JP3045856B2 - 高靱性Cu含有高張力鋼の製造方法 - Google Patents

高靱性Cu含有高張力鋼の製造方法

Info

Publication number
JP3045856B2
JP3045856B2 JP03357641A JP35764191A JP3045856B2 JP 3045856 B2 JP3045856 B2 JP 3045856B2 JP 03357641 A JP03357641 A JP 03357641A JP 35764191 A JP35764191 A JP 35764191A JP 3045856 B2 JP3045856 B2 JP 3045856B2
Authority
JP
Japan
Prior art keywords
toughness
less
steel
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03357641A
Other languages
English (en)
Other versions
JPH05186823A (ja
Inventor
教次 板倉
文丸 川端
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18174518&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3045856(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPH05186823A publication Critical patent/JPH05186823A/ja
Application granted granted Critical
Publication of JP3045856B2 publication Critical patent/JP3045856B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、海洋構造物、ラインパ
イプ、圧力容器、橋梁などの用途に用いて好適な高靱性
Cu含有高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】近年の海洋構造物やラインパイプは大型
化し、用いられる鋼板の板厚も厚肉化の傾向があるとと
もに、その溶接部には極めて高水準の低温靱性が要求さ
れている。Cuの析出強化機構を用いた鋼板は、溶接熱影
響部(HAZ) における硬化性が低く、その溶接性とくに低
温割れ感受性が優れていることが特徴であり、このこと
はすでにASTM規格A710や米国特許第3692514 号明細書
に、その例が掲げられている。しかし、Cu析出強化を利
用するためには、圧延後あるいは焼きならし、焼き入れ
処理後に適切な温度で再加熱による析出処理をする必要
がある。また、このような析出強化処理による強度上昇
によって低温靱性が著しく劣化する。
【0003】このCu析出鋼板の欠点を改良すべく、例え
ば特開昭60-59018号公報、特開昭61-149430 号公報、特
開昭62-149845 号公報等にいくつかの製造方法が提案さ
れている。一方、従来の低温靱性評価には主としてシャ
ルピ−衝撃試験が用いられてきたが、近年は英国規格BS
5762(1979)に規定されるCTOD試験が要求されることが多
い。この試験は、疲労予き裂を評価部に発生させること
により、極めて微小部分の脆性破壊発生抵抗性を評価す
る。また、厚肉鋼板の溶接は極めて多くの多層溶接で現
地施工されるが、このような施工では、熱影響部には複
雑な熱履歴を受けた局所脆化域が発生する。とくに1350
0C以上の高温に加熱された結晶粒の粗粒域(以後CGHAZ
と呼ぶ) はもっとも靱性が劣化する部分である。米国石
油協会では、API RP2Z(1987)においてCGHAZ が予亀裂の
先端に一定の割合以上存在するように加工の詳細な規定
が盛り込まれている。このように、厳格な脆性破壊発生
特性の評価がなされた場合、前述の先行技術においてシ
ャルピー試験で高い靱性が得られた場合でも必要な脆性
破壊発生抵抗が得られない場合がある。
【0004】CTOD試験に対応した溶接性および低温靱性
の優れたCu析出型鋼板の製造方法に関して特開平2-2551
7 号公報に開示されているが、近年、CTOD値はさらに高
い値が要求されるようになり、脆性破壊発生抵抗性の向
上に関する要望は一段と強くなってきた。また、Cu析出
強化を利用するためには、圧延後あるいは焼きならし、
焼き入れ処理後に適切な温度で再加熱によるCu析出強化
処理をする必要がありコスト的に高いという難点もあ
る。
【0005】
【発明が解決しようとする課題】本発明は、前述のよう
に製造上コスト高になり、材質上低温靱性が劣化すると
