It is determined whether or not a predetermined time has elapsed since the stop, and when the predetermined time has elapsed, a control signal is output from the control means to the branch means, and the fluid containing waste heat passes through the heat exchanger. Configured to bypass ing. If the fluid containing waste heat is bypassed, heat is not supplied to the heat exchanger from the outside, so even if the solution pump or the combustion parner stops and the absorbing solution remains inside the heat exchanger. Concentration or crystallization of the remaining solution is avoided.
  • the temperature of the fluid containing exhaust heat is detected by temperature detecting means, and if the temperature is higher than a predetermined value, the fluid is supplied to the heat exchanger side, and the temperature is higher than a predetermined value. If the fluid is configured so as to bypass the heat exchanger if the temperature is low, the fluid having a low temperature will not be supplied to the heat exchanger, and the absorbing solution circulating in the exhaust heat utilization system of the absorption chiller / heater will be eliminated. This prevents heat from being lost when passing through the heat exchanger. That is, efficient use of waste heat is guaranteed.
  • the absorption chiller / heater of the present invention has a waste heat input heat exchanger, determines a waste heat input operation mode and a normal operation mode by a predetermined signal, and performs high-temperature regeneration for each mode.
  • a control device with a function to automatically adjust the opening increase (maximum opening limit) of the throttle valve for high-quality fuel and the throttle valve for combustion air adjustment of the high-quality fuel burner installed in the vessel have.
  • a three-way valve open / closed state detecting means for detecting the open / closed state of the three-way valve interposed in the exhaust heat supply line
  • the control device includes an upper limit of the opening degree provided in the high-quality fuel adjusting throttle valve.
  • a control signal is output to the opening limit upper limit provided in the limiting valve and the combustion air regulating throttle valve, and a detection signal from the three-way valve opening / closing state detecting means is input. Is preferred.
  • a cooling / heating water line outlet temperature detecting means for detecting a cooling / heating water line outlet temperature
  • a high temperature regenerator temperature detecting means for detecting a high temperature regenerator temperature
  • a high temperature detecting a high temperature regenerator pressure for detecting a high temperature regenerator pressure
  • a regenerator pressure detecting means, and a cooling water line inlet temperature detecting means for detecting a cooling water line inlet temperature, wherein a detection signal from each of the detecting means is inputted to the control device.
  • the three-way valve open / closed state detection means connects the exhaust heat supply line Whether the interposed three-way valve is open on the side where the exhaust heat is supplied (exhaust heat exchanger side) or open on the side where the exhaust heat is not input (the side that bypasses the exhaust heat exchanger) Is detected.
  • the operation mode at the time of detection is the exhaust heat input operation mode (when the three-way valve is open to the side that inputs exhaust heat, that is, the exhaust heat exchanger side), or normal operation. Mode (if the three-way valve is open to the side that does not supply exhaust heat, that is, to the side that bypasses the exhaust heat exchanger).
  • the control device determines that the operation mode is the exhaust heat input operation mode, the upper limit limit for the high-quality fuel adjustment throttle valve of the high-quality fuel combustion panner installed in the high-temperature regenerator and Set the opening upper limiter for the throttle valve for combustion air adjustment, and control so that the opening of each adjustment valve does not exceed a predetermined value.
  • the high-quality fuel combustion parner does not operate at 100%, but is operated at a level corresponding to the remaining load, in which part of the load is assigned to waste heat. Can be suppressed. As a result, the promotion of corrosion due to the rise in temperature of the high-temperature regenerator is prevented.
  • a temperature detection means for the outlet of the chilled and heated water line for detecting an outlet temperature of the chilled and heated water line
  • a temperature detection means for the high temperature regenerator for detecting the temperature of the high temperature regenerator
  • a high temperature regenerator pressure detection for detecting the pressure of the high temperature regenerator Means
  • a cooling water line inlet temperature detecting means for detecting an inlet temperature of the cooling water line
  • a detection signal from the cooling water line inlet temperature detecting means for transmitting the detection signal to the control device.
  • High-quality fuel adjustment of the high-quality fuel burner installed in the high-temperature regenerator in each of the exhaust heat input operation mode and the normal operation mode based on not only the detection signal but also the detection signals of the detection means described above. Operation control for the upper limit of the opening of the throttle valve for combustion and the throttle valve for combustion air adjustment.
  • the operation of the limiter for the high-quality fuel adjustment throttle valve and the limiter for the combustion air adjustment throttle valve of the high-quality fuel combustion parner is automatically controlled according to the operating condition. For example, when an over-refrigeration load is applied or when the cooling water temperature rises above the set value, the opening upper limiter for the high-quality fuel adjustment throttle valve and the combustion air adjustment Automatically adjusts the upper limit of the opening of the throttle valve and limits the supply of high-quality fuel or combustion air, thereby keeping the temperature of the high-temperature regenerator below the specified value and suppressing corrosion. You do it.
  • the upper limit of the opening for the high-quality fuel adjustment throttle valve and the combustion air It is also possible to adjust each of the setting values of the opening limit upper limit for the adjustment throttle valve as a parameter.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water outlet temperature and the temperature of the high temperature regenerator, and monitors the temperature of the chilled / hot water outlet temperature and the temperature of the high temperature regenerator. It has a fuel supply amount control mechanism that adjusts the high quality fuel supply amount of the high quality fuel combustion parner based on the above.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water outlet temperature and the pressure of the high temperature regenerator, and based on the chilled / hot water outlet temperature and the pressure of the high temperature regenerator. It has a fuel supply control mechanism that regulates the supply of high quality fuel to the high quality fuel combustion burner.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water outlet temperature and the chilled water inlet temperature, and sets a high temperature based on the chilled / hot water outlet temperature and the chilled water inlet temperature. It has a fuel supply control mechanism that adjusts the high quality fuel supply of the high quality fuel combustion parner.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water inlet temperature together with the chilled / hot water outlet temperature, and based on the temperature difference between the chilled / hot water outlet temperature and the chilled / hot water inlet temperature. It has a fuel supply control mechanism that regulates the supply of high quality fuel to the high quality fuel combustion burner.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting exhaust heat, monitors a chilled / hot water outlet temperature, a cooling water inlet temperature, and a temperature of a high temperature regenerator, and outputs a chilled / hot water outlet temperature, cooling water. It has a fuel supply control mechanism that adjusts the high-quality fuel supply of the high-quality fuel burner based on the inlet temperature and the temperature of the high-temperature regenerator.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water outlet temperature, the chilled water inlet temperature, and the pressure of the high temperature regenerator, and outputs the chilled / hot water outlet temperature and cooling. It has a fuel supply control mechanism that adjusts the supply of high quality fuel to the high quality fuel burner based on the water inlet temperature and the pressure of the high temperature regenerator.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, and The temperature of the high-temperature regenerator and the temperature of the cold and hot water inlet are monitored along with the temperature, and the temperature of the high-temperature fuel burner is determined based on the temperature difference between the cold and hot water outlet temperature and the cold and hot water inlet temperature and the temperature of the high-temperature regenerator.
  • a fuel supply amount control mechanism for adjusting the quality fuel supply amount.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting exhaust heat, monitors the temperature of the chilled / hot water outlet, the pressure of the high-temperature regenerator, and the temperature of the chilled / hot water inlet, It has a fuel supply control mechanism for adjusting the supply of high quality fuel to the high quality fuel combustion parner based on the temperature difference between the inlet and outlet temperatures of the cold and hot water and the pressure of the high temperature regenerator.
  • the absorption chiller / heater of the present invention has a heat exchanger for inputting waste heat, monitors the chilled / hot water outlet temperature, the chilled / hot water inlet temperature, and the chilled water inlet temperature, and monitors the chilled / hot water outlet temperature and the cold / hot water temperature.
  • the fuel supply amount control mechanism for adjusting the high-quality fuel supply amount of the high-quality fuel combustion parner based on the temperature difference between the water inlet temperature and the cooling water inlet temperature is provided.
  • the three-way valve provided on the hot drainage line is opened and closed to determine whether the operation mode at that time is the exhaust heat input mode or the normal operation mode. It is preferable to provide three-way valve monitoring means for monitoring the condition.
  • the temperature of the cold / hot water outlet and the temperature or pressure of the high-temperature regenerator the difference between the temperature of the cold / hot water outlet and the temperature of the cold / hot water inlet, or the temperature of the cold / hot water outlet and the temperature or pressure of the high-temperature regenerator,
  • the high-quality fuel supply amount to the high-quality fuel combustion burner is controlled based on either of the above temperature differences. Therefore, in the exhaust heat input mode, this fact is detected and the amount of high-quality fuel supplied to the high-quality fuel combustion burner is limited, and the flow rate of the liquid-phase refrigerant sent from the condenser to the evaporator evaporates. It is possible to prevent the generation of ineffective refrigerant by preventing the heat transfer area from becoming too large as compared with the heat transfer area of the surface.
  • An absorption chiller-heater is a chiller outlet temperature detector for detecting a chilled water outlet temperature in an absorption chiller-heater to which exhaust heat is selectively supplied through a branch pipe branched from a hot water supply pipe communicating with an exhaust heat source.
  • a three-way valve interposed in the hot water supply pipe for adjusting the flow rate of hot water flowing to the branch pipe side, and a control device for controlling opening and closing of the three-way valve in response to a detection result of the cold water outlet temperature detection means , And.
  • the absorption chiller / heater of the present invention is a hot water temperature detector for detecting hot water temperature in an absorption chiller / heater to which exhaust heat is selectively supplied via a branch pipe branched from a hot water supply pipe communicating with the exhaust heat source.
  • a three-way valve interposed in the hot water supply pipe to adjust a flow rate of hot water flowing to the branch pipe side; and a control device that controls opening and closing of the three-way valve in response to a detection result of the hot water temperature detecting means.
  • the absorption chiller / heater of the present invention is a hot chiller for detecting hot water temperature in an absorption chiller / heater to which exhaust heat is selectively supplied via a branch pipe branched from a hot water supply pipe communicating with a waste heat source.
  • Detecting means for detecting the temperature of a solution flowing through a solution line in which an exhaust heat recovery heat exchanger is inserted to input exhaust heat to the absorption chiller / heater;
  • a three-way valve mounted to adjust the flow rate of hot water flowing to the branch pipe side; and a control device that controls opening and closing of the three-way valve in response to detection results of the hot water temperature detecting means and the solution temperature detecting means.
  • the absorption chiller / heater of the present invention is a chilled water outlet for detecting a chilled water outlet temperature in an absorption chiller / heater to which exhaust heat is selectively supplied via a branch pipe branched from a hot water supply pipe communicating with the exhaust heat source.
  • Temperature detecting means, hot water temperature detecting means for detecting hot water temperature, a three-way valve interposed in the hot water supply pipe and adjusting a flow rate of hot water flowing to the branch pipe side, the cold water outlet temperature detecting means and hot water temperature detection A control device for controlling the opening and closing of the three-way valve in response to the detection result of the means.
  • the open / close control of the three-way valve may be a method that controls only the two states of fully open and fully closed, or the detection result of the cold water outlet temperature detection means or the detection result of the hot water temperature detection means
  • the opening degree of the three-way valve may be optimally controlled in response to the control. Then, the three-way valve opening control may be controlled stepwise or linearly.
  • the absorption chiller / heater of the present invention includes a branch pipe branched from a hot water supply pipe communicating with an exhaust heat source.
  • a cooling water outlet temperature detecting means for detecting a cooling water outlet temperature
  • a cooling water inlet temperature detecting means for detecting a cooling water inlet temperature
  • a three-way valve for adjusting the flow rate of hot water flowing to the branch pipe side, comparing the detection result of the chilled water outlet temperature detecting means and the detection result of the chilled water inlet temperature detecting means, and responding to the comparison result in response to the comparison result.
  • a control device for controlling the opening and closing of the three-way valve.
  • the absorption chiller / heater of the present invention is an absorption chiller / heater in which exhaust heat is selectively supplied through a branch pipe branched from a hot water supply pipe communicating with an exhaust heat source, wherein the high temperature regenerator temperature or the high temperature regenerator pressure is provided.
  • High-temperature regenerator detecting means for detecting the temperature, a three-way valve interposed in the hot water supply pipe to adjust the flow rate of hot water flowing to the branch pipe side, and the three-way valve in response to a detection result of the high-temperature regenerator detecting means.
  • a control device for opening and closing the valve; and
  • the absorption chiller / heater of the present invention is a chilled water outlet for detecting a chilled water outlet temperature in an absorption chiller / heater to which exhaust heat is selectively supplied via a branch pipe branched from a hot water supply pipe communicating with the exhaust heat source.
  • Temperature detecting means chilled water inlet temperature detecting means for detecting chilled water inlet temperature
  • hot water temperature detecting means for detecting hot water temperature
  • a control device that controls the opening and closing of the three-way valve in response to the detection result of the chilled water outlet temperature detecting means, the detection result of the chilled water inlet temperature detecting means, and the detection result of the hot water temperature detecting means. I have.
  • the absorption chiller-heater is a hot chiller for detecting hot water temperature in an absorption chiller-heater to which exhaust heat is selectively supplied through a branch pipe branched from a hot water supply pipe communicating with the exhaust heat source.
  • Detecting means high-temperature regenerator temperature detecting means for detecting a high-temperature regenerator temperature; a three-way valve interposed in the hot water supply pipe to adjust a flow rate of hot water flowing to the branch pipe side; detection of the hot water temperature detecting means
  • a control device for controlling the opening and closing of the three-way valve in response to the result and the detection result of the high temperature regenerator temperature detection means.
  • the absorption chiller / heater of the present invention is a hot chiller for detecting hot water temperature in an absorption chiller / heater to which exhaust heat is selectively supplied via a branch pipe branched from a hot water supply pipe communicating with a waste heat source.
  • a control device that controls the opening and closing of the three-way valve in response to the detection result of the hot water temperature detection unit and the detection result of the high temperature regenerator pressure detection unit.
  • the absorption chiller / heater of the present invention detects the chilled water outlet temperature in an absorption chiller / heater to which exhaust heat is selectively supplied through a branch pipe branched from a hot water supply pipe communicating with the exhaust heat source.
  • a cooling water inlet temperature detecting means for detecting a cooling water inlet temperature a cooling water inlet temperature detecting means for detecting a cooling water inlet temperature, a three-way valve interposed in the hot water supply pipe and adjusting a flow rate of hot water flowing to a branch pipe side,
  • a control device that controls the opening and closing of the three-way valve in response to the detection result of the outlet temperature detecting means and the detection result of the cooling water inlet temperature detecting means.
  • the vehicle Since it has a control device that controls the opening and closing of the three-way valve in response to the detection result of the means, it is determined whether or not the vehicle is overloaded by detecting the temperature of the chilled water outlet. For example, by reducing the flow rate of the waste heat input line The supply of exhaust heat to the chiller / heater can be reduced. This prevents the waste heat input from being wastedly released to the cooling tower interposed in the cooling water system.
  • the control device for controlling the opening and closing of the three-way valve in response to the detection result of the hot water temperature detecting means since the control device for controlling the opening and closing of the three-way valve in response to the detection result of the hot water temperature detecting means is provided, when the temperature of the hot waste water decreases (the temperature of the hot (Including when the temperature is lower than the temperature of the solution inside the machine), reduce the amount of hot wastewater supplied, and shut off the supply of hot wastewater to the chiller / hot water machine if necessary. As a result, it is possible to cope with a decrease in the effect of the exhaust heat input. Then, it is possible to completely prevent a situation in which heat flows back from the solution to the hot waste water and the refrigeration capacity of the absorption chiller / heater is no longer guaranteed. In addition, wasteful disposal of the amount of heating by the high-quality fuel supplied to the chiller / heater is prevented.
  • the three-way valve is controlled to open and close in response to the detection results of the cold water outlet temperature detecting means and the hot water temperature detecting means in the above configuration, it is possible to appropriately respond to an overload condition, It can respond to the decrease in the effect of waste heat input and guarantee refrigeration capacity.
  • the overload state can be detected from the temperature difference between the cold water outlet and the cold water inlet or the temperature of the high-temperature regenerator. Furthermore, by separately detecting the temperature difference between the chilled water outlet temperature and the chilled water inlet temperature and the temperature of the hot water, the overload state can be determined with higher accuracy, and the reduction of the exhaust heat input effect can be reduced.
  • the refrigeration capacity can be guaranteed.
  • the overload can be determined based on the temperature of the hot water and the temperature of the high-temperature regenerator, and the refrigeration capacity can be guaranteed in response to a decrease in the effect of inputting waste heat.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention
  • FIG. 2 is a diagram showing a control flow chart of the embodiment of FIG. 1
  • FIG. 3 is a control flow chart of the embodiment of FIG. FIG.
  • FIG. 4 is a block diagram showing a second embodiment of the present invention
  • FIG. 5 is a block diagram showing a control flow chart of the embodiment of FIG. 4
  • FIG. 7 is a block diagram showing an absorption chiller / heater or absorption chiller used in the present invention
  • FIG. 7 is a block diagram showing an absorption chiller / heater or absorption chiller different from that shown in FIG. 6,
  • Figure 9 is a block diagram of an absorption chiller / heater or absorption chiller different from that shown in Figure 6-8. Block diagram of absorption chiller / heater or absorption chiller different from that shown in Fig. 9, Fig. 11 is different from that shown in Fig.
  • FIG. 6-10 Block diagram of an absorption chiller / heater or absorption chiller
  • Figure 12 is a block diagram of an absorption chiller / heater or absorption chiller different from that shown in Figure 6-11
  • Figure 13 is a diagram of Figure 6-12.
  • Fig. 14 is a block diagram of absorption chiller / heater or absorption chiller different from that shown in Fig. 6-13
  • Fig. 15 is Fig. 6 — Block diagram of absorption chiller / heater or absorption chiller different from that shown in 14
  • Figure 16 shows absorption chiller / heater or absorption refrigeration different from that shown in Figure 6-15 Fig.
  • FIG. 17 is a block diagram of an absorption chiller / heater or an absorption refrigerator different from that shown in Figs. 6-16, and Fig. 18 is a block diagram showing another embodiment of the present invention.
  • 19 is a diagram showing a control flow chart of the embodiment of FIG. 18;
  • FIG. 20 is a control flow chart of the embodiment of FIG. 18 showing a control different from that of FIG. 19;
  • 1 is a block diagram showing another embodiment different from FIGS. 18-20,
  • FIG. 22 is a diagram showing a control flow chart of the embodiment of FIG. 21, and
  • FIG. 23 is another embodiment of the present invention.
  • FIG. 24 is a diagram showing the control flow chart of FIG. 23,
  • FIG. 25 is a block diagram showing another embodiment different from FIGS. 23 and 24, and
  • FIG. 26 is a diagram of FIG.
  • FIG. 27 is a diagram showing a control flow chart
  • FIG. 27 is a block diagram showing another embodiment of the present invention
  • FIG. 28 is a diagram showing the control flow chart of FIG. 27,
  • FIG. 2 Example different from 8
  • FIG. 30 is a block diagram showing an embodiment different from that of FIGS. 27-29
  • FIG. 31 is a diagram showing the control flow chart of FIG. 30,
  • FIG. 32 is a diagram of FIG. 27-31.
  • 33 is a block diagram showing an embodiment different from FIG. 32
  • FIG. 34 is a block diagram showing an embodiment different from FIG. 27-33
  • FIG. Fig. 34 shows the control flowchart
  • Fig. 36 shows a block diagram showing an embodiment different from Figs. 27-35
  • FIG. 37 shows a block diagram showing an embodiment different from Figs. 27-36.
  • Fig. 38 is a diagram showing the control flow chart of Fig. 37
  • Fig. 39 is a block diagram showing an embodiment different from Fig. 27-38
  • Fig. 40 is a diagram showing the control flow chart of Fig. 27-39.
  • FIG. 41 is a block diagram showing a different embodiment
  • FIG. 41 is a diagram showing the control flow chart of FIG. 40
  • FIG. 42 is a block diagram showing an embodiment different from FIG. 27-41
  • FIG. 44 is a block diagram showing another embodiment of the present invention
  • FIG. 45 is a diagram showing a control flowchart of FIG. 44
  • FIG. 46 is another embodiment different from FIGS. 44 and 45.
  • FIG. 47 is a block diagram showing a control flow chart of FIG. 46
  • FIG. 48 is a block diagram showing another embodiment different from FIG. 44
  • FIG. 49 is a control flow chart of FIG.
  • FIG. 50 is a block diagram showing another embodiment different from FIGS. 44-49
  • FIG. 51 is a diagram showing a control flow chart of FIG. 50
  • FIG. 51 is a block diagram showing another embodiment
  • FIG. 53 is a diagram showing the control flow chart of FIG. 52
  • FIG. 54 is a block diagram showing another embodiment different from FIGS.
  • FIG. 55 is a diagram showing the control flow chart of FIG. 54
  • FIG. 56 is a block diagram showing another embodiment different from that of FIG. 44
  • FIG. 57 is a control flow chart of FIG.
  • Figure, Figure 58 shows another embodiment different from Figures 44-57 59 is a block diagram showing the control flowchart of FIG. 58
  • FIG. 60 is a block diagram showing another embodiment different from FIGS. 44 to 59
  • FIG. 61 is a diagram showing the control flowchart of FIG.
  • FIG. 62 is a block diagram of a conventional absorption chiller / heater.
  • FIG. 1 shows a first embodiment of the present invention.
  • An absorption chiller / heater is indicated by the reference numeral 20 (20 A to 2 OK).
  • the absorption chiller / heater 20 (20 A to 20 K) will be described later.
  • an exhaust heat input line L 2 is provided.
  • a heat exchanger 32 (32A to 32K) is provided to supply the retained heat to the absorbing solution flowing through the exhaust heat utilization system of the absorption chiller / heater.
  • a three-way valve V1 is provided at the junction of the exhaust heat line 2 and the exhaust heat input line L2 as a branching means so as to adjust the flow rate.
  • a valve opening control signal from the control means 50 is transmitted via the transmission line SL1.
