WO1995031832A1 - Manufacture of thermoelectric power generation unit - Google Patents

Manufacture of thermoelectric power generation unit Download PDF

Info

Publication number
WO1995031832A1
WO1995031832A1 PCT/JP1995/000933 JP9500933W WO9531832A1 WO 1995031832 A1 WO1995031832 A1 WO 1995031832A1 JP 9500933 W JP9500933 W JP 9500933W WO 9531832 A1 WO9531832 A1 WO 9531832A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
forming
electrode film
photosensitive resin
substrate
Prior art date
Application number
PCT/JP1995/000933
Other languages
English (en)
French (fr)
Inventor
Shigeru Watanabe
Yoichi Nagata
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to US08/737,333 priority Critical patent/US5897330A/en
Priority to EP95918194A priority patent/EP0760530B1/en
Priority to DE69511263T priority patent/DE69511263T2/de
Priority to JP07529514A priority patent/JP3115605B2/ja
Publication of WO1995031832A1 publication Critical patent/WO1995031832A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method of manufacturing a thermoelectric power generation unit in which a thermocouple in which different types of semiconductors are joined is used as a heat generating element, and several thermocouples are joined in series.
  • Thermocouples generate voltage by giving a temperature difference across their ends.
  • Thermoelectric power generation attempts to use this voltage as electrical energy.
  • Thermoelectric generation has attracted much attention as a method that can directly convert heat energy into electric energy, and as an effective use of heat energy, including the use of waste heat.
  • thermoelectric generation unit used for thermoelectric generation has a simple structure in which a plurality of thermocouples, which are thermoelectric generation elements, are joined in series, which is advantageous for miniaturization compared to other generators.
  • thermocouples which are thermoelectric generation elements
  • thermoelectric power generation unit has a plate-like structure as a whole, and generates heat by using a thermocouple 100 using a p-type thermoelectric material 101 and an n-type thermoelectric material 102. ⁇ A large number of elements are arranged S and they are connected in series. The hot junction 104 and the cold junction 105 of the thermocouple 100 are located on the front surface and the S surface of the plate-like thermoelectric power generation unit, and the temperature of the front and back sides Generate electricity by the difference.
  • thermoelectric power generation unit that performs thermoelectric power generation is generally manufactured by the following manufacturing method.
  • thermoelectric semiconductor material blocks are formed by so-called sintering, in which the alloy material is pulverized and then baked to form a block-like material.
  • thermoelectric material 101 is cut by a dicing saw or the like, and divided into rectangular parallelepiped chips.
  • This rectangular chip as shown in Fig. 9! ) -Type thermoelectric material 101 and n-type thermoelectric material 102 are arranged in a matrix so that they alternate.
  • thermoelectric power generation unit solder welding is mainly used for this connection.
  • the conventional matured power generation unit manufactured in this way has an overall size of several + cm square or more, and the logarithm of the thermocouple is about several tens of pairs.
  • thermoelectric materials currently used the output voltage of thermocouples using Bi-e materials, which are said to have the best performance, is about 400 ⁇ / 3 ⁇ 4 per pair. is there.
  • a portable permanent device such as a wristwatch is usually used at a temperature around room temperature
  • a large temperature difference inside the portable electronic device cannot be expected.
  • the temperature difference inside the wristwatch is about 2 at most.
  • thermoelectric power generation unit is enlarged, but it is very difficult to consolidate 2000 pairs of thermocouples into a 1 cm square, which is about the size of a button pond. is there.
  • This heat and power generation unit Size is particularly important when using it as a power source for microelectronic devices such as watches.
  • thermoelectric power-generating unit in order to achieve the miniaturization of the thermoelectric power-generating unit, it suffices if the sintered body of the thermoelectric material can be finely cut and processed simply by the mechanical processing method described above.
  • thermoelectric materials are often very brittle, so care must be taken not only in the cutting process but also in handling after cutting, and the production yield will naturally decline.
  • thermoelectric power generation unit in the conventional manufacturing method using machining, it is considered that it is a common sense limit to handle materials with dimensions of at most about 1 mm, and the thermoelectric power generation unit was built in a size of 1 cm square Even so, the logarithm of the thermocouple, which is the thermal detector, is only about 50 pairs.
  • thermocouple As a thermoelectric power generation element.
  • the dance becomes so large that the current value required for the thermoelectric power generation element cannot be obtained. Therefore, after all, it is formed from the film formed by the vacuum evaporation method.
  • Thermocouples are not suitable as thermoelectric probes.
  • thermoelectric power generation element by this thick film method is described in, for example, Japanese Patent Application Laid-Open No. 63-70462.
  • thermoelectric power generation scrap by the thick film method described in this publication, Since clean printing can be used, miniaturization is possible, and a film thickness of 10 m or more can be realized. Therefore, it is suitable for forming a thermoelectric power generation element having a lower impedance in the inner city than a thin film formed by a vacuum deposition method.
  • thermoelectric material In the pretreatment process for producing the paste, there is a problem that impurities are mixed in the thermoelectric material, and a uniform solid solution cannot be formed, and the composition is distributed. Furthermore, there is a problem that cracks and the like occur during sintering.
  • the pattern is formed by screen printing, it is difficult to obtain a precise power generation cut with minute dimensions with high accuracy. For these reasons, sufficient properties cannot be obtained, and the thick film method is not the optimal method for making a small thermal power generation unit.
  • thermoelectric power generation unit As described above, the method of etching a film formed by the conventional machining method or the vacuum evaporation method is used to integrate a large number of thermocouples as thermoelectric elements in a minute area. It was difficult to form a thermoelectric power generation unit into a thermoelectric power generation unit, and it was not possible to produce an extremely small thermoelectric power generation unit having sufficient power.
  • the present invention solves such a problem caused by the conventional method of manufacturing a thermoelectric power generation unit, and provides a thermoelectric generation unit capable of obtaining a sufficient output as a power generator and having an extremely small size with high pattern accuracy.
  • the purpose is to make it easy to manufacture. Disclosure of the invention
  • thermoelectric unit In order to achieve the above objectives, this effort will adopt the manufacturing methods described in the following item 1 as the manufacturing method of the thermoelectric unit.
  • the manufacturing method of the first thermoelectric generation unit by this effort consists of the following steps.
  • Forming a first thermoelectric structure by dissolving and removing the substrate and the electrode film.
  • thermoelectric structure and the second thermoelectric structure are alternately stacked and bonded to each other, cut to a predetermined length, and then the first thermoelectric structure and the second thermoelectric structure adjacent to each other are cut.
  • Cross section is replaced by wiring electrode! : A process of forming a small number of thermocouples connected in series as thermoelectric generators by joining together.
  • the method of manufacturing the second mature electric power generation unit according to the present invention includes substantially the same steps as the above-described first manufacturing method, except that the first thermoelectric structure and the second thermoelectric structure are combined with each other.
  • the forming step instead of the step of coating a thermosetting resin on the photosensitive resin and the first thermoelectric element or the second thermoelectric substance, the photosensitive resin and the first thermoelectric element or the second thermoelectric element are replaced.
  • the step of bonding the vulnerable board to the hot body is used.
  • a third method of manufacturing a heat generating power unit according to the present invention includes the following steps.
  • a step of forming a composite thermoelectric structure by a step of contacting the surface on which the body is formed with an intervening insulating plate, and a step of dissolving and removing the two substrates and each electrode film.
  • thermoelectric body and second thermoelectric body are connected to a wiring electrode.
  • thermoelectric generation unit includes the following steps.
  • thermoelectric structure the plurality of upper IS first thermostructures and the second thermoelectric structure are alternately stacked and bonded, cut to a predetermined length, and then joined to the first thermostructure and the second thermoelectric structure.
  • the fifth method of manufacturing a thermoelectric unit according to the present invention comprises substantially the same steps as those of the fourth method, except that the first thermoelectric structure and the second thermoelectric structure are formed.
  • the step of performing the above instead of the step of coating the thermosetting resin on the upper IE photosensitive resin and the first thermoelectric body or the second thermoelectric body, the above-described photosensitive resin and the first thermoelectric body or the second thermoelectric body or the first thermoelectric body or the second thermoelectric body are replaced.
  • the step of bonding a mature insulating board on the mature body of step 2 is used.
  • a sixth method for manufacturing a heat generating unit according to the present invention includes the following steps.
  • a step of forming a stripe pattern using a photosensitive resin on an electrically conductive substrate different from the above-mentioned substrate, and a step of forming a stripe pattern using the above-mentioned substrate as an electrode in the opening of the photosensitive resin A step of forming a second heat sink made of a second thermoelectric material by a plating method;
  • thermoelectric element Bonding the surface on which the first thermoelectric element is formed and the surface on which the second thermoelectric element is formed with a heat insulating plate therebetween; and dissolving and removing the two substrates Forming a composite thermal structure by the above steps.
  • thermoelectric structures are stacked and bonded to each other, and cut into a predetermined length. Then, cross sections of the adjacent first thermoelectric body and second thermoelectric body are alternately connected by wiring electrodes. By combining them, the heat power generation cable A step of forming a plurality of thermocouples connected in series as ⁇ .
  • the manufacturing method of the seventh heat and power generation unit based on this investigation includes the following steps.
  • thermoelectric body made of a first thermoelectric material is formed on the first electrode film at the opening of the photosensitive resin by a plating method.
  • thermoelectric body made of a second thermoelectric material on the second electrode film in the opening of the photosensitive resin using the second electrode film by a plating method
  • thermosetting resin Coating a thermosetting resin on the photosensitive resin and the first and second thermoelectric elements
  • a step of dissolving and removing the substrate, the first electrode film, and the second electrode film to form a matured structure is a step of dissolving and removing the substrate, the first electrode film, and the second electrode film to form a matured structure.
  • thermoelectric generators a plurality of the thermoelectric structures are stacked and bonded to each other, cut to a predetermined length, and then the cross sections of the first thermoelectric body and the second mature body which are in a row are alternately connected by wiring.
  • thermocouples connected in series are formed as thermoelectric generators.
  • thermoelectric generator unit includes substantially the same steps as the seventh manufacturing method. Instead of the step of coating the thermosetting resin and the first and second heat bodies with the thermosetting resin, a heat insulating plate is bonded on the photosensitive resin and the first and second mature bodies. Process.
  • thermoelectric generator unit is characterized in that, in the step of forming the thermoelectric structure in the seventh or eighth manufacturing method, the first step is performed by opening the photosensitive resin on the substrate.
  • Thermal lightning body and second thermoelectric The steps up to the step of forming the body by the plating method are the same as those in the seventh or eighth manufacturing method.
  • the step of dissolving and removing the electrode film forms a composite thermal structure.
  • thermoelectric generation elements are formed.
  • thermoelectric structure in the seventh manufacturing method in the step of forming a thermoelectric structure in the seventh manufacturing method, the IS-sensitive resin and the first and second thermoelectric units are formed.
  • the steps up to the step of coating the thermosetting resin on the body are the same as in the seventh manufacturing method.
  • thermoelectric structure as a thermoelectric generator by contacting the bodies with each other to form a thermoelectric structure.
  • thermoelectric structures After a plurality of the thermoelectric structures are stacked and bonded, the ends of the adjacent mating thermocouple rows are connected to each other, and all the thermocouples are connected in series.
  • the method of manufacturing the eleventh thermoelectric power generation unit according to the present invention comprises substantially the same steps as those of the tenth manufacturing method.
  • the step of forming the thermoelectric structure the first 15 Instead of the step of coating the thermosetting resin on the first and second thermoelectric bodies, the step of contacting the photosensitive resin and the matured board on the first and second thermoelectric bodies is replaced by Used.
  • a metal film is formed on a substrate whose surface is entirely green. 0
  • the first electrode film and the second! A step of forming a striped pattern in the gap between the comb teeth of the polar film.
  • a wiring electrode is formed by patterning the formed gold-extended film using an etching method, and the first thermoelectric body and the second conductor adjacent to each other are exchanged by the wiring electrode! : Forming a thermal row as a thermoelectric generator.
  • thermoelectric structure is formed by the above steps.
  • thermocouple rows are connected to each other, and all the thermocouples are connected in series.
  • a thirteenth method of manufacturing a power supply unit according to the present invention includes the following steps.
  • thermoelectric generator After bonding the first thermal structure and the second thermoelectric structure formed in each of the above steps by fitting one opening and the other non-opening of each photosensitive resin, a predetermined size is obtained.
  • thermoelectric structures are stacked and bonded together via an insulating material, and the thermoelectric elements at the ends of the composite thermoelectric structure that are to be adhered to each other are wired by element end wiring, so that each thermocouple is connected in series. The process of connecting.
  • the method of manufacturing the 14th thermoelectric power generation unit by Hideaki consists of the following steps.
  • a photosensitive resin having an opening having a width equal to or greater than the width of the non-opening portion of the substrate and having a second stripe pattern having the same pitch as the first stripe pattern is formed on the electrode film.
  • an opening of the photosensitive resin using the electrode film Forming a second thermoelectric material made of a second thermoelectric material thinner than the photosensitive resin by a plating method; and forming a second thermoelectric structure.
  • thermoelectric structure and the second thermoelectric structure are bonded to each other by fitting one opening and the other non-opening of the photosensitive resin, and then cutting the photosensitive resin into a predetermined size; A step of dissolving and removing each substrate and the electrode film; and alternately wiring cross sections of the adjacent first thermoelectric element and second thermoelectric element with wiring electrodes to form a thermocouple as a thermoelectric element. Forming a composite thermoelectric structure by forming a row.
  • thermocouples are connected in series by laminating a plurality of the composite thermoelectric structures via an insulating material and wiring the thermoelectric elements at the ends of the adjacent composite thermoelectric structures with element end wiring. Step of connecting to.
  • the width of the opening of the first striped pattern is equal to or larger than the width of the non-opening, and the second striped pattern is formed. Should be the same as the first striped pattern.
  • the photosensitive resin for forming a strip-like pattern on a substrate or an electrode film thereon may be made of an acrylic resin. It is preferable to use a photosensitive dry film or a photosensitive polyimide resin. According to such a method for manufacturing a thermoelectric power generation unit, a pattern is formed using a photosensitive resin, and a thermoelectric body is formed in the opening of the photosensitive resin by plating. Therefore, it is possible to accurately form a thermoelectric power generation element (thermocouple) having a width of the formula 1 ⁇ .
  • thermoelectric element is formed by the plating method, it is possible to form a thermoelectric film having a film thickness of about 10 ⁇ m to about 1 ⁇ . It is also easy to control the thermoelectric composition by plating bath composition and voltage control.
  • thermoelectric generation unit includes a photolithography process using a photosensitive resin, a plating process, a vacuum deposition and an etching process. Therefore, multiple batches can be
  • thermocouple 91 By being able to form the element, the integration density of the thermocouple, which is a thermoelectric element, can be dramatically increased as compared with the conventional case. Therefore, it is possible to easily manufacture a thermoelectric power generation unit that is small but can obtain high output even with a low temperature difference.
  • thermoelectric structure is formed in the openings of the photosensitive resin having the stripe-shaped pattern. For this reason, if thermoelectric structures made of different thermoelectric materials are laminated so that the non-opening and the opening (meshing portion) of the photosensitive resin are fitted together, the cross-section of the thermoelectric unit of the thermoelectric generator unit during lamination can be obtained. The amount of displacement is small.
  • FIG. 1 to FIG. 8 are views for explaining a manufacturing process of a thermoelectric power generation unit according to a first embodiment of the present invention, and FIG. 1 to FIG. The figures are also used to explain the second and third embodiments, FIGS. 4 and 5 are also used to explain the second embodiment, and FIG. 8 is a diagram of the second, fourth and fifth embodiments. Also used for explanation.
  • FIG. 9 is a diagram showing a part of the manufacturing process of the thermoelectric power generation unit according to the second embodiment of the present invention.
  • FIGS. 10 to 13 are diagrams for explaining the manufacturing process of the thermoelectric power generation unit according to the third embodiment of the present invention.
  • FIGS. 11 and 12 are diagrams of the sixth embodiment.
  • FIG. 13 is also used for the description of the sixth and ninth embodiments.
  • FIGS. 14 to 18 are views for explaining the manufacturing process of the thermoelectric power generation unit according to the fourth embodiment of the present invention.
  • FIGS. 14 and 15 are FIGS. FIG. 17 and FIG. 18 are also used for the description of the fifth embodiment.
  • FIG. 19 is a diagram showing a part of the manufacturing process of the thermoelectric power generation unit according to the fifth embodiment of the present invention.
  • FIG. 20 is a view showing a part of the manufacturing process of the thermoelectric power generation unit according to the sixth embodiment of the present invention.
  • FIGS. 21 to 28 are views for explaining the manufacturing process of the thermoelectric power generation unit according to the seventh embodiment of the present invention
  • FIGS. 21 to 23 are FIGS.
  • FIG. 25 is also used for the description of the tenth embodiment
  • FIGS. 26 to 28 are also used for the description of the eighth embodiment.
  • FIG. 29 is a diagram showing a part of the manufacturing process of the thermoelectric power generation unit according to the eighth embodiment and the eleventh embodiment of the present invention. '
  • FIGS. 30 to 32 are views for explaining the manufacturing process of the thermoelectric power generation unit according to the ninth embodiment of the present invention, and FIG. 30 is also used to explain the 12th embodiment. I do.
  • FIG. 33 and FIG. 34 are views showing a part of the manufacturing process of the thermoelectric power generation unit according to the tenth embodiment and the eleventh embodiment of the present invention.
  • FIG. 35 and FIG. 36 are views showing a part of the manufacturing process of the thermoelectric power generation unit according to the 12th embodiment of the present invention.
  • FIGS. 37 to 45 are diagrams for explaining a manufacturing process of the thermoelectric generator unit according to the thirteenth embodiment of the present invention.
  • FIG. 46 is a perspective view showing an example of a thermoelectric power generation unit manufactured by a conventional manufacturing method.
  • BEST MODE FOR CARRYING OUT THE INVENTION The method of manufacturing a thermoelectric generation unit according to the present invention will be described in more detail.
  • thermoelectric power generation unit according to the first embodiment of the present invention.
  • a copper plate is used for the substrate 10 shown in FIG.
  • titanium (Ti) is formed as an electrode film 11 on the substrate 10 by a vacuum evaporation method.
  • the thickness of this electrode film 11 is 500 nm
  • the titanium film serving as the electrode film 11 also has a role of protecting the copper plate of the substrate 10 from being attacked by a plating target in a plating process described later.
  • a photosensitive resin 12 is formed on the electrode film 11.
  • a photosensitive dry film having a film thickness of 50 ⁇ is used, and is formed using a steel coater.
  • the dry film of the photosensitive resin 12 is exposed to light using a photomask and exposed to light, and only the unexposed portion is dissolved and removed. 1 As shown in FIG. 1, a strip-like pattern is formed by photosensitive resin 12.
  • the planar pattern shape of the photosensitive resin 12 after this patterning is shown by ⁇ in the plan view of FIG.
  • a Teflon-based polymer film is formed on the entire back surface of the substrate 10 by using a spin coating method.
  • the polymer film made of a Teflon-based material formed on the back surface of the substrate 10 has a role to prevent the formation of the plating film on the back surface of the substrate 10 in a plating process described later.
  • thermoelectric body 15 made of a first thermoelectric material is formed in the opening 13 of the photosensitive resin 12 on the substrate 10 by a plating method as shown in FIG. ,
  • a BiTeSe alloy which is an ⁇ -type semiconductor, is used as a material.
  • a plating electrolyte for forming the first thermoelectric body 15 of the n-type semiconductor a nitric acid solution containing Bi (N 03), Te 02 and Se 2 is used.
  • the electrode film 11 is used as a force source and a Pt electrode is used as the anode and a voltage of 1 V is applied between both electrodes, the BiTeSe alloy is turned into an opening in the photosensitive resin 12. It can be deposited on the two-electrode film 11 in 13.
  • the first thermal element 15 can be formed only in the region on the electrode film 11 in the opening 13 of the photosensitive resin 12.
  • the amount of deposition is reduced by the amount of charge calculated from the current consumption during electrolysis. Therefore, it is easy to control the first matured body 15 to a required thickness by measuring the charge amount.
  • the film thickness of the first thermal element 15 is the same as that of the buttered photosensitive resin 12 as shown in FIG. 2, that is, the amount of reaction charge so that the film thickness becomes 50 ym. Set.
  • composition of the alloy can be changed by changing the ionic strength of B i, T e, and S e in the plating electrolyte, and the required output voltage or
  • the material of the first thermoelectric element 15 having a resistance value can be selected.
  • the polymer film on the back surface of the substrate 10 is separated and removed by toluene. After that, the first thermoelectric element 15 formed on the substrate 10 is heat-treated for 1 hour in a nitrogen atmosphere at 350 ° C.
  • thermosetting resins 1 6 consisting mi de resin, by forming the entire surface of the Li substrate 1 0 Supinkoti ring method, then, 1 5 0 e O and Li heat treatment C or higher, Porii Mi de resin Is cured.
  • the entire substrate 10 was immersed in a nitric acid solution to dissolve all of the copper that was the material of the substrate 10, and then the titanium that was the material of the electrode film 11 was further dissolved using a 1% hydrofluoric acid solution. Dissolve (T i).
  • the first thermoelectric body 15, the photosensitive resin 12 and the thermosetting resin 16 are insoluble in nitric acid and hydrofluoric acid. Therefore, as shown in FIG. 4, the first thermoelectric body 15, the photosensitive resin 12, and the thermosetting resin 16 remain as they are, and the first thermoelectric structure 20 can be formed. .
  • thermoelectric structure 20 including the first thermoelectric body 15 is formed.
  • the second thermoelectric structure 20 shown in FIG. Form structure 21 the difference from the above is the plating process of the thermoelectric material of the second matured body.
  • the plating process of the thermoelectric material of the second thermoelectric body 17 will be described.
  • thermoelectric body 17 made of a second thermoelectric material is formed in the opening 13 of the photosensitive resin 12 by a plating method. I do.
  • a BiTeSb alloy which is a p-type semiconductor, is used as a material.
  • thermoelectric body 17 As a plating electrolyte of the second thermoelectric body 17 which is a p-type semiconductor, a nitric acid solution containing Bi (N03), Te2 and SbC13 is used.
  • a nitric acid solution containing Bi (N03), Te2 and SbC13 is used.
  • the electrode film 11 is used as a force source, and a Pt electrode is used as an anode and a voltage of 1 V is applied between both electrodes, the BiTeSb alloy is converted to the photosensitive resin 1. 2 can be deposited on the electrode film 11 in the opening 13.
  • the second thermoelectric element 17 is formed by the opening 1 of the photosensitive resin 12. Precipitates only in 3.
  • the thickness of the second thermoelectric element 17 is controlled by the amount of reaction charge so as to be 50 ⁇ , which is the same as the thickness of the dry film.
  • thermoelectric structure having a cross-sectional structure shown in FIG. 6 is obtained by cutting it to a required length.