いう問題点を解決し、低温靱性の優れたCu析出強化型高
張力鋼板の製造方法を提供するためになされたものであ
る。
【0006】
【課題を解決するための手段】本発明者らは、上記課題
を効果的に解決するために鋭意研究、実験を進めた結
果、次のような知見を得た。 Siの添加量を0,40%(好ましくは0.15%)以下とするこ
とによって溶接熱影響部粗大粒域に生成する島状マルテ
ンサイトの生成を抑制する。 あるいはさらに、熱影響部の結晶粒粗大化を抑制す
るような化学組成を調整した鋼に対し 制御圧延を行った後、空冷または強制冷却すること
によって、微細組織を形成する。 さらに、600 0Cから400 0Cの温度範囲を0.1 0C/s以
下の冷却速度で冷却することによりCuを再加熱すること
なく析出させ、靱性の劣化を招くことなく、高強度化を
はかる。 以上を全て満足させることによって、母材、および多層
溶接熱影響部のCTOD試験での脆性破壊発生抵抗評価に対
応し得る低温靱性に優れた鋼板を安価に製造し得ること
を見いだして本発明を完成したものである。
【0007 】即ち本発明は、C:0.01〜0.15%(重量%)、S
i:0.40%以下、Mn:0.5〜2.0%、Cu:0.5〜2.0%、Ni:0.1〜
1.5%、Al:0.005〜0.1%を含有し、残部鉄および不可避的
不純物よりなる鋼素材を、950 0C以上、12500C以下の温
度に加熱し、900 0C以下の累積圧下率が45 %以上で、か
つ仕上温度700 0C以上、800 0C以下の熱間圧延を行い、
引き続き600 0C以上まで放冷または強制冷却を行い、そ
の後、600 0Cから400 0Cの温度範囲を0.1 0C/s以下の冷
却速度で冷却することを特徴とする高靱性Cu含有高張力
鋼の製造方法であり、またC:0.01〜0.15% 、Si:0.40%以
下、Mn:0.5〜2.0%、Cu:0.5〜2.0%、Ni:0.1〜1.5%、Al:
0.005〜0.1%を含有し、さらにNb:0.005〜0.10% 、Ti:0.
003〜0.05% 、V :0.01 〜0.10% 、Cr:0.05 〜0.5%、Mo:
0.05 〜0.5%、B:0.002%以下、Ca 0.0005 〜0.005%、RE
M:0.001 〜0.02% の一種または二種以上を含有し、残部
鉄および不可避的不純物よりなる鋼素材を、950 0C以
上、12500C以下の温度に加熱し、900 0C以下の累積圧下
率が45 %以上で、かつ仕上温度700 0C以上、800 0C以下
の熱間圧延を行い、引き続き600 0C以上まで放冷または
強制冷却を行い、その後、600 0Cから400 0Cの温度範囲
を0.1 0C/s以下の冷却速度で冷却することを特徴とする
高靱性Cu含有高張力鋼の製造方法である。
【0008】
【作用】以下に組成、製造条件の限定理由について説明
する。C は溶接性および低温靱性を低下させるので0.15
% を上限とした。一般に、小入熱溶接部は硬化しやすく
各種の割れが発生する。これらの防止のためには、鋼の
硬化性を低くすることが有効かつ必要である。また、多
層溶接部の熱影響部に生成する島状マルテンサイトの生
成を抑制するにはC が低いことが望ましい。このために
C の上限を0.15% とした。この上限を超えると、溶接性
および低温靱性を損なう。また一方で、C は重要な強化
元素であり、極端な低減は強度が不足するので下限を0.
01% とした。なお、本発明の特徴をもっともよく発揮さ
れる範囲は0.02〜0,08% である。Siは、製鋼段階で、脱
酸元素として必然的に含有される元素であり、また強化
元素として強度増加に寄与するが、溶接性および溶接部
の靱性を劣化させるので0.4%以下に制限する。とくにCT
OD試験において厳しい特性値が要求される場合には、Si
量が0.15% を超えると、島状マルテンサイトの生成が抑
制しがたく、したがって多層溶接特有の積層パスによる
焼戻硬化が少なく、溶接熱影響部の局所脆化域の靱性向
上が期待できなくなる。
【0009】Mnは、焼入性を向上する元素であり、強度
・靱性確保のため添加するが、0.5%以下では鋼の充分な
焼入性を確保できず、また、2.0%を超えると熱影響部が
硬化して低温割れ感受性が上がり、現地での溶接施工性
を害するので、0.5 〜2.0%の範囲とした。Cuは、析出強
化により鋼の強度を飛躍的に向上する元素であり、本発
明の中で重要な元素である。析出強化を用いる際には0.
5%以上の添加が必要であり、一方2.0%を越えると熱影響
部の硬化性を上昇させて溶接割れ感受性を上げるので、
0.5 〜2.0%の範囲としたNi は、比較的溶接性を害する
ことなく母材の強度と靱性を向上する元素である。また
Cuを含有する鋼の熱間圧延中のCu割れを防止するため必
要である。このため必須成分として、0.1 〜1.5%の範囲
で添加する。0.1%未満の添加量の場合には、Niの上記効
果が得られない。1.5%を超えると、熱影響部の焼入性を
高めるため硬化性を上げ溶接割れ感受性が上がるので、
0.1 〜1,5%の範囲とした。Alは、Si同様、脱酸元素であ
りこの種のAlキルド鋼に必然的に含有される元素であ
り、0.005%を下回ると充分な脱酸ができず母材の靱性が
劣化する。一方0.1%を超えると鋼の清浄度が低下するの
で、0.005 〜0.1%の範囲とした。
【0010】Nbは、圧延時にオーステナイト域では、Nb
(C,N) として析出しピンニング効果により再結晶粒粗大
化を防止する元素であり、最終的に微細組織を得るため
には効果的な元素である。0.005%未満では十分にその効
果が得られず、また0.10% を超えると熱影響部の焼入性
を上げ溶接割れ感受性を劣化させるので0.005 〜0.10%
の範囲とした。Tiは、炭化物によって析出強化する元素
であると同時に、窒化物によって熱影響部の結晶粒粗大
化を抑制して靱性の劣化を抑制する元素である。0.003%
以上の添加が析出強化を得るために必要であり、0.05%
を越えると析出が過多となり靱性の劣化が著しいので0.
003 〜0.05% の範囲とした。V は、フェライト中への固
溶によって、鋼を強化する元素であるが、0.01% 未満で
はその効果が十分に得られず、0.10% を超える添加を行
うと、熱影響部の多層熱サイクルをうける箇所が析出に
よって脆化するので0.01〜0.10% の範囲とした。Crは、
圧延組織のベイナイトの生成を促進し、強度・靱性を向
上させるが、0.05% 未満ではその効果は十分ではなく、
しかし、0.5%を超える添加は溶接部の硬化性を増大させ
靱性および耐溶接割れ性の低下を招くので0.05〜0.5%の
範囲とした。
【0011】Moは、ベイナイトの生成を促進するが、そ
の効果は0.05% 以上の添加により得られる。しかし、0.
5%を超える添加は、熱影響部の硬化性を高め靱性も劣化
させる。特に多層溶接では再熱部では MO の炭化物が析
出して靱性を劣化させるので、0.05〜0.5%の範囲とし
た。B は、焼入性の向上ひいては、母材の強度・靱性の
向上に有効に寄与するが、0.002%を超える添加は、熱影
響部の硬化を招くため、上限を0.002%とした。Caは、Mn
S を球状化させ衝撃値を向上させるが、0.0005% 未満で
はその効果か実用上なく、一方0.005%を超える添加は鋼
板の清浄度を損ないまた靱性に悪影響を及ぼすので、0.
0005〜0.005%の範囲とした。REM は、Caと同様の効果を
もつが、さらにREM の硫化物、酸化物は溶接部のボンド
部においても安定に存在し、TiN と同様にオーステナイ
ト粒の成長を抑制して靱性を向上させる。しかし0.001%
未満ではその効果が実用上なく、0.02% を超える添加は
鋼板の清浄度を損ないまた靱性に悪影響を及ぼす。REM
の有効範囲は0.001 〜0.02% である。TiとREM はそれぞ
れオーステナイト粒の粗大化抑制効果をもつが、Ti単独
あるいはREM 単独にくらべ、複合添加により多層溶接部
の低温靱性を著しく高める効果を有する。
【0012】以上主として化学組成に関しての本発明の
必須事項とその作用について述べたが、これだけでは本
発明の効果は十分得られない。本発明の意図する優れた
強度、靱性、溶接部低温靱性を得るためには次に述べる
加熱・圧延条件が製造上必須である。すなわち、添加元
素を固溶させるためおよび圧延加工上の理由から950℃
以上の加熱が必要である。しかし加熱温度が1250℃を超
えるとオーステナイト粒が粗大化して、その後の圧延に
よる微細化効果を十分に発揮できなくなり靱性が劣化す
る。このため加熱温度は950 ℃以上、12500C以下とし
た。本発明では、圧延条件として900 ℃以下の累積圧下
率が45 %以上で、かつ仕上げ温度を700 ℃以上、800 ℃
以下と限定した。以下その限定理由を述べる。まず900
℃以下の累積圧下率が45% 以上であると、フェライト粒
が著しく小さくなり、強度と靱性が大幅に向上する。し
かし、45 %未満であると高強度と高靱性を得ることがで
きない。ただし、望ましい範囲は55〜85 %である。一
方、900 ℃以下の累積圧下率が45 %以上であっても、仕
上温度が800 ℃を越えると高強度・高靱性を得られな
い。仕上温度を800 ℃以下とすることにより、フェライ
ト粒の細粒化は著しく促進され、強度、靱性の両方の向
上または靱性を劣化させずに強度を向上させることがで
きる。しかし、700 ℃未満の圧延は圧延能率の面から著
しく不利となり、また靱性が低下するため下限を700 ℃
とした。圧延後の冷却においては放冷または強制冷却の
どちらでも本発明の効果は得られるが、強制冷却の方が
ベイナイト化、細粒化による圧延組織の改善の点で効果
的である。この放冷または強制冷却は600 ℃以上の温度
で終了させ、Cuの析出強化による強度向上をはかるた
め、その後Cuの析出温度域である600 ℃から400 ℃の温
度範囲を0.1 ℃/s以下の冷却速度で冷却する。この場
合0.1 ℃/sを超える冷却速度ではCuの析出強化が起き
ず強度上昇効果が得られない。
【0013】
【実施例】
実施例1 表1に示す化学組成の鋼を同じく表2に示す製造条件に
て鋼板を製造した。また、すべての鋼板から引張試験片
(L方向)およびシャルピー衝撃試験片(T方向)を採
取し、鋼板の強度、靱性について測定した結果を表2に
示す。鋼1はCu含有量がこの発明の適正範囲外であるた
め強度が低い。鋼2は加熱温度がこの発明の適正範囲外
であるため靱性が低い。鋼3は900 ℃以下の累積圧下率
がこの発明の適正範囲外であるため靱性が低い。鋼4は
仕上げ温度がこの発明の適正範囲外であるため強度は高
いが靱性が低い。鋼5は600 〜400 ℃の冷却速度がこの
発明の適正範囲外であるため靱性は高いが強度が低い。
これに対し、鋼6〜14はいずれも、化学組成、製造条
件ともこの発明の範囲を満足するものでありいずれも高
強度、高靱性を示した。とくに鋼7〜14はNb、Ti、V
、Cr、Mo、B 、Ca、REM をこの発明で規定する範囲内
で添加した場合であるが、強度と靱性の向上が達成され
ている。
【0014】
【表1】
【0015】
【表2】
【0016】実施例2 表3に示す化学組成の鋼を同じく表4に示す製造条件で
鋼板を製造した。またすべての鋼板から引張試験片(L
方向)およびシャルピー衝撃試験片(T方向)を採取
し、鋼板の強度と靱性について測定した結果を表4に併
記する。溶接部の靱性評価では、5 kJ/mm の溶接入熱に
よるサブマージアーク溶接によりK型開先の継ぎ手を作
成し、板厚方向に生成したほぼ直線的な溶融線近傍を評
価対象とした。なお溶接時の予熱は行わなかった。
【0017】
【表3】
【0018】
【表4】
【0019】CTOD試験片の作成および試験は英国規格BS
5762(1979)に準拠して行った。図1はCTOD試験片の採取
位置を示すものである。板厚L1の試験板を、溶接線が圧
延方向となるようK開先で多層溶接後、両表面から1mm
づつ切削して板厚L2の試験片とした。そして溶接金属1
の直線的な溶融線近傍を評価対象として、疲労予き裂3
をいれた。試験は- 10℃で行った。鋼15はCu含有量
がこの発明の適正範囲がであるため強度が低い。鋼16
は加熱温度がこの発明の適正範囲外であるため靱性が低
い。鋼17は900℃以下の累積圧下率がこの発明の適
正範囲外であるため靱性が低い。鋼18は仕上げ温度が
この発明の適正範囲外であるため強度は高いが靱性が低
い。鋼19は600〜400℃の冷却速度がこの発明の
適正範囲外であるため靱性は高いが強度が低い。これに
対し、鋼20〜31はいずれも、化学組成、製造条件と
もこの発明の範囲を満足するものでありいずれも高強
度、高靱性を示した。とくに鋼23〜31はNb、V 、C
r、Mo、B 、Caをこの発明で規定する範囲内で添加した
場合であるが、強度と靱性の向上が同時に達成されてい
る。
【0020】CTOD試験片の作成および試験は英国規格BS
5762(1979)に準拠して行った。図1はCTOD試験片の採取
位置を示すものである。板厚L1の試験板を、溶接線が圧
延方向となるようK開先で多層溶接後、両表面から1mm
づつ切削して板厚L2の試験片とした。そして溶接金属1
の直線的な溶融線近傍を評価対象として、疲労予き裂3
をいれた。試験は- 10℃で行った。鋼15はCu含有量
がこの発明の適正範囲がであるため強度が低い。鋼17
は900℃以下の累積圧下率がこの発明の適正範囲外で
あるため靱性が低い。鋼18は仕上げ温度がこの発明の
適正範囲外であるため強度は高いが靱性が低い。鋼19
は600〜400℃の冷却速度がこの発明の適正範囲外
であるため靱性は高いが強度が低い。これに対し、鋼2
0〜31はいずれも、化学組成、製造条件ともこの発明
の範囲を満足するものでありいずれも高強度、高靱性を
示した。とくに鋼23〜31はNb、V 、Cr、Mo、B 、Ca
をこの発明で規定する範囲内で添加した場合であるが、
強度と靱性の向上が同時に達成されている。
【図面の簡単な説明】
【図1】CTOD試験の試験片採取方法を示す説明図。
【符号の説明】
1:溶接金属 2:試験片 3:疲労予き裂挿入位置 L1:板厚 L2:試験片厚さ
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−25517(JP,A) 特開 昭63−130215(JP,A) 特開 平5−25584(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/02 - 8/04