  • the control means 50 receives a stop signal of the solution pump P10 in the absorption chiller / heater 20 (20 A to 20 K), an absorption chiller / heater operation switch OFF signal, an operation abnormality detection signal, and the like.
  • the signals are input from signal lines 52, 54 and 56 via signal transmission lines SL2, SL3 and SL4.
  • reference numeral 21 denotes a high quality fuel system fuel line.
  • step S3 When operating the absorption chiller / heater 20 (20 A to 20 K), use one of the sensors 52, 54, or 56 to operate the solution pump P 1 while the absorption chiller / heater 20 (20 A to 20 K) is operating. It is always determined whether or not 0 has stopped (step S3). If such a signal does not occur, the state of step S2 continues (step S3 is a NO loop). On the other hand, when the solution pump stop signal is generated (YES in step S3), it is determined whether such a signal continues for a predetermined time or more (step S4).
  • predetermined time means a time during which the solution remaining in the heat exchanger 32 (32A-32K) does not condense to a certain concentration or more.
  • the “constant concentration” differs depending on the installation conditions and various specifications of the absorption chiller / heater. That is, the “predetermined time” is a constant including 0 defined on a case-by-case basis. If the solution pump stop signal is released before the specified time elapses, the solution remaining in the heat exchanger 32 (32 A to 32 K) does not condense, and the operation of the absorption chiller / heater continues as it is. (Step S4 is a NO loop). On the other hand, if the solution pump stop signal is not released after the lapse of a predetermined time (step S4: YES loop), the solution remaining in the heat exchanger 32 (32A to 32K) may condense. There is.
  • the three-way valve V1 is switched to the bypass side (step S5), and the fluid (for example, hot waste water) flowing in the exhaust heat line 2 is supplied to the heat exchanger 32 (32A to 32K). Is prevented.
  • step S 6 it is determined whether or not the operation of the solution pump P 10 has been restarted. If the solution pump stop signal remains generated (step S 6 is NO), the flow through the exhaust heat line 2 is performed. The state where the hot waste water is not supplied to the heat exchanger 32 (32 A to 32 K) (the state in step S5) continues. On the other hand, when the solution pump stop signal disappears and the operation of the solution pump is resumed (YES in step S6), the three-way valve V1 absorbs the hot wastewater of the exhaust heat line L2 again, and the cooling water heater 20 ( It is switched to supply to the 20 A to 20 K) side (step S2).
  • Step S11 or S12 in FIG. 3 the three-way valve V1 is switched to the bypass side (Step S13).
  • the fluid for example, hot waste water flowing in the exhaust heat line 2 is not injected into the heat exchanger 32 (32A to 32K), and the problem of the condensation or crystallization of the solution inside the heat exchanger does not occur.
  • step S14 the operation of stopping the operation of the water heater / heater 20 (20 A to 20 K) is performed (step S14), and the operation is stopped (step S15).
  • FIG. 4 and 5 show a second embodiment of the present invention.
  • a temperature detecting means (temperature sensor) 60 for detecting the hot waste water temperature TH is provided in the exhaust heat line L2, and the output thereof is inputted to the control means 50 via the signal transmission line SL5.
  • Other configurations are the same as in FIG.
  • step S1 When the operation switch of the absorption chiller / heater 20 (20 A to 2 OK) is turned on or the reset switch becomes 0 N (step S 1). After that, the temperature sensor 60 detects the hot waste water temperature TH (step S22), and determines whether the temperature is higher or lower than a predetermined value (determined on a case-by-case basis according to the device specifications and installation conditions). (Step S23) c If the hot wastewater temperature TH is higher than the set value, it is supplied to the absorption chiller / heater as the available waste heat (the flow rate corresponding to the hot wastewater temperature TH) (Step S24). If it is lower than the set value, the absorption chiller / heater is bypassed (step S25). The control routine in step S3 and subsequent steps is the same as that described with reference to FIG. 2, and thus description thereof will be omitted.
  • Figures 6-17 show the absorption chiller / heater (absorption chiller) 20, 20A-2 OK, respectively.
  • Reference numeral 21 denotes a fuel line for supplying high-quality fuel to the high-temperature regenerator 11 heating means using high-quality fuel.
  • the pipeline L 1 between the high-temperature solution heat exchanger 14 and the low-temperature solution heat exchanger 15 is a dilute solution line of the absorbent including the high-temperature solution heat exchanger and the low-temperature solution heat exchanger (hereinafter, “ Dilute solution line ”).
  • the dilute solution line L1 has a heat source heat exchanger 32, 32A-32 for exchanging heat between the hot wastewater flowing through the branch line L2 and the absorbent dilute solution flowing through the dilute solution line. K is interposed.
  • the heat source heat exchanger 32 transfers the heat of the wastewater or steam at 40 ° C to 120 ° C to the absorbent dilute solution in the dilute solution line L1. .
  • reference numeral 70 denotes a heating parner for a high-temperature regenerator.
  • FIGS. 18-22 Next, an embodiment shown in FIGS. 18-22 will be described.
  • FIG. 18 shows another embodiment different from the embodiment shown in FIGS. 1-17.
  • the whole is indicated by reference numeral 20 (20A to 20K) is an absorption chiller / heater.
  • the absorption chiller / heater 20 (20A to 20K) will be described later.
  • an exhaust heat input line L 2 is provided, and the line L 2 holds fluid.
  • a heat exchanger 32 (32A to 32K) is provided to supply the stored heat to the absorbing solution flowing through the waste heat utilization system of the absorption chiller / heater.
  • a three-way valve V1 is provided at the junction of the exhaust heat line 2 and the exhaust heat input line L2 as a branching means so as to adjust the flow rate.
  • a valve opening control signal from the control means 50 is transmitted via the transmission line SL1.
  • the control means 50 includes, in addition to the operation stop signal of the combustion burner in the absorption chiller / heater 20 (20 A to 20 K), the operation stop signal of the solution pump (not shown in FIG. 18), and the absorption chiller / heater.
  • the machine operation switch OFF signal, operation abnormality detection signal, etc. are input from the sensors 52, 54, 56 via the signal transmission lines SL2, SL3, SL4, respectively.
  • reference numeral 21 indicates a fuel line for a high-quality fuel system.
  • No. 70 indicates a combustion parner.
  • step S2 the operation of the absorption chiller / heater 20 (20A to 20K) becomes ⁇ N or the reset switch is turned on.
  • step S2 the operation of the absorption chiller / heater in FIG. 18 is started.
  • the opening of the three-way valve VI is set so that the hot waste water of the exhaust heat line L2 is supplied to the absorption chiller / heater 20 (20A to 20K) (step S2).
  • step S3 determines whether one of sensors 52, 54, or 56 has stopped combustion burner during operation of absorption chiller / heater 20 (20 A to 20K). If such a signal does not occur, the state of step S2 continues (step S3 is a NO loop).
  • a combustion burner stop signal is generated (YES in step S3), it is determined whether such a signal continues for a predetermined time or more (step S4).
  • predetermined time means a time during which the solution remaining in the heat exchanger 32 (32 A to 32 K) does not condense to a certain concentration or more.
  • the “constant concentration” differs depending on the installation conditions and various specifications of the absorption chiller / heater. That is, the ⁇ predetermined time '' is a constant including 0 which is determined on a case-by-case basis. If the combustion burner stop signal is released before the predetermined time has elapsed, the heat exchanger 32 (32A to 32K) is used.
  • step S4 NO loop
  • step S4 a YES loop
  • the combustion burner stop signal is not released after the lapse of a predetermined time
  • step S4 is a YES loop
  • the solution remaining in the heat exchanger 32 (32A to 32K) may condense. There is. Therefore, necessary measures are taken to interrupt the input of waste heat. Specifically, the three-way valve V1 is switched to the bypass side (Step S5), and the fluid flowing in the exhaust heat line 2 (for example, hot waste water) is supplied to the heat exchanger 32 (32A to 32K). Is prevented.
  • step S6 it is determined whether or not the operation of the combustion burner has been restarted. If the combustion burner stop signal remains generated (step S6 is NO), the hot waste water flowing through the exhaust heat line 2 is discharged. Not supplied to heat exchanger 32 (32 A to 32K) (The state of step S5) continues. On the other hand, when the combustion parner stop signal disappears and the operation of the combustion parner is restarted (YES in step S6), the three-way valve V1 absorbs the hot wastewater of the exhaust heat line L2 again. It is switched to supply to the 20A to 20K) side (step S2).
  • control as shown in FIG. 20 is performed.
  • One of the sensors 52, 54, and 56 has caused the operation switch of the absorption chiller / heater 20 (20 A to 2 OK) to be in the OFF state (transmission of the operation stop signal), or an abnormal condition has occurred during operation.
  • the three-way valve V1 is switched to the bypass side (step S13).
  • the fluid for example, hot waste water flowing in the exhaust heat line 2 is not injected into the heat exchanger 32 (32 A to 32 K), and the problem of condensation or crystallization of the solution inside the heat exchanger occurs. do not do.
  • step S14 the operation of stopping the operation of the water heater / heater 20 (20 A to 20 K) is performed (step S14), and the operation is stopped (step S15).
  • FIGS. 21 and 22 show another embodiment different from FIGS. 18-20.
  • a temperature detecting means (temperature sensor) 60 for detecting the temperature TH of the waste water is provided in the exhaust heat line L 2, and its output is input to the control means 50 via a signal transmission line SL 5. It is.
  • Other configurations are the same as in FIG.
  • step S1 The operation switch of the absorption chiller / heater 20 (20 A to 2 OK) is turned on or the reset switch is turned on ( After step S1), the temperature TH is detected by the temperature sensor 60 (step S22), and the temperature is higher or lower than a predetermined value (determined on a case-by-case basis by device specifications and installation conditions). It is determined whether it is (Step S23). If the hot waste water temperature TH is higher than the set value, it is supplied to the absorption chiller / heater (a flow rate corresponding to the hot waste water temperature TH) as available waste heat (step S24). If low, bypass the absorption chiller / heater (step S25). Note that the control routine of step S3 and subsequent steps is the same as that described with reference to FIG. 19, and a description thereof will not be repeated.
  • the high-quality fuel combustion parner 11 is provided with a high-quality fuel adjustment throttle valve 12 and a combustion air adjustment throttle valve 13, and is located upstream of the throttle valves 12, 13.
  • the opening limit upper limiter 4 2 for the throttle valve 12 for high quality fuel adjustment and the opening limit upper limiter 4 4 for the throttle valve 13 for combustion air adjustment are located on the side. Is provided.
  • the opening limiters for the throttle valves 12 and 13 are not only provided at the positions of the respective throttle valves, but also at the positions indicated by reference numerals 42 A and 43 A on the upstream side of the throttle valves.
  • the throttle valves 12 and 13 are connected to a controller 30 via a signal transmission line indicated by a dotted line in FIG. 23, and receive a control signal from the controller.
  • an opening / closing signal from the three-way valve opening / closing state detecting means (not shown in FIG. 23) of the three-way valve VI is output to the control device 30 via a signal transmission line.
  • the opening of the three-way valve V1 is detected by a three-way valve open / closed state detecting means (not shown) (step S1).
  • a three-way valve open / closed state detecting means not shown
  • the state in which the hot waste water flowing through the exhaust heat line 21 is not injected at all into the exhaust heat input line 22 or the chiller / heater 1 side in other words, If the three-way valve V1 is fully open to the bypass side, it is determined to be in the "normal operation mode", and if hot drainage is supplied to the chiller / heater 1 regardless of the flow rate, the "heat exhaust operation mode" It is determined. Therefore, in step S2, it is determined only whether or not the three-way valve V1 is fully opened to the bypass side.
  • step S3 If it is not fully opened to the bypass side (NO in step S2), it is determined that the exhaust heat input operation mode is set (step S3), and if it is fully opened to the bypass side (step S2 is YES), the normal operation mode is set. Judgment is made (step S5).
  • step S 3 If it is determined that the operation mode is the exhaust heat input operation mode (step S 3), the burner for high-quality fuel combustion does not operate at 100%, and the remaining exhaust heat for which a part of the load is assigned to the input exhaust heat is used.
  • step S4 set the upper limit limiters 4 and 4 3 and open the throttle valves 12 and 13 The degree should not be larger than the specified value (step S4).
  • step S5 If it is determined that the operation mode is the normal operation mode (step S5), the "promotion of corrosion due to the rise in temperature of the high-temperature regenerator" is considered even when the high-quality fuel combustion parner is operated at 100%. No need to Therefore, the opening upper limiters 42 and 43 are released (step S6).
  • the cold / hot water line 5 is provided with a cold / hot water line outlet temperature detecting means 46 for detecting the outlet temperature TLout.
  • the high temperature regenerator 10 is provided with a high temperature regenerator temperature detecting means 48 for detecting the temperature TH and a high temperature regenerator pressure detecting means 50 for detecting the pressure PH.
  • the cooling water line 6 is provided with a cooling water line inlet temperature detecting means 52 for detecting the inlet temperature TMin. The detection results of these detection means 46, 48, 50, and 52 are sent to the control device 30 via signal transmission lines shown by dotted lines in FIG.
  • the detection means 46, 48, 50, 52 determine the outlet temperature TL0 of the cold / hot water line 5, the temperature TH of the high temperature regenerator 10, the pressure PH of the high temperature regenerator 10, and the inlet temperature TMin of the cooling water line 6, respectively. Detect and send to controller 30 (Step S11) o
  • the opening degree of the three-way valve V1 is detected, and the detection result is output to the control device 30 (step S12).
  • the control device 30 determines whether or not the three-way valve V1 is fully opened on the side that bypasses the exhaust heat exchanger 20 (step S13).
  • step S13 If step S13 is NO, that is, if the three-way valve VI is open to the exhaust heat exchanger 20, the exhaust heat input operation mode is determined (step S14). On the other hand, if the step S13 is YES, that is, if the exhaust heat exchanger 20 is fully opened to the bypass side, the normal operation mode, that is, the gas-fired operation mode is determined (step S15).
  • step S14 the controller 30 controls the temperature TH of the high-temperature regenerator 10 detected in step S11, the pressure PH of the high-temperature regenerator 10, the inlet temperature TMin of the cooling water line 6 Is higher than the set value of the exhaust heat input operation mode (step S16). If it is higher than the set value (Y S in step S 16), the opening upper limiters 42 and 43 are controlled so that the throttle valves 12 and 13 are throttled (step S 19).
  • Step S17 where the inlet temperature TMin of 6 is lower than the set value of the exhaust heat input operation mode (NO in step S16), the outlet temperature TL of the chilled / hot water line 5 becomes the set value (in this case, the exhaust heat input operation mode). (Step S17).
  • Step S17 If the outlet temperature TLout of the chilled / hot water line 5 is higher than the set value of the exhaust heat input operation mode (YES in step S17), the opening upper limiters 42 and 43 are controlled to open the throttle valves 12 and 13. Control is performed in the opening direction (step S18). If it is lower than the set value of the exhaust heat input operation mode (NO in Step S17), in Step S19, the opening upper limiters 42 and 43 are controlled to throttle the throttle valves 12 and 13.
  • step S15 the opening limiter is released, that is, control is performed by opening and closing the normal throttle valve while the opening of the limiter is maximized. Driving.
  • FIGS. 27-43 Next, an embodiment shown in FIGS. 27-43 will be described.
  • a pipe 13 for supplying high quality fuel to the high quality fuel combustion burner 11 is provided with a throttle valve 12 which is a fuel supply amount control mechanism for adjusting the high quality fuel supply amount.
  • the throttle valve 12 is connected to a control device 30 via a signal transmission line SL 1, and the control device 30 controls an outlet temperature TL out of the cold / hot water line 5 via the signal transmission lines SL 2 and SL 3.
  • the temperature sensor 32 for detecting the temperature and the temperature sensor 33 for detecting the temperature THG of the high-temperature regenerator 10 are connected to each other.
  • the three-way valve V1 provided at the junction of the exhaust heat line 21 and the exhaust heat input line 22 and having an adjustable flow rate or opening is connected to the control device 30 by a signal transmission line SL4. If the three-way valve V1 completely bypasses the chiller / heater 1 or the opening of the three-way valve VI is zero, the control device 30 determines that the operation mode is the normal operation mode, and the hot waste water is discharged (flow rate). If it is supplied to the chiller / heater 1, it is determined that the exhaust heat input operation mode is set.
  • the controller 30 detects the outlet temperature TL 0 ut of the cold / hot water line 5 and the temperature THG of the high temperature regenerator 10 (Step S1). Then, the opening of the three-way valve VI is detected (Step S2), and it is determined whether the absorption chiller / heater 1 is in the normal operation mode or the exhaust heat input operation mode (Step S3).
  • the three-way valve V1 is fully If it is open (step S3 is YE S), it is determined to be in the normal operation mode (step S5), and if it is not fully opened to the bypass side (step S3 is NO), the exhaust heat input operation mode It is determined (step S4).
  • Step S4 If it is determined that the operation mode is the exhaust heat input operation mode (step S4), the temperature THG of the high temperature regenerator 10 and the set threshold value or set value (if the normal operation mode differs from the exhaust heat input operation mode) (Step S6), and if the temperature THG of the high-temperature regenerator 10 is higher than the set value (Step S6).
  • S6 is YE S
  • Control is performed in the direction to reduce the opening of the throttle valve 12 (step S7).
  • step S6 if the temperature THG of the high-temperature regenerator 10 is lower than the set value (step S6: NO), the outlet temperature TL0ut of the chilled / hot water line 5 is compared with the set threshold value or set value (step S 8).
  • step S8 If the outlet temperature TL0ut of the cold / hot water line 5 is higher than the set value (step S8 is YES), the opening of the throttle valve 12 is controlled to open (step S9). On the other hand, if the outlet temperature TLout is lower than the set value (N0 in step S8), control is performed to reduce the opening of the throttle valve 12 (step S7).
  • Step S5 If the three-way valve V1 is fully open to the bypass side (Step S3 is YES) and the normal operation mode is determined (Step S5), the high temperature regenerator temperature THG and the set threshold or set value are Are compared (step S10). Then, the above-described steps S7, S8, and S9 are performed.
  • FIG. 29 shows another embodiment different from FIGS.
  • the temperature THG of the high-temperature regenerator 10 is monitored and controlled, but in the embodiment shown in FIG. 29, the pressure PH of the high-temperature regenerator 10 is monitored. Control. That is, the pressure PH of the high-temperature regenerator 10 is detected by the pressure sensor 34, and the detection result is output to the control device 30 via the signal transmission line SL5.
  • FIG. 30 shows another embodiment different from FIGS.
  • the temperature sensor 32 detects the outlet temperature TL out of the cold / hot water line 5
  • the temperature sensor 40 detects the cooling water inlet temperature TM in
  • the detection result is transmitted to the signal transmission line SL 6.
  • the outlet temperature TL 0 ut of the cooling / heating water line 5 and the inlet temperature TMin of the cooling water line 6 are detected (step S 11).
  • the opening of the three-way valve V1 is detected (step S12), and it is determined whether the absorption chiller / heater 1 is in the normal operation mode or the exhaust heat input operation mode (step S13). .
  • the controller 30 determines that if the three-way valve VI does not completely bypass the chiller / heater 1 and hot effluent is supplied to the chiller / heater 1 (regardless of the flow rate) (step If S13 is NO), it is determined that the exhaust heat input operation mode is set (step S14). On the other hand, when the three-way valve VI completely bypasses the chiller / heater 1 or when the opening of the three-way valve V1 is zero (YES in step S13), it is determined that the normal operation mode is set (step S13). Step S15).
  • step S14 If it is determined that the operation mode is the exhaust heat input operation mode (step S14), the cooling water line inlet temperature TMn and the set threshold value or set value (set value in the exhaust heat input operation mode) are set. Compare (step S16). If the inlet temperature TM in is higher than the set value (YE S in step S 16), control is performed to reduce the opening of the throttle valve 12 (step S 17).
  • step S1 If the inlet temperature TM in is lower than the set value (NO in step S16), the chilled / hot water line outlet temperature TL 0 ut is compared with the set threshold value or set value (step S1). 8). If the outlet temperature T Lout is higher than the set value (YE S in step S 18), the opening of the throttle valve 12 is controlled to open (step S 19). On the other hand, if the outlet temperature TLout is lower than the set value (NO in step S18), control is performed to reduce the opening of the throttle valve 12 (step S17).
  • step S13 If it is determined in step S13 that the operation mode is the normal operation mode (step S15), the cooling water line inlet temperature TMin is compared with a threshold value or a set value in the normal operation mode (step S20). . If the inlet temperature TMin is higher than the set value (YE S in step S20), control is performed in a direction to reduce the opening of the throttle valve 12 (step S17). On the other hand, if the inlet temperature TMin is lower than the set value (NO in step S20), the control in step S18 and subsequent steps is performed.
  • FIG. 32 shows another embodiment different from FIG. 27-31. In the embodiment shown in FIG.
  • the outlet temperature TL 0 ut and the inlet temperature TL in of the cold / hot water line 5 are monitored.
  • the control of the high-quality fuel supply is performed.
  • the inlet temperature TLin of the cold / hot water line 5 is detected by the temperature sensor 42, and the detection result is transmitted to the control device 30 by the signal transmission line SL7.
  • step S21 the outlet temperature TLout and the inlet temperature TLIn of the cold / hot water line 5 are detected (step S21).
  • step S22 the opening of the three-way valve VI is detected (step S22), and it is determined whether the absorption chiller / heater 1 is in the normal operation mode or the exhaust heat input operation mode (step S23). That is, if the three-way valve V1 is fully opened to the bypass side (step S23 is YE S), the normal operation mode is determined (step S25), and if the three-way valve V1 is not fully opened to the bypass side (step S23). If NO is determined as 23), it is determined to be the exhaust heat input operation mode (step S24).
  • step S24 If the operation mode is determined to be the exhaust heat input operation mode (step S24), the temperature difference between the inlet temperature TL in and the outlet temperature TL out of the chilled water line I TL in— TL out I and the set threshold value Alternatively, the value is compared with the set value (step S26).
  • step S 27 If the temperature difference I TL in — TLout I is higher than the set value (step S 26 is YE S), control is performed to reduce the opening of the throttle valve 12 (step S 27). On the other hand, if the temperature difference I TL in— TL out I is lower than the set value (NO in step S 26), the threshold temperature or the set value of the outlet temperature TL 0 ut of the chilled / hot water line 5 is set. The value (differs depending on the operation mode) is compared (step S28). If the outlet temperature T Lout of the cold / hot water line 5 is higher than the set value (YE S in step S 28), the opening of the throttle valve 12 is controlled to open (step S 29). On the other hand, if the outlet temperature T Lout is lower than the set value (N 0 in step S 28), control is performed to reduce the opening of the throttle valve 12 (step S 27).
  • step S23 Even when the three-way valve V1 is fully opened to the bypass side (step S23 is YES) and the normal operation mode is determined (step S25), the chilled water line inlet temperature TL in and outlet temperature TL 0 ut The temperature difference I TL in—TL out I is compared with the set threshold value or set value (step S30). Then, the above-described steps S27, S28, and S29 are performed.
  • FIG. 34 shows another embodiment different from FIGS. In the embodiment shown in FIG.
  • the opening of the throttle valve 12 is controlled by monitoring the outlet temperature TL 0 ut of the cold / hot water line 5, the cooling water inlet temperature TM in, and the temperature THG of the high temperature regenerator 10.
  • step S30 the outlet temperature TL 0 ut of the chilled / hot water line 5, the inlet temperature TM in of the chilled water line, and the temperature THG of the high temperature regenerator 10 are detected (step S30).
  • step S31 the opening of the three-way valve VI is detected (step S31), and it is determined whether the absorption chiller / heater 1 is operating in the normal operation mode or the exhaust heat input operation mode (step S32). . That is, the control device 30 determines that if the three-way valve VI does not completely bypass the chiller / heater 1 and hot effluent is supplied to the chiller / heater 1 (regardless of the flow rate) (step S32 NO), it is determined that the operation mode is the exhaust heat input operation mode (step S33).
  • step S36 the normal operation mode is set. Is determined (step S36).
