WO1995030711A1 - Mousse de fluororesine et procede de production de ladite mousse - Google Patents

Mousse de fluororesine et procede de production de ladite mousse Download PDF

Info

Publication number
WO1995030711A1
WO1995030711A1 PCT/JP1994/001886 JP9401886W WO9530711A1 WO 1995030711 A1 WO1995030711 A1 WO 1995030711A1 JP 9401886 W JP9401886 W JP 9401886W WO 9530711 A1 WO9530711 A1 WO 9530711A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
sheet
fluorine
polishing
resin
Prior art date
Application number
PCT/JP1994/001886
Other languages
English (en)
French (fr)
Inventor
Toshioki Hane
Hisao Koike
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6096279A external-priority patent/JPH0726051A/ja
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019960700089A priority Critical patent/KR0165748B1/ko
Priority to EP95900274A priority patent/EP0713897B1/en
Priority to DE69427915T priority patent/DE69427915T2/de
Publication of WO1995030711A1 publication Critical patent/WO1995030711A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/14Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by the front face
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a foam made of a thermoplastic fluorine-based resin having a multilayer structure and having no cross-linked structure, having a specific expansion ratio, a closed cell ratio, and a specific cell structure, and a method for producing the same.
  • fluorine-based resin such as heat resistance, solvent resistance, weather resistance, electrical insulation, and flame retardancy
  • the light weight and cushion as a foam
  • Fluorocarbon resin foams having properties such as heat resistance, low dielectric constant, and heat insulation have been proposed.
  • These fluororesin foams have been developed for various uses such as electrical insulators, polishing cloths for electronic materials, and heat insulating sheets.
  • U.S. Pat. Nos. 4,560,828 and 4,615,850 disclose fluorine-based resin foams for electrical insulators. The expansion ratio of each of these foams was about 4 times, and the hardness was high, the flexibility was poor, and the dielectric constant was not sufficiently low depending on the resin.
  • Japanese Patent Application Laid-Open Nos. Sho 62-530340 and Hei 4-314446 disclose a foam having a high expansion ratio, although there is no mention of hardness. Since the foam had a large cell diameter, the distribution of the cell diameter was wide, and the surface smoothness was insufficient.
  • U.S. Pat.Nos. 4,737,526 and JP-A-62-128036 disclose foams having a high expansion ratio and a small bubble diameter having a crosslinked structure.
  • Foam is a resin for Azukasuru vehicle foaming suitability is crosslinked, can not and child recycling c
  • the production process is limited to a crosslinkable resin, is complicated, and has a drawback that an acidic gas is generated during the crosslinking treatment.
  • Japanese Patent Application Laid-Open No. 5-239249 discloses a microbubble foam having a high expansion ratio obtained by using a high-boiling-point foaming agent.
  • the foaming agent used has a high boiling point, the cooling after foaming causes the foaming agent to condense inside the cells of the foam and reduce the pressure inside the cells, resulting in poor surface smoothness. -When used in the form of a loop, dimensional changes were likely to occur.
  • U.S. Pat.Nos. 4,842,678 have an expansion ratio of 1.5 to 30 times, an average cell diameter of 300 m or less, and contain 0 to 70% of an unfoamed resin layer.
  • a polishing cloth made of a fluorine resin foam is disclosed.
  • U.S. Pat. Nos. 4,954,141 disclose a pad for mirror-polishing semiconductor wafers made of fluorine resin foam. In the above-mentioned conventional fluorine-based resin foam, uniformity in a foam having a single cell structure is mainly pursued.
  • the fluorine-based resin foams constituting the above-mentioned polishing cloth also have a single cell structure, and exhibit sufficient performance in terms of chemical resistance and surface smoothness of the object to be polished. I was concerned about maintaining stable polishing performance over a long period of polishing. Therefore, when polishing for a long time, polishing the surface of the polishing cloth (polishing the pad surface with a hard material to correct or knead the unevenness of the surface to achieve high flatness) ) And changing the polishing conditions. Since these polishing cloths are relatively soft, processing defects such as scratches (linear scratches on the polished surface) are unlikely to occur in the initial stage of polishing, but wafer edges are likely to sag. This has led to a decrease in the yield of integrated circuits.
  • crystalline resins such as fluorine-based resins have a high temperature dependence of melt narrowing elasticity, and it is often difficult to control the temperature to melt viscoelasticity that is suitable for foaming.
  • the production of a fluorine-based resin foam having a high cell density was considered to be practically difficult.
  • the perfluoro resin has extremely excellent solvent resistance, it is difficult to dissolve or disperse the physical foaming agent in the resin, and the amount of the foaming agent that functions as a foaming agent is stored in the resin. It was considered difficult to hold.
  • the melting point of the perfluoro resin is usually as high as 250 ° C. or more, the foaming agent escapes while the resin softens and exhibits a suitable melt viscoelasticity for foaming.
  • a method for producing a fluorine-based resin foam having a specific foaming ratio, a closed cell rate, a multilayer cell structure, and a uniform cell diameter distribution in each layer is still known. Did not.
  • the present invention solves the above-mentioned problems of the conventional fluorine-based resin foam, and provides a fluorine-based resin foam having a novel structure applicable to various uses and a method for producing the same. It is for this purpose.
  • a fluorine-based resin foam capable of balancing compression elastic modulus and tear strength in heat insulating sheet applications and a method for producing the same. Disclosure of the Invention>
  • the present invention relates to a foam made of a thermoplastic fluorine-based resin having a foaming ratio of 4 to 30 times and a closed cell ratio of 40% or more and having no crosslinked structure, wherein the inside of the foam is And at least one interface composed of layers having different cell densities, and represented by the following formula, and the variation index C c and the variation coefficient C v of the maximum diameter of the open cell existing at an arbitrary cross section of each layer.
  • the present invention relates to a foam made of a fluororesin having 0 and S c ⁇ 6 and 0 and C v ⁇ 1, respectively.
  • the expansion ratio of the foam of the present invention is 4 times or more and 30 times or less as the whole foam.
  • the expansion ratio relates to various physical properties of the foam, such as mechanical properties, electrical properties, and thermal properties.
  • the expansion ratio is appropriately selected in order to exhibit optimum physical properties in the use of the foam.
  • For polishing cloth applications select a foaming ratio that satisfies appropriate hardness and compression modulus.
  • the dielectric constant does not decrease sufficiently with some system resins.
  • the expansion ratio exceeds 30 times, the hardness is too low and the elastic deformation becomes too large, so that the flatness of the surface of the object to be polished is reduced. It also reduces the mechanical properties and closed cell rate. Preferably, it is 6 times or more and 25 times or less.
  • the closed cell rate of the foam of the present invention is 40% or more, preferably 50% or more, and more preferably 60% or more.
  • the closed cell rate greatly affects the mechanical properties of the foam, especially compression properties such as hardness, compressive strength, compressive modulus, and compressive elastic recovery. In polishing cloth applications, it is considered that this has a great effect on the action of buffering the polishing pressure inside the polishing cloth. If the closed cell ratio is less than 40%, the surface accuracy of the object to be polished tends to decrease. If the closed cell ratio is 40% or more, the apparent density and thickness are unlikely to change even by an external compression force, and the dielectric constant ⁇ withstand voltage is unlikely to change.
  • the foam of the present invention contains at least one interface composed of layers having different cell densities. That is, it is formed from a multilayer structure including two or more layers having different bubble densities.
  • the bubble density refers to the number of bubbles per unit area of each layer.
  • Layers with different bubble densities are Refers to the ratio of the cell density is 5 or more 1 0 5 below. Bubble density is rather to preferred is 1 0 to 4 1 0 or more. When the ratio is less than 5, a substantially homogeneous cell structure is obtained. In polishing cloth applications, it is no longer possible to eliminate edge sagging and prevent the occurrence of scratches, etc., and in electrical insulation applications, the withstand voltage tends to decrease with respect to external compressive force. When the ratio exceeds 1 0 5 becomes liable bubbles wall defoaming too thin at high cell density layer, closed cell ratio can not be maintained.
  • the number of layers in the foam of the present invention is not limited, it is usually 2 to 7 layers.
  • the foam having the desired number of layers may be obtained by cutting out the obtained foam in parallel with each layer.
  • a two-layer structure can be obtained by slicing a three-layer foam such as AZBZA at the portion B.
  • the thickness of one layer accounts for 1 to 90% of the total thickness of the foam.
  • the position of the interface of each layer varies depending on the ratio of each layer to the total thickness of the foam.
  • Cell density of each layer is preferred to rather a 1 0 6 Z cm 3, it is rather to favored the al 1 0 7 / cm 3.
  • the values of the variation index and the coefficient of variation described below are easily within a predetermined range, and the proportion of open and closed cells present on the foam surface is stabilized over time. I like it.
  • an open bubble is a bubble that is exposed on the surface and a bubble wall that forms a bubble is cut
  • a closed cell is a bubble that is exposed on the surface and is a bubble wall that forms a bubble.
  • a high air bubble density is preferable because it improves the surface accuracy of the object to be polished.
  • the bubble density of the polishing cloth is high, when it comes into contact with the surface of the object to be polished, it can come into contact with minute irregularities existing on the surface with a uniform pressure.