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 C:0.01〜0.15%(重量%)、Si:0.40%以下、
    Mn:0.5〜2.0%、Cu:0.5〜2.0%、Ni:0.1〜1.5%、Al:0.005
    〜0.1%を含有し、残部鉄および不可避的不純物よりなる
    鋼素材を、950 0C以上、12500C以下の温度に加熱し、90
    0 0C以下の累積圧下率が45 %以上で、かつ仕上温度700
    0C以上、800 0C以下の熱間圧延を行い、引き続き600 0C
    以上まで放冷または強制冷却を行い、その後、600 0Cか
    ら400 0Cの温度範囲を0.1 0C/s以下の冷却速度で冷却す
    ることを特徴とする高靱性Cu含有高張力鋼の製造方法。
  2. 【請求項2】 C:0.01〜0.15% 、Si:0.40%以下、Mn:0.5
    〜2.0%、Cu:0.5〜2.0%、Ni:0.1〜1.5%、Al:0.005〜0.1%
    を含有し、さらにNb:0.005〜0.10% 、Ti:0.003〜0.05%
    、V :0.01 〜0.10% 、Cr:0.05 〜0.5%、Mo:0.05 〜0.5
    %、B:0.002%以下、Ca 0.0005 〜0.005%、REM:0.001 〜
    0.02% の一種または二種以上を含有し、残部鉄および不
    可避的不純物よりなる鋼素材を、950 0C以上、12500C以
    下の温度に加熱し、900 0C以下の累積圧下率が45 %以上
    で、かつ仕上温度700 0C以上、800 0C以下の熱間圧延を
    行い、引き続き600 0C以上まで放冷または強制冷却を行
    い、その後、600 0Cから400 0Cの温度範囲を0.1 0C/s以
    下の冷却速度で冷却することを特徴とする高靱性Cu含有
    高張力鋼の製造方法。
JP03357641A 1991-11-13 1991-12-26 高靱性Cu含有高張力鋼の製造方法 Expired - Lifetime JP3045856B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32523391 1991-11-13
JP3-325233 1991-11-13

