WO2015151519A1 - 高張力鋼板およびその製造方法 - Google Patents

高張力鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015151519A1
WO2015151519A1 PCT/JP2015/001868 JP2015001868W WO2015151519A1 WO 2015151519 A1 WO2015151519 A1 WO 2015151519A1 JP 2015001868 W JP2015001868 W JP 2015001868W WO 2015151519 A1 WO2015151519 A1 WO 2015151519A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
toughness
steel
steel plate
strength
Prior art date
Application number
PCT/JP2015/001868
Other languages
English (en)
French (fr)
Inventor
克行 一宮
正雄 柚賀
長谷 和邦
遠藤 茂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167027078A priority Critical patent/KR20160127808A/ko
Priority to JP2016511393A priority patent/JP6245352B2/ja
Priority to CN201580016841.4A priority patent/CN106133168B/zh
Priority to EP15774406.1A priority patent/EP3128033B1/en
Priority to US15/129,896 priority patent/US10316385B2/en
Publication of WO2015151519A1 publication Critical patent/WO2015151519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-tensile steel plate used for a steel structure such as a ship, an offshore structure, a pressure vessel, and a penstock, and a manufacturing method thereof.
  • the yield stress (YS) is 460 MPa or more, which relates to a high-strength steel sheet that not only excels in the strength and toughness of the base metal, but also in the low-temperature toughness of the weld when multi-layer welding is performed, and its manufacturing method. is there.
  • Steel used for ships, marine structures, and pressure vessels is welded and finished as a structure with a desired shape. Therefore, these steels have high base metal strength and excellent toughness from the viewpoint of structural safety, as well as excellent toughness in welded joints (welded metal and heat-affected zone). It is required that
  • absorbed energy by Charpy impact test has been used mainly as an evaluation standard for toughness of steel, but in recent years, crack opening displacement test (Crack Tip Opening Displacement Test, below)
  • a CTOD test is used, and an evaluation result in this test is called a CTOD characteristic or CTOD value).
  • This test evaluates the resistance to brittle fracture by bending a specimen with a fatigue precrack in the toughness evaluation section at three points and measuring the amount of crack opening (plastic deformation) just before fracture. Is.
  • the local embrittlement region is likely to occur in a welding heat-affected zone (hereinafter, also referred to as HAZ) that undergoes a complex heat history when multi-layer welding is performed on steel with a large plate thickness, specifically,
  • HAZ welding heat-affected zone
  • the bond part boundary between the weld metal and base metal
  • the part where the bond part is reheated to the two-phase region coarse grains are formed by welding in the first cycle, and are heated to the two-phase region of ferrite and austenite by the subsequent welding pass.
  • Region hereinafter referred to as a two-phase region reheating part
  • Region hereinafter referred to as a two-phase region reheating part
  • the bond portion Since the bond portion is exposed to a high temperature just below the melting point, austenite grains are coarsened and are easily transformed into an upper bainite structure having low toughness by subsequent cooling, so that the matrix itself has low toughness. Further, in the bond portion, a brittle structure such as a Woodman Stetten structure or island martensite (MA) is easily generated, and the toughness is further reduced.
  • a brittle structure such as a Woodman Stetten structure or island martensite (MA) is easily generated, and the toughness is further reduced.
  • TiN is finely dispersed in steel to suppress the coarsening of austenite grains or use it as a ferrite transformation nucleus.
  • the bonded portion may be heated to a temperature range where TiN dissolves, and the above-mentioned effects cannot be exhibited as the low temperature toughness requirement of the welded portion becomes more severe.
  • Patent Document 1 and Patent Document 2 disclose a technique for suppressing the austenite grain growth and improving weld toughness by adding rare earth elements (REM) together with Ti and dispersing fine particles in the steel. Is disclosed.
  • REM rare earth elements
  • Patent Document 3 discloses a technique that mainly increases the amount of Mn added to 2% or more.
  • Mn tends to segregate at the center of the slab in continuous casting, and the center segregation increases not only in the base metal but also in the heat-affected zone of the weld as a starting point for fracture, causing a decrease in the base metal and HAZ toughness. .
  • the steel materials used for these steel structures are, for example, many thick materials with a plate thickness of 35 mm or more and 100 mm or less, so in order to ensure a yield stress of 420 MPa class or higher, a steel component system with many alloy elements is required. It is advantageous. As described above, it is difficult to ensure the toughness of the bond part and the two-phase region reheated part in this steel component system with a lot of alloying elements.
  • Patent Document 6 defines a carbon equivalent Ceq under a predetermined component composition, and yield stress of 420 MPa or more and good low temperature toughness (CTOD characteristics) even in a steel component system with many alloying elements. It has been proposed to realize With this proposed technology, the yield stress (YS) suitable for the steel structure of the above-mentioned use is 420 MPa or more, and the low temperature toughness (CTOD characteristics) of the weld heat affected zone of multi-layer welds due to small to medium heat input. It has become possible to provide an excellent high-tensile steel sheet and a method for producing the same.
  • an object of the present invention is to provide a steel plate that stably exhibits a yield stress of 460 MPa or more and a CTOD crack opening displacement of 0.5 mm or more even in a steel plate having a thickness of 35 mm to 100 mm.
  • the inventors of the present invention have completed the present invention by designing specific components under the technical idea shown below. i) Since the CTOD characteristic is evaluated by a test piece having a full thickness of the steel sheet, the central segregation portion where the components are concentrated becomes the starting point of the fracture. Therefore, in order to improve the CTOD characteristic of the weld heat affected zone, the element that is easily concentrated as the center segregation of the steel sheet is controlled to an appropriate amount, and the hardening of the center segregation portion is suppressed. Since the concentration of C, Mn, P, Ni, and Nb is higher than that of other elements at the center of the slab that becomes the final solidification part when the molten steel solidifies, the amount of addition of these elements is set to the center segregation part hardness. The hardness is controlled at the center segregation by controlling the thickness index.
  • TiN is effectively used to suppress austenite grain coarsening in the vicinity of the weld bond.
  • TiN can be uniformly and finely dispersed in the steel.
  • the crystallization of the Ca compound (CaS) added for the purpose of controlling the form of sulfide is utilized for improving the toughness of the heat affected zone.
  • CaS crystallizes at a lower temperature than oxides, so it can be finely dispersed uniformly.
  • solid solution S is secured even after CaS crystallization, so that MnS precipitates on the surface of CaS and combines Forms sulfides. Since a thin Mn band is formed around MnS, ferrite transformation is further promoted.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.02 to 0.08%, Si: 0.01-0.35%, Mn: 1.4-2.0% P: 0.007% or less, S: 0.0035% or less, Al: 0.010 to 0.060%, Ni: 0.5-2.0% Mo: 0.10 to 0.50%, Nb: 0.005-0.040%, Ti: 0.005-0.025%, B: Less than 0.0003%, N: 0.002 to 0.005% Ca: 0.0005 to 0.0050% and O: 0.0030% or less, Ceq defined by the following formula (1): 0.420 to 0.520, Ti / N: 1.5 to 4.0, and the following formulas (2) and (3) A high-tensile steel sheet satisfying the formula and having a composition comprising the balance of Fe and inevitable impurities.
  • the component composition is further mass%, Cu: 0.7% or less, Cr: 0.1-1.0% and V: 0.005-0.050% 2.
  • the cumulative rolling reduction in the temperature range of 950 ° C or higher is 30% or more, and the cumulative rolling reduction in the temperature range of less than 950 ° C is 30 to 30%.
  • a method for producing a high-strength steel sheet comprising subjecting hot rolling to 70%, cooling to 600 ° C. or less at a cooling rate of 1.0 ° C./s or more, and then tempering to 450 to 650 ° C.
  • the yield stress (YS) suitable for large steel structures such as offshore structures is 460 MPa or more, and low temperature toughness, especially CTOD characteristics, of small to medium heat input multilayer welds is excellent.
  • High-tensile steel sheets can be provided stably regardless of thickness, even at thicknesses of 35 mm or more and 100 mm or less.
  • the present invention will be specifically described below. First, in the present invention, the reason why the component composition of steel is limited to the above-described range will be described for each component.