  • closed cells receive the pressure during polishing on the cell wall as a plane, and open cells use the pressure as a line. It will be received at the cut part of all the bubble walls. It is thought that by increasing the bubble density, the ratio of receiving the wire increases, and a more uniform pressure distribution can be developed.
  • the cell density is high, the percentage of open cells present on the polishing cloth surface is high, and the percentage of closed cells is low. Even in electrical insulator applications, if the bubble density is low, the bubbles become large, the surface smoothness is reduced, and the thickness of the insulating tape cannot be reduced. Furthermore, the mechanical properties of the tape as the tear strength decreases Therefore, it is preferable that the bubble density is high.
  • the variation index S c and the coefficient of variation CV of the maximum diameter of the open cell existing on an arbitrary cut surface of each layer of the foam of the present invention may be 0, S c ⁇ 6, and 0 ⁇ C v ⁇ 1, respectively. is necessary.
  • the maximum diameter of an open bubble refers to the maximum length of a two-dimensionally closed area with a bubble film.
  • the variation index exceeds 6 and the coefficient of variation exceeds 1, the uniformity of the size of the open cells is impaired, and when used as a polishing cloth, the surface accuracy of the object to be polished is reduced, Polishing performance may be reduced by the polishing operation.
  • the variation index is preferably less than 5.5, more preferably less than 5, and the coefficient of variation is preferably 0.95, more preferably. Or 0.90. The smaller the values of the variation index and the coefficient of variation, the better.
  • the cut surface of the foam includes cut surfaces cut at various locations of the bubbles.
  • the size of open cells exposed to the cut surface is not the same even if the size of the bubbles is the same, so the size of the open cells In order to make the air bubbles as uniform as possible, it is necessary to make the size of the air bubbles fine and uniform.
  • the foam of the present invention is formed into a sheet having a certain thickness. Open cells and closed cells are mixed on the surface with a certain probability. When the proportion of the polishing liquid fluctuates, the state of the polishing liquid at the interface between the polishing cloth and the object to be polished, which is retained in the open air bubbles, and the state of wear debris of the polishing cloth caused by the progress of polishing fluctuates. It is thought to affect the speed and surface accuracy of the object to be polished.
  • the fluorine-containing resin foam of the present invention has a uniform size of open cells, so that when used as a polishing cloth, the interface between the polishing cloth and the object to be polished during polishing is low. When the entire surface of the polishing cloth is considered, the proportion of open cells and closed cells does not substantially fluctuate at each instant during polishing. From the viewpoint of this stability, it is more preferable that the bubble density is high.
  • the foam of the present invention desirably has a Taber abrasion of not less than 25 mm 3 and not more than 240 mm.
  • the Taber abrasion is considered to be related to the stability of polishing performance in polishing over a long period of time for polishing cloth applications.
  • the Taber abrasion depends on the type of fluorine resin used, the foaming ratio, the cell density, and other factors.
  • the Taber abrasion exceeds 240 mm 3 , the polishing cloth is liable to be worn, clogged easily, the polishing speed is reduced, and the surface accuracy of the object to be polished cannot be maintained. As a result, the number of wafers that can be processed per polishing cloth decreases, which is extremely disadvantageous in terms of productivity and cost. If the Taber abrasion is less than 25 mm 3 , the surface of the polishing cloth is difficult to be updated, and the surface accuracy of the object to be polished tends to decrease. Considering the performance of the Migaku Ken cloth, properly favored Taber abrasion loss 3 0 mm 3 or more 2 2 0 mm 3 or less, further preferable properly is 3 5 mm 3 or more 2 0 0 mm 3 or less.
  • the foam of the present invention desirably has a hardness of 15 or more and 93 or less. More preferably, it is 20 or more and 90 or less, and 25 or more and 90 or less. Hardness is affected by resin type, expansion ratio, closed cell ratio, cell density, etc. It is. For polishing cloth applications, hardness is related to the elastic deformation of the polishing cloth. Since the polishing is performed under a constant pressure, the pressure is applied uniformly to the minute concave / convex portions present on the surface of the object to be polished, so the hardness is important. If the hardness exceeds 93, the action of pulling the abrasive grains is not sufficiently relaxed, and processing damage is generated on the surface of the object to be polished, which is not preferable. If the hardness is less than 15, the amount of deformation of the polishing cloth itself becomes too large, and the flatness of the surface to be polished is reduced.
  • the above-mentioned foam is a foam having a wear amount of 25 mm 3 or more and 240 mm 3 or less and a hardness of 15 or more and 93 or less.
  • the foam of the present invention When the foam of the present invention is used in the form of a thin tape, if the hardness is less than 15, the foam tends to be easily deformed by an external compressive force, and disadvantages such as a variation in thickness arise.
  • the foam of the present invention may have an unfoamed layer on the surface layer or the inner layer.
  • an unfoamed layer is present on the surface layer, the layer is removed before use.
  • an unfoamed layer is often preferable to have an unfoamed layer on the surface from the viewpoint of surface smoothness.
  • the thickness of the unfoamed layer is not particularly limited
  • the fluorine-based resin used in the present invention includes a partially fluorinated resin having at least one monomer component and at least one fluorine atom constituting the resin, and a perfluoro resin.
  • Fluoroalkyl perfluoro vinyl ether, perfluoropropyl ether, and fluorofluoroalkyl ether such as fluorovinyl ether, etc., alkyl having 1 to 6 carbons or 6 to 8 carbons At least one monomer selected from the group consisting of at least one monomer and at least one monomer selected from the above monomers; and vinyl chloride and at least one monomer selected from the above monomers.
  • Vinylidene lid trichloroethylene, alkyl vinyl ether with 1 to 6 carbon atoms, aryl vinyl ether with 6 to 8 carbon atoms, ethylene, propylene, styrene, etc. It is a copolymerized fluororesin obtained from at least one or more selected monomers.
  • Typical examples of the fluorine-based resin used in the present invention include polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride, tetrafluoroethylene copolymer, and vinylidene fluoride.
  • Xafluoropropylene copolymer ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-propylene copolymer, ethylene monoethylene trifluoroethylene copolymer, tetrafluoroethylene monoethylene trifluoroethylene copolymer Copolymer, Tetrafluoroethylene-hexafluoropropylene copolymer, Tetrafluoroethylene-perfluoromethylvinylfluorovinylether copolymer, Tetrafluoroethylene-Parfluorofluorovinylvinylether copolymer, Te Trafluoroethylen-propyl propyl perfluoro vinyl ether copolymer, tetrafluoro ethylene-hexafluoropropylene.
  • One fluorovinyl ether copolymer tetrafluoroethylene-hexafluoropropylene.
  • One Fluoro Vinyl —Ter copolymers tetrafluoroethylene-hexafluoropropylene-perfluoropropylperfluorovinylether copolymers and the like.
  • the above polyvinylidene difluoride, polyclonal trifluorene ethylene, vinylidenefluoride hexafluoropropylene copolymer, ethylene trafluene are preferable.
  • the partially fluorinated resin is polyvinylidenefluoride, vinylidenefluoride hexafluoropropylene copolymer, and the perfluoro resin is tetrafluoroethylene-perfluoroalkylperfluorovinyl ether. Copolymers.
  • the composition ratio of one monomer component is appropriately selected in a wide range.
  • the crystallinity of the polymer tends to decrease due to the decrease in the content of tetrafluoroethylene, and the heat resistance and chemical resistance tend to decrease. Therefore, it is preferable to use a crystalline resin in terms of physical properties and cost.
  • the foam of the present invention may be controlled to an appropriate thickness and thickness depending on the application.
  • a foam such as a sheet, film, tube, or fibrous material may be stretched uniaxially or biaxially.
  • the bubble shape shows anisotropy according to the draw ratio, but the draw ratio is defined by the coefficient of variation of the maximum diameter of the bubble, the bubble density, the bubble ratio, and the closed cell ratio within the range of the present invention.
  • Another invention of the present invention relates to a thermoplastic fluorine-based resin having no cross-linked structure, wherein a fluorocarbon having 18 carbon atoms having a boiling point equal to or lower than the crystal melting point of the resin is added in an amount of 0.420% by weight. % And at least one compound selected from alcohols with a boiling point of 150 ° C or less and a latent heat of vaporization of 7.0 kca1 / mo1 or more.
  • the present invention relates to a method for producing the above-mentioned fluorine-based resin foam to be foamed.
  • Fluorocarbon having 18 carbon atoms and having a boiling point equal to or lower than the crystal melting point of the fluororesin is used as a physical foaming agent.
  • Representative examples of fluorocabon include hexafluoroetan, pentafluorene, tetrafluorene, trifluorene, difluo ⁇ -ethane, fluorene, tetrafluorometan, trifluorometan, Difluorometane, fluorometane,,.
  • One funorelo roha One funorelo roha.
  • fluorcarbons may be used as a main component and used as a mixture with volatile organic compounds such as ⁇ -pan, butane, pentane, methyl chloride, methylene chloride, ethyl chloride, and ethylene chloride.
  • volatile organic compounds such as ⁇ -pan, butane, pentane, methyl chloride, methylene chloride, ethyl chloride, and ethylene chloride.
  • the mixing ratio with the foaming agent is appropriately selected in consideration of safety, economy, availability, and foaming properties of the fluororesin.
  • the foam of the present invention can be produced by various known methods using the above-mentioned physical foaming agent.
  • a resin molded into a sheet, film, fiber, tube, pipe, etc., or a resin molded by injection, blow or compression molding is placed in a pressure-resistant container, and the gaseous or liquid After injecting the foaming agent and heating it under sealed pressure to impregnate the resin with the foaming agent,
  • An impregnation foaming method of heating and foaming, or an extrusion foaming method of press-injecting the foaming agent into a molten resin from an injection device provided on the outlet side of the extruder and cooling and extruding the resin while cooling is used. it can.