  • the surface may be polished by a rubbing method or the like.
  • a gold (Au) film is formed on the entire cross section of the thermoelectric structure by a vacuum evaporation method, a sputtering method, or the like, or an electroless plating method. Further, the gold (Au) film is patterned by photolithography to form a wiring electrode 25.
  • the wiring electrode 25 connects the first thermoelectric body 15 and the second thermoelectric body 17 appearing next to each other in a cross section to form a thermocouple 30. Then, by connecting all the thermocouples 30 in series, a thermoelectric generation unit can be obtained.
  • the photosensitive resin 12 made of a dry film can be patterned with micron-order accuracy.
  • thermoelectric body 15 and the second thermoelectric body 17 formed in the opening 13 of the photosensitive resin 12 by plating are formed of a photosensitive resin.
  • Corrected form (Rule 91) It can be formed with a pattern accuracy on the order of microns, as in 12.
  • thermoelectric element 15 and the second thermoelectric element 17 formed by the plating method are easy to control in thickness and control in composition, and are pre-treated just to dissolve the raw materials. Is simpler than before.
  • thermocouples 30 included in the substrate 10 is 2500 pairs.
  • thermoelectric generation unit When a temperature difference of 2 ° C is applied to the thermoelectric generation unit, an open-circuit voltage of 2 V is obtained, which is sufficient for driving portable electronic devices such as watches.
  • thermoelectric power generation unit the length of this thermoelectric power generation unit is 2 mm
  • the internal impedance is 13 k ⁇ , which is an order that can be sufficiently handled for electronic equipment.
  • thermoelectric power generation unit according to the second embodiment of the present invention will be described with reference to FIGS. 1, 2, and 4 to 9.
  • FIG. 1 to 8 are common to the first embodiment described above, and only FIG. 9 is added to the description of the second embodiment.
  • the first step is performed up to the step of coating the polymer film, the step of forming the first thermoelectric element 15 and the second thermoelectric element 17, the step of peeling the polymer film on the back surface, and the ripening step. Same as the example.
  • the second embodiment differs from the first embodiment only in that a heat insulating plate 18 is used instead of the thermosetting resin 16 as shown in FIG.
  • a heat insulating plate 18 is used instead of the thermosetting resin 16 as shown in FIG.
  • the heat insulating plate 18 a glass plate having a thickness of 100 ⁇ m is used.
  • the photosensitive resin 12 and the first thermoelectric member 15 are bonded to each other using an epoxy-based adhesive.
  • thermoelectric generation unit in which a plurality of thermocouples 30 are connected in series is obtained. Also in the method of manufacturing a thermoelectric power generation unit according to the second embodiment of the present invention, a thermoelectric power generation unit having minute dimensions can be formed with higher precision than before. Furthermore, it is easy to control the shape and composition of the thermoelectric element (thermocouple).
  • thermoelectric structure 20 is interposed between the first thermoelectric structure 20 and the second thermoelectric structure 21.
  • the hardness of the thermoelectric structure in the manufacturing process is increased as compared with the first embodiment, so that the reliability of the substrate 10 against distortion and warpage in the melting process is reduced.
  • thermoelectric power generation unit according to the third embodiment of the present invention will be described with reference to FIGS. 1, 3, and 10 to 13.
  • FIG. 1 is a diagrammatic representation of the thermoelectric power generation unit according to the third embodiment of the present invention.
  • a copper plate is used for the substrate 10, a step of forming the electrode film 11 on the substrate 10, and a step of forming the photosensitive resin 12.
  • the steps up to the step of removing the polymer film on the back surface of 0 and the step of heat treatment are the same as in the first embodiment.
  • the substrate 10 on which the first thermoelectric element 15 is formed and the substrate 10 on which the second thermoelectric element 17 is formed are sandwiched by a heat insulating plate 18.
  • a glass plate having a thickness of 10 1 ⁇ is used.
  • the bonding of the substrate 10 on which the first thermoelectric element 15 is formed and the substrate 10 on which the second thermoelectric element 17 is formed is performed as shown in FIG. And the second thermoelectric body 17 are directed toward the surface of the heat insulating plate 18.
  • the bonding is performed using an epoxy adhesive.
  • thermoelectric structure 23 is formed.
  • thermoelectric structures 23 are laminated so that the layer of the first thermoelectric body 15 and the second thermoelectric body 17 face each other, Glue with an adhesive and cut to the required length.
  • each implanted thermoelectric structure 23 is separated by the remarkable epoxy adhesive used for bonding, and at this time, the first matured electric body 15 is formed. There is no conduction between the second thermoelectric element 17 and the second thermoelectric element 17.
  • the surface of the scrap may be polished by using the lapping method as described above.
  • a gold (Au) film is formed on the entire cross section of the element by vacuum evaporation, sputtering, or electroless plating. Then, the wiring electrode 25 is formed by patterning the gold (Au) film by photolithography.
  • the wiring electrode 25 is formed by connecting the first thermoelectric body 15 and the second thermoelectric body 17 appearing next to each other in a cross section to form a thermocouple 30. Then, by connecting all the heat flute pairs 30 in series, a thermoelectric unit can be obtained.
  • thermoelectric frost unit in the method of manufacturing a thermoelectric frost unit according to the third embodiment, a thermoelectric unit with a small size can be formed with higher precision than before. Furthermore, it is easy to control the shape and composition of the thermoelectric generator (thermocouple).
  • the heat insulating plate 18 is made of a composite heat! Interposed between the structures 23.
  • the hardness of the thermoelectric power generation unit increases, and the thermoelectric green plate 18 is halved in comparison with the second embodiment. It is suitable for further miniaturization of thermoelectric power generation unit.
  • thermoelectric power generation unit As a substrate 10 ′ shown in FIG. 14, a titanium plate is used as a metal plate. Then, a photosensitive resin 12 is formed on the entire surface of the substrate 10 ′. As the photosensitive resin 1 2, a photosensitive dry film having a film thickness of 5 ⁇ Is formed using a roll coater.
  • the dry film which is photosensitive resin 12
  • the dry film which is photosensitive resin 12
  • the image processing is used to dissolve and remove only the unexposed areas.
  • the photosensitive resin 12 is formed by patterning in a stripe shape.
  • a Teflon-based polymer film is formed on the back surface of the substrate 10 ′ by using a spin coating method. Coat the entire back surface.
  • the polymer film formed on the back surface of the substrate 10 ′ is formed in order to prevent the formation of a mech film on the back surface of the substrate 10 ′ in a plating process described later.
  • the first thermoelectric material 15 made of the first thermoelectric material is formed on the substrate 10 ′ in the opening 13 of the photosensitive resin 12 by a plating method.
  • the first thermoelectric element 15 formed in the opening 13 of the photosensitive resin 12 uses a BiTeSe alloy, which is an n-type semiconductor, as a material.
  • thermoelectric element 15 As the plating electrolyte of the first thermoelectric element 15 which is an ⁇ -type semiconductor, a nitric acid solution containing ⁇ i (N 03), Te 02 and Se 02 is used, and When the substrate 10 ′ is used as a force source, a Pt electrode is used as the anode, and a voltage of 1 V is applied between both electrodes of the force source node.
  • the alloy can be deposited on the substrate 10 in the opening of the photosensitive resin 12.
  • the back surface of the substrate 10 ′ is protected by the polymer film as described above. For this reason, the first thermoelectric body 15 can be deposited only in the opening of the photosensitive resin 12.
  • the amount of deposition is determined by the amount of electric charge calculated from the current consumption during electrolysis, so that the first thermoelectric element 15 is required by measuring the amount of electric charge. It is easy to control the thickness
  • the film thickness of the first thermoelectric element 15 is set to be the same as that of the photosensitive resin 12, that is, 50 ⁇ .
  • composition of the alloy of the first thermoelectric element I5 can be changed by changing the ion concentration of B i, D e and S e in the electrolytic solution. By setting these ion concentration conditions, a material having a required output voltage or a required resistance value can be selected as the first thermoelectric element 15.
  • the polymer film used as the plating protection film on the lining surface of the substrate 10 ' is peeled off and removed with toluene.
  • substrate 1. Heat-treat the first thermoelectric element 15 formed thereon in a nitrogen atmosphere at a temperature of 350 for 1 hour.
  • the heat treatment in the nitrogen atmosphere is performed in order to equalize the alloy composition of the first thermoelectric body 15 and to improve the output of the thermoelectric generation unit.
  • thermosetting resin 16 made of a polyimide resin is formed on the photosensitive resin 12 of the substrate 10 and the upper surface of the first thermoelectric element 15.
  • This thermosetting resin 16 is formed by a spin coating method.
  • thermoelectric generator having the thermosetting resin 16 formed on the upper surface of the photosensitive resin 12 and the first thermoelectric element 15 was immersed in a 1% hydrofluoric acid solution. Dissolve and remove titanium, which is the material of the substrate 10,
  • the first thermoelectric body 15, the photosensitive resin 12 and the thermosetting resin 16 remain as they are because they are insoluble in hydrofluoric acid, and the first thermoelectric structure 20. Can be formed.
  • thermoelectric structure 20 in which the first thermoelectric body 15 is formed, and the same steps as shown in FIG. 5 are performed in the first embodiment. Form the same second thermoelectric structure 2 1 can do.
  • the difference from the above is the plating process of the second thermoelectric element 17 made of the second thermoelectric material.
  • the plating process of the second thermal element 17 made of the second thermoelectric material will be described.
  • thermoelectric material is formed on the substrate 10 ′ of the opening 13 of the photosensitive resin 12 by a plating method.
  • thermoelectric element 17 a BiTeSb alloy which is a p-type semiconductor is used as a material.
  • thermoelectric body 17 As a plating electrolyte of the second thermoelectric body 17 which is a p-type semiconductor, a nitric acid solution containing Bi (N03), Te2 and SbC13 is used.
  • a Pt electrode is used as the anode, and a voltage of 1 V is applied between the anode force electrodes, the BiTeSb alloy is exposed.
  • thermoelectric element 17 is deposited only in the opening 13 of the photosensitive resin 12 because the back surface of the substrate 10 ′ is protected by the polymer film.
  • the thickness of the second thermal element 17 is controlled by a reaction charge cell so as to be 50 ⁇ , which is the same as that of the dry film as the photosensitive resin 12.
  • the composition of the alloy is changed by changing the ion concentration of B i, Te and S b in the plating electrolyte of the body 17, and the second thermoelectric body 17 has the required output voltage or resistance value Control
  • thermoelectric structure 21 is formed according to the same processing method as the manufacturing process of the first thermoelectric structure 20 described above.
  • the first matured structure 20 and the second thermoelectric structure 21 are alternately stacked on top of each other, and an epoxy-based adhesive is used. Adhere both.
  • thermosetting structure in which a thermosetting resin 16 is interposed between the first thermoelectric structure 20 and the second thermoelectric structure 21 is formed.
  • Body can be formed.
  • a gold (Au) film is formed on the entire cross-section by a vacuum deposition method, a sputtering method, or an electroless plating method.
  • the gold (Au) film is patterned by photolithography to form wiring electrodes 25 in the same manner as in the first embodiment shown in FIG.
  • This wiring electrode 25 connects the first thermoelectric element 15 and the second thermoelectric element 17 that appear next to each other in the cross section to form a mature couple 30.
  • thermocouples 30 By connecting all the thermocouples 30 in series, a power generation unit can be obtained.
  • thermoelectric generator thermocouple
  • thermoelectric power generation unit in the fourth embodiment, as compared with the first to third embodiments of the present invention, a titanium film serving as a groove 11 is not formed on a substrate 10 ′. From this, according to the method of manufacturing a thermoelectric power generation unit in the fourth embodiment, there is an effect that the manufacturing process is further simplified.
  • the first As shown in Fig. 4 and Fig. 15, a titanium plate is used for the substrate 10 ', the coating and patterning processes of the photosensitive resin 12 are performed, and the coating of the polymer film on the back surface of the substrate 10' is performed.
  • the steps up to the step of forming the first thermoelectric element 15 or the second thermoelectric element 17, the step of removing the polymer film on the back surface, and the heat treatment step are the same as those of the fourth embodiment.
  • a heat insulating plate 18 is attached to the photosensitive resin 12 of the substrate 10 ′ and the first resin. Formed on generator 15.
  • a glass plate having a thickness of ⁇ ⁇ ⁇ ⁇ ⁇ is used, and is bonded to the upper surfaces of the photosensitive resin 12 and the first power generator 15 by an adhesive means.
  • thermoelectric structure 20 titanium as a material of the substrate 10 ′ is dissolved and removed using a 1% hydrofluoric acid solution to form a first thermoelectric structure 20.
  • second thermoelectric structure 21 titanium as a material of the substrate 10 ′ is dissolved and removed using a 1% hydrofluoric acid solution to form a first thermoelectric structure 20.
  • first thermoelectric structure 20 and the second thermoelectric structure 21 are connected to each other by a heat insulating plate 1. 8 can be glued to the eyebrows and cut to form a thermoelectric structure,
  • a gold (An) film is formed on the entire cross section by a vacuum deposition method, a sputtering method, or an electroless plating method. Thereafter, the gold (Au) film is patterned by photolithography to form a rooting electrode 25 in the same manner as in the first embodiment shown in FIG. Get.
  • thermoelectric power generation unit having a small size can be formed with higher accuracy than before. Further, the shape and the shape of the thermoelectric power generation unit (thermocouple) can be improved. The composition can be easily controlled.
  • thermoelectric power generation unit according to the sixth embodiment of the present invention will be described with reference to FIGS. 14, 15 and 20, and FIGS. 11 to 13. .
  • thermoelectric power generation unit in the method for manufacturing a thermoelectric power generation unit according to the sixth embodiment of the present invention, as shown in FIGS. 14 to 16, a titanium plate is used for the substrate 10 ′ and the photosensitive resin 1 is used.
  • the substrate on which the first matured body 15 is formed and the second The substrate on which the thermoelectric body 17 is formed is bonded via the heat insulating plate 18.
  • the heat insulating plate 18 As the heat insulating plate 18, a glass plate having a thickness of ⁇ ⁇ ⁇ is applied.
  • the substrate 10 'on which the first thermoelectric body 15 is formed and the substrate 10' on which the second 'thermoelectric body 17 is formed are bonded to the first thermoelectric body 15 and the second The surface on which the thermoelectric body 17 is formed is directed to the heat-insulating plate 18 side, and an epoxy-based adhesive is used.
  • thermoelectric structure 23 shown in FIG. 11 as in the third embodiment.
  • thermoelectric structures 23 are laminated so that the first thermoelectric body 15 and the second thermoelectric body 17 face each other, and an epoxy-based adhesive is Glue them together and cut them to the required length.
  • thermoelectric body 15 is formed. Between the second thermoelectric element 17
  • the element surface may be polished by the rubbing method as described above.
  • a gold (Au) film is formed on the entire cross section of the element by a vacuum evaporation method, a sputtering method, or an electroless plating method. Further, the gold (Au) film is patterned by photolithography to form a wiring electrode 25.
  • the wiring electrode 25 connects the first thermoelectric body 15 and the second thermoelectric body 17 appearing next to each other in a cross section to form a thermocouple 30.
  • thermoelectric generation unit By connecting all the thermocouples 30 in series, a thermoelectric generation unit can be obtained.
  • thermoelectric power generation unit In the method of manufacturing a thermoelectric power generation unit according to the sixth embodiment, a micro-sized power generation unit having a small size can be formed with higher precision than before, and the shape and the shape of the power generation element (thermocouple) can be improved.
  • the group is easy to control ⁇
  • thermoelectrically luminescent plate 18 is interposed between the composite thermoelectric structures 23. From this fact, it is possible to develop the system! ; As the hardness of the unit increases, the thickness of the thermoelectric power generation element on which the thermoelectric power generation element is stacked is thinner because only half of the thermoelectrically green plate 18 is required as compared with the fifth embodiment. Suitable for miniaturization.
  • thermoelectric power generation unit according to the seventh embodiment of the present invention will be described with reference to FIGS. 2IS to 28.
  • a copper plate whose front surface is covered with an absolutely green film (not shown) such as a SiO 2 film is used.
  • Zemmidorimaku consisting S i 0 2 has two electrode films to be formed in the process steps after this are coatings having a function of preventing a short circuit by copper of the substrate 1 0 beta
  • a titanium film is formed as an electrode film on the entire front surface of the substrate 10.
  • This electrode film is formed to a thickness of 500 nm by a vacuum evaporation method.
  • the titanium film which is the electrode film
  • the titanium film is patterned using photolithography technology and etching technology so that the two-dimensional pattern shape of the electrode film becomes a comb-tooth shape that enters each other.
  • a first electrode film 31 and a second electrode film 32 are formed.
  • the plan pattern shape of the first electrode film 31 and the second electrode film 32 is shown in the plan view of FIG. 22.
  • the first electrode film 31 and the second electrode film 32 are shown.
  • the photosensitive resin 12 is formed on the entire surface of the substrate 10 on which is formed.
  • a photosensitive dry film having a thickness of 5 O z m is formed using a roll coater.
  • a strip-like shape is formed in the gap region where the first electrode film 31 and the second electrode film 32 are not formed by using the photolithography technique.
  • the photosensitive resin 12 is formed in a shape that is patterned in
  • a Teflon-based polymer film is coated on the entire back surface of the substrate 10 by using a spin coating method. deep.
  • the first electrode film 31 in the opening 13 of the photosensitive resin 12 is formed on the first electrode film 31 by using a plating method. 1 heat! Form body 15;
  • thermoelectric element 15 formed on the first electrode film 31 an Bi-type e-Se alloy which is an n-type semiconductor is used as a material.
  • thermoelectric body 15 As a plating electrolyte for the first thermoelectric body 15 which is a type II semiconductor, a nitric acid solution containing Bi (N 03), Te 02 and Se 02 is used.
  • a Pt electrode is used as the anode, and an IV voltage is applied between the force node electrodes, the BiTeSe alloy is formed.
  • the thickness of the first thermoelectric body 15 is controlled by the reaction load, and The thickness of the first thermoelectric body 1 ⁇ is set so as to be 50 ⁇ m, which is almost the same as the thickness of the optical resin 12.
  • a second matured body 17 made of a second thermoelectric material is formed on the second electrode film 32 in the opening of the photosensitive resin 12 by using a plating method.
  • thermoelectric body 17 made of the second thermoelectric material formed on the second electrode film 32 a BiTeSb alloy which is a ⁇ -type semiconductor is used as a material.
  • the second thermoelectric body 17 which is a p-type semiconductor
  • a nitric acid solution containing Bi (N03), Te2 and SbC13 is used as a plating electrolyte of the second thermoelectric body 17 which is a p-type semiconductor.
  • a Pt electrode is used as the anode, and a voltage of 1 V is applied between the cathode electrodes, the BiTeSb alloy is formed. It is deposited on the second electrode film 32 in the opening of the photosensitive resin 12.
  • the thickness of the second thermoelectric layer 7 formed on the second electrode film 32 is controlled by the amount of reaction charge so as to be 50 ⁇ m, which is the same as that of the dry film as the photosensitive resin 12. I do.
  • thermoelectric body 15 and the second thermoelectric body 17 After the two plating processes of the first thermoelectric body 15 and the second thermoelectric body 17, the polymer film on the back surface of the substrate 10 is peeled off and removed with toluene. Then, the first thermoelectric body 15 and the second thermoelectric body 17 are subjected to a heat treatment for 1 hour in a nitrogen atmosphere at a temperature of 350 ° C.
  • thermosetting resin 16 made of polyimide resin was placed on the upper surfaces of the first thermoelectric body 15, the second thermoelectric body 17 and the photosensitive resin 12. Form.
  • the thermosetting resin 16 is formed by a spin coating method.
  • thermoelectric structure having the mature hardening resin 16 formed on the upper surfaces of the second mature body 15, the second thermoelectric body 17, and the photosensitive resin 12 is immersed in a nitric acid solution. All of the copper of the material of the substrate 10 is dissolved. Then 1
  • Revised paper (Rule 91) By dipping in a hydrofluoric acid solution, the SiO 2 film as the insulating film and the titanium film as the first electrode film 31 and the second electrode film 32 are dissolved and removed.
  • thermoelectric structure 24 as shown in FIG. 26 can be formed.
  • thermoelectric structures 24 are laminated and bonded using an epoxy adhesive. Then, by cutting to a required length, a thermoelectric structure in which a plurality of thermoelectric structures 2 are stacked as shown in FIG. 27 is obtained.
  • the element surface may be polished by the lapping method or the like as described above.
  • a gold (Au) film is formed on the entire cross-section of the thermoelectric structure that has been scrapped by a vacuum evaporation method, a sputtering method, or an electroless plating method.
  • a gold (Au) film is patterned by photolithography to form a wiring pole 25.
  • thermoelectric power generation unit can be formed by connecting the thermocouples 30 in series.
  • thermoelectric body 15 and the second thermoelectric body 17 connected in the same thermoelectric structure 24 are connected to form a hot compress pair 30.
  • a thermocouple 30 may be formed between the adjacent thermoelectric structures 24.
  • thermocouples thermocouples
  • thermoelectric power generation unit according to the eighth embodiment of the present invention will be described with reference to FIGS. 21 to 24 and FIGS. 26 to 29.
  • a copper plate covered with an insulating film made of Si02 is used for the substrate 10, and the electrode film is used.
  • the film coating step, the step of forming the first thermoelectric element 15 and the second thermoelectric element 17, the step of peeling the polymer film on the back surface, and the heat treatment step are the same as in the seventh embodiment. is there.
  • thermosetting resin 16 is used instead of the thermosetting resin 16 as shown in FIG.
  • a glass plate having a thickness of 100 ⁇ m was used as the heat insulating plate 18 using an epoxy-based adhesive, and the first thermoelectric member 15, the second matured member 17 and the photosensitive resin were used. Adhere to the top surface with 1 2.
  • thermoelectric structure 24 (a heat insulating plate 18 is used in place of the thermosetting resin 16) as shown in FIG. 26.
  • thermoelectric structures 24 are laminated, bonded and cut, and a wiring electrode 25 is formed on a cross section to form a thermoelectric generator unit. Get a bird.
  • thermoelectric power generation unit having a small size can be formed with higher precision than before. Furthermore, it is easy to control the shape and composition of thermoelectric generators (thermocouples).
  • thermoelectric power generation element of the eighth embodiment According to the method of manufacturing the thermoelectric power generation element of the eighth embodiment,
  • thermoelectric structures 24 Since the heat insulating plate 18 is interposed between the thermoelectric structures 24, it is possible to cope with a large-sized substrate.
  • thermoelectric power generation unit according to the ninth embodiment of the present invention will be described with reference to FIGS. 22 to 25 and FIGS. 30 to 32.
  • a copper plate covered with a SiO 2 film is used as an insulating film on a substrate 10.
  • the steps up to the step of forming the first thermoelectric element 15 and the second thermoelectric element 17, the step of removing the polymer film on the back surface, and the heat treatment step are the same as those of the seventh embodiment.
  • thermoelectric elements 1.5 and the second thermoelectric elements 17 are formed are attached with a heat insulating plate 18 interposed therebetween.
  • a heat insulating plate 18 As the heat insulating plate 18, a glass plate having a thickness of 100 / Xm is used.
  • the bonding process of the two substrates on which the first thermoelectric body 15 and the second thermoelectric body 17 are formed is performed on the surface side on which the first thermoelectric body 15 and the second thermoelectric body 17 are formed.
  • thermoelectric body 15 and a second thermoelectric body 17 are formed, and the two substrates joined together with a heat insulating plate 18 interposed therebetween. Is immersed in a nitric acid solution to dissolve and remove the copper of the material of the substrate 10, and then immersed in a 1% hydrofluoric acid solution to form an insulating film made of SiO 2, the first electrode film 31 The titanium which is the electrode film 32 is dissolved to form a complex matured structure 26.
  • thermoelectric structures 26 are laminated, and each is bonded to each other using an epoxy-based adhesive, and cut to a required length.
  • thermoelectric structures 26 are separated by the insulating epoxy adhesive used for bonding. At this time, the first thermoelectric body 15 There is no continuity between and the second thermoelectric element 17.
  • the element surface may be polished by using a lapping method or the like as described above.