  • Step S33 If it is determined that the operation mode is the exhaust heat input operation mode (step S33), the temperature THG of the high temperature regenerator 10 and the inlet temperature TM in of the cooling water line are set to the set threshold value or the set value (the exhaust heat input mode). (Step S34) c If the temperature THG of the high temperature regenerator 10 and the inlet temperature TMin of the cooling water line are higher than the set values (Step S34 is YE S ), The opening degree of the throttle valve 12 is controlled to be reduced (step S39).
  • step S34 if the temperature THG of the high-temperature regenerator 10 and the inlet temperature TM in of the cooling water line are lower than the set values (NO in step S34), the outlet temperature TL 0 ut of the cooling / hot water line and the set threshold value Alternatively, the value is compared with the set value (step S38). If the outlet temperature TL0ut is higher than the set value (step S38: YES), the opening of the throttle valve 12 is controlled to open (step S40). On the other hand, if the outlet temperature TL0ut is lower than the set value (NO in step S38), control is performed to reduce the opening of the throttle valve 12 (step S39).
  • step S36 If it is determined in step S32 that the operation mode is the normal operation mode (step S36), the temperature THG of the high temperature regenerator 10 and the inlet temperature TMin of the cooling water line are set to the threshold value or the set value in the normal operation mode. Compare (Step S37). And high If the temperature THG of the temperature regenerator 10 and the inlet temperature TM i ⁇ of the cooling water line are higher than the set values (YE S in step S37), control is performed in a direction to reduce the opening of the throttle valve 12 (step S37). Step S39). On the other hand, when the temperature THG of the high-temperature regenerator 10 and the inlet temperature TMin of the cooling water line are lower than the set values (NO in step S37), the control in step S38 and below is performed.
  • FIG. 36 shows another embodiment different from FIGS.
  • the temperature THG of the high-temperature regenerator 10 is monitored, but in the embodiment shown in FIG. 36, control is performed by monitoring the pressure PH of the high-temperature regenerator 10. That is, the pressure PH of the high-temperature regenerator 10 is detected by the pressure sensor 34, and the detection result is output to the control device 30 via the signal transmission line SL5.
  • FIG. 37 shows another embodiment different from FIGS.
  • the opening degree of the throttle valve 12 is controlled by monitoring the outlet temperature TL 0 ut of the cold / hot water line 5, the inlet temperature TL In, and the temperature THG of the high temperature regenerator 10. The operation of the embodiment shown in FIG. 37 will be described with reference to FIG.
  • step S41 the outlet temperature TLout of the cold / hot water line 5 and the inlet temperature TLin and the temperature THG of the high-temperature regenerator 10 are detected (step S41). Then, the opening of the three-way valve V1 is detected (step S42), and it is determined whether the absorption chiller / heater 1 is operating in the normal operation mode or the exhaust heat input operation mode (step S43). ). That is, if the three-way valve V1 is fully opened to the side bypassing the chiller / heater 1 (step S43: YES), the control device 30 determines that the normal operation mode is set (step S43). S 44).
  • step S45 the temperature THG of the high-temperature regenerator 10 is compared with a set threshold value or set value (set value in the exhaust heat input operation mode) (step S46). If the temperature THG of the high-temperature regenerator 10 is higher than the set value in the exhaust heat input operation mode (YE S in step S46), the throttle valve 12 is controlled to be throttled (step S47).
  • step S46 if the temperature THG of the high-temperature regenerator 10 is lower than the set value (NO in step S46), the temperature difference between the inlet temperature TL in and the outlet temperature TL out of the chilled / hot water line 5 is determined. ITL in-TL out
  • step S48 if the temperature difference ITLIn-TLoutl is higher than the set value (YES in step S48), the throttle valve 12 is controlled to be throttled (step S47). On the other hand, if the temperature difference I TL in— TL outl is lower than the set value (NO in step S48), in step S49, the outlet temperature TL 0 ut of the chilled / hot water line 5 and the set threshold value or set value ( Case-by-case).
  • step S49 if the outlet temperature T Lout is higher than the set value (step S49 is YE S), the opening of the throttle valve 12 is controlled to open (step S50). On the other hand, if the outlet temperature TL0ut is lower than the set value (NO in step S49), control is performed to reduce the opening of the throttle valve 12 (step S47). In the normal operation mode (step S44), similarly to step S46, the temperature THG of the high-temperature reproducer 10 is set to the set threshold value or set value (set value in the normal operation mode). Compare (step S51).
  • step S51 If the temperature THG of the high-temperature regenerator 10 is higher than the set value in step S51 (step S51 is YES), control is performed to reduce the opening of the throttle valve 12 (step S47). On the other hand, if the temperature THG of the high-temperature regenerator 10 is lower than the set value in the normal operation mode (NO in step S51), the control in steps S49, S47, and S50 is performed.
  • FIG. 39 shows another embodiment different from FIGS.
  • the temperature THG of the high-temperature regenerator 10 is monitored, but in the embodiment shown in FIG. 39, control is performed by monitoring the pressure PH of the high-temperature regenerator 10. That is, the pressure PH of the high-temperature regenerator 10 is detected by the pressure sensor 34, and the detection result is output to the control device 30 via the signal transmission line SL5.
  • FIG. 40 shows another embodiment different from FIGS.
  • the opening degree of the throttle valve 12 is controlled by monitoring the outlet temperature TL0ut of the cooling / hot water line 5, the inlet temperature TLIn, and the inlet temperature TMIn of the cooling water line.
  • step S60 the outlet temperature TL out of the cold / hot water line 5, the inlet temperature TL in, the cooling water line
  • the inlet temperature TMin is detected (step S60).
  • step S61 the opening of the three-way valve V1 is detected (step S61), and it is determined whether the absorption chiller / heater 1 is operating in the normal operation mode or the exhaust heat input operation mode (step S61). 62).
  • the controller 30 determines that the three-way valve VI does not completely bypass the chiller / heater 1, that is, if the valve V1 is not fully opened to the bypass side (step S62 is NO), It is determined that the operation mode is set (step S63).
  • Step S64 if the three-way valve V1 completely bypasses the chiller / heater 1 (the state in which the valve V1 is fully opened to the bypass side: step S62 is YE S), it is determined that the normal operation mode is set. (Step S64).
  • step S63 the cooling water line inlet temperature TM in is compared with a set threshold value or set value (set value in the exhaust heat input operation mode) (step S65). If the cooling water line inlet temperature TM in is higher than the set value (YES in step S65), the throttle valve 12 is controlled to be throttled (step S66). On the other hand, if the cooling water line inlet temperature TM in is lower than the set value (NO in step S65), the temperature difference I TL in— TL between the inlet temperature TL in and the outlet temperature TL out of the chilled / hot water line 5 is determined. Outl is compared with a set threshold value or set value (set value in the exhaust heat input operation mode) (step S67).
  • step S 67 YE S
  • control is performed in a direction to throttle the throttle valve 12 (step S 66).
  • the temperature difference I TL in— TL outl is lower than the set value (NO in step S67)
  • step S68 if the outlet temperature TL out is higher than the set value (step S68 is YE S), the opening of the throttle valve 12 is controlled to open (step S69). On the other hand, if the outlet temperature TL 0 ut is lower than the set value (NO in step S68), control is performed to reduce the opening of the throttle valve 12 (step S66). Similarly, in the normal operation mode (step S64), the cooling water line inlet temperature TM in is compared with the set threshold value or set value (the set value in the normal operation mode). Yes (step S70). If the cooling water line inlet temperature TMin in the normal operation mode is higher than the set value (YES in step S70), control is performed to reduce the opening of the throttle valve 12 (step S70). 66). On the other hand, if the cooling water line inlet temperature TMin is lower than the set value (NO in step S70), the control in steps S68, S66, and S69 is performed.
  • FIGS. 42 and 43 show another embodiment different from FIGS.
  • the embodiment shown in FIGS. 40 and 41 monitors the outlet temperature TL out, inlet temperature TL in, and inlet temperature TM in the cooling water line 5 of the cooling / heating water line 5.
  • the temperature THG and pressure PH of the high-temperature regenerator 10 are monitored and controlled.
  • the outlet temperature TL 0 ut of the cold / hot water line 5, the inlet temperature TL in, the cooling water line inlet temperature TM in, the temperature THG of the high temperature regenerator 10 and the pressure PH are detected. (Step S80).
  • step S81 the opening of the three-way valve VI is detected (step S81), and it is determined whether the absorption chiller / heater 1 is operating in the normal operation mode or the exhaust heat input operation mode (step S82). ).
  • the controller 30 determines that the three-way valve V1 does not completely bypass the chiller / heater 1, that is, if the valve V1 is not fully opened to the bypass side (step S82 is NO), It is determined that the operation mode is the closing operation mode (step S83).
  • step S 84 the normal operation mode is set ( Step S 84) o
  • step S83 the cooling water line inlet temperature TM in, the temperature THG and the pressure PH of the high temperature regenerator 10 are set to the set threshold value or set value.
  • step S85 (Set value in the exhaust heat input operation mode) (step S85). If the cooling water line inlet temperature TM in and the temperature THG and pressure PH of the high-temperature regenerator 10 are higher than the set values (step S85 is YE S), the throttle valve 12 is controlled to be throttled.
  • Step S86 On the other hand, if the cooling water line inlet temperature TM in and the temperature THG and the pressure PH of the high temperature regenerator 10 are lower than the set values (NO in step S85), the inlet temperature TL in and the outlet temperature TL of the cooling water line 5 TL in—sets the TL out I to the set threshold or set value (in the exhaust heat input operation mode). (Step S87).
  • step S87 if the temperature difference ITLin-TLoutl is higher than the set value (step S87 is YES), the throttle valve 12 is controlled to be throttled (step S86). On the other hand, if the temperature difference I TL in— TL outl is lower than the set value (N in step S 87), the exit temperature TL 0 ut of the chilled / hot water line 5 is set to the set value or the set value (depending on the operation mode. ⁇ Set value determined by case (Step S88) o
  • step S88 if the outlet temperature TL0ut is higher than the set value (step S88 is YE S), the opening of the throttle valve 12 is controlled to open (step S89). On the other hand, if the outlet temperature TL0ut is lower than the set value (N0 in step S88), control is performed to reduce the opening of the throttle valve 12 (step S86).
  • step S84 the cooling water line inlet temperature TM in, the temperature THG and the pressure PH of the high-temperature regenerator 10 are set to the set threshold value or set value (the set value in the normal operation mode). Compare (step S90). If the cooling water line inlet temperature TM in in the normal operation mode, the temperature THG of the high temperature regenerator 10 and the pressure PH are higher than the set values (YE S in step S90), the opening of the throttle valve 12 Is controlled in the direction to reduce the pressure (step S86).
  • the chilled water system 5 is provided with chilled water outlet temperature detecting means 24 for detecting the chilled water outlet temperature TL out, and the detection result is sent to the control device 26 of the three-way valve VI via the signal transmission line SL1. Has been sent.
  • the control device 26 controls the ON / OFF or opening degree of the three-way valve V1.
  • the control of the three-way valve V1 of the control device 26 will be described with reference to FIG.
  • the chilled water outlet temperature TL 0 ut is a high temperature (for example, 9 ° C. or more)
  • the efficiency of the chilled / hot water machine 1 does not improve even if the exhaust heat is supplied.
  • the chilled water outlet temperature TL out is equal to or higher than the predetermined temperature, it is useless even if waste heat is supplied. Get out.
  • the detecting means 24 detects the chilled water outlet temperature TL0ut in the chilled water system 5 (step S1). Then, in step S2, it is determined whether or not the detected chilled water outlet temperature TL0ut is high.
  • step S3 includes a case where the exhaust heat input is completely shut off.
  • step S4 includes the case where 100% of the exhaust heat is supplied to the absorption chiller / heater side.
  • the predetermined temperature TLooutmax is set to, for example, 7.5 ° C with respect to the cold water outlet set temperature of 7 ° C.
  • FIGS. 46 and 47 Next, the embodiment shown in FIGS. 46 and 47 will be described.
  • a hot water temperature detecting means 28 for detecting the temperature (hot water temperature) TH of the three-way valve V1 provided in the exhaust heat line 21 is provided downstream of the three-way valve V1.
  • the detection result by the detection means 28 is sent to the control device 26 of the three-way valve V1 via the signal transmission line SL2.
  • control of the three-way valve V 1 in this embodiment when c warm water temperature TH which will be described with reference also to FIG. 47 is a low temperature, heat-up efficiency is lowered, in some cases (the hot water temperature TH is cold When the temperature is lower than the solution temperature in the water heater 1), the refrigeration capacity of the water heater 1 cannot be maintained.
  • the detection means 28 detects the hot water temperature TH (step S11). Then, in step S12, it is determined whether or not the detected hot water temperature TH is low.
  • the hot water temperature TH is lower than the predetermined temperature (the temperature indicated by the symbol THmin in FIG. 4; the same applies hereinafter), when the exhaust heat is supplied, the solution temperature of the water heater 1 does not rise, and Therefore, the three-way valve VI is controlled to reduce exhaust heat. Step S 13).
  • the hot water temperature TH is higher than the predetermined temperature THmin, the effect of inputting the exhaust heat can be obtained as desired. Therefore, the three-way valve V 1 is controlled to the side where the exhaust heat is introduced into the chiller / heater 1 ( Step S14).
  • the predetermined temperature THmin can be set to, for example, the temperature of a solution introduced into a waste heat exchanger (not shown) in the water heater 1.
  • FIGS. 48 and 49 show another embodiment different from FIGS. 44 and 47.
  • the control is a combination of the embodiment shown in FIGS. 44 and 45 and the embodiment shown in FIGS. 46 and 47. I have. That is, the chilled water system 5 is provided with a chilled water outlet temperature detecting means 24 for detecting the chilled water outlet temperature TL 0 ut, and the exhaust heat line 21 is provided with a heated water temperature detecting means 28 for detecting the heated water temperature TH. Have been.
  • the detection result by the chilled water outlet temperature detection means 24 is sent to the control device 30 via the signal transmission line SL1 and the detection result by the hot water temperature detection means 28 is sent to the control device 30 via the signal transmission line SL2.
  • the detecting means 24 detects the chilled water outlet temperature TLout in the chilled water system 5 and the detecting means 28 detects the warmed water temperature TH (step S21). Then, in step S22, it is determined whether or not the detected chilled water outlet temperature T Lout is high.
  • step S24 it is determined whether or not the detected hot water temperature TH is low.
  • the hot water temperature TH is lower than the predetermined temperature THmin, when the exhaust heat is applied, the temperature of the solution of the chiller / heater 1 does not rise, which causes inconvenience such that the refrigerating capacity cannot be guaranteed.
  • the three-way valve V1 is controlled to reduce exhaust heat (step S23). This On the other hand, if the hot water temperature TH is higher than the predetermined temperature THmin, the effect of injecting waste heat can be obtained as desired. Is controlled (step S25).
  • FIGS. 50 and 51 show another embodiment different from FIGS. As shown in FIG. 50, in this embodiment, the detection results of the chilled water outlet temperature detecting means 24 and the chilled water inlet temperature detecting means 32 are sent to the control device 30.
  • the chilled water outlet temperature TL 0 ut and the chilled water inlet temperature TL in are detected (step S31), and the difference between the chilled water outlet temperature TL out and the chilled water inlet temperature TL in is detected.
  • the absolute value of (temperature difference) is the set maximum value ATL max (maximum absolute value of the difference between the inlet and outlet temperatures of the chilled water line: For example, the inlet temperature rating of 12.5 ° C and the outlet temperature It is determined whether or not the temperature difference from the rating of 7 ° C (12.5 ° C) is exceeded (step S32).
  • step S34 If the temperature difference I TL out—TL inl exceeds the maximum value ⁇ TL max (“> ATLmax” in step S32), it is highly possible that an overload condition has occurred and the heat is exhausted.
  • the three-way valve V1 is controlled so as to decrease the input amount (step S33). On the other hand, if the temperature difference I TL 0 ut— TL in I does not exceed the maximum value TLmax (when “ ⁇ ATLmax” in step S32), there is little possibility that overload occurs. Then, the three-way valve V1 is controlled so that the exhaust heat is injected into the absorption refrigerator 1 (step S34).
  • FIGS. 52 and 53 show another embodiment different from FIGS.
  • the detection result is output from the high-temperature regenerator temperature detecting means 34 for detecting the temperature THgen of the high-temperature regenerator 10 to the control device 26 via the signal transmission line SL5. Based on this detection result, the open / close control of the three-way valve V1 is performed.
  • FIG. 53 shows the specific contents of the opening / closing control.
  • the high temperature regenerator temperature TH gen is detected by the high temperature regenerator temperature detection means 34 (FIG. 52) (step S41), and the detected temperature TH gen is set to the maximum value of the high temperature regenerator temperature in step S42. Compared to the value TH ge nm a X. If the high-temperature regenerator temperature TH gen is higher than the maximum set value TH ge nm ax (step In the state of “> THg en nmx” in S42), it is determined that the high temperature regenerator 10 is overheated in the overload state, and the three-way valve V1 is controlled in a direction to reduce the input of waste heat.
  • Step S43 On the other hand, if the high-temperature regenerator temperature THg en is lower than the maximum set value THg en ma (the state of “THg enma xJ” in step S42), it is determined that the load is not overloaded, and the refrigerator 1 On the other hand, the three-way valve V1 is controlled in a direction to input the exhaust heat (step S44).
  • control is performed using the high-temperature regenerator temperature, but control using the high-temperature regenerator pressure PHgen can also be performed (not shown).
  • FIGS. 54 and 55 show another embodiment different from FIGS. 44 to 53.
  • the heat exhausted to the refrigerator by the cold water outlet temperature TL 0 ut, the cold water outlet temperature TL in, and the hot water temperature TH The decision has been made. That is, the detecting means 24, 32, and 28 (FIG. 54) detect the chilled water outlet temperature TL0ut, the chilled water outlet temperature TLin, and the warmed water temperature TH, respectively (step S51: FIG. 55). Next, it is determined whether or not the absolute value of the difference (temperature difference) between the chilled water outlet temperature TL0ut and the chilled water inlet temperature TLin exceeds the set maximum value ATLmax (step S52).
  • step S52 Since the overload state is highly likely, the three-way valve V1 is controlled in a direction to reduce the amount of waste heat input.
  • the hot water temperature TH is lower than the predetermined temperature THmin (when “ ⁇ THmin” in step S54), the exhaust water is supplied, and the temperature of the solution in the chiller / heater 1 does not increase. Since inconvenience occurs, the three-way valve VI is controlled to reduce exhaust heat (step S53). On the other hand, when the hot water temperature TH is higher than the predetermined temperature THmin, the effect of supplying the exhaust heat can be obtained as desired. Therefore, the three-way valve V1 is controlled to the side where the exhaust heat is introduced into the chiller / heater 1. (Step S55).
  • FIGS. 56 and 57 show another embodiment different from FIGS.
  • the amount of waste heat input to the refrigerator is controlled based on the high temperature regenerator temperature TH gen and the hot water temperature TH. That is, first, the high temperature regenerator temperature TH gen and the hot water temperature TH are detected by the high temperature regenerator temperature detecting means 34 and the hot water temperature detecting means 28 (FIG. 56), respectively (step S61: FIG. 57).
  • the high-temperature regenerator temperature TH g en detected in step S61 is compared with the maximum set value TH g enmax in step S62. Then, if the high temperature regenerator temperature T H g en is higher than the maximum set value TH g e nm ax (in step S62,
  • step S63 In the state of “> TH ge nmax”, it is determined that the vehicle is in an overload state, and the three-way valve V1 is controlled in a direction to reduce the input of exhaust heat (step S63). On the other hand, if the high temperature regenerator temperature THgen is lower than the maximum set value THgenmax,
  • step S64 the hot water temperature TH is compared with a predetermined temperature THmin.
  • Step S63 On the other hand, if the hot water temperature TH is higher than the predetermined temperature THmin, the effect of supplying the exhaust heat can be obtained as desired.
  • the valve V1 is controlled (step S65).
  • FIGS. 58 and 59 show another embodiment different from FIGS.
  • the chilled water outlet temperature TL0ut is detected by the detecting means 24 and sent to the control device 30 via the signal transmission line SL1.
  • the cooling water inlet temperature TM in is detected by the cooling water inlet temperature detecting means 36, and the detection result is output to the control device 30 via the signal transmission line SL6.
  • the control device 30 controls the opening and closing of the three-way valve VI based on the chilled water outlet temperature TLout and the chilled water inlet temperature TMIn to control the amount of waste heat input to the refrigerator 1.
  • step S71 the chilled water outlet temperature TL0ut and the chilled water inlet temperature TMIn are detected.
  • the cooling water outlet temperature maximum set value TL outmax is calculated as a function of the cooling water inlet temperature TM in (step S72).
  • the calculated cold water The maximum outlet temperature setting is indicated by the expression TL outmax (TM in).
  • the detected chilled water outlet temperature TL 0 ut is compared with the chilled water outlet temperature maximum set value TL 0 utma X (TM in). If the chilled water outlet temperature TL 0 ut is higher than the chilled water outlet temperature maximum set value TL 0 utma X (TM in) ("> TL outma X (TM in)" in step S73), waste heat is input.
  • Step S74 Even if it is useless, the three-way valve V1 is controlled to reduce the exhaust heat so that the inconvenience of the overload does not appear (Step S74).
  • TL out is lower than the chilled water outlet temperature maximum set value TL out max (TM in) (in the case of “ku TL outma X (TM in)” in step S73)
  • TL out max TL out max
  • the line 22 branched from the exhaust heat line 21 is provided with a hot water temperature detecting means 104 for detecting the temperature TH of the hot water flowing through the line 22.
  • the result of detection by the detecting means 104 is sent to the control device 106 via the signal transmission line SL12.
  • An exhaust heat recovery heat exchanger 132 provided to input the heat possessed by the hot water to the absorption chiller / heater 1 is interposed in a solution line L101 in the chiller / heater 1.
  • a solution temperature detecting means 105 for detecting the temperature TS of the solution in the solution line L101 is interposed in the line L101, and the detection result by the detecting means 105 is a signal transmission line. It is sent to the controller 106 via SL14. Then, the control signal from the control device 106 is sent to the control device 26 of the three-way valve VI.
  • the hot water temperature TH and the solution temperature TS are detected by the detecting means 104 and 105, respectively (step S81).
  • the hot water temperature TH is low, the efficiency of the exhaust heat input decreases, and in some cases (when the hot water temperature TH is lower than the solution temperature TS in the chiller / heater 1), the chiller / heater 1 Refrigeration capacity is not maintained.
  • the detected hot water temperature TH is compared with the solution temperature TS.
  • step S83 If the hot water temperature TH is lower than the solution temperature TS, the above-described inconvenience occurs, so that the exhaust heat is blocked from being supplied to the absorption chiller / heater 1. Fully open the three-way valve V1 to the bypass side (step S83). On the other hand, when the hot water temperature TH is higher than the solution temperature TS, the effect of adding the waste heat can be obtained as desired, so the waste heat is introduced into the chiller / heater 1 (including the case where 100% is introduced). To the side, control the three-way valve VI (step S84).
  • the remaining solution may condense.
  • crystallization since crystallization is avoided, various inconveniences associated with crystallization are completely prevented.
  • the temperature detecting means if the temperature of the fluid containing exhaust heat is detected by the temperature detecting means, efficient use of exhaust heat is guaranteed.
  • the present invention by judging whether the operation mode is the exhaust heat input operation mode or the normal operation mode, and controlling the combustion of the high quality fuel combustion parner, the temperature rise of the high temperature regenerator and the accompanying corrosion are prevented, It is possible to prevent the capacity of the absorption chiller / heater from drastically decreasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