  • the% display which shows the component composition of steel described below means the mass%.
  • C 0.02 to 0.08% C is an element necessary for ensuring the strength of the base material as a high-tensile steel plate. If C is less than 0.02, hardenability decreases, and a large amount of hardenability-enhancing elements such as Cu, Ni, Cr and Mo are required to secure strength, resulting in high costs and poor weldability. On the other hand, if the C content exceeds 0.080%, the weld zone toughness deteriorates. Accordingly, the C content is in the range of 0.02 to 0.08%. Preferably, it is 0.07% or less. More preferably, it is 0.03 to 0.07%.
  • Si 0.01-0.35%
  • Si is a component added as a deoxidizing material and for obtaining the strength of the base material.
  • the Si amount needs to be 0.01 to 0.35%.
  • it is 0.23% or less. More preferably, it is 0.01 to 0.20%.
  • Mn 1.4-2.0% Mn is added in an amount of 1.4% or more in order to ensure the strength of the base metal and the welded joint. However, if it exceeds 2.0%, the weldability is lowered, the hardenability becomes excessive, and the base metal toughness and weld joint toughness are lowered. More preferably, it is 1.40 to 1.85%.
  • P 0.007% or less
  • P is an impurity element, and lowers the base metal toughness and weld zone toughness. Particularly, when the content exceeds 0.007% in the weld zone, the CTOD characteristics are remarkably lowered.
  • S 0.0035% or less S is an inevitably mixed impurity. If it exceeds 0.0035%, the toughness of the base metal and the welded portion is lowered, so the content is made 0.0035% or less. Preferably, it is 0.0030% or less.
  • Al 0.010-0.060%
  • Al is an element added to deoxidize molten steel, and it is necessary to contain 0.010% or more. On the other hand, if added over 0.060%, the toughness of the base metal and the welded part is lowered, and it is mixed into the welded metal part by dilution by welding to lower the toughness. Therefore, it is limited to 0.060% or less. Preferably, the content is 0.017 to 0.055%. In the present invention, the amount of Al is defined by acid-soluble Al (also referred to as Sol.Al or the like).
  • Ni 0.5-2.0%
  • Ni is an element effective for improving the strength and toughness of steel, and is also effective for improving the CTOD characteristics of welds. In order to obtain this effect, addition of 0.5% or more is necessary.
  • Ni is an expensive element, and excessive addition tends to cause slab surface defects during casting, so the upper limit is set to 2.0%. More preferably, it is 0.5 to 1.8%.
  • Mo 0.10 to 0.50% Mo is an element effective for increasing the strength of the base material, and is particularly effective for high-strength steel materials. In order to exhibit this effect, 0.10% or more is contained. However, if contained excessively, the toughness is adversely affected, so the content is made 0.50% or less. Further, it is preferably 0.15 to 0.40%.
  • Nb 0.005-0.040%
  • Nb contributes to the formation of an unrecrystallized region in the low temperature region of austenite.
  • the structure can be refined and toughened by performing rolling in the temperature range.
  • it is effective in improving hardenability and tempering softening resistance, and is also an effective element for improving the base material strength.
  • it is necessary to contain 0.005% or more.
  • the upper limit is made 0.040%, preferably 0.035%.
  • Ti 0.005-0.025%
  • Ti precipitates as TiN when the molten steel solidifies, and suppresses the austenite coarsening in the weld zone, contributing to the improvement of the toughness of the weld zone.
  • the content is less than 0.005%, the effect is small.
  • the content exceeds 0.025%, TiN becomes coarse and the effect of improving the toughness of the base metal and the welded part cannot be obtained, so the content is made 0.005 to 0.025%. More preferably, it is 0.006 to 0.020%.
  • B Less than 0.0003% B segregates at the austenite grain boundaries when the steel is cooled from the austenite region, suppresses ferrite transformation, and generates a bainite structure containing a large amount of island martensite (MA). Addition of B is particularly limited to less than 0.0003% in order to embrittle the structure of the heat affected zone.
  • N 0.002 to 0.005%
  • N reacts with Ti and Al to form precipitates, thereby refining crystal grains and improving the base material toughness.
  • it is an element necessary for forming TiN which suppresses the coarsening of the structure of the weld.
  • N it is necessary to contain N at 0.002% or more.
  • the solid solution N significantly lowers the toughness of the base metal and the welded part, or the strength decreases due to the decrease in solid solution Nb accompanying the formation of TiNb composite precipitates, so the upper limit is set. 0.005%. More preferably, it is 0.0025 to 0.0045%.
  • Ca 0.0005 to 0.0050%
  • Ca is an element that improves toughness by fixing S. In order to obtain this effect, addition of at least 0.0005% is necessary. However, since the effect is saturated even if it contains exceeding 0.0050, it adds in 0.0005 to 0.0050% of range. More preferably, it is 0.0008 to 0.0040%.
  • O 0.0030% or less O is added in excess of 0.0030%, so that the toughness of the base material deteriorates, so 0.0030% or less, preferably 0.0025% or less.
  • Ceq 0.420 to 0.520 If Ceq defined by the formula (1) is less than 0.420, it is difficult to obtain a strength of yield stress of 460 MPa class. In particular, in order to ensure the strength of 460 MPa class for steel plates with a thickness of about 35 mm to 50 mm, as well as for the strength of 460 MPa class for steel plates with a thickness of 50 mm or more, a component with Ceq of 0.420 or more is also required. It is important to design. Preferably, the strength of more than 560 MPa can be secured by making Ceq more than 0.440. On the other hand, when Ceq exceeds 0.520, the weldability and weld zone toughness are lowered, so 0.520 or less. Preferably, Ceq is 0.50 or less.
  • Ti / N 1.5-4.0
  • the Ti / N is the ratio of the content (% by mass) of each element.
  • MnS precipitated alone is elongated during rolling and causes toughness reduction of the base material.
  • ACR is 1 or more
  • S is completely fixed by Ca
  • MnS that acts as ferrite nuclei does not precipitate on CaS, so that the composite sulfide can achieve fine dispersion of ferrite nuclei. It becomes impossible and the effect of improving toughness cannot be obtained.
  • ACR exceeds 0 and is less than 1, MnS precipitates on CaS to form a composite sulfide, which effectively functions as a ferrite-forming nucleus.
  • the ACR is preferably in the range of 0.2 to 0.8.
  • 5.5 [C] 4/3 +15 [P] +0.90 [Mn] +0.12 [Ni] +7.9 [Nb] 1/2 + 0.53 [Mo] ⁇ 3.70 5.5 [C] 4/3 +15 [P] +0.90 [Mn] +0.12 [Ni] +7.9 [Nb] 1/2 +0.53 [Mo] is composed of components that tend to concentrate in central segregation.
  • the central segregation portion hardness index is referred to as a Ceq * value in the following description.
  • the CTOD test is a test for the entire thickness of the steel sheet.
  • the test piece used for the test contains center segregation, and if the concentration of the component due to center segregation is significant, a hardened zone is generated in the weld heat affected zone, and a good CTOD value cannot be obtained.
  • the appropriate range of the Ceq * value is obtained experimentally, and if the Ceq * value exceeds 3.70, the CTOD characteristic is degraded, so it is set to 3.70 or less. Preferably it is 3.50 or less.
  • the above is the basic component composition of the present invention.
  • one or more selected from Cu: 0.7% or less, Cr: 0.1 to 1.0% and V: 0.005 to 0.050% or Two or more kinds can be contained.
  • Cu 0.7% or less Cu is effective in increasing the strength of the base material, and for that purpose, it is preferably added at 0.1% or more. However, since addition exceeding 0.7% will reduce hot ductility, it is preferable to make it 0.7% or less. More preferably, it is 0.6% or less.
  • Cr 0.1-1.0% Cr is an element effective for increasing the strength of the base material, and 0.1% or more is preferably contained in order to exhibit this effect. However, if it is excessively contained, the toughness is adversely affected. Therefore, when it is added, the content is preferably made 1.0% or less. Further, it is preferably 0.2 to 0.8%.
