WO1995027090A1 - Acier inoxydable a deux phases - Google Patents

Acier inoxydable a deux phases Download PDF

Info

Publication number
WO1995027090A1
WO1995027090A1 PCT/JP1995/000647 JP9500647W WO9527090A1 WO 1995027090 A1 WO1995027090 A1 WO 1995027090A1 JP 9500647 W JP9500647 W JP 9500647W WO 9527090 A1 WO9527090 A1 WO 9527090A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rvs
stainless steel
prew
value
Prior art date
Application number
PCT/JP1995/000647
Other languages
English (en)
French (fr)
Inventor
Masaaki Igarashi
Kunio Kondo
Kazuhiro Ogawa
Masakatsu Ueda
Tomoki Mori
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13345975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995027090(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to DE69506537T priority Critical patent/DE69506537T2/de
Priority to EP95913417A priority patent/EP0757112B1/en
Priority to US08/718,574 priority patent/US5849111A/en
Publication of WO1995027090A1 publication Critical patent/WO1995027090A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N

Definitions

  • the present invention is directed to a duplex stainless steel made of austenitic and ferrite, particularly a heat exchanger using seawater, chemical equipment and structures requiring seawater resistance, piping for various chemical plants, and line pipe.
  • the present invention relates to super duplex stainless steel with excellent weldability, oil corrosion resistance, stress corrosion cracking resistance and toughness of the welded area.
  • duplex stainless steels with excellent corrosion resistance and weldability have been used as heat exchangers that use seawater, chemical equipment and structures that require seawater resistance, piping for various chemical plants, line pipes, oil well pipes, etc.
  • Demand is growing, especially the requirements for corrosion resistance are becoming more stringent.
  • duplex stainless steels There are many duplex stainless steels already in practical use.
  • a literature introducing weldable duplex stainless steels Duplex Stainless Steel for Welding and Super Duplex Stainless Steel, edited by The Dutch Welding Society, L. van Nassau, H. Meelker, J. Hilker '91
  • the following four types (a) to (d) are disclosed in ascending order of corrosion resistance.
  • Super duplex stainless steels have high mechanical properties and good corrosion resistance.All of them are based on 25% Cr steel so that the above-mentioned pitting resistance index (PREN) exceeds 40. It is designed to contain a large amount of N as a basic concept.
  • Patent Application Laid-Open No. 62-56556 discloses the above-mentioned corrosion resistance index (PREN).
  • Japanese Patent Application Laid-Open No. Hei 5-132741 discloses a pitting corrosion resistance index.
  • the inventors of the present invention disclosed in Japanese Patent Application No. Hei 4-293844 that the pitting corrosion index in ferrite and the pitting corrosion index in austenite were not less than 43 and less than 65 in machinability index.
  • Duplex stainless steel with a difference of -3.0 to 3.0 which is superior to conventional super-duplex stainless steel in that it is a component system in which intermetallic compounds such as (:) are less likely to be formed. Proposed steel.
  • PREN or PREW which is uniquely determined by the initial composition of the alloy, has been used as an index of pitting corrosion resistance.
  • PREN and PREW are said to have a good correspondence with the corrosion rate or pitting resistance in the corrosive environment containing chlorine ions, and those with a value exceeding 40 are called super duplex stainless steels. It is positioned as a high-performance alloy system.
  • the corrosion resistance of PREN and PREW can be evaluated only when the appropriate solution treatment is performed after hot working and the two-phase structure of austenite and ferrite is obtained.
  • Corrosion of the heat affected zone (HAZ) which has become a solidified structure after welding or has received a heat history different from that of the homogenized material.
  • Corrosion resistance in the environment especially stress corrosion cracking resistance in a corrosive environment containing hydrogen sulfide, does not always correspond to the performance that can be estimated from the PREN or PREW values obtained from the average composition of the alloy.
  • JP-A-62-56556 and JP-A-5-132741 are disclosed.
  • the disclosed super duplex stainless steel is given sufficient consideration to weldability (welding workability) and stress corrosion cracking resistance and toughness of the weld as in the conventional duplex stainless steel. Not.
  • duplex stainless steel of the invention of Japanese Patent Application No. 4-293844 proposed by the present inventors also limited the pitting resistance index of ferrite and austenite mainly as a means of improving the pitting resistance in HAZ.
  • no study has been made from the viewpoint of welding workability.
  • Duplex stainless steel is widely used as a material for oil country tubular goods, power plants, chemical plants, etc. In that case, in addition to its corrosion resistance (pitting corrosion resistance, stress corrosion cracking resistance), It is also required that welding work is easy and that defects such as welding cracks are unlikely to occur. Therefore, it is a super duplex stainless steel that has excellent mechanical properties and corrosion resistance, and has excellent weldability, and a super duplex that also has excellent toughness and stress corrosion cracking resistance of the as-welded weld. Development of stainless steel is required. Disclosure of the invention
  • the present inventors have studied in detail the correspondence between the weld cracking susceptibility and the chemical composition of the material when super duplex stainless steel is actually welded, and have obtained the following findings.
  • the pitting corrosion resistance index (PREW) defined in the invention of the above-mentioned Japanese Patent Application Laid-Open No. 5-132741 that is, an index uniquely determined by the initial composition of the alloy, is a duplex stainless steel.
  • PREW pitting corrosion resistance index
  • the following findings were newly obtained.
  • the present invention has been made based on the above findings, and has as its gist the following duplex stainless steels (1) and (2).
  • Si 2.0% or less
  • Mn 2.0% or less