明 細 書
吸収冷温水機及びその制御方法
技術分野 本発明は、 高質燃料系と排熱利用系とを備え、 排熱利用系の配管に外部から排 熱が投入される熱交換器を介装した吸収冷温水機或いは吸収冷凍機 (本明細書で は吸収冷凍機を含めて吸収冷温水機と称する) 及びその制御方法に関する。
背景技術 高質燃料系と排熱利用系とを備え、 排熱利用系の配管に外部から排熱が投入さ れる熱交換器を介装した吸収冷温水機或いは吸収冷凍機としては、 例えば、 本出 願人が先に出願した特願平 6— 7 3 4 2 8号で示すものが存在する。
ここで吸収冷温水機においては、 運転中に発生する各種信号 (所定値よりも低 い冷水温度の検出信号等) に応答して、 溶液ポンプが停止する場合がある。
しかし、 排熱利用系の配管に外部から排熱が投入される熱交換器が介装されて いると、 溶液ポンプが停止しても該熱交換器を介して外部から排熱が投入される 場合が存在する。 この様な場合、 溶液は循環していないので、 熱交換器内部の溶 液が濃縮されてしまい、 熱交換器内で晶析する恐れがある。 そして、 晶析が生じ た場合には、 当該熱交換器を介装した系が使用不能になってしまう。 そのため、 晶析の発生を回避することが望まれているが、 従来技術においては有効な防止策 は提案されていない。
次に図 2 3 (本発明の実施例を示す図面) を参照して、 その他の公知技術につ いて更に説明する。 吸収冷温水機 1には、 蒸発器 2、 吸収器 3、 凝縮器 4、 高温再生器 1 0及び排 熱熱交換器 2 0が設けられ、 冷温水ライン 5を介して図示しない冷凍負荷に冷温 水を供給している。 そして、 吸収器 3、 凝縮器 4に冷却水を供給するための冷却 水ライン 6が設けられている。
また、 排熱ライン 2 1から排熱を熱交換器 2 0に供給する排熱投入ライン 2 2 が設けられ、 その排熱投入ライン 2 2と排熱ライン 2 1との合流箇所には、 流量 調整可能な三方弁 V 1が設けられている。
この様な吸収冷温水機 1における冷温水ライン 5の規格としては、 例えば、 冷 温水入口温度 T L i n が 1 2 °Cで、 冷温水出口温度 T L o u tが 7 °Cとなっている。 そ して、 高温再生器 1 0及びこれに設置されている高質燃料燃焼用パーナ 1 1は排 熱を投入しない状態で、 この温度条件を基準として設計されている。
ここで、 上述した規格或いは基準で運転した場合に比較して、 高温再生器 1 0 の温度が上昇する場合が存在する。 例えば、 冷温水ライン 5に接続されている冷 凍負荷により過度の負荷が作用した場合等では、 冷温水入口温度 T L i n が 1 2 °C よりも高温 (例えば 1 3 °C) になってしまう。 この様な過負荷状態時に冷温水出 口温度 T Lou tを 7 °Cにするためには、 基準運転時よりも高負荷運転或いは過負荷 運転を行う必要があり、 高温再生器 1 0の温度は基準運転時 (における規定値) よりも上昇する。
また、 冷却水ライン 6に介装された図示しない冷却塔から冷温水機 1へ戻る冷 却水温度 T Mi n が設定値以上に上昇した場合にも、 高温再生器 1 0の温度は規定 値よりも上昇する。
そして、 この様な高温再生器 1 0の温度上昇は、 外部からの排熱が投入される 排熱投入運転モードにおいて著しい。
しかし、 高温再生器 1 0の温度が規定値よりも上昇すると、 高温再生器 1 0の 腐食を促進する、 という問題が存在する。
これに対して、 リ ミ ッタを設け、 高温再生器 1 0の温度が規定値よりも上昇し た場合には、 該リ ミ ッタの作用により高温再生器 1 0の運転を停止する技術も提 案されている。 しかし、 その様な技術を採用した場合には、 高温再生器 1 0の運 転停止に伴い冷温水機 1の能力が激減するため、 冷温水機 1の円滑な運転が阻害
― — される、 という問題が発生する。
更に、 図 2 7 (本発明の 1実施例を示す図) を参照して、 他の従来技術につい て説明する。
図 2 3で示す吸収冷温水機 1と同様に、 冷温水ライン 5の冷温水入口温度 T L i nは 1 2でで、 冷温水出口温度 T L 0 u tが 7 °Cとなっている。 そして、 高温 再生器 1 0及びこれに設置されている高質燃料燃焼用バーナー 1 1も、 これを基 準として設計されている。
ここで、 上述した規格或いは基準で運転した場合に比較して、 高温再生器 1 0 の温度が上昇する場合が存在する。 例えば、 冷温水ライン 5に接続されている冷 凍負荷により過度の負荷が作用した場合等では、 冷温水入口温度 T L i nが 1 2 でよりも高温 (例えば 1 3 °C) になってしまうので、 冷温水出口温度 T L 0 u t を 7 °Cにするためには基準運転時よりも高負荷運転を行うので、 高温再生器 1 0 の温度は基準運転時 (における規定値) よりも上昇する。 また、 冷却水ライン 6 に介装された図示しない冷却塔から冷温水機 1へ戻る冷却水温度が設定値以上に 上昇した場合にも、 高温再生器 1 0の温度は規定値よりも上昇する。
そして、 この様な高温再生器 1 0の温度上昇は、 外部からの排熱が投入される 排熱投入運転モードにおいて著しい。
しかし、 凝縮器 4から蒸発器 2に送られる液相の冷媒は供給される熱量に対応 した量となり、 排熱投入モー ド時においては、 蒸発器 2の伝熱面積が冷媒の量に 対して不足する場合が存在する。 そして、 その様な場合には、 気化する以前に吸 収器 3側に移動してしまう液相の冷媒 (無効冷媒) が発生する、 という問題が生 じる。 この無効冷媒は、 蒸発器 2において冷温水から気化熱を奪わずに吸収器 3 に送られるため、 冷房には何等役立たず、 単に吸収器 3における冷媒溶液を薄め る作用しか奏しない。 すなわち、 無効冷媒の存在は、 吸収冷温水機の運転が効率 良く行われていないことを示している。
また、 高温再生器 1 0の温度が規定値よりも上昇すると、 高温再生器 1 0の腐 食を促進する、 という問題が存在する。 この腐食の問題に対して、 リ ミ ッタを設 け、 高温再生器 1 0の温度が規定値よりも上昇した場合には該リ ミ ッタの作用に より高温再生器 1 0の運転を停止する技術も提案されている。 しかし、 高温再生 器 1 0の運転停止に伴い、 冷温水機 1の能力が激減するため、 冷温水機 1の円滑 な運転が阻害される、 という別の問題が発生してしまう。
図 6 2は、 従来の吸収冷温水機を示す更に別の図面である。 ここで、 上述した 規格或いは基準で運転した場合に比較して、 高温再生器 1 0の温度が上昇する場 合が存在する。 例えば、 冷温水ライン 5に接続されている冷凍負荷により過度の 負荷が作用した場合等では、 冷水入口温度 T L i nが 1 2 °Cよりも高温 (例えば 1 3 °C) になってしまうので、 冷水出口温度 T L 0 u tを 7 °Cにするためには基 準運転時よりも高負荷運転を行うので、 高温再生器 1 0の温度は基準運転時 (に おける規定値) よりも上昇する。 また、 冷却水ライン 6に介装された図示しない 冷却塔から冷温水機 1へ戻る冷却水温度が設定値以上に上昇した場合にも、 高温 再生器 1 0の温度は規定値よりも上昇する。 そして、 この様な高温再生器 1 0の 温度上昇は、 外部からの排熱が投入される排熱投入運転モードにおいて著しい。 また、 冷温水機 1が過負荷状態にある場合には、 該温排水が保有する排熱を冷 温水機 1に投入しても、 各要素 (例えば蒸発器 2 ) の伝熱面積が不足するので、 投入された排熱は冷却水系 6に介装された図示しない冷却塔に対して無駄に放出 されてしまう。 この様な事態は、 排熱の有効利用或いは省エネルギの要請に反す また、 排熱ライン 2 1及び排熱投入ライン 2 2を介して供給される温排水の温 度は一定していない。 ここで、 温排水の温度が低下すると、 排熱の投入効果が減 少してしまう。 そして、 温排水の温度が冷温水機内の溶液温度よりも低温である 場合には、 該溶液から温排水に向かって熱が逆流してしまうので、 吸収冷温水機 の冷凍能力が保証されなくなってしまう、 と言う大問題が発生する。 さらに、 冷 温水機へ投入した高質燃料による加熱量を無駄に廃棄してしまう可能性も存在す る
発明の開示
本発明は、 高質燃料系と排熱利用系とを備え、 排熱利用系の配管に外部から排 熱が投入される熱交換器を介装した吸収冷温水機における排熱投入時における各 種問題点に鑑みて提案されたものである。
具体的には、 本発明は、 その様な吸収冷温水機の排熱利用系の配管に介装され て且つ外部から排熱が投入される熱交換器内で晶析が生じるのを有効に防止する ことが出来る吸収冷温水機及びその制御方法の提供を目的としている。
また本発明は、 高温再生器の温度上昇及びそれに伴う腐食を防止すると共に、 その能力が激減してしまうことが無い様な吸収冷温水機の提供を目的としている。 さらに本発明は、 無効冷媒を生じること無く、 高温再生器の温度上昇及びそれ に伴う腐食を防止すると共に、 その能力が激減させることが無い様な冷温水機の 提供を目的としている。
これに加えて本発明は、 外部からの排熱が投入される排熱投入運転モードにお いても省エネルギの要請に応えることが出来て、 し力、も、 温排水の温度が低い場 合にも冷凍能力が保証される様な吸収冷温水機の提供を目的としている。
本発明の吸収冷温水機の制御方法は、 高質燃料系と排熱利用系とを備え、 排熱 利用系の配管に外部から排熱が投入される熱交換器を介装した吸収冷温水機の制 御方法において、 溶液ポンプ或いは燃焼パーナの運転停止信号が発生したことを 検知する工程と、 該検知後、 溶液ポンプ或いは燃焼パーナの運転停止から所定時 間が経過したか否かを判断する工程と、 前記所定時間の経過後に排熱を含有する 流体をして前記熱交換器をバイパスせしめる工程、 とを含んでいる。
ここで、 本発明の吸収冷温水機の制御方法において、 排熱を含有する流体の温 度を検出する工程と、 該温度に対応した流量の流体が前記熱交換器側へ供給され る様に前記流体のバイパス量を決定する工程 (或いは、 該温度に応答して排熱を 含有する流体が前記熱交換器へ供給されるかバイパスされるかを決定する工程) とを含んでいるのが好ましい。
また、 本発明の吸収冷温水機は、 高質燃料系と排熱利用系とを備え、 排熱利用 系の配管に外部から排熱が投入される熱交換器を介装した吸収冷温水機において、 排熱を含有する流体の配管系には分岐手段が介装されており、 溶液ポンプ或いは 燃焼パーナの運転停止信号が発生したことを検知する運転停止検知手段と、 溶液 ポンプ或いは燃焼パーナの運転停止から所定時間が経過したか否かを判断する計 時手段と、 運転停止検知手段及び計時手段からの出力信号が伝達されると排熱を 含有する流体が前記熱交換器をバイパスする様に前記分岐手段に対して制御信号 を出力する制御手段、 とを含んでいる。
ここで、 本発明の吸収冷温水機において、 排熱を含有する流体の温度を検出し 且つ検出結果を前記制御手段へ出力する温度検出手段を有し、 前記制御手段は、 検出された流体の温度に応答して前記熱交換器側へ供給される前記流体の流量を 調節する様に前記分岐手段に制御出力を伝達する様に構成するのが好ましい。 本発明の実施に際して、 溶液ポンプの運転停止信号としては、 発停信号、 冷房 時に冷水温度が所定温度よりも低いことを検知する信号、 暖房時に温水温度が所 定温度よりも高いことを検知する信号等がある。
そして、 燃焼パーナの停止信号としては、 O N— O F F信号、 冷房時に冷水温 度が所定温度よりも低いことを検知する信号、 暖房時に温水温度が所定温度より も高いことを検知する信号等がある。
また、 本発明において、 運転異常により停止信号が発生した場合には、 前記制 御手段により流体を前記熱交換器をバイパスせしめ、 吸収冷温水機の運転を停止 する様に構成するのが好ましい。 ここで、 運転異常による停止信号としては、 再 生系異常信号 (再生圧力が基準値よりも高い、 排ガス温度が基準値よりも高い、 再生温度が基準値よりも高い、 再生器液面が基準レベルよりも低い等) 、 燃焼系 異常信号 (ガス圧が異常な場合等) 、 電動機系異常信号 (溶液ポンプに過電流、 冷媒ブロアに過電流、 バーナブロアに過電流等) 、 設備系異常信号 (冷温水ボン プインターロックが 0 F F、 冷却水ポンプィンタ一ロックが 0 F F等) がある。 ここで、 前記 「排熱を含有する流体」 とは、'温排水のみならず、 排ガスゃ排蒸 気等も包含する意味で用いられる文言である。
なお、 本明細書においては 「吸収冷温水機」 なる文言は、 吸収冷凍機をも包含 するものとして用いられている。
上記した様な構成によれば、 運転停止検知手段により溶液ポンプの運転停止信 号か或いは燃焼パーナの運転停止信号が発生したことを検知したならば、 計時手 段により溶液ポンプ或いは燃焼パーナの運転停止から所定時間が経過したか否か を判断し、 該所定時間が経過したならば制御手段から前記分岐手段に対して制御 信号を出力して、 排熱を含有する流体が前記熱交換器をバイパスする様に構成し ている。 排熱を含有する流体がバイパスすれば、 前記熱交換器には外部から熱が 投入されることが無くなるので、 溶液ポンプ或いは燃焼パーナが停止して熱交換 器内部に吸収溶液が残留しても、 該残留した溶液が濃縮したり、 或いは晶析する ことが回避されるのである。
また、 上記構成において、 温度検出手段によって排熱を含有する流体の温度を 検出し、 該温度が所定値よりも高ければ該流体を前記熱交換器側へ供給し、 前記 温度が所定値よりも低ければ該流体をして前記熱交換器をバイパスせしめる様に 構成すれば、 温度の低い流体を熱交換器に供給することが無くなり、 吸収冷温水 機の排熱利用系内を循環する吸収溶液が熱交換器を通過する際に熱が奪われてし まうという事態が防止される。 すなわち、 効率的な排熱利用が保証される。
さらに、 発明者等は種々研究の結果、 排熱投入運転モードにおいては、 高質燃 料燃焼用パーナを 1 0 0 %運転する必要は無く、 排熱に負荷の一部を担当させて、 高質燃料燃焼用パーナに残りの部分を担当させれば良いことに着目した。
この知見に基づいて、 本発明の吸収冷温水機は、 排熱投入熱交換器を有し、 排 熱投入運転モードと通常運転モードを所定の信号により判断し、 且つ、 それぞれ のモードについて高温再生器に設置された高質燃料燃焼用パーナの高質燃料調整 用絞り弁及び燃焼空気調整用絞り弁の開度上昇 (最大開度上昇限界値) を自動的 に調節する機能を持った制御装置を有している。
ここで、 排熱供給ラインに介装された三方弁の開閉状態を検出する三方弁開閉 状態検出手段を備えており、 前記制御装置は、 高質燃料調整用絞り弁に設けられ た開度上限リ ミ ッ夕及び燃焼空気調整用絞り弁に設けられた開度上限リ ミ ッ夕に 対して制御信号を出力し、 且つ、 前記三方弁開閉状態検出手段からの検出信号を 入力する様に構成するのが好ましい。
或いは、 これに加えて、 冷温水ラインの出口温度を検出する冷温水ライン出口 温度検出手段と、 高温再生器の温度を検出する高温再生器温度検出手段と、 高温 再生器の圧力を検出する高温再生器圧力検出手段と、 冷却水ラインの入口温度を 検出する冷却水ライン入口温度検出手段、 とを備えており、 前記制御装置に対し て前記各検出手段からの検出信号を入力する様に構成するのが好ましい。
上記の構成によれば、 前記三方弁開閉状態検出手段により、 排熱供給ラインに 介装された三方弁が排熱を投入する側 (排熱熱交換器側) に開いているか、 或い は、 排熱を投入しない側 (排熱熱交換機をバイパスする側) に開いているかを検 出する。 この検出結果により、 検出した時点における運転モー ドは排熱投入運転 モード (三方弁が排熱を投入する側、 すなわち排熱熱交換機側、 に開いている場 合) 力、、 或いは、 通常運転モード (三方弁が排熱を投入しない側、 すなわち、 排 熱熱交換器をバイパスする側、 に開いている場合) であるかを判断する。
. そして前記制御装置は、 排熱投入運転モードと判断した場合には、 高温再生器 に設置された高質燃料燃焼用パーナの高質燃料調整用絞り弁用の開度上限リ ミ ッ 夕及び燃焼空気調整用絞り弁用の開度上限リ ミ ッタを設定して、 各調整弁が所定 以上の開度とはならない様に制御する。 すなわち、 排熱が投入される場合には、 高質燃料燃焼用パーナは 1 0 0 %運転することは無くなり、 排熱に負荷の一部を 担当させた残りの負荷に対応するレベルの運転に抑えられる。 その結果、 高温再 生器の温度上昇による腐食の促進が防止されるのである。
また上記構成において、 冷温水ラインの出口温度を検出する冷温水ライン出口 温度検出手段、 高温再生器の温度を検出する高温再生器温度検出手段、 高温再生 器の圧力を検出する高温再生器圧力検出手段、 冷却水ラインの入口温度を検出す る冷却水ライン入口温度検出手段、 からの検出信号を前記制御装置へ送出する様 に構成すれば、 前記制御装置では、 前記三方弁開閉状態検出手段の検出信号のみ ならず、 上述した各検出手段の検出信号に基づいて、 排熱投入運転モード、 通常 運転モー ドのそれぞれについて、 高温再生器に設置された高質燃料燃焼用パーナ の高質燃料調整用絞り弁及び燃焼空気調整用絞り弁のそれぞれの開度上限リ ミ ッ 夕の運転制御を行う。
上記構成によれば、 運転状況に応じて高質燃料燃焼用パーナの高質燃料調整用 絞り弁用のリ ミ ッタ及び燃焼空気調整用絞り弁用のリ ミ ッタの運転を自動制御出 来るので、 例えば過冷凍負荷がかかった場合や、 冷却水温度が設定値以上に上昇 した場合等においては、 高質燃料調整用絞り弁用の開度上限リ ミ ッタ及び燃焼空 気調整用絞り弁用の開度上限リ ミ ッタを自動的に調整し、 高質燃料或いは燃焼空 気の供給量を制限することによって、 高温再生器の温度を規定値以下に抑え、 腐 食を抑制するのである。 また、 冷温水ラインの出口温度や高温再生器温度又は圧力、 冷却水ライン入口 温度を検出するように構成することにより、 高質燃料調整用絞り弁用の開度上限 リ ミ ッ夕及び燃焼空気調整用絞り弁用の開度上限リ ミ ッ夕の設定値の、 それぞれ をパラメ一夕として調整することも可能である。
これに加えて本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水 出口温度と、 高温再生器の温度を監視し、 冷温水出口温度及び高温再生器の温度 に基づいて高質燃料燃焼用パーナ一^ ^の高質燃料供給量を調節する燃料供給量制 御機構を有している。
また本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温度 と、 高温再生器の圧力を監視し、 冷温水出口温度及び高温再生器の圧力に基づい て高質燃料燃焼用バーナーへの高質燃料供給量を調節する燃料供給量制御機構を 有している。
さらに本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温 度と、 冷却水入口温度を監視し、 冷温水出口温度及び冷却水入口温度に基づいて 高質燃料燃焼用パーナ一^ ^の高質燃料供給量を調節する燃料供給量制御機構を有 している。
そして本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温 度と共に冷温水入口温度を監視し、 冷温水出口温度と冷温水入口温度の温度差に 基づいて高質燃料燃焼用バーナーへの高質燃料供給量を調節する燃料供給量制御 機構を有している。
本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温度と、 冷却水入口温度と、 高温再生器の温度とを監視し、 冷温水出口温度、 冷却水入口 温度及び高温再生器の温度に基づいて高質燃料燃焼用パーナ ^の高質燃料供給 量を調節する燃料供給量制御機構を有している。
また本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温度 と、 冷却水入口温度と、 高温再生器の圧力とを監視し、 冷温水出口温度、 冷却水 入口温度及び高温再生器の圧力に基づいて高質燃料燃焼用パーナ一^ ^の高質燃料 供給量を調節する燃料供給量制御機構を有している。
さらに本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温 度と共に、 高温再生器の温度と、 冷温水入口温度とを監視し、 冷温水出口温度と 冷温水入口温度の温度差及び高温再生器の温度に基づいて高質燃料燃焼用パーナ 一への高質燃料供給量を調節する燃料供給量制御機構を有している。
そして本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水出口温 度と共に、 高温再生器の圧力と、 冷温水入口温度とを監視し、 冷温水出口温度と 冷温水入口温度の温度差及び高温再生器の圧力に基づいて高質燃料燃焼用パーナ 一への高質燃料供給量を調節する燃料供給量制御機構を有している。
また本発明の吸収冷温水機は、 排熱投入用の熱交換器を有し、 冷温水.出口温度 と、 冷温水入口温度と、 冷却水入口温度とを監視し、 冷温水出口温度と冷温水入 口温度の温度差及び冷却水入口温度に基づいて高質燃料燃焼用パーナ一^ ^の高質 燃料供給量を調節する燃料供給量制御機構を有している。
本発明の実施に際して、 前記高質燃料供給量を調節する燃料供給量制御機構と しては、 開度調節可能な絞り弁と、 その開度を制御する制御装置とを組み合わせ て用いるのが好ましい。
さらに、 高質燃料供給量を調節するに際して、 その時点における運転モードが 排熱投入モードであるか通常運転モードであるかを判断するため、 温排水供給ラ ィンに設けられた三方弁の開閉状態を監視する三方弁監視手段を設けるのが好ま しい。
上記の構成においては、 冷温水出口温度と高温再生器の温度又は圧力か、 冷温 水出口温度と冷温水入口温度との温度差か、 或いは、 冷温水出口温度と高温再生 器の温度又は圧力と前記温度差、 の何れかに基づいて、 高質燃料燃焼用バーナー への高質燃料供給量を制御している。 従って、 排熱投入モードの際には、 その旨 を検知して高質燃料燃焼用バーナーへの高質燃料供給量を制限して、 凝縮器から 蒸発器へ送られる液相冷媒の流量が蒸発面の伝熱面積に比較して多くなり過ぎな い様にして、 無効冷媒が生じることを防止することが出来るのである。
また、 過冷凍負荷がかかった場合、 或いは冷却水温度が設定値以上に上昇した 場合には、 前記燃料供給量制御機構を作動して高質燃料の供給量を自動的に減少 させて、 高温再生器の温度を規定値以下に抑えることにより、 腐食を防止するこ とが出来るのである。 本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分岐配管 を介して選択的に排熱が供給される吸収冷温水機において、 冷水出口温度を検出 する冷水出口温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温 水の流量を調節する三方弁と、 前記冷水出口温度検出手段の検出結果に応答して 前記三方弁を開閉制御する制御装置、 とを有している。
また本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分岐 配管を介して選択的に排熱が供給される吸収冷温水機において、 温水温度を検出 する温水温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の 流量を調節する三方弁と、 前記温水温度検出手段の検出結果に応答して前記三方 弁を開閉制御する制御装置、 とを有している。
或いは本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分 岐配管を介して選択的に排熱が供給される吸収冷温水機において、 温水温度を検 出する温水温度検出手段と、 吸収冷温水機に排熱を投入するために排熱回収熱交 換器が介装されている溶液ラインを流れる溶液温度を検出する溶液温度検出手段 と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁 と、 前記温水温度検出手段及び溶液温度検出手段の検出結果に応答して前記三方 弁を開閉制御する制御装置、 とを有している。
さらに本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分 岐配管を介して選択的に排熱が供給される吸収冷温水機において、 冷水出口温度 を検出する冷水出口温度検出手段と、 温水温度を検出する温水温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水出口温度検出手段及び温水温度検出手段の検出結果に応答して前記三方 弁を開閉制御する制御装置、 とを有している。
ここで、 三方弁の開閉制御は全開及び全閉の 2つの状態のみを制御する様な方 式であっても良く、 或いは、 冷水出口温度検出手段の検出結果または温水温度検 出手段の検出結果に応答して三方弁の開度を最適に制御する三方弁開度制御であ つても良い。 そして、 三方弁開度制御はステップ状に制御しても、 線形に制御し ても良い。