  • the amount of the physical foaming agent is 0.4 to 20% by weight based on the fluorine-based resin.
  • the amount of the foaming agent depends on the type of the resin and the foaming agent to be used, their mutual affinity, the foaming method, the foaming ratio, the closed cell ratio, the cell density, the ease of forming the multilayer structure, and the foaming agent. Select within the above range, taking into account the temperature, pressure, time, etc. when introducing into the fluorine-based resin. If the amount of the foaming agent is less than 0.4% by weight, the expansion ratio cannot be sufficiently increased, and the bubble density tends to decrease. If it exceeds 20% by weight, the plasticization of the resin will increase too much, and it will not be possible to maintain an appropriate resin viscoelasticity during foaming.
  • the foaming agent volatilizes violently, and the bubbles communicate with each other, making it impossible to increase the expansion ratio.
  • the amount of the blowing agent is preferably 1 to 15% by weight, and more preferably 1 to 10% by weight.
  • the temperature at which the physical foaming agent used in the present invention is introduced into the fluororesin is appropriately set in consideration of the foaming method, the type of the foaming agent and the fluororesin, and their physical properties. .
  • a blowing agent is introduced in a state where the resin is melted at a temperature higher than the melting point of the fluororesin and lower than the decomposition temperature.
  • the melting point of the fluorine-based resin is relatively high, usually 150 or more.
  • the blowing agent is introduced while maintaining the shape of the fluororesin, it is usually from 20 to 300, which is lower than the melting point of the fluororesin, and preferably from 25 to 25.
  • the setting of the impregnation time is extremely important because the impregnation time significantly affects the cell density.
  • the impregnation time must be at least 5 hours, preferably 7 hours, and more preferably 10 hours, in addition to the time to reach the equilibrium impregnation at the given impregnation temperature. is there. Foaming before or shortly before the equilibrium impregnation is reached is not preferred because of low cell density. The reason for this is not clear, but it is thought that the optimal bubble nuclei are formed as a result of the rearrangement of the resin molecular chains within a certain time after reaching the equilibrium impregnation amount.
  • the physical blowing agent is used in combination with water or at least one compound selected from alcohols having a boiling point of 150 ° C. or less and a latent heat of vaporization of 7.0 kca 1 / o 1 or more.
  • water or the above-mentioned alcohol within the above-mentioned range, high bubbles are generally obtained despite the fact that the fluororesin has a characteristic of having water and oil properties as its characteristic. It functions very effectively in forming a cell structure having a density and a multilayer structure.
  • Alcohol examples include methanol, ethanol, 1-p, and so on.
  • alcohols Two or more types of water or the above-mentioned alcohols (hereinafter, both are referred to as “alcohols”) may be used in consideration of the bubble density, ease of forming a multilayer structure, and the like. . Among them, water has a great effect of increasing the bubble density, and is extremely preferred in terms of ease of handling and economy.
  • the alcohol used in the present invention has a boiling point of 150 ° C. or less and a latent heat of vaporization of at least 0.0 kca 1 / mo 1. If the boiling point of alcohol exceeds 150 ° C or the latent heat of evaporation is less than 7.0 kca 1 / mo 1 In this case, the closed cell ratio tends to decrease, the cell density decreases, it is difficult to form a multilayer cell structure, and voids are easily generated, and the uniformity of cell diameter distribution decreases. Tend to occur. When the boiling point exceeds 150 ° C., when the foam after foaming is cooled, the smoothness of the surface of the foam tends to decrease, and it becomes difficult to form a multilayer structure. Considering these factors, it is preferable that the boiling point of alcohol is 110 ° C or less and the latent heat of vaporization is 8.0 kca 1 / mo 1 or more.
  • the type of alcohol and the amount to be introduced into the fluororesin are determined by the type of resin and physical foaming agent used, the physical foaming agent of the resin and the retention of the alcohol, the bubble density during foaming, Select within the above range in consideration of the closed cell ratio and the ease of forming a multilayer cell structure.
  • the alcohols have a low affinity for the fluororesin and the physical blowing agent used in the present invention, so that the amount impregnated in the resin is not large, and the alcohol is also different depending on the type of the fluororesin. The optimal amount will vary.
  • the alcohols are used in an amount of 0.01 to 1 weight 9 based on the fluorine-based resin.
  • FIG. 2 is a graph showing the relationship between the water content and the cell density in a fluorine resin foam. It can be seen that the cell density changes rapidly due to the change in the water content of the fluorine-based resin foam. In this example, when the water concentration distribution occurs in the thickness direction, if the water content of a certain layer becomes less than 40 ppm, the bubble density of that layer decreases and the bubble density differs between the adjacent layer It suggests that an interface is formed.
  • the resin may contain an inorganic gas that is inert to the fluorine-based resin, if necessary.
  • inorganic gases include air, nitrogen, oxygen, argon, helium, carbon dioxide
  • the alcohol used in the present invention is used in gaseous or liquid form.
  • the alcohols are introduced into the resin before, after, or simultaneously with the introduction of the physical foaming agent into the fluororesin.
  • the impregnation foaming method a predetermined amount of the alcohol is exposed to the gaseous or liquid alcohol in advance or is immersed in the fluorine-based resin.
  • the resin is impregnated with a physical foaming agent and then introduced, or a physical foaming agent containing a predetermined amount of alcohol is used and impregnated with the resin so that the resin is simultaneously introduced into the fluororesin.
  • a predetermined amount of alcohol is introduced into the fluorine-based resin by previously exposing or dipping the fluorine-based resin containing a physical foaming agent to gaseous or liquid alcohols.
  • alcohol is introduced into the fluororesin to which a physical foaming agent has been introduced in advance, or physical foaming is performed. It is preferred that the alcohol of the agent is simultaneously introduced into the resin.
  • alcohols are injected at the same time as or before and after the physical blowing agent is injected into the molten fluororesin.
  • the present invention forms a multilayer structure including at least two layers having different bubble densities. It is considered that the foam is formed by the change in the proportion of alcohols at each site in the resin as described above.
  • the multilayer structure of the present invention can be formed by the following method.
  • the formation of the multilayer structure is controlled mainly by controlling the impregnation time of the alcohols in the fluororesin, and after the alcohols reach the equilibrium impregnation amount, Exposure of the fluororesin to the air to control the time for volatilizing alcohols. Controls the formation of the multilayer structure.
  • the number and thickness of layers can be controlled by changing the temperature while impregnating or volatilizing alcohols.
  • the impregnation time and impregnation temperature of the alcohols in the fluororesin, the volatilization time and the volatilization temperature are determined in consideration of the type of resin and alcohol, the physical properties of both, and the type and physical properties of the physical foaming agent. It may be set appropriately.
  • extrusion foaming method two or more extruders are used to control the amount of alcohol to be injected into each extruder, and to combine each fluororesin before the extruder outlet. By foaming, a multilayer structure can be formed.
  • the heating temperature and time of the resin impregnated with the physical foaming agent and the alcohols tend to depend on each other, and the type of the foaming agent, the cell density of the foam, the hardness, and the desired foam It is appropriately selected in consideration of the closed cell rate and the like.
  • a temperature higher than the melting point of the resin and lower than the decomposition temperature of the resin is applied.
  • the temperature is 10 ° C higher than the melting point, and the time is set according to the heating temperature, but 1 second to 240 seconds is applied.
  • the foam is impregnated again with the above physical foaming agent and foamed by heating.
  • the type and impregnation amount of the foaming agent are determined in consideration of the expansion ratio, closed cell ratio, and cell density of the refoamed foam.
  • the heating temperature and the heating time at the time of refoaming are selected from the conditions of the impregnated foaming described above.
  • alcohols are effective for high foaming ratio, closed cell ratio, cell density, uniformity of bubble diameter distribution, formation of multilayer cell structure, etc.
  • alcohols function as a kind of bubble nucleus, and have a large latent heat of vaporization to cool and fix the bubble film during foaming. It is thought that it works effectively to prevent the fusion and communication of bubbles.
  • the proportion of alcohols at each site in the fluororesin changes, the cell density or average cell diameter at each site changes, and a multi-layer cell structure may be formed. It is guessed.
  • FIG. 1 is a schematic diagram of a polishing apparatus.
  • FIG. 2 is a schematic diagram showing the relationship between the water content and the cell density of a vinylidene fluoride-hexafluoropropylene copolymer resin sheet using tetrafluorobenzene as a blowing agent.
  • a field of view of about 0.04 mm 2 is set at an arbitrary position from the photograph and applied to an image processing device (C01 or Image Processor SPIC CA-I manufactured by Nippon Avionics Co., Ltd.). The maximum diameter of each open bubble was measured by image processing, and L was measured from the open cell in the field of view.
  • a field of view of 400 / X400 is set at an arbitrary position from the photograph, the number (M) of bubbles existing in the field of view is counted, and the bubble density (piece m 3 ) is calculated according to the following equation.
  • Expansion ratio resin density (gZc m 3) Foam density (g / cm 3)