  • Cr 22.0 to 24.0%
  • Ni 4.5 to 6.5%
  • C as an impurity is 0.03% or less
  • P is 0.05% or less
  • S is 0.005% or less
  • RVS represented by the following formula is 7
  • PREW also represented by the formula (1)
  • RVS C ⁇ 1.100X (3 ⁇ 4) Cr / 52.0 ⁇ + ⁇ 9.888X (3 ⁇ 4) Mo / 95.94 ⁇
  • Group 1 element Cu 0.01-2.0%
  • Group 2 element V 0.01 to 0.50%
  • Group 3 element Ca 0.0005-0.010%
  • Rare earth element 0.0005 to 0.010%
  • RVS C ⁇ 1.100x (3 ⁇ 4) Cr / 52.0 ⁇ + ⁇ 9.888 x O Mo / 95.94 ⁇
  • FIGS 1 and 2 are diagrams showing the chemical compositions of the test materials used in Example 1 with the components adjusted so that the pitting corrosion resistance evaluation index PREW exceeds 40.
  • FIG. 3 is a diagram illustrating a valley strain test method for evaluating cracking susceptibility during welding.
  • Figures 4 and 5 show the test results of Example 1 together with the PREW value, the RVS value, and the RSCC value as a reference value.
  • Figure 6 shows the relationship between the weld crack length and the RVS value in the valley train test. It is a figure explaining a relation.
  • Fig. 7, Fig. 8 and Fig. 9 are diagrams showing the chemical compositions of the test materials used in Example 2 to evaluate the corrosion resistance and other performances of the welds.
  • FIG. 10 is a diagram showing a groove shape of a welded joint portion in a welding test
  • FIG. 11 is a diagram showing a position at which a stress corrosion cracking test piece is sampled from the welded joint portion and a shape of the test piece
  • FIG. 12 is a diagram showing a position at which a Charpy impact test specimen of a welded joint is sampled and a shape of the specimen.
  • - Figures 13, 14, and 15 show the test results of Example 2 along with the ferrite fraction (%), PREW value, RVS value, RSCC value, and ferrite change rate (% change). It is.
  • FIGS. 16, 17, and 18 show the results of the tensile test, the Charpy impact test, and the stress corrosion cracking test in Example 2, respectively.
  • FIG. 19 shows the ferrite fraction of the duplex stainless steel tested in Example 2.
  • FIG. 4 is a diagram showing the relationship between the rate of change of light and the RSCC value.
  • FIG. 20 is a diagram showing the relationship between the critical stress for crack initiation ( th ) and the RSCC value in the stress corrosion cracking test of Example 2, and
  • FIG. 21 is a graph showing the ⁇ 30 ° of the duplex stainless steel tested in Example 2.
  • FIG. 9 is a diagram showing the relationship between the Charpy impact test (vE_3 () ) and the RSCC value in C. BEST MODE FOR CARRYING OUT THE INVENTION
  • Si Since Si is effective in deoxidizing steel and increasing corrosion resistance, its addition is essential. This Si does not need to be contained in the steel, and the lower limit of the content may be substantially 0 (zero) or trace. On the other hand, if the Si content exceeds 2.00%, the steel becomes brittle, so the upper limit is set to 2.00%.
  • Mn Mn is added for the purpose of deoxidation and desulfurization. However, its content
  • the lower limit may be substantially zero or a trace amount as in the case of Si.
  • Cr is one of the basic components of duplex stainless steel and is one of the important elements that control corrosion resistance together with Mo. 22.0% or more is required to obtain the high corrosion resistance required in the corrosive environment.
  • the steel of the present invention is added with a large amount (4 to 8%) of Mo as compared with the conventional steel in order to increase the pitting resistance, so that the Cr phase containing more than 24% of Cr and : Remarkably promotes precipitation of intermetallic compounds such as phases, etc. Accordingly, the Cr content was set to 22.0 to 24.0%.
  • Ni has conventionally been added in view of the Cr, Mo, and W contents, and the N content in order to obtain a two-phase structure. In the steel of the present invention, it is the most important element that controls the improvement of the stress corrosion cracking resistance and toughness of the weld bond and HAZ. In order to achieve the desired high corrosion resistance, the content must be 4.5% or more, but if it exceeds 6.5%, the precipitation amount of the ⁇ phase significantly increases. Therefore, Ni was set to 4.5 to 6.5%.
  • Mo is also an element that improves corrosion resistance, and it is necessary to contain 4.0% or more to obtain the desired corrosion resistance in the corrosive environment. However, if the content exceeds 4.8%, and the coarsening of the phase is rapidly promoted, the content is set to 4.0 to 4.8%.
  • A1 Indispensable as a deoxidizing element, it is added for the purpose of reducing oxygen to obtain sufficient corrosion resistance.
  • the addition amount can be changed in consideration of the addition amount of Si and Mn.However, if the content is less than 0.001%, a sufficient effect cannot be obtained, and if the content exceeds 0.15%, A1N is easily precipitated and toughness is increased. However, in order to deteriorate the corrosion resistance, the content was set to 0.001 to 0.15%.
  • N is a super element that contains a large amount of the Cr and Mo, which are the elements that form the fluoride. In a duplex stainless steel, it is an important element that stabilizes the austenite for forming the dual phase structure. It is the most effective element for improving pitting. Content of less than 0.25% is not enough to obtain these effects. On the other hand, if N exceeds 0.35%, many defects (such as pro-holes) occur in large ingots, and the hot workability of the steel decreases significantly. Therefore, N was set to 0.25 to 0.35%.
  • duplex stainless steels of the present invention comprises the above alloying elements and the balance of Fe and inevitable impurities. Note that the allowable upper limit of typical impurities will be described later.
  • Another one of the duplex stainless steels of the present invention further includes at least one of the first, second and third element groups in addition to the above alloy elements. It contains at least one element selected from one group. Hereinafter, these elements will be described.
  • Group 1 elements (Cu and W):
  • W has a complementary effect of Mo, it may be contained in an amount of 0.01% or more, but the addition of a large amount exceeding 1.5% causes an increase in production cost.