  • V 0.005 to 0.050%
  • V is an element effective for improving the strength and toughness of the base metal when contained in an amount of 0.005% or more. However, if the content exceeds 0.050%, the toughness is reduced, so when added, it should be 0.005 to 0.050%. Is preferred.
  • Hvmax / Hvave ⁇ 1.35 + 0.006 / [C] -t / 500
  • Hvmax is the maximum value of the Vickers hardness of the center segregation part
  • Hvave is the average value of the Vickers hardness of the part excluding the center segregation part from the front and back surfaces of the steel sheet to 1/4 of the plate thickness
  • [ C] represents the C content (% by mass)
  • t represents the plate thickness (mm).
  • Hvmax / Hvave is a dimensionless parameter representing the hardness of the central segregation part, and if the value becomes higher than the value obtained by 1.35 + 0.006 / [C] ⁇ t / 500, the CTOD value decreases, so 1.35 + 0 .006 / [C] -t / 500 or less is preferable. More desirably, it is 1.25 + 0.006 / [C] -t ⁇ 500 or less.
  • Hvmax is measured with a Vickers hardness tester (load 10 kgf) in the thickness direction of 0.25 mm in the thickness direction of the steel plate, including the center segregation part in the thickness direction of the steel plate. And the maximum value among the measured values obtained.
  • Hvave is the range excluding the central segregation part between the position of 1/4 of the plate thickness from the steel plate surface and the position of 1/4 of the plate thickness from the back surface with the load of 10 kgf of Vickers hardness tester. The average value of values measured at regular intervals (for example, 1 to 2 mm) in the thickness direction.
  • the molten steel adjusted to the component composition according to the present invention is melted by a normal method using a converter, an electric furnace, a vacuum melting furnace or the like, then formed into a slab through a continuous casting process, and then desired by hot rolling. And then cooled and tempered. At that time, it is particularly important to define the slab heating temperature and the rolling reduction in the hot rolling.
  • the temperature condition of the steel plate is defined by the temperature at the center of the plate thickness of the steel plate.
  • the temperature at the center of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like.
  • the temperature at the center of the plate thickness can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
  • Slab heating temperature 1030 ⁇ 1200 °C
  • the slab heating temperature is set to 1030 ° C. or higher so that casting defects existing in the slab are steadily pressed by hot rolling.
  • the upper limit of the heating temperature is set to 1200 ° C.
  • Cumulative rolling reduction of hot rolling in a temperature range of 950 ° C. or higher: 30% or more In order to make austenite grains into a fine microstructure by recrystallization, the cumulative rolling reduction in hot rolling is set to 30% or more. This is because if it is less than 30%, abnormal coarse grains produced during heating remain, which adversely affects the toughness of the base material.
  • the cumulative rolling reduction is less than 30%, the internal energy accumulation due to internal strain is not sufficient, so that ferrite transformation hardly occurs and the base metal toughness is lowered.
  • the cumulative rolling reduction exceeds 70%, the formation of polygonal ferrite is promoted and high strength and high toughness are not compatible.
  • Cooling rate of 1.0 ° C / s or higher to 600 ° C or lower After hot rolling, accelerated cooling to 600 ° C or lower at a cooling rate of 1.0 ° C / s or higher. That is, when the cooling rate is less than 1.0 ° C./s, sufficient strength of the base material cannot be obtained. Moreover, when cooling is stopped at a temperature higher than 600 ° C., the fraction of the structure such as ferrite + pearlite and upper bainite becomes high, and high strength and high toughness are not compatible. In addition, when performing tempering after accelerated cooling, the minimum of the stop temperature of accelerated cooling is not specifically limited. On the other hand, when tempering is not performed in the subsequent process, it is preferable to set the stop temperature of accelerated cooling to 350 ° C. or higher.
  • Tempering temperature 450 ° C to 650 ° C If the tempering temperature is less than 450 ° C., sufficient tempering effect cannot be obtained. On the other hand, if tempering is performed at a temperature exceeding 650 ° C., carbonitrides are coarsely precipitated to reduce toughness and may cause a decrease in strength. In addition, tempering is more preferably performed by induction heating because the coarsening of carbides during tempering is suppressed. In that case, control is performed so that the center temperature of the steel sheet calculated by a simulation such as a difference method becomes 450 ° C. to 650 ° C.
  • the steel of the present invention suppresses the coarsening of austenite grains in the weld heat affected zone, and further finely disperses the ferrite transformation nuclei that do not dissolve even at high temperatures, thereby refining the structure of the weld heat affected zone. Is obtained. Even in the region that is reheated to the two-phase region by the thermal cycle during multi-layer welding, the structure of the weld heat affected zone by the first welding is refined, so that the untransformed region in the two-phase region reheat region It is possible to improve the toughness, refine the austenite grains that retransform, and reduce the degree of toughness reduction.
  • a continuously cast slab having the composition of steel symbols A to Z and A1 shown in Table 1 hot rolling and heat treatment were performed to produce a thick steel plate having a thickness of 50 to 100 mm.
  • a tensile test was conducted by taking a JIS No. 4 test piece from the 1/2 position of the steel plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the steel plate, and yield stress ( YS) and tensile strength (TS) were measured.
  • JIS V notch test specimens were taken from 1/2 position of the steel sheet thickness so that the longitudinal direction of the specimen was perpendicular to the rolling direction of the steel sheet, and the absorbed energy vE ⁇ at ⁇ 40 ° C. 40 ° C was measured. Those satisfying all of YS ⁇ 460 MPa, TS ⁇ 570 MPa, and vE ⁇ 40 ° C. ⁇ 200 J were evaluated as having good base material properties.
  • Welded joint toughness was evaluated by using a K-type groove to produce a multi-layer welded joint by submerged arc welding with a welding heat input of 35 kJ / cm, and a weld bond on the straight side at 1/4 of the steel plate thickness.
  • Welded joint toughness was evaluated by using a K-type groove to produce a multi-layer welded joint by submerged arc welding with a welding heat input of 35 kJ / cm, and a weld bond on the straight side at 1/4 of the steel plate thickness.
  • Table 2 shows the base metal properties, the Charpy impact test results and the CTOD test results of the welds, together with the hot rolling conditions and heat treatment conditions.
  • steel plates whose strength or toughness of the base material does not reach the target and have not been evaluated without producing a joint.
  • steels A to E and A1 are invention examples, and steels F to Z are comparative examples in which the component amount of any of the component compositions is outside the scope of the present invention.
  • Samples Nos. 1 to 10 and 31 are all inventive examples, and the results of the Charpy impact test of the weld bond and the results of the three-point bending CTOD test of the weld bond were satisfactory.
  • Sample Nos. 4 and 5 have Ceq within the range of the present invention, and YP: 460 MPa or more is achieved even when the plate thickness is changed from 50 mm to 100 mm.
  • Sample Nos. 11 to 30 have a steel composition outside the scope of the present invention, and satisfy the results of the base metal toughness or the Charpy impact test results of the weld bond and the three-point bending CTOD test of the weld bond. It wasn't.