  • Moisture is determined by the Karl Fischer method, and alcohol is volatilized from the resin and quantified by gas chromatography.
  • test piece with a thickness of about 1 mm and following the method described in JISK 7204, setting the weight applied to the test piece to 100 g and measuring the abrasion mass at 100,000 rotations O The mass is divided by the density of the resin to obtain the amount of wear.
  • a GaAs single-crystal wafer with a diameter of 50 mm and a thickness of 450 mm wrapped using aluminum abrasive grains with an average particle size of 5 u was pre-processed. Polishing is performed by the equipment, and the polishing characteristics are evaluated based on the quality of the wafer surface at that time.
  • the polishing apparatus is composed of two upper and lower plates 1 and 3 which rotate counter to each other.
  • the polishing pad 6 has a GaAs single crystal wafer 15 and a polishing cloth 6 having a diameter of 300 mm and a thickness of 1.0 mm. Attach, apply pressure of 80 g Z cm 2 between both plates, rotate upper and lower plates at 120 rpm each, and use 2% Br 2 methanol solution as polishing solution Is polished for one hour while dropping 10 cc / min from the infusion device 7 c. This operation is repeated until a total of 24 wafers have been polished and the last wafer surface is polished. The quality of the polished surface is evaluated by direct observation or magnified observation. The evaluation criteria were as follows.
  • YHP-41-1 manufactured by Yokogawa Hyuretsu Dopacker Co., Ltd. Measure at a frequency of 1 MHz using 9 2 A (dielectric constant: ⁇ ,). The dielectric constant of the specimen is measured again after compressing by 50% (dielectric constant: £ 2).
  • the foam is heated and melted at a temperature 60 to 80 ° C higher than the melting point of the resin to form a press film, and the evaluation is made based on the uniformity of melting and the degree of coloring at that time.
  • the evaluation criteria were as follows.
  • Kisa Full O b propylene copolymer resin to the vinylidene fluoride one (density 1. 7 6 g / cm 3 , melting point 1 5 0 ° C) was prepared and the thickness 1. 1 mm of sheet in hot Topuresu using (Sheet a). After sheet a is placed in a pressure-resistant container, tetrafluorene is pressed into the container, G was immersed in the liquid phase of Tetrafluoretane. The container was placed in a constant temperature water bath at 70 ° C. and kept for 30 hours.
  • sheet b The obtained impregnated sheet (hereinafter referred to as “sheet b”) was taken out from the pressure-resistant container, and the impregnation amount and the water content of tetrafluoroethane were calculated by weight measurement. As a result, 5.9% by weight and 0.005% by weight were obtained, respectively. %Met.
  • sheet b When sheet b was immersed in warm water at 40 ° C for 30 minutes, the impregnation amount of tetrafluo ⁇ -ethane was reduced to 5.6% by weight, and the water content was reduced to 0.044% by weight.
  • the impregnated sheet was kept in a heating furnace equipped with a far-infrared heater at a temperature of 190 ° C for 15 seconds to obtain a foamed sheet.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the foam was sliced in the thickness direction and the cross section was observed with an optical microscope, a three-layer structure in which both surface layers were dense and the center was light was observed. The dark layers each accounted for 20% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • the unfoamed layer on the surface of the foam was sliced and removed, and the dark layer was used as the polished surface.
  • the dielectric constant was not changed by compression, showing good polishing properties, tear strength, compressive strength and initial elastic modulus.
  • Sheet b was immersed in warm water at 40 ° C for 1 hour to obtain a sheet containing 5.4% by weight of tetrafluoro pi ethane and 0.053% by weight of water.
  • a foam sheet was obtained in the same manner as in Example 1.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foamed sheet was darker on both surface layers, and the center part was lighter than that of the foamed sheet of Example 1 in which the central part c showed a three-layer structure with a light center.
  • the dark layers each accounted for 30% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing characteristics was performed in the same manner as in Example 1.
  • Example 3
  • a foam sheet was obtained in the same manner as in Example 1.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam sheet had a three-layer structure in which both surface layers were light and the center was dark (the light layers occupied 20% of the total length of each sheet).
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • a thin layer was sliced from one surface layer of the foam to remove a light layer on one side, and the exposed dark layer was used as a polishing surface. It shows excellent tear strength.
  • Example 4
  • the working example was the same as the working example except that the injection of tetrafluoroethane was 1 Skg Z cm 2 , the impregnation of tetrafluoroethane was 2.9% by weight, and the water content was 0.17% by weight.
  • a foam sheet was obtained in the same manner as in 3.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam had a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 30% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Polishing special Evaluation of the properties was performed in the same manner as in Example 3. It shows excellent tear strength as mechanical properties, as well as excellent initial modulus and compressive strength.
  • Example 5
  • Example 3 Example 3 was repeated except that the injection of tetrafluoroethylene was 6 kg Z cm 2, and the impregnation sheet obtained was 1.3% by weight of tetrafluoroethane and 0.16% by weight of water.
  • a foam sheet was obtained in the same manner as described above. Table 1 shows the results of measuring each property of the obtained foamed sheet. The cross section of the foam showed a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 30% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing properties was performed in the same manner as in Example 3.
  • Example 6
  • the pressure vessel is kept at 100 ° C for 24 hours, so that the impregnation amount of tetrafluroethane is 10.7% by weight and the water content is 0.17% by weight.
  • % Was obtained in the same manner as in Example 1 except that an impregnated sheet of% was obtained.
  • Table 1 shows the results of measuring each property of the obtained foam.
  • the cross section of the foam showed a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 25% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing properties was performed in the same manner as in Example 3. Comparative Example 1
  • Example 3 The operation was performed in the same manner as in Example 3 except that water was not put into the pressure-resistant container.
  • the impregnated amount of tetrafluoroethane in the obtained sheet was 4.8% by weight. And the water content was 0.005% by weight.
  • a foam sheet was obtained in the same manner as in Example 1.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross-section of the foam was a single layer without shading.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • the unfoamed layer on one side was removed, and the surface was used as a polished surface. Comparative Example 2
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing properties was performed in the same manner as in Example 3. It shows that the dielectric constant does not fall below the dielectric constant (2.1 or less) expected for fluororesins. Comparative Example 3
  • the pressure vessel is kept at 105 for 70 hours, the impregnation amount of tetrafluoroethane is 20.4% by weight, and the water content is 0.17.
  • a foamed sheet was obtained in the same manner as in Example 1, except that an impregnated sheet of which the weight was% was obtained.
  • Table 1 shows the properties of the foamed sheet.
  • the cross section of the foam showed a three-layer structure in which both surfaces were light and the center was dark. The light layers each accounted for 25% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing properties was performed in the same manner as in Example 3. It is shown that the permittivity changes greatly by compression. Comparative Example 4
  • Example 1 Using the sheet a obtained in Example 1, it was placed in a pressure vessel, and dichlorodifluoromethane was injected thereinto and impregnated with the mixture at 75 for 100 hours. The amount of dichlorodifluoromethane in the impregnated sheet was 4.2% by weight, and the water content was 0.05% by weight.
  • a foam sheet was obtained in the same manner as in Example 1. Table 1 shows the properties of the foamed sheet. The cross section of the foam was a single layer with no shading.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • the unfoamed layer on one side was removed, and the surface was used as a polished surface. Comparative Example 5
  • Both surfaces of the sheet a used in Example 1 were irradiated with an electron beam corresponding to an absorbed dose of 20 Mrad by a 500 kV electron beam irradiation device. Generation of acidic gas was observed from the sheet.
  • the sheet was immersed in dichlorodifluoromethane in a pressure vessel, kept at 75 ° C. for 100 hours, and then taken out of the pressure vessel.
  • the amount of dichlorodifluoromethane impregnated in the sheet was 4.0% by weight, and the water content in the sheet was 0.005% by weight. After leaving the sheet in a constant temperature room at 25 ° C. and a relative humidity of 95% for 5 hours, a foamed sheet was obtained in the same manner as in Example 1.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. Evaluation of the polishing characteristics was performed in the same manner as in Example 1.
  • Example 7
  • Example 1 The vinylidene fluoride-hexafluoropropylene copolymer resin used in Example 1 was hot-pressed into a sheet having a thickness of 0.2 mm.
  • the sheet was placed in a pressure-resistant container, impregnated with tetrafluoroethane in the same manner as in Example 1, and then immersed in water at 0 ° C for 10 hours.
  • the impregnation amount and water content of tetrafluoroethylene in the sheet were 4.6% by weight and 0.06% by weight, respectively.
  • the sheet was foamed as in Example 1.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam had a three-layer structure in which both surface layers were dark and the center was light. The dark layers each accounted for 30% of the total thickness.
  • a foamed sheet was obtained in the same manner as in Example 3, except that the sheet having a thickness of 0.2 mm used in Example 7 was used.
  • the impregnation amount and water content of tetrafluoroethane in the sheet before foaming were 4.5% by weight and 0.16% by weight, respectively.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam had a three-layer structure in which both surface layers were light and the center was dark. Each pale layer accounted for 26% of the total thickness.