  • a gold (Au) film is formed on the entire cross section of the element by a vacuum evaporation method, a sputtering method, or an electroless plating method. Further, the gold (Au) film is patterned by one photolithography technique to form the wiring electrode 25.
  • the wiring electrode 25 connects the first thermoelectric body 15 and the second thermoelectric body 17 appearing next to each other in a cross section to form a thermocouple 30.
  • thermoelectric generation unit By connecting all the thermocouples 30 in series, a thermoelectric generation unit can be obtained.
  • thermoelectric power generation unit having a minute dimension can be formed with higher precision than before. Further, it is easy to control the shape and composition of the thermoelectric power generation element.
  • the heat insulating plate 18 is interposed between the composite thermoelectric structures 26. This increases the hardness of the thermoelectric power generation unit, and requires only half the heat insulating plate 18 as compared with the eighth embodiment. Therefore, the thickness of the laminated thermoelectric power generation unit is small. It is suitable for further miniaturization.
  • thermoelectric generation unit according to the tenth embodiment of the present invention will be described with reference to FIGS. 21 to 25, FIGS. 33 and 34.
  • a substrate 10 made of a copper plate covered with an insulating film made of a SiO 2 film is used on the front surface of the substrate 10.
  • the insulating film made of S i ⁇ 2 is a film having a role of preventing a short circuit between the two electrode films formed in the subsequent process due to copper on the substrate 10.
  • the first electrode film 31 and the second electrode film 32 are formed on the front surface of the substrate 10 with a titanium film.
  • This titanium film is formed to a thickness of 500 nm by a vacuum deposition method.
  • this titanium film is patterned using photolithography technology and etching technology so that the planar shape becomes two interdigitated comb-teeth shapes, and the first electrode film 31 and the second electrode film 31 are patterned.
  • An electrode film 32 is formed.
  • the planar pattern shapes of the first electrode film 31 and the second electrode film 32 are as shown in the plan view of FIG.
  • the first electrode film 31 and the second electrode film 32 are formed in a comb-like pattern that forms a gap between each other.
  • a photosensitive resin 12 is formed on the entire surface of the substrate 10 on which the first electrode film 31 and the second electrode film 32 'have been formed.
  • a photosensitive dry film having a thickness of 5 ⁇ is formed using a roll coater.
  • the photosensitive resin 12 is striped in the gap region between the first electrode film 31 and the second electrode film 32 as shown in FIG. Is patterned.
  • a Teflon-based polymer film is formed on the back surface of the substrate 10 by spin coating on the back surface of the substrate 10. To be coated.
  • thermoelectric material made of the first thermoelectric material is first applied on the first electrode film 31 in the opening of the photosensitive resin 12 by using a plating method.
  • thermoelectric element 15 formed on the first electrode film 31 a BiTeSe alloy which is an ⁇ -type semiconductor is used as a material.
  • a nitric acid solution containing B i (N 03), T e ⁇ 2, and S e ⁇ 2 is used.
  • a Pt electrode is used as the anode, and a voltage of 1 V is applied between the force source and the anode electrode.
  • eSe alloy is deposited on the first electrode film 31 in the opening of the photosensitive resin 12.
  • the thickness of the first thermoelectric element 15 is controlled according to the amount of reaction charge so that the thickness of the first thermoelectric element 15 is 50 ⁇ m, which is almost the same as that of the photosensitive resin 12. Set the film thickness of 5.
  • thermoelectric body 17 made of a second thermoelectric material is formed on the second electrode film 32 by using a plating method.
  • thermoelectric body 17 As a plating electrolyte for forming the second thermoelectric body 17 which is a p-type semiconductor, a nitric acid solution containing Bi (N03), Te2 and SbC13 is used.
  • a nitric acid solution containing Bi (N03), Te2 and SbC13 is used as a plating electrolyte for forming the second thermoelectric body 17 which is a p-type semiconductor.
  • the thickness of the second electrode film 32 is controlled by the amount of reaction charge so as to be 50 ⁇ m, which is the same as that of the photosensitive resin 12.
  • thermoelectric body 15 and the second thermoelectric body 17 After two plating processes of the first thermoelectric body 15 and the second thermoelectric body 17, the polymer film on the back surface of the substrate 10 is peeled and removed with toluene. Then, the first thermoelectric element 15 and the second thermoelectric element 17 are subjected to a heat treatment for 1 hour in a nitrogen atmosphere at a temperature of 350 ° C.
  • thermosetting resin 16 made of a polyimide resin is placed on top of the photosensitive resin 12, the first thermoelectric body 15, and the second thermoelectric body 17. Then, it is formed by a spin coating method.
  • thermoelectric structure was immersed in a nitric acid solution, and the substrate 10
  • thermoelectric body 15 When the substrate 10 is dissolved, the first thermoelectric body 15, the second thermoelectric body 17, the photosensitive resin 12, and the thermosetting resin 16 remain as they are because they are insoluble in nitric acid.
  • first electrode film 31 and second electrode film 32 made of the remaining insulating film made of SiO 2 and titanium film were dissolved and removed using hydrofluoric acid, and FIG. As shown in (1), the starting surface 33 of the first thermoelectric element 15 and the second thermoelectric element 17 is made to appear.
  • thermoelectric structure 27 having a large number of thermocouples 30 ′ can be formed.
  • thermoelectric structures 27 are laminated and bonded using an epoxy adhesive.
  • thermoelectric generation unit By connecting all the thermocouples 30 'in series, a thermoelectric generation unit can be formed.
  • thermoelectric power generation unit having a minute dimension can be formed with higher precision than before. Furthermore, it is easy to control the shape and composition of the thermoelectric element (thermocouple).
  • thermoelectric power generation unit according to the eleventh embodiment of the present invention will be described with reference to FIGS. 33 and 34 and the like.
  • a copper plate covered with an insulating film made of Si02 is used for the substrate 10 to form an electrode film made of titanium. And the first electrode film 31 and the second electrode film 32, and the photosensitive resin 12 coating process.
  • Corrected form (Rule 91) A turning step, a step of coating a polymer film on the back surface of the substrate 10, a step of forming the first thermoelectric element 15 and the second thermoelectric element 17, and a step of peeling the polymer film on the back surface
  • the heat treatment step is the same as in the tenth embodiment described above.
  • thermosetting resin 16 a heat insulating plate 18 made of glass as shown in FIG. 29 is used instead of the thermosetting resin 16.
  • the thickness of the heat insulating plate 18 is 1 ⁇ 1 ⁇ , and the upper surface of the first thermoelectric body 15, the second thermoelectric body 17 and the photosensitive resin 12 is used. Is bonded using an epoxy adhesive.
  • the copper of the material of the substrate 10 is dissolved with nitric acid, and the SiO 2 film as the insulating film and the titanium as the first electrode film 31 and the second electrode film 32 are further reduced to 1% fluorine. Dissolve and remove using an acid solution. Thereafter, as shown in FIG. 33, a wiring electrode 35 is formed on the plating start surface 33 by using gold (Au), and a thermoelectric structure 27 is formed.
  • thermoelectric generation unit is obtained by connecting all thermocouples in series.
  • thermoelectric power generation device having a minute dimension can be formed with higher precision than before. Furthermore, it is easy to control the shape and composition of the thermoelectric generator. Further, since the heat insulating plate 18 is interposed between the plurality of thermoelectric structures 27, it is possible to cope with a large-sized substrate.
  • thermoelectric power generation unit according to the 12th embodiment of the present invention will be described with reference to FIGS. 35 and 36.
  • a copper plate covered with a SiO 2 film as an insulating film was used for a substrate 10 to form an electrode film made of titanium. Forming and patterning the first electrode film 31 and the second electrode film 32, and coating the photosensitive resin 12;
  • Corrected form (Rule 91) A patterning step, a coating step of a polymer film on the back surface of the substrate 10, a step of forming the first thermoelectric body 15 and the second thermoelectric body 17, and a step of forming a height of the back surface of the substrate 10.
  • the steps up to the peeling step of the molecular film and the heat treatment step are the same as those of the tenth embodiment described above.
  • thermoelectric body 15 and the second thermoelectric body 17 are formed are stuck and sandwiched by a heat insulating plate 18.
  • a heat insulating plate 18 As the heat insulating plate 18, a glass plate having a thickness of 1 ⁇ ⁇ is used.
  • thermoelectric element 15 and the second thermoelectric element 17 are bonded together.
  • the surface is formed so as to face the heat-insulating plate 18 side, and an epoxy-based adhesive is used.
  • the entire element bonded to the first thermoelectric element 15 and the second thermoelectric element 17 via the heat insulating plate 18 was immersed in a nitric acid solution.
  • the copper of the material of the substrate 10 is dissolved and removed, and then immersed in a 1% hydrofluoric acid solution to form an insulating film made of SiO 2 and a first electrode film 31 made of titanium and a second electrode film 3 made of titanium 2 Dissolve and remove.
  • thermoelectric structure 28 can be formed by the above processing steps.
  • thermoelectric structure 28 is laminated, and each composite thermoelectric structure 28 is bonded using an epoxy adhesive.
  • the composite thermoelectric structure 28 is separated by an insulating epoxy-based adhesive used for bonding, and the conduction between the first thermoelectric body 15 and the second thermoelectric body 17 is established. It has not been removed.
  • thermoelectric power generation unit can be obtained.
  • thermoelectric power generation unit having minute dimensions can be formed with higher accuracy than before. Further, it is easy to control the shape and composition of the thermoelectric generation element.t Further, since the heat insulating plate 18 is interposed between the composite thermoelectric structures 28, the hardness of the thermoelectric generation unit increases, Since only one half of the glass plate is required as compared with the embodiment, the thickness of the thermocouple to be laminated becomes thin, which is suitable for further miniaturizing the thermoelectric power generation unit.
  • the substrate 10 is made of a thermoelectric material, a dry film, or a polyimide instead of a copper plate or a titanium plate. A material that does not attack the metal and can be dissolved by etching may be used.
  • the substrate 10 As a material of the substrate 10, as long as it is a metal material, an iron plate, a nickel plate, a zinc plate, an aluminum plate, a brass plate, or the like can be applied as a material, and further, a ceramic such as a glass plate or alumina can be used. It can be used as substrate 10.
  • the embodiment has been described in which a titanium film is applied as the electrode film 11, the first electrode film 31, and the second electrode film 32 formed on the substrate 10.
  • the titanium film used as the electrode film 11, the first electrode film 31, and the second electrode film 32 may be made of another metal film as long as the material does not dissolve in the plating solution. It is also possible to change to a material.
  • a gold (Au) film, a platinum film, a Pd film, a Ta film, or the like can be applied as a substitute for the titanium film.
  • the wiring electrode 25 not only a gold (Au) film but also other metal film materials such as a Cu film, an A1 film, a Ni film, and a Fe film can be applied.
  • patterning is performed by forming a film, photolithography and etching.
  • J Corrected paper (Rule 91 )
  • portions other than those requiring electrode formation are covered with a predetermined mask material, a metal film material is formed on the entire surface by vapor deposition, and then the metal mask is removed to remove the electrode pattern.
  • a so-called mask vapor deposition method for forming can also be used.
  • a printing method a forming method of attaching a patterned electrode on the surface of another plate-like material, or the like can be used.
  • a photosensitive dry film is used as the photosensitive resin 12 when the material of the first thermoelectric body 15 and the second thermoelectric body 17 is subjected to the plating process.
  • a photosensitive polyimide can be used as the photosensitive resin.
  • the thickness of the first thermoelectric body 1 ⁇ and the second thermoelectric body 17 is about 10 ⁇ m, a rubber-based photoresist or a cinnamic acid-based photoresist can be used. It can be used as a photosensitive resin when the thermoelectric material is subjected to a sticking process.
  • thermosetting resin 16 an epoxy-based adhesive resin such as a acrylic resin may be used as the thermosetting resin. Can be used.
  • thermosetting resin 16 can be formed not only by a spin coating method but also by a spray coating method, a roll coating method, or a process such as applying a film. .
  • the heat insulating plate 18 is a thin plate that has poor heat conductivity and is not easily deformed, such as a hard plastic plate, the heat insulating plate is used. Applicable as 18.
  • thermoelectric material uses a BiTeSe alloy for an n-type semiconductor and a BiTeSeb alloy for a p-type semiconductor.Either force of Se or Sb is not mixed.
  • An n-type semiconductor and a p-type semiconductor can also be produced by the difference in the concentration ratio between Bi and Te.
  • thermoelectric material using a substance other than the above can be used as the first thermoelectric body 15 and the second thermoelectric body 17.
  • thermoelectric power generation unit according to the thirteenth embodiment of the present invention will be described with reference to FIGS. 37 to 45.
  • a copper plate was used for the substrate 1, and titanium (T i) was formed on the entire surface of the substrate 10 by a vacuum evaporation method with a film thickness of 500 ⁇ ⁇ . Then, an electrode film 11 is formed.
  • the electrode film 11 made of the titanium film has a function of protecting the copper plate, which is the substrate 10, from being damaged by the plating solution in a step described later.
  • a photosensitive dry film having a film thickness of 50 m was formed in two layers using a roll coater on the electrode film 10 as the photosensitive resin 12, and the total film thickness of the photosensitive resin 12 was reduced. ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the photosensitive resin I 2 consisting of a dry film is exposed to light using a photomask to expose it, and photolithography technology, which is a so-called exposure and development process of dissolving and removing only the unexposed portions, is used.
  • the photosensitive resin 12a having the first striped pattern is formed by patterning in a striped shape as shown in FIG.
  • the photosensitive resin 12a having the first strip pattern has openings on the surface of the electrode film 11, that is, a portion to be subjected to dissolution processing by photolithography technology and a non-opening portion not subjected to dissolution processing. Form.
  • the shape of the first striped pattern is set such that the width Wa of the opening of the photosensitive resin 12a is wider than the width Wb of the non-opening as shown in FIG. 44.
  • the width W a of the portion is 150 ⁇ m and the width W b of the non-opening portion is 50 ⁇ .
  • a Teflon-based polymer film 19 is spin-coated on the back surface of the substrate 10 as shown in FIG.
  • the Teflon-based polymer film 19 on the rear surface of the substrate 10 is formed on the entire surface by a single-pinning method.
  • thermoelectric element 15 As the first thermoelectric element 15, a BiTeSe alloy, which is an n-type semiconductor, is used as its material.
  • a nitric acid solution containing Bi (N 03), Te 02 and Se 02 is used as the plating electrolyte.
  • the electrode film 11 is used as a force source and a platinum (Pt) electrode is applied to the anode and a voltage of about 1 V is applied between the electrodes, the first thermoelectric element made of a BiTeSe alloy is applied.
  • the body 15 is deposited on the electrode film 11 in the opening 13a of the photosensitive resin 12a.
  • thermoelectric body 15 is deposited only in the opening 13a of the photosensitive resin 12a.
  • the amount of deposition is determined by the amount of charge calculated from the current consumption during electrolysis. For this reason, it is easy to control the first thermoelectric body 15 to a predetermined thickness by measuring the charge amount.
  • the film thickness of the first thermoelectric body 15 is set to be half the film thickness of the photosensitive resin 12a previously patterned, that is, 50 ⁇ m.
  • thermoelectric structure 41 shown in FIG. 39 is formed.
  • thermoelectric structure 42 shown in FIG. 40 can be formed by performing substantially the same processing steps as in the method of manufacturing the first thermoelectric structure 41 described above.
  • thermoelectric structure 42 is different from the method of forming the first thermoelectric structure 1.
  • the method of forming the second thermoelectric structure 42 is the same as the method of forming the first thermoelectric structure 41 until the formation of a photosensitive resin or a polymer film having a striped pattern.
  • the processing steps are the same as those described with reference to FIG. 3, FIG. 38 and FIG.
  • the patterning shape of the photosensitive resin 12b used to form the second thermoelectric structure 42 is used in the method of forming the first thermoelectric structure 41. It is formed so as to have the same opening width W a, non-opening width W b, and thickness as the first striped pattern 12 a shown in FIGS. 38 and 44. .
  • thermoelectric structure 41 and the second Elements required for the formation of the thermoelectric structure 42 can be made common. As a result, the efficiency in manufacturing the thermoelectric power generation unit can be improved.
  • thermoelectric structure is formed as described later. Since the body 41 and the second thermoelectric structure 42 can be correctly fitted in shape, the production efficiency of the thermoelectric power generation unit can be increased without hindering the following steps.
  • the method of forming the second thermoelectric structure 42 differs from the method of forming the first matured electric structure 41 described above in the process of plating the thermoelectric material of the second thermoelectric body 17. .
  • the plating process of the second thermoelectric body 17 will be described.
  • thermoelectric body 17 made of the second matured material is formed.
  • a BiTeSb alloy which is a p-type semiconductor, is used.
  • the back surface of the substrate 10 is protected by the polymer film 19, so that the second thermoelectric element 17 is deposited only in the opening 13b of the photosensitive resin 12b. I do.
  • the thickness of the second thermoelectric element 17 is controlled by the amount of reaction charge so that the thickness is 5 ⁇ , which is half the thickness of the photosensitive resin 12 b.
  • Te and Sb By changing the ion concentration of Te and Sb.
  • the composition of the alloy of the second thermoelectric element 17 can be changed, and control is performed so as to have a required output voltage or resistance value by setting these conditions. .
  • the second thermoelectric structure 42 in which the second thermoelectric body 17 is formed on the substrate 10 can be formed.
  • thermoelectric structure 41 and the second thermoelectric structure 42 are formed in pairs, and the surfaces on which the photosensitive resins 12a and 12b are formed are formed. Are bonded to each other using a bonding agent 43 made of an epoxy-based adhesive so that they face each other.
  • the non-opening portion of the photosensitive resin 12 a on the first thermoelectric structure 41 1 is subjected to an adhesive treatment so as to be fitted to a position above the second thermoelectric body 17.
  • thermoelectric element 15 and the second thermoelectric element 17 have a structure in which the relative positional relationship falls within a certain interval, and the subsequent wiring steps for the thermoelectric element are facilitated.
  • thermoelectric body 15 and the second thermoelectric body 17 do not come into contact with each other. , 17 are electrically insulated.
  • thermoelectric power generation element This heat treatment in a nitrogen atmosphere is for the purpose of homogenizing the alloy composition of the first thermoelectric element 15 and the second thermoelectric element 17, which leads to an improvement in the output of the thermoelectric power generation element.
  • the heat treatment in the nitrogen atmosphere here is at a high temperature, but if the photosensitive resin 12 is exposed to a sufficient amount of light during the patterning treatment of the photosensitive resin 12 shown in FIG.
  • the deformation such as heat shrinkage that occurs in the photosensitive resins 12a and 12b after patterning is slight, and does not pose a practical problem.
  • thermoelectric structure 42 the element in which the first mature electric structure 41 and the second thermoelectric structure 42 are integrated is cut into a required size.
  • the lapping may be affected.
  • the surface may be polished using a method or the like.
  • the entire element is immersed in a nitric acid solution to dissolve all the copper on the substrate 10, and then the titanium as the electrode film 11 is dissolved and removed using a hydrofluoric acid solution.
  • thermoelectric element 15 and the second thermoelectric element 17 are insoluble in nitric acid and hydrofluoric acid, and thus are left as they are. Remains.
  • a gold (Au) film is formed on the entire cross section of the device by a vacuum evaporation method (sputtering method) or an electroless plating method.
  • the wiring electrode 45 connects a first thermoelectric body 15 and a second thermoelectric body 17 formed adjacent to each other in a cross section to form a thermocouple 50.
  • thermoelectric elements in the composite thermoelectric structure 44 since the arrangement of the thermoelectric elements in the composite thermoelectric structure 44 is at a constant interval, the wiring of the thermoelectric elements is collectively performed by the wiring electrodes 45 without erroneous wiring. It is possible to do.
  • thermoelectric body 15 of one of the synthetic thermoelectric structures and the second thermoelectric structure of the other are alternately laminated so as to face each other via a flat plate-shaped insulator 51 made of thermoelectric material 17 (see Fig. 41) and force acrylic resin, and bonded with an epoxy adhesive.
  • the insulator 51 also provides mechanical strength to the entire thermoelectric generation unit so that the first thermoelectric body 15 and the second thermoelectric body 17 (see FIG. 41) do not make electrical contact. Play a role.
  • the thickness of the insulator 51 is 50 ⁇ .
  • an element end wiring 52 is formed at one end of each cross section of each composite thermoelectric structure 44 by using a conductive adhesive.
  • the wire 2 may be a wire formed by a wire bonding method.
  • the element end wiring 52 connects the ends of the thermoelectric elements 15 and 17 included in the composite thermoelectric structure 44. All the thermocouples 50 are connected in series. A thermoelectric generation unit is obtained. be able to.
  • the wiring of the element end wiring 52 may be roughly compared with the precision required for forming the wiring electrode 45 formed on the wiring of the thermoelectric element in the above process. It can be done easily.
  • thermoelectric power generation unit of the thirteenth embodiment the dry film of the photosensitive resin 12 formed by photolithography can be patterned with micron-order accuracy. is there,
  • thermoelectric body 15 and the second thermoelectric body 17 which form the pattern along the patterned photosensitive resin 12a, 12b are formed with the accuracy of the order of micron. be able to.
  • thermoelectric element formed by the plating method and the control of the composition are easy, and the pretreatment only for dissolving the raw materials is easier than before.
  • the width of each thermoelectric element is 150 ⁇ and the space is 50 ⁇ as described above. At this time, the thickness including the insulator 51 is 150 ⁇ m.
  • thermocouples 50 that can be formed on the substrate 10 is 2500 pairs.
  • thermoelectric generator When a temperature difference of 2 ° C is given to this thermoelectric generator, an open-circuit voltage of about 2 V is obtained as an output, which is a sufficient output voltage for driving portable electronic devices such as watches.
  • thermoelectric element Assuming that the length of this thermoelectric element is 2 mm, the internal impedance is about 13 k ⁇ , which is a sufficient order for electronic equipment.
  • thermoelectric material or the dry film / polyimide
  • the substrate 10 is made of a metal material, an iron plate, a nickel plate, a zinc plate, an aluminum plate, a titanium plate, a brass plate, or the like can be used. Further, a glass plate or a ceramic such as alumina can be used as the substrate 10.
  • the electrode film 11 made of a titanium film formed on the ⁇ 0 substrate 10 can also be changed to a metal film other than the titanium film as long as the material is not dissolved in the plating solution.
  • a gold (Au) film, a platinum (Pt) film, a palladium (Pd) film, a tantalum (Ta) film, or the like is an alternative to the titanium film. Effective.
  • the wiring electrode 45 not only a gold (Au) film but also another metal film can be used.
  • a printing method a method in which electrodes are patterned and attached to the surface of a separate plate-shaped material, and the like can be used.
  • the element end wiring 52 can be formed by a method such as vacuum evaporation and sputtering of a metal film, a printing method, or a method in which an electrode having a patterned electrode on the surface of a plate-like material is attached. It can be used.
  • a photosensitive material such as a photosensitive dry film can be used as a frame material when the thermoelectric material is to be used. Further, if the thickness of the plating film is about 10 ⁇ m, a rubber-based photoresist or a cinnamic acid-based photoresist can be used.
  • the insulator 51 in addition to the above-described acrylic resin, any other material that is electrically insulated, has low thermal conductivity, and can easily maintain the temperature difference generated in the thermocouple can be used. It is possible to use. Epoxy resin can also be used as the insulator 51.
  • the thickness of the thermoelectric body is set to half of the thickness of the photosensitive resin, but there is a deviation in fitting between the first matured electric structure 41 and the second thermoelectric structure 42. If it can be done without occurring,
  • thermoelectric elements can be selected in a range that is smaller than the thickness of the photosensitive resin. INDUSTRIAL APPLICABILITY According to the method of manufacturing a thermoelectric power generation unit according to the present invention, a thermoelectric power generation unit that is ultra-small and has a sufficient output voltage can be easily and accurately manufactured.
  • thermoelectric power generation unit can be widely used as a power source for extremely small portable electronic devices such as watches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Description