  • Each of these elements stabilizes carbides and enhances corrosion resistance, so one or more of these elements may be contained as necessary. 0.01% or more is required for each of the above effects. However, when their contents exceed 0.50%, the effect saturates.
  • Group 3 elements (Ca, Mg, B, Zr, Y and rare earth elements):
  • Ca, Mg, Y and rare earth elements all improve the hot workability of steel by forming S-0 compound (composite compound of sulfide and acid) by themselves.
  • the content of each must be 0.0005% or more (however, ⁇ is 0.001%), but if it exceeds 0.010% (however, ⁇ is 0.20%), the effect is saturated.
  • ⁇ and Zr are deflected to the grain boundaries, lowering the grain boundary energy, and promoting grain boundary facetting.
  • the hot workability of the steel is improved to increase the grain boundary strength.
  • the effect is remarkable at 0.0005% for B and 0.01% or more for Zr, but when it exceeds 0.010% and 0.50%, the effect saturates. 0.010%, 0.01 ⁇ 0.50% is appropriate
  • the rare earth element may be added as a single element such as La and Ce, or may be added as a mixture such as misch metal.
  • the main ones are (:, P and S.
  • C is an unavoidable element contained in steel, but if its content exceeds 0.03%, carbides precipitate in HAZ and significantly deteriorate its corrosion resistance. The upper limit is 0.03%
  • P is also an impurity element inevitably contained in steel and degrades hot workability and corrosion resistance, so it is necessary to reduce P as much as possible.
  • the allowable upper limit was set to 0.05% or less in consideration of neighboring costs.
  • S is also an unavoidable impurity element contained in steel and is an element that degrades the hot workability of two-phase stainless steel, so it is necessary to reduce it as much as possible. 0.005% is the allowable upper limit. i l. About PREW, RVS and RSCC:
  • PREW is defined by the above formula (2), which itself is known from the above-mentioned Japanese Patent Application Laid-Open No. 5-137274. This PREW is also used in the present invention. The value is set to exceed 40 in order to secure excellent pitting corrosion resistance as a basic property of super duplex stainless steel.
  • RVS has been newly incorporated as an index for evaluating crack susceptibility during welding.
  • RSCC which is an index for evaluating the stress corrosion cracking resistance of welds used when necessary and the toughness of HAZ.
  • RVS is obtained by the above equation (1), and is an index of the temperature difference between the liquidus line and the solidus line in the region where the solid phase and the liquid phase coexist at the welding tip during welding. There is a good correspondence between this RVS value and the crack susceptibility during welding.
  • FIG. 6 is a diagram showing the relationship between the crack length and the RVS value in a burestrain test when TIG welding was performed on the duplex stainless steel subjected to the test of Example 1 described below.
  • RVS value is within the range of 7 or less, the susceptibility to weld cracking decreases, and the crack length during welding is less than 1 band, but when it exceeds 7, the weld crack susceptibility increases and the weld crack length exceeds 1 mm. You can see that The RVS value of 7 or less in the present invention is based on this reason.
  • RSCC is defined by the above equation (3).
  • the phase at the interface between ferrite and austenite due to a sharp decrease in the ferrite fraction and! It is an index indicating the tendency of heterogeneous precipitation of intermetallic compounds such as phases. Therefore, this RSCC has a good correspondence with the stress corrosion resistance and the toughness of the weld.
  • ferrite fraction refers to the amount of ferrite and austenite in a water-cooled specimen after holding the duplex stainless steel at 1100 for 1 hour, for example, by X-ray diffraction. And the value (volume) calculated by the following equation (1).
  • Ferrite fraction ⁇ Amount of ferrite / (Amount of ferrite + Austenite) ⁇ X 100
  • the rate of change of the filament described below refers to the ferrite fraction determined for a water-cooled test piece after holding the two-phase stainless steel at 1300 ° C for 1 hour. This is the difference from the flat fraction obtained for the test piece which was kept at 110 ° C. for 1 hour and cooled with water as described above.
  • Figure 1921 shows the relationship between the fraction of fly, the rate of change of ferrite, the critical stress for stress corrosion cracking initiation and the impact value of the duplex stainless steel subjected to the test of Example 2 described below, and the RSCC.
  • FIG. As shown in Fig. 19 (b), when the RSCC value is less than 13, the change rate of the light is large, and as shown in Fig.
  • Example 1 The operation and effect of the duplex stainless steel of the present invention will be described based on Example 1 and Example 2.
  • the steel with the chemical composition shown in Figs. 1 and 2 whose components were adjusted so that the pitting corrosion resistance evaluation index PREW exceeded 40, was melted using a 150 kg vacuum induction melting furnace, and converted to a 150 IM0 ingot. Built.
  • the ingot was turned into a 20-band thick steel by hot forging and hot rolling, and then subjected to a solution treatment in which the ingot was kept at 1100 ° C for 1 hour and then cooled with water. Welded test specimens were taken from the plate.
  • the steel of the present invention is a duplex stainless steel corresponding to the example of the present invention
  • a comparative steel is a steel used for property comparison
  • a conventional steel is an existing duplex stainless steel. Steel equivalent to.
  • FIG. 3 is a diagram for explaining a valley strain test method for evaluating the susceptibility to weld cracking during welding.
  • a 12-mra-thick, 50-mm-wide, 300-length-long board material is used as a test piece. While the material is melted by TIG welding, a bending strain is given at the same time, and a weld crack is generated in the weld. The length of the crack was actually measured with a microscope in a visual field of 100 magnification, and the total length of the crack was Evaluate weld cracking susceptibility.
  • steel having a total crack length of 1 mm or less was defined as steel suitable for the purpose of the present invention.
  • test results are shown in Fig. 4 and Fig. 5 together with the PREW value, RVS value and RSCC value as a reference value.
  • Figure 6 shows the relationship between weld crack length and RVS value.
  • No. 1 to 12 shown as the steel of the present invention in FIG. 4 have a PREW of 40.2 or more and an RVS of 4.78 to 6.68, so that the crack length is as short as 0.2 to 0.8 ⁇ , indicating low crack sensitivity.
  • test materials were manufactured in the same manner as in Example 1 using materials having the chemical compositions shown in FIGS. 7, 8, and 9.
  • the steels in Fig. 7, Fig. 8 and Fig. 9 were designed so that the PREW value exceeded 40 and the RVS value was 7 or less except for some of the comparative steels.
  • Fig. 10 shows a groove processed part for obtaining a test material for a welded joint.
  • a 9 mm thick plate was cut out from a 20 mm thick test material prepared in the same manner as in Example 1, and a groove was machined to the dimensions shown in the same figure. .
  • Welding is performed by an automatic TIG welding method with a heat input of 15 kJ / cm. At a welding speed of 10 cm / min, the first layer is welded without using filler metal, and 25 Cr—for the second to thirteenth layers is welded. This was performed using a 7% Ni-3! 0 (o-2% W-0.3% N filer metal).
  • FIG. 11 and FIG. 12 are views showing positions where various test pieces are collected from the welded joint.
  • a test piece for stress corrosion cracking a test piece with a thickness of 2 marauders, a width of 10 and a length of 75 marauders was taken from the position shown in Fig. 11 (b), and the impact test piece was as shown in Fig. 12 (a). From the position shown, a half-size Charpy test specimen shown in FIG.
  • the test conditions are as follows.
  • Test piece Half size (shape shown in Fig. 5) The test results are shown in Figs. However, in FIG. 13 to FIG. 15, the light fraction is displayed as “%” and the light change rate is displayed as “change”. Nos. 1 to 33 indicated as the steels of the present invention are those whose alloy element content, PREW value, RVS value and RSCC value fall within the ranges specified by the invention. Therefore, the susceptibility to weld cracking is small as clarified in Example 1 described above. As shown in FIGS. 16 and 17, the welded joint had an impact value at ⁇ 30 ° C. of 212 J / cra 2 or more and a stress corrosion cracking initiation critical stress of 52.6 kgf / cm 2 or more. It has excellent toughness and stress corrosion cracking resistance.
  • any of Cr, Ni, Mo and N is out of the range defined in the present invention, and No. 39, No. 40 and Except for No. 42, since the RSCC was less than 13, the stress corrosion cracking resistance of the welded joint was inferior and the stress corrosion cracking initiation limit stress was 44.6 kgf / mm 2 or less, as shown in FIG. I have. Some steels also have low impact values.
  • each alloying element is within the range specified in the present invention, but the RSCC has a value of less than 13 or a value of more than 18. These materials have low impact values or crack initiation critical stress, and cannot simultaneously satisfy the levels of an impact value of 200 J / cm 2 or more and a crack initiation limit stress of 45.5 kgf / band 2 or more.
  • the steels with RSCC of less than 13 or more than 18 are referred to as comparative steels for convenience here. Among them, those whose PREW and RVS are within the range defined by the present invention are in a broad sense. Of the present invention.
  • FIG. 19 is a graph in which the fly fraction and the ferrite change rate of the various duplex stainless steels used in Example 2 are arranged in relation to the RSCC value. As shown in (a), the ferrite fraction increases almost monotonically with the increase in RSCC, but as shown in (b), the ferrite change rate stabilizes between 13 and 18 for RSCC. It becomes smaller.
  • Figures 20 and 21 show the crack limit stress ( th ) obtained in the stress corrosion test of the duplex stainless steel welds tested in Example 2 and the HAZ of the weld test.
  • the toughness (vE- 30 ) is summarized by RSCC. It is clear that both the stress corrosion cracking resistance and the HAZ toughness are very good when the RSCC is in the range of 13 to 18, and the correspondence with FIG. 19 is also clear.
  • the duplex stainless steel of the present invention is a super duplex stainless steel having low crack susceptibility during welding and excellent weldability.
  • those with an RSCC in the range of 13 to 18 which is an index for improving the stress corrosion cracking resistance of the weld and the toughness of HAZ are in the range of 13 to 18 for the stress corrosion cracking resistance and toughness of the weld. Also exhibit excellent properties. Therefore, the duplex stainless steel of the present invention is extremely suitable as a material for heat exchangers using seawater, equipment and structures requiring seawater resistance, piping for various chemical plants, line pipes, oil well pipes, and the like. It can be used in a wide range of fields such as chemical industry and marine development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書
発明の名称 二相ステンレス鋼
技術分野
本発明は、 オーステナイ トとフェライ トからなる二相ステンレス 鐧に閧し、 特に海水を使用する熱交換器及び耐海水性が要求される 化学機器や構造物、 各種化学プラン ト用配管、 ライ ンパイプ、 油井 管等として溶接施工性及び溶接部の耐応力腐食割れ性と靭性に優れ たスーパ一二相ステンレス鋼に関するものである。 背景技術
近年、 海水を使用する熱交換器および耐海水性が要求される化学 機器や構造物、 各種化学プラン ト用配管、 ライ ンパイプ、 油井管等 として、 耐食性ならびに溶接性に優れた二相ステンレス鋼の需要が 増大しており、 特に耐食性に対する要求はますます厳しくなつてき ている。
既に実用化されている二相ステンレス鋼は数多く存在する。 例え ば溶接可能な二相ステンレス鋼を紹介した文献 (オランダ溶接協会 編 『溶接用二相ステンレス鋼およびスーパー二相ステンレス鋼』 L. van Nassau, H. Meelker, J.Hilker ' 91)には、 下記の(a) 〜(d) の 4種類が、 耐食性の低い順に開示されている。
(a) 23%Cr- 4 %Ni-0.1 %N
• · ■ (PRENく 25) 系二相ステンレス鋼
(b) 22%Cr-5.5 3 ½Mo-0.1 %N
■ · ■ (PREN : 30〜36) 系二相ステンレス鋼
(c) 25%Cr- 6 %Ni- 3 %Mo-0.2 % N— (0〜2.5) % Cu— (Mn, W)
• · · (PREN : 32〜40) 系二相ステンレス鋼 (d) 25% Cr- 7 %Ni- 3.5%Mo- 0.25% N - 0.6 %Cu
一(0.3〜0.7)%W
• · · (PREN >40) 系スーパー二相ステンレス鋼 ただし、 PRENは、 ( )Cr+ 3.3X (¾)Mo +16x ( )Nで与えられ る耐孔食性の指標でこの値が大きいほど耐孔食性に優れる。
スーパー二相ズテン レス鋼は、 高い機械的性質と良好な耐食性を 有し、 いずれも上記の耐孔食性指標(PREN)が 40を超える値となるよ うに、 25%Cr鋼を基本として Mo、 Nを多く含有させることを基本思 想として設計されている。
特開昭 62 - 56556 号公報には、 上記の耐食性指標(PREN)を
PREN = (¾)Cr+3.3 x (¾)Mo + 16x (%)N— 1.6 x (%)Mn
一 122 x (¾)S
と定義し、 この PRBNを 39.1 超える値とするほか、 Nを他の成分と の関係式に従って多く含有させ、 さらにフェライ ト量を規定した高 耐食性と良好な組織安定性を有するスーパー二相ステン レス鋼が提 案されている。
また、 特開平 5 - 132741号公報には、 耐孔食性指標を
P EW= (¾)Cr + 3.3 x {(¾)Mo +0.5(¾)W} +16x (¾)N と定義し、 この PREWを 40以上の値としたスーパー二相ステンレス鋼 が提案されている。