本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分岐配管 を介して選択的に排熱が供給される吸収冷温水機において、 冷水出口温度を検出 する冷水出口温度検出手段と、 冷水入口温度を検出する冷水入口温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水出口温度検出手段の検出結果及び冷水入口温度検出手段の検出結果を比 較し且つその比較した結果に応答して前記三方弁を開閉制御する制御装置、 とを 有している。
また本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分岐 配管を介して選択的に排熱が供給される吸収冷温水機において、 高温再生器温度 或いは高温再生器圧力を検出する高温再生器用検出手段と、 前記温水供給管に介 装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記高温再生器用検 出手段の検出結果に応答して前記三方弁を開閉制御する制御装置、 とを有してい o
さらに本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分 岐配管を介して選択的に排熱が供給される吸収冷温水機において、 冷水出口温度 を検出する冷水出口温度検出手段と、 冷水入口温度を検出する冷水入口温度検出 手段と、 温水温度を検出する温水温度検出手段と、 前記温水供給管に介装されて 分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水出口温度検出手段の 検出結果と冷水入口温度検出手段の検出結果と前記温水温度検出手段の検出結果 とに応答して前記三方弁を開閉制御する制御装置、 とを有している。
そして本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分 岐配管を介して選択的に排熱が供給される吸収冷温水機において、 温水温度を検 出する温水温度検出手段と、 高温再生器温度を検出する高温再生器温度検出手段 と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁 と、 前記温水温度検出手段の検出結果及び前記高温再生器温度検出手段の検出結 果に応答して前記三方弁を開閉制御する制御装置、 とを有している。
或いは本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐する分 岐配管を介して選択的に排熱が供給される吸収冷温水機において、 温水温度を検 出する温水温度検出手段と、 高温再生器圧力を検出する高温再生器圧力検出手段 と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁 と、 前記温水温度検出手段の検出結果及び前記高温再生器圧力検出手段の検出結 果に応答して前記三方弁を開閉制御する制御装置、 とを有している。
これに加えて本発明の吸収冷温水機は、 排熱源に連通する温水供給管から分岐 する分岐配管を介して選択的に排熱が供給される吸収冷温水機において、 冷水出 口温度を検出する冷水出口温度検出手段と、 冷却水入口温度を検出する冷却水入 口温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を 調節する三方弁と、 前記冷水出口温度検出手段の検出結果及び冷却水入口温度検 出手段の検出結果に応答して前記三方弁を開閉制御する制御装置、 とを有してい 上記の様な構成によれば、 冷水出口温度検出手段の検出結果に応答して前記三 方弁を開閉制御する制御装置を有しているので、 冷水出口温度を検出することに より過負荷状態か否かを判断し、 過負荷状態であるならば、 排熱投入ラインの流 量を絞って冷温水機に投入される排熱の供給を絞ることが出来る。 これにより、 投入された排熱は冷却水系に介装された冷却塔に対して無駄に放出されてしまう という事態が防止される。
また上記構成によれば、 温水温度検出手段の検出結果に応答して前記三方弁を 開閉制御する制御装置を有しているので、 温排水の温度が低下した場合 (温排水 の温度が冷温水機内の溶液温度よりも低温である場合を含む) には温排水の投入 量を絞り、 必要であれば冷温水機に対する温排水の供給を遮断する。 これにより、 排熱投入効果の減少に対応することが出来る。 そして、 該溶液から温排水に向か つて熱が逆流して吸収冷温水機の冷凍能力が保証されなくなってしまう事態を完 全に防止することが出来る。 また、 冷温水機へ投入した高質燃料による加熱量を 無駄に廃棄してしまうことも防止される。
さらに、 上記構成において冷水出口温度検出手段及び温水温度検出手段の検出 結果に応答して前記三方弁を開閉制御する様に構成すれば、 過負荷状態に対して 適格に対応することが出来ると共に、 排熱投入効果の減少に対応し且つ冷凍能力 を保証することが出来るのである。
これに加えて、 排熱投入量の制御を行う本発明においては、 例えば三方弁の開 度制御を行うことにより、 精度の高い制御を達成することが可能となる。 上記構成によれば、 冷水出口と冷水入口との温度差、 或いは高温再生器の温度 から、 過負荷状態を検出することが出来る。 さらに、 冷水出口温度と冷水入口温 度との温度差と、 温水の温度とを別個検出することにより、 過負荷状態の判定を より高精度に行うとともに、 排熱投入効果の減少に対応し且つ冷凍能力を保証す ることができる。 また、 温水温度と高温再生器の温度により、 過負荷を判定する とともに、 排熱投入効果の減少に対応し且つ冷凍能力を保証することができる。 さらに、 温水の温度と高温再生器の温度とから排熱投入量を制御することが出来 るし、 冷水出口の温度と冷却水入口の温度とから過負荷を判断することも可能で ある。 ここで、 冷水出口の温度と冷却水入口の温度とから過負荷を判断する場合 には、 冷水出口温度の最大設定値を冷却水入口温度の関数とすることが出来るの で好都合である。 図面の簡単な説明 図 1は本発明の第 1実施例を示すプロック図、 図 2は図 1の実施例の制御フロ —チヤ一トを示す図、 図 3は図 1の実施例の制御フローチヤ一トであって図 2と は異なる制御を示す図、 図 4は本発明の第 2実施例を示すブロック図、 図 5は図 4の実施例の制御フローチヤ一トを示す図、 図 6は本発明で用いられる吸収冷温 水機或いは吸収冷凍機を示すプロック図、 図 7は図 6で示すのとは異なる吸収冷 温水機或いは吸収冷凍機を示すブロック図、 図 8は図 6、 7で示すのとは異なる 吸収冷温水機或いは吸収冷凍機を示すプロック図、 図 9は図 6— 8で示すのとは 異なる吸収冷温水機或いは吸収冷凍機のプロック図、 図 1 0は図 6— 9で示すの とは異なる吸収冷温水機或いは吸収冷凍機のプロック図、 図 1 1は図 6— 1 0で 示すのとは異なる吸収冷温水機或いは吸収冷凍機のプロック図、 図 1 2は図 6— 1 1で示すのとは異なる吸収冷温水機或いは吸収冷凍機のブロック図、 図 1 3は 図 6— 1 2で示すのとは異なる吸収冷温水機或いは吸収冷凍機のプロック図、 図 1 4は図 6— 1 3で示すのとは異なる吸収冷温水機或いは吸収冷凍機のプロック 図、 図 1 5は図 6— 1 4で示すのとは異なる吸収冷温水機或いは吸収冷凍機のプ ロック図、 図 1 6は図 6— 1 5で示すのとは異なる吸収冷温水機或いは吸収冷凍 機のプロック図、 図 1 7は図 6— 1 6で示すのとは異なる吸収冷温水機或いは吸 収冷凍機のプロック図、 図 1 8は本発明の他の実施例を示すプロック図、 図 1 9 は図 1 8の実施例の制御フローチヤ一トを示す図、 図 2 0は図 1 8の実施例の制 御フローチャー トであって図 1 9とは異なる制御を示す図、 図 2 1は図 1 8— 2 0とは別の実施例を示すプロック図、 図 2 2は図 2 1の実施例の制御フローチヤ 一トを示す図、 図 2 3は本発明の別の実施例を示すプロック図、 図 2 4は図 2 3 の制御フローチャー トを示す図、 図 2 5は図 2 3、 2 4とは別の実施例を示すブ ロック図、 図 2 6は図 2 5の制御フローチヤ一トを示す図、 図 2 7は本発明のそ の他の実施例を示すブロック図、 図 2 8は図 2 7の制御フローチヤ一トを示す図、 図 2 9は図 2 7、 2 8とは異なる実施例を示すプロック図、 図 3 0は図 2 7— 2 9とは異なる実施例を示すプロック図、 図 3 1は図 3 0の制御フローチヤ一トを 示す図、 図 3 2は図 2 7 - 3 1とは異なる実施例を示すブロック図、 図 3 3は図 3 2の制御フローチヤ一トを示す図、 図 3 4は図 2 7— 3 3とは異なる実施例を 示すプロック図、 図 3 5は図 3 4の制御フローチヤ一トを示す図、 図 3 6は図 2 7 - 3 5とは異なる実施例を示すプロック図、 図 3 7は図 2 7 - 3 6とは異なる 実施例を示すプロック図、 図 3 8は図 3 7の制御フローチヤ一トを示す図、 図 3 9は図 2 7 - 3 8とは異なる実施例を示すプロック図、 図 4 0は図 2 7— 3 9と は異なる実施例を示すブロック図、 図 4 1は図 4 0の制御フローチヤ一トを示す 図、 図 4 2は図 2 7— 4 1とは異なる実施例を示すプロック図、 図 4 3は図 4 2 の制御フローチヤ一ト図、 図 4 4は本発明のその他の実施例を示すプロック図、 図 4 5は図 4 4の制御フローチヤ一トを示す図、 図 4 6は図 4 4、 4 5とは別の 実施例を示すプロック図、 図 4 7は図 4 6の制御フローチヤ一トを示す図、 図 4 8は図 4 4一 4 7とは別の実施例を示すプロック図、 図 4 9は図 4 8の制御フロ 一チャー ト図、 図 5 0は図 4 4— 4 9とは別の実施例を示すプロック図、 図 5 1 は図 5 0の制御フローチヤ一トを示す図、 図 5 2は図 4 4— 5 1とは別の実施例 を示すプロック図、 図 5 3は図 5 2の制御フローチヤ一トを示す図、 図 5 4は図 4 4一 5 3とは別の実施例を示すプロック図、 図 5 5は図 5 4の制御フローチヤ 一トを示す図、 図 5 6は図 4 4一 5 5とは別の実施例を示すプロック図、 図 5 7 は図 5 6の制御フローチヤ一トを示す図、 図 5 8は図 4 4 - 5 7とは別の実施例 を示すブロック図、 図 59は図 58の制御フローチヤ一卜の示す図、 図 60は図 44 - 59とは別の実施例を示すプロック図、 図 61は図 60の制御フローチヤ 一トを示す図、 図 62は従来の吸収冷温水機のプロック図である。
発明を実施するための最良の形態 以下、 添付図面を参照しつつ、 本発明の実施例について説明する。
先ず図 1一 17で示す実施例について説明する。
図 1は本発明の第 1実施例を示している。 全体を符号 20 (20 A〜2 OK) で示すのは吸収冷温水機である。 なお、 吸収冷温水機 20 (20 A〜20K) に ついては後述する。
吸収冷温水機 20 (20 A〜20K) に対して排熱ライ ン 2から排熱を供給す るために、 排熱投入用ライン L 2が設けられており、 該ライン L 2には流体が保 有する熱量を吸収冷温水機の排熱利用系を流れる吸収溶液に供給するための熱交 換器 32 (32 A〜32K) が介装されている。
図 1の実施例において、 排熱ライン 2と排熱投入用ライン L 2との合流箇所に は分岐手段として流量調整可能な三方弁 V 1が設けられており、 該三方弁 V 1に は信号伝達ライン S L 1,を介して制御手段 50からの弁開度制御信号が伝達され る。 そして、 制御手段 50には、 吸収冷温水機 20 (20 A〜20 K) 内の溶液 ポンプ P 10の停止信号や、 吸収冷温水機運転スィツチ OFF信号、 運転異常検 出信号等が、 それぞれセンサ 52、 54、 56から信号伝達ライン S L 2、 S L 3、 S L 4を介して入力される。
なお、 図 1において、 符号 21は高質燃料系の燃料ラインを示している。 次に、 図 2、 図 3をも参照して、 図示の実施例の作用について説明する。 吸収冷温水機 20 (20 A〜2 OK) の運転スィツチが ONとなるか或いはリ セッ トスィッチが ONになると (図 2のステップ S 1) 、 図 1の吸収冷温水機の 運転が開始される。 そして、 三方弁 VIは、 排熱ライ ン L 2の温排水が吸収冷温 水機 20 (20 A〜20 K) 側へ供給される様に、 その開度が設定される (ステ ップ S 2 ) o
吸収冷温水機 20 (20 A〜 20 K) の運転の際は、 センサ 52、 54、 56 のいずれかより、 吸収冷温水機 20 (20 A〜2 0 K) の運転中に溶液ポンプ P 1 0が停止したか否かが常時判定される (ステップ S 3) 。 その様な信号が発生 しなければ、 ステップ S 2の状態が続行する (ステップ S 3が NOのループ) 。 一方、 溶液ポンプ停止信号が発生すれば (ステップ S 3が YE S) 、 その様な 信号が所定時間以上継続するか否かが判定される (ステップ S4) 。 ここで 「所 定時間」 なる文言は、 熱交換器 32 (32 A-32 K) 内に残留した溶液が一定 の濃度以上に凝縮しない様な時間を意味しているが、 その様な時間及び 「一定の 濃度」 は吸収冷温水機の設置条件や各種仕様等により異なるものである。 すなわ ち、 前記 「所定時間」 はケース ·バイ ·ケースで定められる 0を含む定数である。 溶液ポンプ停止信号が所定時間経過前に解除されるのであれば、 熱交換器 32 (32 A〜32 K) 内に残留した溶液が凝縮せず、 吸収冷温水機の運転はそのま ま続行される (ステップ S 4が NOのループ) 。 一方、 溶液ポンプ停止信号が所 定時間経過しても解除されないのであれば (ステップ S 4が Y E Sのループ) 、 熱交換器 32 (32 A〜32 K) 内に残留した溶液が凝縮する可能性がある。 従 つて、 排熱の投入を中断するべく、 必要な処置が為される。 具体的には、 三方弁 V 1がバイパス側に切り換えられ (ステップ S 5) 、 排熱ライン 2内を流れる流 体 (例えば温排水) が熱交換器 32 (32 A〜32 K) へ供給されることが防止 される。
そして、 溶液ポンプ P 1 0の運転が再開されたか否かが判定され (ステップ S 6) 、 溶液ポンプ停止信号が発生したままであれば (ステップ S 6が NO) 、 排 熱ライン 2内を流れる温排水が熱交換器 32 (32 A〜32 K) へ供給されない 状態 (ステップ S 5の状態) が続行する。 これに対して、 溶液ポンプ停止信号が 消失して、 溶液ポンプの運転が再開すると (ステップ S 6が Y E S) 、 三方弁 V 1ほ再び排熱ライン L 2の温排水を吸収冷温水機 20 (20 A〜20 K) 側へ供 給するべく切り換えられる (ステップ S 2) 。
図 2で示す通常運転中の制御ルーチンに加えて、 運転が停止される場合図 3で 示す様な制御が行われる。 センサ 52、 54、 56のいずれかより、 吸収冷温水 機 20 (20 A~20 K) の運転スィッチが◦ F F状態になったこと (運転停止 信号発信) 、 或いは運転中に異常事態が発生したこと (運転異常信号発信) を検 出した場合には (図 3のステップ S 11或いは S 12) 、 三方弁 V 1がバイパス 側に切り換えられる (ステップ S 13) 。 これにより、 排熱ライン 2内を流れる 流体 (例えば温排水) が熱交換器 32 (32 A〜32K) へ投入されなくなり、 該熱交換器内部における溶液の凝縮或いは晶析の問題は発生しない。
その後、 冷温水機 20 (20 A〜20 K) の運転停止の処理が為され (ステツ プ S 14) 、 運転が停止する (ステップ S 15) 。
図 4、 図 5は本発明の第 2実施例を示している。 図 4において、 排熱ライン L 2には、 温排水温度 TH を検出する温度検出手段 (温度センサ) 60が設けられ、 その出力は信号伝達ライン S L 5を介して制御手段 50に入力される。 その他の 構成については、 図 1と同様である。
第 2実施例の作動について、 図 5を参照して説明すると、 吸収冷温水機 20 (20 A〜2 OK) の運転スィツチが ONとなるか或いはリセッ トスィツチが 0 Nになった (ステップ S 1) 後、 温度センサ 60により温排水温度 TH が検出さ れ (ステップ S 22) 、 その温度が所定値 (装置の仕様、 設置条件によりケース •バイ ·ケースで定まる) よりも高いか低いかが判定される (ステップ S 23) c そして、 温排水温度 TH が設定値よりも高い場合は利用可能な排熱として吸収冷 温水機側へ (温排水温度 TH に対応する流量が) 供給され (ステップ S 24) 、 設定値よりも低い場合は吸収冷温水機をバイパスする (ステップ S 25) 。 なお ステップ S 3以下の制御ルーチンは、 図 2で説明したものと同様であるため、 説 明は省略する。
図 6— 17は、 それぞれ吸収冷温水機 (吸収冷凍機) 20、 20A〜2 OKを 示している。
吸収冷凍機 20、 20A〜20Kは、 蒸発器 9、 吸収器 10、 高温再生器 11、 低温再生器 12、 凝縮器 13、 高温溶液熱交換器 14、 低温溶液熱交換器 15、 冷媒ポンプ P 9、 溶液ポンプ P 10、 これ等の部材を接続する各種ライン、 とを 含み、 冷水ライン 6を介して図示しない冷房負荷に冷水を供給している。 そして、 吸収器 10、 凝縮器 13に冷却水を供給するための冷却水ライン CLが設けられ、 図示しない冷却塔で冷却された冷却水を循環している。 また、 符号 21は高温再 生器 11の高質燃料による加熱手段に高質燃料を供給するための燃料ラインを示 している。
ここで、 高温溶液熱交換器 14と、 低温溶液熱交換器 15との間の管路 L 1は、 高温溶液熱交換器、 低温溶液熱交換器を含む吸収剤の希溶液ライン (以下、 「希 溶液ライン」 と記載する) を構成している。 そして、 この希溶液ライン L 1には、 分岐路 L 2の流れる温排水と、 希溶液ラインを流れる吸収剤希溶液とで熱交換を 行うための温熱源用熱交換器 32、 32 A〜32 Kが介装されている。 換言すれ ば、 温熱源用熱交換器 32により、 40°C— 120°Cの温排水または蒸気が有し ている熱量が、 希溶液ライン L 1内の吸収剤希溶液に伝達されるのである。
なお、 図 6— 17において、 符号 70で示すのは高温再生器用の加熱パーナで ある。
次に、 図 18— 22で示す実施例について説明する。
図 18は図 1— 17で示す実施例とは別の実施例を示している。 全体を符号 2 0 (20A〜20K) で示すのは吸収冷温水機である。 なお、 吸収冷温水機 20 (20A〜20K) については後述する。
吸収冷温水機 20 (20 A〜20K) に対して排熱ライン 2から排熱を供給す るために、 排熱投入用ライン L 2が設けられており、 該ライン L 2には流体が保 有する熱量を吸収冷温水機の排熱利用系を流れる吸収溶液に供給するための熱交 換器 32 (32 A〜32K) が介装されている。
図 18の実施例において、 排熱ライン 2と排熱投入用ライン L 2との合流箇所 には分岐手段として流量調整可能な三方弁 V 1が設けられており、 該三方弁 V 1 には信号伝達ライン S L 1を介して制御手段 50からの弁開度制御信号が伝達さ れる。 そして、 制御手段 50には、 吸収冷温水機 20 (20 A〜20 K) 内の燃 焼バーナーの運転停止信号の他に溶液ポンプ (図 18では図示せず) の運転停止 信号、 吸収冷温水機運転スィッチ OFF信号、 運転異常検出信号等が、 それぞれ センサ 52、 54、 56から信号伝達ライン S L 2、 S L 3、 S L 4を介して入 力される。
なお、 図 18において、 符号 21は高質燃料系の燃料ラインを示しており、 符 号 70は燃焼パーナを示している。
次に、 図 19、 図 20をも参照して、 図示の実施例の作用について説明する。 吸収冷温水機 20 (20A〜20K) の運転スィッチが◦ Nとなるか或いはリ セッ トスィツチが ONになると (図 19のステツプ S 1) 、 図 18の吸収冷温水 機の運転が開始される。 そして、 三方弁 VIは、 排熱ライン L 2の温排水が吸収 冷温水機 20 (20 A〜20 K) 側へ供給される様に、 その開度が設定される (ステップ S 2) 。
吸収冷温水機 20 (20 A〜2 OK) の運転の際は、 センサ 52、 54、 56 のいずれかより、 吸収冷温水機 20 (20 A〜20K) の運転中に燃焼パーナが 停止したか否かが常時判定される (ステップ S 3) 。 その様な信号が発生しなけ れば、 ステップ S 2の状態が続行する (ステップ S 3が NOのループ) 。
一方、 燃焼パーナ停止信号が発生すれば (ステップ S 3が YE S) 、 その様な 信号が所定時間以上継続するか否かが判定される (ステップ S 4) 。 ここで 「所 定時間」 なる文言は、 熱交換器 32 (32 A〜32K) 内に残留した溶液が一定 の濃度以上に凝縮しない様な時間を意味しているが、 その様な時間及び 「一定の 濃度」 は吸収冷温水機の設置条件や各種仕様等により異なるものである。 すなわ ち、 前記 「所定時間」 はケース ·バイ ·ケースで定められる 0を含む定数である 燃焼パーナ停止信号が所定時間経過前に解除されるのであれば、 熱交換器 32 (32A〜32K) 内に残留した溶液が凝縮せず、 吸収冷温水機の運転はそのま ま続行される (ステップ S 4が NOのループ) 。 一方、 燃焼パーナ停止信号が所 定時間経過しても解除されないのであれば (ステップ S 4が YE Sのループ) 、 熱交換器 32 (32 A〜32K) 内に残留した溶液が凝縮する可能性がある。 従 つて、 排熱の投入を中断するべく、 必要な処置が為される。 具体的には、 三方弁 V 1がバイパス側に切り換えられ (ステップ S 5) 、 排熱ライン 2内を流れる流 体 (例えば温排水) が熱交換器 32 (32 A〜32K) へ供給されることが防止 される。
そして、 燃焼パーナの運転が再開されたか否かが判定され (ステップ S 6) 、 燃焼バーナ停止信号が発生したままであれば (ステップ S 6が NO) 、 排熱ライ ン 2内を流れる温排水が熱交換器 32 (32 A〜32K) へ供給されない状態 (ステップ S 5の状態) が続行する。 これに対して、 燃焼パーナ停止信号が消失 して、 燃焼パーナの運転が再開すると (ステップ S 6が Y E S) 、 三方弁 V 1は 再び排熱ライン L 2の温排水を吸収冷温水機 20 (20 A〜20 K) 側へ供給す るべく切り換えられる (ステップ S 2) 。
図 1 9で示す通常運転中の制御ルーチンに加えて、 運転が停止される場合図 2 0で示す様な制御が行われる。 センサ 52、 54、 56のいずれかより、 吸収冷 温水機 2 0 (20 A〜2 O K) の運転スィッチが O F F状態になったこと (運転 停止信号発信) 、 或いは運転中に異常事態が発生したこと (運転異常信号発信) を検出した場合には (図 20のステップ S 1 1或いは S 12) 、 三方弁 V 1がバ ィパス側に切り換えられる (ステップ S 1 3) 。 これにより、 排熱ライン 2内を 流れる流体 (例えば温排水) が熱交換器 32 (32 A〜32 K) へ投入されなく なり、 該熱交換器内部における溶液の凝縮或いは晶析の問題は発生しない。
その後、 冷温水機 20 (20 A〜20 K) の運転停止の処理が為され (ステツ プ S 14) 、 運転が停止する (ステップ S 15) 。
図 2 1、 図 22は図 1 8— 20とは別の実施例を示している。 図 2 1において、 排熱ライン L 2には、 温排水温度 TH を検出する温度検出手段 (温度センサ) 6 0が設けられ、 その出力は信号伝達ライン S L 5を介して制御手段 50に入力さ れる。 その他の構成については、 図 1 8と同様である。
図 21、 22の実施例の作動について、 図 22を参照して説明すると、 吸収冷 温水機 20 (20 A〜2 O K) の運転スィツチが ONとなるか或いはリセッ トス ィツチが ONになった (ステップ S 1) 後、 温度センサ 60により温排水温度 T H が検出され (ステップ S 22) 、 その温度が所定値 (装置の仕様、 設置条件に よりケース ·バイ ·ケースで定まる) よりも高いか低いかが判定される (ステツ プ S 23) 。 そして、 温排水温度 TH が設定値よりも高い場合は利用可能な排熱 として吸収冷温水機側へ (温排水温度 TH に対応する流量が) 供給され (ステツ プ S 24) 、 設定値よりも低い場合は吸収冷温水機をバイパスする (ステップ S 25) 。 なおステップ S 3以下の制御ルーチンは、 図 19で説明したものと同様 であるため、 説明は省略する。