  • Example 3 the sheet having a thickness of 0 mm used in Example 7 was used in place of sheet a, and the water impregnated in the pressure vessel was replaced with methanol, except that the impregnation was performed in the same manner as in Example 3. Foaming was performed.
  • the impregnation amounts of tetrafluoroethane and methanol in the sheet before foaming were 4.5% by weight and 0.06% by weight, respectively.
  • the properties of the obtained foamed sheet were measured and the results are shown in Table 1.
  • the cross section of the foam had a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 12% of the total thickness.
  • Example 7 The sheet having a thickness of 0.2 mm used in Example 7 was placed in a pressure-resistant container, immersed in tetrafluoroethane containing 11-hexanol, and kept at 70 ° C for 30 hours.
  • the impregnated amount of tetrafluoroethane in the obtained impregnated sheet was 5.5%, and the impregnated amount of 11-hexanol was 0.015% by weight.
  • a foam sheet was obtained in the same manner as in Example 1.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross-section of the foam was a single layer without shading.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet. It is shown that the dielectric constant changes greatly due to compression.
  • Example 10
  • sheet c A sheet with a thickness of 1 mm (hereinafter, sheet c) was prepared. Place sheet c in a pressure vessel, and The container was immersed in fluoropentane, and the container was kept in a thermostatic water bath at 80 for 45 hours.
  • sheet d The obtained impregnated sheet (hereinafter referred to as sheet d) was taken out of the container, and the weight was measured to calculate the impregnation amount and the water content of perfluoropentane. It was 35% by weight.
  • the sheet d was kept in a heating furnace at 400 ° C. equipped with a far-infrared heater for 35 seconds to obtain a foamed sheet.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam had a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 22% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • a thin layer on one side was removed by slicing from the surface layer on one side of the foam, and the exposed dark layer was used as a polishing surface.
  • Example 1 1
  • Example 10 Using the sheet c of Example 10, it was immersed in pentafluoropropanol-containing perfluorinated hexane in a pressure vessel, and the vessel was kept in a thermostat at 80 ° C. for 35 hours. The impregnation amounts of perfluorohexane and pen fluoropropanol were 5.7% by weight and 0.018% by weight, respectively. A foam sheet was obtained in the same manner as in Example 10.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam sheet had a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 35% of the total thickness.
  • Example 1 Example 10 Using a copolymer resin of tetrafluoroethylene and perfluoropropyl used in Example 10
  • a sheet of 0.2 mm was obtained. After the sheet was placed in a pressure-resistant container, it was immersed in water-containing perfluorohexane and kept at 70 ° C. for 50 hours.
  • the impregnated sheet obtained had an impregnation amount of 7.2% by weight and a water content of 0.015% by weight in hexane.
  • a foamed sheet was obtained in the same manner as in Example 10.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • the cross section of the foam sheet had a three-layer structure in which both surface layers were light and the center was dark. The light layers each accounted for 10% of the total thickness.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • Example 10 After immersing 7 5 4 0 hours in an environment saturated with moisture content of Te Torafuruoroe evening down with sheet of Example 1 2, 1 0 nitrogen gas under a pressure of kg / cm 2 at 1 0 placed in a separate pressure vessel For 30 hours.
  • the impregnated sheet obtained had an impregnation amount of 2.4% by weight of tetrafluroethane and a water content of 0.02% by weight.
  • a foamed sheet was obtained in the same manner as in Example 10.
  • Table 1 shows the results of measuring each property of the obtained foamed sheet.
  • Cross-section of the foamed sheet is both surface layers side pale, c pale layer center portion was dark three-layer structure made up 1 3% increments of the total thickness respectively.
  • Table 2 shows the results of evaluating the performance of the obtained foam sheet.
  • the fluorine-based resin foam of the present invention forms a multilayer structure composed of layers having different specific expansion ratios, closed cell ratios, and cell densities. Since the maximum diameter of open cells on any cut surface is extremely uniform, it does not cause edge sagging, is stable against long-term polishing, and has excellent mechanical strength such as tear strength and compressive strength. It shows a stable dielectric constant before and after compression and has excellent voltage resistance.
  • polishing cloths for electronic materials such as silicon single crystal wafers, compound semiconductor wafers, liquid crystal glass substrates, liquid crystal color filters, etc., soft gaskets, electrical insulating tapes, wire covering materials
  • it is effective for a wide range of applications such as tent fabrics, roofing materials for membrane structures, and heat insulating tubes by utilizing the heat insulation properties.
  • the edge sagging phenomenon which is a problem in precision polishing such as wafer polishing, is eliminated by polishing with a layer having a relatively high cell density.
  • processing defects such as scratches are unlikely to occur, and they exhibit the same function as a material obtained by combining a material having a small elastic deformation and a material having a large elastic deformation.
  • the fluorine-based resin foam of the present invention has a multi-layered cell structure despite its high cell density, so that it is applied to a polishing cloth by precision polishing such as a wafer. There is a tendency that the compression modulus and tear strength in the very initial stage such as a load range of about cm 2 are improved.
  • a foam having a specific amount of wear and hardness of the foam when used as a precision polishing cloth such as a wafer, does not cause edge sagging and exhibits stable polishing performance for a long time.
  • the foam of the present invention does not have a crosslinked structure, it can be melted again, and recycling of the resin in the manufacturing process and recycling of the raw material resin of the product are possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書 フ ッ素系樹脂発泡体およびその製造方法 <技術分野〉
本発明は、 架橋構造を持たず、 かつ、 特定の発泡倍率と独立気泡 率および特定の気泡構造を有する多層構造の熱可塑性のフ ッ素系樹 脂からなる発泡体とその製造方法に関する。
<背景技術 >
従来から、 フ ッ素系樹脂の持つ耐熱性、 耐溶剤性、 耐候性、 電気 絶縁性、 難燃性等の優れた特性を活し、 かつ、 発泡体と しての軽量 性、 ク ッ ショ ン性、 低誘電率性、 断熱性等の特性を具備したフ ッ系 素樹脂発泡体が提案されている。 これらのフ ッ素樹脂発泡体は、 電 気絶縁体、 電子材料用の研磨布、 あるいは、 断熱シー トなどの種々 の用途が開発されている。
米国特許 4、 5 6 0、 8 2 9号および 4、 6 1 5、 8 5 0号明細 書には、 電気絶縁体用のフ ッ素系樹脂発泡体が開示されている。 こ れらの発泡体の発泡倍率はいずれも 4倍前後で硬度が高く、 可とう 性に劣り、 樹脂によっては誘電率が充分低く なかった。 特開昭 6 2 - 5 0 3 4 0号公報、 特開平 4 一 3 1 4 4 6号公報には、 硬度の記 載はないが、 発泡倍率が高い発泡体が開示されている。 該発泡体は 気泡径が大きいため気泡径の分布の幅が広く なり、 表面平滑性が不 十分であつた。 米国特許 4、 7 3 7、 5 2 6号明細書、 特開昭 6 2 一 2 8 0 2 3 6号公報には、 架橋構造を有する発泡倍率が高く、 気 泡径の小さい発泡体が開示されている。 該発泡体は、 発泡適性を賦 与するため樹脂が架橋されており、 リサイ クルするこ とができない c また、 その製造工程は、 架橋性の樹脂に限定され、 煩雑であり、 か つ、 架橋処理時に酸性ガスが発生するという難点があった。 特開平
5 - 2 3 9 2 4 9号公報には、 高沸点の発泡剤を使用するこ とによ り得られる発泡倍率が高く、 かつ、 微小気泡の発泡体が開示されて いる。 しかし、 使用する発泡剤が高沸点であるため、 発泡後の冷却 により発泡剤が発泡体の気泡内部で凝縮し気泡内圧力が低下して、 表面平滑性に劣り、 特にシ - ト状ゃテ-プ状で使用する場合、 寸法 変化を生じ易かった。
米国特許第 4、 8 4 2、 6 7 8号明細書には、 発泡倍率 1 . 5〜 3 0倍、 平均セル径が 3 0 0 m以下で未発泡樹脂層を 0〜 7 0 % 含有するフ ッ素系樹脂発泡体からなる研磨布が開示されている。 米 国特許第 4、 9 5 4、 1 4 1 号明細書には、 フ ッ素系樹脂発泡体を 材質とする半導体ウェハー鏡面研磨用パッ ドが開示されている。 上記の従来のフ ッ素系樹脂発泡体は、 単一の気泡構造を有する発 泡体における均一性が主と して追求されている。 一般に、 発泡体の 力学的性質や電気的性質、 熱的性質は気泡径と関係するこ とが多い c 圧縮弾性率や熱伝導率は気泡径に比例し、 引き裂き強度や絶縁破壊 電圧は気泡径に反比例する。 例えば、 電気絶縁体用途の場合、 絶縁 破壊電圧を高く するためには気泡径は均一で微細なほど良い。 しか しながら、 気泡径の微細化により圧縮弾性率が低下してしまい、 相 反する特性を両立するのは困難であった。
上記の研磨布を構成するフ ッ素系樹脂発泡体も、 いずれも単一の 気泡構造を有する ものであり、 耐薬品性及び被研磨体の表面平滑性 については充分な性能を発現するものの、 長時間にわたる研磨にお いて安定な研磨性能の維持に不安があった。 そのため、 長時間にわ たる研磨の際は、 研磨布の表面にツル一イ ング (硬質物質を用いて パッ ド表面を磨き、 表面の凹凸を修正ないし調練し高平面度にする こ と) を施したり、 研磨条件を変更する等の必要があった。 これら の研磨布は比較的軟質であるため、 研磨に使用した初期においては スクラ ッチ (研磨表面に生ずる線状の傷) などの加工欠陥は生じ難 いが、 ウェハーの縁.ダレを生じ易 く、 集積回路の歩留ま りを低下さ せる原因となっていた。 一般に、 弾性変形が小さい硬い材料を使う こ とにより縁ダレが防止され、 弾性変形が大き く軟らかい材料を使 う こ とにより加工欠陥が押さえられる。 これらは相反する特性のた め、 単一構造の研磨布では両立させるこ とが困難であった。 研磨時 には研磨布に掛かる圧力の微視的な均等性が被研磨体の表面の平滑 性を発現するために極めて重要である。 従って、 研磨布の面方向で の気泡の分布の均一性と研磨布の厚み方向での硬度面での異質性を 兼ね備えた研磨布が要望されていた。
以上の通り、 従来の単一の気泡構造を有するフ ッ素系樹脂発泡体 は、 上記のような種々の物性を両立させるこ とは困難であった。 多層の気泡構造を有する樹脂発泡体として、 C e l l P o l y . 1 2巻、 3号、 2 0 7ページ ( 1 9 9 3年) には、 ポリ カーボネー 卜が開示されている。 また、 特公平 4一 5 7 7 0 4号公報には、 多 層の気泡構造を有するフ ッ素系樹脂発泡体が示唆されている。 しか しながら、 該公報等に記載されている方法によって得られる発泡体 は気泡径が大き く また気泡密度が低く、 その気泡径の分布の均一性 は、 不十分であった。
また、 一般にフ ッ素系樹脂のような結晶性樹脂は溶融拈弾性の温 度依存性が高く、 発泡適性を有する溶融粘弾性に温度制御するこ と は困難な場合が多く、 架橋構造を有さず高い気泡密度を持つフ ッ素 系樹脂発泡体の製造は事実上困難と考えられていた。 特に、 パ一フ ルォロ樹脂は、 極めて耐溶剤性に優れるため、 物理発泡剤を樹脂中 に溶解または分散しにく く、 発泡剤として機能する量を樹脂中に保 持することが難しいと考えられていた。 更に、 パーフルォロ樹脂は 通常融点が 2 5 0 °C以上と高いため、 樹脂が軟化し発泡に適性な溶 融粘弾性を示す間に発泡剤の逸散が生じる。 このように、 特定の発 泡倍率、 独立気泡率を有し、 多層の気泡構造を形成し、 かつ、 各層 における気泡径分布が均一なフ ッ素系樹脂発泡体の製造方法は未だ 知られていなかった。
本発明は、 以上述べた従来のフ ッ素系樹脂発泡体の問題点を解決 し、 種々の用途に適用 しう る新規な構造を有するフ ッ素系樹脂発泡 体およびその製造方法を提供するこ とを目的とする。 すなわち、 研 磨布用途においては、 長時間の研磨において安定な研磨性能を発揮 し、 縁ダレがなく、 電気絶縁体用途においては、 外部圧縮力によつ て誘電率ゃ耐電圧が変化し難く く、 断熱シー ト用途においては、 圧 縮弾性率と引裂強度をバラ ンスさせたりすることが可能なフ ッ素系 樹脂発泡体およびその製造方法を提供するこ とを目的とする。 ぐ発明の開示〉
本発明は、 発泡倍率が 4倍以上 3 0倍以下、 独立気泡率が 4 0 % 以上である架橋構造を有しない熱可塑性フ ッ素系樹脂からなる発泡 体であって、 該発泡体の内部において気泡密度の異なる層からなる 界面を少なく とも一つ含み、 下記式で表される、 該各層の任意の切 断面に存在する開放気泡の最大径のバラツキ指数 S cおよび変動係 数 C v力く、 それぞれ、 0 く S c ≤ 6および 0 く C v≤ lであるフ ッ 素系樹脂からなる発泡体に係わる。
S C = ( L M a x . - L M , n . ) / L a v . . . . ( 1 )
C v = S D / L a v . . . . ( 2 )
(式中、 LMa x.、 LM i n.および L a、,. は、 それぞれ、 開放気泡の最 大径の最大値、 最小値および平均値を、 S Dは、 標準偏差を意味す る。 )
本発明の発泡体の発泡倍率は、 発泡体全体と して発泡倍率が 4倍 以上 3 0倍以下である。 発泡倍率は、 力学的特性、 電気的特性、 熱 的特性などの発泡体の種々の物性に関係する。 発泡倍率は、 発泡体 の用途において最適物性を発現するために適宜選択する。 研磨布用 途には、 適度な硬度および圧縮弾性率を満足する発泡倍率を選択し. 電気絶縁体用途には、 低い誘電率や適度な力学的特性を満足する発 泡倍率を選択する。 発泡倍率が 4倍未満では、 研磨布用途には硬度 が高過ぎて弾性変形し難いため、 被研磨体表面にスクラ ッチなどを 生じ易く なり、 電気絶縁体用途には、 使用するフ ッ素系樹脂によつ ては充分誘電率が低下しない。 発泡倍率が 3 0倍を越えると、 硬度 が低すぎて弾性変形が大き く なり過ぎるため、 被研磨体表面の平坦 性を低下させてしまう。 また、 力学的物性や独立気泡率の低下をも たらす。 好ま し く は、 6倍以上 2 5倍以下である。
本発明の発泡体の独立気泡率は、 4 0 %以上、 好ま し く は 5 0 % 以上、 更に好ま しく は 6 0 %以上である。 独立気泡率は、 発泡体の 力学的特性、 特に硬度、 圧縮強度、 圧縮弾性率、 圧縮弾性回復率な どの圧縮特性に大き く影響する。 研磨布用途においては、 研磨布の 内部において研磨圧力を緩衝する作用に大き く影響していると考え られる。 独立気泡率が 4 0 %未満では、 被研磨体の表面精度が低下 する傾向にある。 独立気泡率が 4 0 %以上であると、 圧縮外力によ つても見かけ密度や厚みが変動し難く 、 誘電率ゃ耐電圧が変化し難 い。
本発明の発泡体は、 気泡密度の異なる層からなる界面を少なく と も 1 つ含む。 すなわち、 気泡密度の異なる層を 2層以上含んだ多層 構造から形成されている。 ここで、 気泡密度とは、 各層の単位面積 当たりの気泡の数をいう。 気泡密度が異なる層とは、 隣接する層の 気泡密度の比が 5以上 1 0 5 以下であることをいう。 気泡密度は、 好ま し く は 1 0以上 1 0 4 以下である。 該比が 5未満であると実質 的に均質な気泡構造となる。 研磨布用途では、 縁ダレの解消とスク ラ ッチなどの発生防止とを両立できなく なり、 電気絶縁体用途では 圧縮外力に対して耐電圧が低下する傾向を生じる。 該比が 1 0 5を 越えると、 気泡密度の高い層において気泡壁が薄く なり過ぎ破泡が 生じ易く なり、 独立気泡率が維持できなく なる。
本発明の発泡体における層の数は限定されないが、 通常 2乃至 7 層である。 得られた発泡体を各層と平行に切り出すことにより所望 の層数を有する発泡体と してもよい。 A Z B Z Aのような 3層構造 の発泡体を Bの部位でスライスすることにより 2層構造にしするこ とができる。 一層の厚みは発泡体の全体の厚みに対して 1 〜 9 0 % を占める。 各層の界面の位置は発泡体の全体の厚みに対して各層の 占める割合に応じて変わる。
各層の気泡密度は、 好ま し く は、 1 0 6 個 Z c m 3 であり、 さ ら に好ま し く は 1 0 7 個/ c m 3 である。 気泡密度が高いと、 後述す るバラツキ指数や変動係数の値を所定の範囲に納め易く 、 かつ、 発 泡体表面に存在する開放気泡と独立気泡の存在割合を経時的に安定 化させる点で好ま しい。 ここで、 開放気泡とは、 表面に露出した気 泡で、 気泡を構成する気泡壁がカ ツ 卜されたものをいい、 独立気泡 とは、 表面に露出した気泡で、 気泡を構成する気泡壁が力 ッ トされ ていないものをいう。
研磨布用途において、 気泡密度が高いと被研磨体の表面精度を向 上させるので好ま しい。 研磨布の気泡密度が高いと、 被研磨体の表 面に接触する際、 その表面に存在する微小な凹凸部に均一な圧力で 接触するこ とができる。 概念的には独立気泡は、 研磨時の圧力を面 と しての気泡壁で受けることになり、 開放気泡は、 該圧力を線と し ての気泡壁のカ ツ ト部で受けるこ とになる。 気泡密度を高くするこ とにより、 線で受ける割合が増加し、 より均一な圧力分布を発現で きると考えられる。 しかも、 後述する通り、 研磨の進埗に伴い更新 される研磨表面における開放気泡の存在割合が変動しにく いことが. 研磨性能の安定性に重要と考えられる。 気泡密度が高ければ、 研磨 布表面に存在している開放気泡の存在割合が高く 、 独立気泡の存在 割合が低い。 電気絶縁体用途においても、 気泡密度が低いと気泡が 大き く なり、 表面平滑性が低下し、 絶縁テープの厚みを薄く できず. 更に、 引き裂き強度が低下するというテープと しての力学的物性に 難点が生じるため、 気泡密度は高い方が好ま しい。
本発明の発泡体の各層の任意の切断面に存在する開放気泡の最大 径のバラツキ指数 S cおよび変動係数 C Vは、 それぞれ、 0 く S c ≤ 6 および 0 < C v ≤ 1 であるこ とが必要である。 こ こで,開放気泡 の最大径とは、 気泡膜で 2次元的に閉じられた領域の最大長さをい ラ o
バラツキ指数が 6 を越え、 かつ、 変動係数が 1 を越えると、 開放 気泡の大きさの均一性が損なわれ、 研磨布と して使用 した場合被研 磨体の表面精度が低下したり、 長期の研磨操作によって研磨性能が 低下したりする。 長期間にわたる研磨性能の安定性のためには、 バ ラツキ指数は、 好ま しく は 5 . 5以下、 更に好ま しく は 5以下であ り、 変動係数は、 好ま しく は 0 . 9 5、 更に好ま しく は 0 . 9 0で ある。 バラツキ指数および変動係数の値は小さいほど好ま しい。 発泡体の切断面は、 気泡の種々の位置で切断された切断面を含む < 気泡の大きさが同じでも切断面に露出する開放気泡の大きさは同じ にはならないので、 開放気泡の大きさをできるだけ均一にしょう と すれば気泡の大きさを微細にかつ均一にする必要がある。
研磨布用途において、 本発明の発泡体をある厚みを持つシ一 ト状 に加工するが、 その表面にはある確率をもって開放気泡と独立気泡 が混在する。 その存在割合が変動するこ とにより、 研磨布と被研磨 体との界面に存在する、 開放気泡に保持される研磨液や研磨の進行 に伴い生ずる研磨布の摩耗カスの状態が変動し、 研磨速度や被研磨 体の表面精度に影響すると考えられる。 本発明のフ ッ素系樹脂発泡 体は、 上記の通り、 開放気泡の大きさが均一であるため、 研磨布と して使用した場合、 研磨時における研磨布と被研磨体との界面が安 定し、 研磨布表面全体と してみると、 開放気泡と独立気泡の存在割 合が研磨時の各瞬間において実質的に変動し難い。 この安定性とい う観点からは、 気泡密度が高いと更に好ま しい。
本発明の発泡体は、 望ま しく は、 テーバー摩耗量が 2 5 m m 3 以 上 2 4 0 m m 以下である。 テーバー摩耗量は、 研磨布用途の場合、 長期間にわたる研磨における研磨性能の安定性に関係していると考 えられる。 テーバー摩耗量は使用するフ ッ素系樹脂の種類、 発泡倍 率、 気泡密度などに依存する。
テーバー摩耗量が 2 4 0 m m 3 を越えると研磨布が摩耗し易く、 目詰ま り し易く、 研磨速度が低下したり被研磨体の表面精度が保持 できな く なったりする。 その結果、 研磨布一枚当たりで処理できる ウェハーの枚数が低下し、 生産性ゃコス 卜の面から極めて不利であ る。 テーバー摩耗量が 2 5 m m 3 未満であると、 研磨布の表面が更 新され難く、 被研磨体の表面精度が低下してしま う傾向がある。 研 磨布と しての性能を勘案すれば、 テーバー摩耗量は好ま しく は 3 0 m m 3 以上 2 2 0 m m 3 以下、 更に好ま しく は 3 5 m m 3 以上 2 0 0 m m 3 以下である。
本発明の発泡体は、 望ま しく は、 硬度が 1 5以上 9 3以下である。 さ らに好ま しく は、 2 0以上 9 0以下、 2 5以上 9 0以下である。 硬度は、 樹脂の種類、 発泡倍率、 独立気泡率、 気泡密度等に影響さ れる。 研磨布用途の場合、 硬度は研磨布の弾性変形と関係する。 研 磨は、 一定の加圧下で行うため、 被研磨体表面に存在する微小な凹 凸部分に均一に圧力を負荷するため、 硬度は重要である。 硬度が 9 3を越えると、 砥粒の引き搔き作用の緩和が充分でなく、 被研磨体 表面に加工損傷を発生させ好ま しく ない。 硬度が 1 5未満であると. 研磨布自体の変形量が大き く なり過ぎ、 被研磨表面の平面度が低下 する。
研磨布としての好ま しい態様を示せば、 前述のテー バ ー摩耗量が 2 5 m m 3 以上 2 4 0 m m 3 以下で、 かつ、 硬度が 1 5以上 9 3以 下の発泡体である。
本発明の発泡体を薄いテープ状として使用する場合も硬度が 1 5 未満であると圧縮外力に対して変形し易く なる傾向が認められ、 厚 みが変動するなどの難点が生じる。
本発明の発泡体は、 表層または内部層に未発泡層を有していても よい。 研磨布用途においては表層に未発泡層が存在する場合には該 層を除去して使用する。 テープ状での使用においては表面平滑性の 点から表層に未発泡層を有している方が好ま しい場合が多い。 未発 泡層の厚みは特に限定されない
本発明に用いられるフ ッ素系樹脂は、 樹脂を構成する少な く とも 1 モノマー成分が少な く とも 1 個のフ ッ素原子を有する部分フ ッ素 化樹脂及びパーフルォロ樹脂を含む。 単一モノマーからなるポリ ビ ニルフルオラィ ド、 ポリ ビニリ デンフルオライ ド、 ポリ クロ口 ト リ フルォロエチレン、 あるいは、 ビニルフルオライ ド、 ビニリ デンフ ルォライ ド、 ジクロロフルォロエチレン、 へキサフルォロプロ ピレ ン、 ノ、0—フルォロブテン一 1 、 ノ、0—フルォロペンテン一 1 、 ノ、0—フ ルォ口へキセン一 1 等のパーフルオロー α—ォレフィ ン類、 ノ ーフ ルォロブタジエン、 クロ口 ト リ フルォロエチレン、 テ トラフルォロ エチレ ン、 ノ、0—フルォロメチルバ一フルォロ ビニルエーテル、 ノ、。 一 フルォロェチルパーフルォロ ビニルエーテル、 パーフルォロプロ ピ ルノ、° 一フルォロ ビニルエーテル等のノ ーフルォロアルキルパ ーフル ォロ ビニルェ一テル類、 炭素数 1 〜 6個のアルキルまたは炭素数 6 〜 8個のァ リ ールパ ーフルォロ ビニ'ルェ一テルから選ばれる少なく とも 1 種のモノマーを構成成分とする共重合フ ッ素系樹脂、 または. 上記モノマーの中から選ばれる少なく とも一種のモノマーとビニル クロライ ド、 ビニリ デンク口ライ ド、 ト リ クロロエチレン、 炭素数 1 〜 6個のアルキルビニルエーテル、 炭素数 6 〜 8個のァ リ ールビ 二ルェ一テル、 エチレ ン、 プロ ピレ ン、 スチレン等の中から選ばれ る少なく とも 1 種以上のモノマーから得られる共重合フ ッ素樹脂で ある。
本発明に用いられるフ ッ素系樹脂の代表的な例を挙げれば、 ポリ ビニリデンフルオライ ド、 ポリ ビニルフルオライ ド、 ビニリデンフ ルォライ ド一テ トラフルォロエチレン共重合体、 ビニリデンフルォ ライ ドー へキサフルォロプロ ピレ ン共重合体、 エチレ ンーテ トラフ ルォロェチレ ン共重合体、 テ トラフルォロェチレンープロ ピレ ン共 重合体、 エチレ ン一 クロ口 ト リ フルォロエチレン共重合体、 テ トラ フルォロエチレン一クロ口 ト リ フルォロエチレ ン共重合体、 テ トラ フルォロエチレン—へキサフルォロプロ ピレン共重合体、 テ トラフ ルォロエチレンー パ 一フルォロメチルバ一フルォロ ビニルェ一テル 共重合体、 テ トラフルォロェチレ ン一パ一フルォロェチルバ一フル ォロ ビニルエーテル共重合体、 テ トラフルォロェチレ ンーパ一フル ォロプロ ピルパーフルォロ ビニルエーテル共重合体、 テ トラフルォ ロェチレン一へキサフルォロプロ ピレンー ノ、。 一 フ ノレオ口メチルハ。 一 フルォロ ビニルエーテル共重合体、 テ トラフルォロエチレン一 へキ サフルォロプロ ピレンー ノ、。一フルォロェチルバ一フルォロ ビニルェ —テル共重合体、 テ トラフルォロエチレン一へキサフルォロプロ ピ レ ン—パーフルォロプロ ピルパーフルォロ ビニルエーテル共重合体 等である。
なかでも、 発泡適性や経済性、 入手の容易さ等の観点から、 好ま しく は、 上記ポリ ビニリ デンフルオライ ド、 ポリ クロ口 ト リ フルォ 口エチレン、 ビニリ デンフルオラィ ドーへキサフルォロプロ ピレン 共重合体、 エチレ ンーテ トラフルォロエチレ ン共重合体、 エチレン — クロ口 ト リ フルォロエチレ ン共重合体、 テ トラフルォロエチレ ン
—パ一フルォロェチルバ一フルォ π ビニルエーテル共重合体、 テ ト ラフルォロェチレ ン一パーフルォロプロ ピルパーフルォロ ビニルェ —テル共重合体、 テ トラフルォロエチレン—へキサフルォロプロ ピ レ ン共重合体が好ま しい。 更に好ま しく は、 部分フ ッ素化樹脂とし てポリ ビニリデンフルオラィ ド、 ビニリデンフルオラィ ドーへキサ フルォロプロ ピレン共重合体、 パーフルォロ樹脂としてテ トラフル ォロェチレ ンーパ一フルォロアルキルパーフルォロ ビニルェ一テル 共重合体類である。
本発明で複数のモノマーから構成されるフ ッ素系樹脂を用いる場 合、 モノマ一成分の構成比は広範囲で適宜選択される。 テ トラフル ォロェチレ ンをー構成成分とする他成分との共重合体においては、 テ トラフルォロェチレ ン含量の低減によりポリマーの結晶化度は低 下し、 耐熱性、 耐薬品性が低下する傾向にあるので、 物理的性質お よびコス トの点から、 結晶性樹脂を使用するこ とが好ま しい。
本発明の発泡体は、 用途に応じて適当な厚み、 太さに制御すれよ い。 シー ト、 フイ ルム、 チューブ、 繊維状等の発泡体を 1 軸または 2軸方向に延伸してもよい。 この際、 気泡形状は延伸倍率に応じて 異方性を示すこ とになるが、 延伸倍率は、 上記した気泡の最大径の 変動係数、 気泡密度、 発泡倍率および独立気泡率が本発明の範囲内 になるように設定する。
本発明のもう一つの発明は、 架橋構造を有さない熱可塑性フ ッ素 系樹脂に、 該樹脂の結晶融点以下の沸点を有する炭素数 1 8 のフ ルォロカ一ボンを 0 . 4 2 0重量% および、 水または沸点 1 5 0 °C以下、 蒸発潜熱 7 . 0 k c a 1 / m o 1 以上のアルコ―ル類か ら選ばれた少なく とも 1 種の化合物を 0 . 0 1 1 重量%含有せし めて発泡させる上記のフ ッ素系樹脂発泡体の製造方法に係わる。
フ ッ素系樹脂の結晶融点以下の沸点を有する炭素数 1 8 のフル ォロカーボンは、 物理発泡剤として使用される。 フルォロカ一ボン の代表例を挙げれば、 へキサフルォロェタ ン、 ペン夕 フルォロェ夕 ン、 テ ト ラ フルォロェタ ン、 ト リ フルォロェタ ン、 ジフルォ πエタ ン、 フルォロェタ ン、 テ トラフルォロメ タ ン、 ト リ フルォロメ タ ン、 ジフルォロ メ タ ン、 フルォロ メ タ ン、 、。一フルォロ シク ロブタ ン、 へキサフルオロフ 'タ ン、 ハ。一フノレオロプロハ。ン、 —フノレオロブ夕 ン、 一フルォロペンタ ン、 ハ0—フルォ口へキサン、 0—フノレオ口 ヘプタン等であり、 それらは単独または 2種以上組み合わせて使用 するこ とができる。
これらのフルォロカ一ボンを主成分と して、 プ αパン、 ブタン、 ペンタ ンや塩化メチル、 塩化メチレ ン、 塩化工チル、 塩化エチレン などの揮発性有機化合物との混合物として用いてもよい。 発泡剤と の混合割合は、 安全性、 経済性、 入手のし易さ、 フ ッ素系樹脂の発 泡性等を勘案して適宜選択する。
本発明の発泡体は、 上述の物理発泡剤を使用して種々の公知の方 法により製造できる。 たとえば、 耐圧容器内にシー ト状、 フ イ ルム 状、 織維状、 チューブ状、 パイプ状等に成形された樹脂や射出、 ブ ローまたは圧縮成形した樹脂を入れ、 気体状または液体状の該発泡 剤を注入し、 密閉加圧下で加熱して樹脂に発泡剤を含浸させた後、 加熱発泡する含浸発泡方法、 あるいは、 押出成形機の出口側に設け られた注入装置から溶融した樹脂に該発泡剤を圧入して冷却しなが ら押出成形する押出発泡方法等を用いるこ とができる。
上記の物理発泡剤の量は、 フ ッ素系樹脂に対して 0 . 4〜 2 0重 量%である。 発泡剤の量は、 使用する樹脂および発泡剤の種類、 そ れら相互の親和性、 発泡方式、 発泡倍率、 独立気泡率、 気泡密度、 多層構造の形成し易さ、 更には発泡剤をフ ッ素系樹脂中に導入する 際の温度、 圧力、 時間などを勘案して上記範囲内で選択する。 発泡 剤の量が 0 . 4重量%未満では、 発泡倍率を十分高くするこ とがで きず、 また気泡密度も低く なる傾向にある。 2 0重量%を越えると. 樹脂の可塑化が増大し過ぎ、 発泡時に適度な樹脂の粘弾性を維持で きなく なる。 その結果、 発泡剤の揮散が激しく、 気泡が連通化して 発泡倍率を高くするこ とができなく なる。 それらを勘案すると発泡 剤の量は、 好ま しく は 1 〜 1 5重量%、 更に好ま しく は 1 〜 1 0重 量%である。
本発明で使用する物理発泡剤をフ ッ素系樹脂中に導入する際の温 度は、 発泡方式、 発泡剤及びフ ッ素系樹脂の種類とその物理諸特性 などを勘案して適宜設定する。 押出発泡方式では、 フ ッ素系樹脂の 融点以上、 分解温度以下で該樹脂が溶融された状態で発泡剤を導入 する。 フ ッ素系樹脂の融点は比較的高いため通常 1 5 0 以上であ る。 含浸発泡方式では、 フ ッ素系樹脂の形状を維持しながら発泡剤 を導入するため、 通常フ ッ素系樹脂の融点以下の 2 0〜 3 0 0 で あり、 好ま しく は 2 5〜 2 5 0て、 更に好ま しく は 3 0〜 2 0 0 °C で行う。 含浸発泡方式において、 含浸時間は気泡密度に著しく影響 するので該時間の設定は極めて重要である。 含浸時間は、 所定の含 浸温度において平衡含浸量に到達する時間に加えて、 さ らに、 少な く とも 5時間、 好ま しく は 7時間、 更に好ま しく は 1 0時間必要で ある。 平衡含浸量に到達する時間以前または到達直後での発泡は、 気泡密度が低く好ま しく ない。 この原因は明確でないが、 平衡含浸 量に到達後一定時間経過する間に樹脂の分子鎖の再配列が生じる結 果、 最適な気泡核が形成されるためではないかと考えられる。
上記の物理発泡剤は、 水または沸点 1 5 0 °C以下、 蒸発潜熱 7 . 0 k c a 1 / o 1 以上のアルコールから選ばれた少な く とも 1 種 の化合物と併用される。 上記範囲内に、 水または上記アルコ ールを 設定するこ とにより、 通常、 フ ッ素系樹脂はその特性として潑水、 潑油性を有するこ とが一大特徴であるにも係わらず、 高い気泡密度 と多層構造を有する気泡構造の形成に極めて有効に機能する。
アルコールの代表例を示せば、 メ タ ノ ール、 エタ ノ ール、 1 —プ 、。ノ ール、 2 —プ 0ノ ール、 1 —ブ夕 ノ ール、 2 —ブ夕 ノ ール- 2 — メ チルー 1 一プ ノ ール、 2 — メチノレー 2 —プ ノ ール、 1 一ペン夕 ノ ール、 2 —ペンタ ノ 一ル、 3 —ペンタ ノ 一ル、 2 — メ チルー 1 ーブ夕 ノ ール、 3 — メチルー 1 ーブ夕 ノ ール、 2 —ェチル — 2 —ブ夕ノ ール、 3 —メチルー 2 —ブ夕ノ ール、 2 , 2 —ジメチ ルー 1 一プロ 。ノ ール、 2 — メ チルー 1 —ペン夕 ノ ール、 4 ー メチ ル一 2 —ペン夕 ノ ール、 2 —ェチノレ一 1 ーブ夕 ノ ール、 ペン夕 フル ォロプ ノ ール、 フノレオロブ 、。ノ ール、 テ ト ラ フルォロプ ロバノール等である。 水または上記のアルコール (以下、 両者を併 せて 「アルコール類」 と称する) は、 気泡密度、 多層構造の形成の し易さなどを考慮して、 2種類以上のものを併用してもよい。 なか でも、 水は、 気泡密度の増加効果が大き く、 その取扱いの容易さ、 経済性の点から極めて好ま しい。
本発明に使用されるアルコールは、 沸点が 1 5 0 °C以下で、 蒸発 潜熱が Ί . 0 k c a 1 / m o 1 以上を有する。 アルコールの沸点が 1 5 0 °Cを越えたり、 蒸発潜熱が 7 . 0 k c a 1 / m o 1 未満であ ると、 独立気泡率が低下する傾向にあり、 また、 気泡密度が低下し たり多層の気泡構造を形成し難く なり、 またボイ ドが発生し易 く な り、 気泡径分布の均一性が低下する傾向が生じる。 沸点が 1 5 0 °C を越えると、 発泡後の発泡体が冷却される際に、 発泡体の表面の平 滑性の低下が生じ易く なる し、 多層構造を形成し難く なる。 これら を勘案するとアルコールの沸点は 1 1 0 °C以下、 蒸発潜熱は 8 . 0 k c a 1 / m o 1 以上であるこ とが好ま しい。
アルコ -ル類の種類、 フ ッ素系樹脂に導入する量は、 使用する樹 脂および物理発泡剤の種類、 樹脂の物理発泡剤及び該アルコ -ル類 の保持性、 発泡時の気泡密度、 独立気泡率、 多層の気泡構造の形成 し易さを勘案して上記範囲内で選択する。 元来、 該アルコール類は フ ッ素系樹脂及び本発明で使用される物理発泡剤に対する親和性が 低いため該樹脂に含浸される量は多く なく、 フ ッ素系樹脂の種類に よってもその最適量は変動するものである。 上記アルコール類は、 フ ッ素系樹脂に対して 0 . 0 1 〜 1 重量 9 使用される。 0 . 0 1 重 量%未満である と、 気泡密度が低く なり、 多層の気泡構造を形成し 難く なる傾向がある。 1 重量%を越えると、 ボイ ドが発生し易く、 その結果、 気泡径分布の均一性が低下する。 両者を勘案すれば、 好 ま しく は、 0 . 0 4〜 0 . 8重量%である。 第 2図は、 フ ッ素系樹 脂発泡体中の含水量と気泡密度の関係を示したグラフである。 フ ッ 素系樹脂発泡体の含水量の変化により気泡密度が急激に変化するこ とが判る。 この例では、 厚み方向に水分の濃度分布が生じた場合、 ある層において含水量が 4 0 O p p m以下となると、 その層の気泡 密度は低下し、 隣の層との間に気泡密度の異なる界面を形成するこ とを示唆している。
適正な気泡密度を得るため、 必要によりフ ッ素系樹脂に対して不 活性な無機ガスを樹脂に含ませてもよい。 これらの無機ガスと して は、 空気、 窒素、 酸素、 アルゴン、 ヘリ ウム、 炭酸ガスが挙げられ る
本発明で使用されるアルコール類は気体状または液体状で使用さ れる。 該アルコール類は物理発泡剤をフ ッ素系樹脂に導入する前、 導入した後、 あるいは、 導入と同時に該樹脂中に導入する。 含浸発 泡方式においては、 予め気体状または液体状のアルコ一ル類にフ ッ 素系樹脂を曝したり、 あるいは、 浸漬したり して所定量のアルコ一 ル類をフ ッ素系樹脂中に導入した後、 該樹脂に物理発泡剤を含浸し て導入するか、 所定量のアルコール類を含む物理発泡剤を用い、 こ れらを含浸させるこ とでフ ッ素系樹脂中に同時に導入するか、 予め 物理発泡剤を含むフ ッ素系樹脂を気体状または液体状のアルコール 類に曝したり、 あるいは、 浸漬したり して所定量のアルコール類を フ ッ素系樹脂中に導入する。 これらのうち、 アルコール類のフ ッ素 系樹脂中への導入のし易さや製造工程簡略化の観点から、 予め物理 発泡剤を導入したフ ッ素系樹脂にアルコール類を導入するか、 物理 発泡剤のアルコール類とを同時に該樹脂中へ導入するこ とが好ま し い。 押出発泡方式においては、 溶融されたフ ッ素系樹脂に物理発泡 剤を注入すると同時か、 その前後でアルコール類を注入する。
本発明は、 少なく とも気泡密度の異なる層を 2つ以上含んだ多層 構造を形成している。 発泡体は、 上記の通り樹脂中の各部位におけ るアルコール類の存在割合の変化により形成されるものと考えられ る。 具体的には、 以下の方法によって、 本発明の多層構造を形成す るこ とができる。
含浸発泡方式においては、 主としてアルコール類のフ ッ素系樹脂 中への含浸時間を制御するこ とにより該多層構造の形成を制御し、 また、 該アルコール類が平衡含浸量に到達した後は、 該フ ッ素系樹 脂を空気中に曝してアルコール類を揮散させる時間を制御するこ と により該多層構造の形成を制御する。 アルコール類を含浸したり揮 散させたりする間に温度を変化させるこ とにより層の数や厚みなど を制御できる。 アルコール類のフ ッ素系樹脂中への含浸時間や含浸 温度、 揮散時間や揮散温度は、 樹脂やアルコール類の種類、 両者の 物理諸特性、 物理発泡剤の種類と物理諸特性を勘案して適宜設定す ればよい。 通常、 0〜 3 0 0でで 1 分〜 7 2時間、 好ま しく は、 5 〜 2 5 0でで 5分〜 4 8時間、 更に好ま しく は、 5〜 2 0 0でで 1 0分〜 2 4 時間が適用される。 押出発泡方式においては、 2つ以上 の押出機を使用して、 それぞれの押出機に注入するアルコール類の 量を制御しつつ、 押出機出口の前でそれぞれのフ ッ素系樹脂を合流 させて発泡するこ とにより多層構造を形成し得る。
含浸発泡方法において、 物理発泡剤及びアルコル類が含浸された 樹脂の加熱温度及び時間は相互に依存する傾向にあり、 また該発泡 剤の種類、 発泡体の気泡密度、 硬度、 発泡体の所望する独立気泡率 などを勘案して適宜選択される。 通常、 樹脂の融点より高く、 樹脂 の分解温度より低い温度が適用される。 好ま しく は、 融点より 1 0 °C高い温度であり、 時間は加熱温度に従い設定されるが、 1 秒〜 2 4 0秒が適用される。
上記の発泡方法により所定の発泡倍率に達しない場合は、 該発泡 体に再度、 上記の物理発泡剤を含浸して加熱発泡する。 発泡剤の種 類や含浸量は、 再発泡させた発泡体の発泡倍率、 独立気泡率、 気泡 密度を勘案して決定する。 再発泡時の加熱温度、 加熱時間は、 上記 した含浸発泡の条件から選択する。
アルコール類が高い発泡倍率、 独立気泡率、 および気泡密度、 気 泡径分布の均一性、 多層の気泡構造の形成などに有効な理由は明確 ではない。 発泡に際してアルコール類は、 一種の気泡核と して機能 したり、 大きな蒸発潜熱により発泡時の気泡膜の冷却 · 固定化に有 効に作用し気泡の融合や連通化を阻止しているのではないかと考え られる。 更に、 フ ッ素系樹脂中の各部位でのアルコール類の存在割 合が変化するこ とにより、 各部位での気泡密度または平均気泡径が 変化し、 多層の気泡構造が形成されるのではないかと推測される。
また、 アルコール類の存在により、 架橋構造を有しないフ ッ素系 樹脂でも、 発泡時における発泡温度近傍での溶融粘弾性の急激な低 下をある程度緩和して、 樹脂に良好な発泡適性を賦与しているので はないかと考えられる。
<図面の簡単な説明 >
第 1 図は、 研磨装置の略図である。 第 2図は、 発泡剤としてテ ト ラフルォロェ夕 ンを使用したフ ッ化ビニリデン一へキサフルォロプ ロ ピレ ン共重合樹脂シー 卜の含水量と気泡密度の関係を示した略図 である。
図中使用した符号は、 以下の通りである。
1 · · ' 上プレー ト、 2 · · · 上プレー トの回転軸、
3 · ■ · 下プレー ト、 4 · ■ ' 下プレー トの回転軸、
5 · · · ウェハ—、 6 ■ · · 研磨布、 7 ■ ■ · 研磨液滴下装置
<発明を実施するための最良の形態 >
実施例中、 各測定値は次のようにして求めた。
( 1 ) 層界面の測定