Abstract

 降伏応力が板厚の影響を受けることなしに、板厚が100mm以上の鋼板にあっても同50mmの鋼板と同等の性能を保証する、新規な成分設計を高張力鋼板に与える。 質量%で、C:0.02~0.08%、Si:0.01~0.35%、Mn:1.4~2.0%、P:0.007%以下、S:0.0035%以下、Al:0.010~0.060%、Ni:0.5~2.0%、Mo:0.10~0.50%、Nb:0.005~0.040%、Ti:0.005~0.025%、B:0.0003%未満、N:0.002~0.005%、Ca:0.0005~0.0050%およびO:0.003%以下を含有し、さらに各成分が所定の関係を満足する成分組成を有する。

Description

高張力鋼板およびその製造方法
 本発明は、船舶や海洋構造物、圧力容器、ペンストックなど鉄鋼構造物に用いられる高張力鋼板およびその製造方法に関する。特に、降伏応力(YS)が460MPa以上と、母材の強度・靭性に優れるだけでなく、多層溶接を施した際の該溶接部の低温靭性にも優れる高張力鋼板とその製造方法に関するものである。
 船舶や海洋構造物、圧力容器に用いられる鋼は溶接接合して、所望の形状の構造物として仕上げられる。そのため、これらの鋼には、構造物の安全性の観点から母材の強度が高く、靭性が優れていることはもちろんのこと、溶接継手部(溶接金属や熱影響部)の靭性にも優れていることが要求される。
 鋼の靭性の評価基準としては、従来、主にシャルピー衝撃試験による吸収エネルギーが用いられてきたが、近年では、より信頼性を高めるために、き裂開口変位試験(Crack Tip Opening Displacement Test、以下CTOD試験とし、この試験での評価結果をCTOD特性またはCTOD値という)が用いられることが多い。この試験は、靭性評価部に疲労予き裂を発生させた試験片を3点曲げし、破壊直前のき裂の口開き量(塑性変形量)を測定して脆性破壊の発生抵抗を評価するものである。
 このCTOD試験では、疲労予き裂を用いるので極めて微小な領域が靭性評価部となり、局所脆化域が存在すると、シャルピー衝撃試験で良好な靭性が得られても、低い靭性を示す場合がある。
 前記局所脆化域は、板厚が厚い鋼などに多層盛溶接を施した際に、複雑な熱履歴を受ける溶接熱影響部(以下、HAZとも称する)で発生しやすく、具体的には、ボンド部(溶接金属と母材の境界)やボンド部が2相域に再加熱される部分(1サイクル目の溶接で粗粒となり、後続の溶接パスによりフェライトとオーステナイトの2相域に加熱される領域、以下2相域再加熱部という)が局所脆化域となる。
 前記ボンド部は、融点直下の高温にさらされるため、オーステナイト粒が粗大化し、引き続く冷却により靭性の低い上部ベイナイト組織に変態しやすいことから、マトリクス自体の靭性が低い。また、ボンド部では、ウッドマンステッテン組織や島状マルテンサイト(MA)などの脆化組織が生成しやすく、靭性はさらに低下する。
 溶接熱影響部の靭性を向上させるため、例えば鋼中にTiNを微細分散させ、オーステナイト粒の粗大化を抑制したり、フェライト変態核として利用したりする技術が実用化されている。しかしながら、ボンド部においてはTiNが溶解する温度域にまで加熱されることがあり、溶接部の低温靭性要求が厳しいほど、上述の作用効果が発揮されなくなる。
 一方、特許文献1や特許文献2には、希土類元素(REM)をTiと共に複合添加して鋼中に微細粒子を分散させることにより、オーステナイトの粒成長を抑制し、溶接部靭性を向上させる技術が開示されている。
 その他に、Tiの酸化物を分散させる技術や、BNのフェライト核生成能と酸化物分散を組み合わせる技術、さらにはCaやREMを添加して硫化物の形態を制御することにより、靭性を高める技術も、提案されている。
 しかし、これらの技術は、比較的低強度で合金元素量の少ない鋼材が対象であるところ、より高強度で合金元素量の多い鋼材の場合はHAZ組織がフェライトを含まない組織となるために、適用できない。
 そのため、溶接熱影響部においてフェライトを生成しやすくする技術として、特許文献3には、主にMnの添加量を2%以上に高める技術が開示されている。しかし、連続鋳造材ではスラブの中心部にMnが偏析しやすく、母材のみならず溶接熱影響部でも中心偏析部は硬度を増し破壊の起点となるため、母材およびHAZ靭性の低下を引き起こす。
 一方、2相域再加熱部は、2相域再加熱で、オーステナイトに逆変態した領域に炭素が濃化して、冷却中に島状マルテンサイトを含む脆弱なベイナイト組織が生成され、靭性が低下する。そのため、鋼組成を低C、低Si化し島状マルテンサイトの生成を抑制して靭性を向上し、Cuを添加することにより母材強度を確保する技術が開示されている(例えば、特許文献4および5)。これらは、時効処理によるCuの析出で強度を高めるものであるが、多量のCuを添加するために熱間延性が低下し、生産性を阻害する。
 ところで、船舶や海洋構造物、圧力容器、ペンストックなど、鉄鋼構造物においては、その大型化に伴い、鋼材に対しては一層の高強度化が要望されている。これら鉄鋼構造物に用いられる鋼材は、例えば、板厚が35mm以上100mm以下の厚肉材が多いので、降伏応力420MPa級やそれ以上の強度を確保するためには合金元素の多い鋼成分系が有利である。 この合金元素の多い鋼成分系において、ボンド部や2相域再加熱部の靭性を確保するのが難しいことは上述のとおりである。
 この点、特許文献6には、所定の成分組成の下に炭素当量Ceqを規定して、合金元素の多い鋼成分系であっても、420MPa以上の降伏応力と良好な低温靭性(CTOD特性)とを実現することが提案されている。この提案の技術によって、上記した使途の鉄鋼構造物に用いて好適な降伏応力(YS)が420MPa以上で、小~中入熱による多層溶接部の溶接熱影響部の低温靭性(CTOD特性)に優れる高張力鋼板とその製造方法を提供することが可能になった。
特公平03-053367号公報 特開昭60-184663号公報 特開2003-147484号公報 特開平05-186823号公報 特開2001-335884号公報 特開2012-184500号公報
 近年、上記した使途の鉄鋼構造物は、益々重厚長大化する傾向にあり、中でも船舶や海洋構造物においては降伏応力(YS)が高くかつ溶接熱影響部の低温靭性(CTOD特性)に優れる、厚い素材の提供が希求されている。特に、優れたCTOD特性と460MPa以上の降伏応力とを有する、35mm以上100mm以下の厚板に対する要望が強い。
 上記した特許文献6に記載の技術によって、合金元素の多い鋼成分系であっても420MPa以上の降伏応力と良好な低温靭性(CTOD特性)とを実現するための方途は拓かれたが、例えば厚みが50mm超の厚板においても厚みが50mmの鋼板の場合と同様に、十分な特性を得るまでには至っていない。すなわち、特許文献6に記載の技術によって、板厚が50mmの鋼板では500MPa以上の降伏応力が得られているが、板厚が50mm超になると板厚70mmで462MPa止まりの降伏応力になり、降伏応力が板厚の影響を受けることになる。
 また、特許文献6に記載のように、さらに高強度化を狙って、420MPa以上級の材料に添加元素を単に添加すると、CTOD特性が劣化してしまう場合があった。
 そこで、本発明は、板厚35mm~100mmの厚鋼板においても降伏応力が460MPa以上でかつCTOD亀裂開口変位が0.5mm以上を安定的に示す鋼板を提供することを目的とする。
 本発明者等は、次に示す技術思想の下に、具体的な成分設計を行って本発明を完成するに到った。
i)CTOD特性は、鋼板全厚の試験片で評価されるため、成分の濃化する中心偏析部が破壊の起点となる。従って、溶接熱影響部のCTOD特性を向上するため、鋼板の中心偏析として濃化しやすい元素を適正量に制御し、中心偏析部の硬化を抑制する。溶鋼が凝固する際に最終凝固部となるスラブの中心において、C、Mn、P、Ni及びNbが他の元素に比べて濃化度が高いため、これらの元素の添加量を中心偏析部硬さ指標により制御して中心偏析での硬さを抑制する。
ii)溶接熱影響部の靭性を向上させるため、TiNを有効利用して溶接ボンド部近傍でオーステナイト粒の粗大化を抑制する。Ti/Nを適正量に制御することにより、鋼中にTiNを均一に微細分散できる。
iii)硫化物の形態制御を目的として添加しているCaの化合物(CaS)の晶出を溶接熱影響部の靭性向上に利用する。CaSは、酸化物に比べて低温で晶出するため、均一に微細分散することができる。そして、CaSの添加量および添加時の溶鋼中の溶存酸素量を適正範囲に制御することによって、CaS晶出後でも固溶Sが確保されるので、CaSの表面上にMnSが析出して複合硫化物を形成する。このMnSの周囲には、Mnの希薄帯が形成されるので、フェライト変態がより促進される。
iv)また、CTOD値と強度とはトレードオフの関係なので、従来の高C-高Pの組成ではCeqを上昇させると、CTOD値が不十分となってしまう。それを解決するために、低C-低P-高Niの組成とすることで強度-CTOD値のバランスが改善することを見出した。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.02~0.08%、
 Si:0.01~0.35%、
 Mn:1.4~2.0%、
 P:0.007%以下、
 S:0.0035%以下、
 Al:0.010~0.060%、
 Ni:0.5~2.0%、
 Mo:0.10~0.50%、
 Nb:0.005~0.040%、
 Ti:0.005~0.025%、
 B:0.0003%未満、
 N:0.002~0.005%、
 Ca:0.0005~0.0050%および
 O:0.0030%以下
を含有し、下記(1)式で規定されるCeq:0.420~0.520、Ti/N:1.5~4.0、並びに、下記(2)式及び(3)式を満たし、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高張力鋼板。
             記
Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 ・・・(1)
0<[[Ca]-(0.18+130×[Ca])×[O]]/1.25/[S]<1 ・・・(2)
5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+7.9[Nb]1/2+0.53[Mo]≦3.70・・・(3)
  ここで、[  ]は該括弧内の元素の含有量(質量%)
2.前記成分組成は、更に、質量%で、
 Cu:0.7%以下、
 Cr:0.1~1.0%および
 V:0.005~0.050%
の中から選ばれる1種または2種以上を含有することを特徴とする前記1に記載の高張力鋼板。
3.前記鋼板の中心偏析部の硬さが下記(4)式を満足することを特徴とする前記1または2に記載の高張力鋼板。
             記
 Hvmax/Hvave≦1.35+0.006/[C]-t/500 ・・・・・(4)
  ここで、Hvmax:中心偏析部のビッカース硬さの最大値、
      Hvave:表裏面から板厚の1/4までと中心偏析部とを除く部分の     ビッカース硬さの平均値、
      [C]:C含有量(質量%)
      t:鋼板の板厚(mm)
4.前記1または2に記載の成分組成を有する鋼を、1030~1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、950℃未満の温度域における累積圧下率が30~70%となる熱間圧延を施し、その後、600℃以下までを冷却速度1.0℃/s以上で冷却後、450~650℃に焼戻し処理を施すことを特徴とする高張力鋼板の製造方法。
 本発明によれば、海洋構造物などの大型の鉄鋼構造物に用いて好適な、降伏応力(YS)が460MPa以上で、小~中入熱の多層溶接部の低温靭性、特にCTOD特性に優れる高張力鋼板を、35mm以上100mm以下の厚さにおいても厚みに関わらずに安定して提供できる。
 以下に、本発明について具体的に説明する。まず、本発明において、鋼の成分組成を上記した範囲に限定した理由について、成分毎に説明する。なお、以下に述べる鋼の成分組成を示す%表示は、特に断らない限り質量%を意味する。
C:0.02~0.08%
 Cは、高張力鋼板としての母材強度確保に必要な元素である。Cが0.02未満では焼入性が低下し、強度確保のために、Cu、Ni、CrおよびMoなどの焼入性向上元素の多量添加が必要となり、コスト高並びに溶接性の低下を招く。一方、C量が0.080%を超えると、溶接部靭性が劣化する。従って、C量は0.02~0.08%の範囲とする。好ましくは、0.07%以下である。さらに好ましくは、0.03~0.07%である。
Si:0.01~0.35%
 Siは、脱酸材として、また、母材強度を得るために添加する成分である。しかし、0.30%を超える多量の添加は、溶接性の低下と溶接継手靭性の低下を招くので、Si量は0.01~0.35%とする必要がある。好ましくは、0.23%以下である。さらに好ましくは、0.01~0.20%である。
Mn:1.4~2.0%
 Mnは、母材強度および溶接継手強度を確保するため、1.4%以上添加する。しかし、2.0%を超える添加は、溶接性を低下させ、焼入性が過剰となり、母材靭性および溶接継手靭性を低下させるため、1.4~2.0%の範囲とする。さらに好ましくは、1.40~1.85%である。
P:0.007%以下
 Pは、不純物元素であり、母材靭性および溶接部靭性を低下させ、特に溶接部において含有量が0.007%を超えるとCTOD特性が著しく低下するため、0.007%以下とする。
 ここで、特にCTOD特性を改善するには、Pを0.007%以下かつCを0.070%以下とした上で、Niを0.5%以上は添加することが肝要である。なぜなら、Pはマトリックスの脆化や中心偏析を悪化させること、Cは中心偏析の助長と島状マルテンサイトを増加させること、によって溶接部靭性を低下させる一方、Niはマトリックス靭性の向上により溶接部靭性を改善するからである。
S:0.0035%以下
 Sは、不可避的に混入する不純物であり、0.0035%を超えて含有すると母材および溶接部靭性を低下させるため、0.0035%以下とする。好ましくは、0.0030%以下である。
Al:0.010~0.060%
 Alは、溶鋼を脱酸するために添加される元素であり、0.010%以上含有させる必要がある。一方、0.060%を超えて添加すると母材および溶接部靭性を低下させるとともに、溶接による希釈によって溶接金属部に混入し、靭性を低下させるので、0.060%以下に制限する。好ましくは、0.017~0.055%である。なお、本発明においてAl量は、酸可溶性Al(Sol.Alなどとも称される)で規定するものとする。
Ni:0.5~2.0%
 Niは、鋼の強度と靭性の向上に有効な元素であり、溶接部のCTOD特性の向上にも有効である。この効果を得るには0.5%以上の添加が必要である。しかし、Niは高価な元素であること、また過度の添加は鋳造時にスラブ表面疵の発生をまねきやすくなることから、上限を2.0%とする。さらに好ましくは、0.5~1.8%である。
Mo:0.10~0.50%
 Moは、母材を高強度化するのに有効な元素であり、特に高強度鋼材ではその効果が高い。この効果を発揮するには0.10%以上を含有させる。しかし、過剰に含有すると靭性に悪影響を与えるため、0.50%以下とする。さらには、0.15~0.40%であることが好ましい。
Nb:0.005~0.040%
 Nbは、オーステナイトの低温域における未再結晶域の形成に寄与する。その際、当該温度域で圧延を施すことにより、母材の組織微細化および高靭化を図ることができる。また、焼入れ性の向上や焼戻し軟化抵抗にも効果があり、母材強度の向上に有効な元素でもある。以上の効果を得るためには、0.005%以上含有する必要がある。しかし、0.040%を超えて含有すると靭性を劣化させるため、上限を0.040%、好ましくは0.035%とする。
Ti:0.005~0.025%
 Tiは、溶鋼が凝固する際にTiNとなって析出し、溶接部におけるオーステナイトの粗大化を抑制し、溶接部の靭性向上に寄与する。しかし、0.005%未満の含有では、その効果が小さく、一方0.025%を超えて含有すると、TiNが粗大化して母材や溶接部靭性改善効果が得られないため、0.005~0.025%とする。さらに好ましくは、0.006~0.020%である。
B:0.0003%未満
 Bは、鋼がオーステナイト域から冷却される際にオーステナイト粒界に偏析し、フェライト変態を抑制し、島状マルテンサイト(M-A)を多量に含むベイナイト組織を生成させる。Bの添加は特に溶接熱影響部の組織を脆化させるため、0.0003%未満に制限する。
N:0.002~0.005%
 Nは、TiやAlと反応して析出物を形成することによって、結晶粒を微細化し、母材靭性を向上させる。また、溶接部の組織の粗大化を抑制するTiNを形成させるために必要な元素である。これらの作用を発揮させるには、Nを0.002%以上含有することが必要である。一方、0.005%を超えて添加すると、固溶Nが母材や溶接部の靭性を著しく低下したり、TiNb複合析出物の生成に伴う固溶Nbの減少によって強度低下をまねくことから、上限を0.005%とする。さらに好ましくは、0.0025~0.0045%である。
Ca:0.0005~0.0050%
 Caは、Sを固定することによって靭性を向上する元素である。この効果を得るためには、少なくとも0.0005%の添加が必要である。しかし、0.0050を超えて含有してもその効果は飽和するため、0.0005~0.0050%の範囲で添加する。さらに好ましくは、0.0008~0.0040%である。
O:0.0030%以下
 Oは、0.0030%を超えて添加すると、母材の靭性が劣化するため、0.0030%以下、好ましくは、0.0025%以下とする。
 さらに、下記(1)式で規定されるCeq:0.420~0.520、Ti/N:1.5~4.0、並びに、下記(2)式及び(3)式を満たすことが肝要である。なお、各式における[  ]は、該括弧内の元素の含有量(質量%)である。
            記
Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 ・・・(1)
0<[[Ca]-(0.18+130×[Ca])×[O]]/1.25/[S]<1 ・・・(2)
5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+7.9[Nb]1/2+0.53[Mo]≦3.70・・・(3)
Ceq:0.420~0.520
 前記(1)式で規定されるCeqが0.420未満では降伏応力460MPa級の強度を得ることが難しくなる。特に、35mmから50mm厚程度の鋼板において460MPa級の強度を確保することは勿論のこと、50mm以上の厚鋼板においても同様に460MPa級の強度を確保するためには、Ceqが0.420以上となる成分設計を行うことが肝要である。好ましくは、Ceqを0.440超とすることによって、560MPa超の強度を確保可能になる。
 一方、Ceqが0.520を超えると、溶接性や溶接部靭性が低下するため、0.520以下とする。好ましくは、Ceqを0.50以下とする。
Ti/N:1.5~4.0
 Ti/Nが1.5未満では生成するTiN量が減少し、TiNとならない固溶Nが溶接部靭性を低下させる。また、Ti/Nが4.0を超えると、TiNが粗大化し、溶接部靭性を低下させる。従って、Ti/Nの範囲は1.5~4.0、好ましくは、1.8~3.5とする。なお、Ti/Nは各元素の含有量(質量%)の比である。
0<[[Ca]-(0.18+130×[Ca])×[O]]/1.25/[S]<1