次に図 23 - 26の実施例を説明する。 図 2 3において、 高質燃料燃焼用パーナ 1 1には、 高質燃料調整用絞り弁 1 2 と燃焼空気調整用絞り弁 1 3とが設けられており、 絞り弁 1 2、 1 3の上流側に は、 高質燃料調整用絞り弁 1 2用の開度上限リ ミ ッタ 4 2と、 燃焼空気調整用絞 り弁 1 3用の開度上限リ ミ ッタ 4 4 とが、 それぞれ設けられている。 但し、 絞り 弁 1 2、 1 3用の開度上限リ ミ ッタをそれぞれの絞り弁の位置に設けるのみなら ず、 絞り弁上流側の符号 4 2 A、 4 3 Aで示す位置に設けたり、 或いは絞り弁下 流側の符号 4 2 B、 4 3 Bで示す位置や、 符号 9 2で示す位置に設けても良い。 前記絞り弁 1 2、 1 3は、 図 2 3において点線で示す信号伝達ラインを介して 制御装置 3 0に接続され、 該制御装置から制御信号を受ける。 また、 制御装置 3 0には、 信号伝達ラインを介して、 三方弁 V Iの三方弁開閉状態検出手段 (図 2 3では図示せず) からの開閉信号が出力される様になつている。
次に図 2 4をも参照して、 図 2 3で示す実施例の作用について説明する。
先ず、 図示しない三方弁開閉状態検出手段により三方弁 V 1の開度を検出する (ステップ S 1 ) 。 ここで、 図 2 3及び図 2 4で示す実施例においては、 排熱ラ イン 2 1を流れる温排水が排熱投入ライン 2 2或いは冷温水機 1側へ全く投入さ れない状態、 換言すれば三方弁 V 1がバイパス側へ全開の状態のみを 「通常運転 モード」 と判断し、 流量の多寡に関係無く温排水が冷温水機 1側へ供給されたな らば 「排熱投入運転モード」 と判断する。 そのため、 ステップ S 2においては、 三方弁 V 1がバイパス側に全開されているか否かのみが判断される。 そして、 バ ィパス側へ全開されていなければ (ステップ S 2が N O ) 排熱投入運転モードと 判断し (ステップ S 3 ) 、 バイパス側へ全開であれば (ステップ S 2が Y E S ) 通常運転モードと判断する (ステップ S 5 ) 。
排熱投入運転モードと判断された場合は (ステップ S 3 ) 、 高質燃料燃焼用バ ーナは 1 0 0 %運転せず、 投入された排熱に負荷の一部を担当させた残りの負荷 に対応するレベルの運転に抑え、 高温再生器の温度上昇による腐食の促進を防止 するため、 開度上限リ ミ ッタ 4 2、 4 3を設定して絞り弁 1 2、 1 3の開度が所 定値よりも大きくならない様にする (ステップ S 4 ) 。 これに対して、 通常運転 モードと判断つれた場合には (ステップ S 5 ) 、 高質燃料燃焼用パーナを 1 0 0 %運転しても 「高温再生器の温度上昇による腐食の促進」 を考慮する必要が無い ので、 開度上限リ ミ ッタ 42、 43を解除する (ステップ S 6) 。 次に、 図 25、 図 26を参照して、 別の実施例を説明する。
冷温水ライン 5には、 その出口温度 TLoutを検出する冷温水ライン出口温度検 出手段 46が介装されている。 高温再生器 10には、 その温度 TH を検出する高 温再生器温度検出手段 48と、 その圧力 PH を検出する高温再生器圧力検出手段 50、 とが設けられている。 また、 冷却水ライン 6には、 その入口温度 TMin を 検出する冷却水ライン入口温度検出手段 52が介装されている。 これ等の検出手 段 46、 48、 50、 52の検出結果は、 図 25において点線で示す信号伝達ラ インを介して、 制御装置 30に送出される。
次に図 26をも参照して、 この実施例の作用について説明する。
先ず、 前記検出手段 46、 48、 50、 52により、 冷温水ライン 5の出口温 度 TL0、 高温再生器 10の温度 TH 、 高温再生器 10の圧力 PH 、 冷却水ライン 6の入口温度 TMin をそれぞれ検出して、 制御装置 30に送出する (ステップ S 11) o
次に、 三方弁 V 1の開度を検出して、 その検出結果を制御装置 30に対して出 力する (ステップ S 12) 。 制御装置 30は、 三方弁 V 1が排熱熱交換器 20を バイパスする側に全開されているか否かを判定する (ステップ S 13) 。
ステップ S 13が NOの場合、 すなわち三方弁 VIが排熱熱交換器 20側に開 いている場合は、 排熱投入運転モードと判定する (ステップ S 14) 。 一方、 ス テツプ S 13が YE Sの場合、 すなわち排熱熱交換器 20をパイパスする側に全 開されている場合は、 通常運転モードすなわちガス焚運転モードと判定する (ス テツプ S 15 ) 。
排熱投入運転モー ド (ステップ S 14) において、 制御装置 30は、 ステップ S 11で検出された高温再生器 10の温度 TH 、 高温再生器 10の圧力 PH 、 冷 却水ライン 6の入口温度 TMin が、 排熱投入運転モードの設定値よりも高いか否 かを判断する (ステップ S 16) 。 設定値よりも高ければ (ステップ S 16が Y E S) 、 開度上限リ ミ ッタ 42、 43を制御して絞り弁 12、 13を絞る方向に 制御する (ステップ S 19) 。
—方、 高温再生器 10の温度 TH 、 高温再生器 10の圧力 PH 、 冷却水ライン 6の入口温度 TMin が、 排熱投入運転モー ドの設定値よりも低ければ (ステップ S 16が NO) 、 冷温水ライン 5の出口温度 TL が設定値 (この場合は排熱投入 運転モー ドの設定値) よりも高いか否かを判断する (ステップ S 17) 。
冷温水ライン 5の出口温度 TLoutが排熱投入運転モー ドの設定値よりも高けれ ば (ステップ S 17が Y E S) 、 開度上限リ ミ ッタ 42、 43を制御して絞り弁 12、 13を開く方向に制御する (ステップ S 18) 。 排熱投入運転モードの設 定値よりも低ければ (ステップ S 17が NO) 、 ステップ S 19において、 開度 上限リ ミ ッタ 42、 43を制御して絞り弁 12、 13を絞る。
通常運転モ一ド (ステップ S 15) においては、 開度リ ミ ッタは解除され、 す なわちリ ミ ッタの開度が最大となった状態で通常の絞り弁の開閉による制御によ つて運転される。
次に図 27 - 43の実施例を説明する。
図 27において、 高質燃料燃焼用バーナー 11に高質燃料を供給する配管 13 には、 高質燃料供給量を調節する燃料供給量制御機構である絞り弁 12が介装さ れている。 この絞り弁 12は信号伝達ライン SL 1を介して制御装置 30に接続 されており、 この制御装置 30は、 信号伝達ライン S L 2、 S L 3を介して、 冷 温水ライン 5の出口温度 T L o u tを検出する温度センサ 32及び高温再生器 1 0の温度 THGを検出する温度センサ 33に、 それぞれ接続されている。
排熱ライン 21と排熱投入ライン 22との合流箇所に設けられた流量或いは開 度が調整可能な三方弁 V 1は、 信号伝達ライン S L 4により制御装置 30に接続 されている。 そして制御装置 30は、 三方弁 V 1が冷温水機 1を完全にバイパス した状態、 或いは、 三方弁 VIの開度がゼロであれば通常運転モードであると判 断し、 温排水が (流量の多寡には無関係に) 冷温水機 1に供給されていれば排熱 投入運転モードであると判断する。
次に、 図 28を参照して、 図 27の実施例の作用を説明する。
制御装置 30は、 冷温水ライン 5の出口温度 TL 0 u t及び高温再生器 10の 温度 THGを検出する (ステップ S 1) 。 そして、 三方弁 VIの開度を検出し (ステップ S 2) 、 吸収冷温水機 1が通常運転モードであるか排熱投入運転モー ドであるかを判断する (ステップ S 3) 。 ここで、 三方弁 V 1がバイパス側に全 開していれば (ステップ S 3が YE S) 通常運転モ一ドと判断され (ステップ S 5) 、 バイパス側に全開していなければ (ステップ S 3が NO) 排熱投入運転モ 一ドと判断される (ステップ S 4) 。
排熱投入運転モードと判断された場合 (ステップ S 4) 、 高温再生器 1 0の温 度 THGと設定された閾値或いは設定値 (通常運転モ一ドと排熱投入運転モード とでは相違する場合と、 同一である場合とが存在する。 ケース ·バイ ·ケースで ある。 以下同じ。 ) とを比較し (ステップ S 6) 、 高温再生器 1 0の温度 THG が設定値よりも高ければ (ステップ S 6が YE S) 絞り弁 12の開度を絞る方向 に制御する (ステップ S 7) 。 一方、 高温再生器 1 0の温度 THGが設定値より も低ければ (ステップ S 6が NO) 、 冷温水ライン 5の出口温度 TL 0 u t と設 定された閾値或いは設定値とを比較する (ステップ S 8) 。
冷温水ライン 5の出口温度 T L 0 u tが設定値よりも高ければ (ステップ S 8 が YE S) 、 絞り弁 1 2の開度を開く方向に制御する (ステップ S 9) 。 これに 対して、 出口温度 T L o u tが設定値よりも低ければ (ステップ S 8が N 0) 、 絞り弁 1 2の開度を絞る方向に制御する (ステップ S 7) 。
三方弁 V 1がバイパス側に全開しており (ステップ S 3が Y E S) 通常運転モ 一ドと判断された場合 (ステップ S 5) も、 高温再生器温度 THGと設定された 閾値或いは設定値とが比較される (ステップ S 1 0) 。 そして、 上述したステツ プ S 7、 S 8、 S 9の工程を行う。
以下、 ステップ S 1— S 1 0の工程を繰り返すのである。
図 29は図 27、 28とは別の実施例を示す。 図 27、 28の実施例では、 高 温再生器 1 0の温度 THGを監視して制御を行っているが、 図 29で示す実施例 においては、 高温再生器 1 0の圧力 PHを監視して制御を行っている。 すなわち、 高温再生器 1 0の圧力 PHを圧力センサ 34により検出し、 その検出結果は信号 伝達ライン S L 5を介して制御装置 30へ出力している。
図 30は図 27— 29とは別の実施例を示している。 図 30で示す実施例では、 温度センサ 32により冷温水ライン 5の出口温度 T L o u tを検出すると共に、 温度センサ 40により冷却水入口温度 TM i nを検出し、 その検出結果を信号伝 達ライン S L 6を介して制御装置 30に伝達している。 図 31をも参照してこの実施例の作用を説明する。 先ず、 冷温水ライン 5の出 口温度 T L 0 u t及び冷却水ライン 6の入口温度 TM i nを検出する (ステップ S 1 1) 。 そして、 三方弁 V 1の開度を検出し (ステップ S 12) 、 吸収冷温水 機 1が通常運転モー ドであるか排熱投入運転モー ドであるかを判断する (ステツ プ S 1 3) 。 ここで、 制御装置 30は、 三方弁 V Iが冷温水機 1を完全にバイパ スしておらず、 温排水が (流量の多寡には無関係に) 冷温水機 1に供給されてい れば (ステップ S 1 3が NO) 、 排熱投入運転モー ドであると判断する (ステツ プ S 14) 。 一方、 三方弁 V Iが冷温水機 1を完全にバイパスした状態、 或いは、 三方弁 V 1の開度がゼロであれば (ステップ S 1 3が Y E S) 、 通常運転モー ド であると判断する (ステップ S 1 5) 。
排熱投入運転モー ドであると判断されたならば (ステップ S 14) 、 冷却水ラ インの入口温度 TM nと、 設定された閾値或いは設定値 (排熱投入運転モード における設定値) とを比較する (ステップ S 1 6) 。 そして、 入口温度 TM i n が設定値よりも高い場合には (ステップ S 1 6が YE S) 、 絞り弁 12の開度を 絞る方向へ制御する (ステップ S 1 7) 。
—方、 入口温度 TM i nが設定値よりも低い場合には (ステップ S 16力 NO) 、 冷温水ライン出口温度 TL 0 u tと、 設定された閾値或いは設定値とを比較す る (ステップ S 1 8) 。 出口温度 T L o u tが設定値よりも高ければ (ステップ S 1 8が YE S) 、 絞り弁 12の開度を開く方向に制御する (ステップ S 1 9) 。 これに対して、 出口温度 TL o u tが設定値よりも低ければ (ステップ S 1 8力 NO) 、 絞り弁 12の開度を絞る方向に制御する (ステップ S 1 7) 。
ステップ S 1 3において通常運転モー ドと判断された場合には (ステップ S 1 5) 、 冷却水ラインの入口温度 TM i nを、 通常運転モー ドにおける閾値或いは 設定値と比較する (ステップ S 20) 。 そして、 入口温度 TM i nが設定値より も高い場合には (ステップ S 20が YE S) 、 絞り弁 12の開度を絞る方向へ制 御する (ステップ S 1 7) 。 一方、 入口温度 TM i nが設定値よりも低い場合に は (ステップ S 20が NO) 、 前記ステップ S 1 8以下の制御を行うのである。 図 32は図 27 - 3 1とは別の実施例を示している。 図 32で示す実施例では、 冷温水ライン 5の出口温度 TL 0 u tと入口温度 TL i nとを監視することによ り、 高質燃料供給量の制御が行われる。 ここで、 冷温水ライン 5の入口温度 TL i nは温度センサ 42により検出され、 その検出結果は信号伝達ライン S L 7に より制御装置 30へ伝達される。
図 33をも参照して、 図 32で示す実施例の作用を説明する。 先ず、 冷温水ラ ィン 5の出口温度 T L o u tと入口温度 T L i nとを検出する (ステップ S 21) 。 次に三方弁 VIの開度を検出し (ステップ S 22) 、 吸収冷温水機 1が通常運 転モー ドであるか排熱投入運転モードであるかを判断する (ステップ S 23) 。 すなわち、 三方弁 V 1がバイパス側に全開の場合 (ステップ S 23が YE S) は 通常運転モードと判断し (ステップ S 25) 、 三方弁 V 1がバイパス側に全開し ていない場合 (ステップ S 23が NO) は排熱投入運転モ一 ド (ステップ S 24) と判断する。
排熱投入運転モ一ドであると判断された場台 (ステップ S 24) 、 冷水ライン の入口温度 T L i nと出口温度 T L o u tとの温度差 I TL i n— TL o u t I と、 設定された閾値或いは設定値とを比較する (ステップ S 26) 。
温度差 I TL i n— TL o u t I が設定値よりも高ければ (ステップ S 2 6が YE S) 絞り弁 12の開度を絞る方向に制御する (ステップ S 27) 。 これ に対して、 温度差 I TL i n— TL o u t I が設定値よりも低ければ (ステ ップ S 26が NO) 、 冷温水ライン 5の出口温度 TL 0 u tと設定された閾値或 いは設定値 (運転モードにより相違する) とを比較する (ステップ S 28) 。 冷温水ライン 5の出口温度 T L o u tが設定値よりも高ければ (ステップ S 2 8が YE S) 、 絞り弁 12の開度を開く方向に制御する (ステップ S 29) 。 こ れに対して、 出口温度 T L o u tが設定値よりも低ければ (ステップ S 28が N 0) 、 絞り弁 12の開度を絞る方向に制御する (ステップ S 27) 。
三方弁 V 1がバイパス側に全開しており (ステップ S 23が Y E S) 通常運転 モー ドと判断された場合 (ステップ S 25) も、 冷水ラインの入口温度 TL i n と出口温度 TL 0 u tとの温度差 I TL i n— TL o u t I と設定された閾 値或いは設定値とが比較される (ステップ S 30) 。 そして、 上述したステップ S 27、 S 28、 S 29の工程を行う。
図 34は図 27— 33とは別の実施例を示している。 図 34で示す実施例では、
- 21 - 冷温水ライン 5の出口温度 TL 0 u t、 冷却水入口温度 TM i n、 高温再生器 1 0の温度 THGを監視することにより、 絞り弁 12の開度制御を行っている。 次 に、 図 35をも参照して、 図 34で示す実施例の作用を説明する。
先ず、 冷温水ライン 5の出口温度 TL 0 u t、 冷却水ラインの入口温度 TM i n、 高温再生器 10の温度 THGを検出する (ステップ S 30) 。 そして、 三方 弁 VIの開度を検出し (ステップ S 31) 、 吸収冷温水機 1が通常運転モー ドで 運転されているか排熱投入運転モードで運転されているかを判断する (ステップ S 32) 。 すなわち制御装置 30は、 三方弁 VIが冷温水機 1を完全にバイパス しておらず、 温排水が (流量の多寡には無関係に) 冷温水機 1に供給されていれ ば (ステップ S 32が NO) 、 排熱投入運転モードであると判断する (ステップ S 33) 。 これに対して、 三方弁 V 1が冷温水機 1を完全にバイパスした状態、 或いは、 三方弁 V 1の開度がゼロであれば (ステップ S 32が YE S) 、 通常運 転モードであると判断する (ステップ S 36) 。
排熱投入運転モードであると判断されたならば (ステップ S 33) 、 高温再生 器 10の温度 THGと冷却水ラインの入口温度 TM i nを、 設定された閾値或い は設定値 (排熱投入運転モー ドにおける設定値) と比較する (ステップ S 34) c そして、 高温再生器 10の温度 THGと冷却水ラインの入口温度 TM i nが設定 値よりも高い場合には (ステップ S 34が YE S) 、 絞り弁 12の開度を絞る方 向へ制御する (ステップ S 39) 。
—方、 高温再生器 10の温度 THGと冷却水ラインの入口温度 TM i nが設定 値よりも低い場合には (ステップ S 34が NO) 、 冷温水ライン出口温度 TL 0 u tと、 設定された閾値或いは設定値とを比較する (ステップ S 38) 。 出口温 度 TL 0 u tが設定値よりも高ければ (ステップ S 38が YE S) 、 絞り弁 12 の開度を開く方向に制御する (ステップ S 40) 。 これに対して、 出口温度 TL 0 u tが設定値よりも低ければ (ステップ S 38が NO) 、 絞り弁 12の開度を 絞る方向に制御する (ステップ S 39) 。
ステップ S 32において通常運転モ一ドと判断された場合には (ステップ S 3 6) 高温再生器 10の温度 THGと冷却水ラインの入口温度 TM i nを、 通常運 転モードにおける閾値或いは設定値と比較する (ステップ S 37) 。 そして、 高 温再生器 10の温度 THGと冷却水ラインの入口温度 TM i ηが設定値よりも高 い場合には (ステップ S 37が YE S) 、 絞り弁 12の開度を絞る方向へ制御す る (ステップ S 39) 。 一方、 高温再生器 10の温度 THGと冷却水ラインの入 口温度 TM i nが設定値よりも低い場合には (ステップ S 37が NO) 、 前記ス テツプ S 38以下の制御を行う。
図 36は図 27— 35とは別の実施例を示す。 図 34で示す実施例では、 高温 再生器 10の温度 THGを監視しているが、 図 36で示す実施例においては高温 再生器 10の圧力 PHを監視して制御を行っている。 すなわち、 高温再生器 10 の圧力 PHを圧力センサ 34により検出し、 その検出結果は信号伝達ライン S L 5を介して制御装置 30へ出力している。
図 37は図 27 - 36とは別の実施例を示している。 図 37で示す実施例では、 冷温水ライン 5の出口温度 T L 0 u t、 入口温度 T L i n、 高温再生器 10の温 度 THGを監視することにより、 絞り弁 12の開度制御を行っている。 図 38を も参照して、 図 37で示す実施例の作用を説明する。
先ず、 冷温水ライン 5の出口温度 TL o u t. 入口温度 TL i n、 高温再生器 10の温度 THGを検出する (ステップ S 41) 。 そして、 三方弁 V 1の開度を 検出し (ステップ S 42) 、 吸収冷温水機 1が通常運転モードで運転されている か排熱投入運転モードで運転されているかを判断する (ステップ S 43) 。 すな わち制御装置 30は、 三方弁 V 1が冷温水機 1をバイパスする側に全開した状態 であれば (ステップ S 43が YE S) 、 通常運転モードであると判断する (ステ ップ S 44) 。 これに対して、 三方弁 V 1がバイパス側に全開していなければ (ステップ S 43が NO) 、 排熱投入運転モードと判断する (ステップ S 45) c 排熱投入運転モー ドの場合は (ステップ S 45) 、 高温再生器 10の温度 TH Gを、 設定された閾値或いは設定値 (排熱投入運転モー ドにおける設定値) と比 較する (ステップ S 46) 。 高温再生器 10の温度 THGが排熱投入運転モード における設定値よりも高ければ (ステップ S 46が YE S) 、 絞り弁 12を絞る 方向に制御する (ステップ S 47) 。
一方、 高温再生器 10の温度 THGが設定値よりも低ければ (ステップ S 46 が NO) 、 冷温水ライン 5の入口温度 TL i nと出口温度 TL o u tとの温度差 I T L i n-TL o u t | を、 設定された閾値或いは設定値 (排熱投入運転 モードにおける設定値) と比較する (ステップ S 48) 。
ステップ S 48において、 温度差 I T L i n— T L o u t l が設定値より も高い場合には (ステップ S 48が Y E S) 、 絞り弁 12を絞る方向に制御する (ステップ S 47) 。 一方、 温度差 I TL i n— T L o u t l が設定値より も低ければ (ステップ S 48が NO) 、 ステップ S 49において、 冷温水ライン 5の出口温度 TL 0 u tと、 設定された閾値或いは設定値 (ケース ·バイ ·ケ一 スで決定される数値) とを比較する。
ステップ S 49において、 出口温度 T L o u tが設定値よりも高ければ (ステ ップ S 49が YE S) 、 絞り弁 12の開度を開く方向に制御する (ステップ S 5 0) 。 これに対して、 出口温度 T L 0 u tが設定値よりも低ければ (ステップ S 49が NO) 、 絞り弁 12の開度を絞る方向に制御する (ステップ S 47) 。 通常運転モー ドの場合 (ステップ S 44) もステップ S 46と同様に、 高温再 生器 1 0の温度 THGを、 設定された閾値或いは設定値 (通常運転モ一ドにおけ る設定値) と比較する (ステップ S 51) 。 ステップ S 51において、 高温再生 器 1 0の温度 THGが設定値よりも高い場合には (ステップ S 5 1が YE S) 、 絞り弁 12の開度を絞る方向へ制御する (ステップ S 47) 。 一方、 高温再生器 1 0の温度 THGが通常運転モードにおける設定値よりも低い場合には (ステツ プ S 51が NO) 、 前記ステップ S 49、 S 47、 S 50の制御を行う。
図 39は図 27— 38とは別の実施例を示す。 図 37で示す実施例では、 高温 再生器 1 0の温度 THGを監視しているが、 図 39で示す実施例においては高温 再生器 1 0の圧力 PHを監視して制御を行っている。 すなわち、 高温再生器 1 0 の圧力 PHを圧力センサ 34により検出し、 その検出結果は信号伝達ライン S L 5を介して制御装置 30へ出力している。
図 40は図 27 - 39とは別の実施例を示している。 図 40で示す実施例では- 冷温水ライン 5の出口温度 T L 0 u t、 入口温度 T L i n、 冷却水ラインの入口 温度 TM i nを監視することにより、 絞り弁 12の開度制御を行っている。 次に- 図 41をも参照して、 この実施例の作用を説明する。
先ず、 冷温水ライン 5の出口温度 T L o u t. 入口温度 T L i n、 冷却水ライ ン入口温度 TM i nを検出する (ステップ S 60) 。 そして、 三方弁 V 1の開度 を検出し (ステップ S 61) 、 吸収冷温水機 1が通常運転モー ドで運転されてい るか排熱投入運転モードで運転されているかを判断する (ステップ S 62) 。 こ こで、 制御装置 30は、 三方弁 VIが冷温水機 1を完全にバイパスしていない、 すなわち弁 V 1がバイパス側に全開となっていなければ (ステップ S 62が NO) 、 排熱投入運転モードであると判断する (ステップ S 63) 。 これに対して、 三 方弁 V 1が冷温水機 1を完全にバイパスしていれば (弁 V 1がバイパス側に全開 した状態: ステップ S 62が YE S) 、 通常運転モードであると判断する (ステ ップ S 64 ) 。