明 細 害 熱鼋究電ュニッ トの製造方法 技術分野
この発明は、 異種半導体を接合した熱電対を熱発鼋素子と し、 そ れを褸数個直列に接合して構成した熱鼋発電ュニッ トの製造方法に 関する。 背景技術
熱電対はその両端に温度差を与えることによ り電圧を発生する。 この電圧を電気エネルギーと して利用しよ う とするのが熱電発電で ある。
熱電発鼋は熱エネルギーを直接電気エネルギーに変換できる方法 と して、 廃熱の利用を含め熱エネルギーの有効な利用法と して非常 に注目 されている。
さらに、 熱電発電に用いる熱鼋発電ユニッ トは、 熱電発電素子で ある熱電対を複数個直列に接合して構成する簡単な構造のため、 他 の発電機に比べて微小化に有利なことや、 酸化還元 ¾池のよ うに消 耗せず、 電解液の漏洩の聞題もないことから、 腕時計のような超小 型の携帯用電子機器への応用が注目 されている。
従来の熱電発電ユニッ トの楛造の一例を図 4 6の斜視図に示す。 この熱鼋発電ユニッ トは、 全体と して板状の構造をもち、 p型の熱 電材料 1 0 1 と n型の熱電材料 1 0 2 とを用いた熱電対 1 0 0を熱 鼋発鼋素子と して多数個配 Sし、 それらを直列に接続している。 熱電対 1 0 0の温接点 1 0 4 と冷接点 1 0 5 とは、 板状の熱電発 電ュニッ トのおもて面と S面の部分に位笸しており、 その表裏の温 度差によって発電を行なう。
熱!;発電は、 種類の異なる 2つの金属の両端同士を接合し、 その 2つの接合部間に温度差を与えるとその接合都間に起電力を生じる という、 いわゆるゼ一ベック効果を利用したものである。
このような熱電発電を行なう熟電発電ユニッ トは、 一般的には次 のよ うな製造方法によって製造される。
まず、 合金材料を粉砕した後に焼き固めてプロ ック状の材料を形 成する、 いわゆる焼結法によって P型と II型のそれぞれの熱電半導 体材料のプロ ックを形成する。
そして、 その形成した熱電材料の各ブロ ックを、 それぞれダイシ ングソ一などで切断して直方体のチップに分割する。 この直方体の チップを、 図 9に示したよ うに!)型の熱電材料 1 0 1 と n型の熱電 材料 1 0 2 とが交互になるよ うにマ ドリ クス状に配列する。
その後、 隣り合ったチップの両端を、 金 JB板などの導電性材料 (温接点 1 0 4 と冷接点 1 0 5 ) により接鲩して、 多数の熱電対を 直列に接皖した構造を有する熱電発電ュュッ トを形成する。 この接 続には主にハンダ溶接を用いる。
このようにして製造した従来の熟電発電ュニッ トは、 全体の寸法 が数 + c m角以上の大き さであり、 また熱踅対の対数は数十対程度 というのが標準的である。
ところで、 現在利用されている熱電材料のうち、 性能が最もよい と言われている B i 丁 e系材科を用いた熱電対の出力電圧は、 1対 あたり 4 0 0 μ ν /¾程度である。
腕時計に代表される携帯用常子機器は、 通常室温近辺の温度琮垸 で使用されるため、 この携带用電子機器内部での大きな温度差は期 待できない。 すなわち腕時計内部での温度差はせいぜい 2で程度で ある。
このよ うな小さい溫度差によって、 時計の駆動に必要な 1 . 5 V 以上の電圧を得るためには、 2 0 0 0対もの B i T e系の熱電対が 必要になる。
そのため熱電発電ュニッ トを大型化すれば問題はないが、 2 0 0 0対もの熱電対をボタン窀池ほどの大き さである 1 c m角の中に集 稜化するのは非常に難しい問題である。 この熱鼋発電ュニッ トの大 きさは、 腕時計をはじめとする超小型電子機器の電源と してそれを 利用する場合には特に重要である。
そこで、 この熱鼋努電ユニッ トの小型化を達成するためには、 単 純には前述したような機械的な加工法によ り、 熱電材料の焼結体を 微小に切断加工できればよい。
しかし、 当然のことながら微小な索子の加工には限りがある。 さ らに、 熱電材料は非常に脆いものが多いため、 切断加工工程ばかり でなく切断後の取扱いにも注意が必要であり、 製造歩留まりはおの ずと低下してしまう。
つま り機械加工を用いた従来の製造方法では、 せいぜい寸法が 1 m mほどの材料を扱うのが常識的な限界と考えられ、 1 c m角の大 きさに熱鼋発電ュニッ トを作り込んだと しても、 その熱鼋発鼋索子 である熱窀対の対数は 5 0対程度にしかならない。
また、 熱電究鼋ユニッ トの別の製造方法と して、 冥空蒸着法で薄 歧状の熟!:材料を形成し、 その薄膜熱鼋材料をエッチング法により 微細化して小さな熱電対を作り、 それを直列に接続して熟電癸電ュ ニッ トを形成する方法も考えられる。 確かにこの製造方法によれば 小さな熟電対を作ることは容易になる。
しかしながら、 冥空蒸着法により形成した膜でば膜厚が 1 μ m前 後で熱鼋発電素子と しての熱電対を構成するには薄すぎ、 2 0 0 0 対も形成すると内部インビーダンスが非常に髙くなってしまい、 熱 電発電素子と して必要な鼋流値がとれないという問題点が発生する, そのため結局のところ, 真空蒸菪法によ り形成した被膜から形成 する熱電対は、 熱鼋究電索子と しては不向きである。
さらに、 厚膜法という手法によ りペース ト状の B i T e系合金を 塗布し焼結させ、 真空蓀着法を用いて形成する薄膜よ りかなり厚い 膜を形成し、 熱鼋発電素子を形成する手法も提案されている。
この厚膜法による熱電発電素子の製造方法については、 たとえば 特開昭 6 3 - 7 0 4 6 2号公報に記載されている。
この公報に記載の厚膜法による熱電発電棄子の製造方法では、 ス ク リーン印刷が利用できるため微細化も可能であり、 しかも 1 0 m以上の膜厚化が実現できる。 このことから真空蒸着法によ り形成 する薄膜に比べて、 内都イ ンビーダンスの低い熱電発電素子を形成 するのに適している。
しかしながら、 厚膜法においては B i , T e , S b, あるいは S eなどの原料をそのまま混合して塗布するのではなく、 一度溶 ffiし てイ ンゴッ トを作り、 さらに粉砕して粉末化してペース トを作って いく という前処理工程が必要であり、 非常に煩雑である。
そして、 このペース トを作る前処理工程においては、 熱電材料に 不純物が混入したり、 均一な固溶体がつくれず組成が分布するとい う問題点がある。 さらには焼結時にクラックなどが生じるという問 題もある。
また、 スク リ ーン印刷によりパターンはっくれるが、 微小寸法を 有する熟電発電ュ-ッ トを精度よく得ることは難しい。 これらの理 由により、 充分な特性が得られず厚膜法も微小な熱^;発電ュ-ッ ト を作るために最適な方法とはいえない。
このよ う に、 従来の機械加工法、 あるいは冥空蒸着法によ り形成 した被膜をエッチングする方法と もに、 微小な領域に熱電発鼋素子 と して多数の熱電対を集積化して作り込んで熱電発電ュニッ トを形 成するのは難しく、 充分な出力を有する極めて小さな熱電発電ュ- ッ トを製造することはできなかった。
さ らにまた、 前述のよ うな厚膜法では、 工程が煩雑であること と , 特性的に不安な面が残る。
そこでこの発明は、 このような従来の熱電発電ュニン トの製造方 法による問題を解决し、 発電器と して充分な出力が得られ、 しかも 極めて小さな熱電発鼋ユニッ トを、 パターン精度よく しかも容易に 製造できるようにすることを目的とする。 発明の開示
この努明は上記の目的を達成するため、 熱電努電ュニッ トの製造 方法と して下記に 1Ξ載する各製造方法を採用する。
この努明による第 1の熱電発電ュニッ トの製造方法は、 次の各ェ 程からなる。
基板上に金属材料からなる電極膜を形成する工程と、 該電極膜上 に感光性樹脂を用いてス トライブ状のパターンを形成する工程と、 上 IE電極臈を用いて上 12感光性榭脂の開口都に第 1の熱電材料から なる第 1の熱霭体をメ ツキ法によ り形成する工程と、 上記感光性榭 脂及び第 1 の熱電体上に熱硬化性樹脂をコーティングする工程と、 上記基板と電極膜とを溶解して除去する工程とによって第 1 の熱電 構造体を形成する工程。
また、 上記基板とは別の基拔上に金属材料からなる電極膜を形成 する工程と、 該電極膜上に感光性榭脂を用いてス トライブ状のバタ ーンを形成する工程と, 上記電極膜を用いて上記感光性樹脂の開口 郁に第 2の熱電材料からなる第 2の熱鼋体をメ ツキ法により形成す る工程と、 上記感光性榭脂及び第 2の熱電体上に熟硬化性榭脂をコ 一ティ ングする工程と、 上 ¾基板と電極膜とを溶解して除去するェ 程とによって第 2の熱鴛構造体を形成する工程。
そして、 複数の上記第 1の熱電構造体と第 2の熱電構造体を交互 に重ねて貼り合わせ、 所定の長さに切断した後、 隣り合う前記第 1 の熱電体と第 2の熱電体の断面を配線電極によ り交!:につなぎ合わ せることにより、 熱電発電素子と して直列に接続した衩数の熱電対 を形成する工程。
この発明による第 2の熟電発電ュニッ トの製造方法は、 上記第 1 の製造方法とほぼ同様な工程からなるが、 上 IE第 1の熱電構造体及 び第 2のを熱鼋構造体を形成する工程において、 上記感光性樹脂及 び第 1 の熱電体あるいは第 2の熱電体上に熱硬化性樹脂をコーティ ングする工程に代えて、 上記感光性樹脂及び第 1 の熱電体あるいは 第 2の熱鼋体上に熟絶緣性板を接着する工程を用いる。 この発明による第 3の熱鼋発電ュュッ トの製造方法は、 次の各ェ 程からなる。
基板上に金属材料からなる ¾榧膜を形成する工程と、 該電極膜上 に感光性樹脂を用いてス トライプ状のパターンを形成する工程と、 上 IB鴛極膜を用いて上記感光性樹脂の開口部に第 1 の熱電材料から なる第 1 の熱電体をメ ツキ法により形成する工程。
上記基板とは別の基板上に金属材料からなる鼋極膜を形成するェ 程と、 該電極膜上に感光性樹脂を用いてス トライブ状のパターンを 形成する工程と、 上記鼋榷膜を用いて上記感光性樹脂の開口都に第 2の熱電材料からなる第 2の熱電体をメ ツキ法により形成する工程, 上記阿基板の第 1 の熟電体を形成した面と第 2の熱鼋体を形成し た面とを熟絶緣性板を介在させて接菪する工程と、 上記両基板と各 電極膜とを溶解して除去する工程とによって複合熱電構造体を形成 する工程。
そして、 複数の該複合熱鼋構造体を交互に重ねて貼り合わせ、 所 定の長さに切断した後、 隣り合う前記第 1 の熱電体と第 2の熱窀体 の断面を配線電極によ り交亙につなぎ合わせることにより、 熱電発 ¾素子と して直列に接続した複数の熱電対を形成する工程。
この発明による第 4の熱電発電ュニッ トの製造方法は、 次の各ェ 程からなる。
電気伝導性の基板上に感光性樹脂を用いてス トライプ状のパター ンを形成する工程と、 上 ΙΞ基板を電極と して用いて上記感光性樹脂 の開口部に第 1 の熱電材料からなる第 1の熱電体をメ ツキ法により 形成する工程と、 前記感光性榭脂及び第 1 の熟電体上に熱硬化性樹 脂をコーティ ングする工程と、 前記基板を溶解して除去する工程と によ り第 1の熱電構造体を形成する工程。
上記基板とは別の電気伝導性の基板上に感光性樹脂を用いて ト ライブ状のパターンを形成する工程と、 上記基板を電極と して用い て上記感光性樹脂の開口部に第 2の熱鼋材料からなる第 2の熱電体 をメ ツキ法によ り形成する工程と、 上 ΙΞ感光性樹脂及び第 2の熱電 体上に熱硬化性樹脂をコーティングする工程と、 上記基板を溶解し て除去する工程とによ り第 2の熱電構造体を形成しする工程。
そして、 複数の上 IS第 1 の熱鼋楛造体と第 2の熱電構造体を交互 に重ねて貼り合わせ、 所定の長さに切断した後、 瞵り合う第 1 の熱 鼋体と第 2の熱電体の断面を配線電極によ り交互につなぎ合わせる ことにより、 熱電発電素子と して直列に接続した複数の熱電対を形 成する工程。
この発明による第 5の熱電努電ュニッ トの製造方法は、 上 ¾第 4 の製造方法とほぼ同様な工程からなるが、 上記第 1の熱電構造体及 ぴ第 2の熱鼋構造体を形成する工程において、 上 IE感光性樹脂及び 第 1 の熱電体あるいは第 2の熱鼋体上に熱硬化性樹脂をコーティン グする工程に代えて、 上記感光性榭脂及び第 1 の熱電体あるいは第 2の熟電体上に熟絶縁性板を接着する工程を用いる。
この発明による第 6の熱鼋発鼋ュ-ッ トの製造方法は、 次の各ェ 程からなる。
電気伝導性の基板上に感光性樹脂を用いてス トライブ状のパター ンを形成する工程と、 上 15基板を電極と して用いて上記感光性樹脂 の開口部に第 1 の熱電材料からなる第 1 の熱電体をメ ツキ法により 形成する工程。
上記基板とは別の電気伝導性の基板上に感光性榭脂を用いてス ト ライブ状のパターンを形成する工程と、 上記基板を電極と して用い て上記感光性榭脂の開口部に第 2の熱電材料からなる第 2の熱 ¾体 をメ ツキ法により形成する工程。
上記两基板の上 12第 1 の熱電体を形成した面と前記第 2の熱電体 を形成した面とを熱絶縁性板を介在させて接着する工程と、 上記両 基板を溶解して除去する工程とによって複合熱鼋構造体を形成する 工程。
そして、 複数の該複合熱電構造体を重ねて貼り合わせ、 所定の長 さに切断した後、 隣り合う前記第 1 の熱鼋体と第 2の熱電体の断面 を配線電極によ り交互につなぎ合わせるこ とによ り、 熱鼋発電索子 δ と して直列に接鐃した複数の熱電対を形成する工程。
この究明による第 7の熱鼋発電ュ-ツ トの製造方法は、 次の各ェ 程からなる。
表面あるいは全体が絶縁性の基板上に金厲膜を形成する工程と、 その形成した金 a膜をエッチング法によ り互いに入り込み合う櫛 苗状の第 1の電極膜と第 2の電極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極膜と第 2の電極膜の櫛齒の隙 間部分にス トライブ状のパターンを形成する工程と、
上 15第 1 の電極膝を用いて上記感光性榭脂の開口部の該第 1 の電 極膜上に第 1 の熱電材料からなる第 1の熱電体をメ ツキ法によ り形 成する工程と、
上記第 2の電極膜を用いて上記感光性樹脂の開口部の該第 2の電 榷膜上に第 2の熱電材料からなる第 2の熱電体をメ ツキ法によって 形成する工程と、
上記感光性樹脂及び第 1, 第 2の熱電体上に熱硬化性樹脂をコー ティングする工程と、
上記基板と第 1の電極膜と第 2の電極膜を溶解して除去する工程 とにより、 熟電構造体を形成する。
そして、 複数の該熱電構造体を重ねて貼り合わせ、 所定の長さに 切断した後、 隊り合う第 1の熱電体と第 2の熟鼋体の断面を配線鼋 棰により交互につなぎ合わせることによ り、 熱電発電素子と して直 列に接銃した複数の熱電対を形成する。
この発明による第 8の熱鼋発電ュ-ッ トの製造方法は、 上記第 7 の製造方法とほぽ同搽な工程からなるが、 上記熱鼋構造体を形成す る工程において、 上 IE感光性榭脂及び第 1 , 第 2の熱 体上に熱硬 化性樹脂をコーティングする工程に代えて、 上記感光性樹脂及び第 1 , 第 2の熟電体上に熱絶縁性板を接着する工程を用いる。
この発明による第 9の熱鼋発電ュニッ トの製造方法は、 上記第 7 あるいは第 8の製造方法における熱電構造体を形成する工程におい て、 上記基板上の感光性樹脂の開口都に第 1 の熱雷体と第 2の熱電 体をメ ツキ法によって形成する工程までは上記第 7あるいは第 8の 製造方法と同じである。
しかし、 その第 1の熱電体と第 2の熱電体とが形成された 2枚の 基板を熱絶縁性板を介在させて接着する工程と、 上記各基板と第 1 の電極膜と第 2の電極膜を溶解して除去する工程とによ り複合熱鼋 構造体を形成する。
そして、 複数の該複合熱電構造体を重ねて貼り合わせ、 所定の長 さに切断した後、 隣り合う第 1 の熱電体と第 2の熱電体の断面を配 線鴛極によ り交互につなぎ合わせることにより、 熱電発電素子と し て直列に接続した複数の熱電対を形成する。
この発明による第 1 0の熱鼋発鼋ュ-ッ トの製造方法は、 上記第 7の製造方法における熱電構造体を形成する工程において、 上 IS感 光性樹脂及び第 1, 第 2 の熱電体上に熱硬化性樹脂をコーテイ ング する工程までは、 上記第 7 の製造方法と同じである。
しかしその後、 上記基板と第 1の鼋極腠と第 2の電極膜とを溶解 して除去したのち、 再度金属膜をメ ツキ開始面全面に形成する工程 と、 その形成した金属膜をエッチング法を用いてパターン化するこ とによ り配線電極を形成し、 その配線電極によって隣り合う第 1 の 熱電体と第 2 の熱!;体を交亙に接銃して、 熱発電素子と して熱電対 列を形成する工程とによ り熱鼋構造体を形成する。 、
そして、 複数の該熱電構造体を重ねて貼り合わせた後、 隣り合う 熟電対列の端部同士を接続して、 各熱電対全てを直列に接続する。
この発明による第 1 1 の熱電発電ュニッ トの製造方法は、 上記第 1 0の製造方法とほぼ同様な工程からなるが、 上記熱電構造体を形 成する工程において、 上 15感光性樹脂及び第 1 , 第 2の熱電体上に 熱硬化性榭脂をコーティングする工程に代えて、 上記感光性樹脂及 び第 1 , 第 2の熟電体上に熟絶綠性板を接者する工程を用いる。
この発明による第 1 2の熱電努電ュニッ トの製造方法は、 次の各 工程からなる。
表面あるいは全体が絶緑性の基板上に金属膜を形成するェ裎。 0 その形成した金属膜をエッチング法によ り互いに入り込み合う櫛 歯状の第 1の電極膜と第 2の電極膜に加工する工程。
感光性樹脂を用いて上記第 1 の電極膜と第 2の!:極膜の櫛齒の隙 閒部分にス トライプ状のパターンを形成する工程。
上記第 1の電極膜を用いて上記感光性樹脂の開口部の該第 1 の電 極膜上に第 1 の熟電材料からなる第 1の熟電体をメ ツキ法により形 成する工程。
上記第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の鼋 極膜上に第 2の熱電材料からなる第 2の熟電体をメ ツキ法によって 形成する工程。
それぞれ前記各工程によ り第 1の熟 ¾体と第 2の熱電体とが形成 された 2枚の基板を熱絶縁性板を介在させて接着する工程。
上記基板と第 1の電極膜と第 2の電極膜とを溶解して除去したの ち、 再度金展膜をメ ツキ開始面全面に形成する工程。
その形成した金展膜をエッチング法を用いてパターン化すること によ り配線電極を形成し、 その配線電極によって隣り合う上記第 1 の熱電体と第 2の热電体を交!:に接続して、 熱発電素子と して熱鼋 対列を形成する工程。
以上の各工程によ り熱電構造体を形成する。
そして、 複数の該熱電構造体を重ねて貼り合わせた後、 隣り合う 熱電対列の端部同士を接続して、 各熱電対全てを直列に接続する。
この発明による第 1 3の熟電努電ュニッ トの製造方法は、 次の各 工程からなる。
基板上に金属材料からなる電極膣を形成する工程と, 第 1 のス ト ライブ状パターンを有する感光性樹脂を上記電極膜上に形成するェ 程と、 上記電極膜を用いて上 IE感光性樹脂の開口部に第 1の熱電材 料からなる第 1 の熟 ¾体をメ ツキ法で上記感光性樹脂よ り薄く形成 する工程とによって第 1 の熱電構造体を形成する工程。
上記基板とは刖の基板上に金属材料からなる電極膜を形成するェ 程と、 上記第 1 のス トライブ状パターンの開口部の幅以下の非開口 都と該第 1 のス トライプ状バタ一ンの非開口部の幅以上の開口部を 有し、 なおかつ前記第 1 のストライプ状バターンとピッチが同一で ある第 2のス 卜ライブ状パターンを有する感光性樹脂を上記電極膜 上に形成する工程と、 上記電極膜を用いて上記感光性樹脂の開口部 に第 2の熱電材料からなる第 2の熱電体をメツキ法で上記感光性樹 脂より薄く形成する工程とによって第 2の熱電構造体を形成するェ 程。
上記各工程によって形成した第 1 の熱 構造体と第 2の熱電構造 体とを上記各感光性樹脂の一方の開口部と他方の非開口部とをはめ 合わせて接着したのち、 所定の大きさに切断する工程と、 上記各基 板と電極膜とを溶解させて除去する工程と、 隣り合う第 1 の熱電体 と第 2の熱電体の断面を配線電極で交互に配線して、 熱電発電素子 として熱霭対列を形成する工程とによリ複合熱踅構造体を形成する 工程。
複数の該複合熱鼋構造体を絶縁材を介して重ねて貼リ合わせて、 據リ合う複合熱電構造体の端の熱電体を素子端配線で配線すること により、 各熱電対を全て直列に接続する工程。
この秀明による第 1 4の熱電発電ュニッ トの製造方法は、 次の各 工程からなる,
踅気伝導性の基板上に第 1 のス トライプ状バターンを有する感光 性樹脂を電極膜上に形成する工程と、 該電極膜を用いて上記感光性 樹脂の開口部に第 1 の熟電材料からなる第 1 の熱電体をメ ツキ法で 上記感光性樹脂よリ薄く形成する工程とから第 1 の熱電構造体を形 成する工程。
上記基板とは別の基板上に金属材料からなる電極膜を形成するェ 程と、 上記第 1 のス トライプ状パターンの開口部の幅以下の非開口 部と該第 1 のス トライブ状バタ一ンの非開口部の幅以上の開口部を 有し、 なおかつ該第 1 のス トライブ状パターンとピッチが同一であ る第 2のス トライブ状パターンを有する感光性樹脂を上記電極膜上 に形成する工程と、 上記電極膜を用いて上記感光性樹脂の開口部に 第 2の熱電材料からなる第 2の熱電体をメ ツキ法で上記感光性樹脂 よ り薄く形成する工程とから第 2の熟電構造体を形成する工程。 上記第 1 の熱電構造体と第 2の熱電構造体とを、 上記感光性樹脂 の一方の開口部と他方の非開口部とをはめ合わせて接着したのち、 所定の大きさに切断する工程と、 上記各基板と電極膜とを溶解除去 する工程と、 隣り合う上記第 1 の熱電体と第 2の熱電体との断面を 配線電極で交互に配線して、 熱電発電素子と して熱電対列を形成す る工程とによ り複合熱電構造体を形成する工程。
複数の該複合熟電構造体を絶縁材を介して重ねて貼り合わせて、 隣リ合う複合熱電構造体の端の熱電体を素子端配線で配線すること によ り、 各熱電対を全て直列に接続する工程。
この第 1 3, 1 4の熱電発電ュニッ 卜の製造方法において、 第 1 のス トライプ状パターンの開口部の幅寸法は非開口部の幅以上であ リ、 第 2のス トライプ状パタ一ンは第 1 のス トライプ状バターンと 同一であるのが望ましい。
また、 この発明による上記各熱電発電ュニッ 卜の製造方法におい て、 基板上あるいはその上の電極膜上にス 卜ライプ状のパターンを 形成する感光性樹脂と しては、 ァク リル系樹脂からなる感光性ドラ ィフィルム、 あるいは感光性のポリイ ミ ド樹脂を用いるとよい。 このような熱電発電ュニッ 卜の製造方法によれば、 感光性樹脂を 用いてパターンを形成し、 その感光性樹脂の開口部内にメ ツキ処理 によ り熱電体を形成する。 そのため、 数 1 Ο μ ιηの幅寸法を有する 熱電発電素子 (熱電対) を精度よく形成することが可能である。
そして、 メツキ法によ リ熱電体を形成 るため、 1 0 μ mから 1 Ο Ο μ πιほどの膜厚を有する熱電体被膜を形成することが可能であ る。 そして、 メ ツキ浴組成や電圧制御によ リ熱電体組成のコン ト口 ールも容易である。
さらにこの発明による熱電発電ュニッ 卜の製造工程は、 感光性樹 脂を用いるフォ ト リ ソグラフィ ー工程や、 メツキ工程、 真空蒸着と エッチング工程からなる。 そのためバッチ処理によ り一度に複数の
正された用紙 (規則 91) 素子が形成できることにより、 熱電発電素子である熱電対の集積密 度を従来よ り飛躍的にあげることができる。 したがって、 小形であ りながら低い温度差でも高出力が得られる熱電発電ュニッ 卜を、 容 易に製造することが可能になる。
また、 本発明の熱電発電素子の製造方法においては、 熱電構造体 のメ ツキがス 卜ライプ状バタ一ンを有する感光性樹脂の開口部に形 成する。 このため、 互いに異なる熱電材料からなる熱電構造体を感 光性樹脂の非開口部と開口部 (メツキ部分) をはめ合わせるように して積層すれば、 積層時に熱電発電ュニッ 卜の熱電体の断面位置の ずれ量が少なくなる。
それによつて、 配線しょう とする異種熱電材料同士の間隔が自動 的に一定範囲内に納まるので、 熱電構造体の接着時のパターン合わ せが容易になり、 真空蒸着法ゃフォ ト リソグラフィ ー技術によって 熱電体同士の配線を行う際には、 この一定間隔に合うようなマスク を用意することによって、 容易に熱電体間の配線を行うことが可能 である。 図面の簡単な説明 第 1 図乃至第 8図は、 この発明の第 1 実施例による熱電発電ュニ ッ 卜の製造工程を説明するための図であり、 第 1 図乃至第 3図と第 7 図は第 2, 第 3実施例の説明にも使用し、 第 4図及び第 5図は第 2実施例の説明にも使用し、 第 8図は第 2, 第 4, 第 5実施例の説 明にも使用する。
第 9図は、 この発明の第 2実施例による熱電発電ユニッ トの製造 工程の一部を示す図である。
第 1 0図乃至第 1 3図は、 この発明の第 3実施例による熱電発電 ユニッ トの製造工程を説明するための図であり、 第 1 1 図及び第 1 2図は第 6実施例の説明にも使用し、 第 1 3図は第 6, 第 9実施例 の説明にも使用する。
訂正された用紙 (規則 91) 第 1 4 図乃至第 1 8図は、 この発明の第 4実施例による熱電発電 ユニッ トの製造工程を説明するための図であり、 第 1 4 図及び第 1 5図は第 5, 第 6実施例の説明にも使用し、 第 1 7 図及び第 1 8図 は第 5実施例の説明にも使用する。
第 1 9 図は、 この発明の第 5実施例による熱電発電ユニッ トの製 造工程の一部を示す図である。
第 2 0図は、 この発明の第 6実施例による熱電発電ュニッ 卜の製 造工程の一部を示す図である。
第 2 1 図乃至第 2 8図は、 この発明の第 7実施例による熱電発電 ユニッ トの製造工程を説明するための図であり、 第 2 1 図乃至第 2 3図は第 8〜 1 2実施例の説明にも使用し、 第 2 5図は第 1 0実施 例の説明にも使用し、 第 2 6 図乃至第 2 8図は第 8実施例の説明に も使用する。
第 2 9図は、 この発明の第 8実施例及び第 1 1 実施例による熱電 発電ュニッ 卜の製造工程の一部を示す図である。'
第 3 0図乃至第 3 2図は、 この発明の第 9実施例による熱電発電 ユニッ トの製造工程を説明するための図であり、 第 3 0図は第 1 2 実施例の説明にも使用する。