Publications (2)

Publication Number Publication Date
JPH05186823A JPH05186823A (ja) 1993-07-27
JP3045856B2 true JP3045856B2 (ja) 2000-05-29

Family

ID=18174518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03357641A Expired - Lifetime JP3045856B2 (ja) 1991-11-13 1991-12-26 高靱性Cu含有高張力鋼の製造方法

Country Status (1)

Country Link
JP (1) JP3045856B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038200A1 (ja) 2012-09-06 2014-03-13 Jfeスチール株式会社 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
US10300564B2 (en) 2014-03-31 2019-05-28 Jfe Steel Corporation Weld joint
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
JP2002096334A (ja) * 2000-09-25 2002-04-02 Nippon Columbia Co Ltd スタンパの製造方法
KR100496563B1 (ko) * 2000-12-23 2005-06-23 주식회사 포스코 연속식 열간압연에 의한 저항복비형 고인성 후물강판 제조방법
JP5439887B2 (ja) 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
JP5177310B2 (ja) 2011-02-15 2013-04-03 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP5924058B2 (ja) 2011-10-03 2016-05-25 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
WO2014141632A1 (ja) 2013-03-12 2014-09-18 Jfeスチール株式会社 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014156175A1 (ja) 2013-03-29 2014-10-02 Jfeスチール株式会社 厚肉鋼管用鋼板、その製造方法、および厚肉高強度鋼管
WO2016035110A1 (ja) 2014-09-05 2016-03-10 Jfeスチール株式会社 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
KR102289071B1 (ko) 2017-05-22 2021-08-11 제이에프이 스틸 가부시키가이샤 후강판 및 그 제조 방법
CN113462972A (zh) * 2021-06-21 2021-10-01 山东钢铁股份有限公司 一种海洋工程用调质处理高强度耐低温h型钢及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038200A1 (ja) 2012-09-06 2014-03-13 Jfeスチール株式会社 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
US9777358B2 (en) 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
US10300564B2 (en) 2014-03-31 2019-05-28 Jfe Steel Corporation Weld joint
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same

Also Published As

Publication number Publication date
JPH05186823A (ja) 1993-07-27

Similar Documents

Publication Publication Date Title
KR101846759B1 (ko) 강판 및 그 제조 방법
JP6807690B2 (ja) 角形鋼管
WO2012002563A1 (ja) 溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
JP5217773B2 (ja) 溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管およびその製造方法
JP4655670B2 (ja) 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
JP3045856B2 (ja) 高靱性Cu含有高張力鋼の製造方法
JP7262288B2 (ja) 母材と溶接熱影響部の靭性に優れかつ音響異方性の小さい高強度低降伏比厚鋼板およびその製造方法
JP5034290B2 (ja) 低降伏比高強度厚鋼板およびその製造方法
JP5028785B2 (ja) 高靭性高張力鋼板およびその製造方法
JP7236540B2 (ja) 溶接熱影響部の靭性に優れた鋼材及びその製造方法
JP5151693B2 (ja) 高張力鋼の製造方法
JP4998708B2 (ja) 材質異方性が小さく、耐疲労亀裂伝播特性に優れた鋼材およびその製造方法
JP2013104065A (ja) 溶接部の低温靭性に優れる厚肉高張力鋼板およびその製造方法
JP2005256037A (ja) 高強度高靭性厚鋼板の製造方法
JP5028761B2 (ja) 高強度溶接鋼管の製造方法
JP5999005B2 (ja) 溶接熱影響部靭性に優れた低降伏比高張力鋼板およびその製造方法
KR100723201B1 (ko) 다층용접부 인성이 우수한 고강도 고인성 강 및 그제조방법
JP5515954B2 (ja) 耐溶接割れ性と溶接熱影響部靭性に優れた低降伏比高張力厚鋼板
JP3487262B2 (ja) Ctod特性に優れた高強度厚鋼板及びその製造方法
JP4924047B2 (ja) 表面残留応力の絶対値が150N/mm2以下の耐疲労亀裂伝播特性に優れた鋼材の製造方法
JP2012188749A (ja) 多パス溶接部の靭性に優れた厚鋼板および多パス溶接継手
JP4824142B2 (ja) 強度、延性の良好なラインパイプ用鋼およびその製造方法
JP4951938B2 (ja) 高靭性高張力鋼板の製造方法
JP6237681B2 (ja) 溶接熱影響部靭性に優れた低降伏比高張力鋼板
JP3736209B2 (ja) 溶接部靭性に優れた高張力鋼及びその製造方法