発泡体を厚み方向に ミ クロ ト—ムを使用して厚み 3 0 m前後に スライスする。 該スライス片を光学顕微鏡を用いて 3 0倍で観察し、 濃淡部分を判定する。 相対的に気泡密度の高い層は濃く (暗く ) 、 気泡密度の低い層は淡く (明る く ) 観察される。 次いで光学顕微鏡 の視野において該濃淡部分に区別される各層の厚みを測定する。 ( 2 ) バラツキ指数および変動係数
発泡体の各層の任意の箇所をスライスして、 その切断面を走差型 電子顕微鏡で 5 0倍から 1 5 0倍の範囲で拡大した写真を撮る。 該 写真から任意の箇所で約 0. 0 4 mm2 の視野を設定し、 画像処理 装置 (日本アビォニクス (株) 製 C 0 1 o r I m a g e P r o c e s s o r S P I C CA- I) にかける。 画像処理により個々の 開放気泡の最大径を測定し、 該視野に存在するォープンセルから L
Max.、 LMin.、 L a v . を計算してバラツキ指数および変動係数を算 出す。。
( 3 ) 気泡密度
発泡体の各層の任意の箇所をスライスして、 その切断面を走差型 電子顕微鏡で 5 0倍から 1 5 0倍の範囲で拡大した写真を撮る。 該 写真から任意の箇所で 4 0 0 / X 4 0 0 の視野を設定し、 該視野 に存在する気泡の個数 (M) を数え、 下式に従い気泡密度 (個 m3) を算出する。
気泡密度 = { ( ) 1/2 X I 0 0 0 0 /4 0 0 } 3 X発泡倍率 ( 4 ) 発泡倍率
次式により算出する。
発泡倍率 =樹脂密度 (gZc m3) 発泡体密度 (g/c m3)
( 5 ) 独立気泡率
AS TM D 2 8 5 6に記載のエアピクノ メーター法による連 続気泡率の差分として計算する。
( 6 ) 樹脂中のアルコール類の定量
水分はカールフィ ッ シヤー法により定量し、 アルコールは樹脂か ら揮散させガスクロマ トグラフィ ーを使用して定量する。
( 7 ) 硬度
日本ゴム協会標準規格 SR I S 0 1 0 1 に従い高分子計器 (株) 製 A S K E R T y e Cを使用して測定する。
( 8 ) テーバー摩耗量
厚み約 1 mmの試験片を使用して J I S K 7 2 0 4 に記載の方 法に従い、 試験片に加える加重を 1 0 0 0 gと し, 回転数 1 0 0 0 回での摩耗質量を測定し、 該質量を樹脂の密度で除して摩耗量とす o
( 9 ) 研磨特性評価
前加工として平均粒径が 5 uのアルミ ナ砥粒を使用してラ ッ ピン グした直径 5 0 mm、 厚さ 4 5 0 〃の G a A s単結晶ウェハ一を第 1 図に示す研磨装置にて研磨し、 その時のウェハー表面の品質を基 準と して、 研磨特性を評価する。
研磨装置は相対抗して回転する上下 2枚のプレー ト 1 、 3からな り、 上記 G a A s単結晶ウェハ一 5 と直径 3 0 0 mm、 厚さ 1 . 0 mmの研磨布 6を貼り付け、 両プレー ト間に 8 0 g Z c m 2 の圧力 を加え、 上下プレー トをそれぞれ毎分 1 2 0回転で回転させ、 研磨 液と して 2 % B r 2 のメ タノ ール溶液を点滴装置 7から毎分 1 0 c cの割合で滴下しながら 1枚のウェハ—について 1 時間研磨を行う c この操作を繰り返し、 合計 2 4枚のウェハ一を研磨後、 最後のゥェ ハー表面の直視または拡大観察により研磨表面の品質評価を行う。 評価判定の基準は以下の通り とした。
表面平滑性優良、 スクラ ッチ傷なし : ◎
表面平滑性良 、 スクラ ッチ傷なし : 〇
表面平滑性不良またはスクラ ッチ傷あり : X
縁ダレなし : ◎
縁ダレあり : X
( 1 0 ) 誘電率
発泡体の試験体を、 横河ヒユーレ ツ ドパッカー社製 Y H P - 4 1 9 2 Aを使用して、 周波数 1 メガヘルツにて測定する (誘電率 : ε , ) 。 その試験体につき、 5 0 %圧縮後再度誘電率を測定する (誘 電率 : £ 2 ) 。
( 1 1 ) 引き裂き強度
エレメ ン ドルフ引裂試験機を使用し、 A S TM D 1 9 2 2 に基 づき測定する。
( 1 2 ) 圧縮試験
島津オー トグラフ A G— 5 0 U Dを使用し、 厚さ 2 mmの試料を 用いて圧縮応力〜歪曲線を測定し、 5 0 %圧縮歪の時の圧縮強度お よび研磨布として使用する時の負荷圧力を想定して、 圧縮応力が 2 0 0 / c m2 以下での圧縮弾性率を測定する。
( 1 3 ) 樹脂のリサイクル性評価
発泡体を樹脂の融点より も 6 0〜 8 0 °C高い温度にて加熱溶融さ せてプレス製膜し、 その時の溶融均一性および着色度合いにより評 価する。 評価判定の基準は下記とした。
発泡前の原反シー トと同等の溶融均一性及び着色なし : ◎ 発泡前の原反シー トに比較し溶融不均一及び着色あり : X
( 1 4 ) 耐電圧測定
5 0 %圧縮した後の試料について、 A S TM D 1 4 9に記載の 方法に準じて、 1 k 秒で昇圧して絶縁破壊強さを測定し、 単位 厚みあたりに換算して求めた。 実施例 1
フッ化ビニリデン一へキサフルォロプロピレン共重合樹脂 (密度 1 . 7 6 g/cm3 、 融点 1 5 0 °C) を使用してホッ トプレスにて厚み 1 . 1 mmのシー トを作成した (以下、 シー ト a ) 。 シー ト aを耐 圧容器に入れた後、 テトラフルォロェ夕ンを該容器に圧入し、 シー ト aをテ トラフルォロェタンの液相に浸潰した。 該容器を 7 0 °Cの 恒温水槽に入れて、 3 0時間保持した。 得られた含浸シー ト (以下. シー ト b ) を該耐圧容器より取り出し重量測定によりテ トラフルォ ロェタンの含浸量および含水量を計算したところ、 それぞれ、 5 . 9重量%、 0 . 0 0 5重量%であった。 シー ト bを 4 0 °Cの温水中 に 3 0分浸潰したところ、 テ トラフルォ πェタ ンの含浸量は 5 . 6 重量%に減少し、 水分は 0 . 0 4 4重量%であつた。 該含浸シー ト を遠赤外ヒーターを備えた温度 1 9 0 °Cの加熱炉中に 1 5秒保持し. 発泡シー トを得た。
得られた発泡シー 卜の各特性を測定した結果を表 1 に示す。 該発 泡体の厚み方向をスライスして断面を光学顕微鏡で観察したところ- 両表層側が濃く、 中心部が淡い 3層構造が観察された。 濃い層はそ れぞれ全体の厚みの 2 0 %づっを占めていた。
得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価においては、 該発泡体の表層の未発泡層をスライスして除 去し、 濃い層を研磨面と して使用した。 圧縮によっても誘電率が変 わらず、 良好な研磨特性、 引裂強度、 圧縮強度および初期弾性率を 示した。 実施例 2
シー ト bを 4 0 °Cの温水中に 1 時間浸漬し、 テ トラフルォ πエタ ンの含浸量が 5 . 4重量%、 水分が 0 . 0 5 3重量%のシー トを得 た他は、 実施例 1 と同様の方法で発泡シー トを得た。
得られた発泡シー 卜の各特性を測定した結果を表 1 に示す。 発泡 シー トの断面は、 両表層側が濃く、 中心部が淡い 3層構造を示した c 中心部は実施例 1 の発泡シー トのそれに比較して濃く観察された。 濃い層はそれぞれ全体の厚みの 3 0 %づっを占めていた。 得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価は、 実施例 1 と同様にして行った。 実施例 3
耐圧容器に水を入れ、 実施例 1 で使用したシー ト aを耐圧容器の 中に水に浸からないように吊るし、 これに、 テ トラフルォロェタン をガス状で 1 8 k g c m 2 で圧入した。 該耐圧容器を 8 0での恒 温水糟漬に入れ、 2 4時間保持した。 得られた含浸シー トのテ トラ フルォロェタ ンの含浸量および含水量は、 それぞれ、 4 . 8重量 96 .
0 . 1 7重量%であった。 実施例 1 と同様の方法で発泡シー トを得 た。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 シー トの断面は、 両表層側が淡く、 中心部が濃い 3層構造であった ( 淡い層はそれぞれ全体の ^みの 2 0 %づつを占めていた。
得られた発泡シー 卜の性能を評価した結果を表 2 に示す。 研磨特 性の評価においては、 該発泡体の片側表層からスライスして片側の 淡い層を除去し、 露出させた濃い層を研磨面として使用した。 優れ た引き裂き強度を示している。 実施例 4
テトラフルォロェタンの圧入を 1 S k g Z c m 2 とし、 テ トラフ ルォロェタ ンの含浸量が 2 . 9重量%、 水分が 0 . 1 7重量%のシ — トを得た他は、 実施例 3 と同様の方法で発泡シ一 トを得た。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 両表層側が淡く、 中心部が濃い 3層構造であった。 淡 い層はそれぞれ全体の厚みの 3 0 %づっを占めていた。
得られた発泡シー トの性能を評価した結果を表 2に示す。 研磨特 性の評価は実施例 3同様に行った。 力学特性と して優れた引き裂き 強度を示すと共に、 優れた初期弾性率、 圧縮強度を示している。 実施例 5
テ トラフルォロェタンの圧入を 6 k g Z c m 2 とし、 テ トラフル ォロェタ ンの含浸量が 1 . 3重量%、 水分が 0 . 1 6重量%の含浸 シー トを得た他は、 実施例 3 と同様の方法で発泡シ一 トを得た。 得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 両表層側が淡く、 中心部が濃い 3層構造を示した。 淡 い層はそれぞれ全体の厚みの 3 0 %づつを占めていた。
得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価は実施例 3同様に行った。 実施例 6
水で飽和させたテ トラフルォロェタ ンを使用し、 耐圧容器を 1 0 0 °C、 2 4時間保持し、 テ トラフルォロェタンの含浸量が 1 0 . 7 重量%、 水分が 0 . 1 7重量%である含浸シー トを得た他は、 実施 例 1 と同様の方法で発泡シー トを得た。
得られた発泡体の各特性を測定した結果を表 1 に示す。 発泡体の 断面は、 両表層側が淡く、 中心部が濃い 3層構造を示した。 淡い層 はそれぞれ全体の厚みの 2 5 %づつを占めていた。
得られた発泡シ一 卜の性能を評価した結果を表 2に示す。 研磨特 性の評価は実施例 3同様に行った。 比較例 1
耐圧容器中に水を入れないこ と以外は実施例 3 と同様に行った。 得られたシー トのテ トラフルォロェタ ンの含浸量は、 4 . 8重量% であり、 水分は 0 . 0 0 5重量%であつた。 実施例 1 と同様の方法 で発泡シ一 トを得た。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 濃淡は認められず単一な層であった。
得られた発泡シー トの性能を評価した結果を表 2に示す。 研磨特 性の評価は片側表層の未発泡層を除去し、 その面を研磨面として使 用した。 比較例 2
テトラフルォロェタンの圧入を 2 k g / c m 2 とし、 テ トラフル ォロェタ ンの含浸量が 0 . 3重量%、 水分が 0 . 1 6重量%でぁる 含浸シー トを得た他は、 実施例 1 と同様の方法で発泡シー トを得た < 得られた発泡シー 卜の各特性を測定して結果を表 1 に示す。 発泡 体の断面は、 両表層側が淡く、 中心部が濃い 3層構造が観察された c 淡い層はそれぞれ全体の厚みの 1 5 %づつを占めていた。
得られた発泡シー トの性能を評価した結果を表 2に示す。 研磨特 性の評価は実施例 3同様に行った。 誘電率が、 フッ素系樹脂に期待 される誘電率 ( 2 . 1以下) を下回らないことが示される。 比較例 3
水で飽和させたテトラフルォロェタンを使用し、 耐圧容器を 1 0 5で、 7 0時間保持し、 テ トラフルォロェタンの含浸量が 2 0 . 4 重量%、 水分が 0 . 1 7重量%である含浸シー トを得た他は、 実施 例 1 と同様の方法で発泡シー トを得た。
得られた発泡シー トの各特性を表 1 に示す。 発泡体の断面は、 両 表層側が淡く、 中心部が濃い 3層構造が示された。 淡い層はそれぞ れ全体の厚みの 2 5 %づっを占めていた。 得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価は実施例 3同様に行った。 誘電率は圧縮により大き く変化 するこ とが示される。 比較例 4
実施例 1 で得られたシー ト aを使用し、 耐圧容器に入れジクロロ ジフルォロメ タンを圧入し 7 5で、 1 0 0時間含浸した。 含浸シ一 トのジクロロジフルォロ メ タ ンの量は 4 . 2重量%、 水分は 0 . 0 0 5重量%であった。 実施例 1 と同様の方法で発泡シー トを得た。 得られた発泡シー トの各特性を表 1 に示す。 発泡体の断面は、 濃 淡は認められず単一な層であった。
得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価は片側表層の未発泡層を除去し、 その面を研磨面と して使 用した。 比較例 5
実施例 1 で使用したシー ト aの両面に、 5 0 0 k Vの電子線照射 装置で 2 0 M r a dの吸収線量に相当する電子線を照射した。 該シ 一卜からは酸性ガスの発生が認められた。 該シー トを耐圧容器内に てジクロロジフルォロメ タ ンに浸漬し、 7 5 °C、 1 0 0時間保持し た後、 耐圧容器から取り出した。 該シー トに含浸されたジクロロジ フルォロメ タ ンの量は 4 . 0重量%であり、 また該シー ト中の水分 は 0 . 0 0 5重量 であつた。 該シー トを 2 5 °C、 相対湿度 9 5 % の恒温室に 5時間放置後、 実施例 1 と同様の方法で発泡シー トを得 た。
得られた発泡シー トの各特性を測定した結果を表 】 に示す。 発泡 体の断面は、 両表層側が濃く、 中心部が淡 3層構造であった。 濃い 層はそれぞれ全体の厚みの 1 7 %づっを占めていた。
得られた発泡シー トの性能を評価した結果を表 2 に示す。 研磨特 性の評価は実施例 1 同様に行った。 実施例 7
実施例 1 で使用したフッ化ビニリデン—へキサフルォロプロピレ ン共重合樹脂をホッ トプレスにて厚み 0 . 2 m mのシー トを作製し た。 該シー トを耐圧容器に入れ、 実施例 1 と同様にテ トラフルォロ エタンを含浸した後、 0 °Cの水に 1 0時間浸潰した。 該シー トのテ トラフルォロェタ ンの含浸量および含水量は、 それぞれ、 4 . 6重 量%、 0 . 0 6重量%であった。 該シー トを実施例 1 と同様に発泡 させた。
得られた発泡シー 卜の各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 両表層側が濃く、 中心部が淡い 3層構造であった。 濃 い層はそれぞれ全体の厚みの 3 0 %づっを占めていた。
得られた発泡シー 卜の性能を評価した結果を表 2 に示す。 実施例 8
実施例 7で使用した厚み 0 . 2 m mのシー トを用いた他は、 実施 例 3 と同様の方法で発泡シ一 トを得た。 発泡前のシー トのテ トラフ ルォロェタンの含浸量および含水量は、 それぞれ、 4 . 5重量%、 0 . 1 6重量 9 であつた。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 両表層側が淡く、 中心部が濃い 3層構造であった。 淡 い層はそれぞれ全体の厚みの 2 6 %づつを占めていた。
得られた発泡シー の性能を評価した結果を表 2 に示す。 実施例 9
実施例 3 において、 シー ト aに代えて実施例 7で使用した厚み 0 2 m mのシー トを用い、 耐圧容器に入れる水をメタノールに代えた 他は、 実施例 3 と同様の方法で含浸及び発泡を行った。 発泡前のシ 一 トのテ トラフルォロェタ ンおよびメ タノールの含浸量は、 それぞ れ、 4 . 5重量%、 0 . 0 6重量 であった。
得られた発泡シー トの各特性を測定し結果を表 1 に示す。 発泡体 の断面は、 両表層側が淡く、 中心部が濃い 3層構造であった。 淡い 層はそれぞれ全体の厚みの 1 2 %づっを占めていた。
得られた発泡シー 卜の性能を評価した結果を表 2 に示す。 比較例 6
実施例 7で使用した厚み 0 . 2 m mのシー トを耐圧容器に入れ、 1 一へキサノ ールを含有するテ トラフルォロェタンに浸潰し 7 0 °C . 3 0時間保持した。 得られた含浸シー トのテ トラフルォロェタ ンの 含浸量は 5 . 5 %、 1 一へキサノールの含浸量は 0 . 0 1 5重量% であった。 実施例 1 と同様の方法で発泡シー トを得た。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 濃淡は認められず単一な層であった。
得られた発泡シー 卜の性能を評価した結果を表 2 に示す。 誘電率 力 圧縮により大き く変化するこ とが示される。 実施例 1 0
テ トラフルォロエチレンとハ0—フルォロプロ ピルハ°一フルォロ ビ 二ルェ一テルの共重合体 (密度 2 . 1 5 g / c m 3 、 融点 3 0 8 °C ) を使用して、 ホッ トプレスにて厚み 1 m mのシー ト (以下、 シ ー ト c ) を作成した。 シー ト cを耐圧容器に入れ、 水分含有のパー フルォロペンタ ンに浸漬し, 該容器を 8 0で、 4 5時間の恒温水槽 に保持した。 得られた含浸シー ト (以下、 シー ト d ) を該容器から 取り出し、 重量を測定してパ一フルォロペンタ ンの含浸量および含 水量を計算したところ、 それぞれ、 7 . 0重量%、 0 . 0 3 5重量 %であった。 シー ト dを遠赤外ヒーターを備えた 4 0 0 °Cの加熱炉 中で、 3 5秒保持し、 発泡シー トを得た。
得られた発泡シー トの各特性を測定した結果を表 1 に示す。 発泡 体の断面は、 両表層側が淡く、 中心部が濃い 3層構造であった。 淡 い層はそれぞれ全体の厚みの 2 2 %づっを占めていた。
得られた発泡シー トの性能を評価した結果を表 2に示す。 研磨特 性の評価においては、 該発泡体の片側表層からスラィスして片側の 淡い層を除去し、 露出させた濃い層を研磨面として使用した。 実施例 1 1
実施例 1 0のシー ト cを使用し、 耐圧容器中にてペンタフルォロ プロパノール含有のパーフルォ口へキサンに浸漬し、 容器を 8 0 °C の恒温槽中に、 3 5時間保持した。 パーフルォ口へキサン及びペン 夕フルォロプロパノールの含浸量は、 それぞれ 5 . 7重量%、 0 . 0 1 8重量%であった。 実施例 1 0 と同様の方法で発泡シー トを得 た。
得られた発泡シー 卜の各特性を測定した結果を表 1 に示す。 発泡 シー トの断面は、 両表層側が淡く、 中心部が濃い 3層構造であった。 淡い層はそれぞれ全体の厚みの 3 5 %づっを占めていた。
得られた発泡シー トの性能を評価じた結果を表 2 に示す。 研磨特 性の評価は実施例 1 0同様に行った。 実施例 1 2 実施例 1 0で使用したテ トラフルォロエチレ ンとパーフルォロプ 口 ピルパ一フルォロ ビニルエーテルの共重合体樹脂を使用して厚み
0 . 2 m mのシー トを得た。 該シー トを耐圧容器に入れた後、 水分 含有のパ一フルォ口へキサンに浸漬し 7 0 °C、 5 0時間保持した。 得られた含浸シー トのパーフルォ口へキサンの含浸量は、 7 . 2重 量%、 含水量は 0 . 0 1 5重量%であつた。 該シー トを用い、 実施 例 1 0 と同様の方法で発泡シー トを得た。
得られた発泡シ一 トに各特性を測定した結果を表 1 に示す。 発泡 シー トの断面は、 両表層側が淡く、 中心部が濃い 3層構造であたつ た。 淡い層はそれぞれ全体の厚みの 1 0 %づっを占めていた。
得られた発泡シー トの性能を評価した結果を表 2 に示す。 実施例 1 3
実施例 1 2のシー トを用いて飽和水分含有のテ トラフルォロェ夕 ンに 7 5 で 4 0時間浸漬した後、 別の耐圧容器に入れ 1 0でで 1 0 k g / c m 2 の窒素ガス加圧下に 3 0時間保持した。 得られた含 浸シー トのテ トラフルォロェタ ンの含浸量は 2 . 4重量%、 含水量 は 0 . 0 2重量%であった。 該シー トを使用して実施例 1 0 と同様 の方法により、 発泡シー トを得た。
得られた発泡シー 卜の各特性を測定した結果を表 1 に示す。 発泡 シー トの断面は、 両表層側が淡く、 中心部が濃い 3層構造であった c 淡い層はそれぞれ全体の厚みの 1 3 %づつを占めていた。
得られた発泡シー トの性能を評価した結果を表 2に示す。
<産業上の利用可能性 >
本発明のフ ッ素系樹脂発泡体は、 特定の発泡倍率および独立気泡 率、 かつ、 気泡密度の異なる層からなる多層構造を形成し、 各層の 任意の切断面における開放気泡の最大径が極めて均一であるため、 縁ダレ現象を起こさず、 長時間の研磨に対して安定であり、 引裂強 度や圧縮強度等の機械強度に優れ、 発泡体の圧縮前後において安定 な誘電率を示し、 対電圧性に優れる。 従って、 シ リ コ ン単結晶ゥェ ハ ー 、 化合物半導体ウェハー、 液晶用ガラス基板、 液晶用カラーフ ィ ルター等の電子材料用の研磨布、 ソフ トガスケッ ト、 電気絶縁テ ープ、 電線被覆材、 また、 断熱性を活してテン ト生地、 膜構造建築 の屋根材、 断熱チューブ等広範な用途に有効である。
本発明のフ ッ素系樹脂発泡体は、 研磨布として使用する場合、 ゥ ェハーなどの精密研磨において問題となる縁ダレ現象は、 相対的に 気泡密度の高い層で研磨するこ とにより解消され、 しかも、 スクラ ッチなどの加工欠陥が生じ難く、 弾性変形の小さい材料と大きい材 料とが複合された材料と同様の機能を発現している。
また、 本発明のフ ッ素系樹脂発泡体は、 気泡密度が高いにも拘ら ず多層の気泡構造のため、 ゥ ハーなどの精密研磨で研磨布に適用 される 5 0 〜 2 0 O g Z c m 2 程度の荷重範囲のような極く初期の 圧縮弾性率および引裂強度が向上する傾向が見られる。
特に、 特定のテ一バ摩耗量および硬度を有している発泡体は、 ゥ ェハーなどの精密研磨布として使用した時、 縁ダレ現象を起こさず、 長時間安定した研磨性能を発揮する。
しかも、 本発明の発泡体は、 架橋構造を有しないため再度溶融加 ェでき、 製造工程内での樹脂のリサイ クル、 製品の粗原料樹脂への リサイ クルが可能である。
また、 本発明の方法によれば、 上記の優れた特性を有するフ ッ素 系樹脂発泡体を効率よ く確実に製造するこ とができる。 表 1 雄例 発泡倍率 層職 Αϋ B層 摩 ½Λ 赚
No. 泡率
バラツキ Cv 密度 バラツキ Cv 密度
讎 (コ /cm3) 徽 (コ /cm3) (nm3) 卞
1 14 95 A/B/A 5.1 0.68 3 X 109 5.8 0.75 6 X 106 88 67 施 2 14 96 A/B/A 4.9 0.60 5 X 10" 5.2 0.70 6 X 108 87 67 例 3 12.5 98 A/B/A 5.7 0.80 A 3.0 0.81 Λ X in9 79 72
A
4 8 95 A/B/A 5.5 0.71 2 X 106 2.8 0.75 3 X 109 50 82
0 4 93 A/B/A 4:9 0.75 7 v in0 2:7 0.65 J in9 25 92
6 30 85 A/B/A 5.6 0.85 6 X 106 5.6 0.72 9 X 108 190 33 比 1 12 98 A 7.8 2.4 3 X 104 一 76 73 較 2 2.5 90 A/B/A 7:2 1:3 5 X 104 5.7 1.6 6 X 106 15 95
30 35 A/B/A l 6 l 0.90 3 X 104 6.5 1.2 8 x io6 18 95
A 5 90 A 5.9 0:95 2 X 108 31 90
0 8 88 A/B/A 7.8 2.4 4 X 10' 8.3 2.6 6 X 104 50 84
7 7 95 A/B/A 5.2 0.70 8 X 109 5.6 0.73 7 X 107 85 施 8 6 96 A/B/A 3.4 0.71 6 X 107 3.1 0.77 8 X 109 87 例 9 6 90 A/B/A 5.6 0.73 5 X 106 4.1 0.55 6 X 108 87
6 13 38 A 6.2 1.1 5 X 105 70
10 6.7 75 A/B/A 3.4 0, 58 8 X 107 4.8 0.52 9 X 109 52 75 施 11 6.1 70 A/B/A 5.7 0.81 9 X 106 5.0 0.63 7 X 108 47 76 例 12 18 80 A/B/A 5.1 0.70 8 X 106 4.2 0.51 3 X 109 35
13 5.1 92 A/B/A 4.2 0.50 6 X 107 2.8 0.60 5 X 109 82
表 2
Figure imgf000035_0001