排熱投入運転モ一 ドの場合 (ステップ S 63) 、 冷却水ライン入口温度 TM i nを設定された閾値或いは設定値 (排熱投入運転モードにおける設定値) と比較 する (ステップ S 65) 。 冷却水ライン入口温度 TM i nが設定値よりも高けれ ば (ステップ S 65が YE S) 、 絞り弁 12を絞る方向に制御する (ステップ S 66) 。 一方、 冷却水ライン入口温度 TM i nが設定値よりも低い場合には (ス テツプ S 65が NO) 、 冷温水ライン 5の入口温度 TL i nと出口温度 TL o u tとの温度差 I TL i n— TL o u t l を、 設定された閾値或いは設定値 (排熱投入運転モードにおける設定値) と比較する (ステップ S 67) 。
ここで、 温度差 I TL i n— TL o u t l が設定値よりも高ければ (ステ ップ S 67が YE S) 、 絞り弁 12を絞る方向に制御する (ステップ S 66) 。 —方、 温度差 I TL i n— TL o u t l が設定値よりも低ければ (ステップ S 67が NO) 、 冷温水ライン 5の出口温度 TL o u tと設定された閾値或いは 設定値 (運転モードによりケース ·バイ ·ケースで定まる設定値) と比較する (ステップ S 68) o
ステップ S 68において、 出口温度 T L o u tが設定値よりも高ければ (ステ ップ S 68が YE S) 、 絞り弁 12の開度を開く方向に制御する (ステップ S 6 9) 。 これに対して、 出口温度 TL 0 u tが設定値よりも低ければ (ステップ S 68が NO) 、 絞り弁 12の開度を絞る方向に制御する (ステップ S 66) 。 通常運転モードの塲合 (ステップ S 64) も同様に、 冷却水ライン入口温度 T M i nを設定された閾値或いは設定値 (通常運転モードにおける設定値) と比較 する (ステップ S 70) 。 そして、 通常運転モ一ドにおける冷却水ライン入口温 度 TM i nが設定値よりも高い場合には (ステップ S 70が YE S) 、 絞り弁 1 2の開度を絞る方向へ制御する (ステップ S 66) 。 一方、 冷却水ライン入口温 度 TM i nが設定値よりも低い場合には (ステップ S 70が NO) 、 前記ステツ プ S 68、 S 66、 S 69の制御が為される。
図 42、 43は図 27— 41とは別の実施例を示している。 図 42、 43で示 す実施例では、 図 40、 41で示す実施例が冷温水ライン 5の出口温度 TL o u t、 入口温度 T L i n、 冷却水ラインの入口温度 TM i nを監視しているのに加 えて、 高温再生器 10の温度 THG及び圧力 PHをも監視して制御を行っている。 図 42、 43で示す実施例の実施に際して、 冷温水ライン 5の出口温度 TL 0 u t、 入口温度 TL i n、 冷却水ライン入口温度 TM i n、 高温再生器 10の温 度 THG、 圧力 PHを検出する (ステップ S 80) 。 そして、 三方弁 VIの開度 を検出し (ステップ S 81) 、 吸収冷温水機 1が通常運転モードで運転されてい るか排熱投入運転モー ドで運転されているかを判断する (ステップ S 82) 。 こ こで、 制御装置 30は、 三方弁 V 1が冷温水機 1を完全にバイパスしていない、 すなわち弁 V 1がバイパス側に全開となっていなければ (ステップ S 82が NO) 、 排熱投入運転モードであると判断する (ステップ S 83) 。 これに対して、 三 方弁 V 1が冷温水機 1を完全にバイパスしていれば (弁 V 1がバイパス側に全開 した状態: ステップ S 82が YE S) 、 通常運転モードと判断する (ステップ S 84) o
排熱投入運転モー ドの場合 (ステップ S 83) 、 冷却水ライン入口温度 TM i n、 高温再生器 10の温度 THG及び圧力 PHを、 設定された閾値或いは設定値
(排熱投入運転モー ドにおける設定値) と比較する (ステップ S 85) 。 冷却水 ライン入口温度 TM i n、 高温再生器 10の温度 THG及び圧力 PHが設定値よ りも高ければ (ステップ S 85が YE S) 、 絞り弁 12を絞る方向に制御する
(ステップ S 86) 。 一方、 冷却水ライン入口温度 TM i n、 高温再生器 10の 温度 THG及び圧力 PHが設定値よりも低い場合には (ステップ S 85が NO) 、 冷温水ライン 5の入口温度 T L i nと出口温度 T L o u tとの温度差 | T L i n— TL o u t I を、 設定された閾値或いは設定値 (排熱投入運転モードにお ける設定値) と比較する (ステップ S 87) 。
ここで、 温度差 I TL i n— TL o u t l が設定値よりも高ければ (ステ ップ S 87が YE S) 、 絞り弁 12を絞る方向に制御する (ステップ S 86) 。 一方、 温度差 I TL i n— TL o u t l が設定値よりも低ければ (ステップ S 87が N 0) 、 冷温水ライン 5の出口温度 T L 0 u tと設定された闘値或いは 設定値 (運転モードによりケース ·バイ ·ケースで定まる設定値) と比較する (ステップ S 88) o
ステップ S 88において、 出口温度 TL 0 u tが設定値よりも高ければ (ステ ップ S 88が YE S) 、 絞り弁 12の開度を開く方向に制御する (ステップ S 8 9) 。 一方、 出口温度 TL 0 u tが設定値よりも低ければ (ステップ S 88が N 0) 、 絞り弁 12の開度を絞る方向に制御する (ステップ S 86) 。
通常運転モー ドの場合 (ステップ S 84) も同様に、 冷却水ライン入口温度 T M i n、 高温再生器 10の温度 THG及び圧力 PHを設定された閾値或いは設定 値 (通常運転モードにおける設定値) と比較する (ステップ S 90) 。 そして、 通常運転モードにおける冷却水ライン入口温度 TM i n、 高温再生器 10の温度 THG及び圧カPHが設定値ょりも高い場合には (ステップ S 90が YE S) 、 絞り弁 12の開度を絞る方向へ制御する (ステップ S 86) 。 一方、 冷却水ライ ン入口温度 TM i n、 高温再生器 10の温度 THG及び圧力 PHが設定値よりも 低い場合には (ステップ S 90が NO) 、 前記ステップ S 88、 S 86、 S 89 の制御が為される。
次に、 図 44一 61の実施例を説明する。
図 44において、 冷水系 5には冷水出口温度 T L o u tを検出する冷水出口温 度検出手段 24が設けられており、 その検出結果は信号伝達ライン S L 1を介し て三方弁 VIの制御装置 26に送出されている。 この制御装置 26により三方弁 V 1の ON · 0 F F或いは開度制御が行われる。
制御装置 26の三方弁 V 1の制御について、 図 45をも参照して説明する。 ここで、 冷水出口温度 T L 0 u tが高温 (例えば 9°C以上) である場合には、 排熱を投入したとしても冷温水機 1の効率は向上しない。 換言すれば、 冷水出口 温度 T L o u tが所定の温度以上である場合には、 排熱を投入したとしても無駄 でのる。
その様な見地に基づいて、 先ず、 検出手段 24により、 冷水系 5には冷水出口 温度 TL 0 u tを検出する (ステップ S 1) 。 そして、 ステップ S 2において、 検出された冷水出口温度 T L 0 u tが高温であるか否かを判断する。
ここで、 冷水出口温度 T L o u tが所定温度 (図 45で符号 T L 0 u t m a で示す温度:以下同じ) よりも高い場合には、 排熱を投入しても無駄であるため、 過負荷の不都合が顕在化しない様にするため、 三方弁 V 1を排熱を絞る側に制御 する (ステップ S 3) 。 なお、 このステップ S 3では排熱投入を完全に遮断する 場合も包含する。
—方、 冷水出口温度 T L 0 u tが所定温度 T L o u tma xよりも低い場合に は、 排熱を投入する効果が顕在化するので、 冷温水機 1に排熱を導入する側へ三 方弁 VIを制御する (ステップ S 4) 。 ここで、 ステップ S 4は排熱を吸収冷温 水機側へ 100%投入する場合を包含する。
以下、 ステップ S 1— 4を繰り返す。 なお、 所定温度 T L o u tma xとして は、 冷水出口設定温度 7°Cに対して例えば、 7. 5°Cに設定する。
次に図 46、 47の実施例について説明する。
図 46において、 排熱ライン 21に介装された三方弁 V 1の下流には、 該ライ ン 21の温度 (温水温度) THを検出するための温水温度検出手段 28が設けら れている。 そして、 該検出手段 28による検出結果は、 信号伝達ライン S L 2を 介して三方弁 V 1の制御装置 26に送出される。
この実施例における三方弁 V 1の制御について、 図 47をも参照して説明する c 温水温度 THが低温である場合には、 排熱投入効率が低下し、 場合によっては (温水温度 THが冷温水機 1内の溶液温度よりも低い場合) 、 冷温水機 1の冷凍 能力が維持されなくなる。 その様な事態を回避するため、 検出手段 28により温 水温度 THを検出する (ステップ S 11) 。 そしてステップ S 12において、 検 出された温水温度 THが低温であるか否かを判断する。
ここで、 温水温度 THが所定温度 (図 4で符号 THm i nで示す温度:以下同 じ) よりも低い場合には、 排熱を投入すると冷温水機 1の溶液温度が上昇せず、 上述した様な不都合が生じるため、 三方弁 VIを排熱を絞る側に制御する (ステ ップ S 13) 。 一方、 温水温度 THが所定温度 THm i nよりも高い場合には、 排熱を投入する効果が所望通り得られるので、 冷温水機 1に排熱を導入する側へ 三方弁 V 1を制御する (ステップ S 14) 。
以下、 ステップ S 11— 14を繰り返す。 なお、 所定温度 THm i nとしては、 例えば、 冷温水機 1内で図示しない排熱熱交換器に導入される溶液温度に設定す ることも可能である。
図 48、 49は図 44一 47とは別の実施例を示しており、 その制御は図 44、 45で示す実施例と、 図 46、 47で示す実施例とを組み合わせたもの.となって いる。 すなわち、 冷水系 5には冷水出口温度 T L 0 u tを検出する冷水出口温度 検出手段 24が設けられており、 排熱ライン 21には温水温度 THを検出するた めの温水温度検出手段 28が設けられている。 そして、 冷水出口温度検出手段 2 4による検出結果は信号伝達ライン S L 1を介して、 温水温度検出手段 28によ る検出結果は信号伝達ライン S L 2を介して、 それぞれ制御装置 30に送出され o
次に図 49を参照して、 制御装置 30による三方弁 V 1の開閉制御について説 明する。
先ず、 検出手段 24により、 冷水系 5には冷水出口温度 TL o u tを検出し、 且つ、 検出手段 28により温水温度 THを検出する (ステップ S 21) 。 そして、 ステップ S 22において、 検出された冷水出口温度 T L o u tが高温であるか否 かを判断する。
冷水出口温度 T L o u tが所定温度 T L o u tma xよりも高い場合には、 排 熱を投入しても無駄であるため、 過負荷の不都合が顕在化しない様にするため、 三方弁 V 1を排熱を絞る側に制御する (ステップ S 23) o
—方、 冷水出口温度 T L 0 u tが所定温度 T L o u tma xよりも低い場合に は、 排熱を投入しても過負荷による不都合は生じない。 この場合には、 ステップ S 24において、 検出された温水温度 T Hが低温であるか否かを判断する。
ここで、 温水温度 THが所定温度 THm i nよりも低い場合には、 排熱を投入 すると冷温水機 1の溶液温度が上昇せず、 冷凍能力が保証されなくなる等の不都 合を生じるため、 三方弁 V 1を排熱を絞る側に制御する (ステップ S 23) 。 こ れに対して、 温水温度 THが所定温度 THm i nよりも高い場合には、 排熱を投 入する効果が所望通り得られるので、 冷温水機 1に排熱を導入する側へ三方弁 V 1を制御する (ステップ S 25) 。
以下、 ステップ S 21— 25を繰り返す。
図 50、 図 51は図 44— 49とは別の実施例を示している。 図 50で示され ている様に、 この実施例では、 制御装置 30に対して冷水出口温度検出手段 24、 冷水入口温度検出手段 32の検出結果が送出されている。
図 51で示す様に、 この実施例による制御では、 先ず冷水出口温度 T L 0 u t と冷水入口温度 TL i nとを検出し (ステップ S 31) 、 冷水出口温度 TL o u tと冷水入口温度 TL i nと差 (温度差) の絶対値が、 設定された最大値 ATL ma x (冷水ラインの入口温度と出口温度との差の絶対値の最大値:例えば入口 温度の定格 12. 5°Cと出口温度の定格 7°Cとの温度差 12. 5°C) を越えてい るか否かを判断する (ステップ S 32) 。
温度差 I TL o u t— TL i n l が最大値 Δ T L m a xを越えた場合には (ステップ S 32において 「>ATLma x」 となる場合) 、 過負荷状態となつ ている可能性が高いため、 排熱投入量を減少する方向へ三方弁 V 1を制御する (ステップ S 33) 。 一方、 前記温度差 I TL 0 u t— TL i n I が最大値 厶 TLma Xを越えないならば (ステップ S 32において 「<ATLma x」 と なる場合) 、 過負荷が生じている可能性が少ないので、 吸収冷凍機 1に排熱を投 入する方向へ三方弁 V 1を制御する (ステップ S 34) 。
図 52、 53は図 44— 51とは別の実施例を示している。 図 52において、 高温再生器 10の温度 TH g e nを検出する高温再生器温度検出手段 34から、 信号伝達ライン S L 5を介して、 制御装置 26に対して検出結果が出力されてい る。 この検出結果に基づいて、 三方弁 V 1の開閉制御が為される。
開閉制御の具体的な内容が図 53に示されている。
高温再生器温度検出手段 34 (図 52) により、 高温再生器温度 TH g e nが 検出され (ステップ S 41) 、 検出された温度 TH g e nは、 ステップ S 42に おいて、 高温再生器温度の最大設定値 TH g e nm a Xと比較される。 高温再生 器温度 TH g e nが最大設定値 TH g e nm a xよりも高温であれば (ステツプ S 42で 「〉THg e nma x」 の状態) 、 高温再生器 10が過負荷状態で過熱 しているものと判断して、 排熱の投入を減少する方向に三方弁 V 1を制御する
(ステップ S 43) 。 一方、 高温再生器温度 THg e nが最大設定値 THg e n ma よりも低温であれば (ステップ S 42で 「く THg e nma xJ の状態) 、 過負荷状態ではないと判断して、 冷凍機 1に対して排熱の投入する方向に三方弁 V 1を制御する (ステップ S 44) 。
図 52、 53では高温再生器温度による制御を行っているが、 高温再生器圧力 PH g e nによる制御も可能である (図示せず) 。
図 54、 55は図 44— 53とは別の実施例を示しており、 該実施例では、 冷 水出口温度 T L 0 u t、 冷水出口温度 T L i n、 温水温度 THにより、 冷凍機へ の排熱投入を決定している。 すなわち、 検出手段 24、 32、 28 (図 54) に より、 それぞれ冷水出口温度 T L 0 u t、 冷水出口温度 TL i n、 温水温度 TH を検出する (ステップ S 51 :図 55) 。 次に、 冷水出口温度 TL 0 u tと冷水 入口温度 TL i nと差 (温度差) の絶対値が、 設定された最大値 ATLma Xを 越えているか否かを判断する (ステップ S 52) 。
温度差 I TL o u t— TL i n l が最大値 Δ T L m a xを越えた場合には
(ステップ S 52において 「〉ATLma x」 となる場合) 、 過負荷状態となつ ている可能性が高いため、 排熱投入量を減少する方向へ三方弁 V 1を制御する
(ステップ S 53) 。
—方、 前記温度差 I TL o u t— TL i n l が最大値 ATLma xを越えな いならば (ステップ S 52において 「く ATLma x」 となる場合) 、 検出され た温水温度 THと所定温度 THm i nとを比較する。
温水温度 THが所定温度 THm i nよりも低い場合 (ステップ S 54において 「<THm i n」 となる場合) には、 排熱を投入すると冷温水機 1の溶液温度が 上昇せず、 上述した様な不都合が生じるため、 三方弁 VIを排熱を絞る側に制御 する (ステップ S 53) 。 一方、 温水温度 THが所定温度 THm i nよりも高い 場合には、 排熱を投入する効果が所望通り得られるので、 冷温水機 1に排熱を導 入する側へ三方弁 V 1を制御する (ステップ S 55) 。
図 56、 57は図 44一 55とは別の実施例を示している。 この実施例では、 高温再生器温度 TH g e nと温水温度 THとに基づいて、 冷凍機への排熱投入量 を制御している。 すなわち、 先ず、 高温再生器温度 TH g e nと温水温度 THと を、 高温再生器温度検出手段 34及び温水温度検出手段 28 (図 56) により、 それぞれ検出する (ステップ S 61 :図 57) 。
ステップ S 61で検出された高温再生器温度温度 TH g e nは、 ステップ S 6 2において最大設定値 TH g e nm a xと比較される。 そして高温再生器温度 T H g e nが最大設定値 TH g e nm a xよりも高温であれば (ステップ S 62で
「>TH g e nma x」 の状態) 、 過負荷状態にあるものと判断して、 排熱の投 入を減少する方向に三方弁 V 1を制御する (ステップ S 63) 。 これに対して、 高温再生器温度 TH g e nが最大設定値 TH g e nm a xよりも低温であれば
(ステップ S 62で 「く TH g e nm a xJ の状態) 、 ステップ S 64において、 温水温度 THと所定温度 THm i nを比較する。
温水温度 THが所定温度 THm i nよりも低い場合 (ステップ S 64において
「く THm i nJ となる場合) には、 排熱を投入すると冷温水機 1の溶液温度が 上昇せず、 上述した様な不都合が生じるため、 三方弁 V Iを排熱を絞る側に制御 する (ステップ S 63) 。 一方、 温水温度 THが所定温度 THm i nよりも高い 場合には、 排熱を投入する効果が所望通り得られるので、 冷温水機 1に排熱を導 入する側へ三方弁 V 1を制御する (ステップ S 65) 。
図 58、 59は図 44— 57とは別の実施例を示している。 図 58において、 冷水出口温度 TL 0 u tが検出手段 24で検出され、 信号伝達ライン S L 1を介 して制御装置 30に送られる。 また、 冷却水入口温度 TM i nは冷却水入口温度 検出手段 36により検出され、 その検出結果は信号伝達ライン S L 6を介して制 御装置 30に対して出力される。 そして制御装置 30は、 冷水出口温度 T L o u t及び冷却水入口温度 TM i nに基づき、 三方弁 V Iを開閉制御して、 冷凍機 1 に対する排熱投入量を制御している。
制御の具体的内容は図 59で示されている。 先ず、 冷水出口温度 TL 0 u t及 び冷却水入口温度 TM i nを検出する (ステップ S 71) 。
そして、 冷却水出口温度最大設定値 T L o u t m a xを冷却水入口温度 TM i nの関数として計算する (ステップ S 72) 。 図 59において、 計算された冷水 出口温度最大設定値は T L o u t m a x (TM i n) という表現で示されている。 次に、 ステップ S 73において、 検出された冷水出口温度 T L 0 u tを冷水出 口温度最大設定値 T L 0 u t m a X (TM i n) と比較する。 冷水出口温度 T L 0 u tが冷水出口温度最大設定値 T L 0 u t m a X (TM i n) よりも高い場合 (ステップ S 73において 「>TL o u t m a X (TM i n) 」 の場合) には、 排熱を投入しても無駄であるため、 過負荷の不都合が顕在化しない様にするため、 三方弁 V 1を排熱を絞る側に制御する (ステップ S 74) 。 これに対して、 冷水 出口温度 T L o u tが冷水出口温度最大設定値 T L o u tma x (TM i n) よ りも低い場合 (ステップ S 73において 「く TL o u t m a X (TM i n) 」 の 場合) には、 排熱を投入する効果が顕在化するので、 冷凍機 1に排熱を導入する 側へ制御する (ステップ S 75) 。
図 60、 61で示す実施例では、 排熱ライン 21から分岐されたライン 22に は、 該ライン 22を流れる温水の温度 THを検出するための温水温度検出手段 1 04が設けられている。 そして、 該検出手段 104による検出結果は、 信号伝達 ライン S L 12を介して制御装置 106に送られる。
該温水の保有する熱を吸収冷温水機 1へ投入するために設けられた排熱回収用 熱交換器 132は、 該冷温水機 1内の溶液ライン L 101に介装されている。 そ して、 溶液ライン L 101内の溶液の温度 T Sを検出するための溶液温度検出手 段 105が該ライン L 101に介装されており、 該検出手段 105による検出結 果は、 信号伝達ライン S L 14を介して前記制御装置 106へ送られる。 そして、 制御装置 106からの制御信号が、 三方弁 VIの制御装置 26に送出される。
この実施例における三方弁 V 1の制御について、 図 61を参照して説明する。 先ず、 検出手段 104、 105により温水温度 TH、 溶液温度 TSをそれぞれ 検出する (ステップ S 81) 。 ここで、 温水温度 THが低温である場合には、 排 熱投入効率が低下し、 場合によっては (温水温度 THが冷温水機 1内の溶液温度 TSよりも低い場合) 、 冷温水機 1の冷凍能力が維持されなくなる。 その様な事 態を回避するため、 ステップ S 82において、 検出された温水温度 THと溶液温 度 TSとを比較する。 そして、 温水温度 THが溶液温度 TSよりも低い場合には、 上述した様な不都合が生じるため、 排熱が吸収冷温水機 1へ投入されるのを遮断 するべく、 三方弁 V 1をバイパス側へ全開する (ステップ S 8 3 ) 。 一方、 温水 温度 T Hが溶液温度 T Sよりも高い場合には、 排熱を投入する効果が所望通り得 られるので、 冷温水機 1に排熱を導入する (1 0 0 %導入する場合を含む) 側へ 三方弁 V Iを制御する (ステップ S 8 4 ) 。
以下、 ステップ S 8 1— 8 4を繰り返す。
発明の効果
以上、 説明した本発明によれば、 溶液ポンプが停止し、 或いは、 高温再生器の 燃焼パーナが停止して、 熱交換器内部に吸収溶液が残留しても、 該残留した溶液 が凝縮したり、 或いは晶析することが回避されるので、 晶析に伴う各種不都合も 完全に防止される。
また、 本発明において、 温度検出手段によって排熱を含有する流体の温度を検 出すれば、 効率的な排熱利用が保証される。
さらに、 冷温水機運転中の溶液ポンプや燃焼パーナ e t c . の停止のみならず、 冷温水機自体の運転停止状態にも対応することが出来る。
また本発明によれば排熱投入運転モ一ドか通常運転モードかを判断して、 高質 燃料燃焼パーナの燃焼を制御することにより、 高温再生器の温度上昇及びそれに 伴う腐食を防止し、 吸収冷温水機の能力が激減しないようにすることができる。
これに加えて、 吸収冷温水機の運転状態を判断することにより、 より精密な制 御が実施される。
更に本発明によれば、 無効冷媒を生じること無く、 高温再生器の温度上昇及び それに伴う腐食を防止すると共に、 その能力が激減しないようにすることができ o
本発明のその他の作用効果を、 以下に列挙する。
( 1 ) 過負荷状態において投入された排熱が無駄に放出されてしまうことが 防止される。
( 2 ) 排熱投入効果の減少に対応することが出来る。
( 3 ) 吸収冷温水機の溶液から温排水に向かって熱が逆流して吸収冷温水機 の冷凍能力が保証されなくなってしまう事態が防止される。
( 4 ) 冷温水機へ投入した高質燃料による加熱量が有効利用される。
( 5 ) 冷水出口温度検出手段及び温水温度検出手段の検出結果に応答して前 記三方弁を開閉制御する様に構成すれば、 過負荷状態に対する適格な対応と、 排 熱投入効果の減少への対応及び冷凍能力の保証、 とを共に達成出来る。
( 6 ) 例えば三方弁の開度制御等の手法により排熱投入量の制御を行うので- 精度の高い制御が行える。