第 3 3図及び第 3 4図は、 この発明の第 1 0実施例及び第 1 1 実 施例にる熱電発電ユニッ トの製造工程の一部を示す図である。
第 3 5図及び第 3 6 図は、 この発明の第 1 2実施例による熱電発 電ュニッ 卜の製造工程の一部を示す図である。
第 3 7図乃至第 4 5図は、 この発明の第 1 3実施例による熱電発 電ュニッ 卜の製造工程を説明するための図である。
第 4 6図は、 従来の製造方法で製造された熱電発電ユニッ トの一 例を示す斜視図である。 発明を実施するための最良の形態 この発明による熱電発電ュニッ 卜の製造方法をよ り詳細に説明す
訂正された用紙 (規則 91) るために、 添付図面に従って好ましい実施例を詳しく説明する。
[第 1実施例】
この発明の第 1実施例による熱鼋発電ュニッ 卜の製造工程につい て、 第 1 図〜第 8図を用いて説明する。
この第 1 実施例において、 第 1 図に示す基板 1 0には銅板を用い る。 そして、 この基板 1 0上に電極膜 1 1 と してチタン (T i ) を 真空蒸着法によって形成する。 この電極膜 1 1 の膜厚は 5 0 0 n m とする,
この電極膜 1 1であるチタン膜は、 後述するメ ツキ処理における メッキ被に基板 1 0の銅板が侵されないよう保護する役割ももつ。 つぎに、 電極膜 1 1上に感光性樹脂 1 2 を形成する。 この感光性 樹脂 1 2 としては、 膜厚 5 0 μ πιの感光性ドライフィルムを使用し, Π—ルコータを用いて形成する。
つぎに感光性樹脂 1 2である ドライフィルムを、 フォ トマスクを 用いて光を照射する露光処理と、 その未露光都のみを溶解除去する 現像処理とによるフォ ト リソグラフィ一の技術を用いて、 第 1 図に 示すように感光性樹脂 1 2によるス トライプ状のパターンを形成す る。 このパターン化後の感光性樹脂 1 2の平面パターン形状を、 第 7図の平面図に示す β
第 1図には示していないが、 感光性樹脂 1 2 を形成した後、 基板 1 0の裏面には、 テフロン系の高分子膜をスピンコーティ ング法を 用いて全面に形成しておく。
この基板 1 0の裏面に形成するテフロン系材料からなる高分子膜 は、 後述するメツキ処理工程において、 メ ツキ膜が基板 1 0裏面に 形成されるのを防ぐための役割をもつ,
つぎに、 基板 1 0上の感光性樹脂 1 2の開口部 1 3内に、 メツキ 法によ り第 2図に示すように第 1 の熱電材料からなる第 1 の熱電体 1 5 を形成する,
この第 1 の熱電体 1 5には、 η型半導体である B i T e S e合金 を材料として用いる。 この n型半導体の第 1 の熱電体 1 5 を形成するためのメ ツキ電解 液と しては、 B i ( N 03 ) と T e 0 2 と S e 〇2 とを含む硝酸溶 液を用いる。 電極膜 1 1 を力ソー ドと し、 アノー ドには P t電極を 用いて両電極間に 1 Vの電圧を印加すると、 B i T e S e合金を感 光性樹脂 1 2の開口部 1 3内の 2電極膜 1 1 上に析出させることが できる。
このとき、 基板 1 0の裏面は前述のように髙分子膜によって保護 されている。 このため、 感光性樹脂 1 2の開口部 1 3内の電極膜 1 1上の領域にだけ、 第 1 の熱鼋体 1 5 を形成することができる。 第 1 の熱鼋体 1 5を形成するためのメ ツキ法においては、 析出量 は電解時の消費電流から計算される電荷量で抉まる。 そのため、 電 荷量の測定によって第 1 の熟電体 1 5 を必要な厚さに制御すること は容易である。
第 1の熱鼋体 1 5の膜厚は、 第 2図に示すようにバタ一ニングし た感光性樹脂 1 2 と同じ膜厚、 つま り膜厚 5 0 y mになるように反 応電荷量を設定する。
さらに、 メツキ電解液中の B i と T e と S e とのイオン瀵度を変 えることで合金の組成は変化させることができ、 これらのイオン港 度条件設定によって必要な出力電圧や、 あるいは抵抗値を有する第 1 の熱電体 1 5の材料を選択することができる。
第 1の熱電体 1 5のメツキ終了後、 基板 1 0裏面の高分子膜を 卜 ルェンによって剝離除去する。 その後、 基板 1 0上に形成した第 1 の熱電体 1 5 を 3 5 0 'Cの温度の窒素雰囲気中において 1時間熱処 理する。
この窒素雰囲気中の熱処理は、 第 1 の熱電体 1 5の合金組成を均 一化するためであり、 熱電発電素子の出力を向上させるために行な つぎに第 3図に示すように、 ポリイ ミ ド樹脂からなる熱硬化性樹 脂 1 6 を、 スピンコーティ ング法によリ基板 1 0の全面に形成する, その後、 1 5 0 eC以上の温度によリ加熱処理し、 ポリイ ミ ド樹脂 からなる熱硬化性樹脂 1 6 を硬化させる。
つぎに、 基板 1 0全体を硝酸溶液中に浸漬して基板 1 0の材料で ある銅をすベて溶解した後、 さらに 1 %フッ酸溶液を用いて電極膜 1 1 の材料であるチタ ン (T i ) を溶解する。
この溶解処理のとき、 第 1 の熱電体 1 5 と感光性樹脂 1 2 と熱硬 化性樹脂 1 6 とは硝酸とフッ酸とに不溶である。 したがって、 第 4 図に示すように、 第 1 の熱電体 1 5 と感光性樹脂 1 2 と熱硬化性樹 脂 1 6 とはそのまま残り、 第 1 の熱電構造体 2 0 を形成することが できる。
以上の説明では第 1 の熱電体 1 5 を含む第 1 の熱電構造体 2 0の 形成方法であるが、 さらに以上の説明と同様な工程処理を行う こと によって第 5図に示す第 2の熱電構造体 2 1 を形成する。 このとき 上記と異なるのは第 2の熟電体 1 Ί の熱電体材料のメッキ処理工程 である。 以下に、 この第 2の熱電体 1 7の熱電材料のメ ツキ工程を 説明する。
図示はしないが第 1 図に示す工程が終了した後、 感光性樹脂 1 2 の開口部 1 3にメツキ法によ り、 今度は第 2の熱電材料からなる第 2の熱電体 1 7 を形成する。 この第 2の熱電体 1 7 には p型半導体 である B i T e S b合金を材料として用いる。
p型半導体である第 2の熱電体 1 7 のメ ツキ電解液と しては、 B i ( N 0 3 ) と T e 〇2 と S b C 1 3 とを含む硝酸溶液を用いる。 そして、 電極膜 1 1 を力ソー ドとして用い、 アノ ー ドと しては P t電極を用いて両電極間に 1 Vの電圧を印加すると、 B i T e S b 合金を感光性樹脂 1 2の開口部 1 3内の電極膜 1 1 上に析出させる ことができる。
このときも、 基板 1 0の裏面には高分子膜を形成しておき、 高分 子膜によ り保護されているため、 第 2の熱電体 1 7 は感光性樹脂 1 2の開口部 1 3内にのみ析出する。 そして、 第 2の熱電体 1 7の膜 厚は ドライフィルムと同じ膜厚の 5 0 μ πιになるよう反応電荷量で 制御する。
訂正された用紙 (規則 91) さらに、 メツキ電解液中の B i と T e と S b とのイオン濃度を変 えることによって、 第 2の熟電体 1 7 の合金の組成を変化させ、 必 要な出力電圧やあるいは抵抗値になるよう第 2の熱電体 1 7 を制御 することができる。
その後の裏面高分子膜の溶解処理と、 熱処理と、 熱硬化性樹脂 1 6のコーティ ング処理と、 基板 1 0 と電極膜 1 1 との溶解の処理工 程とは、 第 1 図から第 4 図及び第 7図を用いて説明した第 1 の熱電 構造体 2 0の製造工程と同じ処理工程を行うことによって、 第 5図 に示す第 2の熱電構造体 2 1 を形成することができる。
つぎに、 以上の処理工程によって形成した第 1 の熟電構造体 2 0 と第 2の熱電構造体 2 1 とを交互に積層し、 エポキシ系の接着剤を 用いて両者を接着する。 そして、 必要な長さで切断することによつ て、 第 6図に示す断面構造を有する熱電構造体を得る。
このとき断面の表面粗さが大きく、 後の工程の配線の形成に影響 があるときは、 ラッビング法などを用いて表面の'研磨加工をしても よい。
つぎに第 8図に示すように、 この熱電構造体の断面の全面に金 ( A u ) 膜を真空蒸着法やスパッタ リ ング法等、 あるいは無電解メ ツキ法によ り形成する。 そしてさらに、 その金 (A u ) 膜をフォ ト リ ソグラフィー技術によってパターンニングして、 配線電極 2 5 を 形成する。
この配線電極 2 5は、 断面に隣同士に現れる第 1 の熱電体 1 5 と 第 2の熱電体 1 7 とを接続して熱電対 3 0 を形成する。 そして、 す ベての熱電対 3 0 を直列に接続することによ り、 熱電発電ュニッ 卜 を得ることができる。
以上説明した熱電発電ユニッ トの製造方法において、 ドライフィ ルムからなる感光性樹脂 1 2 は、 ミ クロンオーダの精度でそのパタ ーンニングが可能である。
そして、 この感光性樹脂 1 2の開口部 1 3内にメ ツキ処理によつ て形成する第 1 の熱電体 1 5 と第 2の熱電体 1 7 とは、 感光性樹脂
訂正された用紙 (規則 91) 1 2 と同じようにミクロンオーダのパターン精度で形成することが できる。
これは、 従来の機械加工法ゃスク リーン印刷によ り塗布する厚膜 に比べて非常に高精度である。 さらにまた、 メツキ法により形成す る第 1 の熱電体 1 5 と第 2の熱電体 1 7は、 厚さのコン トロールと 組成のコン 卜ロールが容易であり、 原材料を溶解するだけの前処理 は従来に比較して簡単である。
さらに、 上述した熱電発電ユニッ トの製造方法においては、 フォ ト リ ソグラフィ 一工程と、 メ ツキ工程と、 真空蒸着あるいはエッチ ング工程とからなり、 すべてバッチ処理が可能なため、 一度に複数 の熱電構造体を形成することが可能であるという利点ももつ。
上記の方法によ り製造する熱電発電ュニッ 卜の一つと して、 それ ぞれの熱電体 1 5 , 1 7の幅寸法を 1 5 0 μ πιと し、 スペース寸法 が 5 0 μ mのものを形成する。 このとき、 熱硬化性樹脂 1 6 まで含 めた厚さ寸法は Ι Ο Ο μ πιである。
基板 1 0の幅と重ね合わせた全体の厚さ寸法を 1 c mとすると、 この基板 1 0に含まれる熱電対 3 0の数は 2 5 0 0対となる。
この熱電発電ュニッ 卜に 2 °Cの温度差を与えると 2 Vの開放電圧 が得られ、 腕時計に代表される携帯用電子機器の駆動には充分な電 圧である。
またさらに、 この熱電発電ユニッ トの長さを 2 m mとすると、 内 部イ ンピーダンスは 1 3 k Ωとなり電子機器用と しては充分対応可 能なオーダであることが分かる。
〔第 2実施例〕
つぎに、 この発明の第 2実施例による熱電発電ユニッ トの製造ェ 程について、 第 1 図, 第 2図、 第 4図〜第 9図を用いて説明する。 第 1 図〜第 8図は上述の第 1 実施例と共通であり、 第 9 図のみをこ の第 2実施例の説明に追加する。
この第 2実施例における熱電発電ュニッ 卜の製造方法においては. 第 1 実施例において第 1 図, 第 2図と第 7 図を用いて説明したよう
訂正された用紙 (規則 91) に、 基板 1 0に銅板を用いて、 その基板 1 0上への電極膜 1 1 の形 成工程と、 感光性樹脂 1 2のコーティ ング工程とバタ一ン化工程と 基板 1 0裏面への高分子膜のコーティ ング工程と、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成する工程と、 裏面の高分子膜の剥離 工程と、 熟処理工程までは第 1 の実施例と同じである。
この第 2実施例で第 1 実施例と異なるのは、 熱硬化性樹脂 1 6の 代わりに第 9図に示すように熱絶縁性板 1 8 を使用する点だけであ る。 熱絶縁性板 1 8 と しては、 厚さ 1 0 0 μ mのガラス板を使用し. エポキシ系接着剤を用いて感光性樹脂 1 2 と第 1 の熱電体 1 5上に 接着する。
そして第 9図に示した状態から、 第 1 実施例の場合と同様な処理 工程によって、 基板 1 0の銅を硝酸溶液を用いて除去し、 さらに電 極膜 1 1 のチタ ンを 1 %フッ酸溶液を用いて溶解除去して、 第 4図 に示したような第 1 の熱電構造体 2 0 (但し、 熱硬化性樹脂 1 6の 代りに熱絶縁性板 1 8 を使用) を形成する。 さらにまた同じ処理ェ 程によって第 5図に示したような第 2の熱電構造体 2 1 を形成する, その後、 第 6図と第 8図に示した第 1 実施例と同様な処理工程を 行う ことによって、 第 1 の熱電構造体 2 0 と第 2の熱電構造体 2 1 (但し、 熱硬化性樹脂 1 6の代りに熱絶縁性板 1 8 を使用) とを積 層し、 さらにこれらを接着し、 その後所定の大きさに切断する。
そして、 その後に第 8図に示した配線電極 2 δ を形成することに よ り、 熱電対 3 0 を複数個直列接続した熱電発電ュニッ 卜を得る。 この発明の第 2の実施例における熱電発電ユニッ トの製造方法に おいても、 微小な寸法の熱電発電ュニッ トを従来以上に精度よく形 成することができる。 さらに、 熱電発電素子 (熱電対) の形状やそ の組成の制御も容易である。
また、 第 1 の熱電構造体 2 0 と第 2の熱電構造体 2 1 との間に熟 絶縁性板 1 8が介在している。 それにより、 第 1 実施例に比らベて この第 2実施例によれば、 その製造工程における熱電構造体の硬度 が増すため、 基板 1 0の溶解工程における歪みや反りに対する信頼
訂正された用紙 (規則 91) 性が増し、 大型の基板への対応が可能となる。
〔第 3実施例〕
つぎに、 この発明の第 3実施例による熱電発電ュニッ 卜の製造ェ 程について、 第 1 図, 第 3図と第 1 0図から第 1 3図を用いて説明 する。
第 3実施例においては、 第 1 図及び第 2図に示すように、 基板 1 0に銅板を用い、 その基板 1 0上への電極膜 1 1 の形成工程と、 感 光性樹脂 1 2のコーティ ング工程及びパターン化工程と、 基板 1 0 の裏面への高分子膜のコーティ ング工程と、 第 1 の熱電体 1 5ある いは第 2の熱電体 1 7 を形成する工程と、 基板 1 0の裏面の高分子 膜の剥離工程と、 熱処理工程までは第 1 の実施例と同じである。 つぎに第 1 0図に示すように、 第 1 の熱電体 1 5 を形成した基板 1 0 と、 第 2の熱電体 1 7 を形成した基板 1 0とを、 熱絶縁性板 1 8 を挟んで貼り合わせる。 この熱絶縁性板 1 8 と しては、 厚さ 1 0 Ο μ παのガラス板を使用する。
第 1 の熱電体 1 5 を形成した基板 1 0 と第 2の熱電体 1 7 を形成 した基板 1 0 との貼り合わせは、 第 1 0図に示すように、 それぞれ 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを熱絶縁性板 1 8の面側に 向けて行なう。 その貼り合わせ手段には、 エポキシ系接着剤を用い て行なう。
つぎに第 1 1 図に示すように、 熱絶縁性板 1 8 を間に介して接合 した第 1 の熱電体 1 5 を形成した基板 1 0 と第 2の熱電体 1 7 を形 成した基板 1 0の全体を硝酸溶液に浸潰して、 各基板 1 0の材料の 銅をすベて溶解処理し、 さらに 1 %フッ酸溶液を用いて電極膜 1 1 の材料であるチタンを溶解処理して、 複合熱電構造体 2 3 を形成す る。
つぎに第 1 2図に示すように、 複数の複合熱電構造体 2 3 を、 第 1 の熱電体 1 5の層と第 2の熱電体 1 7 とがそれぞれ対向するよう に積層し、 エポキシ系接着剤を用いて接着し、 必要な長さに切断す る。
訂正された用紙 (規則 91) ここで図示はしないがそれぞれの植合熱電構造体 2 3の間は、 接 着に用いた絶録性のエポキシ系接着剤によって隔てられており、 こ の時点で第 1 の熟電体 1 5と第 2の熱電体 1 7 と間の導通はとれて いない。
このとき素子断面の表面粗さが大きく、 後の工程の配線の形成に 影轡があるときは、 前述のようにラッピング法などを用いて、 棄子 表面の研磨をしてもよい。
つぎに第 1 3図に示すように素子断面の全面に金 (A u ) 膜を真 空蒸着法やスパッタリ ング法、 あるいは無電解メツキ法によ リ形成 する。 そしてさらに、 金 (A u ) 膜をフォ トリソグラフィ ー技術に よってパターンニングして、 配線電極 2 5 を形成する。
この配線電極 2 5は、 断面に隣同士に現れた第 1 の熱電体 1 5 と 第 2の熱電体 1 7 を接銃して熱電対 3 0を形成する。 そして、 すべ ての熱笛対 3 0を直列に接続することにより、 熱電発^;ュニッ 卜を 得ることができる,
この第 3実施例による熱電発霜ュニッ トの製造方法においても、 微小寸法の熱電発鼋ュニッ 卜を従来以上に精度よく形成することが できる。 さらに、 熱 ¾発電素子 (熱電対) の形状やその組成の制御 も容易である。
さらに、 この第 3実施例によれば、 熱絶縁性板 1 8 を複合熱!;構 造体 2 3の間に介在させている, このことから熱電発電ュニッ トの 硬度が増すとともに、 第 2実施例と比較して熱絶緑性板 1 8は半分 になり、 熱電発電素子の厚さが薄くなリ、 熱電発電ユニッ トをさら に微小化にするのに適している,
[第 4実施例〕
つぎに、 この発明の第 4実施例による熱鸳発電ュニッ 卜の製造ェ 程について、 第 1 4図から第 1 8図と第 8図を用いて説明する。 第 1 4図に示す基板 1 0 ' と しては、 金属板と してチタ ン板を用 いる。 そして、 その基板 1 0 ' 全面に感光性樹脂 1 2 を形成する。 この感光性樹脂 1 2 としては、 膜厚 5 Ο μ πιの感光性ドライフィル ムをロールコータ を用いて形成する。
その後、 感光性樹脂 1 2である ドライフィルムを、 フォ トマスク を用いて光を照射する露光処理と、 未露光部のみを溶解除去する現 像処理とによるフォ ト リ ソグラフィ 一の技術を用いて、 第 1 4図に 示すようにス トライプ状にパターンニングして、 感光性樹脂 1 2 を 形成する。
第 1 4 図には図示していないが、 感光性樹脂 1 2 を形成した後、 基板 1 0 ' の裏面にはテフロン系の高分子膜をスピンコーティ ング 法を用いて、 基板 1 0 ' の裏面全面にコーティ ングしておく。
この基板 1 0 ' の裏面に形成する高分子膜は、 後述するメ ツキ処 理工程においてメ ッキ膜が基板 1 0 ' 裏面に形成されることを防ぐ ために形成する。
つぎに第 1 5図に示すように、 感光性樹脂 1 2の開口部 1 3内の 基板 1 0 ' 上に、 メツキ法によ り第 1 の熱電材料からなる第 1 の熱 電体 1 5 を形成する。
この感光性樹脂 1 2の開口部 1 3内に形成する第 1 の熱電体 1 5 は、 n型半導体である B i T e S e合金を材料と して用いる。
η型半導体である第 1 の熱電体 1 5のメ ツキ電解液と しては、 Β i ( N 0 3 ) と T e 0 2 と S e 0 2 とを含む硝酸溶液を用いている, そして、 基板 1 0 ' を力ソー ドと して使用し、 アノー ドには P t 電極を用いて、 力ソー ドァノ ー ド両電極間に 1 Vの電圧を印加する と、 B i T e S e合金を感光性樹脂 1 2の開口部内の基板 1 0上に 析出させることができる。
この第 1 の熱電体 1 5のメ ツキ処理のとき、 前述のように基板 1 0 ' 裏面は高分子膜によ り保護されている。 このため、 感光性樹脂 1 2の開口部内にのみ、 第 1 の熱電体 1 5 を析出させることができ る。
第 1 の熱電体 1 5のメ ツキ処理においては、 その析出量は電解時 の消費電流から計算される電荷量で決まるため、 電荷量の測定によ つて、 第 1 の熱電体 1 5 を必要な厚さに制御することは容易である
訂正された用紙 (規則 91) この第 1 の熱電体 1 5の形成膜厚は、 感光性樹脂 1 2 と同じ膜厚. つま り膜厚 5 0 μ πΐになるよう設定する。
さらに、 電解液中の B i と丁 e と S e とのイオン濃度を変えるこ とによって、 第 1 の熱電体 I 5の合金の組成を変化させることがで きる。 そして、 これらのイオン濃度条件設定によって第 1 の熱電体 1 5 として、 必要な出力電圧やあるいは抵抗値を有する材料を選択 できる。
第 1 の熱電体 1 5のメ ツキ終了後、 基板 1 0 ' の裹面のメツキ保 護膜として用いた高分子膜を トルエンによって剥離除去する。
つぎに、 基板 1 。 ' 上に形成した第 1 の熱電体 1 5 を温度 3 5 0 での窒素雰囲気中において 1 時間熱処理する。
この窒素雰囲気中の熱処理は、 第 1 の熱電体 1 5の合金組成を均 一化するためであり、 熱電発電ュニッ 卜の出力を向上させるために 行なう。
つぎに第 1 6図に示すように、 ポリイ ミ ド樹脂からなる熱硬化性 樹脂 1 6 を、 基板 1 0の感光性樹脂 1 2 と第 1 の熱電体 1 5の上面 に形成する。 この熱硬化性樹脂 1 6はスピンコーティ ング法によ り 形成する。
そして 1 5 0 *0以上の温度で加熱処理し、 熱硬化性樹脂 1 6であ るポリイ ミ ド樹脂を硬化させる。
つぎに第 1 7図に示すように、 感光性樹脂 1 2 と第 1 の熱電体 1 5 との上面に熱硬化性樹脂 1 6 を形成した熱電発電素子全体を 1 % フッ酸溶液中に浸渎し、 基板 1 0の材料であるチタ ンを溶解除去す る,
この基板 1 0の溶解処理のとき、 第 1 の熱電体 1 5 と感光性樹脂 1 2 と熱硬化性樹脂 1 6 とは、 フッ酸に不溶のためそのまま残り、 第 1 の熱電構造体 2 0 を形成することができる。
以上の説明は第 1 の熱電体 1 5 を形成した第 1 の热電構造体 2 0 の製造方法であるが、 さらに同様な工程を経ることによって第 1 荬 施例において第 5図に示したのと同じ第 2の熱電構造体 2 1 を形成 することができる。
このとき上記と異なるのは、 第 2の熱鼋材料からなる第 2の熱電 体 1 7のメツキ処理工程である。 この第 2の熱電材料からなる第 2 の熱鼋体 1 7のメツキ処理工程を、 つぎに説明する。
第 1 4図に図示はしないが第 1 4図に示す工程が終了した後、 感 光性樹脂 1 2の開口都 1 3の基板 1 0 ' 上にメツキ法によ り、 第 2 の熱電材料からなる第 2の熱電体 1 7 を形成する。
この第 2の熱電体 1 7 には、 p型半導体である B i T e S b合金 を材料として用いる。
p型半導体である第 2の熱電体 1 7のメ ツキ電解液と しては、 B i ( N 0 3 ) と T e〇2 と S b C 1 3 とを含む硝酸溶液を用いる。 基板 1 0 ' を力ソー ドとして使用し、 アノ ー ドには P t電極を用い て、 アノ ー ド力ソー ド電極間に 1 Vの電圧を印加すると、 B i T e S b合金を感光性樹脂 1 2の開口部 1 3内の基板 1 0 ' 上に析出さ せることができる,
このメツキのときも、 基板 1 0 ' の裏面は高分子膜によ リ保讅さ れているため、 第 2の熱電体 1 7 は感光性樹脂 1 2の開口部 1 3内 にのみ析出する,
この第 2の熱鼋体 1 7の膜厚は、 感光性樹脂 1 2である ドライフ ィルムと同じ膜厚の膜厚 5 0 μ παになるよう反応電荷堂で制御する, さらに、 第 2の熱電体 1 7のメッキ電解液中の B i と T e と S b のイオン濃度を変えることにより合金の組成を変化させ、 第 2の熱 電体 1 7が必要な出力電圧やあるいは抵抗値を有するように制御す る,
その後の裏面の高分子膜の溶解処理と、 熱処理と、 熱硬化性樹脂 1 6のコーティ ング処理と、 基板 1 0 ' の溶解処理との工程とは、 第 1 4図から第 1 7図を用いて説明した第 1 の熱電構造体 2 0の製 造工程と同じ処理方法にょリ、 第 2の熱電構造体 2 1 を形成する。
その後、 第 1 8図に示すように、 第 1 の熟鼋構造体 2 0 と第 2の 熱電構造体 2 1 とを交互に積眉し、 エポキシ系の接着剤を用いてこ の両者を接着する。
そして、 必要な長さに切断加工することにより、 第 1 の熱電構造 体 2 0と第 2の熱電構造体 2 1 との間に熱硬化性樹脂 1 6 を介在さ せた構造の熱鼋構造体を形成することができる。
この切断加工のとき、 素子断面の表面粗さが大きく、 後の工程の 配線形成に影響があるときは、 さきの実施例と同じように、 ラッピ ング法などを用いて素子表面の研磨加工をしてもよい。
つぎに、 断面全面に金 (A u ) 膜を真空蒸着法やスパッタ リ ング 法、 あるいは無電解メ ツキ法により形成する,
その後、 フォ トリソグラフィー技術によって、 金 (A u ) 膜をパ ターンニングして、 第 8図に示した第 1実施例と同様に配線電極 2 5 を形成する。
この配線電極 2 5は、 断面に隣同士に現れた第 1 の熱電体 1 5 と 第 2の熱電体 1 7 とを接続し、 熟電対 3 0 を形成する,
そして、 すべての熱電対 3 0 を直列に接铳することで、 热電発電 ユニッ トを得ることができる.
この第 4の実施例による熟電発電ュニッ 卜の製造方法においても, 微小寸法の然鼋発電ュニッ 卜を従来以上に精度よく形成することが できる。 さらに、 熟電発電素子 (熱電対) の形状やその組成の制御 も容易である,
さらにこの第 4実施例においては、 本発明の第 1 実施例から第 3 実施例と比較して、 基板 1 0 ' 上に鼋椟臈 1 1であるチタン膜を形 成していない。 このことからこの第 4実施例における熱鼋発電ュニ ッ 卜の製造方法によれば、 さらに製造工程が簡索化されるという効 果を有する,
[第 5実施例〕
つぎにこの第 5実施例による熱鼋発鼋ュニッ トの製造方法につい て第 1 4図, 第 1 5図、 第 1 7図から第 1 9図と第 S図を用いて説 明する,
第 5実施例においては、 さきの第 4実施例とおなじように、 第 1 4図, 第 1 5図に示すように基板 1 0 ' にチタン板を用い、 感光性 樹脂 1 2のコーティ ング工程とパターン化工程と、 基板 1 0 ' の裏 面への高分子膜のコーティ ング工程と、 第 1 の熱電体 1 5あるいは 第 2の熱電体 1 7 を形成する工程と、 裏面の高分子膜の剥離工程と、 熱処理工程までは第 4実施例と同じである。