更に、 本発明者らは特願平 4-293844号によって、 PREWが 43以上、 切削性指数が 65以下、 フェライ ト中での耐孔食性指数とオーステナ ィ ト中での耐孔食性指数との差が— 3.0 〜3.0 であり、 従来のスー パ一二相ステン レス鋼よりもび相、 (:相等の金属間化合物が生成し にくい成分系とした溶接部の耐孔食性に優れる二相ステンレス鋼を 提案した。
従来の 25%Cr系スーパー二相ステンレス鋼では Mo、 Nを多量に含 有させるため、 鋼材の製造時あるいは鋼材の溶接施工時などにおい てび相および X相等の金属間化合物の析出が著しく促進される。 こ れら金属間化合物が析出した溶接部近傍は耐食性が著しく低下し、 実用上大きな問題となる。
特に二相ステンレス鋼を油井管材料として使用する場合、 最近は
、 油井の運転コス トを低減する観点から生産流体の流速を高速にす るため高内圧とする方向にあり、 配管材料には高内圧化した腐食環 境 (以下、 これを当該腐食環境という) においても耐応力腐食割れ 性に優れていること、 具体的には、 割れ発生限界応力び t hが 45. 5 kgi/隨 2 (65ks i )以上であること、 および溶接継手部においても十分 な靭性、 具体的には一 30'Cにおけるシャルピー衝撃値が 200J/cm 2以 上であることが要求される。
前述のように耐孔食性能の指標として、 従来は合金の初期組成に よって一義的に決定される PRENあるいは PREWの値が使用されてきた 。 この PRENおよび PREWは、 塩素イオンを含む当該腐食環境における 腐食速度あるいは耐孔食性と良い対応があるとされ、 その値が 40を 超えるものをスーパ一二相ステンレス鋼と称して、 現状で最も耐食 性能の良い合金系と位置付けている。
しかし、 PRENおよび PREWで耐食性が評価できるのは、 あく までも 熱間加工後に適切な固溶化処理が施され、 オーステナイ トとフェラ ィ トの二相組織になっている場合である。 溶接施工を受けて凝固組 織になっていたり、 あるいは均質化材とは異なる熱履歴を受けた溶 接熱影響部 (Hea t Af f ec t ed Zone. 以下、 H A Zと記す) の当該腐 食環境における耐食性能、 特に硫化水素を含む腐食環境下での耐応 力腐食割れ性は、 合金の平均組成から求めた PRENあるいは PREWの値 で推定できる性能と必ずしも対応しない。
前記の特開昭 62 - 56556 号公報および特開平 5 - 132741号公報に 開示されたスーパ一二相ステンレス鋼は、 溶接性 (溶接施工性) お よび溶接部の耐応力腐食割れ性と靭性に対しては従来の二相ステン レス鋼におけると同様に十分な配慮がなされていない。
本発明者らが提案した特顧平 4-293844号の発明の二相ステンレス 鋼も、 H A Zにおける耐孔食性を向上させる手段として、 主にフエ ライ トとオーステナイ トの耐孔食性指数を制限したことを特徵とす るものであって、 溶接施工性の観点からの検討はなされていない。 また、 溶接部の当該環境における応力腐食割れの防止にも配慮が欠 けている。
二相ステンレス鋼は、 油井管、 発電所、 化学プラン ト等の材料と して、 広汎に使用されるものであるが、 その場合、 耐食性 (耐孔食 性、 耐応力腐食割れ性) はもとより、 溶接施工が容易で、 溶接割れ 等の欠陥の発生しにくいことも求められる。 従って、 優れた機械的 性質と耐食性を有するとともに、 溶接施工性に優れたスーパ一二相 ステンレス鋼、 さらに、 溶接のままの溶接部の靭性と耐応力腐食割 れ性にも優れたスーパー二相ステンレス鋼の開発が必要となる。 発明の開示
本発明者らは、 スーパー二相ステンレス鋼が実際に溶接施工され る場合の溶接割れ感受性と材料の化学成分との対応を詳細に検討し た結果、 以下のような知見を得た。
1.スーパー二相ステンレス鋼においても、 溶接施工時に溶接先端部 の固相と液相の共存する固液共存域において、 平衡状態図でいう 液相線 (ある組成の合金が液相 (L ) から最初に固相 ( 5 ) を晶 出する温度) と固相線 (同様に L + 5が完全に固相 5になる温度 ) の差が大きい場合に凝固割れが生じ易い。
2:この凝固割れの防止には適当な溶接条件の選定が必要になるが、 合金組成の調整により液相線と固相線の温度差を小さ くすれば凝 固割れをある程度制御することが可能である。
本発明者らは、 前掲の特開平 5 — 1 32741号公報の発明で定義され ている耐孔食性指標(PREW)、 即ち、 合金の初期組成によって一義的 に決定される指数を、 二相ステンレス鋼の基本性能である耐孔食性 能評価の一 όとして位置付けた上、 さらに溶接部の耐応力腐食割れ 性を向上させ、 生産流体の設計内圧を上げることができる合金成分 系の特定を試みた。 その結果、 新たに下記の知見が得られた。
3.溶接部の応力腐食割れは、 大き く分けてボン ド部での割れと、 Η A Ζでの割れに大別されるが、 これらの割れの起点としてボン ド 部および H A Zにおける Fe 5 5 Cr 3 1 (Mo + W )!。N i 4系のび相および (:相等の金属間化合物の生成が関与している。
これらび相および X相の生成に及ぼす各合金成分の影響を詳細に 検討したところ、 既存の平衡状態図からは予測できない析出速度に 関する下記のような新たな知見も得られた。
4.ボン ド部では、 溶接金属と母材との混合、 合金元素の希釈、 およ び凝固の過程においてフヱライ トとオーステナイ ト間での合金元 素の再分配が同時に進行するが、 び相等の生成を促進する Cr、 Mo 、 W等はオーステナイ ト中での固溶限が低いためフェライ ト中に 濃化する。 ところが、 従来のスーパ一二相ステンレス鋼では凝固 • 冷却過程においてフヱライ ト量が急激に減少するので、 フェラ ィ トから排出された Cr、 Mo、 W等はフェライ トとオーステナイ ト の界面にのみ局所的に濃厚偏析する。 その結果、 さらに温度が低 下してび相等の析出温度域に入ると、 フ ライ トとオーステナィ トの界面にび相等が不均一析出して、 その界面が応力腐食割れの 起点となる。
上述の事実から、 次のことが推定できる。 即ち、 (a) 上記のフエ ライ ト量の減少の割合を小さ くすることができれば、 ボン ド部での び相の生成を抑制することができるはずである。 また、 (b) H A Z においても同様に熱間加工後の均一化 · 固溶化処理に至る過程でフ ュライ ト量の急激な減少を抑制できれば、 たとえ溶接による熱影響 を受けてもび相等の生成に対しては鋭敏でなくなるはずである。 上記の推定の下に、 凝固温度近傍からの冷却過程におけるフェラ ィ トとオーステナイ トの相分率の変化を小さ くできる成分系の特定 を試みたところ、 特に Cr、 Moおよび Wと、 Niとの組成バラ ンスを適 切に選択することで上記相分率の変化が制御できることを確認した o
本発明は上記の知見に基づいてなされたもので、 下記の(1) およ び(2) の二相ステンレス鋼をその要旨とする。
(1) 重量%で、
Si : 2.0 %以下、 Mn: 2.0 %以下、 Cr: 22.0〜24.0%、 Ni : 4,5〜6.5 %、
Mo: 4.0 〜4.8 %、 A1 : 0.001 〜0.15%、
N : 0.25〜0.35%
を含有し、 残部が Fe及び不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり、 かつ 、 下記の①式で表される RVS が 7以下の値、 同じく②式で表される PREWが 40 を超える値であることを特徴とする二相ステンレス鋼。
RVS = C { 1.100X (¾)Cr/52.0} + { 9.888X (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738 x (¾)Ni/58.71}
' ■ · φ PREW= (%)Cr+3.3x {(¾)Mo+0.5x (¾)W} +16x (¾)N
' · · ②
(2) 上記(1) に記載の合金元素に加えて更に次の第 1群元素、 第 2 群元素および第 3群元素の少なく とも 1群から選んだ少なく とも 1 種の合金元素を含有し、 残部が Fe及び不可避的不純物から成り、 不 純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下 であり、 かつ、 下記の①式で表される RVS が 7以下の値であり、 下 記の②式で表される PRBWが 40 を超える値であることを特徴とする 二相ステンレス鋼。
第 1群元素 Cu: 0.01〜2.0 %
W: 0.01〜1.5 %
第 2群元素 V: 0.01〜0.50%
Ti: 0.01〜0.50% -
Nb: 0.01〜0.50%
第 3群元素 Ca: 0.0005〜0.010 %
Mg: 0.0005〜0.010 %
B : 0.0005〜0.010 %
Zr: 0.01〜0.50%
Y: 0.001 〜0.20%
希土類元素 : 0.0005〜0.010 %
RVS = C { 1.100x (¾)Cr/52.0} + { 9.888 x O Mo/95.94}
+ { 2.045X (¾)W/183.85} ) / {1.738X (¾)Ni/58.71}
. . . ①
PREW=(¾)Cr+3.3x {(¾) o+0.5x (¾)W} +16x (¾)N
• · ■ ' 上記(1) および(2) の二相ステンレス鋼は、 さらに下記の③式で 表される RSCCが 13から 18までの値であることが望ましい。
RSCC= 〔 { 3 X O Cr/52.0} + { (¾)Mo/95.94}
+ {(¾)W/183.85} 〕 / {(¾)Ni/58.71}
■ · · ③ なお、 上記の①から③までの式には、 Wの含有量が関与しているが 、 本発明の二相ステンレス鋼の中には、 Wを実質的に含有しないも のもある。 その鋼においては、 上記①〜③の式の Wを 0 (零) とす ることはいうまでもない。 図面の簡単な説明
図 1 および図 2は耐孔食性評価指標 PREWが 40 を超える値となる ように成分調整して、 実施例 1 に用いた供試材の化学組成を示す図 である。
図 3は、 溶接時の割れ感受性を評価するためのバレス トレイン試 験方法を説明する図である。
図 4および図 5は実施例 1 の試験結果を PREW値、 RVS 値および参 考値としての RSCC値とともに示した図であり、 図 6はバレス トレイ ン試験での溶接割れ長さと RVS 値との関係を説明する図である。
図 7、 図 8および図 9は、 溶接部の耐食性およびその他の性能を 評価するために実施例 2に用いた供試材の化学組成を示す図である o
図 1 0は溶接試験の溶接継手部の開先形状を示す図であり、 図 1 1は 溶接継手部の応力腐食割れ試験片を採取する位置とその試験片の形 状を示す図である。 また、 図 12は溶接継手部のシャルピー衝撃試験 片を採取する位置とその試験片の形状を示す図である。 ― 図 1 3、 図 1 4および図 15は実施例 2の試験結果をフェライ ト分率 ( ひ% ) 、 PREW値、 RVS 値、 RSCC値およびフェライ ト変化率 (ひ変化 % ) とともに示した図である。 さらに、 図 1 6、 図 1 7および図 1 8は実 施例 2における引張試験、 シャルピー衝撃試験および応力腐食割れ 試験のそれぞれの結果を示した図である。
図 1 9は、 実施例 2で試験した二相ステンレス鋼のフェライ ト分率 およびフ ライ ト変化率と RSCC値との関係を示す図である。 図 20は 実施例 2の応力腐食割れ試験における割れ発生限界応力 ( th) と RSCC値との関係を示す図であり、 また、 図 21は実施例 2で試験した 二相ステンレス鋼の— 30°Cにおけるシャルビ一衝撃試験(vE _3())と RSCC値との関係を示す図である。 発明を実施するための最良の形態
I . 合金元素および不純物について:
本発明合金に含有される元素の量を上記のように定めた理由を説 明する。 なお、 含有量についての%は、 童量%を意味する。
Si : Siは鋼を脱酸して耐食性を高めるのに有効なのでその添加は必 須である。 この Siは、 鋼中にとどめる必要はなく、 含有量の下限 は実質的に 0 (零) または痕跡量(trace) でよい。 一方、 Si含有 量が 2.00%を超えると鋼が脆化するのでその上限は 2.00%とする
Mn : Mnは脱酸、 脱硫を目的として添加する。 ただし、 その含有量が
2.0%を超えると耐食性に悪影響を及ぼすので 2.0%以下とした 。 下限は Siの場合と同様に実質的に 0 または痕跡量でよい。
Cr: Crは二相ステンレス鋼の基本成分の一"" ^であり、 Moと共に耐食 性を支配する重要な元素の一^ ^である。 当該腐食環境において必 要とされる高耐食性を得るには 22.0%以上必要である。 本発明鋼 には耐孔食性を上昇させるために従来鋼に比較して多量 ( 4〜 8 %) の Moが添加されるので、 Crを 24%を超える含有量の Crはび 相および; (:相等の金属間化合物の析出を著しく促進する。 従って 、 Cr含有量は 22.0〜24.0%とした。
Ni : Niは、 従来、 二相組織を得るために Cr、 Moおよび Wの含有量、 並びに Nの含有量との兼ね合いで添加されていた。 本発明鋼では 、 さらに溶接ボン ド部および H A Z部の耐応力腐食割れ性および 靭性の向上を支配する最も重要な元素である。 所望の高耐食性を 実現するためには、 その含有量を 4.5%以上とする必要があるが 、 6.5 %を超えると σ相の析出量を著しく増加させる。 従って、 Niは 4.5〜6.5 %とした。
Mo: Moも耐食性を向上させる元素であり、 当該腐食環境において所 望の耐食性を得るためには 4.0%以上含有させる必要がある。 し かし、 その含有量が 4.8%を超えると、 び相の凝集粗大化が急激 に促進されることから 4.0〜4.8 %とした。
A1 : 脱酸元素として不可欠であり、 十分な耐食性を得るための酸素 低減を目的に添加される。 Siおよび Mnの添加量との兼ね合いで添 加量を変えることができるが、 その含有量が 0.001%未満では十 分な効果が得られず、 0.15%を超えると A1Nが析出し易くなり、 靭性、 耐食性を劣化させるため、 0.001〜0.15%とした。
N : Nはフヱライ ト生成元素である Cr、 Moを多量に含有するスーパ —二相ステンレス鋼においては二相組織を形成するためのオース テナイ トを安定化させる重要な元素であり、 さらには耐孔食性を 向上させるのに最も効果の大きい元素である。 これらの作用効果 を得るには 0.25%未満の含有量では不十分である。 一方、 Nが 0. 35%を超えると大型鋼塊での欠陥 (プロホールなど) が多発し、 鋼の熱間加工性が著しく低下する。 従って、 Nは 0.25〜0.35%と した。
本発明の二相ステンレス鋼の一つは、 上記の合金元素のほか、 残 部は Feと不可避的不純物からなるものである。 なお、 代表的な不純 物の許容上限については後述する。
本発明の二相ステンレス鋼のもう一つは、 上記の合金元素に加え てさらに前記の第 1群、 第 2群および第 3群の元素群の少なく とも 1群から選んだ少なく とも 1種の元素を含むものである。 以下、 こ れらの元素について説明する。
第 1群元素 (Cuおよび W) :
これらは、 鋼の酎食性を改善する作用があるので必要により、 1 種または 2種を含有させる。 Wは Moの補完的作用を有するので、 0. 01%以上含有させても良いが、 1.5 %を超える多量添加は製造コス トの上昇を招く。
Cuは、 鋼の耐酸性の向上に有効なので、 必要に応じて 0.01%以上 含有させるが、 2.0 %を超えると鋼の熱間加工性の低下を招く。 第 2群元素 (V、 Tiおよび Nb) :
これらの元素は、 いずれも炭化物を安定にし、 耐食性を高めるの で必要に応じて 1種またはそれ以上を含有させる。 上記の効果を得 るにはそれぞれ 0.01%以上必要である。 しかし、 それぞれの含有量 が 0.50%を超えるとその効果は飽和する。
第 3群元素 (Ca、 Mg、 B、 Zr、 Yおよび希土類元素) :
Ca、 Mg、 Yおよび希土類元素は、 いずれもそれ自身が S - 0化合 物 (硫化物と酸^物の複合化合物) を形成することによって鋼の熱 間加工性を向上させる。 そのためにはそれぞれ 0.0005% (但し、 Υ は 0.001 %) 以上の含有が必要であるが、 0.010 % (但し、 Υは 0. 20%) を超えるとその効果は飽和する。
Βと Zrは粒界に偏折して、 粒界エネルギーを低下させ、 粒界のフ ァセッティ ング(facetting) を助長する。 これによつて粒界強度を 上昇させるために、 鋼の熱間加工性が向上する。 その効果は、 Bで は 0.0005%、 Zrでは 0.01%以上で顕著となるが、 それぞれ 0.010% 、 0.50%を超えるとその効果は飽和するので、 これらを添加する場 合、 含有量はそれぞれ 0.0005〜0.010 %、 0.01〜0.50%が適当であ
*S> o これらの元素の 2種以上を添加すれば、 複合効果があることも確 認されている。 なお希土類元素は、 La、 Ce等の単独元素として添加 してもよく、 ミ ッシュメタル (mi s ch me ta l )のような混合物として 添加してもよい。
次に、 不純物について説明する。 その主なものは (:、 Pおよび S である。
C : Cは鋼中に含まれる不可避的元素であるが、 その含有量が 0. 03 %を超えると H A Zに炭化物が析出し、 その耐食性を著しく劣化 させるので可及的に少ない方がよい。 許容上限値は 0. 03 %である
P : Pも鋼中に不可避的に含まれる不純物元素であり、 熱間加工性 、 耐食性を劣化させるので、 できるだけ低くする必要がある。 脱 隣コス トとの兼ね合いで、 その許容上限値を 0. 05 %以下とした。
S : Sも鋼中に含まれる不可避的不純物元素であり、 二相ステンレ スの熱間加工性を劣化させる元素であるため、 可能な限り低くす る必要がある。 0. 005 %が許容上限値である。 i l . PREW、 RVS および RSCCについて:
PREWは、 前記②式で定義されるものであり、 この式自体は前掲の 特開平 5 - 132741号公報によって知られている。 本発明においても この PREWを採用する。 その値が 40 を超えるようにするのは、 スー パー二相ステンレス鋼の基本的特性としての優れた耐孔食性を確保 するためである。
本発明では、 上記 PREWに加えて、 新たに溶接施工時の割れ感受性 を評価する指標として RVS を取り入れた。 さらに、 必要に応じて用 いられる溶接部の耐応力腐食割れ性の向上と H A Zの靭性を評価す る指標である RSCCを導入した。 RVS は前記の①式で求められるものであり、 溶接施工時の溶接先 端部において固相と液相とが共存する領域における液相線と固相線 との温度差の指標である。 この RVS の値と溶接時の割れ感受性との 間には良い対応関係がある。
図 6は、 後述する実施例 1 の試験に供した二相ステンレス鋼を T I G溶接した時のバレス トレイン試験での割れ長さと RVS 値との関 係を示した図である。 RVS 値が 7以下の範囲において溶接割れ感受 性は低下し、 溶接時の割れ長さは 1 匪以下となるが、 7を超えると 溶接割れ感受性が高くなつて溶接割れ長さが 1 mmを超えていること がわかる。 本発明において RVS 値を 7以下としたのは、 この理由に 基づく。
RSCCは前記の③式で定義されるもので、 溶接ボン ド部および H A Z部における高温からの冷却過程において、 フェライ ト分率の急激 な低下によるフェライ トとオーステナイ 卜の界面でのび相および ! 相等の金属間化合物の不均一析出の傾向を表す指標である。 従って 、 この RSCCは、 溶接部の耐応力腐食割性おょぴ靭性とよい対応関係 にある。
なお、 「フェライ ト分率」 というのは、 二相ステンレス鋼を 1 1 00 てに 1 時間保持した後、 水冷した試験片のフェライ ト量とオーステ ナイ ト量を、 例えば X線回折法によって測定し、 下記の④式で算出 した値 (体積 である。
フェライト分率 = { フェライト量/ (フェライト量 + オ-ステナイト量) } X 100
• · · ® また、 次に述べる 「フヱライ ト変化率」 というのは、 二相ステン レス鐧を 1 300°Cに 1 時間保持した後、 水冷した試験片について求め たフェライ ト分率と、 前記のように 1 1 00°Cに 1時間保持した後、 水 冷した試験片について求めたフヱライ ト分率との差である。 図 19 21は、 後述の実施例 2の試験に供した二相ステンレス鋼の フ ライ ト分率、 フ ェライ ト変化率、 応力腐食割れ発生限界応力お よび衝撃値と、 RSCCとの閩係を示す図である。 図 19(b) に示すとお り、 RSCC値が 13未潢ではフ ライ ト変化率が大きく、 図 19(a) に示 すとおり、 RSCC値が 18を超えるとフェライ ト分率が著しく大きくな つて、 いずれの場合も靭性が劣化し、 図 21のように衝撃値 (vE-30) が 200J/cm2 以下となる。 また、 図 20に示すように耐応力腐食割れ 性が損なわれて、 割れ発生限界応力 (CT t h) が 45.5kgf/mra2以下と なる。 これらの結果から、 RSCC値の適正範囲は 13〜18であるといえ る。
本発明の二相ステンレス鋼の作用、 効果を実施例 1 および実施例 2に基づいて説明する。
〔実施例 1 〕
耐孔食性評価指標 PREWが 40 を超える値となるように成分調整し た図 1 および図 2に示す化学組成の鋼を 150kgの真空誘導溶解炉を 用いて溶製し、 150 IM0のィンゴッ トに铸造した。 このインゴッ ト を熱間鍛造と熱間圧延によつて 20匪厚の扳材とした後、 1100°Cに 1 時間保持してから水冷する固溶化処理を施した。 その板材から溶接 試験片を採取した。 なお、 図 1 および図 2において、 本発明鋼とは 本発明の実施例に相当する二相ステンレス鋼、 比較鋼とは特性比較 のために用いた鋼、 従来鋼とは既存の二相ステンレス鋼に相当する 鋼、 である。
図 3は、 溶接施工時の溶接割れ感受性を評価するバレス トレイン 試験方法を説明する図である。 試験片としては、 厚さ 12mra、 幅 50mm 、 長さ 300 匪の板材を用い、 T I G溶接法で材料を溶融させながら 同時に曲げ歪を与え、 溶接部に溶接割れを発生させる。 その割れの 長さを顕微鏡により 100倍率の視野で実測して、 割れの合計長さで 溶接割れ感受性を評価する。 ここでは割れ長さの合計が 1 mm以下で あるものを本発明の目的に適う鋼とした。
試験結果を PREW値、 RVS 値および参考値としての RSCC値とともに 図 4および図 5に示した。 また、 図 6に溶接割れ長さと RVS 値との 関係を示した。
図 4に本発明鋼として示す No.1〜12は、 PREWが 40.2以上、 RVS が 4.78〜6.68の範囲にあるので、 割れ長さも 0.2〜0.8πιπι と短く、 割 れ感受性の低いことがわかる。
図 5に比較鋼として示す No. 13、 18、 19は、 いずれも RVS が 7を 超えるため溶接時の割れ感受性が高く、 割れ長さが 1.2、 1.2、 1. 5mm と長い。 No. 14、 15、 16、 17は、 Cr、 Ni、 Moのいずれかが本発 明で定めた範囲から外れるため、 RVS が 7を超える。 これらも溶接 時の割れ感受性が高く、 割れ長さが 3.1、 2.3、 2.5、 1.8mm と長 い。
図 4、 図 5および図 6から、 二相ステンレス鋼であっても Cr、 Ni 、 Moの許容範囲を狭く し、 RVS が 7以下になるように成分設計すれ ば、 溶接施工時の割れを軽減でき、 溶接施工が容易になることがわ 力、る。
〔実施例 2〕
溶接部の耐食性およびその他の性能を評価するため、 図 7、 図 8 および図 9に示す化学組成の材料について、 実施例 1 と同様な方法 で試験材を製作した。 なお、 図 7、 図 8および図 9の鋼は、 PREW値 が 40を超え、 比較鋼の一部を除いて RVS 値が 7以下になるよう成分 設計したものである。
図 10は、 溶接継手部の試験材を得るための開先加工部を示すもの である。 実施例 1 と同様に作製した厚さ 20圆の試験材から図示のよ うに厚さ 9 mmの板を切り出し、 同図に示す寸法の開先加工を施した 。 溶接は自動 T I G溶接法により入熱 15 kJ/cm. 溶接速度 10cm/mi n で、 初層の溶接はフィ ラーメタルを使用せずに行い、 第 2層〜第 13層の溶接には 25 Cr— 7%Ni— 3!0(o— 2%W— 0.3%Nのフイ ラ一メタ ルを使用して行った。
図 11および図 12は、 溶接継手部から各種試験片を採取する位置を 示した図である。 応力腐食割れ試験片としては、 図 11(b) に示す位 置から厚さ 2匪 、 幅 10隨、 長さ 75匪の試験片を採取し、 衝撃試験片 としては、 図 12(a) に示す位置から同図(b) に示すハーフサイズの シャルピー試験片を採取した。 試験条件は下記のとおりである。
1.引張試験
温 度
験片 直径 6. Οππη、 試長(GL) 30 圆
歪速度 1.0 xio- 3 S"1
試験項目 0.2 %耐力、 伸び、 絞り
2.応力腐食割れ試験
溶 液 5 %NaCK 0. latm H2S-30atm C02 温 度 80 °C
負荷方法 4点曲げ試験
付加応力 母材の 0.2%耐カ値の 0.8倍、 0.85倍
0.9倍、 0.95倍および 1.0倍
浸潰時間 : 720 時間
3. HA Z部の靭性 (シャルビー衝撃試験)
温 度 : — 30°C
試験片 : ハーフサイズ (図 5に示す形状) 試験結果を図 13から図 18までに示す。 但し、 図 13〜図 15中におい て、 フ ヱライ ト分率をひ%と、 フ ヱライ ト変化率を 変化 とそれ ぞれ表示する。 本発明鋼と表示した No.1〜33は、 合金元素の含有量、 PREW値、 RV S 値および RSCC値が発明で定める範囲に入るものである。 従って、 前述の実施例 1 で明らかにしたとおり溶接割れ感受性が小さい。 そ して、 図 16および図 17に示すとおり、 溶接継手部の— 30°Cにおける 衝撃値が 212 J/cra2以上、 応力腐食割れ発生限界応力が 52.6kgf/cm 2 以上と、 溶接継丰部の靭性と耐応力腐食割れ性に優れている。
これに対して、 従来の二相ステンレス鋼である No.34〜42は、 Cr 、 Ni、 Moおよび Nのいずれかが本発明で定めた範囲から外れ、 かつ 、 No.39 、 No.40 及び No. 42を除いては、 RSCCが 13未満であるため 、 図 18に示すとおり、 溶接継手部の耐応力腐食割れ性に劣り、 応力 腐食割れ発生限界応力が 44.6kgf/mm2以下となっている。 また、 一 部の鋼は衝撃値も低い。
比較鋼の No.43〜52は、 個々の合金元素の含有量は本発明で定め た範囲にあるが、 RSCCが 13未満の値、 または 18を超える値になるも のである。 これらは、 衝撃値または割れ発生限界応力のいずれかが 低く、 200 J/cm2 以上の衝撃値、 および 45.5kgf/匪2 以上の割れ発 生限界応力という水準を同時に満足することができない。 なお、 こ れらの RSCCが 13未満または 18を超える鋼をここでは便宜的に比較鋼 と記載しているが、 その中で、 PREWおよび RVSが本発明で定める範 囲内にあるものは、 広義の本発明鋼である。
図 19は、 実施例 2で用いた各種二相ステンレス鋼のフヱライ ト分 率とフェライ ト変化率を RSCCの値との関係で整理したものである。 (a) に示すようにフェライ ト分率は RSCCの増加と共にほぼ単調に増 加していくが、 (b) に示すようにフェライ ト変化率は RSCCが 13から 18までの間で安定して小さ くなる。
図 20および図 21は、 実施例 2で試験した二相ステンレス鋼溶接部 の応力腐食試験で得た割れ限界応力 ( t h) と、 溶接試験の H A Z 靭性 (vE- 3 0 )を RSCCで整理したものである。 耐応力腐食割れ性も H A Z靭性も、 RSCCが 1 3から 1 8の範囲で極めて良好なことが明らかで 、 図 1 9との対応関係も明白である。 産業上の利用可能性
本発明の二相ステンレス鋼は、 溶接施工時の割れ感受性が小さ く 溶接施工性に優れたスーパー二相ステンレス鋼である。 また、 溶接 部の耐応力腐食割れ性の向上と H A Zの靭性を評価する指標である RSCCが 1 3から 1 8の範囲になっているものは、 溶接部の耐応力腐食割 れ性と靭性にも優れた特性を発揮する。 従って、 本発明の二相ステ ンレス鋼は、 海水を使用する熱交換器および耐海水性が要求される 機器や構造物、 各種化学プラン ト用配管、 ラインパイプ、 油井管等 の材料としてきわめて好適なものとなるので、 化学工業、 海洋開発 等の広範な分野において利用できる。

Claims

請 求 の 範 囲
1. 重量%で、
Si :
2.0 %以下、 Mn: 2.0 %以下、
Cr: 22.0〜24.0%、 Ni : 4.5〜6.5 Mo: 4.0 〜4.8 %、 Al : 0.001 〜0.15%、
N : 0.25〜0.35%
を含有し、 残部が Fe及び不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり、 かつ 、 下記の①式で表される RVS が 7以下の値であり、 下記の②式で 表される PREWが 40 を超える値であることを特徵とする二相ステン レス鋼。
RVS = 〔 { 1.100X (¾)Cr/52.0} + { 9.888 x (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738 x (%)Ni/58.71}
• ■ · Φ PRBW= (¾)Cr+3.3x { (%)Mo+ 0.5 x (¾) W} + 16x (¾)N 重量%で、
Si : 2.0 %以下、 Mn: 2.0 %以下、 Cr: 22·0〜24.0%、 Ni : 4.5〜6.5 %、
Mo: 4.0 〜4.8 %、 A1 : 0.001 〜0.15%
N : 0.25〜0.35%
および下記の第 1群元素の 1種または 2種を含有し、 残部が Fe及び 不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0. 05%以下、 Sは 0.005 %以下であり、 かつ、 下記の①式で表される RVS が 7以下の値であり、 下記の②式で表される PREWが 40 を超え る値であることを特徴とする二相ステンレス鋼。
第 1群元素 Cu: 0.01〜2.0 % W: 0.01〜1.5 %
RVS = C { 1.100X (¾)Cr/52.0} + { 9.888x (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738X (¾)Ni/58.71}
• · · Φ PREW= (¾)Cr+3.3x {(¾)Mo+0.5x (¾)W} + 16x (¾)N
. . . ②
3. 重量 で、
Si : 2.0 %以下、 Mn: 2.0 %以下、
Cr: 22.0〜24.0%、 Ni : 4,5〜6.5 %、
Mo : 4.0 〜4.8 %、 A1 : 0.001 〜0.15%、
N : 0.25〜0.35%
および 下記の第 2群元素の中の 1種以上を含有し、 残部が Fe及 び不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり、 かつ、 下記の①式で表され る RVS が 7以下の値であり、 下記の②式で表される PREWが 40 を超 える値であることを特徴とする二相ステンレス鋼。
第 2群元素 V : 0.01〜0.50%
Ti : 0,0卜 0.50%
Nb: 0.01〜0.50%
RVS = C { 1.100X (¾)Cr/52.0} + { 9.888 x (Mo/95.94}
+ { 2.045X (¾)W/183.85} / { 1.738 x (¾)Ni/58.71}
. · ■ ①
PREW= (¾)Cr+3.3x { (%)Mo+ 0.5 x (¾)W} + 16x (¾)N
• ■ · ②
4. 重量 で、
Si : 2.0 %以下、 Mn: 2.0 %以下、 Cr: 22.0〜24.0%、 Ni : 4.5〜6.5 %、
Mo: 4.0 〜4.8 %、 Al: 0.001 〜0.15%.
N : 0.25〜0.35%
および 下記の第 3群元素の中の 1種以上を含有し、 残部が Fe及 び不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり、 かつ、 下記の①式で表され る RVS が 7以下の値であり、 下記の②式で表される PREWが 40 を超 える値であることを特徵とする二相ステンレス鋼。
第 3群元素 Ca: 0.0005〜0.010 %
Mg: 0.0005〜0.010 %
B : 0.0005〜0.010 %
IT: 0.01〜0.50%
Y : 0.001 〜0.20%
希土類元素 : 0.0005〜0.010 %
RVS = C { 1.100X (¾)Cr/52.0} + { 9.888 x (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738x (¾)Ni/58.71}
• · · ① PREW=(¾)Cr+3.3x {(¾)Mo + 0.5x (¾)W} +16x (¾)N
• , ·
5. 重量 で、
Si : 2.0 %以下、 Mn 2.0 %以下、 Cr: 22.0〜24.0%、 Ni 4.5〜6.5 %、
Mo : 4, 0 〜4.8 %、 Al 0.001 〜0.15%
N : 0.25〜0.35%
並びに下記の第 1群および第 2群の元素の中からそれぞれ選んだ 1 種以上を含有し、 残部が Fe及び不可避的不純物から成り、 不純物と しての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり 、 かつ、 下記の①式で表される RVS が 7以下の値であり、 下記の② 式で表される PREWが 40 を超える値であることを特徵とする二相ス テンレス鋼。
第 1群元素 Cu: 0.01〜2.0 %
W: 0.01〜1.5 %
第 2群元素 V : 0.01〜0.50%
Ti : 0.01〜0.50%
Nb: 0.01〜0.50%
RVS = C { 1.100X (¾)Cr/52.0} + { 9.888X (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738 x (¾)Ni/58.71}
• · · ①
PREW= (¾)Cr + 3.3x {(¾)Mo+0.5x (¾)W} +16x C¾)N
· · ■ ②
6. 重量%で、
Si : 2.0 %以下、 Mn: 2.0 %以下、
Cr: 22.0〜24, 0%、 Ni : 4.5—6.5
Mo : 4.0 〜4.8 %、 A1: 0.001 〜0.15%、 N : 0.25〜0.35%
並びに下記の第 1群および第 3群の元素の中からそれぞれ選んだ 1 種以上を含有し、 残部が Fe及び不可避的不純物から成り、 不純物と しての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり 、 かつ、 下記の①式で表される RVS が 7以下の値であり、 下記の② 式で表される PREWが 40 を超える値であることを特徴とする二相ス テン レス鋼。
第 1群元素 Cu: 0.01〜2.0 % W : 0.01〜1,5 %
第 3群元素 Ca: 0.0005〜0.010 %
Mg: 0.0005〜0.010 %
B : 0.0005〜0.010 %
IT : 0.01〜0.50%
Y : 0.001 〜0.20%
希土類元素: 0.0005〜0.010 %
RVS = 〔 { 1.100X (¾)Cr/52.0} + { 9.888X (¾) o/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738 x (¾)Ni/58.71}
■ · · ①
PREW= (¾)Cr+3.3x { (¾)Mo+ 0.5 x (¾)W} +16x (¾)N
7. 重量%で、
Si : 2.0 %以下、 Mn: 2.0 %以下、 Cr: 22.0〜24.0%、 Ni : 4.5〜6.5 %、
Mo: 4.0 〜4.8 %、 Al : 0.001 〜0.15%、 N : 0.25〜0.35%
並びに下記の第 2群および第 3群の元素の中からそれぞれ選んだ 1 種以上を含有し、 残部が Fe及び不可避的不純物から成り、 不純物と しての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以下であり 、 かつ、 下記の①式で表される RVS が 7以下の値であり、 下記の② 式で表される PREWが 40 を超える値であることを特徴とする二相ス テン レス鋼。
第 2群元素 V : 0.01〜0.50%
Ti : 0.0卜 0.50%
Nb: 0.01〜0.50%
第 3群元素 Ca: 0.0005〜0.010 % Mg: 0.0005〜0.010 %
B : 0.0005〜0.010 %
Zr: 0.0卜 0.50%
Y : 0.001 〜0.20%
希土類元素 : 0.0005〜0.010 %
RVS = 〔 { 1.100X (¾)Cr/52.0} + { 9.888 x (¾)Mo/95.94}
+ { 2.045X (¾)W/183.85} 〕 / { 1.738X (¾)Ni/58.71}
PREW= (¾)Cr+3.3x { (¾)Mo+ 0.5 x (¾)W} +16x (¾)N
8. 重量%で、
Si: 2.0 %以下、 n: 2.0 %以下、
Cr: 22.0〜24·0%、 Ni : 4.5〜6.5 %、
Mo: 4.0 〜4.8 Al : 0.001 〜0.15%、
N : 0.25〜0.35%
並びに下記の第 1群、 第 2群および第 3群の元素の中からそれぞれ 選んだ 1種以上を含有し、 残部が Fe及び不可避的不純物から成り、 不純物としての Cは 0.03%以下、 Pは 0.05%以下、 Sは 0.005 %以 下であり、 かつ、 下記の①式で表される RVS が 7以下の値、 同じく ②式で表される PREWが 40 を超える値であることを特徴とする二相 ステン レス鋼。
第 1群元素 Cu: 0.01〜2.0 %
W: 0.0卜 1.5 %
第 2群元素 V : 0.01〜0.50%
Ti : 0.0卜 0.50%
Nb: 0.01〜0.50%
第 3群元素 Ca: 0.0005〜0.010 % Mg: 0.0005〜0.010 %
B : 0.0005〜0.010 %
Zr: 0.01〜0.50%
Y : 0.001 〜0.20%
希土類元素 : 0.0005〜0.010 %
RVS = 〔 { 1.100X (¾)Cr/52.0} + { 9.888 x (¾)Mo/95.94}
+ { 2.045x (¾)W/183.85} 〕 / {1.738X (¾)Ni/58.71}
• · · ①
PREW= (¾)Cr+3.3x {(¾)Mo+0.5x (¾)W} + 16x (¾)N
· · ·
9. 下記の③式で表される RSCCの値が 13〜18である請求項 1 から 8 までのいずれかに記載の二相ステンレス鋼。
RSCC= 〔 { 3 X (¾)Cr/52.0} + { (¾)Mo/95.94}
+ {(¾)W/183.85} 〕 / {(¾)Ni/58.71}
· · ■ ③
PCT/JP1995/000647 1994-04-05 1995-04-04 Acier inoxydable a deux phases WO1995027090A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69506537T DE69506537T2 (de) 1994-04-05 1995-04-04 Rostfreier zweiphasiger stahl
EP95913417A EP0757112B1 (en) 1994-04-05 1995-04-04 Two-phase stainless steel
US08/718,574 US5849111A (en) 1994-04-05 1995-04-04 Duplex stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP06747394A JP3446294B2 (ja) 1994-04-05 1994-04-05 二相ステンレス鋼
JP6/67473 1994-04-05

Publications (1)

Publication Number Publication Date
WO1995027090A1 true WO1995027090A1 (fr) 1995-10-12

Family

ID=13345975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000647 WO1995027090A1 (fr) 1994-04-05 1995-04-04 Acier inoxydable a deux phases

Country Status (5)

Country Link
US (1) US5849111A (ja)
EP (1) EP0757112B1 (ja)
JP (1) JP3446294B2 (ja)
DE (1) DE69506537T2 (ja)
WO (1) WO1995027090A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161417B2 (ja) * 1986-04-28 2001-04-25 日本鋼管株式会社 耐孔食性に優れた2相ステンレス鋼
US7235212B2 (en) 2001-02-09 2007-06-26 Ques Tek Innovations, Llc Nanocarbide precipitation strengthened ultrahigh strength, corrosion resistant, structural steels and method of making said steels
CN1052036C (zh) * 1994-05-21 2000-05-03 朴庸秀 有高耐腐蚀性的双相不锈钢
JP3370441B2 (ja) * 1994-07-25 2003-01-27 日本冶金工業株式会社 伸び特性に優れる2相ステンレス鋼板とその製造方法
US20050016636A1 (en) * 2001-11-22 2005-01-27 Yutaka Kobayashi Stainless steel for use under circumstance where organic acid and saline are present
KR100460346B1 (ko) * 2002-03-25 2004-12-08 이인성 금속간상의 형성이 억제된 내식성, 내취화성, 주조성 및열간가공성이 우수한 슈퍼 듀플렉스 스테인리스강
BRPI0412092A (pt) * 2003-06-30 2006-09-05 Sumitomo Metal Ind aço inoxidável dúplex
BRPI0406423B1 (pt) * 2003-08-07 2012-12-11 aço inoxidável duplex e seu método de produção.
US7396421B2 (en) 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
US8710405B2 (en) * 2005-04-15 2014-04-29 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless steel welding wire and welding structure
JP5072285B2 (ja) 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 二相ステンレス鋼
SE530847C2 (sv) * 2006-12-14 2008-09-30 Sandvik Intellectual Property Platta till plattvärmeväxlare, plattvärmeväxlare uppbyggd av sådana plattor samt användning av denna plattvärmeväxlare
JP5096762B2 (ja) * 2007-02-26 2012-12-12 株式会社荏原製作所 遠心式ポンプ
UA90217C2 (ru) * 2007-03-26 2010-04-12 Сумитомо Метал Индастриз, Лтд. Труба нефтяного сортамента для развальцовывания в скважине и дуплексная нержавеющая сталь для труб нефтяного сортамента, приспособленных для развальцевания
US8313691B2 (en) 2007-11-29 2012-11-20 Ati Properties, Inc. Lean austenitic stainless steel
EP2229463B1 (en) * 2007-12-20 2017-09-06 ATI Properties LLC Corrosion resistant lean austenitic stainless steel
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
DK2245202T3 (da) * 2007-12-20 2011-12-19 Ati Properties Inc Austenitisk rustfrit stål med lavt nikkelindhold indeholdende stabiliserende grundstoffer
JP5675139B2 (ja) * 2010-03-26 2015-02-25 新日鐵住金ステンレス株式会社 耐食性に優れた二相ステンレス鋼材の製造方法
CN103298965B (zh) 2011-01-27 2016-09-28 新日铁住金不锈钢株式会社 合金元素节减型双相不锈钢热轧钢材、具备双相不锈钢作为夹层材料的包层钢板及它们的制造方法
CN103741070B (zh) * 2014-01-23 2015-11-18 江苏银环精密钢管有限公司 一种环氧乙烷反应器用双相不锈钢无缝钢管
CN104195447B (zh) * 2014-08-19 2016-08-24 张家港市飞浪泵阀有限公司 用在泵阀产品上的超级双相不锈钢及其制备方法
RU2693718C2 (ru) * 2017-06-16 2019-07-04 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Дуплексная нержавеющая сталь для производства запорной и регулирующей арматуры

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713399B2 (ja) * 1973-02-07 1982-03-17
JPS58224155A (ja) * 1982-06-19 1983-12-26 Kawasaki Steel Corp 2相ステンレス継目無鋼管およびその製造方法
JPS61113749A (ja) * 1984-11-09 1986-05-31 Kawasaki Steel Corp 油井用高耐食性合金
JPH0218378B2 (ja) * 1986-02-01 1990-04-25 Nippon Yakin Kogyo Co Ltd
JPH0598395A (ja) * 1991-06-19 1993-04-20 Nisshin Steel Co Ltd 高温疲労特性および耐高温塩害腐食性に優れたオーステナイト系ステンレス鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343372B2 (ja) * 1973-12-14 1978-11-18
JPS5713399A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Method of storing radioactive waste
JPS6156236A (ja) * 1984-08-23 1986-03-20 Sumitomo Metal Ind Ltd 加工用2相ステンレス鋼熱延鋼帯の製造方法
SE453838B (sv) * 1985-09-05 1988-03-07 Santrade Ltd Hogkvevehaltigt ferrit-austenitiskt rostfritt stal
JPS62267452A (ja) * 1986-05-15 1987-11-20 Nisshin Steel Co Ltd 溶接部の耐食性に優れた二相ステンレス鋼
JPH04165019A (ja) * 1990-10-26 1992-06-10 Sumitomo Metal Ind Ltd 高耐食性継目無二相ステンレス鋼管の製造法
JP2500162B2 (ja) * 1991-11-11 1996-05-29 住友金属工業株式会社 耐食性に優れた高強度二相ステンレス鋼
IT1257695B (it) * 1992-04-24 1996-02-01 Acciaio austeno-ferritico avente alta resistenza alla corrosione ed elevato carico di snervamento allo stato solubizzato.
JP3166798B2 (ja) * 1992-10-06 2001-05-14 住友金属工業株式会社 耐食性、相安定性に優れた二相ステンレス鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713399B2 (ja) * 1973-02-07 1982-03-17
JPS58224155A (ja) * 1982-06-19 1983-12-26 Kawasaki Steel Corp 2相ステンレス継目無鋼管およびその製造方法
JPS61113749A (ja) * 1984-11-09 1986-05-31 Kawasaki Steel Corp 油井用高耐食性合金
JPH0218378B2 (ja) * 1986-02-01 1990-04-25 Nippon Yakin Kogyo Co Ltd
JPH0598395A (ja) * 1991-06-19 1993-04-20 Nisshin Steel Co Ltd 高温疲労特性および耐高温塩害腐食性に優れたオーステナイト系ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0757112A4 *

Also Published As

Publication number Publication date
DE69506537D1 (de) 1999-01-21
DE69506537T2 (de) 1999-07-08
EP0757112B1 (en) 1998-12-09
EP0757112A1 (en) 1997-02-05
EP0757112A4 (en) 1997-06-18
JPH07278755A (ja) 1995-10-24
JP3446294B2 (ja) 2003-09-16
US5849111A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
WO1995027090A1 (fr) Acier inoxydable a deux phases
EP1645355B1 (en) Austenitic steel weld joint
CA2830155C (en) Carburization resistant metal material
EP2048255A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
US20060191605A1 (en) Duplex stainless steel
JPH02200756A (ja) 加工性に優れた高強度耐熱鋼
KR20040007764A (ko) 배기가스 유로 부재용 페라이트계 스테인레스 강
EP0084588B1 (en) Heat-resistant and corrosion-resistant weld metal alloy and welded structure
CN111344427B (zh) 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法
JP2573118B2 (ja) 被削性の優れた機械構造用電気抵抗溶接鋼管
AU2013241368A1 (en) Process for producing welded joint, and welded joint
WO2015151519A1 (ja) 高張力鋼板およびその製造方法
JP3322097B2 (ja) 溶接施工性に優れた高強度、高耐食フェライト鋼用溶接材料
EP0812646B1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP2000234140A (ja) 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP6638552B2 (ja) オーステナイト系耐熱鋼用溶接材料
JP2002331387A (ja) 高靱性マルテンサイト系ステンレス鋼用溶接ワイヤ
JP3918670B2 (ja) 高耐食オーステナイト鋼用溶接材料および溶接金属
JP2019007055A (ja) 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
JPH03177539A (ja) 被削性の優れた機械構造用電気抵抗溶接鋼管
JP7360032B2 (ja) オーステナイト系耐熱鋼溶接継手
JPH02280993A (ja) 高Crフェライト鋼用溶接材料
JP4215161B2 (ja) 低熱膨張係数合金製溶接構造物および低熱膨張係数合金用溶接材料
JP2575250B2 (ja) 耐食性および溶接性の優れたラインパイプ
JP2021195602A (ja) 低合金耐熱鋼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995913417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08718574

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995913417

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995913417

Country of ref document: EP