Claims

( 1 ) 高質燃料系と排熱利用系とを備え、 排熱利用系の配管に外部から排熱 者
が投入される熱交換器を介装した吸収冷温水機の制御方法において、 溶液ポンプ 或いは燃焼バ一ナの運転停止信号が発生したことを検知する工程と、 該検知後、 の
溶液ポンプ或いは燃焼パーナの運転停止から所定時間が経過したか否かを判断す る工程と、 前記所定時間の経過後に排熱を含有する流体をして前記熱交換器をバ ィパスせしめる工程、 とを含むことを特徴と囲する吸収冷温水機の制御方法。
( 2 ) 排熱を含有する流体の温度を検出する工程と、 該温度に対応した流量 の流体が前記熱交換器側へ供給される様に前記流体のバイパス量を決定する工程、 とを含む請求項 (1 ) の吸収冷温水機の制御方法。
( 3 ) 排熱を含有する流体の温度を検出する工程と、 該温度に基づいて排熱を 含有する流体が前記熱交換器側へ供給されるかバイパスされるかを決定する工程、 とを含む請求項 (1 ) の吸収冷温水機の制御方法。
( 4 ) 高質燃料系と排熱利用系とを備え、 排熱利用系の配管に外部から排熱 が投入される熱交換器を介装した吸収冷温水機において、 排熱を含有する流体の 配管系には分岐手段が介装されており、 溶液ポンプ或いは燃焼パーナの運転停止 信号が発生したことを検知する運転停止検知手段と、 溶液ポンプ或いは燃焼バー ナの運転停止から所定時間が経過したか否かを判断する計時手段と、 運転停止検 知手段及び計時手段からの出力信号が伝達されると排熱を含有する流体が前記熱 交換器をバイパスする様に前記分岐手段に対して制御信号を出力する制御手段、 とを含むことを特徴とする吸収冷温水機。
( 5 ) 排熱を含有する流体の温度を検出し且つ検出結果を前記制御手段へ出 力する温度検出手段を有し、 前記制御手段は、 検出された流体の温度に応答して 前記熱交換器側へ供給される前記流体の流量を調節する様に前記分岐手段に制御 出力を伝達する請求項 (4 ) の吸収冷温水機。
( 6 ) 排熱投入熱交換器を有し、 排熱投入運転モードと通常運転モードを所 定の信号により判断し、 且つ、 それぞれのモー ドについて高温再生器に設置され た高質燃料燃焼用パーナの高質燃料調整用絞り弁及び燃焼空気調整用絞り弁の開 度上昇を自動的に調節する機能を持った制御装置を有することを特徴とする吸収 冷温水機。
( 7 ) 排熱供給ラインに介装された三方弁の開閉状態を検出する三方弁開閉 状態検出手段を備えており、 前記制御装置は、 高質燃料調整用絞り弁に設けられ た開度上限リ ミ ッ夕及び燃焼空気調整用絞り弁に設けられた開度上限リ ミ ッタに 対して制御信号を出力し、 且つ、 前記三方弁開閉状態検出手段からの検出信号を 入力する様に構成されている請求項 (6 ) に記載の吸収冷温水機。
( 8 ) 冷温水ラインの出口温度を検出する冷温水ライン出口温度検出手段と、 高温再生器の温度を検出する高温再生器温度検出手段と、 高温再生器の圧力を検 出する高温再生器圧力検出手段と、 冷却水ラインの入口温度を検出する冷却水ラ イン入口温度検出手段、 とを備えており、 前記制御装置に対して前記各検出手段 からの検出信号を入力する様に構成した請求項 (7 ) に記載の吸収冷温水機。
( 9 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 高温再生器の温度 を監視し、 冷温水出口温度及び高温再生器の温度に基づいて高質燃料燃焼用バー ナ一^ ^の高質燃料供給量を調節する燃料供給量制御機構を有することを特徴とす る吸収冷温水機。
( 1 0 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 高温再生器の圧 力を監視し、 冷温水出口温度及び高温再生器の圧力に基づいて高質燃料燃焼用バ ーナ一への高質燃料供給量を調節する燃料供給量制御機構を有することを特徴と する吸収冷温水機。
( 1 1 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 冷却水入口温度 を監視し、 冷温水出口温度及び冷却水入口温度に基づいて高質燃料燃焼用パーナ 一への高質燃料供給量を調節する燃料供給量制御機構を有することを特徴とする 吸収冷温水機。
( 1 2 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と共に冷温水入口温 度を監視し、 冷温水出口温度と冷温水入口温度の温度差に基づいて高質燃料燃焼 用バーナーへの高質燃料供給量を調節する燃料供給量制御機構を有することを特 徴とする吸収冷温水機。
( 1 3 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 冷却水入口温度 と、 高温再生器の温度とを監視し、 冷温水出口温度、 冷却水入口温度及び高温再 生器の温度に基づいて高質燃料燃焼用パーナ一^ ^の高質燃料供給量を調節する燃 料供給量制御機構を有することを特徴とする吸収冷温水機。
( 1 4 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 冷却水入口温度 と、 高温再生器の圧力とを監視し、 冷温水出口温度、 冷却水入口温度及び高温再 生器の圧力に基づいて高質燃料燃焼用バーナーへの高質燃料供給量を調節する燃 料供給量制御機構を有することを特徵とする吸収冷温水機。
( 1 5 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と共に、 高温再生器 の温度と、 冷温水入口温度とを監視し、 冷温水出口温度と冷温水入口温度の温度 差及び高温再生器の温度に基づいて高質燃料燃焼用バーナーへの高質燃料供給量 を調節する燃料供給量制御機構を有することを特徴とする吸収冷温水機。
( 1 6 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と共に、 高温再生器 の圧力と、 冷温水入口温度とを監視し、 冷温水出口温度と冷温水入口温度の温度 差及び高温再生器の圧力に基づいて高質燃料燃焼用バーナーへの高質燃料供給量 を調節する燃料供給量制御機構を有することを特徴とする吸収冷温水機。
( 1 7 ) 排熱投入用の熱交換器を有し、 冷温水出口温度と、 冷温水入口温度 と、 冷却水入口温度とを監視し、 冷温水出口温度と冷温水入口温度の温度差及び 冷却水入口温度に基づいて高質燃料燃焼用バーナ ^の高質燃料供給量を調節す る燃料供給量制御機構を有することを特徵とする吸収冷温水機。
( 1 8 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 冷水出口温度を検出する冷水出口温 度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節 する三方弁と、 前記冷水出口温度検出手段の検出結果に応答して前記三方弁を開 閉制御する制御装置、 とを有することを特徴とする吸収冷温水機。
( 1 9 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 温水温度を検出する温水温度検出手 段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方 弁と、 前記温水温度検出手段の検出結果に応答して前記三方弁を開閉制御する制 御装置、 とを有することを特徴とする吸収冷温水機。
( 2 0 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 温水温度を検出する温水温度検出手 段と、 吸収冷温水機に排熱を投入するために排熱回収熱交換器が介装されている 溶液ラインを流れる溶液温度を検出する溶液温度検出手段と、 前記温水供給管に 介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記温水温度検出 手段及び溶液温度検出手段の検出結果に応答して前記三方弁を開閉制御する制御 装置、 とを有していることを特徴とする吸収冷温水機。
( 2 1 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 冷水出口温度を検出する冷水出口温 度検出手段と、 温水温度を検出する温水温度検出手段と、 前記温水供給管に介装 されて分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水出口温度検出 手段及び温水温度検出手段の検出結果に応答して前記三方弁を開閉制御する制御 装置、 とを有することを特徵とする吸収冷温水機。
( 2 2 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 冷水出口温度を検出する冷水出口温 度検出手段と、 冷水入口温度を検出する冷水入口温度検出手段と、 前記温水供給 管に介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水出口 温度検出手段の検出結果及び冷水入口温度検出手段の検出結果を比較し且つその 比較した結果に応答して前記三方弁を開閉制御する制御装置、 とを有することを 特徴とする吸収冷温水機。
( 2 3 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 高温再生器温度或いは高温再生器圧 力を検出する高温再生器用検出手段と、 前記温水供給管に介装されて分岐管側に 流れる温水の流量を調節する三方弁と、 前記高温再生器用検出手段の検出結果に 応答して前記三方弁を開閉制御する制御装置、 とを有することを特徴とする吸収 冷温水機。 ( 2 4 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 冷水出口温度を検出する冷水出口温 度検出手段と、 冷水入口温度を検出する冷水入口温度検出手段と、 温水温度を検 出する温水温度検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水 の流量を調節する三方弁と、 前記冷水出口温度検出手段の検出結果と冷水入口温 度検出手段の検出結果と前記温水温度検出手段の検出結果とに応答して前記三方 弁を開閉制御する制御装置、 とを有することを特徴とする吸収冷温水機。
( 2 5 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 温水温度を検出する温水温度検出手 段と、 高温再生器温度或いは高温再生器圧力を検出する高温再生器用検出手段と、 前記温水供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記温水温度検出手段の検出結果及び前記高温再生器用検出手段の検出結果に応 答して前記三方弁を開閉制御する制御装置、 とを有することを特徴とする吸収冷 温水機。
( 2 6 ) 排熱源に連通する温水供給管から分岐する分岐配管を介して選択的 に排熱が供給される吸収冷温水機において、 冷水出口温度を検出する冷水出口温 度検出手段と、 冷却水入口温度を検出する冷却水入口温度検出手段と、 前記温水 供給管に介装されて分岐管側に流れる温水の流量を調節する三方弁と、 前記冷水 出口温度検出手段の検出結果及び冷却水入口温度検出手段の検出結果に応答して 前記三方弁を開閉制御する制御装置、 とを有することを特徴とする吸収冷温水機 c
PCT/JP1995/001151 1994-06-10 1995-06-09 Dispositif de refroidissement/chauffage a eau par absorption et procede de commande d'un tel dispositif WO1995034789A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/592,292 US5678414A (en) 1994-06-10 1995-06-09 Absorption cool-warm water machine and method for controlling the same
EP95921137A EP0713062A4 (en) 1994-06-10 1995-06-09 ABSORPTION WATER COOLER OR HEATER AND METHOD FOR CONTROLLING THE SAME
US08/881,075 US5878587A (en) 1994-06-10 1997-06-24 Absorption cool-warm water machine and method for controlling the same
US08/881,078 US5865035A (en) 1994-06-10 1997-06-24 Absorption cool-warm water machine and method for controlling the same
KR1019997001220A KR100244110B1 (ko) 1994-06-10 1999-02-12 흡수냉온수기 및 그의 제어방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP6128469A JP2839179B2 (ja) 1994-06-10 1994-06-10 吸収冷温水機及びその制御方法
JP6/128469 1994-06-10
JP6291736A JP2842566B2 (ja) 1994-11-25 1994-11-25 吸収冷温水機及びその制御方法
JP6291664A JP2842550B2 (ja) 1994-11-25 1994-11-25 吸収冷温水機
JP6291845A JP2935643B2 (ja) 1994-11-25 1994-11-25 吸収冷温水機
JP6/291736 1994-11-25
JP6/291664 1994-11-25
JP6291572A JP2842549B2 (ja) 1994-11-25 1994-11-25 吸収冷温水機
JP6/291845 1994-11-25
JP6/291572 1994-11-25

Publications (1)

Publication Number Publication Date
WO1995034789A1 true WO1995034789A1 (fr) 1995-12-21

Family

ID=27527173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001151 WO1995034789A1 (fr) 1994-06-10 1995-06-09 Dispositif de refroidissement/chauffage a eau par absorption et procede de commande d'un tel dispositif

Country Status (5)

Country Link
US (4) US5678414A (ja)
EP (1) EP0713062A4 (ja)
KR (1) KR100213430B1 (ja)
CN (1) CN1149369C (ja)
WO (1) WO1995034789A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203555B2 (ja) * 1997-08-12 2001-08-27 株式会社荏原製作所 吸収冷温水機
US6628159B2 (en) 1999-09-17 2003-09-30 International Business Machines Corporation SOI voltage-tolerant body-coupled pass transistor
US6404269B1 (en) 1999-09-17 2002-06-11 International Business Machines Corporation Low power SOI ESD buffer driver networks having dynamic threshold MOSFETS
US6718792B1 (en) * 2000-01-05 2004-04-13 Rocky Research Integrated aqua-ammonia chiller/heater
DE10161181B4 (de) * 2001-12-13 2004-03-18 Buderus Heiztechnik Gmbh Verfahren zur Regelung einer Diffusionsabsorptionsanlage
US7793508B2 (en) * 2004-11-05 2010-09-14 Flair Corporation Modular refrigerated dryer apparatus and method
GB0624945D0 (en) * 2006-12-14 2007-01-24 Microgen Energy Ltd A heating system
KR102027177B1 (ko) * 2013-04-08 2019-10-01 대우조선해양 주식회사 대형 컨테이너 냉각수시스템의 수격방지 장치
CN106989535B (zh) * 2017-03-29 2020-09-01 上海电力学院 一种基于燃气分布式能源站的溴化锂机组运行调整方法
CH716685A1 (fr) * 2019-10-09 2021-04-15 Ecoclim Sa Machine de refroidissement par absorption.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528870U (ja) * 1978-08-17 1980-02-25
JPS62106268A (ja) * 1985-11-05 1987-05-16 三洋電機株式会社 吸収冷凍機
JPS6438571A (en) * 1987-07-31 1989-02-08 Hitachi Ltd Absorption type water chiller and heater
JPH02140564A (ja) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd 吸収冷凍機の制御方法
JPH03137461A (ja) * 1989-10-23 1991-06-12 Sanyo Electric Co Ltd 再生器の制御装置
JPH04264366A (ja) * 1991-02-19 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> 燃料電池排ガス系熱回収装置とその制御方法
JPH0545019A (ja) * 1991-08-19 1993-02-23 Ebara Corp 吸収冷凍機
JPH0688654A (ja) * 1992-09-07 1994-03-29 Osaka Gas Co Ltd 吸収ヒートポンプ装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002359A (en) * 1959-07-28 1961-10-03 Trane Co Absorption refrigerating system
NL261763A (ja) * 1960-03-02
US3195318A (en) * 1962-04-23 1965-07-20 Trane Co Absorption refrigerating system
US3187515A (en) * 1962-09-04 1965-06-08 Electronic Specialty Co Method and apparatus for control of temperature in absorption refrigeration systems
US3452551A (en) * 1967-11-28 1969-07-01 Harrworth Inc Multiple stage direct fired absorption refrigeration system
US4121432A (en) * 1977-03-24 1978-10-24 Institute Of Gas Technology Solid adsorption air conditioning apparatus and method
US4164128A (en) * 1977-10-04 1979-08-14 Borg-Warner Corporation Absorption refrigeration system and control
US4179895A (en) * 1978-02-03 1979-12-25 Agency Of Industrial Science And Technology Cooling system using low potential and high potential energies
US4329851A (en) * 1978-06-08 1982-05-18 Carrier Corporation Absorption refrigeration system
US4246761A (en) * 1978-10-30 1981-01-27 Allied Chemical Corporation Absorption heat pump control system
JPS5828903B2 (ja) * 1978-11-07 1983-06-18 三洋電機株式会社 一重二重効用併用吸収冷凍機
US4251997A (en) * 1979-04-02 1981-02-24 Borg-Warner Corporation Control of absorption systems energized from plural storage tanks maintained at different temperatures
US4269034A (en) * 1979-09-10 1981-05-26 Rzechula Joseph A Absorption unit with variant control system
DE2948699A1 (de) * 1979-12-04 1981-06-11 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Temperaturreglung bei einer absoptionswaermepumpenanlage
FR2509443A1 (fr) * 1981-07-11 1983-01-14 Volkswagenwerk Ag Montage avec pompe a chaleur a fonctionnement bivalent en parallele comprenant un bruleur qui produit des fumees
US4380909A (en) * 1981-07-17 1983-04-26 Chevron Research Company Method and apparatus for co-generation of electrical power and absorption-type heat pump air conditioning
JPS5899660A (ja) * 1981-12-09 1983-06-14 トヨタ自動車株式会社 冷房装置
DE3360631D1 (en) * 1982-02-04 1985-10-03 Sanyo Electric Co Absorption heat pump system
JPS58195765A (ja) * 1982-05-12 1983-11-15 株式会社日立製作所 太陽熱利用吸収温水機
JPS58195763A (ja) * 1982-05-12 1983-11-15 株式会社日立製作所 太陽熱利用吸収式冷温水機の運転装置
US4474025A (en) * 1982-07-19 1984-10-02 Georg Alefeld Heat pump
US4596122A (en) * 1982-09-30 1986-06-24 Joh. Vaillant Gmbh Sorption heat pump
US4538424A (en) * 1984-02-15 1985-09-03 Gordon G. Waltenspiel Air cooling unit for vehicle
JPH0759915B2 (ja) * 1984-07-27 1995-06-28 株式会社日立製作所 排熱利用装置
DE3507887A1 (de) * 1985-03-06 1986-09-11 M A N Technologie GmbH, 8000 München Verfahren zur regelung von absorptions-kaelteanlagen oder -waermepumpen
WO1988006258A1 (fr) * 1987-02-19 1988-08-25 Dalin Paer Dispositif de recuperation de chaleur lors de l'utilisation d'une installation de pompes a chaleur
JPS6454179A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Absorption water chiller and heater
US5477696A (en) * 1990-04-10 1995-12-26 Kawaju Reinetsu Kogyo Kabushiki Kaisha Control device for absorption chiller or absorption chiller/heater
WO1991015721A1 (en) * 1990-04-10 1991-10-17 Kawaju Reinetsu Kogyo Kabushiki Kaisha Method of controlling absorption refrigerating machine or absorption water cooler-heater
US5156013A (en) * 1990-05-29 1992-10-20 Sanyo Electric Co., Ltd. Control device for absorption refrigerator
JP2815991B2 (ja) * 1990-07-30 1998-10-27 三洋電機株式会社 吸収式冷凍機の制御装置
KR960012321B1 (ko) * 1990-09-28 1996-09-18 산요덴기 가부시끼가이샤 흡수냉동기의 제어장치
JP2575970B2 (ja) * 1991-04-10 1997-01-29 株式会社日立製作所 吸収冷温水機及び個別分散型空調システム
US5315839A (en) * 1992-12-22 1994-05-31 Gas Research Institute Control system for absorption heat transfer plants
US5423189A (en) * 1992-12-22 1995-06-13 Gas Research Institute Control system for absorption heat transfer plants
JP2806491B2 (ja) * 1993-08-26 1998-09-30 東京瓦斯株式会社 吸収冷凍機及びその運転制御方法
WO1995018344A1 (fr) * 1993-12-27 1995-07-06 Daikin Industries, Ltd. Refrigerateur a absorption
JP3732877B2 (ja) * 1995-09-29 2006-01-11 三洋電機株式会社 吸収式冷凍機の制御方法及び制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528870U (ja) * 1978-08-17 1980-02-25
JPS62106268A (ja) * 1985-11-05 1987-05-16 三洋電機株式会社 吸収冷凍機
JPS6438571A (en) * 1987-07-31 1989-02-08 Hitachi Ltd Absorption type water chiller and heater
JPH02140564A (ja) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd 吸収冷凍機の制御方法
JPH03137461A (ja) * 1989-10-23 1991-06-12 Sanyo Electric Co Ltd 再生器の制御装置
JPH04264366A (ja) * 1991-02-19 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> 燃料電池排ガス系熱回収装置とその制御方法
JPH0545019A (ja) * 1991-08-19 1993-02-23 Ebara Corp 吸収冷凍機
JPH0688654A (ja) * 1992-09-07 1994-03-29 Osaka Gas Co Ltd 吸収ヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0713062A4 *

Also Published As

Publication number Publication date
EP0713062A4 (en) 1999-08-11
KR960704201A (ko) 1996-08-31
KR100213430B1 (ko) 1999-08-02
CN1129477A (zh) 1996-08-21
US5678414A (en) 1997-10-21
CN1149369C (zh) 2004-05-12
US5829260A (en) 1998-11-03
EP0713062A1 (en) 1996-05-22
US5878587A (en) 1999-03-09
US5865035A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
WO1995034789A1 (fr) Dispositif de refroidissement/chauffage a eau par absorption et procede de commande d&#39;un tel dispositif
JP5708975B2 (ja) 給湯装置
JP2019027615A (ja) 暖房給湯装置
JP4247521B2 (ja) 吸収式冷温水機
JP5162263B2 (ja) コージェネレーションシステム
US6408643B1 (en) Absorption refrigerator
KR100244110B1 (ko) 흡수냉온수기 및 그의 제어방법
JP5058193B2 (ja) 給湯システム
JP3699402B2 (ja) 湯水混合ユニット
JP2006349301A (ja) 暖房システム及び制御方法
JP4148909B2 (ja) ヒートポンプ式給湯暖房装置
JP2894602B2 (ja) 吸収冷温水機及びその制御方法
JPH08152224A (ja) 吸収冷温水機
JP2894974B2 (ja) 吸収冷温水機
JP2842566B2 (ja) 吸収冷温水機及びその制御方法
JP3831427B2 (ja) 吸収冷凍機の入熱制御方法
JP2842550B2 (ja) 吸収冷温水機
JP2842549B2 (ja) 吸収冷温水機
JP3639885B2 (ja) 吸収式冷凍機の制御方法
JPH06174303A (ja) 給湯器
JPH08121793A (ja) 循環式給湯装置の保温運転方法
JP3922788B2 (ja) 給湯方法および給湯装置
JPH10300212A (ja) 給湯燃焼装置
JP2005016760A (ja) ヒートポンプ式給湯機
JP2006090682A (ja) 吸収式冷温水機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190543.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019960700640

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995921137

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08592292

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995921137

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 881074

Country of ref document: US

Date of ref document: 19970624

Kind code of ref document: A

Ref document number: 1997 881078

Country of ref document: US

Date of ref document: 19970624

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997001220

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1995921137

Country of ref document: EP