 [[Ca]-(0.18+130×[Ca])×[O]]/1.25/[S]は、硫化物形態制御に有効なCaとSの原子濃度の比を示す値であり、ACR(Atomic Concentration  Ratio)とも称される。この値により硫化物の形態を推定することができ、高温でも溶解しないフェライト変態生成核CaSを微細分散させるために規定する必要がある。すなわち、ACRが0以下の場合は、CaSが晶出しない。そのため、SはMnS単独の形態で析出する結果、溶接熱影響部でのフェライト生成核が得られない。また、単独で析出したMnSは、圧延時に伸長されて母材の靭性低下を引き起こすことになる。
 一方、ACRが1以上の場合には、Sが完全にCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しなくなるため、複合硫化物がフェライト生成核の微細分散を実現することができなくなって、靭性向上効果が得られない。かように、ACRが0を超え1未満の場合には、CaS上にMnSが析出して複合硫化物を形成し、これがフェライト生成核として有効に機能することになる。なお、ACRは、好ましくは0.2から0.8の範囲である。
5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+7.9[Nb]1/2+0.53[Mo]≦3.70
 5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+7.9[Nb]1/2+0.53[Mo]は、中心偏析に濃化しやすい成分で構成される中心偏析部硬さ指標であり、以下の説明ではCeq*値と称する。さて、CTOD試験は鋼板全厚を対象とする試験である。従って、同試験に供する試験片は中心偏析を含み、中心偏析での成分濃化が顕著であると、溶接熱影響部に硬化域が生成するため良好なCTOD値が得られない。Ceq*値を適正範囲に制御することにより、中心偏析部における過度の硬度上昇を抑制でき、板厚が厚い鋼材の溶接部においても優れたCTOD特性が得られる。Ceq*値の適正範囲は、実験的に求められたものであり、Ceq*値が3.70を超えるとCTOD特性が低下するので3.70以下とする。好ましくは3.50以下である。
 以上が本発明の基本成分組成であるが、更に特性を向上させることを所期して、Cu:0.7%以下、Cr:0.1~1.0%およびV:0.005~0.050%の中から選ばれる1種または2種以上を含有することができる。
Cu:0.7%以下
 Cuは、母材の強度を高めるのに有効であり、そのためには0.1%以上で添加することが好ましい。但し、0.7%を超えての添加は、熱間延性を低下することになるため、0.7%以下とすることが好ましい。より好ましくは、0.6%以下とする。
Cr:0.1~1.0%
 Crは、母材を高強度化するのに有効な元素であり、この効果を発揮するには0.1%以上を含有することが好ましい。しかし、過剰に含有すると靭性に悪影響を与えるため、添加する場合は1.0%以下とすることが好ましい。さらに、0.2~0.8%であることが好ましい。
V:0.005~0.050%
 Vは、0.005%以上の含有で母材の強度と靭性の向上に有効な元素であるが、含有量が0.050%を超えると靭性低下を招くため、添加する場合は0.005~0.050%であることが好ましい。
 さらに、鋼板の中心偏析部の硬さを、以下のとおりに規定することが、CTOD特性を向上する上で有利である。
Hvmax/Hvave≦1.35+0.006/[C]-t/500
 まず、上式において、Hvmaxは中心偏析部のビッカース硬さの最大値、Hvaveは鋼板の表裏面から板厚の1/4までと中心偏析部とを除く部分のビッカース硬さの平均値、[C]はC含有量(質量%)、tは板厚(mm)を示す。
 すなわち、Hvmax/Hvaveは中心偏析部の硬さを表す無次元パラメータであり、その値が1.35+0.006/[C]-t/500で求まる値より高くなるとCTOD値が低下するため、1.35+0.006/[C]-t/500以下とすることが好ましい。より望ましくは、1.25+0.006/[C]-t・500以下とする。
 ここで、Hvmaxは、鋼板の厚さ方向に、中心偏析部を含む(板厚/40)mmの範囲をビッカース硬さ試験機(荷重10kgf)で板厚方向に0.25mm間隔となるように測定し、得られた測定値の中の最大値とする。また、Hvaveは、鋼板表面から板厚の1/4の位置と同裏面から板厚の1/4の位置との間における中心偏析部を除く範囲を、ビッカース硬さ試験機の荷重10kgfで板厚方向に一定間隔(たとえば1~2mm)にて測定した値の平均値とする。
 次に、本発明の鋼板の製造方法について、詳しく説明する。
 本発明に従う成分組成に調整した溶鋼を、転炉、電気炉または真空溶解炉などを用いた通常の方法で溶製し、次いで、連続鋳造の工程を経てスラブとした後、熱間圧延により所望の板厚とし、その後冷却し、焼戻し処理を施す。その際、熱間圧延における、スラブ加熱温度および圧下率を規定することが特に重要である。
 なお、本発明において、特に記載しない限り、鋼板の温度条件は、鋼板の板厚中心部の温度で規定するものとする。板厚中心部の温度は、板厚、表面温度および冷却条件などから、シミュレーション計算などにより求められる。たとえば、差分法を用い、板厚方向の温度分布を計算することにより、板厚中心部の温度を求めることができる。
スラブ加熱温度:1030~1200℃
 スラブ加熱温度は、スラブに存在する鋳造欠陥を熱間圧延によって着実に圧着させるため1030℃以上とする。一方、1200℃を超える温度に加熱すると、凝固時に析出したTiNが粗大化し、母材や溶接部の靭性が低下するため、加熱温度の上限を1200℃とする。
950℃以上の温度域における熱間圧延の累積圧下率:30%以上
 オーステナイト粒を再結晶により微細なミクロ組織とするためには、熱間圧延における累積圧下率を30%以上とする。なぜなら、30%未満では、加熱時に生成した異常粗大粒が残存して、母材の靭性に悪影響を及ぼすからである。
950℃未満の温度域における熱間圧延の累積圧下率:30~70%
 この温度域で圧延されたオーステナイト粒は十分に再結晶しないため、圧延後のオーステナイト粒は偏平に変形したままで、内部に変形帯などの欠陥を多量に含む内部歪の高い状態となる。これらのオーステナイト粒は、フェライト変態の駆動力として働き、フェライト変態を促進する。
 しかし、累積圧下率が30%未満では、内部歪による内部エネルギーの蓄積が十分でないためフェライト変態が起こりにくく母材靭性が低下する。一方、累積圧下率が70%を超えると、逆にポリゴナルフェライトの生成が促進されて、高強度と高靭性が両立しない。
600℃以下まで冷却速度1.0℃/s以上
 熱間圧延後、冷却速度1.0℃/s以上で600℃以下まで加速冷却する。すなわち、冷却速度が1.0℃/s未満では十分な母材の強度が得られない。また、600℃より高い温度で冷却を停止すると、フェライト+パーライトや上部ベイナイトなどの組織の分率が高くなり、高強度と高靭性とが両立しない。なお、加速冷却後に焼戻しを実施する場合には、加速冷却の停止温度の下限は特に限定されるものではない。一方、後工程で焼戻しを実施しない場合には、加速冷却の停止温度を350℃以上とすることが好ましい。
焼戻し温度:450℃~650℃
 焼戻し温度が450℃未満では、十分な焼戻しの効果が得られない。一方、650℃を超える温度で焼戻しを行うと、炭窒化物が粗大に析出して靭性が低下し、また、強度の低下を引き起こすこともあるため、好ましくない。また、焼戻しは誘導加熱により行うことにて焼戻し時の炭化物の粗大化が抑制されるため、より好ましい。その場合は、差分法などのシミュレーションによって計算される鋼板の中心温度が450℃~650℃となるように制御する。
 本発明鋼は、溶接熱影響部のオーステナイト粒の粗大化を抑制し、更に、高温でも溶解しないフェライト変態生成核を微細に分散させて、溶接熱影響部の組織を微細化するため、高い靭性が得られる。また、多層溶接時の熱サイクルにより2相域に再加熱される領域においても、最初の溶接による溶接熱影響部の組織が微細化されているため、2相域再加熱領域で未変態領域の靭性が向上し、再変態するオーステナイト粒も微細化し、靭性の低下度合いを小さくすることが可能である。
 表1に示す鋼記号A~ZおよびA1の成分組成を有する、連続鋳造スラブを素材とし、熱間圧延と熱処理を行い、厚さが50mm~100mmの厚鋼板を製造した。母材の評価方法として、引張試験は鋼板の板厚の1/2位置より試験片の長手方向が鋼板の圧延方向と垂直になるようにJIS4号試験片を採取し、JIS  Z2241に従って降伏応力(YS)および引張強さ(TS)を測定した。
 また、シャルピー衝撃試験は、鋼板の板厚の1/2位置より試験片の長手方向が鋼板の圧延方向と垂直になるようにJIS Vノッチ試験片を採取し、-40℃における吸収エネルギーvE-40℃を測定した。YS≧460MPa、TS≧570MPaおよびvE-40℃≧200Jの全てを満たすものを母材特性が良好と評価した。
 溶接部靭性の評価は、K型開先を用いて、溶接入熱35kJ/cmのサブマージアーク溶接による多層盛溶接継手を作製し、鋼板の板厚の1/4位置のストレート側の溶接ボンド部をシャルピー衝撃試験のノッチ位置として、-40℃の温度における吸収エネルギーvE-40℃を測定した。そして、3本の平均がvE-40℃≧150Jを満足するものを溶接部継手靭性が良好と判断した。
 また、ストレート側の溶接ボンド部を三点曲げCTOD試験片のノッチ位置として、-10℃におけるCTOD値であるδ-10℃を測定し、試験数量3本のうちCTOD値(δ-10℃)の最小値が0.50mm以上である場合を、溶接継手のCTOD特性が良好と判断した。
 表2に熱間圧延条件及び熱処理条件と共に、母材特性と上記溶接部のシャルピー衝撃試験結果及びCTOD試験結果とを示す。なお、母材の強度または靭性が目標に達していない鋼板の一部で、継手を作製せずにその評価を行っていないものがある。
 表1において、鋼A~EおよびA1は発明例であり、鋼F~Zは成分組成のいずれかの成分量が本発明範囲外の比較例である。