Claims

請 求 の 範 囲
1 . 発泡倍率が 4倍以上 3 0倍以下、 独立気泡率が 4 0 %以上であ る架橋構造を有しない熱可塑性フ ッ素系樹脂からなる発泡体であつ て、 該発泡体の内部において気泡密度が異なる層からなる界面を少 なく と も一つ含み、 下記式で表される、 該各層の任意の切断面に存 在する開放気泡の最大径のバラツキ指数 S cおよび変動係数 C Vが それぞれ、 0 く S c ≤ 6 および 0 く C v ≤ l であるフ ッ素系樹脂か らなる発泡体。
S C = ( L M . - L M , π . ) / L a、. · . . . ( 1 )
C v = S D/L 3 ν . . . . ( 2 )
(式中、 LMa x.、 L M, n.および L a v. は、 それぞれ、 開放気泡の最 大径の最大値、 最小値および平均値を、 S Dは、 標準偏差を意味す る。 )
2. 該各層の気泡密度が、 少なく と も 1 0 6 個 Z c m3 である請求 項 1 に記載のフ ッ素系樹脂発泡体。
3. 該各層の気泡密度の比が、 5以上、 1 0 5 以下である請求項 1 に記載のフ ッ素系樹脂発泡体。
4. 該発泡体が、 表層に未発泡層を含む請求項 1 に記載のフ ッ素系 樹脂発泡体。
5. 該発泡体が、 2 5 mm 3 以上 2 4 O mm3 以下のテーバー摩耗 量を有する請求項 1 に記載のフ ッ素系樹脂発泡体。
6. 該発泡体が、 1 5以上 9 3以下の硬度を有する請求項 1 に記載 のフ ッ素系樹脂発泡体。
7. 架橋構造を有しない熱可塑性フ ッ素系樹脂に、 該樹脂の糸 ;士: Θ 口 日曰 点以下の沸点を有する炭素数 1 〜 8 のフルォロカーボンを 0. 4 〜 2 0重量%、 および、 水または沸点 1 5 0 °C以下、 蒸発潜熱 7. 0 k c a 1 Zm o 1 以上のアルコールから選ばれた少な く とも 1 種の 化合物を 0. 0 1 〜 1 重量%含有させて発泡させるこ とを特徴とす るフ ッ素系樹脂発泡体の製造方法。
8. 該フルォロカ一ボンを 1 〜 1 5重量%含有させて発泡させる請 求項 7 に記載のフ ッ素系樹脂発泡体の製造方法。
9. 水または沸点 1 1 0で以下、 蒸発潜熱 8. 0 k c a 1 /m 0 1 以上のアルコールから選ばれた少なく とも 1 種の化合物を含有させ て発泡させる請求項 7に記載のフ ッ素系樹脂発泡体の製造方法。
1 0. 水を 0. 0 4〜 0. 8重量%含有させて発泡させる請求項 7 に記載のフ ッ素系樹脂発泡体の製造方法。
PCT/JP1994/001886 1994-05-10 1994-11-09 Mousse de fluororesine et procede de production de ladite mousse WO1995030711A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019960700089A KR0165748B1 (ko) 1994-05-10 1994-11-09 불소계 수지 발포체 및 그의 제조 방법
EP95900274A EP0713897B1 (en) 1994-05-10 1994-11-09 Fluororesin foam and process for producing the same
DE69427915T DE69427915T2 (de) 1994-05-10 1994-11-09 Fluorharzschaum und dessen herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/96279 1994-05-10
JP6096279A JPH0726051A (ja) 1993-05-11 1994-05-10 新規なフッ素系樹脂発泡体

Publications (1)

Publication Number Publication Date
WO1995030711A1 true WO1995030711A1 (fr) 1995-11-16

Family

ID=14160692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001886 WO1995030711A1 (fr) 1994-05-10 1994-11-09 Mousse de fluororesine et procede de production de ladite mousse

Country Status (5)

Country Link
EP (2) EP0908487B1 (ja)
KR (1) KR0165748B1 (ja)
CN (1) CN1067414C (ja)
DE (2) DE69430762D1 (ja)
WO (1) WO1995030711A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192456A (ja) * 2000-12-25 2002-07-10 Toyobo Co Ltd 研磨パッド
WO2005063864A1 (en) * 2003-12-19 2005-07-14 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
WO2005073299A1 (ja) * 2004-01-28 2005-08-11 Sekisui Chemical Co., Ltd. 熱可塑性樹脂発泡体シート及び熱可塑性樹脂発泡体シートの製造方法
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
JP2010029997A (ja) * 2008-07-30 2010-02-12 Toray Ind Inc 研磨パッド
JP2020506070A (ja) * 2017-01-12 2020-02-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 多孔質ポリウレタン研磨パッドおよびその作製方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750354B1 (fr) * 1996-06-28 1998-08-07 Lam Plan Sa Support de disque de polissage et procede de polissage
WO2000012262A1 (fr) * 1998-08-28 2000-03-09 Toray Industries, Inc. Tampon polisseur
DE10003587A1 (de) * 2000-01-28 2001-08-09 Dyneon Gmbh Exdrudierter Polytetrafluorethylen-Schaum
US6683255B2 (en) 2000-01-28 2004-01-27 3M Innovative Properties Company Extruded polytetrafluoroethylene foam
JP2004131656A (ja) * 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材
SG109581A1 (en) * 2003-08-22 2005-03-30 Nitto Denko Corp Foamed dustproof material and dustproof structure using foamed dustproof material
DE102004008751B4 (de) * 2004-02-23 2008-04-24 Siemens Ag Mittel zur elektrischen Isolierung von Mittel- und Hochspannungskomponenten
JP5943826B2 (ja) * 2012-12-19 2016-07-05 株式会社ジェイエスピー ポリフッ化ビニリデン系樹脂発泡粒子、ポリフッ化ビニリデン系樹脂発泡粒子の製造方法、及びポリフッ化ビニリデン系樹脂発泡粒子成形体
US9441088B2 (en) 2014-07-29 2016-09-13 W. L. Gore & Associates, Inc. Articles produced from VDF-co-(TFE or TrFE) polymers
KR102293765B1 (ko) * 2019-11-21 2021-08-26 에스케이씨솔믹스 주식회사 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048186B2 (ja) * 1987-05-15 1992-02-14 Asahi Chemical Ind
JPH0457704B2 (ja) * 1986-04-24 1992-09-14 Asahi Chemical Ind

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL258835A (ja) * 1959-12-18
EP0223155B1 (en) * 1985-11-12 1991-02-13 Asahi Kasei Kogyo Kabushiki Kaisha Expandable fluorine-containing polymer compositions, and foams of fluorine-containing polymer obtained from the compositions
CA2138250A1 (en) * 1992-06-25 1994-01-06 Edward G. Howard, Jr. Porous polytetrafluoroethylene and preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457704B2 (ja) * 1986-04-24 1992-09-14 Asahi Chemical Ind
JPH048186B2 (ja) * 1987-05-15 1992-02-14 Asahi Chemical Ind

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0713897A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192456A (ja) * 2000-12-25 2002-07-10 Toyobo Co Ltd 研磨パッド
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
WO2005063864A1 (en) * 2003-12-19 2005-07-14 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
US7276191B2 (en) 2003-12-19 2007-10-02 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
AU2004309288B2 (en) * 2003-12-19 2009-01-08 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
WO2005073299A1 (ja) * 2004-01-28 2005-08-11 Sekisui Chemical Co., Ltd. 熱可塑性樹脂発泡体シート及び熱可塑性樹脂発泡体シートの製造方法
JP2010029997A (ja) * 2008-07-30 2010-02-12 Toray Ind Inc 研磨パッド
JP2020506070A (ja) * 2017-01-12 2020-02-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 多孔質ポリウレタン研磨パッドおよびその作製方法
US11325222B2 (en) 2017-01-12 2022-05-10 Skc Solmics Co., Ltd. Porous polyurethane polishing pad and method for manufacturing same

Also Published As

Publication number Publication date
KR0165748B1 (ko) 1999-03-20
EP0908487A3 (en) 1999-06-16
CN1067414C (zh) 2001-06-20
DE69427915D1 (de) 2001-09-13
EP0713897B1 (en) 2001-08-08
EP0713897A1 (en) 1996-05-29
DE69427915T2 (de) 2002-04-04
DE69430762D1 (de) 2002-07-11
EP0908487A2 (en) 1999-04-14
CN1127006A (zh) 1996-07-17
EP0908487B1 (en) 2002-06-05
EP0713897A4 (ja) 1996-07-10

Similar Documents

Publication Publication Date Title
WO1995030711A1 (fr) Mousse de fluororesine et procede de production de ladite mousse
EP2252649B1 (en) Tetrafluoroethylene/hexafluoropropylene copolymer and the production method thereof, and electrical wire
US8143351B2 (en) Fluororesin composition and covered electric wire
EP3256528B1 (en) Heterogeneous, co-continuous copolymers of vinylidene fluoride
CN86108303A (zh) 可膨胀含氟聚合物的组合物及由它制得的含氟聚合物泡沫材料
JP2005105269A (ja) 発泡剤を使用せずの発泡性フッ素化ポリマー組成物
US5340843A (en) Fluororesin foam
KR102190864B1 (ko) 불소계 수지 다공성 막의 제조 방법
US4138520A (en) Translucent polypropylene film and process for producing the same
JP2015034255A (ja) 発泡体およびその製造方法
EP0539605B1 (en) Method for manufacturing foam insulating electric wire
US5814409A (en) Expanded fluorine type resin products and a preparation process thereof
JP3276665B2 (ja) 発泡絶縁電線の製造方法
JP4121168B2 (ja) 二成分核生成剤系
JPH0726050A (ja) 非架橋フッ素系樹脂発泡体
JPH0726051A (ja) 新規なフッ素系樹脂発泡体
JP3245209B2 (ja) フッ素樹脂発泡体
WO2019107746A1 (ko) 불소계 수지 다공성 막의 제조방법
JP4193696B2 (ja) ポリテトラフルオロエチレン製ペーパーの製造方法
JPS62280236A (ja) 微細気泡を有するフッ素樹脂発泡体の製造方法
JPH107833A (ja) 連続シート状フッ素系樹脂架橋発泡体
JPH10231375A (ja) フッ素樹脂発泡フィルムの製造方法
JPH10180787A (ja) 発泡フルオロポリマー複合体
JPH09104772A (ja) 撥水性含フッ素樹脂表面を有する発泡体
Blanchet Fluoroplastics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94192735.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995900274

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1995 578694

Country of ref document: US

Date of ref document: 19951227

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995900274

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 921528

Country of ref document: US

Date of ref document: 19970902

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1995900274

Country of ref document: EP