つづく工程は、 第 4実施例と異なリ熱硬化性樹脂 1 6の代わりに、 第 1 9囪に示すように熱絶縁性板 1 8 を基板 1 0 ' の感光性樹脂 1 2 と第 1 の発電体 1 5上に形成する。 この熱絶緣性板 1 8 としては 厚さ Ι Ο Ο μ ιηのガラス板を用い、 そして接着手段によ リ感光性榭 脂 1 2 と第 1の発電体 1 5 との上面に接合する,
そして、 第 1 7図に示すように基板 1 0 ' の材料のチタンを 1 % フッ酸溶液を用いて溶解除去し、 第 1 の熱霭構造体 2 0を形成する, さらに同じような処理工程を行い第 2の熱電構造体 2 1 を形成する, その後、 第 1 8図に示すように第 1 の熱鸳構造体 2 0 と第 2の熱 電構造体 2 1 とを熱絶縁性板 1 8 を介して秸眉するように接着して, 切断し、 熱電構造体を形成することができる,
つぎに断面全面に金 (A n ) 膜を、 真空蓀着法やスパッタ リ ング 法、 あるいは無電解メ ツキ法により形成する。 その後、 フォ ト リ ソ グラフィー技術により、 金 (A u ) 膜をパターンニングして、 第 8 図に示した第 1実施例と同様に配根電極 2 5 を形成し、 熟電発電ュ ニッ 卜を得る。
この第 5実施例による熱電発電ュニッ 卜の製造方法においても、 微小寸法の熱電発 ¾ュニッ ト を従来以上に精度よく形成することが できる, さらに、 熱電発電累子 (熱鼋対) の形状やその組成の制御 も容易である。
さらに第 1 の熱電構造体 2 0 と第 2の熱鼋構造体 2 1 との間に熱 絶縁性板 1 8 を介在させていることから、 この第 5実施例によれば, 熟 発電ュニッ 卜の製造方法においては、 大型の基板への対応が可 能になる。 〔第 6実施例〕
つぎに、 この発明の第 6実施例による熱電発電ュニッ 卜の製造ェ 程について、 第 1 4図, 第 1 5図と第 2 0図及び第 1 1 図から第 1 3図を用いて説明する。
この発明の第 6の実施例による熱電発電ユニッ トの製造方法にお いても、 第 1 4 図から第 1 6 図に示したように基板 1 0 ' にチタ ン 板を用い、 感光性樹脂 1 2のコーティ ング工程とパターン化工程と 基板 1 0 ' 裏面への高分子膜のコーティ ング工程と、 第 1 の熱電体 1 5あるいは第 2の熱電体 1 7 を形成する工程と、 裏面の高分子膜 の剥離工程と、 熱処理工程までは、 前述の第 4実施例と同じである, つぎに第 2 0図に示すように、 第 1 の熟電体 1 5 を形成した基板 と、 第 2の熱電体 1 7 を形成した基板とを、 熱絶縁性板 1 8 を介し て貼り合わせる。 この熱絶縁性板 1 8 としては厚さ Ι Ο Ο μ πιのガ ラス板を適用する。
第 1 の熱電体 1 5 を形成した基板 1 0 ' と第 2'の熱電体 1 7 を形 成した基板 1 0 ' との貼り合わせは、 それぞれ第 1 の熱雷体 1 5 と 第 2の熱電体 1 7 とを形成した面側を熱絶緣性板 1 8側に向け、 ェ ポキシ系接着剤を用いて行う。
そして、 この熱絶縁性板 1 8 を介して接合した第 1 の熱電体 1 5 を形成した基板 1 0 ' と第 2の熱電体 1 7 を形成した基板 1 0 ' を, 1 %フッ酸溶液に浸漬して、 基板 1 0 ' の材料であるチタ ンを溶解 して、 前述の第 3実施例と同じく第 1 1 図に示した複合熱電構造体 2 3 を形成する。
さらに、 第 1 2図に示したように複数の複合熱電構造体 2 3 を、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とが対向するように積層し、 エポキシ系接着剤を用いてそれぞれを接着し、 必要な長さに切断す る。
この第 1 2図には図示しない力 、 それぞれの複合熱電構造体 2 3 の間は、 接着に用いた絶縁性のエポキシ系接着剤によって隔てられ ており、 この時点で第 1 の熱電体 1 5 と第 2の熱電体 1 7間での導
訂正された用紙 (規則 91) 通はとれていない。
このとき素子断面の表面粗さが大きく、 後の工程の配線の形成に 影響があるときは、 前述のようにラッビング法によって素子表面の 研磨加工を してもよい,
つぎに第 1 3図に示したように、 素子断面の全面に金 (A u ) 膜 を、 真空蒸着法やスパッタ リ ング法、 あるいは無電解メ ツキ法によ リ形成する。 そしてさらに、 金 (A u ) 膜をフォ ト リソグラフィー 技術によってパターンニングして、 配線電極 2 5 を形成する,
この配線電極 2 5は、 断面に隣同士に現れる第 1 の熱電体 1 5 と 第 2の熱電体 1 7 を接続して、 熱键対 3 0 を形成する。
そして、 すべての熱電対 3 0 を直列に接続することによ り、 熱電 発電ュニッ トを得ることができる。
この第 6実施例による熱鼋発電ュニッ 卜の製造方法でも、 微小寸 法の熟電発電ュニッ トを従来以上に精度よく形成することができる, さらに、 熟電発電素子 (熱電対) の形状やその組.成の制御も容易で ある β
さらにこの第 6実施例によれば、 複合熱電構造体 2 3間に熱絶緑 性板 1 8 を介在させている, このことから熟鼋発!;ユニッ トの硬度 が増すとともに、 第 5実施例と比較して熱絶緑性板 1 8は半分で済 むため、 積眉する熱電発電素子の厚さが薄くなリ熱電発電ユニッ ト をさらに微小化するのに適している。
[第 7実施例〕
つぎに、 本発明の第 7実施例による熱電発電ュニッ トの製造工程 について、 第 2 I Sから第 2 8図を用いて説明する。
第 2 1 図に示すように、 基板 1 0 としては、 おもて面を S i 0 2 膜などの絶緑膜 (図示せず) で被覆した銅板を用いる。
S i 0 2 からなる絶緑膜は、 この後の処理工程で形成する 2つの 電極膜が基板 1 0の銅によって短絡するのを防ぐ役割を有する被膜 である β
その後、 基板 1 0のおもて面の全面には電極膜と してチタン膜を 形成する。 この鼋極膜は、 膜厚 5 0 0 n mで真空蒸箬法によリ形成 する。
その後、 電極膜であるチタン膜をフォ ト リ ソグラフィ 一技術とェ ツチング技術とを用いて、 電極膜の平面パターン形状が 2つの互い に入リ込みあう櫛歯状になるようにパターンニングして、 第 1 の電 極膜 3 1 と第 2の電極膜 3 2 を形成する。 この第 1 の電極膜 3 1 と 第 2の電極膜 3 2 との平面パターン形状を第 2 2図の平面図に示す, つぎに、 第 1 の電極膜 3 1 と第 2の電極膜 3 2 とを形成した基板 1 0の全面に感光性樹脂 1 2 を形成する。 この感光性樹脂 1 2 とし ては、 厚さ 5 O z mの感光性ドライフィルムを、 ロールコータ を用 いて形成する,
そして、 フォ ト リソグラフィ一の技術を用いて、 第 2 3図に示す ように、 第 1 の電極膜 3 1 と第 2の铠極膜 3 2 とを形成していない 隙間領域に、 ス トライプ状にパターンニングするような形状に感光 性樹脂 1 2 を形成する.
第 2 3図には図示していないが感光性樹脂 1 2 を形成した後、 基 板 1 0の裏面にはテフロン系の高分子膜をスピンコーティ ング法を 用いて、 全面にコーティ ングしておく。
その後、 第 2 4図に示すように、 感光性樹脂 1 2の開口都 1 3内 の第 1の鼋極膜 3 1上にメツキ法を用いて、 まずはじめに第 1 の熱 鼋材料からなる第 1の熱!;体 1 5 を形成する。
この第 1 の踅極膜 3 1上に形成する第 1 の熱電体 1 5 と しては、 n型半導体である B i 丁 e S e合金を材料として用いる。
II型半導体である第 1 の熱電体 1 5のメッキ電解液と しては、 B i ( N 03 ) と T e 0 2 と S e 0 2 とを含む硝酸瑢液を用いる。 第 1の電極膜 3 1 を力ソー ドとして使用し、 アノ ー ドには P t電 極を用いて、 力ソー ドアノー ド電極間に I Vの電圧を印加すると、 B i T e S e合金が感光性樹脂 1 2の開口部 1 3内の第 1 の電極膜 3 1上に析出する.
第 1 の熱電体 1 5の膜厚は反応鼋荷量によ りコン トロールし、 感 光性樹脂 1 2 とほぼ同じ膜厚の 5 0 μ mになるよう第 1 の熱電体 1 δの膜厚を設定する。
さらにつぎに、 感光性樹脂 1 2の開口部内の第 2の電極膜 3 2上 に、 メツキ法を用いて第 2の熱電材料からなる第 2の熟電体 1 7 を 形成する。
この第 2の電極膜 3 2上に形成する第 2の熱電材料からなる第 2 の熱電体 1 7には、 ρ型半導体である B i T e S b合金を材料と し て用いる。
p型半導体である第 2の熱電体 1 7 のメ ツキ電解液と しては、 B i ( N 0 3 ) と T e 〇2 と S b C 1 3 とを含む硝酸溶液を用いる。 第 2の電極膜 3 2 を力ソー ドとして使用し、 アノ ー ドには P t電 極を用いて、 カソー ドアノー ド電極間に 1 Vの電圧を印加すると、 B i T e S b合金が感光性樹脂 1 2の開口部内の第 2の電極膜 3 2 上に析出する。
第 2の電極膜 3 2上に形成する第 2の熱電体 Γ 7の膜厚は、 感光 性樹脂 1 2である ドライフィルムと同じ膜厚 5 0 μ mになるように、 反応電荷量で制御する。
第 1 の熱電体 1 5 と第 2の熱電体 1 7 との 2回のメツキ処理後、 基板 1 0の裏面の高分子膜を トルエンによって剥離除去する。 そし て第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを、 温度 3 5 0 °Cの窒素 雰囲気中において 1 時間の熱処理を行う。
つぎに第 2 5図に示すように、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 と感光性樹脂 1 2 との上面に、 ポリイ ミ ド樹脂からなる熱硬化 性樹脂 1 6 を形成する。 この熱硬化性樹脂 1 6は、 スピンコ一ティ ング法によ り形成する。
そして温度 1 5 0 °C以上で加熱処理し、 熱硬化性樹脂 1 6である ポリイ ミ ド樹脂を硬化させる。
つづいて、 第 〗 の熟電体 1 5 と第 2の熱電体 1 7 と感光性樹脂 1 2 との上面に熟硬化性樹脂 1 6 を形成した熱電構造体を、 硝酸溶液 中に浸潰して、 基板 1 0の材料の銅をすベて溶解する。 その後、 1
訂正された ¾紙 (規則 91) %フッ酸溶液に浸演して、 絶縁膜である S i 0 2 膜と、 第 1 の電極 膜 3 1 と第 2の電極膜 3 2であるチタン膜とを溶解除去する。
この溶解処理のとき、 第〗 の熱電体 1 5 と、 第 2の熱電体 1 7 と, 感光性樹脂 1 2 と、 熟硬化性樹脂 1 6 とは、 硝酸とフッ酸とに不溶 のためそのまま残り、 第 2 6図に示すような熱電構造体 2 4 を形成 することができる,
つぎに、 この熱電構造体 2 4 を複数積層し、 エポキシ系接着剤を 用いてそれぞれ接着する。 そして必要な長さに切断加工することに よ り、 第 2 7図に示すように熱電構造体 2 を複数積層した熱電構 造体を得る。
このとき、 素子断面の表面粗さが大きく後の工程の配線形成に影 響があるときは、 前述のようにラッピング法などを用いて素子表面 の研磨加工をしてもよい。
その後、 第 2 8図に示すように、 稷屑した熱電構造体の断面の全 面に金 (A u ) 膜を、 真空蒸着法やスパッタ リング法、 あるいは無 電解メツキ法によリ形成する,
その後、 フォ ト リソグラフィ技術によって金 (A u ) 膜をパター ンエングして、 配線爾極 2 5 を形成する.
この配線 ¾極 2 5は、 熱鼋発^素子断面の隣同士に現れる第 1 の 熱電体 1 5 と第 2の熱電体 1 7 とも接続し, 熱電対 3 0 を形成する, そして、 すべての熟電対 3 0 を直列に接続することで、 熱電発電 ユニッ トを形成することができる。
なお第 2 8図においては、 同一の熱電構造体 2 4 においてとなり 合った第 1 の熱電体 1 5 と第 2の熱鼋体 1 7 とを接続して熱罨対 3 0を形成しているが、 隣り合った熱電構造体 2 4間において熱 ¾対 3 0 を作ってもよい。
この第 7の実施例における熱 ¾発電ュニッ 卜の製造方法において も、 微小寸法の熟鼋発電ュニッ 卜を従来以上に精度よく形成するこ とができる。 さらに、 その熱鼋発截索子 (熱電対) の形状やその組 成の制御も容易である. 〔第 8実施例〕
つぎに、 本発明の第 8の実施例による熱電発電ュニッ 卜の製造ェ 程について、 第 2 1 図から第 2 4図と第 2 6図から第 2 9 図を用い て説明する。
第 8実施例においては、 第 7実施例で第 2 1 図から第 2 4図に示 したように、 基板 1 0に S i 0 2 からなる絶縁膜で被覆した銅板を 用い、 電極膜であるチタ ンの形成と第 1 の電極膜 3 1 と第 2の電極 膜 3 2 とのパターニング工程と、 感光性樹脂 1 2のコーティ ングェ 程とそのパターニング工程と、 基板 1 0の裏面への高分子膜のコー ティ ング工程と、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 を形成する 工程と、 裏面の高分子膜の剥離工程と、 熱処理工程までは第 7実施 例と同じである。
つづく処理工程は、 第 7の実施例と異なり、 熱硬化性樹脂 1 6の 代わりに、 第 2 9図に示すように熱絶縁性板 1 8 を使用する。 この 熱絶縁性板 1 8 と しては厚さ 1 0 0 μ mのガラス板をエポキシ系接 着剤を用い、 第 1 の熱電体 1 5 と第 2の熟電体 1 7 と感光性樹脂 1 2 との上面に接着する。
そして、 基板 1 0の材料の銅を硝酸で溶解し、 さらに絶縁膜であ る S i 0 2 膜と第 1 の電極膜 3 1 と第 2の電極膜 3 2 とを 1 %フッ 酸溶液を用いて溶解除去し、 第 2 6図に示したような熱電構造体 2 4 (但し、 熱硬化性樹脂 1 6の代わりに熱絶縁性板 1 8 を使用) を 形成する。
この後、 第 2 7図, 第 2 8図に示したように複数の熱電構造体 2 4 を積層して接着して切断し、 断面に配線電極 2 5 を形成すること によつて熱電発電ュニッ 卜を得る。
この第 8の実施例による熱電発電素子の製造方法においても、 微 小寸法の熱電発電ュニッ 卜を従来以上に精度よく形成することがで きる。 さらに、 熱電発電素子 (熱電対) の形状やその組成の制御も 容易である。
さらに、 この第 8の実施例の熱電発電素子の製造方法によれば、
i丁正された ¾紙 (現則 91) 熱電構造体 2 4 に間に熱絶縁性板 1 8が介在していることから、 大 型の基板への対応が可能となる。
〔第 9実施例〕
つぎに、 この発明の第 9実施例による熱電発電ュニッ 卜の製造ェ 程について、 第 2 2図から第 2 5図と第 3 0図乃至第 3 2図を用い て説明する。
この第 9の実施例においては、 第 2 2図から第 2 5図に示したよ うに、 基板 1 0に絶縁膜として S i 0 2 膜で被覆した銅板を使用し. チタ ンからなる電極膜の形成と第 1 の電極膜 3 1 と第 2の電極膜 3 2 とのパターニング工程と、 感光性樹脂 1 2のコーティ ング工程と パターン化工程と、 基板 1 0の裏面への高分子膜のコーティ ングェ 程と、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 を形成する工程と、 裏 面の高分子膜の剥離工程と、 熱処理工程までは第 7の実施例と同じ である。
つぎに第 3 0図に示すように、 第 1 の熱電体 1· 5 と第 2の熱電体 1 7 とを形成した 2枚の基板を、 熱絶縁性板 1 8 を間に介在させて 貼り合わせる。 この熱絶縁性板 1 8 と しては、 厚さ 1 0 0 /X mのガ ラス板を用いる。
第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成した 2枚の基板の 貼り合わせ処理は、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成 した面側を熱絶縁性板 1 8側に向けて配置し、 エポキシ系接着剤を 用いて行う。
つぎに第 3 1 図に示すように、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成して、 熱絶縁性板 1 8 を介在させて接合した 2枚の基 板全体を硝酸溶液に浸潰して、 基板 1 0の材料の銅を溶解除去し、 その後 1 %フッ酸溶液に浸潰して、 S i 0 2 からなる絶縁膜と第 1 の電極膜 3 1 と第 2の電極膜 3 2であるチタ ンを溶解し、 複合熟電 構造体 2 6 を形成する。
さらに第 3 2図に示すように、 複数の複合熱電構造体 2 6 を積層 し、 エポキシ系接着剤を用いてそれぞれを接着して必要な長さに切
訂正された用紙 (規則 91) 断する。
この第 3 2図に図示はしないが、 それぞれの複合熱電構造体 2 6 間は、 接着に用いた絶縁性のエポキシ系接着剤によって隔てられて おリ、 この時点で第 1 の熱電体 1 5 と第 2の熱電体 1 7 と間の導通 はない。
このとき素子断面の表面粗さが大きく、 後の工程の配線の形成に 影響があるときは、 前述のようにラッピング法などを用いて素子表 面の研磨をしてもよい。
つぎに第 2 8図に示したように、 素子断面の全面に金 (A u ) 膜 を真空蒸着法やスパッタ リング法、 あるいは無電解メツキ法によ り 形成する。 そしてさらに、 金 (A u ) 膜をフォ ト リ ソグラフィ 一技 術によってパターンニングして、 配線電極 2 5 を形成する。
配線電極 2 5は、 断面に隣同士に現れた第 1 の熱電体 1 5 と第 2 の熱電体 1 7 を接続して熱電対 3 0 を形成する。
そして、 すべての熱電対 3 0 を直列に接続することによ り、 熱電 発電ュニッ トを得ることができる。
この第 9の実施例における熱電発電素子の製造方法においても、 微小寸法の熱電発電ュニッ 卜を従来以上に精度よく形成することが できる。 さらに、 熱電発電素子形状やその組成の制御も容易である < また、 複合熱電構造体 2 6間に熱絶縁性板 1 8が介在している。 このことから熱電発電ュニッ 卜の硬度が増すとともに、 第 8実施例 と比較して熱絶縁性板 1 8は半分で済むため、 積層する熱電発電素 子の厚さが薄くなリ熱電発電ユニッ トをさらに微小にするのに適し ている。
〔第 1 0実施例〕
つぎに、 この発明の第 1 0実施例による熱電発電ュニッ 卜の製造 方法について、 第 2 1 図乃至第 2 5図と第 3 3図及び第 3 4図を用 いて説明する。
まず第 2 1 図に示したように、 基板 1 0のおもて面に S i 0 2 膜 からなる絶縁膜によって被覆する銅板からなる基板 1 0 を用いる。
訂正された用紙 (規則 91) この S i 〇2 からなる絶縁膜は、 この後の工程で形成する 2つの 電極膜が基板 1 0の銅によって短絡するのを防ぐ役割をもつ被膜で ある。
その後、 基板 1 0のおもて面に第 1 の電極膜 3 1 と第 2の電極膜 3 2 をチタン膜で形成する。 このチタ ン膜は、 5 0 0 n mの膜厚で 真空蒸着法によって形成する。
そしてこのチタ ン膜を、 フォ 卜 リ ソグラフィ技術とエッチング技 術とを用いて、 平面形状が 2つの互いに入り込みあう櫛歯状になる ようパターンニングし、 第 1 の電極膜 3 1 と第 2の電極膜 3 2 を形 成する。
この第 1 の電極膜 3 1 と第 2の電極膜 3 2 との平面パターン形状 は、 第 2 2図の平面図に示したとう りである。 この第 1 の電極膜 3 1 と第 2の電極膜 3 2 とは、 お互いの間に隙間を形成するような櫛 歯状にパタ一ン形成する。
つぎに、 第 1 の電極膜 3 1 と第 2の電極膜 3 2'とを形成した基板 1 0全面に感光性樹脂 1 2 を形成する。 この感光性樹脂 1 2 と して は、 厚さ 5 Ο μ πιの感光性ドライフィルムをロールコータ を用いて 形成する。
そして、 フォ ト リ ソグラフィ ー技術を用いて、 第 1 の電極膜 3 1 と第 2の電極膜 3 2 との隙間領域に第 2 3図に示すようにス トライ プ状に感光性樹脂 1 2 をパターン形成する。
第 2 3図には図示していない力 、 感光性樹脂 1 2 を形成した後、 基板 1 0の裏面にはテフロン系の高分子膜をスピンコーティ ング法 を用いて、 基板 1 0の裏面全面にコーティ ングしておく。
その後、 第 2 5図に示すように、 感光性樹脂 1 2の開口部内の第 1 の電極膜 3 1 上にメ ツキ法を用いて、 まずはじめに第 1 の熱電材 料からなる第 1 の熱電体 1 5 を形成する。
この第 1 の電極膜 3 1 上に形成する第 1 の熱電体 1 5 と しては、 η型半導体である B i T e S e合金を材料と して用いる。
n型半導体である第 1 の熱電体 1 5 を形成するメ ツキ電解液と し
訂正された用紙 (規則 91) ては、 B i ( N 0 3 ) と T e 〇2 と S e 〇2 とを含む硝酸溶液を用 いる。 そして第 1 の電極膜 3 1 を力ソー ドと して使用し、 アノ ー ド には P t電極を用いて、 力ソー ド · アノー ド電極間に 1 Vの電圧を 印加すると、 B i T e S e合金を感光性樹脂 1 2の開口部内の第 1 の電極膜 3 1上に析出する。
この第 1 の熱電体 1 5の膜厚は、 反応電荷量によ りコン トロール して、 感光性樹脂 1 2 とほぼ同じ膜厚の 5 0 μ mになるように、 第 1 の熱電体 1 5の膜厚を設定する。
さらにつぎに、 第 2の電極膜 3 2上に、 メ ツキ法を用いて第 2の 熱電材料からなる第 2の熱電体 1 7 を形成する。
この第 2の熱電体 1 7 としては、 p型半導体である B i T e S b 合金を材料として用いる。
p型半導体である第 2の熱電体 1 7 を形成するメ ツキ電解液と し ては、 B i ( N 0 3 ) と T e 〇2 と S b C 1 3 とを含む硝酸溶液を 用いる。 そして第 2の電極膜 3 2 を力ソー ドとじて使用し、 ァノ 一 ドには P t電極を用いてカソー ド · ァノ ー ド電極間に 1 Vの電圧を 印加すると、 B i T e S b合金を感光性樹脂 1 2の開口部内の第 2 の電極膜 3 2上に析出する。
第 2の電極膜 3 2の膜厚は、 感光性樹脂 1 2 と同じ膜厚の 5 0 μ mになるよう反応電荷量によって制御する。
第 1 の熱電体 1 5 と第 2の熱電体 1 7 との 2回のメツキ処理後、 基板 1 0の裏面の高分子膜は トルエンによって剥離除去する。 そし て第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを温度 3 5 0 °Cの窒素雰 囲気中において 1 時間の熱処理を行う。
つぎに第 2 5図に示すように、 ポリイ ミ ド樹脂からなる熱硬化性 樹脂 1 6 を、 感光性樹脂 1 2 と第 1 の熱電体 1 5 と第 2の熱電体 1 7 との上面に、 スピンコーティ ング法によ リ形成する。
そして温度 1 5 0 °C以上で加熱処理し、 熱硬化性樹脂 1 6である ポリイ ミ ド樹脂を硬化させる。
つづいて、 この熱電構造体全体を硝酸溶液中に浸潰し、 基板 1 0
訂正された用紙 (規則 91) の材料の銅をすベて溶解する。
この基板 1 0の溶解処理のとき、 第 1 の熱電体 1 5 と第 2の熱電 体 1 7 と感光性樹脂 1 2 と熱硬化性樹脂 1 6 とは、 硝酸に不溶のた めそのまま残る。
さらに、 残存している S i 0 2 からなる絶縁膜とチタ ン膜からな る第 1 の電極膜 3 1 と第 2の電極膜 3 2 をフッ酸を用いて溶解除去 し、 第 3 3図に示すように第 1 の熱電体 1 5 と第 2の熱電体 1 7の メ ツキ開始面 3 3が現れるようにする。
さらに、 そのメツキ開始面 3 3に金 (A u ) 膜を真空蒸着法によ つて形成する。 そして、 フォ ト リ ソグラフィ処理とエッチング処理 によ り金 (A u ) 膜をパターンニングすることによって、 隣り合う 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを交互に接続するよう、 配 線電極 3 5 を形成して熱電対 3 0 ' を構成する。 以上の処理工程に よって、 多数の熱電対 3 0 ' を有する熱電構造体 2 7 を形成するこ とができる。
その後、 第 3 4図に示すように、 この熱電構造体 2 7 を複数個積 層して、 エポキシ系接着剤を用いて接着する。
そしてすベての熱電対 3 0 ' を直列に接続することによ り、 熱電 発電ュニッ 卜を形成することができる。
この第 1 0の実施例による熱電発電ュニッ 卜の製造方法において も、 微小寸法の熱電発電ュニッ 卜を従来以上に精度よく形成するこ とができる。 さらに、 熱電発電素子 (熱電対) の形状やその組成の 制御も容易である。
〔第 1 1 実施例〕
つぎに、 この発明の第 1 1 実施例による熱電発電ユニッ トの製造 工程について、 第 3 3図及び第 3 4図等を用いて説明する。
この発明の第 1 1 実施例においては、 前述の第 1 0実施例と同様 に、 基板 1 0に S i 0 2 からなる絶縁膜で被覆した銅板を用い、 チ タ ンからなる電極膜の形成と第 1 の電極膜 3 1 と第 2の電極膜 3 2 のパターンニング工程と、 感光性樹脂 1 2のコーティ ング工程とパ
訂正された用紙 (規則 91) ターンニング工程と、 基板 1 0の裏面への高分子膜のコーティ ング 工程と、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成する工程と 裏面の高分子膜の剥離工程と、 熱処理工程まではさきに説明した第 1 0の実施例と同じである。
つぎの工程は第 1 0の実施例と異なり熱硬化性樹脂 1 6の代わリ に、 第 2 9 図に示したようにガラスからなる熱絶縁性板 1 8 を用い る。 そして熱絶縁性板 1 8 と しては、 厚さ 1 Ο Ο μ πιのものを使用 し、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 と感光性樹脂 1 2 との上 面にエポキシ系接着剤を用いて接着する。
その後、 基板 1 0の材料の銅を硝酸で溶解し、 さらに絶縁膜であ る S i 0 2 膜と第 1 の電極膜 3 1 と第 2の電極膜 3 2であるチタ ン を 1 %フッ酸溶液を用いて溶解除去する。 その後、 第 3 3図に示し たのと同様にメ ツキ開始面 3 3に金 ( A u ) を用いて配線電極 3 5 を形成し、 熱電構造体 2 7 を形成する。
その後、 第 3 4図に示したのと同様に複数の熱電構造体 2 7 (但 し、 熱硬化性樹脂 1 6 に代えて熱絶縁性板 1 8 を使用) を積層する ように接着し、 すべての熱電対を直列に接続することで熱電発電ュ ニッ トを得る。
この第 1 1 実施例における熱電発電素子の製造方法においては、 微小寸法の熱電発電素子を従来以上に精度よく形成することができ る。 さらに、 熱電発電素子形状やその組成の制御も容易である。 さらに複数の熱電構造体 2 7の間に熱絶縁性板 1 8が介在してい ることから、 大型の基板への対応が可能となる。
〔第 1 2実施例〕
つぎに本発明の第 1 2実施例による熱電発電ュニッ 卜の製造工程 について、 第 3 5図及び第 3 6 図等を用いて説明する。
この第 1 2実施例においても、 第 2 1 図から第 2 5図に示したよ うに、 基板 1 0に絶縁膜である S i 0 2 膜で被覆した銅板を用い、 チタ ンからなる電極膜の形成と第 1 の電極膜 3 1 と第 2の電極膜 3 2のパターンニング工程と、 感光性樹脂 1 2のコーティ ング工程と
訂正された用紙 (規則 91) パターン化工程と、 基板 1 0の裏面への高分子膜のコーティ ングェ 程と、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成する工程と、 基板 1 0の裏面の高分子膜の剥離工程と、 熱処理工程まではさきに 説明した第 1 0実施例と同じである。
つぎに第 3 0図に示したように、 第 1 の熱電体 1 5 と第 2の熱電 体 1 7 を形成した 2枚の基板を、 熱絶縁性板 1 8で挟んで貼リ合わ せる。 この熱絶縁性板 1 8 と しては、 厚さ 1 Ο Ο μ πιのガラス板を 使用する。
熱絶縁性板 1 8 を介在させての第 1 の熱電体 1 5 と第 2の熱電体 1 7 との貼り合わせ工程は、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを形成した面側を熱絶縁性板 1 8側に対向するように配置して、 エポキシ系接着剤を用いて行う。
つぎに第 3 5図に示すように、 熱絶縁性板 1 8 を介して第 1 の熱 電体 1 5 と第 2の熱電体 1 7 と貼り合わせた素子全体を硝酸溶液に 浸漬して、 基板 1 0の材料の銅を溶解除去し、 その後、 1 %フッ酸 溶液に浸漬して S i 0 2 からなる絶縁膜とチタンからなる第 1 の電 極膜 3 1 と第 2の電極膜 3 2 を溶解除去する。
さらに、 その露出したメツキ開始面 3 3に金 ( A u ) 膜を真空蒸 着法によって形成する。 そして、 フォ ト リ ソグラフィー処理とエツ チング処理によ り金 ( A u ) 膜をパターンニングすることによって 隣り合う第 1 の熟電体 1 5 と第 2の熱電体 1 7 を交互に接続するよ うに配線電極 3 5 を形成し、 熱電対 3 0 ' を構成する。 以上の処理 工程によって複合熱電構造体 2 8 を形成することができる。
つぎに第 3 6 図に示すように、 複数の複合熱電構造体 2 8 を積層 し、 エポキシ系接着剤を用いて各複合熱電構造体 2 8 を接着する。 ここでは複合熱電構造体 2 8の間は、 接着に用いる絶縁性のェポ キシ系接着剤によって隔てられており、 第 1 の熱電体 1 5 と第 2の 熱電体 1 7 との間の導通はとれていない。
その後、 前述の実施例と同様にして全ての熱電対 3 0 ' を直列に 接続することによ り、 熱電発電ュニッ 卜を得ることができる。
訂正された用紙 (規則 91) この第 1 2実施例における熱電発電素子の製造方法においても、 微小寸法の熱電発電ュニッ トを従来以上に精度よく形成することが できる。 さらに、 熱電発電素子形状やその組成の制御も容易である t さらに、 複合熱電構造体 2 8間に熱絶縁性板 1 8 を介在さている ことから、 熱電発電ユニッ トの硬度が増すとともに、 第 1 1 実施例 と比較してガラス板は半分で済むため、 積層する熱電対の厚さが薄 くなり、 熱電発電ュニッ トをさらに微小化にするのに適している。 なお、 以上の第 1 から第 1 2実施例において、 基板 1 0の材料と しては銅板あるいはチタ ン板を用いている力 銅板やチタ ン板の代 わりに熱電材料や ドライフィルム、 あるいはポリィ ミ ドを侵さない エッチングによ り溶解できる材料を用いてもよい。
基板 1 0の材料としては、 金属材料であれば、 鉄板やニッケル板、 亜鉛板、 アルミニウム板、 真鍮板等も材料と して適用可能であり、 さらにはガラス板やアルミナなどのセラミ ックも基板 1 0 として使 用可能である。
さらに、 基板 1 0上に形成する電極膜 1 1 及び第 1 の電極膜 3 1 , 第 2の電極膜 3 2 としてチタ ン膜を適用する実施例で説明した。 し かしながら、 電極膜 1 1 と第 1 の電極膜 3 1 と第 2の電極膜 3 2 と して適用するチタ ン膜は、 メ ツキ液に溶解しない材料であれば、 他 の金属膜材料に変えることも可能である。 ここで金 ( A u ) 膜や、 白金膜、 P d膜、 T a膜などは、 チタ ン膜の代替と して適用可能で ある。
さらに、 以上の第 1 から第 1 2実施例において配線電極 2 5 と し ては、 金 (A u ) 膜を使用する実施例で説明した。
しかしながら、 配線電極 2 5 としては、 金 (A u ) 膜だけでなく 他の金属膜材料である C u膜や、 A 1膜、 N i膜、 F e膜等も適用 可能である。
さらに、 その配線電極 2 5の形成方法と しては、 被膜形成とフォ 卜 リ ソグラフィ ー処理とエッチング処理とによりパターンニングす j正された用紙 (規則 91) る実施例で説明したが、 電極形成が必要な部分以外を所定のマスク 材によって覆い、 全面に金属膜材料を蒸着法によ り形成した後、 金 属マスクを取り除く ことで電極パタ一ンを形成するいわゆるマスク 蒸着法も用いることができる。
またさらに配線電極 2 5の形成方法と しては、 印刷法や、 あるい は別の板状材料の表面に電極をパターンニングしたものを貼り付け る形成方法なども用いることができる。
さらにまた、 第 1 の熱電体 1 5 と第 2の熱電体 1 7の材料をメ ッ キ処理するときの感光性樹脂 1 2 と して感光性の ドライフィルムを 用いているカ^ この ドライフィルム以外に感光性ポリィ ミ ドも感光 性樹脂として用いることができる。
さらに第 1 の熱電体 1 δ と第 2の熱電体 1 7 との厚さ寸法が 1 0 μ m程度でよければ、 ゴム系フオ ト レジス 卜あるいは珪皮酸系のフ オ ト レジス 卜なども、 熱電材料をメ ッキ処理するときの感光性樹脂 と して使用可能である。
さらに、 熱硬化性樹脂 1 6 と して、 ポリイ ミ ドを使用する実施例 で説明したが、 ポリイ ミ ドのほかにエポキシ系接着剤ゃァク リル樹 脂なども、 熱硬化性樹脂と して用いることができる。
この熱硬化性樹脂 1 6の形成方法と してはスピンコーティ ング法 だけでなく、 スプレーコーティ ング法やロールコーティ ング法、 あ るいはフィルムを貼るなどの工程によって形成することも可能であ る。
またさらに、 熱絶縁性板 1 8 としてはガラス板を用いているが、 セラミ ックスの板あるいは硬質プラスチックの板など熱伝導性が悪 く変形がしにく い薄板であれば、 熱絶縁性板 1 8 と して適用可能で ある。
さらに熱電材料には、 n型半導体に B i T e S e合金を用い、 p 型半導体には B i T e S b合金を用いている力 それぞれ S eある いは S b を混合しなく とも B i と T eの濃度比の違いによ り n型半 導体と p型半導体を作ることも可能である。
訂正された用紙 (規則 91) またメ ツキによ り形成可能な材料であれば、 第 1 の熱電体 1 5 と 第 2の熱電体 1 7 と しては、 上記以外の物質を用いた熱電材料も使 用可能である。
〔第 1 3実施例〕
つぎに、 この発明の第 1 3実施例による熱電発電ユニッ トの製造 工程について第 3 7図〜第 4 5図を用いて説明する。
まずはじめに、 第 3 7 図に示すように基板 1 ◦には銅板を用い、 チタ ン (T i ) を膜厚 5 0 0 η πιで真空蒸着法によ り基板 1 0上の 全面に形成し、 電極膜 1 1 を形成する。
このチタ ン膜からなる電極膜 1 1 は、 後述する工程でメ ツキ液に 基板 1 0である銅板が侵されないよう保護する役目 をもつ。
その後、 電極膜 1 0上に感光性樹脂 1 2 と して、 膜厚 5 0 mの 感光性ドライフィルムをロールコータ を用いて 2層に形成し、 合計 の感光性樹脂 1 2の膜厚が Ι Ο Ο μ πιとなるように形成する。
その後、 ドライフィルムからなる感光性樹脂 I 2 を、 フォ トマス ク を用いて光を照射し感光させ、 未露光部のみを溶解除去するとい ういわゆる露光処理と現像処理であるフォ 卜 リ ソグラフィ技術を用 いて、 第 1 図のようにス トライプ状にパターンニングして、 第 1 の ス トライプ状パターンを有する感光性樹脂 1 2 a を形成する。
第 1 のス トライプ状パターンを有する感光性樹脂 1 2 aは、 電極 膜 1 1 の表面上に開口部すなわちフォ 卜 リ ソグラフィ技術によって 溶解処理する部分と、 溶解処理していない非開口部とを形成する。
ここでは第 1 のス トライプ状パターンの形状は、 第 4 4図に示す ように感光性樹脂 1 2 aの開口部の幅 W aが非開口部の幅 W bよ り 広く なるように、 開口部の幅 W a を 1 5 0 μ mで非開口部の幅 W b を 5 0 μ πιにして形成する。
ここで第 3 7 図に示したように、 感光性樹脂 1 2 をパターンニン グした後、 基板 1 0の裏面には第 3 8図に示すように、テフロン系の 高分子膜 1 9 をスピンコ一ティ ング法を用いて全面に形成しておく , この基板 1 0の裏面のテフロン系の高分子膜 1 9 は、 後の処理ェ
訂正された用紙 (規則 91) 程でメッキ膜が基板 1 0裏面に形成されるのを防ぐために形成する, つぎにこの感光性樹脂 1 2 aの開口部 1 3 a内に、 メ ツキ法によ り第 3 9図に示すように第 1 の熱電材料からなる第 1 の熱電体 1 5 を形成する。
この第 1 の熱電体 1 5 としては、 n型半導体である B i T e S e 合金をその材料と して用いる。
メ ツキ電解液と しては、 B i ( N 0 3 ) と T e 0 2 と S e 0 2 と を含む硝酸溶液を用いる。 電極膜 1 1 を力ソー ドと し、 アノ ー ドに は白金 ( P t ) 電極を用いて両電極間に約 1 Vの電圧を印加すると B i T e S e合金からなる第 1 の熱電体 1 5が感光性樹脂 1 2 aの 開口部 1 3 a内の電極膜 1 1 上に析出する。
このメツキ処理のとき、 基板 1 0の裏面は高分子膜 1 9によ り保 護している。 このため、 感光性樹脂 1 2 aの開口部 1 3 a内にだけ 第 1 の熱電体 1 5が析出する。
メ ツキ法においては、 析出量は電解時の消費電流から計算される 電荷量で決まる。 このため、 電荷量の測定によって第 1 の熱電体 1 5 を所定の厚さに制御することは容易である。
ここでは、 第 1 の熱電体 1 5の膜厚は、 あらかじめパターンニン グしてある感光性樹脂 1 2 aの半分の膜厚、 つま り膜厚 5 0 μ mに なるよう設定する。
また、 電解液中の B i と T e と S eのイオン濃度を変えることに よ り、 第 1 の熱電体 1 5の合金の組成は変化させることができ、 こ れらの条件設定によって必要な出力電圧や抵抗値を有する材料を選 択することができる。 この結果、 第 3 9図に示す第 1 の熱電構造体 4 1 を形成する。
さらに前述の第 1 の熱電構造体 4 1 の製造方法とほぼ同じ処理ェ 程を行うことによって、 第 4 0図に示す第 2の熱電構造体 4 2 を形 成することができる。
以下に、 第 2の熱電構造体 4 2の形成方法が、 第 1 の熱電構造体 1 の形成方法と異なる処理方法を中心に説明する。
訂正された用紙 (規則 91) 第 2の熱電構造体 4 2の形成方法については、 ス トライプ状バタ ーンを有する感光性樹脂や高分子膜の形成までは、 第 1 の熱電構造 体 4 1 の形成方法である第 3 7 図, 第 3 8図及び第 4 4 図を用いて 説明した処理工程と同一である。
第 2の熱電構造体 4 2 を形成するときに用いる感光性樹脂 1 2 b のパターンニング形状、 すなわち第 2のス トライプ状バターンは、 ここでは第 1 の熱電構造体 4 1 の形成方法で用いた、 第 3 8図及び 第 4 4図に示した第 1 のス トライプ状パターン 1 2 a と同一の開口 部幅 W a と、 非開口部幅 W b と、 厚さとを有するように形成する。
このように感光性樹脂 1 2 bの第 2のス トライプ状パターンの寸 法を第 1 のス トライプ状バターンと同一寸法にすることにより、 第 1 の熱電構造体 4 1 の形成と第 2の熱電構造体 4 2の形成とに必要 な要素を共通にすることができる。 その結果、 熱電発電ユニッ トを 製造する上での効率をよくすることができる。
しかも感光性樹脂 1 2 bの第 2のス トライプ状パターンを、 感光 性樹脂 1 2 aの第 1 のス 卜ライプ状パターンと同一にすることによ つて、 後述のように第 1 の熱電構造体 4 1 と第 2の熱電構造体 4 2 とが形状的に正しく嵌合することが可能になるので、 以下の工程に 支障を起こすことなく熱電発電ュニッ 卜の製造効率を上げることが できる。
第 2の熱電構造体 4 2の形成方法において、 前述の第 1 の熟電構 造体 4 1 の形成方法と異なるのは、 第 2の熱電体 1 7の熱電材料の メ ツキの工程である。 以下に、 この第 2の熱電体 1 7のメ ツキ処理 工程を説明する。
第 4 0図に示すように、 第 3 8図と同様の工程が終了した後に、 第 2のス 卜ライプ状バタ一ンを有する感光性樹脂 1 2 bの開口部 1 3 bにメ ツキ法により第 2の熟電材料からなる第 2の熱電体 1 7 を 形成する。 この第 2の熱電体 1 7の材料には p型半導体である B i T e S b合金を材料と して用いる。
メ ツキ電解液と しては、 B i ( 0 3 ) と T e 〇2 と S b C 1 3
訂正された用紙 (規則 91) とを含む硝酸溶液を用いる。 電極膜 1 1 を力ソー ドとし、 アノ ー ド には白金 ( P t ) 電極を用いて両電極間に約 1 Vの電圧を印加する と B i T e S b合金からなる第 2の熱電体 1 7が感光性樹脂 1 2 b の開口部 1 3 b内の電極膜 1 1 上に析出する。
このときも、基板 1 0の裏面は高分子膜 1 9 によ り保護されている, このため、 第 2の熱電体 1 7 は感光性樹脂 1 2 bの開口部 1 3 b内 にのみ析出する。 そして、 第 2の熱電体 1 7の膜厚は感光性樹脂 1 2 bの半分の膜厚の膜厚 5 Ο μ πιになるよう反応電荷量で制御する, また、 電解液中の B i と T e と S bのイオン濃度を変えることで. 第 2の熱電体 1 7の合金の組成を変化させることができ、 これらの 条件設定によって必要な出力電圧あるいは抵抗値を有するように制 御する。
以上の処理工程によって、 第 2の熱電体 1 7 を基板 1 0上に形成 した第 2の熱電構造体 4 2 を形成することができる。
その後に第 4 1 図に示すように、 第 1 の熱電構造体 4 1 と第 2の 熱電構造体 4 2 とを 1 組づつ、 お互いに感光性樹脂 1 2 a, 1 2 b を形成した面が向かい合うように、 エポキシ系の接着剤からなる接 合剤 4 3 を用いて接着する。
このとき第 1 の熱電構造体 4 1 上の感光性樹脂 1 2 aの非開口部 は、 第 2の熱電体 1 7の上部の位置に嵌合するように接着処理を行 Ό。
この第 4 1 図に示すように接着することにより、 第 2の熱電構造 体 4 2上の感光性樹脂 1 2 bの非開口部も第 1 の熱電体 1 5の上部 の位置に嵌合する。 この結果、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 との相対位置関係は一定の間隔以内におさまる構造となり、 後の 熱電体の配線の工程が容易になる。
また第 4 1 図から分かるとおりに、 第 1 の熱電体 1 5 と第 2の熱 電体 1 7 とは互いに接触することはないので、 以下の工程で配線を 行うまでそれぞれの熱電体 1 5, 1 7 は電気的に絶縁した状態とな つている。
訂正された用紙 (規則 91) このように第 1 の熱電構造体 4 1 と第 2の熱電構造体 4 2 とを接 着した後、 基板 1 0の裏面の高分子膜 1 9 を トルエンによって剥離 除去する。 そして、 第 1 の熱電構造体 4 1 と第 2の熱電構造体 4 2 とを一体にした状態で、 温度約 3 5 0 °Cの窒素雰囲気中において 1 時間熱処理する。
この窒素雰囲気中の熱処理は、 第 1 の熱電体 1 5 と第 2の熱電体 1 7の合金組成を均一化するためであり、 熱電発電素子の出力の向 上につながる。
ここでの窒素雰囲気中の熱処理は高温であるが、 第 3 7 図に示し た感光性樹脂 1 2のバターンニング処理のときに、 感光性樹脂 1 2 を充分な光量で感光処理しておけば、 パターンニング後の感光性樹 脂 1 2 a, 1 2 bに生じる熱収縮などの変形はわずかであり、 実用 上問題とならない。
このようにして第 1 の熟電構造体 4 1 と第 2の熱電構造体 4 2 と を一体化した状態の素子を、 必要な寸法に切断する。
この切断処理後、 素子断面の表面粗さが大きいようなときや、 接 合材 4 5の不足で接合部分に隙間が生じるなどして、 後の配線のェ 程に影響がある場合は、 ラッピング法などを用いてその表面を研磨 してもよい。
とくに接合剤 4 3の不足で接合部分に隙間が生じるときは、 ェポ キシ樹脂などの絶縁樹脂を接合部の隙間に充填した後で、 ラッピン グ法で素子断面を研磨することは可能である。
そして素子全体を硝酸溶液中に浸漬して基板 1 0の銅をすベて溶 解した後、 さらにフッ酸溶液を用いて電極膜 1 1 であるチタンを溶 解除去する。
この溶解処理のとき、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 と接 合剤 4 3 と感光性樹脂 1 2 a, 1 2 b とは硝酸とフッ酸に不溶のた めそのまま残る。
つぎに、 素子の断面全面に金 (A u ) 膜を真空蒸着法ゃスパッタ リ ング法ゃあるいは無電解メ ッキ法によ り形成する。 そしてさらに
訂正された用紙 (規則 91) この金膜をフォ 卜 リ ソグラフィ一技術によってパターンニングして. 第 4 2図に示す配線電極 4 5 を形成することによ り、 合成熱電構造 体 4 4 を得る。
この配線電極 4 5は、 断面に隣同士に形成する第 1 の熱電体 1 5 と第 2の熱電体 1 7 とを接続し、 熱電対 5 0 を形成する。
ここでは前述のように、 合成熱電構造体 4 4内の熱電体の配置は 一定間隔になっているため、 この配線電極 4 5によ り誤配線するこ となく一括して熱電体の配線を行うことが可能である。
つづいて第 4 3図に示すように、 複数個の合成熱電構造体 4 4 に おいて、 一方の合成熱電構造体の第 1 の熱電体 1 5 と他方の合成熱 電構造体の第 2の熱電体 1 7 (第 4 1 図参照) と力 アク リル樹脂 からなる平坦な板状の絶縁体 5 1 を介して向かい合うように交互に 積層して、 エポキシ系の接着剤で接着する。
この絶縁体 5 1 は、 第 1 の熱電体 1 5 と第 2の熱電体 1 7 (第 4 1 図参照) とが電気的に接触しないように、 さらに熱電発電ュニッ 卜全体に機械的強度をあたえる役目をする。 ここでは絶縁体 5 1 の 厚さは 5 0 μ πιとする。
つぎに第 4 5図に示すように、 各合成熱電構造体 4 4の断面のそ れぞれ一方の端に導電性接着剤を用いて素子端配線 5 2 を形成する, この素子端配線 5 2はワイャボンディ ング法によ り形成するワイャ 一を用いてもよい。
この素子端配線 5 2は合成熱電構造体 4 4に含まれる熱電体 1 5 , 1 7の端同士を接続することですベての熱電対 5 0 を直列に接続し. 熱電発電ュニッ 卜を得ることができる。
ここで素子端配線 5 2の配線は、 上記の工程で熱電体の配線に行 つた配線電極 4 5の形成に必要な精度と比較して大まかでよく、 こ の素子端配線 5 2の配線は容易に行うことができる。
以上に説明した第 1 3実施例の熱電発電ュニッ 卜の製造方法にお いて、 フォ ト リ ソグラフィによ り形成する感光性樹脂 1 2の ドライ フィルムは、 ミ クロンオーダの精度でパターンニングが可能である,
訂正された ffl紙 (規則 91) そしてそのバターンニングした感光性樹脂 1 2 a, 1 2 bに沿つ てメ ツキ形成する第 1 の熱電体 1 5 と第 2の熱電体 1 7 も同様に、 ミ クロンオーダーの精度で形成することができ-る。
これは、 従来の機械加工法やスク リーン印刷で塗布する厚膜に比 らべ非常に高精度である。 さらにまた、 メ ツキ法で形成する熱電体 は厚さのコン トロールと、 組成のコン トロールとは容易であり、 原 材料を溶解するだけの前処理は従来に比較して簡単である。
さらに、 以上に説明した熱電発電素子の製造方法においては、 フ ォ ト リ ソグラフイエ程とメツキ工程と被膜形成工程とエッチングェ 程とからなり、 すべてバッチ処理が可能である。 このため、 一度に 複数の素子が形成可能であるという利点も有する。
上記の方法で製造する熱電発電素子は、 前述のようにそれぞれの 熱電体の幅が 1 5 0 μ πι、 スペースが 5 0 μ πιとなる。 このとき、 絶縁体 5 1 まで含めた厚さは 1 5 0 μ mである。
基板 1 0の幅を 1 c mとし、 重ね合わせた全体の厚さを 7 . 5 c mとすると、 基板 1 0に形成することができる熱電対 5 0の数は 2 5 0 0対となる。
この熱電発電素子に 2 °Cの温度差を与えると、 出力と して約 2 V の開放電圧が得られ、 腕時計に代表される携帯用電子機器の駆動に は充分な出力電圧である。
この熱電発電素子の長さを 2 m mとすると、 内部イ ンピーダンス は約 1 3 k Ωとなり電子機器用としては充分対応可能なオーダであ ることが分かる。
この実施例においても基板 1 0の材料と して銅板を用いているが. 熱電材料や ドライフィルムゃポリイ ミ ドを侵さないエッチングで溶 解できるものであればほかの材料を用いてもよい。
基板 1 0の材料として金属材料であれば、 鉄板や、 ニッケル板や. 亜鉛板や、 アルミニウム板や、 チタ ン板や、 真鍮板などが考えられ る。 さらには、 ガラス板や、 アルミナなどのセラミ ックも基板 1 0 と して使用可能である。
訂正された用紙 (規則 91) δ 0 基板 1 0上に形成したチタ ン膜からなる電極膜 1 1 も、 メツキ液 に溶解しない材料であればチタ ン膜以外の他の金属膜に変えること も可能である。
この電極膜 1 1 材料と しては、 金 (A u ) 膜や、 白金 ( P t ) 膜 や、 パラジウム ( P d ) 膜や、 タンタル (T a ) 膜などがチタ ン膜 の代替と して有効である。
さらに配線電極 4 5は、 金 ( A u ) 膜だけでなく他の金属膜を利 用することもできる。
配線電極 4 5の材料と しては、 銅 ( C u ) 膜や、 アルミニウム ( A 1 ) 膜や、 ニッケル (N i ) 膜や、 鉄 ( F e ) 膜などは配線電 極 4 5 と して適用可能である。
またさらに、 配線電極 4 5の形成方法も、 印刷法や、 あるいは別 途板状材料の表面に電極をバタ一ン化したものをはり付ける方法な ども用いることができる。
このうえさらに、 素子端配線 5 2の形成方法も、 金属膜を真空蒸 着法ゃスパッタ リ ング法や、 印刷法あるいは別途板状材料の表面に 電極をパターン化したものをはり付ける方法なども用いることがで さる。
また、 本発明の実施例においては熱電材料をメ ッキする場合のフ レーム材料には感光性の ドライフィルムを用いている力^ そのほか に感光性ポリイ ミ ドなども用いることができる。 さらにメツキ膜の 厚さが 1 0 μ m程度でよければ、 ゴム系フオ ト レジス 卜あるいは珪 皮酸系のフォ ト レジス 卜なども使用可能である。
さらに、 絶縁体 5 1 と しても、 以上説明したァク リル樹脂のほか に、 電気的に絶縁で、 なおかつ熱伝導度が低く、 熱電対に発生する 温度差を維持しやすい材料であれば使用することが可能である。 絶 縁体 5 1 と してはエポキシ樹脂も用いることができる。
この実施例では、 熱電体の膜厚の設定を感光性樹脂の膜厚の半分 と したが、 第 1 の熟電構造体 4 1 と第 2の熱電構造体 4 2 とのはめ 合わせにずれが生じることなく行うことが可能であれば、 それぞ
i丁正された用紙 (規則 91) れの熱電体の膜厚は感光性樹脂の膜厚よ リ薄い範囲で選択可能であ る。 産業上の利用可能性 この発明による熱電発電ュニッ 卜の製造方法によれば、 超小型で 且つ充分な出力電圧が得らる熱電発電ユニッ トを、 容易に精度よく 製造することができる。
したがって、 腕時計のように極めて小さい携帯用電子機器の電源 と して、 熱電発電ユニッ トの広範な利用が可能になる。
訂正された用紙 (規則 91)

Claims

請 求 の 範 囲 1 . 基板上に金属材料からなる電極膜を形成する工程と、 該電極膜 上に感光性樹脂を用いてス トライブ状のパターンを形成する工程と, 前記镇極膜を用いて前記感光性樹脂の開口部に第 1 の熱電材料から なる第 1 の熱電体をメ ツキ法によリ形成する工程と、 前記感光性樹 脂及び第 1 の熱鬣体上に熱硬化性樹脂をコーティ ングする工程と、 前記基板と霭極膜とを溶解して除去する工程とによって第 1 の熱電 構造体を形成し、
前記基板とは別の基板上に金属材料からなる鼋極膜を形成するェ 程と、 該電極膜上に感光性樹脂を用いてス 卜ライブ状のパターンを 形成する工程と、 前記電極膜を用いて前記感光性樹脂の開口部に第
2の熱馕材料からなる第 2の熱鼋体をメツキ法によ り形成する工程 と、 前記感光性樹脂及び第 2の熱電体上に熱硬化性樹脂をコーティ ングする工程と、 前記基板と電極膜とを溶解して.除去する工程とに よって第 2の熱電構造体を形成し、
複数の前記第 1 の熱霍構造体と第 2の熱電構造体を交互に重ねて 貼り合わせ、 所定の長さに切断した後、 隣り合う前記第 1 の熱電体 と第 2の熱電体の断面を配線 ®極によ リ交互につなぎ合わせること によ り、 熱電発電素子と して直列に接続した複数の熟電対を形成す ることを特徴とする熱踅発電ュニッ 卜の製造方法,
2 . 基板上に金属材料からなる電極膜を形成する工程と、 該電極膜 上に感光性樹脂を用いてス トライプ状のパターンを形成する工程と , 前記 極膜を用いて前記感光性樹脂の開口部に第 1 の熱電材料から なる第 1 の熟電体をメツキ法により形成する工程と、 前記感光性樹 脂及び第 1 の熱電体上に熱絶粽性板を接着する工程と、 前記基板と 電極膜とを溶解して除去する工程とによって第 1 の熱鼋構造体を形 成し、
前記基板とは別の基板上に金属材料からなる鼋 膜を形成するェ 程と、 該電極膜上に感光性樹脂を用いてス トライプ状のパターンを 形成する工程と、 前記電極膜を用いて前記感光性樹脂の開口部に第 2の熱電材料からなる第 2の熱電体をメツキ法によ リ形成する工程 と、 前記感光性樹脂及び第 1 の熱踅体上に熱絶縁性板を接着するェ 程と、 前記基板と鼋極膜とを溶解して除去する工程とによって第 2 の熱電構造体を形成し、
複数の前記第 1 の熱鼋構造体と第 2の熱鼋措造体を交亙に重ねて 貼り合わせ、 所定の長さに切断した後、 隣リ合う前記第 1 の熱電体 と第 2の熱,電体の断面を配線電極によ リ交互につなぎ合わせること によ り、 熱鼋発電素子と して直列に接続した複数の熱電対を形成す ることを特徴とする熱電発電ュニッ 卜の製造方法。
3 . 基板上に金属材料からなる踅極膜を形成する工程と、 該電極膜 上に感光性樹脂を用いてス トライブ状のパターンを形成する工程と、 前記電極膜を用いて前記感光性樹脂の開□部に第 1 の熱電材料から なる第 1の熱霭体をメツキ法によリ形成する工程と、
前記基板とは別の基板上に金属材料からなる電極膜を形成するェ 程と、 該電極膜上に感光性樹脂を用いてス トライブ状のパターンを 形成する工程と、 前記電極膜を用いて前記感光性樹脂の開口部に第 2の熱電材料からなる第 2の熱鼋体をメツキ法によ リ形成する工程 と、
前記両甚板の前記第 1 の熱!;体を形成した面と前記第 2の熱電体 を形成した面とを熱絶緑性板を介在させて接着する工程と、
前記両基板と各電極膜とを溶解して除去する工程とによって複合 熱電構造体を形成し、
複数の該複合熱電構造体を交互に重ねて貼リ合わせ、 所定の長さ に切断した後、 隣リ合う前記第 1 の熱鼋体と第 2の熟霉体の断面を 配線電極によリ交互につなぎ合わせることによリ、 熱電発電素子と して直列に接統した複数の熱電対を形成すること を特徴とする熟電 発電ュニッ トの製造方法。
4 . 電気伝導性の基板上に感光性樹脂を用いてス トライプ状のバタ ーンを形成する工程と、 前 IS基板を電極として用いて前記感光性樹 脂の開口部に第 1 の熱電材料からなる第 1 の熱鼋体をメ ツキ法によ リ形成する工程と、 前記感光性樹脂及び第 1 の熱鼋体上に熱硬化性 樹脂をコーティ ングする工程と、 前記基板を溶解して除去する工程 とにより第 1の熱鸳構造体を形成し、
前記基板とは別の電気伝導性の基板上に感光性樹脂を用いてス 卜 ライプ状のパターンを形成する工程と、 前記基板を踅極と して用い て前記感光性樹脂の開口部に第 2の熱鸳材料からなる第 2の熱鼋体 をメ ツキ法によ り形成する工程と、 前記感光性樹脂及び第 2の熱 ¾ 体上に熱硬化性樹脂をコーティ ングする工程と、 前記基板を溶解し て除去する工程とによ り第 2の熱電構造体を形成し、
複数の前記第 1 の熱電構造体と第 2の熱霭構造体を交 5:に重ねて 貼り合わせ、 所定の長さに切断した後、 隣リ合う第 1 の熱電体と第 2の熱鼋体の断面を配根電極により交互につなぎ合わせることによ リ、 熱踅発電素子として直列に接続した複数の熱電対を形成するこ とを特徴とする熱鼋発電ュニッ トの製造方法。
5 . 電気伝導性の基板上に感光性樹脂を用いてス トライブ状のパタ ーンを形成する工程と、 前記基板を鼋極として用いて前記感光性樹 脂の開口部に第 1 の熱鼋材料からなる第 1 の熱^;体をメツキ法によ り形成する工程と, 前記感光性樹脂及び第 1 の然鼋体上に熱絶縁性 板を接着する工程と、 前記基板を溶解して除去する工程とによ リ第 1 の熱電構造体を形成し、
前記基板とは別の電気伝導性の基板上に感光性樹脂を用いてス ト ライブ状のパターンを形成する工程と、 前記基板を電極と して用い て前記感光性樹脂の開口部に第 2の熱電材料からなる第 2の熱電体 をメ ツキ法によ リ形成する工程と、 前記感光性樹脂及び第 2の熱電 体上に熱絶緣性板を接着する工程と、 前記甚扳を溶解して除去する 工程とによリ第 2の热電構造体を形成し、 5 複数の前記第 1 の熱電構造体と第 2の熱電構造体を交互に重ねて 貼り合わせ、 所定の長さに切断した後、 隣り合う ¾記第 1 の熱電体 と第 2の熱電体の断面を配線電極によ り交互につなぎ合わせること により、 熱電発電素子と して直列に接続した複数の熟電対を形成す ることを特徴とする熟電発電ュニッ トの製造方法。
6 . 電気伝導性の基板上に感光性樹脂を用いてス トライブ状のパタ ーンを形成する工程と、 前記基板を電極と して用いて前記感光性樹 脂の開口部に第 1 の熱電材枓からなる第 1 の熟鼋体をメ ツキ法によ リ形成する工程と、
前 ΙΞ基板とは別の電気伝導性の基板上に感光性樹脂を用いてス ト ライプ状のパターンを形成する工程と、 前記基板を電極と して用い て前記感光性樹脂の開口部に第 2の熱罨材料からなる第 2の熱鼋体 をメツキ法によリ形成する工程と、
前記両基板の前記第 1 の熱鼋体を形成した面と前記第 2の熱電体 を形成した面とを熱絶緑性板を介在させて接着する工程と、
前記両基板を 解して除去する工程とによって複合熱鼋構造体を 形成し、
複数の該複合熱電構造体を重ねて貼リ合わせ、 所定の長さに切断 した後、 隣り合う前記第 1 の熟電体と第 2の熱!:体の新 Sを配線電 植により交亙につなぎ合わせることにより、 熱電発電素子として直 列に接統しも複数の熱電対を形成することを特徵とする熱鼋発鼋ュ ニッ 卜の製造方法。
7 . 表面あるいは全体が絶緣性の基板上に金属膜を形成する工程と, その形成した金属膜をエッチング法により互いに入り込み合う櫛 齒状の第 1 の電極膜と第 2の鼋榧膜に加工する工程と、
感光性樹脂を用いて前記第 1 の^極膜と第 2の電極膜の櫛苗の腺 間部分にス トライブ状のパターンを形成する工程と、
前記第 1 の電極膜を用いて前記感光性樹脂の開口部の該第 1 の電 極臈上に第 1 の熱鸳材料からなる第 1 の熱鼋体をメ ツキ法によ リ形 成する工程と、
前記第 2の鷺極膜を用いて前記感光性樹脂の開口部の該第 2の鼋 極膜上に第 2の熱電材料からなる第 2の熱電体をメ ツキ法によって 形成する工程と、
前記感光性樹脂及び第 1 , 第 2の熱 体上に熱硬化性樹脂をコー ティ ングする工程と、
前記基板と第 1 の電極膜と第 2の鬣極膜を溶解して除去する工程 とによリ熱鷺構造体を形成し、
複数の該熱電構造体を熏ねて貼リ合わせ、 所定の長さに切断した 後、 隣り合う第 1 の熱電体と第 2の熱鼋体の断面を配裰電極によリ 交互につなぎ合わせることにより、 熱電発電素子として直列に接続 した複数の熱電対を形成することを特徵とする熱電発電ュニッ 卜の 製造方法,
8 . 表面あるいは全体が絶緣性の基板上に金属膜を形成する工程と, その形成した金属膜をエッチング法によリ互いに入り込み合う櫛 歯状の第 1 の電極膜と第 2の電極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極膜と第 2の鼋極膜の櫛歯の隙 間部分にス トライブ状のパターンを形成する工程と、
前記第 1 の電極膜を用いて前記感光性樹脂の開口部の該第 1 の鼋' 棰膜上に第 1 の熱鼋材料からなる第 1 の熱鼋体をメ ツキ法によ リ形 成する工程と、
前記第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の電 極膜上に第 2の熟電材料からなる第 2の熱電体をメ ツキ法によって 形成する工程と、
前記感光性樹脂及び第 1 , 第 2の熱鼋体上に熱絶綠性板を接着す る工程と、
前記基板と第 1 の電極膜と第 2の電極膜を溶解して除去する工程 とによリ熱踅構造体を形成し、 祓数の該熱鼋構造体を重ねて貼リ合わせ、 所定の長さに切断した 後、 隣り合う第 1 の熱電体と第 2の熱電体の断面を配線電極によ り 交: 5:につなぎ合わせることにより、 熱電発電索子と して直列に接続 した複数の熱電対を形成することを特徴とする熱電発鼋ュニッ 卜の 製造方法,
9 . 表面あるいは全体が絶緣性の基板上に金属膜を形成する工程と、 その形成した金属膜をエッチング法によリ互いに入り込み合う櫛 歯状の第 1 の電極膝と第 2の電極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極膜と第 2の電極膜の櫛歯の隙 間部分にス トライプ状のパターンを形成する工程と、
前記第 1 の霭極膜を用いて前記感光性樹脂の開口部の該第 1 の電 極膜上に第 1 の熱電材料からなる第 1 の熱電体をメ ツキ法によ り形 成する工程と、
前 IS第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の電 極膜上に第 2の熱 ¾材料からなる第 2の熱 II体をメ ツキ法によって 形成する工程と、
それぞれ前記各工程によリ第 1の熟電体と第 2の熱鼋体とが形成 された 2枚の基板を熱絶縁性板を介在させて接着する工程と、 前記各基板と第 1の霭極膜と第 2の電極膜を溶解して除去するェ 程とによリ複合熱電構造体を形成し,
複数の該複合熱鼋構造体を重ねて貼リ合わせ、 所定の長さに切断 した後、 隣り合う第 1 の熱踅体と第 2の熱電体の断面を配線電極に よ り交互につなぎ合わせることにより、 熱電発電素子と して直列に 接統した複数の熱竜対^:形成することを特徴とする熱電発鼋ュニッ トの製造方法.
1 0 . 表面あるいは全体が絶縁性の基板上に金属膜を形成する工程 と、
その形成した金属膜をエッチング法によ リ互いに入り込み合う櫛 苗状の第 1 の電極膜と第 2の電極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極膜と第 2の電極膜の櫛苗の隙 間部分にス 卜ライブ状のバターンを形成する工程と、
前記第 1 の電極膜を用いて前記感光性樹脂の開口部の該第 1 の電 極膜上に第 1 の熱鼋材料からなる第 1 の熱電体をメ ツキ法によ り形 成する工程と、
前記第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の電 棰膜上に第 2の熱電材料からなる第 2の热電体をメツキ法によって 形成する工程と、
前記感光性樹脂及び第 1, 第 2の熟電体上に热硬化性樹脂をコー ティ ングする工程と、
前記基板と第 1 の鼇極膜と第 2の雹極膜とを溶解して除去したの ち、 再度金属膜をメツキ開始面全面に形成する工程と、
その形成した金属膜をエッチング法を用いてパターン化すること によ リ配線鹜極を形成し、 その配線電極によって隣り合う前記第 1 の熱電体と第 2の熱雷体を交!:に接続して、 熱電発鼋素子として熱 電対列を形成する工程とによリ熱電構造体を形成し、
複数の該熱電構造体を重ねて貼リ合わせた後、 リ合う然^対列 の端部同士を接続して、 各熱馕対全てを直列に接続することを特徴 とする熱電発電ュニッ トの製造方法。
1 1 . 表面あるいは全体が絶綠性の基板上に金属膜を形成する工程 と、
その形成した金属膜をエッチング法によ り互いに入り込み合う櫛 歯状の第 1 の鼋極膜と第 2の鴛極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極腹と第 2の電極膜の櫛歯の隙 間部分にス トライブ状のパターンを形成する工程と、
前記第 1 の電極膜を用いて前記感光性樹脂の開口部の該第 1 の電 極膜上に第 1 の熱踅材料からなる第 1 の热電体をメ ツキ法により形 成する工程と、 前記第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の電 極膜上に第 2の熱電材料からなる第 2の熱镙体をメ ツキ法によって 形成する工程と、
前記感光性樹脂及び第 1 , 第 2の熟電体上に熱絶緣性板を接着す る工程と、
前記基板と第 1 の!:極膜と第 2の電極膜とを溶解して除去したの ち、 再度金属膜をメツキ開始面全面に形成する工程と、
その形成した金厲膜をエッチング法を用いてパターン化すること によ リ配線電極を形成し、 その配線電極によって隣り合う前記第 1 の熱電体と第 2の熱鼋体を交互に接統して、 熱鼋発電素子として熱 電対列を形成する工程とによ リ熱踅構造体を形成し、
複数の該熱電構造体を重ねて貼リ合わせた後、 隣リ合う熱電対列 の端部同士を接鲩して、 各熱電対全てを直列に接続することを特徴 とする熱電発霭ュニッ 卜の製造方法,
1 2 . 表面あるいは全体が絶縁性の基板上に金属膜を形成する工程 と、
その形成した金属膜をエッチング法によ リ互いに入り込み合う櫛 笛状の第 1 の電極膜と第 2の電極膜に加工する工程と、
感光性樹脂を用いて前記第 1 の電極膜と第 2の電極膜の櫛齒の隙 閱部分にス トライブ状のパターンを形成する工程と、
前記第 1 の電極膜を用いて前記感光性樹脂の開口部の該第 1 の電 極膜上に第 1 の熱電材料からなる第 1 の熱電体をメ ツキ法によ リ形 成する工程と、
前記第 2の電極膜を用いて前記感光性樹脂の開口部の該第 2の電 極膜上に第 2の熱電材料からなる第 2の熱電体をメ ツキ法によって 形成する工程と、
それぞれ前記各工程により第 1の熱電体と第 2の熱!:体とが形成 された 2枚の基板を熱絶縁性板を介在させて接着する工程と、 前記基板と第 1 の電極膜と第 2の電極膜とを溶解して除去しもの ち、 再度金属膜をメツキ開始面全面に形成する工程と、
その形成した金属膜をエッチング法を用いてパターン化すること によ リ配線電極を形成し、 その配線電極によって隣り合う前記第 1 の熱電体と第 2の熱電体を交互に接続して、 熱踅発電素子として熱 鼋対列を形成する工程とによ リ熱電構造体を形成し、
複数の該熱鼋構造体を重ねて貼リ合わせた後、 隣リ合う熱電対列 の端郁同士を接銃して、 各熱電対全てを直列に接続することを特徴 とする热電発電ュニッ 卜の製造方法。
1 3 . 基板上に金属材料からなる電極膜を形成する工程と、 第 1の ス トライブ状バターンを有する感光性樹脂を前記罨極膜上に形成す る工程と、 前記電極膜を用いて前記感光性樹脂の開口部に第 1 の熱 電材料からなる第 1 の熱電体をメツキ法で前記感光性樹脂よ リ薄く 形成する工程とによって第 1 の熱電構造体を形成し、
前記基板とは別の基板上に金属材料からなる電極膜を形成するェ 程と、 筘記第 1 のストライプ状パターンの開口部の幅以下の非開口 都と該第 1 のス トライブ状パターンの非開口部の幅以上の開口部を 有し、 なおかつ前記第 1 のス トライブ状バターンとピッチが同一で ある第 2のストライブ状パタ一ンを有する感光性樹脂を前記電極膜 上に形成する工程と、 前記罨極膜を用いて前記感光性樹脂の開口部 に第 2の熱電材料からなる第 2の熱鼋体をメツキ法で前記感光性樹 脂よ リ薄く形成する工程とによって第 2の熱電構造体を形成し、 前記第 1 の熱電構造体と第 2の熱電構造体とを前記各感光性樹脂 の一方の開口都と他方の非開口部とをはめ合わせて接着したのち、 所定の大きさに切断する工程と、
前記各基板と電極膜とを溶解させて除去する工程と、
瞵リ合う第 1 の熱镙体と第 2の熱電体の断面を配線電極で交: 1:に 配辗して、 熱電発電素子として熱電対列を形成する工程とによ リ複 合熱電構造体を形成し、
複数の該複合熱電搆造体を絶緣材を介して熏ねて貼リ合わせて, 隣リ合う複合熱電構造体の端の熱電体を素子端配線で配線すること により、 各熱铠対を全て直列に接統することを特徴とする熱竜発電 ユニッ トの製造方法。
1 . 電気伝導性の基板上に第 1 のス トライプ状パターンを有する 感光性樹脂を電極膜上に形成する工程と、 該電極膜を用いて前記感 光性樹脂の開口部に第 1 の熱電材料からなる第 1 の熟電体をメツキ 法で前記感光性樹脂よ リ薄く形成する工程とから第 1 の熱電構造体 を形成し、
前記基板とは別の基板上に金属材料からなる電極膜を形成するェ 程と、 前記第 1 のス トライブ状パターンの開口部の幅以下の非開口 部と該第 1 のス トライブ状パターンの非開口部の幅以上の開口部を 有し、 なおかつ該第 1 のストライブ状パターンとピッチが同一であ る第 2のス 卜ライブ状パターンを有する感光性樹脂を前記電極膜上 に形成する工程と、 前記 II極膜を用いて前記感光性樹脂の開口部に 第 2の熱鼋材料からなる第 2の熱電体をメツキ法で前記感光性樹脂 よ リ薄く形成する工程とから第 2の熱電構造体を形成し、
前記第 1 の熱鼋構造体と第 2の热電構造体とを、 前記感光性樹脂 の一方の開口部と他方の非開口部とをはめ合わせて接着したのち、 所定の大きさに切断する工程と、
前記各基板と電極膜とを溶解除去する工程と、
瞵リ合う前記第 1の熱電体と第 2の熱電体との断面を配線電極で 交互に配線して、 熱電発電素子として熱電対列を形成する工程とに よ リ複合熱電構造体を形成し、
複数の該複合熱電構造体を絶縁材を介して重ねて貼り合わせて、 瞵り合う複合熱竜構造体の端の熱電体を素子端配線で配線すること により、 各熱電対を全て直列に接続することを特徴とする熱電発電 ュニッ 卜の製造方法。
PCT/JP1995/000933 1994-05-16 1995-05-16 Manufacture of thermoelectric power generation unit WO1995031832A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/737,333 US5897330A (en) 1994-05-16 1995-05-16 Method of manufacturing thermoelectric power generation unit
EP95918194A EP0760530B1 (en) 1994-05-16 1995-05-16 Manufacture of thermoelectric power generation unit
DE69511263T DE69511263T2 (de) 1994-05-16 1995-05-16 Herstellung einer thermoelektrischen leistungserzeugungseinheit
JP07529514A JP3115605B2 (ja) 1994-05-16 1995-05-16 熱電発電ユニットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10139294 1994-05-16
JP6/101392 1994-05-16

Publications (1)

Publication Number Publication Date
WO1995031832A1 true WO1995031832A1 (en) 1995-11-23

Family

ID=14299482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000933 WO1995031832A1 (en) 1994-05-16 1995-05-16 Manufacture of thermoelectric power generation unit

Country Status (6)

Country Link
US (1) US5897330A (ja)
EP (1) EP0760530B1 (ja)
JP (1) JP3115605B2 (ja)
CN (1) CN1052345C (ja)
DE (1) DE69511263T2 (ja)
WO (1) WO1995031832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180455A (ja) * 2005-12-28 2007-07-12 Ritsumeikan 熱電変換デバイス及び熱電変換デバイスの製造方法
JP2009528684A (ja) * 2006-03-01 2009-08-06 クラミック エレクトロニクス ゲーエムベーハー ペルチェ素子精製プロセスとペルチェ素子

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5397399A (en) 1998-08-11 2000-03-06 Medtronic, Inc. Body heat powered implantable medical device
NL1012709C2 (nl) 1999-07-26 2001-02-01 Berkin Bv Werkwijze voor het vervaardigen van een thermozuil op een elektrisch isolerende drager.
US6597051B2 (en) * 2001-05-22 2003-07-22 Yeda Research And Development Co. Ltd. Thermoelectric infrared detector
US7340304B2 (en) * 2002-03-15 2008-03-04 Biomed Soutions, Llc Biothermal power source for implantable devices
US6640137B2 (en) * 2002-03-15 2003-10-28 Biomed Solutions Llc Biothermal power source for implantable devices
US20040093041A1 (en) * 2002-03-15 2004-05-13 Macdonald Stuart G. Biothermal power source for implantable devices
KR20060024779A (ko) * 2003-05-23 2006-03-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 열전 장치 및 그 제조 방법
CN100346490C (zh) * 2004-06-21 2007-10-31 浙江大学 一种薄片型热电转换装置的制备方法
DE102004030043B4 (de) * 2004-06-22 2006-05-04 Infineon Technologies Ag Verfahren zum Herstellen eines Thermoelements
CN1595784A (zh) * 2004-06-28 2005-03-16 冯晓升 用液化的气体和热电偶进行发电的方法
WO2007002342A2 (en) * 2005-06-22 2007-01-04 Nextreme Thermal Solutions Methods of forming thermoelectric devices including electrically insulating matrixes between conductive traces and related structures
US7679203B2 (en) * 2006-03-03 2010-03-16 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
US8003879B2 (en) 2006-04-26 2011-08-23 Cardiac Pacemakers, Inc. Method and apparatus for in vivo thermoelectric power system
US8039727B2 (en) * 2006-04-26 2011-10-18 Cardiac Pacemakers, Inc. Method and apparatus for shunt for in vivo thermoelectric power system
US8538529B2 (en) * 2006-04-26 2013-09-17 Cardiac Pacemakers, Inc. Power converter for use with implantable thermoelectric generator
CN101350580B (zh) * 2007-07-17 2012-05-02 陈满煌 固态温差发电板及其装置
JP5007748B2 (ja) * 2007-07-19 2012-08-22 株式会社村田製作所 熱電変換モジュールおよび熱電変換モジュールの製造方法
US20090188105A1 (en) * 2008-01-28 2009-07-30 Ming-Chin Chien Slim battery packaging method
EP2131406A1 (en) 2008-06-02 2009-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
US8340777B2 (en) 2008-09-15 2012-12-25 The Invention Science Fund I, Llc Systems configured to transmit optical power signals transdermally out of a living subject, and devices and methods
US8463391B2 (en) * 2008-09-15 2013-06-11 The Invention Science Fund I, Llc Systems configured to deliver energy out of a living subject, and related appartuses and methods
US8639347B2 (en) * 2008-09-15 2014-01-28 The Invention Science Fund I, Llc Methods, devices and systems for transmission between an implanted device and an external device
CN102214784B (zh) * 2010-04-02 2014-09-03 中芯国际集成电路制造(上海)有限公司 热电装置及其形成方法
CN102719867A (zh) * 2012-06-28 2012-10-10 华南理工大学 一种在工件表面加工测温热电偶的方法
WO2014156099A1 (ja) * 2013-03-28 2014-10-02 パナソニック株式会社 熱発電素子および熱発電素子の製造方法
KR20150021366A (ko) * 2013-08-20 2015-03-02 엘지이노텍 주식회사 열전소자 및 이를 포함하는 열전모듈, 열전환장치
CN107623067B (zh) * 2017-08-10 2019-11-12 南京航空航天大学 一种便携式高纵横比层间连接的微型垂直结构热电器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384171A (ja) * 1986-09-29 1988-04-14 Toshiba Corp 熱電変換素子
JPH0230190A (ja) * 1988-07-20 1990-01-31 Nippon Denso Co Ltd 電子冷凍素子の製造方法
JPH06338636A (ja) * 1993-04-02 1994-12-06 Citizen Watch Co Ltd 熱電発電素子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1094457A (en) * 1965-11-27 1967-12-13 Ferranti Ltd Improvements relating to the manufacture of thermo-electric generators
GB1303835A (ja) * 1970-01-30 1973-01-24
FR2206034A5 (ja) * 1972-11-09 1974-05-31 Cit Alcatel
FR2261638B1 (ja) * 1974-02-15 1976-11-26 Cit Alcatel
FR2261639B1 (ja) * 1974-02-15 1976-11-26 Cit Alcatel
US4072864A (en) * 1976-12-20 1978-02-07 International Business Machines Corporation Multilayered slant-angle thin film energy detector
US4149025A (en) * 1977-11-16 1979-04-10 Vasile Niculescu Method of fabricating thermoelectric power generator modules
FR2435132A1 (fr) * 1978-08-29 1980-03-28 Cit Alcatel Procede de fabrication de thermopile
JP2527541B2 (ja) * 1986-09-11 1996-08-28 セイコー電子工業株式会社 電子腕時計用熱電素子の製造方法
JP2602646B2 (ja) * 1986-09-18 1997-04-23 セイコー電子工業株式会社 電子腕時計用熱電素子の製造方法
GB2206233B (en) * 1987-06-23 1990-09-05 British Gas Plc Miniature thermoelectric converters
US4922822A (en) * 1988-12-12 1990-05-08 Bierschenk James L Thermoelectric cooler
US5209786A (en) * 1990-10-09 1993-05-11 Thermo Electron Technologies Corporation Integrity-enhanced thermoelectrics
US5286304A (en) * 1991-10-24 1994-02-15 Enerdyne Corporation Thermoelectric device and method of manufacturing
US5279991A (en) * 1992-05-15 1994-01-18 Irvine Sensors Corporation Method for fabricating stacks of IC chips by segmenting a larger stack
ATE147686T1 (de) * 1992-07-01 1997-02-15 Smh Management Services Ag Motorsystem eines fahrzeuges vom typ elektrisch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384171A (ja) * 1986-09-29 1988-04-14 Toshiba Corp 熱電変換素子
JPH0230190A (ja) * 1988-07-20 1990-01-31 Nippon Denso Co Ltd 電子冷凍素子の製造方法
JPH06338636A (ja) * 1993-04-02 1994-12-06 Citizen Watch Co Ltd 熱電発電素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0760530A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180455A (ja) * 2005-12-28 2007-07-12 Ritsumeikan 熱電変換デバイス及び熱電変換デバイスの製造方法
JP2009528684A (ja) * 2006-03-01 2009-08-06 クラミック エレクトロニクス ゲーエムベーハー ペルチェ素子精製プロセスとペルチェ素子

Also Published As

Publication number Publication date
EP0760530A4 (en) 1997-05-02
CN1148443A (zh) 1997-04-23
EP0760530A1 (en) 1997-03-05
EP0760530B1 (en) 1999-08-04
DE69511263D1 (de) 1999-09-09
JP3115605B2 (ja) 2000-12-11
CN1052345C (zh) 2000-05-10
DE69511263T2 (de) 2000-01-13
US5897330A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
WO1995031832A1 (en) Manufacture of thermoelectric power generation unit
US6410840B1 (en) Thermoelectric conversion device and method of manufacturing the same
RU2151451C1 (ru) Способ изготовления термоэлектрического устройства
JP3224135B2 (ja) 熱電素子とその製造方法
EP0408572B1 (de) Thermogenerator
US7560639B2 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
US20090093078A1 (en) System and Method for High Temperature Compact Thermoelectric Generator (TEG) Device Construction
JP3432257B2 (ja) 熱電発電素子の製造方法
US20170345989A1 (en) Methods of fabrication of flexible micro-thermoelectric generators
JP2012028388A (ja) 熱電変換モジュールの製造方法
JPH0818109A (ja) 熱電素子とその製造方法
JP2014045124A (ja) 太陽電池およびその製造方法、並びに太陽電池モジュールおよびその製造方法
JP7348192B2 (ja) 半導体素子
JP2004127744A (ja) 熱電素子一体型薄膜電池
JP7543140B2 (ja) 熱電変換材料のチップ
JP5176610B2 (ja) 熱発電デバイス素子
JPH09191133A (ja) 熱電発電素子の製造方法
US20130319491A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JPH09162447A (ja) 熱電発電素子の製造方法
JP2004296960A (ja) 熱電素子とその製造方法
JP7401361B2 (ja) 熱電変換モジュール
JP2009218310A (ja) 熱発電デバイス素子
JP2011238864A (ja) 熱電変換モジュールの製造方法
JPH118416A (ja) 熱電発電素子の製造方法
JP2000332310A (ja) 熱電モジュールの作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193087.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995918194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08737333

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995918194

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995918194

Country of ref document: EP