 試料No.1~10および31は、いずれも発明例であり、溶接ボンド部のシャルピー衝撃試験の結果および溶接ボンド部の三点曲げCTOD試験の結果は満足するものであった。特に、試料No.4および5は、Ceqが本発明の範囲内にあり、板厚が50mmから100mmになっても、YP:460MPa以上が達成されている。
 一方、試料No.11~30は、鋼組成が本発明の範囲外であり、母材靭性又は溶接ボンド部のシャルピー衝撃試験の結果および溶接ボンド部の三点曲げCTOD試験の結果は満足するものではなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  質量%で、
     C:0.02~0.08%、
     Si:0.01~0.35%、
     Mn:1.4~2.0%、
     P:0.007%以下、
     S:0.0035%以下、
     Al:0.010~0.060%、
     Ni:0.5~2.0%、
     Mo:0.10~0.50%
     Nb:0.005~0.040%、
     Ti:0.005~0.025%、
     B:0.0003%未満、
     N:0.002~0.005%、
     Ca:0.0005~0.0050%および
     O:0.0030%以下
    を含有し、下記(1)式で規定されるCeq:0.420~0.520、Ti/N:1.5~4.0、並びに、下記(2)式及び(3)式を満たし、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高張力鋼板。
                 記
    Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 ・・・(1)
    0<[[Ca]-(0.18+130×[Ca])×[O]]/1.25/[S]<1 ・・・(2)
    5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+7.9[Nb]1/2+0.53[Mo]≦3.70・・・(3)
      ここで、[  ]は該括弧内の元素の含有量(質量%)
  2.  前記成分組成は、更に、質量%で、
     Cu:0.7%以下、
     Cr:0.1~1.0%および
     V:0.005~0.050%
    の中から選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の高張力鋼板。
  3.  前記鋼板の中心偏析部の硬さが下記(4)式を満足することを特徴とする請求項1または2に記載の高張力鋼板。
                 記
     Hvmax/Hvave≦1.35+0.006/[C]-t/500 ・・・・・(4)
      ここで、Hvmax:中心偏析部のビッカース硬さの最大値、
          Hvave:表裏面から板厚の1/4までと中心偏析部とを除く     部分のビッカース硬さの平均値、
          [C]:C含有量(質量%)
          t:鋼板の板厚(mm)
  4.  請求項1または2に記載の成分組成を有する鋼を、1030~1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、950℃未満の温度域における累積圧下率が30~70%となる熱間圧延を施し、その後、600℃以下までを冷却速度1.0℃/s以上で冷却後、450~650℃に焼戻し処理を施すことを特徴とする高張力鋼板の製造方法。
PCT/JP2015/001868 2014-03-31 2015-03-31 高張力鋼板およびその製造方法 WO2015151519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167027078A KR20160127808A (ko) 2014-03-31 2015-03-31 고장력 강판 및 그 제조 방법
JP2016511393A JP6245352B2 (ja) 2014-03-31 2015-03-31 高張力鋼板およびその製造方法
CN201580016841.4A CN106133168B (zh) 2014-03-31 2015-03-31 高张力钢板及其制造方法
EP15774406.1A EP3128033B1 (en) 2014-03-31 2015-03-31 High-tensile-strength steel plate and process for producing same
US15/129,896 US10316385B2 (en) 2014-03-31 2015-03-31 High-tensile-strength steel plate and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073742 2014-03-31
JP2014-073742 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151519A1 true WO2015151519A1 (ja) 2015-10-08

Family

ID=54239864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001868 WO2015151519A1 (ja) 2014-03-31 2015-03-31 高張力鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US10316385B2 (ja)
EP (1) EP3128033B1 (ja)
JP (1) JP6245352B2 (ja)
KR (1) KR20160127808A (ja)
CN (1) CN106133168B (ja)
WO (1) WO2015151519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825755A (zh) * 2019-02-19 2019-05-31 河钢股份有限公司承德分公司 一种汽车含钒耐候钢的合金化冶炼方法
JP2019183205A (ja) * 2018-04-05 2019-10-24 Jfeスチール株式会社 鋼板およびその製造方法
EP3561123A4 (en) * 2016-12-23 2019-10-30 Posco HIGH STRENGTH STEEL MATERIAL HAVING IMPROVED RESISTANCE TO FRAGILE CRACKS PROPAGATION AND LOW TEMPERATURE BREAKAGE INITIATION AND METHOD OF MANUFACTURING THE SAME
WO2023219146A1 (ja) * 2022-05-12 2023-11-16 Jfeスチール株式会社 鋼板およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151521A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 溶接継手
KR102027871B1 (ko) * 2017-10-03 2019-10-04 닛폰세이테츠 가부시키가이샤 강판 및 강판의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235114A (ja) * 2001-02-05 2002-08-23 Kawasaki Steel Corp 大入熱溶接部靱性に優れた厚肉高張力鋼の製造方法
JP2005272854A (ja) * 2004-03-22 2005-10-06 Jfe Steel Kk 耐火性および溶接熱影響部の靭性に優れる高張力鋼の製造方法
JP2008023569A (ja) * 2006-07-24 2008-02-07 Jfe Steel Kk 引張強度800MPaを超える超高強度溶接鋼管の製造方法
JP2009041079A (ja) * 2007-08-09 2009-02-26 Nippon Steel Corp 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
JP2009263777A (ja) * 2008-03-31 2009-11-12 Jfe Steel Corp 高張力鋼およびその製造方法
JP2011074403A (ja) * 2009-09-16 2011-04-14 Jfe Steel Corp 大入熱溶接用鋼
JP2014029019A (ja) * 2012-07-03 2014-02-13 Jfe Steel Corp 脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184663A (ja) 1984-02-29 1985-09-20 Kawasaki Steel Corp 大入熱溶接用低温用高張力鋼
JPH0353367A (ja) 1989-07-20 1991-03-07 Toshiba Corp 分散型情報処理システム
JP3045856B2 (ja) 1991-11-13 2000-05-29 川崎製鉄株式会社 高靱性Cu含有高張力鋼の製造方法
JPH10237583A (ja) 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
EP1025272B1 (en) * 1997-07-28 2006-06-14 Exxon Mobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP2001107135A (ja) 1999-10-06 2001-04-17 Nippon Steel Corp 高靭性制振合金の製造方法
JP4299431B2 (ja) 2000-03-08 2009-07-22 新日本製鐵株式会社 高ctod保証低温用鋼
JP3487262B2 (ja) 2000-05-26 2004-01-13 住友金属工業株式会社 Ctod特性に優れた高強度厚鋼板及びその製造方法
JP3697202B2 (ja) 2001-11-12 2005-09-21 新日本製鐵株式会社 溶接熱影響部の靭性が優れた鋼及びその製造方法
JP4564245B2 (ja) 2003-07-25 2010-10-20 新日本製鐵株式会社 溶接金属の低温割れ性に優れた超高強度溶接継手及び高強度溶接鋼管の製造方法
JP4432905B2 (ja) 2003-11-27 2010-03-17 住友金属工業株式会社 溶接部靱性に優れた高張力鋼および海洋構造物
JP4507669B2 (ja) 2004-03-31 2010-07-21 Jfeスチール株式会社 溶接部靭性に優れた低温用低降伏比鋼材の製造方法
JP5055774B2 (ja) 2005-03-17 2012-10-24 Jfeスチール株式会社 高変形性能を有するラインパイプ用鋼板およびその製造方法。
KR100851189B1 (ko) 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
KR100868423B1 (ko) 2006-12-26 2008-11-11 주식회사 포스코 조관후 강도변화가 작은 스파이럴 강관용 후물 열연 고강도api-x80 급 강재 및 제조방법
CA2687436C (en) 2007-05-16 2012-11-20 Sumitomo Metal Industries, Ltd. Bent pipe and a method for its manufacture
JP4837789B2 (ja) 2008-11-06 2011-12-14 新日本製鐵株式会社 超高強度ラインパイプ用鋼板および鋼管の製造方法
CN102666884B (zh) 2010-02-08 2013-07-31 新日铁住金株式会社 厚钢板的制造方法
JP5177310B2 (ja) * 2011-02-15 2013-04-03 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
CN102691015A (zh) 2011-03-25 2012-09-26 宝山钢铁股份有限公司 一种低温韧性优良的TMCP型YP500MPa级厚板及其制造方法
JP5924058B2 (ja) 2011-10-03 2016-05-25 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP5304925B2 (ja) 2011-12-27 2013-10-02 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
CN104126058B (zh) * 2012-02-23 2016-07-06 昭和电工株式会社 发电装置、发电方法、分解气体锅炉和分解气体涡轮
JP5516784B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
EP2894235B1 (en) * 2012-09-06 2019-01-09 JFE Steel Corporation Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
WO2015088040A1 (ja) * 2013-12-12 2015-06-18 Jfeスチール株式会社 鋼板およびその製造方法
RU2679499C1 (ru) * 2015-03-26 2019-02-11 ДжФЕ СТИЛ КОРПОРЕЙШН Листовая сталь для конструкционных труб или трубок, способ производства листовой стали для конструкционных труб или трубок и конструкционные трубы и трубки
JP6256654B2 (ja) * 2015-03-26 2018-01-10 Jfeスチール株式会社 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
US11555233B2 (en) * 2015-03-26 2023-01-17 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235114A (ja) * 2001-02-05 2002-08-23 Kawasaki Steel Corp 大入熱溶接部靱性に優れた厚肉高張力鋼の製造方法
JP2005272854A (ja) * 2004-03-22 2005-10-06 Jfe Steel Kk 耐火性および溶接熱影響部の靭性に優れる高張力鋼の製造方法
JP2008023569A (ja) * 2006-07-24 2008-02-07 Jfe Steel Kk 引張強度800MPaを超える超高強度溶接鋼管の製造方法
JP2009041079A (ja) * 2007-08-09 2009-02-26 Nippon Steel Corp 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
JP2009263777A (ja) * 2008-03-31 2009-11-12 Jfe Steel Corp 高張力鋼およびその製造方法
JP2011074403A (ja) * 2009-09-16 2011-04-14 Jfe Steel Corp 大入熱溶接用鋼
JP2014029019A (ja) * 2012-07-03 2014-02-13 Jfe Steel Corp 脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561123A4 (en) * 2016-12-23 2019-10-30 Posco HIGH STRENGTH STEEL MATERIAL HAVING IMPROVED RESISTANCE TO FRAGILE CRACKS PROPAGATION AND LOW TEMPERATURE BREAKAGE INITIATION AND METHOD OF MANUFACTURING THE SAME
JP2020504236A (ja) * 2016-12-23 2020-02-06 ポスコPosco 低温での破壊開始及び伝播抵抗性に優れた高強度鋼材、及びその製造方法
US11268175B2 (en) 2016-12-23 2022-03-08 Posco High-strength steel having excellent fracture initiation resistance and fracture propagation arrestability at low temperature and method of manufacturing the same
JP2019183205A (ja) * 2018-04-05 2019-10-24 Jfeスチール株式会社 鋼板およびその製造方法
CN109825755A (zh) * 2019-02-19 2019-05-31 河钢股份有限公司承德分公司 一种汽车含钒耐候钢的合金化冶炼方法
WO2023219146A1 (ja) * 2022-05-12 2023-11-16 Jfeスチール株式会社 鋼板およびその製造方法
JP7468800B2 (ja) 2022-05-12 2024-04-16 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
CN106133168A (zh) 2016-11-16
CN106133168B (zh) 2018-07-20
JP6245352B2 (ja) 2017-12-13
JPWO2015151519A1 (ja) 2017-04-13
US10316385B2 (en) 2019-06-11
KR20160127808A (ko) 2016-11-04
US20170137905A1 (en) 2017-05-18
EP3128033A1 (en) 2017-02-08
EP3128033A4 (en) 2017-05-10
EP3128033B1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP5177310B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
JP5950045B2 (ja) 鋼板およびその製造方法
JP5924058B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP6245352B2 (ja) 高張力鋼板およびその製造方法
JP6451871B2 (ja) 大入熱溶接用鋼材
WO2014199488A1 (ja) 溶接用超高張力鋼板
JP5920542B2 (ja) 溶接継手
EP3378962B1 (en) High heat input welded steel material
JP6226163B2 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP6299676B2 (ja) 高張力鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511393

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015774406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129896

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020167027078

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE