WO1993022777A1 - Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them - Google Patents

Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them Download PDF

Info

Publication number
WO1993022777A1
WO1993022777A1 PCT/JP1992/000902 JP9200902W WO9322777A1 WO 1993022777 A1 WO1993022777 A1 WO 1993022777A1 JP 9200902 W JP9200902 W JP 9200902W WO 9322777 A1 WO9322777 A1 WO 9322777A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
anisotropic
producing
ferrite
particles
Prior art date
Application number
PCT/JP1992/000902
Other languages
English (en)
French (fr)
Inventor
Hitoshi Taguchi
Fumihiko Hirata
Taku Takeishi
Teruo Mori
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP9292915835A priority Critical patent/EP0592672A4/en
Publication of WO1993022777A1 publication Critical patent/WO1993022777A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Definitions

  • the present invention relates to hexagonal fluoride particles, a method for producing the same, and anisotropic filament magnets using the same and a method for producing the same.
  • oxide permanent magnet materials mainly use M-type hexagonal Sr ferrite or, in some cases, Ba ferrite. Magnets and bond magnets are manufactured.
  • B r residual magnetic flux density
  • Hc coercive force
  • sintered Ba magnets or Sr magnets have been manufactured as follows. That is, iron oxide and B a or After mixing the Sr carbonate, calcination is performed to terminate the ferrite-forming reaction.
  • Crushing and magnetic field molding can be performed in two different ways: dry processing and wet processing using a solvent.
  • the wet method is easier to pulverize to 1 u. Or less than the dry method and has an excellent degree of orientation during magnetic field forming, which is advantageous for high performance.
  • Degradation of the degree of orientation occurs when the size of the fine particles becomes smaller than necessary, for example, 0.1 Im or less, and when the size of the magnetization (as) also becomes smaller.
  • the cause is that the rotational torque of the particles in the magnetic field is reduced. Further, as will be described later, when the coercive force (bHc) of the particles increases, there is a large cause that the fluoride particles are magnetically easily aggregated.
  • Japanese Patent Publication No. 6-534344 discloses a range of 0.3 to 0.1 ⁇ described in the examples.
  • the iHc of the powder is up to 4650 Oe, but the value of ⁇ s at this time is only as low as 44 emu / g.
  • an anisotropic magnet using this powder is not actually described in Examples.
  • Japanese Patent Publication No. 499-138971 similarly, powders of 1 m or less are produced to obtain powders with iHc of up to 4250 Oe, but only rubber magnets are manufactured. Is merely described. Disclosure of the invention
  • the main objects of the present invention are to solve the above-mentioned problems of the conventional magnet, to improve the performance of the anisotropic fluorite magnet, to provide a method for producing the magnet, to use the raw material hexagonal funilite particles, and to produce the same. And provide.
  • a slurry containing the raw material particles of the ferrite magnet and the organic solvent is molded in a magnetic field while removing the organic solvent to obtain a molded body, and the molded body is fired to obtain an anisotropic ferrite magnet. At that time,
  • a method for producing an anisotropic fluorite magnet, in which a surfactant is present in the slurry to improve the degree of orientation of the compact is provided.
  • the above-mentioned slurry is a method for producing the anisotropic flat magnet of (1) above, which is obtained by wet-pulverizing the slurry containing the raw material particles of the fly magnet and the slurry containing the organic solvent. Method.
  • the slurry is prepared by wet pulverizing the raw material powder of the ferrite magnet raw material particles and then substituting the solvent with the organic solvent to prepare the anisotropic slurry according to any one of the above (1) to (3).
  • Manufacturing method for conductive fly magnets (5) The method for producing an anisotropic fluorite magnet according to any one of (2) to (4), wherein the surfactant is added during the dry or wet pulverization.
  • the slurry is obtained by subjecting the raw material powder of the fly magnet raw material particles to the dry or wet pulverization and then adding the surfactant or the surfactant and the organic solvent thereto. (2) to (5), wherein the method for producing an anisotropic flat magnet is described.
  • the crystallites are introduced into the raw material particles of the funilite magnet, and the iHc force S is reduced to 3.5 kOe or less.
  • the surfactant is adsorbed on the surface of the raw material particles of the fly to produce the anisotropic fly magnet according to any one of the above (1) to (14).
  • Hexagonal ferrite raw material powder is pulverized, and mechanical stress is applied to the hexagonal ferrite particles to introduce crystal strain to reduce iHc to 3.5 k0e or less. After that, a method for producing an anisotropic phenylite magnet in which a molded body is obtained by magnetic field molding, and the molded body is fired.
  • the present inventor added a surfactant that can be adsorbed on the surface of the fine particles to the raw material of the fine particles, dispersed the fine particles in an organic solvent, and formed the slurry by wet magnetic field molding. As a result, it was found that even when fine particles of 1 m or less were used, the degree of orientation of the molded body was significantly improved, and the magnetic properties after firing were also significantly improved.
  • the surface-active agent is adsorbed on ferrite particles having 3.5 kOe, especially iHc of 3 kOe or less in the case of M-type Sr ferrite, and introducing crystal strain.
  • the degree of orientation expressed by the ratio of remanent magnetization to saturation magnetization ⁇ , 78% or more in the compact, especially 80% or more, and 9.6% or more in the sintered body , Especially up to 97% or more.
  • the effect of selectively increasing the degree of orientation based on the combined use of the organic solvent and the surfactant during the magnetic field-middle molding is produced, and the degree of orientation is further enhanced by regulating the crystal strain and coercive force of the molding powder.
  • This is synergistic.
  • the added surfactant is easily decomposed and scattered in the firing step, and thus does not remain as a non-magnetic portion.
  • unprecedented high properties such as Br of about 4.4 kG and iHc of 4.0 to 4.2 kOe can be obtained.
  • a sintered ferrite magnet having higher magnetic properties than ever before can be obtained by performing high orientation by using fine particles having a particle size of ⁇ or less. It is.
  • the target is a rare earth, iron, and boron-based permanent magnet, which is wet grinding using an organic solvent for the purpose of preventing oxidation of the raw material powder.
  • the target is wet pulverization using an organic solvent that is a rare-earth-containing permanent magnet raw material powder, and the purpose is to reduce the amount of oxygen in the sintered body.
  • the present invention also relates to wet molding methods using organic solvents, which are also applicable to ferrite magnets.
  • the purpose is to reduce the amount of residual carbon as well as to prevent oxidation. Is selected. Therefore, of course, no surfactant is added. From this point of view, ferrite magnets should not have much to do with them. In the embodiment, only Nd magnets exist.
  • the object is a frit magnet, and it is described in the claims that stearic acid or its emulsion is added after wet pulverization in water or an organic solvent.
  • the purpose is to improve the formability (forming yield), and the focus is not on improving the magnet properties, especially on the degree of orientation.
  • stearic acid or its emulsion is added after wet pulverization in water or an organic solvent.
  • the purpose is to improve the formability (forming yield), and the focus is not on improving the magnet properties, especially on the degree of orientation.
  • stearic acid or its emulsion is added after wet pulverization in water or an organic solvent.
  • the size of the fly particles is set to an appropriate range of 0.1 to lim and the magnetization (as) is set to the theoretical value (approximately 71.5 emu / g).
  • the ferrite magnet raw material is pulverized to introduce a predetermined crystal strain, and this is simply subjected to magnetic field molding, and the degree of orientation of the molded body is obtained even when fine particles of 1 m or less are used. The magnetic properties after firing are greatly improved.
  • pulverization strain is introduced to simultaneously lower i Hc of the powder.
  • fly particles of several meters or more And pulverization to 1 ⁇ m or less may be performed simultaneously.
  • ferrite particles having 3.5 k0e, especially iHc of 3 kOe or less in the case of M-type Sr light, and introducing crystal strain are used.
  • FIG. 1 is an explanatory diagram for explaining one of the principles of improving the degree of orientation in the present invention
  • FIG. 2 is a diagram illustrating ⁇ s and Ms of the M-type Sr ferrite powder by pulverization.
  • FIG. 3 is a graph showing a relationship between i H c and a change in specific surface area
  • FIG. 3 is a graph showing an expected B—H curve of one fly particle
  • FIG. 4 is a graph showing Examples 1 to 3 is a diagram showing a grinding process in Comparative Examples 1 to 3
  • FIG. 5 is a histogram showing a particle size distribution of the particles after grinding in Example 1
  • FIG. 6 is a diagram showing Example 1;
  • FIG. 1 is an explanatory diagram for explaining one of the principles of improving the degree of orientation in the present invention
  • FIG. 2 is a diagram illustrating ⁇ s and Ms of the M-type Sr ferrite powder by pulverization.
  • FIG. 3 is a graph showing a relationship between i H
  • FIG. 7 is a histogram showing the particle size distribution of crystal grains of a sintered body obtained by sintering the compact of FIG. 7,
  • FIG. 7 is a graph showing the relationship between strain and i He, and
  • FIG. Shows the relationship between the temperature characteristics of This is a graph.
  • the composition of the anisotropic ferrite magnet in the present invention is mainly a magnetoplumbite-type hexagonal ferrite such as an M phase or a W phase.
  • Such ferrites further contain CaPbAlGaSnZnInCoNiiTiCrMnCuGeNbZrCr and the like. You may.
  • first, predetermined raw materials are mixed and calcined.
  • a water slurry of iron oxide is wet-pulverized, and then, in the presence of Na 2 C 03, etc. It is preferable to add an aqueous solution of a water-soluble salt.
  • the carbonate of M precipitates and is mixed with the fine iron oxide particles with high precision.
  • fine M carbonate may be used to sufficiently mix with iron oxide. After this, it is washed, dried and calcined.
  • the calcination is carried out in the atmosphere, for example, at 100 ° C. 350 ° C. for 1 second to 10 hours, especially when obtaining fine calcined powder of M-type Sr ferrite. 1 to 3 hours at 100 to 1200 ° C
  • Such a calcined powder has a substantially magnet plumbite type flylite structure, and its primary particles have an average particle size of 0.1 to 1 Aim, particularly 0.1 to 0 Aim. 5 m is preferred.
  • the average particle size may be measured by a scanning electron microscope (SEM), and its coefficient of variation CV is preferably 80% or less, and generally preferably 10 to 70%.
  • the saturation magnetization ⁇ s is 65 to 80 emu / g, especially for M-type Sr ferrite, 65 to 71.5 emu / g, and the coercive force i Hc is 200 to 80 to 80 emu / g. 0000e, particularly, in the case of M-type Sr ferrite, is preferably 400 to 800 Oe.
  • the particle size of the calcined powder is not limited to the above.
  • the calcined powder is pulverized.
  • this pulverization it is preferable to introduce crystal strain and reduce bHc.
  • the magnet properties of a ferrite magnet using fine ferrite particles of 0.01 to 0.1 l Atm for example, by co-precipitation method, especially the degree of orientation is low because of the size of the ferrite particles. It is considered that one of the causes is that the value is too small and the magnetization ⁇ s is small. Therefore, as described above, the average particle size during molding is set, for example, in the range of 0.1 to 0.5 wm, and the saturation magnetization is set to the theoretical value (about 71.5 emu / g for M-type Sr finalite).
  • the surface magnetic flux density (B.) is the magnetic flux density B1, B2 at the so-called operating point determined by the shape of the ferrite particle and the shape of the second quadrant of the BH curve. It is. That is, the surface magnetic flux density (B.) is Nari rather large etc. URN b H c of ferrite particles is large, the result cohesion of its (B. A) it is rather large. Therefore, in order to reduce the cohesive force of ferrite particles, it is more advantageous to reduce bHc and reduce the squareness of the second quadrant. .
  • the soft magnetic particles can be made permanent magnets by returning to the original hard magnetism in the subsequent firing step. In addition, it can be used as it is as magnetic powder for a magnetic recording medium.
  • the B-H curve for one particle shown in Fig. 1 is predictable. This is because of the question of the separation method for one particle of 1 im or less and the measurement sensitivity. Because it cannot be measured in practice. Therefore, with reference to the experimental data of the M-type S r graphite crushing shown in Fig. 2, the BH curve of one S r graphite particle was predicted for each size of i H c ( (Fig. 3). Its to the table, from the full We Rye preparative particles 1 BH curve, Remind as in Table 1, les that magnetic cohesive force (B. 2) was expected is calculated Ri by the following method 1. Estimation of magnetic cohesion of particles
  • iHc is preferably set to 0.3 kOe or more.
  • the i HG at the time of molding is generally preferably 0.5 to 3.5 kOe, and particularly preferably 1.0 to 3.0 kOe for M-type Sr ferrite.
  • the strain of the (206) plane of the particles measured by X-ray diffraction is greater than or equal to 1 X 10, especially 2 X 1-4 to 10 X 10, and even 3 X 1 0 - 4 ⁇ 7 X 1 0 _ 4 and so as to arbitrarily favored and a child.
  • the coarse hexagonal filler raw material powder after calcining using a coarse raw material may be pulverized into fine particles. This is the case where the coarse ferrite raw material powder is pulverized into fine particles by pulverizing it, and when the iHc of the particles is originally smaller than about 3.5 kOe. In this case, it is not necessary to decrease iHc. However, strain is introduced by grinding.
  • pulverizer used for dry pulverization a dry vibrating mill, a dry attritor (medium stirring type mill), a dry ball mill, etc. can be used. It is preferable to use.
  • the powder is ground until the BET specific surface area becomes about 2 to 10 times, and the crystal strain of the (206) plane is reduced to, for example, 3 ⁇ 10 to 4 to 7
  • the average particle size of the dry pulverized powder is about 0.1 to about L Aim and the BET specific surface area is about 4 to 10 m 2 / g, and the CV of the particle size is 80% or less, particularly 1%. Maintain between 0 and 70%.
  • the dry pulverized powder is usually wet pulverized.
  • the BET specific surface area is set to about 1 to 4 times, particularly about 1 to 3 times, the average particle size is 0.1 to 0.8 tm, and the BET specific surface area is 6 to: L 2 m 2 / g, and maintain the CV at 80% or less, especially 10 to 70%.
  • the crystal strain increases, and the final funite particles are adjusted to the above Hc with a strain amount of 10 or more. It is to be noted that such a distortion amount and Hc can be obtained only by wet pulverization without dry-pulverization, so that pulverization may be performed only by wet pulverization. Alternatively, only dry grinding may be used.
  • the value is 50 to 75 emu / g, especially about 50 to 70 emu / g for the M-type Sr ferrite.
  • a ball mill, an attritor, a vibrating mill, or the like is suitably used.
  • an organic solvent as a solvent for the slurry at the time of this wet pulverization.
  • organic solvent Hydrocarbons such as heptane, industrial gasoline, kerosene, cyclohexano, toluene, xylene, ethylbenzene, terebine oil, etc .;
  • Halogenated hydrocarbons for example, 1,2-dibromoethane, tetrachloroethylene, ethylene oxide, dichloropentane, monochlorobenzene, etc .;
  • Monohydric alcohols, phenols, ethers for example, methanol, ethanol, n-propyl alcohol, n-butyl alcohol, cyclohexanol, phenol, n-butyl ether etc ;
  • Acids, esters for example, butyl acetate and the like;
  • Polyhydric alcohols and their ethers and esters for example, ethylene glycol;
  • Nitrogen-containing compounds for example, ethylenediamine
  • Sulfur compounds such as carbon disulfide
  • Paint thinners such as lacquer thinner and the like or a mixed solvent thereof can be used.
  • the viscosity of the organic solvent alone or as a mixture at 20 ° C. is preferably from 0.3 to 2.0 cps, particularly preferably from 0.4 to 0.5 cps. New This As a result, the moldability and the degree of orientation of the molded body are significantly improved.
  • the vapor pressure of the organic solvent at 20 ° C is 1 to 200 mmHg, and its boiling point is 50 to 200 ° C.
  • the organic solvent constitutes about 10 to 90% by weight of the slurry and the ferrite particles in the slurry are 10 to 90% by weight.
  • the amount of the surfactant added is preferably 0.1 to 5.0% by weight, particularly preferably 0.3 to 3.0% by weight, based on the dry-pulverized raw material powder.
  • This surfactant is generally amphiphilic, can be adsorbed on the surface of the ferrite particles of the raw material powder in the slurry, and is soluble in the organic solvent used in the adsorbed state. . That is, it usually has a hydrophilic group that can be adsorbed on the surface of the ferrite particles and an affinity group (hydrophobic group) that dissolves in the organic solvent used.
  • the solubility parameter (SP value) of the surfactant used is close to the solubility parameter (SP value) of the organic solvent used. Further, it is preferable that substantially all of the added amount be adsorbed to the raw material powder in the slurry. By forming micelles through such adsorption and solubilization, the primary particles are very well dispersed in the slurry after wet milling, and the primary particles are formed in a wet magnetic field. The degree of orientation is significantly improved.
  • the surfactant used may be any of a cationic type, an anionic type, a nonionic type, and an amphoteric type.
  • a carboxylic acid or a salt thereof for example, stearic acid, oleic acid, or stearic acid is used.
  • Those containing one or more saturated fatty acids or salts thereof are preferably used.
  • the use of a Ca salt of a fatty acid, and more preferably a stearic acid improves the solvent removal property during molding without impairing the orientation, and improves the properties of the molded article.
  • This is advantageous because cracking is prevented. This is considered to be due to the fact that in the M-type Sn ferrite, the density of the compact decreases from, for example, 3.0 g / m 3 to 2.8 g / m 3 , so that the solvent can be easily removed.
  • effective additive elements that may be added to the lights such as Ca, Ba, Sr, Al, Cr, Ga, Cu, Zn, Mn, Co, and Ti.
  • an organic substance containing a metal a metal salt of an organic surfactant such as the above-mentioned metal salt of a fatty acid
  • a metal salt of an organic surfactant such as the above-mentioned metal salt of a fatty acid
  • known sulfonic acids or salts thereof; ester sulfates or salts thereof; phosphoric acid esters or salts thereof; aliphatic amine salts or quaternary ammonium salts; aromatic quaternary ammonium salts At least one of a bidinium salt; an imidazolinium salt; a benzoin; an aminocarbonate; an imidazoline derivative; and a natural surfactant.
  • the slurry can be used as it is for wet-forming.
  • some or all of the surfactant may be added prior to wet molding or during the dry milling of the calcined powder alone.
  • part or all of the surfactant may be added after wet grinding of the organic solvent slurry.
  • a slurry for wet molding may be prepared by adding a surfactant and an organic solvent after dry milling.
  • the amount of the surfactant to be added in each step may be set so that the amount finally becomes the above-mentioned amount in the slurry during wet molding.
  • Another example of the present invention is to perform the above wet grinding in another solvent, and then replace the solvent used during grinding with the above organic solvent prior to wet molding.
  • the solvent for the wet pulverization in addition to the above-mentioned various organic solvents, a mixed solvent of ice or water is preferable from the viewpoint of handleability and the like.
  • the raw material powder in the slurry at the time of wet grinding is about 10 to about 0% by weight.
  • decantation may be performed while the raw material powder is magnetically held.
  • dry molding can be performed in advance.
  • the above-mentioned surface active amount is used at the addition amount.
  • the agent must be present.
  • a surfactant may be added at any one of the stages of dry milling, wet milling, and final slurry preparation.
  • the final slurry for wet molding is adjusted so that the amount of organic solvent is about 5 to 30% by weight and the amount of raw material particles is about 70 to 95% by weight.
  • the solvent may be removed according to a conventional method, for example, by forced removal under reduced pressure.
  • the molding pressure is about 0.1 to 0.5 ton / era 2 and the applied magnetic field is about 5 to 15 kG.
  • the degree of orientation, Ir / Is, of the obtained molded body is 78% or more, for example, 79 to 84%. Such a high degree of orientation is realized only by using an organic solvent and a surfactant in combination, and even if the surfactant is added to the water slurry, high orientation cannot be obtained.
  • the molded body is subjected to a heat treatment at a temperature of 100 to 500 ° C. in the air or nitrogen to sufficiently remove the added surfactant. Then, this molded body is subjected to, for example, 1150 to 1250 in the atmosphere.
  • a heat treatment at a temperature of 100 to 500 ° C. in the air or nitrogen to sufficiently remove the added surfactant.
  • this molded body is subjected to, for example, 1150 to 1250 in the atmosphere.
  • the average grain diameter of the obtained magnet by SEM is about 0.5-.0.9] Ltm, its CV is 80% or less, and its sintered density is 95% or more in relative density. , Especially 96 to 99%, Br 440 G, iHc 400 to 420 ⁇ IrZ ls SS or more, especially 97 to 98%, and HkZiHc 90-95%.
  • the pulverization is performed by dry or wet pulverization, but water or a mixed solvent of water is preferable as the solvent of the slurry in the wet pulverization performed in a preferable form in terms of easy handling.
  • the solvent constitutes about 10 to 9% by weight of the slurry, particularly 30 to 90% by weight of the water slurry, and the fine particles in the slurry contain 10 to 90% by weight. It is preferably 90% by weight, particularly preferably 10 to 70% by weight for a water slurry.
  • Such a wet powder is preferably prepared using water or an aqueous slurry. If crushed, this slurry can be used as it is for wet forming. Further, as described above, the dry pulverization of the calcined powder may be performed prior to the wet molding. Further, a slurry for wet molding may be prepared by adding a solvent after dry grinding. Further, the wet grinding may be performed in another solvent different from the molding slurry, and then, prior to the wet molding, the solvent used for grinding may be replaced with water, preferably. . In order to carry out solvent replacement, for example, decantation may be performed while the raw material powder is magnetically held. ' In this wet molding, dry pulverization can be performed in advance. In any of the above cases, the final slurry for wet molding is adjusted so that the amount of solvent such as water is about 5 to 30% by weight and the amount of raw material particles is about 70 to 95% by weight. .
  • the aqueous slurry When the aqueous slurry is wet-pulverized, it is desirable to add a dispersant during the pulverization.
  • a dispersant As the dispersant, it is desirable to use a polymer dispersant, and in particular, an ammonium polycarboxylate type is desirable.
  • the dispersant is preferably added in an amount of 0.1 to 1% by weight based on the raw material powder.
  • the slurry is used to perform shaping in a magnetic field while removing the organic solvent in the slurry.
  • the solvent may be removed according to a conventional method, for example, by forcible removal under reduced pressure.
  • 0.5 to n / cm 2 and the applied magnetic field is about 5 to 15 kG.
  • the degree of orientation, I r ZI s, of the obtained molded body is 70% or more, for example, 71 to 74%.
  • the compact is placed in the atmosphere or in nitrogen at 100 to 500.
  • Heat treatment at a temperature of C to sufficiently decompose and remove components in the slurry.
  • the molded body is subjected to, for example,
  • anisotropic fly magnets of the present invention in various shapes can be obtained.
  • the average grain diameter of the obtained magnet by SEM is less than 0 m, especially about 0.5 to 0.9 ⁇ m, its CV is less than 80%, and its sintered density is 9% relative density. 6% or more, especially 97 to 98%, Br-200G, IHc41 OO to 43OOe, Ir / Is 93% or more, especially for M type Sr ferrite 94% to 95%, and HkZiHc 90% to 96%.
  • Iron oxide (F e 2 0 3, primary particle size 0. 1 ⁇ 0. 5 m that is between)
  • VSM sample vibration magnetometer
  • This calcined powder was ground by the process shown in FIG. At this time, stearic acid was used as a surfactant, and toluene was used as an organic solvent.
  • dry grinding is performed by a dry vibration mill or a ball mill until the specific surface area of ferrite powder becomes 9 to 12 m 2 / g. (Examples 1 and 2 and Comparative Examples 1 to 3). At this time, the iHc of the ferrite powder decreased from 5.5 kOe to 2.2 to 2.6 kOe due to the introduction of grinding strain.
  • stearic acid when stearic acid is added during pulverization by a dry vibrating mouth mill (Example 1, Comparative Example 3), stearic acid is added in an amount of 2.0% by weight based on ferrite powder. and further the S i monument 2 0. 6 wt%, C a C 0 3 1. 9% by weight, were respectively added. Due to the addition of stearic acid, the adhesion of ferrite powder to the inner wall of the dry vibration mill hardly occurs, and the ferrite powder can be easily removed. did it.
  • Example 1 wet ball milling was carried out with a toluene slurry (a concentration of 33% by weight) (Examples 1 and 2).
  • a sample was prepared by wet ball milling a toluene slurry to which stearic acid was added (Example 3).
  • FIG. 4 shows, as Comparative Examples, Comparative Examples 1 to 3 in which stearic acid was not added and pulverization was performed in water.
  • Example 1 The ferrite powder after ball mill pulverization of Example 1 was observed by SEM, and the size of about 20 crystal grains was measured. As shown in FIG. 4, the result was that the average particle size was 0.25 m and the variation coefficient was 40%. Examples 1 to 3 after wet ball mill pulverization, Comparative examples 1 to The magnetic properties of the powder in Fig. 3 were measured by VSM, and the results in Table 2 were obtained.
  • the degree of orientation of the molded body at this time was greatly improved when stearic acid was added and pulverization was performed in toluene, to be 80%. Note that the addition of stearic acid to the aqueous slurry does not improve the degree of orientation.
  • Example 1 the compact of Example 1 and the compact of Comparative Example 1 were fired in air at 118 ° C. for 1 hour.
  • the molded body of Example 1 was fired, it was sufficiently degreased in air at 100 to 400 ° C. in order to remove stearic acid, and then fired.
  • the microstructure of the sintered body fired at 118 in Example 1 was observed by SEM, and the size of about 200 crystal grains was measured. As a result, as shown in FIG. 5, the average particle diameter was 0.67 ⁇ m and the variation coefficient was 42%.
  • Table 4 Properties of sintered body Sample BriHc Ir / Is Sintered density
  • Example 4 ′ In the process of Example 1, the amount of stearic acid added to the raw material particles was changed. Table 5 shows the results. Table 5 Sample stearic acid forms
  • Example 5 In the process of Example 3, a molded body obtained by adding oleic acid and pulverizing in toluene was sufficiently degreased at 100 to 400 ° C. in the air. It was fired in the air at 170 to 118 ° C for 1 hour. The obtained magnetic properties are as shown in Table 6. Table 6 Sintering temperature Br Ir / Is Sintering density
  • Example 1 In the process of Example 1, instead of stearic acid, Zn stearate, Ca stearate, and the amount of oleic acid added in the process of Example 3 were all based on ferrite powder. To 2% by weight. Further, in the process of Example 1, the orientation of the molded body was similarly evaluated by changing the solvent to toluene, MEK, ethanol, and acetate. Table 7 shows the results. As a result, a high degree of orientation of 79% or more was obtained in all of the additives.
  • Example 7 The effect of the present invention is clear.
  • the shape of the fine particles in the molding slurry was almost the same as in Example 1.
  • the same effect was obtained both when the surfactant was added after wet milling and when the solvent was replaced by milling with a water slurry followed by solvent replacement.
  • Example 7 The following were used as raw materials.
  • VSM sample vibration magnetometer
  • the temperature change of the magnetic properties of the powder whose iHc has decreased due to the pulverization strain is from 100 to 150 using a vibrating magnetic force system (VSM). It was measured in the range of C. As a result, as shown in Fig. 8, the improvement was remarkable.
  • VSM vibrating magnetic force system
  • the degree of orientation of the compact is significantly improved, and extremely high magnet properties can be obtained.
  • wet Even if a surfactant is used at the time of shaping, such effects cannot be realized with a water slurry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

発明の名称 異方性フ エライ ト磁石の、製造方法および異方性フ ェライ 卜磁石 ならびに六方晶系フ ユライ ト粒子およびその製造方法 明
技術分野
本発明は、 六方晶系フ ユライ ト粒子とその製造方法およびそ れを用いた異方性フユライ ト磁石とその製造方法に関するもの である。
背景技術 ' 現在、 酸化物永久磁石材料には、 M型の六方晶系等の S r フ エライ ト、 あるいは場合によっては B aフ ェライ トが主に用レヽ. られてお り 、 その焼結磁石やボン ド磁石が製造されている。 磁 石の特性のう ち、 残留磁束密度 B r を高性能化するためには、 高密度化と と もに磁場プレスによ って行われる異方性化が重要 となる。 も う一つの磁石特性である保持力 H cを高性能化する ためには、 フユライ ト粒子を、 1 W m 以下にして単磁区粒子に するこ とが重要となる。 従来、 B aフ ヱライ ト または S r フ ヱライ 卜の焼結磁石は以 下のよ う に製造されてき た。 すなわち、 酸化鉄と B a ま たは S rの炭酸塩を混合後、 仮焼を行なつてフ ェライ ト化反応を終 了させる。 その後、 粉砕、 磁場成形、 焼成を行なう。 磁石の Ηό の高性能化のためには、 焼結時の粒成長を考慮して、 磁場成形 時に 1 μ m 以下のフヱライ ト粒子を準備する必要がある。 この ため、 仮焼後に数 m 以上の粒子を 1 [I m 以下まで粉砕する か、 粉砕前に既に 1 m 以下となっているようにフヱライ ト粒 子を合成しておく か、 いずれかの方法力' Sと られる。
粉碎ゃ磁場成形は、 それぞれ、 乾式で行なう場合と、 溶媒を 用いる湿式で行なう場合の 2通りの方法がある。 湿式法は乾式 法に比べて 1 u. 以下まで粉砕するこ とが容易であり、 磁場成 形時の配向度も優れているため、 高性能化のためには有利であ る。 このよ う な湿式粉砕では、 従来、 溶媒として水が用いられ てきた。
—方、 単磁区粒子割合を増やすための方法として、 共沈法や 水熱合成法、 あるいは従来法でも微細な原料を高精度に混合し 粒成長の起こ らない比較的低温で仮焼する製造法が考えられ る。 これらの方法によ り、 0 . 0 1〜 1 m の範囲で微細なフ ェライ ト粒子を得るこ とが可能となり、 その結果これらの粒子 は非常に大き い i H c (最高 6 k O e 程度) を持つ よ う にな る。
酸化物永久磁石の高性能化のためには、 このよ う な微細粒子 を用いることが必要である と考えられるにもかかわらず、 これ を用いた磁場配向異方性磁石の報告は従来ほとんどなく また実 用化もされていない。
この理由は、 異方性磁石をこのよ うな微粒子を用いて製造す る と i H c は大き く なるものの、 B rが大き く 劣化し磁気特性 の改善効果が得られないためである。 そして、 この B rが劣化 する理由は主に磁場成形時の配向度の劣化に原因がある。
配向度の劣化は、 フ ヱ ライ ト粒子の大き さが例えば 0 . 1 I m 以下のよ う に必要以上に小さ く な り 、 さ らに磁化 ( a s ) の大きさ も小さ く なる と、 磁場中での粒子の回転 トルクが小さ · く なつてしま う こ とに原因がある。 さ らに、 後述するよ うに粒 子の保磁力 (bHc )が大き く なる と、 フユライ ト粒子同士が磁気 的に凝集しや く するなるこ とに大きな原因がある。
従来は、 例えば M型の B aフ ヱライ トにおいて、 特公昭 6 2 一 5 3 4 4 3 号公報では、 そ こ で実施例に記載さ れている 0 . :! 〜 0 . 3 μ ηι の粉体の i H c は最高 4 6 5 0 Oeである が、 このと きの σ s は 4 4 emu/g という低い値しか得られてい ない。 また、 実際にこの粉体を用いた異方性磁石は実施例には 記載されていない。 特公昭 4 9一 3 8 9 1 7号公報では同様に 1 m 以下の粉体を作成して、 i H cが最高 4 2 5 0 Oeの粉体 を得ているが、 唯一ゴム磁石の製造が記載されているだけであ る。 発明の開示
本発明の主たる目的は、 上記従来の磁石の問題点を解消し、 よ り高性能化した異方性フユライ ト磁石とその製造方法と、 そ の原料六方晶系フニライ ト粒子と、 その製造方法とを提供する とである。
このよ う な目的は、 下記 ( 1 ) 〜 ( 3 7 ) の本発明により達 -成される。
( 1 ) フニライ ト磁石原料粒子および有機溶媒を含むスラ リ一 を前記有機溶剤を除去しながら磁場中成形して成形体を得、 こ の成形体を焼成して異方性フェライ 卜磁石を得る際に、
前記スラ リ ー中に界面活性剤を存在させるこ とで前記成形体 の配向度を向上させる異方性フユライ ト磁石の製造方法。
( 2 ) 前記スラ リ ーは、 前記フ ライ ト磁石原料粒子の原料 粉、 および前記有機溶剤を含むスラ リーを湿式粉砕して得られ る上記 ( 1 ) の異方性フ ライ ト磁石の製造方法。
( 3 ) 前記フニライ ト磁石原料粒子またはその原料粉は、 仮焼 粉を乾式粉碎して調製された ものである上記 ( 1 ) ま たは
( 2 ) の異方性フェライ ト磁石の製造方法。
( 4 ) 前記スラ リ一は、 前記フェライ 卜磁石原料粒子の原料粉 を湿式粉砕した後、 溶媒を前記有機溶剤と置換して調製される 上記 ( 1 ) 〜 ( 3 ) のいずれかの異方性フ ライ ト磁石の製造 方法。 ( 5 ) 前記乾式または湿式粉砕時に前記界面活性剤を添加する 上記 ( 2 ) 〜 ( 4 ) のいずれかの異方性フユライ ト磁石の製造 方法。
( 6 ) 前記スラ リ ーは、 前記フ ライ ト磁石原料粒子の原料粉 を前記乾式または湿式粉砕した後に、 これに前記界面活性剤ま たは前記界面活性剤および前記有機溶剤を添加して得られる上 記 ( 2 ) 〜 ( 5 ) のいずれかの異方性フヱライ ト磁石の製造方' 法。
( 7 ) 前記スラ リー中の前記フ ニライ ト磁石原料粒子の平均粒 ' 径が 1 /x m 以下である上記 ( 1 ) 〜 ( 6 ) のいずれかの異方性 フ ェ ライ ト磁石の製造方法。
( 8 ) 前記フ ライ ト磁石原料粒子の粒径の変動係数が 8 0 % 以下である上記 ( 7 ) の異方性フユライ ト磁石の製造方法。
( 9 ) 前記フニライ ト磁石原料粒子には、 結晶歪が導入されて お り 、 その i H c 力 S 3 . 5 kOe 以下に低減されて いる上記
( 1 ) 〜 ( 8 ) のいずれかの異方性フ ユ ライ ト磁石の製造方 法。
( 1 0 ) 前記異方性フ ユ ライ ト磁石の平均結晶粒径が 1 . 0 μ m 以下であ り 、 そ の変動係数が、 8 0 %以下である上記
( 1 ) 〜 ( 9 ) のいずれかの異方性フ ユライ ト磁石の製造方 法。
( 1 1 ) 前記異方性フ ユライ ト磁石の、 飽和磁化と残留磁化の 比で表わされる配向度が、 9 6 %以上である上記 ( 1 ) 〜
( 1 0 ) のいずれかの異方性フェライ 卜磁石の製造方法。
( 1 2 ) 前記成形体の配向度が 7 8 %以上である上記 ( 1 ) 〜
( 1 1 ) のいずれかの異方性フ ライ 卜磁石の製造方法。
( 1 3 ) 前記界面活性剤は、 フユライ トに対する添加金属元素 を含む上記 ( 1 ) 〜 ( 1 2 ) のいずれかの異方性フユライ ト磁 石の製造方法。 . '
( 1 4 ) 前記界面活性剤を、 前記フェライ ト磁石原料粒子に対 し 0 . 1〜5重量%存在させる上記 ( 1 ) 〜 ( 1 3 ) のいずれ かの異方性フエライ ト磁石の製造方法。
( 1 5 ) 前記スラ リ一中で、 前記界面活性剤は前記フ ライ ト 原料粒子表面に吸着されている上記 ( 1 ) 〜 ( 1 4 ) のいずれ かの異方性フ ライ ト磁石の製造方法。
( 1 6 ) 前記有機溶剤の 2 0ででの粘度が 0 . 3〜 2 cps であ る上記 ( 1 ) 〜 ( 1 5 ) のいずれかの異方性フエライ ト磁石の 製造方法。
( 1 7 ) 前記有機溶剤の 2 0 °Cでの蒸気圧が、 1〜 2 0 0 mmHg である上記 ( 1 ) ~ ( 1 6 ) のいずれかの異方性フエライ ト磁 石の製造方法。
( 1 8 ) 前記有機溶剤の沸点が 5 0〜 2 0 0 eCである上記 ( 1 ) 〜 ( 1 7 ) のいずれかの異方性フニ ^イ ト磁石の製造方 法。 ( 1 9 ) 湿式成形時の前記スラ リー中のフ ヱライ ト磁石原料粒 子の含有量が、 7 0〜 9 5重量%である上記 ( 1 ) 〜 ( 1 8 ) のいずれかの異方性フ ユライ ト磁石の製造方法。
( 2 0 ) 六方晶系フェライ ト原料粉を粉砕して、 六方晶系フ エ ライ 卜粒子に機械的な応力を与えて結晶歪を導入して i H cを 3 . 5 k0e 以下に低減し、 しかる後に、 磁場成形して成形体を 得、 こ の成形体を焼成する異方性フ ニ ラ イ ト 磁石の製造方 法。
( 2 1 ) X線に よ って測定される ( 2 0 6 ) 面の歪が、 I X 1 0 - 4以上与えられる上記 ( 2 0 ) の異方性フ ライ 卜磁石の 製造方法。
( 2 2 ) 前記スラ リー中の前記フ ライ ト磁石原料粒子の平均 粒径が 1 μ m 以下であり 、 前記フ ユライ 卜磁石原料粒子の粒径 の変動係数が 8 0 %以下である上記 ( 2 0 ) または ( 2 1 ) の 異方性フ ユライ 卜磁石の製造方法。
( 2 3 ) 前記異方性フ ユ ライ ト磁石の平均結晶粒径が 1 . 0 m 以下であ り 、 その変動係数が、 8 0 %以下である上記
( 2 0 ) 〜 ( 2 2 ) のいずれかの異方性フ ェライ ト磁石の製造 方法。
( 2 4 ) 前記異方性フ工ライ ト磁石の、 飽和磁化と残留磁化の 比で表わされる配向度が、 9 3 %以上である上記 ( 2 0 ) 〜
( 2 3 ) のいずれかの異方性フェライ ト磁石の製造方法。. ( 2 5 ) 前記成形体の配向度が 7 0 %以上である上記 ( 2 0 ) 〜 ( 2'4 ) のいずれかの異方性フェライ ト磁石の製造方法。
( 2 6 ) 前記粉砕は湿式粉碎を含む上記 ( 2 0 ) 〜 ( 2 5 ) の いずれかの異方性フェライ 卜磁石の製造方法。.
( 2 7 ) 前記湿式粉砕は水系溶媒を用い、 この湿式粉砕時に高 分子分散剤を添加し、 これを湿式磁場成形する上記 ( 2 6 ) の 異方性フヱライ ト磁石の製造方法。
( 2 8 ) 前記高分子分散剤が、 ポリ カルボン酸アンモニゥム塩 型のものである上記 ( 2 7 )· の異方性フ ライ ト磁石の製造方 法。
( 2 9 ) 平均結晶粒径が 1 0 j¾ m 以下であり、 その変動係数 が、 8 0 %以下であり、 飽和磁化と残留磁化の比で表わされる 配向度が、 9 6 %以上である異方性フェライ ト磁石。
( 3 0 ) X線回折によつて測定される ( 2 0 6 ) 面の歪が、 1 1 0 _4以上与えられている一軸性結晶磁気異方性を有する六 方晶系フ ユライ ト粒子。
( 3 1 ) 原料粉を粉砕するこ とによ り結晶歪が導入されている 上記 ( 3 0 ) の六方晶系フ ライ ト粒子。
( 3 2 ) 結晶歪によ り 、 i H cが低減されている上記 ( 3 1 ) の六方晶系フヱライ ト粒子。
( 3 3 ) i H cが、 3 . 5 kOe 以下である上記 ( 3 2 ) の六方 系フヱライ 卜粒子。 ( 3 4 ) 結晶歪によ り 、 i H cの温度に対する変化量が低減さ れている上記 ( 3 0 ) ないし ( 3 3 ) のいずれかの六方晶系フ ェライ 卜粒子。
( 3 5 ) 平均粒径が 1 μ m 以下であり 、 粒径の変動係数が 8 0 %以下である上記 ( 3 3 ) の六方晶系フ ユライ ト粒子。
( 3 6 ) 六方晶系フユライ ト原料粉に機械的な応力を与えて、 X線回折によって測定される ( 2 0.6 ) 面の歪を 1 X 1 Ό - 4以 上導入する六方晶系フ ライ ト粒子の製造方法。 ·
( 3 7 ) 前記機械的な応力を、 湿式および または乾式粉砕に よって与える上記 ( 3 6 ) の六方晶系フニライ ト粒子の製造方 法。 , 発明の作用および効果
本発明者は、 フユライ ト磁石原料に対して、 フニライ ト粒子 表面に吸着可能な界面活性剤を添加し、 有機溶剤中にこのフニ ライ 卜粒子を分散させ、 このスラ リーを湿式磁場成形するこ と によ り 、 1 m 以下の微粒子を用いる場合でも成形体の配向度 が飛躍的に改善され、 焼成後の磁気特性も大幅に改善されるこ とを見出した。
1 m 以下の粒径の粒子を多く 含む粉体を予め合成して使用' する場合は、 粉砕歪導入による粉体の i H cの低下を同時に行 なわせるこ とが好ま しい。 また、 数 t m 以上のフヱライ ト粒子 を用いる場合には、 フニライ 卜粒子表面に吸着可能な界面活性 剤を添加し、 有機溶剤中にそのフ ライ ト粒子を分散させる 際、 1 p. m 以下にまでの粉砕を同時に行なわせてもよい。 これ らの方法によ り 、 3 . 5 kOe 、 特に M型 S rフェライ トでは 3 kOe 以下の i H cをもち、 結晶歪を導入したフェライ ト粒子に 界面活性剤を吸着させた状態で、 これを有機溶剤中に分散させ て湿式磁場成形すると、 残留磁化と飽和磁化の比で表す配向度 ± , 成形体で 7 8 %以上、 特に 8 0 %以上、 焼結体で 9 6 %以 上、 特に 9 7 %以上まで飛躍的に改善される。 すなわち、 磁場 - 中成形の際の有機溶剤と界面活性剤との併用に基づく選択的な 配向度向上効果が生じ、 さらに成形粉の結晶歪と保磁力の規制 による配向度向上効果によ って、 これが相乗-されるこ とにな る。 この際、 添加した界面活性剤は、 焼成工程で容易に分解、 飛散するため非磁性部分としては残らない。 これらによ り、 磁 石特性としては、 B r約 4 . 4 kG、 i H c 4 . 0〜4 . 2 kOe という従来にない高特性が得られる。
従来、 磁性微粒子を高分散化するための手段として、 このよ うな有機溶剤中処理の方法が有効なこ とは知られている。 例え ば、 磁性流体の製造方法においては、 マグネタイ ト等の微粒子 にォレイ ン酸を添加、 吸着させた後、 ケロシン等の有機溶剤に 分散させる。 また、 磁気テープの製造法においても 、 了一 F e 2 0 3 等の微粒子に対して同様な手法が用い られてい る。
しかし、 .磁石材料に対する検討は、 磁場中湿式成形時の高配 向化という 目的では、 従来報告されていない。 すなわち、 この よ う な手法が磁石材料の磁場配向性に対して.、 特に 1 m 以下, の微粒子の場合に極めて有効であるこ とは本発明者らが初めて 見出したこ とである。 本発明によれば、 Ι μ ηι 以下のフヱライ 卜粒子を用いて高配向化するこ とによ り 、 従来になく 高い磁気 特性を もつ焼結フ ェ ラ イ ト 磁石を得る こ と ができ るのであ る。
なお、 磁石材料の製造の際の有機溶剤中での湿式粉砕および 湿式磁場成形については、 以下の先行例があるがいずれも本件 とは内容が異なっている。
①特開昭 6 1 - 1 1 4 5 0 5号公報
対象が希土類 · 鉄 · ボ t2 ン系永久磁石であり 、 原料粉の酸化 防止を目的とする有機溶媒を用いた湿式粉砕である。
②特開昭 6 1 一 2 9 1 9 0 1 号公報
対象を希土類含有永久磁石原料粉末と した有機溶媒を用いた 湿式粉砕であ り 、 目的は焼結体中の酸素量の低減化である。
③特開昭 6 1 - 2 3 6 1 0 9号公報
希土類磁石の他、 フ ユライ ト磁石も対象と した有機溶剤を用 いた湿式成形法に関するものである。 目的が酸化防止と と もに 残留炭素量を減少させるこ とであり 、 水の溶解度の小さい溶剤 が選択されている。 このため当然、 界面活性剤も添加されな' い。 またこの観点からは本来フ ェライ ト磁石はあま り関係ない はずであり 、 実施例にも N d系磁石の場合しか存在しない。
④特開昭 6 4 - 4 2 1 0 5号公報
対象はフ二ライ ト磁石であり、 水または有機溶剤中で湿式粉 碎した後、 ステア リ ン酸またはそのェマルジヨ ンを添加する旨 が特許請求の範囲に記載されている。 その目的は成形性 (成形 歩留) の改善であり、 磁石特性の改善、 特に配向度の改善には 着眼されておらず、 実施例では水中でステアリ ン酸を添加して 粉砕成形した場合しか行なわれてない。 なお、 後述の実施例か らも明らかなように、 有機溶剤にかえ水を用いて湿式成形した ときには本発明の効果は実現しない。
さらに、 これらの方法にかえて、 フヱライ ト粒子の大きさを 0 . l〜 l ii m の適正な範囲にしてかつ、 磁化 ( a s ) を理論 値 (約 7 1 . 5 emu/g ) にできるだけ近づけるよ う に大き く し、 さらに、 フェライ ト磁石原料を粉砕して所定の結晶歪を導 入し、 これを磁場成形するだけでも、 1 m 以下の微粒子を用 いる場合でも成形体の配向度が飛躍的に改善され、 焼成後の磁. 気特性も大幅に改善される。
前記のとおり 、 1 m 以下の粒径の粒子を多く含む粉体を予 め合成して使用する場合、 粉砕歪を導入して粉体の i H cの低 下を同時に行なわせる。 また、 数 m 以上のフヱライ ト粒子を 用いて、 1 μ m 以下にまでの粉砕を同時に行なわせてもよい。 これらの方法によ り 、 3 . 5 k0e 、 特に M型 S r フ ヱライ トで は 3 kO e 以下の i H cをもち、 結晶歪を導入したフ ェライ ト粒 子を用いて、 これを例えば水スラ リー中に分散させて湿式磁場 成形する と、 残留磁化と飽和磁化の比で表す配向度は、 例えば 成形体で 7 4 %、 焼結体で 9 4 %におよび、 飛躍的に改善され' る。 すなわち、 成形粉の結晶歪と保磁力の規制によってきわめ て顕著な配向度向上効果が生じるのである。 これによ り 、 磁石 特性と して、 B r約 4 . 2 kG、 i H c約 4 . 2 kOe という従来' にない高特性が得られる。 図面の簡単な説明
第 1 図は、 本発明における配向度向上の原理の一つを説明す るための説明図であ り 、 第 2 図は、 粉砕による M型 S r フ ェラ ィ ト粉体の σ sおよび i H c と比表面積の変化の関係を示すグ ラフであ り 、 第 3図は、 フ ヱライ ト粒子 1 個の予想 B — H曲線 を示すグラフであり 、 第 4図は、 実施例 1 〜 3、 比較例 1 〜 3 における粉砕プロセスを示す図であり 、 第 5図は、 実施例 1 の 粉砕後の粒子の粒度分布を示す ヒス ト グラ ムであ り 、 第 6 図 は、 実施例 1 の成形体を焼結した焼結体の結晶粒子の粒度分布 を示すヒス ト グラムであり 、 第 7図は、 歪と i H eの関係を示 すグラフであ り 、 第 8図は、 歪と i H cの温度特性の関係を示 すグラフである。 発明を実施するための最良の形態
以下、 本発明の具体的構成について詳細に説明する。
本発明における異方性フェライ ト磁石の組成は、 主にマグネ トプランバイ ト型の M相、 W相等の六方晶系のフェライ 卜であ る。 この よ う なフ ェ ライ 卜 と しては、 特に、 M O * n F e 2 0 3 ( nは、 好ま し く は S rお よび B aの 1 種以上、 n = 4. 5 ~ 6. 5 ) であるこ とが好ま しい。 このようなフェライ 卜には、 さ らに C a P b A l G a S n Z n I n C o N i T i C r M n C u G e N b Z r C r等が含有されていてもよい。
このよ うなフニライ 卜の焼結体の異方性磁石を本発明に従い 製造するには、 まず、 所定の原料を混合し、 仮焼する。 仮焼後 に微細なフ ェライ ト粒子を得るためには、 例えば混合に際し て、 まず酸化鉄の水スラ リ ーを湿式粉砕し、 これに、 N a 2 C 03 等の存在下、 前記 Mの水溶性塩の水溶液を添加するこ と が好ましい。 これによ り、 Mの炭酸塩が析出し、 微細酸化鉄粒 子と高精度に混合される。 また、 微細な Mの炭酸塩を用いて酸 化鉄と十分に混合してもよい。 この後、 洗浄、 乾燥し、 仮焼す— る。 仮焼は、 大気中で、 例えば 1 0 0 0 1 3 5 0 Cで 1秒〜 1 0時間、 特に M型の S rフェライ 卜の微細仮焼粉を得るとき には、 1 0 0 0〜 1 2 0 0 °Cで、 1 秒〜 3 時間程度行えばよ い o
このよ う な仮焼粉は、 実質的にマグネ 卜プランバイ ト型のフ 二 ラ イ ト 構造を も ち、 その一次粒子の平均粒径 0 . 1 〜 1 Ai m 、 特に 0 . 1 〜 0 . 5 m とするこ とが好ま しい。 平均粒 径は走査型電子顕微鏡 ( S E M ) によ り測定すればよ く 、 その 変動係数 C Vは 8 0 %以下、 一般に 1 0〜 7 0 % とするこ とが 好ま しい。 また、 飽和磁化 σ s は 6 5〜 8 0 emu/g 、 特に M型 S r フ ェ ライ ト では 6 5〜 7 1 . 5 emu/g 、 保磁力 i H c は 2 0 0 0〜 8 0 0 00e、 特に M型 S r フ ェライ 卜では 4 0 0 0 〜 8 0 0 0 Oeであるこ とが好ま しい。 なお、 後述のよ うに、 仮 焼粉の粒径は上記に限定されるものではない。
次いで、 この仮焼粉を粉砕する。 この粉砕によ り 、 結晶歪を 導入し、 b H c を小さ く するこ とが好ま しい。 従来、 例えば共 沈法などによる 0 . 0 1 〜 0 . l At m の微細フェライ 卜粒子を 用いたフ ユライ ト磁石の磁石特性、 特に配向度が低いのは、 フ エ ライ ト粒子の大き さが必要以上に小さすぎる こ と と、 磁化 σ sが小さいこ とに原因の一つがある と考えられる。 従って、 上記のよ う に成形時の平均粒径を例えば 0 . 1 〜 0 . 5 w m の 範囲にして、 かつ飽和磁化を理論値 ( M型 S r フニライ 卜で約 7 1 . 5 emu/g ) に近づけるこ とが第一に必要と考えられる。 しかし、 a s の大きな 0 . 1 〜 1 μ πι のフ ヱライ ト粒子の場合 でもフニライ ト粒子が単磁区粒子化して i H c及び b H cが大 き く なるこ とによ り 、 粒子間に磁気的な力が働き、 これによつ てフェライ ト粒子が凝集しやすく なる。 この結果、 磁場による 異方性化が妨げられる。 今、 フ ェライ ト粒子間の吸引力 (凝集. 力) は、 粒子の表面の磁束密度の二乗に比例する。 この表面磁 束密度 ( B 。 ) は、 第 1 図に示されるよう に、 フェライ ト粒子 の形状と B H曲線の第二象限の形で決定するいわゆる動作点に . おける磁束密度 B 1、 B 2である。 すなわち、 フェライ ト粒子 の b H cが大きいぼど表面磁束密度 ( B。 ) が大き く なり 、 そ の結果凝集力 ( B 。a ) が大き く なる。 したがって、 フェライ ト 粒子の凝集力を弱めるためには、 b H cを小さく し第二象限の 角型性を小さ く するほど有利である。 .
一方、 磁場成形時に高配向化させるためには、 ある外部磁場 中での磁気モーメ ン 卜が大きいほど有利であることは容易に予 想される。 したがって、 磁気的な凝集力を弱めかつ、 高配向に するためには、 一軸磁気異方性をもつフヱライ ト粒子を一時的 に見かけ上軟磁性化すればよい。 そして、 この軟磁性化された 粒子は、 後の焼成工程で、 本来の硬磁性に戻すこ とによって永 久磁石とするこ とができる。 この他、 そのまま磁気記録媒体用 の磁性粉と しても用いるこ とができる。
第 1 図に示される粒子 1 個の B — H曲線は予想する しかな い。 なぜなら、 1 i m以下の粒子 1個の分離法と測定感度の問 題で、 実際には測定不可能であるからである。 そこで、 第 2図 に示す、 M型の S rフ ヱライ トの粉砕の実験データを参考にし て、 S rフ ヱライ ト粒子 1個の B H曲線を、 i H cの大きさ毎 に予想した (第 3図) 。 そ して、 このフ ヱ ライ ト粒子 1 個の B H曲線から、 表 1 に示すよ う に、 磁気的凝集力 ( B。2) を予 想した れは、 以下の方法によ り計算した 表 1 . 粒子の磁気的凝集力の予想
A B
磁化曲線 凝集力比率 凝集力比率
Bo (G) (Bo2) Bo (G) (Bo2)
① 3760 1.00 3360 1.00
② 3630 0.93 3240 0.93
③ 2840 0.57 2440 0.53
約 4 μ mの B a フ ユ ラ イ ト 粒子を測定 し た文献 (例 え ば、 J . A p 1 . P h y s . v o l . 5 3 , o l l , P 7 8 6 7 ( 1 9 8 2 ) ) による と、 粒子の I 一 H曲線は非常 に角型性のよいものであるから、 1 mの場合も同様と考えら れる。 これらのこ とを考慮して、 予想した種々の B H曲線を第 3図に示す。 i H cが B r よ り も大きい場合は、 b H c = B r と予想される。 ま た、 i H c力 s B r よ り も小さ い場合は、 b H c i H c と なる。 粒子の形状を、 円柱とする と、 高さ ( L ) と直径 ( D ) の比が、 1 と 0 . 5の場合は、 パーミアン ス線 0:各々.第 3 図の A と C となる。 また、 球のと きは B と な る。 このとき、 粒子の表面磁束密度 ( B o ) は、 どの形状の場 合も表 1 に示すよう に H e = 2 . 4 kOe の時に、 著し く減少す るこ とがわかる。 すなわち、 磁化曲線の屈曲点が動作点よ り も Y軸 ( B軸) 側にあれば、 B rは著し く低く なる。 その臨界点 は M型の S r フェライ トでは図からだいたい b H o = 3 kOe で ある。 したがって、 このとき、 b H c = i H cであるから粉砕 によって粒子の i H cを 3 kOe 以下にするこ とが好ま しいこ と が予想される ( ただし、 一軸異方性は維持しているこ とが必要 である) 。 さらに、 最終的には永久磁石とするのであるから、 軟磁性化しても後工程で再び所望の硬磁性にもどる必要がある ので、 i H cは 0 . kOe 以上とするこ とが好ま しく 、 特に成 形時の i H Gは、 一般に 0 . 5〜 3 . 5 kOe 、 特に M型の S r フェライ トでは 1 . 0〜 3 . 0 kOe であるこ とが好ましい。
これらのこ とを実現するためには、 機械的な粉砕によって歪 を導入するこ とが有効である。 この場合、 粉砕後に、 X線回折 によって測定される粒子の ( 2 0 6 ) 面の歪が、 1 X 1 0 以 上、 特に 2 X 1 ひ - 4〜 1 0 X 1 0 、 さらには 3 X 1 0 - 4〜 7 X 1 0 _ 4となるよう にするこ とが好ま しい。
X線回折による歪の定量化には、 種々の方法が知られている が W a r r e n と A V e r b a c hによるフーリ エ解析によ る結晶子サイ ズ と歪の分離法 (参考文献 : J . A p p 1 . P h y s . v o l . 2 1 , p 5 9 5 ( 1 9 5 0 ) ) を適用して いるこ とが好ま しい。 六法晶系フ ヱライ トの数多い回折面のな かで、 ( 2 0 6 ) 面の歪 < e L 2 >が、 i H cの大きさ と最も 良く 対応する。 そして、 十分な高温で焼鈍した S rフヱライ ト を標準試料と して ( 2 0 6 ) 面の歪 < e L 2 >を上記参考文献 や、 粘土科学 4 144〜151 (1978) 等に従い算出する。
なお、 粉砕によって生じた歪によ り S rフヱライ ト等のフエ ライ ト粒子の i H eを低減させる と、 i H eの温度に対する変 化量が少な く なる という、 新たな効果も生じる。 i H cの温度 係数は、 一 1 0 0〜 + 1 5 0。Cにおいて 1〜 6 OeZ eC程度まで 低減する。 また、 以上とは異な り 、 粗い原料を用いて仮焼後の 大き く なつた六方晶フ ヱライ ト原料粉を粉砕するこ とによ り微 細にしてもよい。 このよ う に粗いフ ェライ 卜原料粉を粉砕して い く こ と によ って微細にする場合であって、 も と も と粒子の i H cが 3. 5 kOe 程度よ り小さいと きには、 必ずしも i H c を減少させる必要はなく なる。 ただし、 粉砕によって歪は導入 される。
このよ う な粉砕を行うには、 例えばまず乾式粉砕を行って、 十分な結晶歪を導入するこ とが好ま しい。 乾式粉砕に用いる粉 砕機と しては、 乾式振動ミル、 乾式ア ト ライ ター (媒体撹拌型 ミル) 、 乾式ボールミル等が使用できるが、 特に乾式振動ミル を用いるこ とが好ましい。
この乾式粉碎によ り 、 B E T比表面積が 2〜 1 0倍程度とな るまで粉碎し、 ( 2 0 6》 面の結晶歪を例えば 3 X 1 0 -4〜7
1 0 — 4程度導入する。 こ の際、 乾式粉砕粉の平均粒径は 0 . 1〜 ; L Ai m 程度、 B E T比表面積は 4〜 1 0 m2/g程度と し 、 粒径の C Vは 8 0 %以下、 特に 1 0〜 7 0 % に維持す る。
次いで、 通常はこの乾式粉砕粉を湿式粉砕する。 湿式粉砕に よ り 、 B E T比表面積が 1〜4倍程度、 特に 1〜3倍程度とな るようにし、 平均粒径を 0 . 1〜0. 8 t m 、 B E T比表面積 を 6〜: L 2 m2/gと し、 C Vを 8 0 %以下、 特に 1 0〜 70 %に 維持する。 この湿式粉砕でも結晶歪は増加し、 最終的フニライ ト粒子は 1 0 以上の歪量で上記の H cに調整する。 なお、 乾 —式粉砕を省略して湿式粉砕のみによ っても このよ う な歪量や H cにするこ とができるので、 粉砕を湿式粉砕のみと してもよ い。 また乾式粉砕のみを用いても よい。 なお 粉砕終了後の は 5 0〜 7 5 emu/g 、 特に M型 S rフェライ 卜では 5 0〜 7 0 emu/ 程度である。 このよ う な湿式粉砕には、 ボールミ ル、 ア ト ライター、 振動ミル等が好適に使用される。
本発明の第 1の態様では、 この湿式粉砕時のスラ リーの溶媒 として有機溶剤を用いるこ とが好ま しい。 用いる有機溶剤と し ては、 炭化水素、 例えば、 へブタ ン、 工業ガソ リ ン、 燈油、 シク ロ へキサノ 、 ト ルエン、 キシ レ ン、 ェチルベンゼン、 テレ ビン 油等 ;
ハロゲン化炭化水素類、 例えば、 1 , 2 —ジブロモェタ ン、 テ ト ラ ク ロ ロエチ レ ン、 ノ \°一ク ロ 口エチレン、 ジク ロ ロペンタ ン、 モノ ク ロ口ベンゼン等 ;
1 価アルコール類、 フ ヱ ノ ール類、 エーテル類、 例えば、 メ タ ノール、 エタ ノ ール、 n —プロ ピルアルコール、 n—ブチル アルコール、 シキロへキサノール、 フ エ ノール、 n—ブチルェ 一テル等 ;
酸類、 エステル類、 例えば、 酢酸ブチル等 ;
多価アルコールと そのエーテル、 エステル類、 例えば、 ェチ レ ングリ コール等 ;
アルデヒ ド類、 ァセタール類、 ケ ト ン類、 例えばアセ ト ン、 メ チルェチルケ ト ン、 メ チルイ ソプチルケ ト ン、 シクロへキサ ノ ン等 ;
含窒素化合物類、 例えば、 エチレンジァミ ン等 ;
硫黄化合物、 例えば、 二硫化炭素等 ;
塗料シンナー類、 例えば、 ラ ッ カーシンナー等あるいはこれ らの混合溶媒が使用可能である。 この場合、 このよ う な有機溶 剤の単独または混合溶媒は、 2 0 °Cでの粘度が 0 . 3〜 2 . 0 c p s , 特に 0 . 4〜 : L . 5 c p s である こ とが好ま しい。 こ れによ り 、 成形性や成形体の配向度が格段と向上する。 有機溶 剤の 2 0 °Cでの蒸気圧が、 1 ~ 2 0 0 mmHgであり、 その沸点が 5 0〜 2 0 0 °Cである こ とが好ま しい。 また、 湿式粉砕に際 し、 有機溶剤が、 スラ リ ー中の 1 0〜 9 0重量%程度を構成 し、 スラ リー中のフェライ ト粒子が 1 0〜 9 0重量%であるこ とが好ましい。
このよ う な湿式粉砕において、 スラ リー中には、 界面活性剤 の 1種以上を添加するこ とが好ま.しい。 界面活性剤の添加量は 好ま し く は乾式粉砕した原料粉に対し、 0 . 1 〜 5 . 0重量 %、 特に 0 . 3〜 3 . 0重量%とするこ とが好ましい。 この界 面活性剤は、 一般に両親媒性であり 、 スラ リー中で原料粉のフ エライ ト粒子の表面に吸着するこ とができると と もに、 吸着状 態で用いる有機溶剤に可溶化する。 すなわち、 通常はフェライ ト粒子表面に吸着可能な親水性基と、 用いる有機溶媒に溶解す る親和性基 (疎水性基) を有する。 そして、 用いる界面活性剤 の溶解度パラメ一夕 ( S P値) と用いる有機溶剤の溶解度パラ メータ ( S P値) とが近似しているものが好ましい。 また、 ス ラ リ一中で原料粉に対し、 添加したうちの実質的に全量が吸着 するようなものが好ましい。 このような吸着および可溶化をお こ してミセル化するこ とによ り 、 湿式粉砕後のスラ リー中で 1 次粒子はきわめて良好に分散し、 これを湿式磁場中成形するこ とによ り配向度の著しい向上が図られる。 用いる界面活性剤と しては、 カチオン型、 ァニオン型、 ノニ オン型、 両性型のいずれであってもよいが、 特に、 カルボン酸 またはその塩、 例えばステア リ ン酸、 ォレイ ン酸、 ステア リ ン 酸 Z n、 ステア リ ン酸 C a、 ステア リ ン酸 S r、 ステア リ ン酸 B a、 ステア リ ン M g、 ステア リ ン酸 A l 、 ォレイ ン酸 Z n、 ォ レイ ン酸 C a、 ォ レイ ン酸 S r、 ォ レイ ン酸 B a、 ォ レイ ン 酸 M g、 ォ レイ ン酸 A l 、 ォレイ ン酸 Tンモニゥムなどの炭素' 原子数 4〜 3 0程度の飽和または不飽和の脂肪酸またはその塩 の 1種以上を含むものが好適に使用される。 これらのう ち、 特 に脂肪酸、 よ り好ま し く はステア リ ン酸の C a塩の使用は、 配 向性が損われるこ となく 、 成形時の脱溶剤性が改善され成形体 のクラ ッ ク発生が防止されるので、 有利である。 これは、 M型 の S nフ ェライ トでは、 例えば 3. 0 g/m3から 2. 8 g/m3に成 形体密度が低下して、 溶剤が抜けやすく なるためである と考え られる。 ま た特に C a、 B a、 S r 、 A l 、 C r 、 G a、 C u、 Z n、 M n、 C o、 T i等のフ ヱライ トに添加する可能 性のある有効添加元素を含む有機物 (上記の脂肪酸の金属塩等 の有機物界面活性剤の金属塩) を、 添加するこ とによ り 、 この よ う な元素をフ ユライ ト粒子の周囲に高分散させるこ と も可能 である。 この他、 公知のスルホン酸またはその塩 ; 硫酸エステ ルまたはその塩 ; リ ン酸エステルまたはその塩 ; 脂肪族ァミ ン 塩あるいはその四級アンモニゥム ; 芳香族四級アンモニゥム塩 ; ビリ ジニゥム塩 ; イ ミダゾリ ニゥム塩 ; ベ夕イ ン ; アミノカ ルポン酸塩 ; ィ ミダゾリ ン誘導体 ; 天然界面活性剤のうち少な く と も一種も好適に使用される。
このような界面活性剤を原料粉の有機溶剤スラ リ一中に添加 して湿式粉砕すれば、 このスラ リーをそのまま用いて湿式成形 するこ とができる。 あるいは、 この界面活性剤の一部または全 部は、 湿式成形に先立って行われたり.、 それ単独で行われたり する仮焼粉の乾式粉碎時に添加してもよい。 また、 界面活'性剤 の一部または全部は、 有機溶剤スラ リ一の湿式粉砕後に添加し てもよい。 さらには乾式粉碎後に界面活性剤と有機溶剤とを加 えて湿式成形用のスラ リーを調製しても よい。 いずれの場合 も、 湿式磁場成形時にスラ リ ー中に界面活性剤が存在するの で、 本発明における成形体の配向度向上効果が同様に実現す る。 なお、 各段階における界面活性剤の添加量は、 最終的に、 湿式成形時のスラ リー中にて前記の添加量となるよ うに設定す ればよい。
本発明の別の例と しては、 上記の湿式粉砕を他の溶媒中で行 い、 その後、 湿式成形に先立って、 粉砕時に用いた溶媒を上記 の有機溶剤に置換するこ とが挙げられる。 湿式粉砕の溶媒と し ては、 上記の各種有機溶剤の他、 その取扱い性等の点から氷ま たは水の混合溶媒が好適である。 このときには、 湿式粉砕時の スラ リ一中の原料粉は 1 0〜了 0重量%程度である。 ただし、 水スラ リーに界面活性剤を添加して湿式成形しても成形体の配 向度向上は望めないので、 有機溶剤と溶媒置換する ものであ る。 溶媒置換を行う には、 例えば原料粉を磁気的に保持した状 態でデカ ンテーシ ヨ ンを行った り すればよい。 なお、 この湿式 成形に際しても、 前もって乾式成形を行う こ と もできる。
このよ う に湿式成形時のスラ リー溶媒とは異なる好ま し く は 水系の溶媒を用いた湿式粉砕を行って、 その後溶媒置換を行う 場合、 最終湿式成形時には前記の.添加量にて界面活性剤が存在 している必要がある。 このためには、 乾式粉砕時、 湿式粉砕 時、 最終スラ リー調製時のいずれか 1 つの段階に界面活性剤を 添加すればよい。 以上いずれの場合であっても、 最終の湿式成 形用スラ リーは有機溶剤量が 5〜 3 0重量%程度、 原料粒子量 は 7 0〜 9 5重量%程度であるよ う に調整する。
このよ う にして界面活性剤を含む最終有機溶剤スラ リーを調 製した後、 このスラ リーを用いて、 スラ リー中の有機溶剤を除 去しながら磁場中成形を行う。 溶剤除去は、 常法に従い例えば 減圧強制除去に よればよ く 、 成形圧力は 0 . 1 〜 0 . 5 to n/ era 2 程度、 印加磁場は 5〜 1 5 kG程度とする。 得られた成形体 の配向度、 I r / I s は 7 8 %以上、 例えば 7 9〜 8 4 %とな る。 そして、 このよ うな高配向度は、 有機溶剤と界面活性剤と の併用によって始めて実現し、 界面活性剤を水スラ リーに添加 しても高配向は得られない。 その後、 この成形体を、 大気中または窒素中 1 0 0〜5 0 0 °Cの温度で熱処理して、 添加した界面活性剤を十分に、 分解除 去する。 そして、 この成形体を、 例えば大気中で 1 1 5 0 ~ 1 2 5 0。C、 特に 1 1 6 0〜 1 2 0 0 °0の温度で 0 . 5〜3時 間程度焼成して、 各種形状の本発明の異方性フニライ ト磁石が 得られる。
得られる磁石の S E Mに よ る平均グレイ ン径は 0 . 5〜. 0 . 9 ]Lt m 程度、 その C Vは 8 0 %以下であり、 そして、 その 焼結密度は相対密度で 9 5 %以上、 特に 9 6〜 9 9 %、 M の S r フェ ラ イ トでは B r 4 4 0 0 G、 i H c 4 0 0 0〜 4 2 0 0 Οβ I r Z l s S S 以上、 特に 9 7〜9 8 %、 H k Z i H c 9 0〜 9 5 %とするこ とができる。
本発明の第 2の態様では、 界面活性剤を用いずに、 粉砕によ る機械的歪の導入のみを行う。 粉砕は前記のとおり 、 乾式また は湿式粉碎によって行うが、 好ま しい形態において行われる湿 式粉砕時のスラ リーの溶媒と して、 取扱いの容易さの点では水 または水の混合溶媒が好ましい。 湿式粉砕に際しては、 溶媒 が、 スラ リー中の 1 0〜 9 ひ重量%程度、 特に水スラ リーでは 3 0〜 9 0重量%を構成し、 スラ リ ー中のフ ヱライ ト粒子が 1 0〜 9 0重量%、 特に水スラ リーでは 1 0〜 7 0重量%であ るこ とが好ましい。
このよう な好まし く は水または水系スラ リ一を用いて湿式粉 砕すれば、 このスラ リーをそのま ま用いて湿式成形するこ とが できる。 また、 上記のとお り 、 湿式成形に先立って、 仮焼粉の 乾式粉砕を行ってもよい。 また、 乾式粉砕後に溶媒を加えて湿 式成形用のスラ リーを調製しても よい。 さ らには、 上記の湿式 粉砕を成形用スラ リーとは異なる他の溶媒中で行い、 その後、 湿式成形に先立って、 粉砕時に用いた溶媒を好ま し く は水に置 換しても よい。 溶媒置換を行う には、.例えば原料粉を磁気的に 保持した状態でデカ ンテーシ ョ ンを行っ た り すればよい'。 な お、 この湿式成形に際しても、 前もって乾式粉砕を行う こ と も でき る。 以上いずれの場合であっても、 最終の湿式成形用スラ リーは水等の溶媒量が 5〜 3 0重量%程度、 原料粒子量は 7 0 〜 9 5重量%程度であるよ う に調整する。
なお、 水系スラ リーを湿式粉砕する場合、 粉砕時には、 分散 剤を添加するこ とが望ま しい。 この分散剤と しては、 高分子分 散剤を用いるこ とが望ま し く 、 特にポリ カルボン酸アンモニゥ ム型のものが望ま しい。 また、 分散剤は原料粉に対し 0 . 1 〜 1 重量%添加するこ とが好ま しい。
このよ う に して最終スラ リ ーを調製した後、 このスラ リーを 用いて、 スラ リー中の有機溶剤を除去しながら磁場中成形を行 う 。 溶剤除去は、 常法に従い例えば減圧強制除去によればよ く 、 成形圧力は 0 . :! 〜 0 . 5 to n/cm 2 程度、 印加磁場は 5〜 1 5 kG程度と する。 得られた成形体の配向度、 I r Z I s は 7 0 %以上、 例えば 7 1〜 7 4 %となる。
その後、 この成形体を、 大気中または窒素中 1 0 0〜 5 0 0 。Cの温度で熱処理して、 スラ リ ー中の成分を十分に分解除去 する。 そ して、 こ の成形体を、 例えば大気中で 1 1 5 0 〜
2 5 0で、 特に 6 0 2 0 0。Cの温度で 0 . 5〜 3時 間程度焼成して、 各種形状の本発明の異方性フ ライ ト磁石が 得られる。
得られる磁石の S E Mによる平均グレイ ン径は 0 m 以 下、 特に 0 . 5〜 0 . 9 μ m 程度、 その C Vは 8 0 %以下であ り、 そして、 その焼結密度は相対密度で 9 6 %以上、 特に 9 7 〜 9 8 %、 M型の S r フェライ トでは B r 4 2 0 0 G、 I H c 4 1 O O〜 4 3 O O 0e、 I r / I s 9 3 %以上、 特に 9 4〜 9 5 %、 H k Z i H c 9 0〜 9 6 %とするこ とができる。 実施例
以下、 本発明を実施例によ り さらに詳細に説明する
実施例 3 , 比較例 3
原料と しては、 次のものを用いた。
酸化鉄 ( F e 2 0 3 、 一次粒子径が 0 . 1〜 0 . 5 m の 間にあるもの)
塩化ス ト ロ ンチウム ( S r C 1 2 6 H 2 0、 試薬一級) 炭酸ナ ト リ ウム ( N a 2 C 0 a 、 試薬特級) そ して、 酸化鉄 ( F e 2 0 a ) 1 0 . 0 kgと炭酸ナ ト リ ウ ム ( N a 2 C 0 3) 1 . 1 2 kgを水 2 8 1と と も に、 ア ト ラ イ ターで 3 時間粉砕 し た。 次いで、 塩化ス ト ロ ン チ ウ ム ( S r C 1 2 6 H 2 0 ) 3 . 5 1 kgの水溶液 5 1を、 上記スラ リーの入っているア ト ライ ター中に滴下し、 さ らに 1時間粉砕 した。 この工程中で、
S r C 1 2 + N a 2 C 03 → S r C 03 丄 + 2 N a C l なる反応によって、 非常に微細な炭酸ス ト ロ ンチウムが析出沈 殿 し 、 酸化鉄粒子 と高精度に混合される。 こ のス ラ リ ーを N a C 1 が 0. 5 %以下になるまで洗浄後、 脱水、 乾燥、 造粒 し 、 こ れを空気中 1 1 0 0でで 3時間焼成 して仮焼粉を得 た。 ·
得られた粉体の磁気特性を試料振動式磁力計 ( V S M) で測 疋した結果、
σ s = 7 1 emu/g , i H c = 5. 5 kOe であった。 また、 走 査型電子顕微鏡 ( S E M) で観察する と、 その一次粒子径は約 0. 5 μιη であり 、 C Vは 2 0 %、 Β Ε Τ比表面積は 3 m2/gで あつ 7こ。
この仮焼粉を第 4図に示すプロセスで粉砕した。 この際、 界 面活性剤と してステア リ ン酸、 有機溶剤と しては ト ルエンを用 いた。 そして、 まず乾式振動ミルあるいはボールミルによ り 、 フ ェ ライ ト粉の比表面積が 9〜 1 2 m2/gになるまで乾式粉砕し た (実施例 1 , 2 、 比較例 1〜 3 ) 。 このとき、 フェライ ト粉 の i H c は粉砕歪が導入されたこ と によ って 5 . 5 kOe から 2 . 2〜 2 . 6 kOe に減少した。 また、 乾式振動口ッ ドミルで 粉砕する際にステア リ ン酸を添加する場合には (実施例 1 、 比 較例 3 ) 、 ステア リ ン酸をフェライ ト粉に対して 2 . 0重量% 添加し、 さらに S i ひ2 を 0 . 6重量%、 C a C 0 3 を 1 . 9 重量%、 各々添加した。 ステア リ ン酸を添加したこ とによつ ' て、 乾式振動ミルの内壁ゃロ ヅ ドへのフェライ ト粉の付着はほ とんど生じなく なり 、 フェライ 卜粉を容易に取り出すこ とがで きた。
この後湿式ボールミル粉砕を トルエンスラ リー (フヱライ ト 濃度 3 3重量% ) で行つた (実施例 1 、 2 ) 。 また、 ステア リ ン酸を添加した トルエンスラ リーを湿式ボールミル粉砕した試 料も作製した (実施例 3 ) 。 第 4図には比較例と してステア リ ン酸を添加しなかつた場合と、 粉砕を水中で行った場合とを比 較例 1 〜 3 と して同時に示す。 なお、 フ ェ ライ 小粉に対す るステア リ ン酸の添加量は全て 2 重量% と し、 S i 0 2 と C a C 0 3 の添加も同じ条件で行つた。 実施例 1 のボールミル 粉砕後のフ ェ ライ 卜粉を S E Mに よ り 観察し、 結晶粒子約 2 0 ひ個についてその大きさを測定した。 その結果は第 4図に 示すとお り 、 平均粒径 0 . 2 5 m 、 変動係数 4 0 %であつ た。 また、 湿式ボールミル粉砕後の実施例 1〜 3、 比較例 1〜 3 の粉体の磁気特性を V S Mによ り測定したと ころ、 表 2 の結 果が得られた
表 2 . 粉体の特性 湿式粉砕終了後の粉体の特性
サンプル σ s iHc BET比表面積
No. (emu/ ) (Oe) : m2/g) 比較例 61.0 2340 10.7
2 62.0 2380 9.1
3 59.0 2220 12.4 実施例 62.0 2240 10.4
2 2410 9.0
3 59.0 2220 9.3
こ の よ う に粉砕後の粉体には i H c の低下が生じている が、 各フ ヱ ラ イ ト 粉の X線回折を測定 し、 W a r r e n と A v e r b a c hの方法によ り ( 2 0 6 ) 面の歪を算出したと ころ 4 X 1 0 - 4〜 7 X 1 0 - 4以上であった。 この結果から、 歪 が大きなものほど i H cは小さ く なつており 、 i H c低下の原 因は粉碎によ って導入された歪であるこ とが明らかである。 ま た、 i H cの低下の結果'、 その温度特性も向上していた。 この粉砕スラ リーを吸引ろ過によ り 、 スラ リー中のフヱライ ト濃度が約 8 0重量%になるよ う に調整した。 このスラ リーか ら溶媒を除去しつつ、 約 1 3 k Gの磁場中で直径 3 0 mm、 高さ 1 5 mmの円柱に成形した。 このときの成形体の配向度は、 表 3 に示すよ う にステア リ ン酸を添加し粉砕を トルェン中で行つた 場合に配向度が大き く改善され 8 0 %であった。 なお、 ステア リ ン酸を水スラ リ一に添加しても配向度は改善されない。
表 3 . 成形体の配向度(Ir/Is) 比較例 比較例 実施例 実施例 比較例 実施例
1 2 2 1 3 . 3
1 2 % 6 9 % 8 0 % 8 0 % 7 2 % 8 0 %
次に、 実施例 1 の成形体および比較例 1 の成形体を空気中 1 1 8 0 °Cで 1 時間焼成した。 なお、 実施例 1の成形体を焼成 する場合にはステア リ ン酸除去するため空気中 1 0 0〜 4 0 0 °Cで十分に脱脂した後、 焼成した。 得られた焼結体の特性を評 価した。 その結果、 表 4 に示すよ う に B r = 4 3 5 0 G、 i H c = 4 3 1 0 Oeという高い磁気特性が得られた。 また、 実 施例 1 の 1 1 8 0で焼成の焼結体の組織構造を S E Mによ り観 察し、 結晶粒子約 2 0 0個についてその大きさを測定した。 そ の結果は第 5図に示すとおり 、 平均粒径 0 . 6 7 μ m 、 変動係 数 4 2 %であった。 表 4. 焼結体の特性 サンプル Br iHc Ir/Is 焼結密度
No. (G) (Oe) ( ) (g/cm3) 比較例 1 4120 4310 91.5 4.98
実施例 1 4350 4310 97.4 4.96
実施例 4 ' 実施例 1 のプロセスにおいて、 ステア リ ン酸の原料粒子に対 する添加量を変更した。 結果を表 5に示す。 表 5 サンプル ステア リ ン酸 成 形 体
No. . 添加量 % ) Ir/Is (%)
2 1 0 6 2
2 2 2 7 8
2 3 4 7 8
2 4 6 7 9
実施例 5 実施例 3のプロセスで、 ォ レイ ン酸を添加し、 ト ルエン中で 粉砕した場合の成形体を、 大気中 1 0 0〜 4 0 0 °Cで十分に脱 脂した後、 1 1 7 0〜 1 1 8 0 °Cで 1 時間、 大気中焼成した。 得られた磁気特性は表 6に示される とおり である。 表 6 焼成温度 Br Ir/Is 焼結密度
(°C) (G) ( ) (g/cm3)
1170 4320 4470 98.4 4.93
1180 4390 4230 98.7 4.97
実施例
' *—
実施例 1のプロセスで、 ステア リ ン酸の代わり に、 ステア リ ン酸 Z n、 ステアリ ン酸 C a、 実施例 3のプロセスでォレイ ン 酸を添加した添加量は、 全てフェライ ト粉に対して 2重量%と した。 さらに実施例 1のプロセスで溶媒を トルエン、 ME K、 エタ ノール、 アセ ト ンにかえて同様に成形体の配向度の評価を行つ た。 結果を表 7に示す。 これよ り 、 いずれの添加物の場合も 7 9 %以上の高い配向度が得られた。
表 7 界面活性剤 添加時期 t 、 ψ ..。...、 .,— ·一—、
Ir/Is(%) (mmHg) (°C) (cps)
20°C 20°C ステアリン酸 Zn 乾式粉碎 トルエン 81 22 110.6 0.587
ステアリン酸 Ca 乾式粉砕 トルエン 80 22 110.6 0.587
ォレイン酸 湿式粉砕 トルエン 83 22 110.6 0.587
ステアリン酸 湿式粉砕 トルエン 80 22 110.6 0.587
ステアリン酸 湿式粉砕 MEK 80 78 79.6 0.423
ステアリ酸 湿式粉砕 エタノ-ル 79 43 78.3 1.22
ステアリン酸 湿式粉砕 アセトン 79 180 56.5 0.30
表 7 に示される結果から、 本発明の効果が明らかである。 な お、 成形スラ リ ー中のフ ユ ライ ト粒子の形状は、 実施例 1 と ほ ぼ同等であっ た。 また、 界面活性剤を湿式粉碎後に添加した場 合も、 水スラ リ ーで粉砕を行いその後溶媒置換した場合も、 い ずれも同等の効果が得られた。 実施例 7 原料と しては、 次のものを用いた。 酸化鉄 ( F e 2 0 3 ) · · 一次粒子径が 0 . 1〜 0 . 5 m の間にある もの 塩化ス ト ロ ンチウム ( S r C l 2 6 H 2 0 )
• ' 試薬一級 炭酸ナ ト リ ウム ( N a 2 C 0 3 ) · ' 試薬特級 そ して、 酸化鉄 ( F e 2 0 3 ) 1 0 . O kgと炭酸ナ ト リ ウム ( N a 2 C 0 3) 1 . 1 2 kgを水 2 8 1と と も に、 ァ ト ラ イ タ 一で 3 時間粉砕 し た。 次いで、 塩化ス ト ロ ンチ ウ ム
( S r C 1 2 6 H 2 0 ) 3. 5 1 kgの水溶液 5 1を、 上記スラ リーの入っているア トライ ター中に滴下し、 .さらに 1時間粉砕 した。
この工程中で、
S r C 1 2 + N a z C 03 -→ S r C 03 I + 2 N a C 1 なる反応によって、 非常に微細な炭酸ス トロンチウムが析出沈 殿し、 酸化鉄粒子と高精度に混合される。 このスラ リ ーを N a C l^O . 5 %以下になるまで洗浄後、 脱水乾燥し、 これ を空気中 1 1 0 0 eCで 3時間焼成した。
得られた粉体の磁気特性を試料振動式磁力計 (V S M) で測 定した結果、
σ s = 7 1 ( emu/g ) , i H c = 5. 5 ( kOe ) であった。 また、 走査型電子顕微鏡 ( S E M) で観察すると、 その一次粒 子径は約 0. 5 μπι 、 c vは 2 0 %、 Β Ε Τ比表面積は 3 m2/g であった。
原理から考えて、 粉砕粉の i H cは小さい程好ましい。 この ため粉砕方式と条件を変えて粉の磁気特性を V S Mによ り測定 した (第 2図) 。 これよ り 、 と く に乾式振動ミル粉砕によ つ て、 粉の i H cは低下しやすく なることがわかった。
こ の i H c低下の原因をつ き と め る ため、 iHcの異な る フ ユ ラ イ ト 粉 の X 線 回折 を 測定 し 、 W a r r e n と A v e r b a c hの方法に よ り ( 2 0 6 ) 面の歪を算出した (第 7図) 。 これよ り 、 歪が大きなものほど i H cは小さ く な つてお り 、 i H c低下の原因は粉砕によって導入された歪であ るこ とが明らかになった。 第 2図に示したよ う に、 乾式振動ロ ッ ドミルで粉砕条件を変 えるこ とによ って作製した i H cが違う 2種類のフ ェライ ト粉 について、 このフ ェ ライ 卜 4 0 0 g と S i 02 2 . 4 0 g およ び、 C a C 0 3 6 . 0 0 g に水 2 . 0 1 を加えて湿式ア ト ライ タ一によって 7 0分間微粉砕した。 この と きの微粉砕後の粉体 の性質は表 8のよ う になった。 表 8 乾式振動ロッドミル 粉砕条件 微粉砕終了後の粉体の特性 サンプル 処理量 時間 σ s iHc SBET
(g) (分) (emu/g) (0e) (m2/g)
8 1 1000 30 60.9 2840 12.5
8 2 150 20 59.9 2330 13.1
この粉砕スラ リ ーを脱水後、 約 1 3 K Gの磁場中で直径 3 0 mni、 高さ 1 5 mmの円柱に湿式成形した。 さ らにこの成形体を空 気中 1 1 8 0 °Cで 1 時間焼成し得られた焼結体の特性を評価し た。 その結果を表 9 に示した 表 9 . 焼結体の特性 サンプル Br iHc Ir/Is Hk/iHc 焼結密度
(G) (0e) ( % ) (¾) (g/cm3 )
8 1 3940 4280 89. 9 88. 0 4. 94
8 2 4040 4220 92. & 91. 5 4. 92
この表から判るよ う に、 磁場成形段階でフ ライ ト粒子の i H cを低下させることによ り 、 配向性が改善され、 その結果 B rが向上した。 i H cを低下させるサンプル 2の作製時において、 湿式ア ト ライ ターによる微粉碎時にポリ カルボン酸アンモニゥム塩型の 分散剤 (サンノプコ (株) 製 S Nデイ スパーサン ト 5 4 6 8 ) をフェライ 卜に対して 0 . 4 %添加した (サンプル 3 ) 。 粉砕 終了後の粉体の特性を表 1 0に示した。 表 1 0 粉体の特性 (分散剤添加時) 乾式振動ロッドミル 粉砕条件 微粉砕終了後の粉体の特性 サンプル 処理量 時間 σ s iHc SBET
(g) (分) (emu/g) (Oe) (m2/g)
8 3 150 20 59. 9 2360 12. 0 その後上記と同様の方法で焼結体を作製し、 その特性を評価 した。'その評価を、 表 1 1 に示す。 表 1 1 . 焼結体の特性 (分散剤添加時) サンプル Br iHc Ir/Is Hk/iHc
(G) (Oe) (%) ( )
8 3 4180 4250 94.4 96.3 4.93
こ の表から判るよ う に、 配向性がさ らに改善され、 従来にな い高特性が得られた。
実施例 8
^
実施例 7 と同様に作製した S r フ ェライ 卜粉体 ( σ s = 7 1 emu/g , i H c = 5 . 5 kOe ) を、 乾式振動ミルによ り粉砕し た。 粉砕歪によ り i H cが低下した粉体の磁気特性の温度変化 を振動式磁力系 ( V S M ) によ り 、 一 1 0 0〜十 1 5 0。Cの範 囲で測定した。 その結果、 第 8図に示すよ う に著し く 改善され た。 産業上の利用可能性
以上のとお り 、 本発明によれば、 成形体の配向度が格段と向 上し、 きわめて高い磁石特性が得られる。 なお、 磁場中湿式成 形時に界面活性剤を用いても、 水スラ リ一ではこのような効果 は実現しない。

Claims

求 の 範 囲
1 . フ ユライ ト磁石原料粒子および有機溶媒を含むスラ リーを 前記有機溶剤を除去しながら磁場中成形して成形体を得、 この 成形体を焼成して異方性フ ユライ ト磁石を得る際に、
前記スラ リー中に界面活性剤を存在させるこ とで前記成形体 の配向度を向上させる異方性フ ライ ト磁石の製造方法。
2 . 前記スラ リーは、 前記フ ユライ ト磁石原料粒子の原料粉、 および前記有機溶剤を含むスラ リーを湿式粉砕して得られる請 求の範囲 1 の異方性フユライ ト磁石の製造方法。
3 . 前記フ ユライ ト磁石原料粒子またはその原料粉は、 仮焼粉 を乾式粉砕して調製されたものである請求の範囲 1 または 2の 異方性フユライ ト磁石の製造方法。
4 . 前記スラ リーは、 前記フユライ ト磁石原料粒子の原料粉を 湿式粉砕した後、 溶媒を前記有機溶剤と置換して調製される請 求の範囲 1 〜 3 のいずれかの異方性フ ライ 卜磁石の製造方 法。
5 . 前記乾式または湿式粉砕時に前記界面活性剤を添加する請 求の範囲 2 〜 4 のいずれかの異方性フ ェ ライ 卜磁石の製造方 法
6 . 前記スラ リーは、 前記フ ユライ ト磁石原料粒子の原料粉を 前記乾式または湿式粉砕した後に、 これに前記界面活性剤また は前記界面活性剤および前記有機溶剤を添加して得られる請求 の範囲 2 〜 5 のいずれかの異方性フ ラ イ ト 磁石の製造方 法。
7 . 前記スラ リー中の前記フ ニライ 卜磁石原料粒子の平均粒径 が 1 μ m 以下である請求の範囲 1〜 6のいずれかの異方性フヱ ライ ト磁石の製造方法。
8 . 前記フ ェライ ト磁石原料粒子の粒径の変動係数が 8 0 %以 下である請求の範囲 7の異方性フユライ 卜磁石の製造方法。
9 . 前記フユライ ト磁石原料粒子には、 結晶.歪が導入されてお り、 その i H eが 3 . 5 kOe 以下に低減されている請求の範囲 1 〜 8のいずれかの異方性フェライ ト磁石の製造方法。
1 0 . 前記異方性フェライ ト磁石の平均結晶粒径が 1 . O t m 以下であり 、 その変動係数が、 8 0 %以下である請求の範囲 1 〜 9のいずれかの異方性フニライ ト磁石の製造方法。
1 1 . 前記異方性フ ライ ト磁石の、 飽和磁化と残留磁化の比 で表わされる配向度が、 9 6 %以上である請求の範囲 1〜 1 0 のいずれかの異方性フェライ 卜磁石の製造方法。
1 2 . 前記成形体の配向度が 7 8 %以上である請求の範囲 1〜 1 1 のいずれかの異方性フェライ ト磁石の製造方法。
1 3 - 前記界面活性剤は、 フニライ トに対する添加金属元素を 含む請求の範囲 1〜 1 2のいずれかの異方性フエライ ト磁石の 製造方法。
1 4 . 前記界面活性剤を、 前記フ ュライ ト磁石原料粒子に対し 0 . 1 〜 5重量%存在させる請求の範囲 1 〜 1 3のいずれかの 異方性フ ユライ 卜磁石の製造方法。
1 5 . 前記スラ リー中で、 前記界面活性剤は前記フユライ ト原 料粒子表面に吸着されている請求の範囲 1 〜 1 4のいずれかの 異方性フ ニライ ト磁石の製造方法。
1 6 . 前記有機溶剤の 2 0 °Cでの粘度が 0 . 3〜 2 cps である 請求の範囲 1 〜 1 5のいずれかの異方性フ ェライ ト磁石の製造 方法。
1 7 . 前記有機溶剤の 2 0 °Cでの蒸気圧が、 1 〜 2 0 0 mmHgで ある請求の範囲 1 〜 1 6のいずれかの異方性フヱライ ト磁石の 製造方法。
1 8 . 前記有機溶剤の沸点が 5 0〜 2 0 0 °Cである請求の範囲 1 〜 1 7のいずれかの異方性フ ニ ライ 卜磁石の製造方法。
1 9 . 湿式成形時の前記スラ リー中のフニライ ト磁石原料粒子 の含有量が、 7 0〜 9 5重量%である請求の範囲 1 〜 1 8のい ずれかの異方性フ ユライ ト磁石の製造方法。
2 0 . 六方晶系フェライ ト原料粉を粉砕して、 六方晶系フ ェラ ィ ト粒子に機械的な応力を与えて結晶歪を導入して i H c を 3 . 5 k0e 以下に低減し、 しかる後に、 磁場成形して成形体を 得、 こ の成形体を焼成する異方性フ ラ イ ト 磁石の製造方 法。
2 1 . X線によ っ て測定される ( 2 0 6 ) 面の歪が、 I X 1 0 — 4以上与えられる請求の範囲 2 0の異方性フユライ ト磁石 の製造方法。
2 2 . 前記スラ リ一中の前記フ エライ ト磁石原料粒子の平均粒 径が 1 μ m 以下であり、 前記フ ライ ト磁石原料粒子の粒径の 変動係数が 8 0 %以下である請求の範囲 2 0 または 2 1 の異方 性フェライ ト磁石の製造方法。 . 2 3 . 前記異方性フ ライ ト磁石の平均結晶粒径が 1 . 0 ii m 以下であ り 、 その変動係数が、 8 0 %以下である請求の範囲 2 0〜 2 2のいずれかの異方性フェライ ト磁石の製造方法。
2 4 . 前記異方性フ二ライ ト磁石の、 飽和磁化と残留磁化の比 で表わされる配向度が、 9 3 %以上である請求の範囲 2 0〜 2 3のいずれかの異方性フ ライ ト磁石の製造方法。
2 5 . 前記成形体の配向度が 7 0 %以上である請求の範囲 2 0 〜 2 4のいずれかの異方性フェライ ト磁石の製造方法。
2 6 . 前記粉砕は湿式粉砕を含む請求の範囲 2 0〜 2 5のいず れかの異方性フヱライ 卜磁石の製造方法。
2 7 . 前記湿式粉碎は水系溶媒を甩ぃ、 この湿式粉砕時に高分 子分散剤を添加し、 これを湿式磁場成形する請求の範囲 2 6の 異方性フニライ ト磁石の製造方法。
2 8 . 前記高分子分散剤が、 ボリ カルボン酸アンモニゥム塩型 のものである請求の範囲 2 7の異方性フ ェライ ト磁石の製造方 法。
2 9 . 平均結晶粒径が 1 . 0 t m 以下であ り 、 その変動係数 が、 8 0 %以下であ り 、 飽和磁化と残留磁化の比で表わされる 配向度が、 9 6 %以上である異方性フ ライ ト磁石。
3 0. X線回折によ って測定される ( 2 0 6 ) 面の歪が、 I X 1 0 _4以上与えられている一軸性結晶磁気異方性を有する六方 曰
曰曰系フ ユライ 卜粒子
3 1 . 原料粉を粉砕するこ とによ り結晶歪が導入されている請 求の範囲 3 0の六方晶系フ ニライ 卜粒子。
3 2. 結晶歪によ り 、 i H cが低減されている請求の範囲 3 1 の六方晶系フ ェ ライ ト粒子。
3 3. i H cが、 3. 5 kOe 以下である請求の範囲 3 2の六方 晶系フ ユ ライ 卜粒子。
3 4. 結晶歪によ り 、 i H cの温度に対する変化量が低減され ている請求の範囲 3 0ないし 3 3のいずれかの六方晶系フェラ ィ ト粒子。
3 5. 平均粒径が 1 m 以下であ り 、 粒径の変動係数が 8 0 % 以下である請求の範囲 3 3の六方晶系フ ェ ライ 卜粒子。
3 6. 六方晶系フ ライ ト原料粉に機械的な応力を与えて、 X 線回折によ って測定される ( 2 0 6 ) 面の歪を 1 X 1 0— 4以上 導入する六方晶系フェライ ト粒子の製造方法。
3 7. 前記機械的な応力を、 湿式および Zまたは乾式粉砕によ つて与える請求の範囲 3 6の六方晶系フ二ライ ト粒子の製造方 法。 ' .
PCT/JP1992/000902 1992-04-24 1992-07-15 Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them WO1993022777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP9292915835A EP0592672A4 (en) 1992-04-24 1992-07-15 Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP4/131649 1992-04-24
JP13164992 1992-04-24
JP16437992 1992-05-29
JP4/164379 1992-05-29
JP17206992 1992-06-05
JP4/172069 1992-06-05
EP96104892A EP0719745B1 (en) 1992-04-24 1992-07-15 Anisotropic ferrite magnet and process for the production thereof.

Publications (1)

Publication Number Publication Date
WO1993022777A1 true WO1993022777A1 (en) 1993-11-11

Family

ID=27443213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000902 WO1993022777A1 (en) 1992-04-24 1992-07-15 Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them

Country Status (3)

Country Link
EP (2) EP0719745B1 (ja)
JP (1) JP2838632B2 (ja)
WO (1) WO1993022777A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69734193T2 (de) * 1996-12-03 2006-11-09 Tdk Corp. Verfahren zur herstellung von stuckiges magnetisches oxid
WO1999016087A1 (fr) 1997-09-19 1999-04-01 Tdk Corporation Poudre d'aimant, aimant fritte, procede de fabrication de ces materiaux, aimant agglomere, moteur, et support d'enregistrement magnetique
DE19945619A1 (de) * 1999-09-23 2001-04-19 Bosch Gmbh Robert Preßmasse und Verfahren zur Herstellung eines weichmagnetischen Verbundwerkstoffes mit der Preßmasse
KR100478710B1 (ko) * 2002-04-12 2005-03-24 휴먼일렉스(주) 연자성 분말의 제조 및 이를 이용한 인덕터의 제조방법
JP2007031204A (ja) * 2005-07-27 2007-02-08 Tdk Corp W型フェライト磁石
JP4806798B2 (ja) * 2006-02-13 2011-11-02 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石
FR3008224B1 (fr) 2013-07-08 2015-08-07 Commissariat Energie Atomique Aimant fritte annulaire a aimantation radiale, presentant une tenue mecanique renforcee
US10497498B2 (en) 2014-10-01 2019-12-03 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
CN114667578A (zh) * 2019-12-02 2022-06-24 株式会社Lg化学 磁体、包含其的可固化组合物以及磁体的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120500A (ja) * 1974-03-07 1975-09-20
JPS61247002A (ja) * 1985-04-24 1986-11-04 Hitachi Metals Ltd 複合磁石用磁粉の製造方法
JPS6449206A (en) * 1987-08-19 1989-02-23 Nippon Zeon Co Manufacture of hexagonal system ferrite magnetic powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855374A (en) * 1970-07-02 1974-12-17 Gen Motors Corp Method of making magnetically-anisotropic permanent magnets
JPS5923445B2 (ja) * 1978-12-28 1984-06-02 松下電器産業株式会社 永久磁石
JPS60233803A (ja) * 1984-05-02 1985-11-20 Tohoku Metal Ind Ltd 異方性酸化物永久磁石の製造方法
JPS61222206A (ja) * 1985-03-28 1986-10-02 Tohoku Metal Ind Ltd 酸化物永久磁石の製造方法
DE3617687A1 (de) * 1986-05-26 1987-12-03 Siemens Ag Verfahren zur herstellung von oxidkeramischen pulvergemischen, geeignet zur herstellung pressfaehiger granulate fuer die fertigung gesinterter keramischer werkstoffe
US5061412A (en) * 1989-03-31 1991-10-29 Sumitomo Special Metal Co. Ltd. Process for producing a magnet of strontium ferrite having high performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120500A (ja) * 1974-03-07 1975-09-20
JPS61247002A (ja) * 1985-04-24 1986-11-04 Hitachi Metals Ltd 複合磁石用磁粉の製造方法
JPS6449206A (en) * 1987-08-19 1989-02-23 Nippon Zeon Co Manufacture of hexagonal system ferrite magnetic powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0592672A4 *

Also Published As

Publication number Publication date
JP2838632B2 (ja) 1998-12-16
EP0719745A3 (en) 1996-09-25
EP0592672A4 (en) 1994-09-14
JPH0653064A (ja) 1994-02-25
EP0592672A1 (en) 1994-04-20
EP0719745B1 (en) 2003-06-18
EP0719745A2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JP2897871B2 (ja) 磁石粉末、焼結磁石、ボンディッド磁石および磁気記録媒体
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP4506989B2 (ja) フェライト磁性材料、フェライト焼結磁石及びその製造方法
CN111755195B (zh) 铁氧体烧结磁铁和具备其的旋转电机
WO1999034376A1 (fr) Aimant en ferrite et son procede de production
CN111755193B (zh) 铁氧体烧结磁铁和具备其的旋转电机
US6132635A (en) Process for the production of anisotropic ferrite magnets and anisotropic ferrite magnets as well as hexagonal system ferrite particles and their production process
JPH10149910A (ja) フェライト磁石およびその製造方法
JP7000954B2 (ja) フェライト焼結磁石
CN111755194B (zh) 铁氧体烧结磁铁和具备其的旋转电机
US5648039A (en) Process for the production of anisotropic ferrite magnets
EP0723277B1 (en) Sintered hexagonal barium ferrite magnet, its manufacture, and polar anisotropic link magnet
JP3137658B2 (ja) 酸化物磁性体の製造方法
WO1993022777A1 (en) Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
JP3135203B2 (ja) 異方性六方晶Baフェライト焼結磁石の製造方法
JP3150208B2 (ja) 異方性フェライト磁石の製造方法
JP2007123511A (ja) フェライト焼結磁石
KR100707366B1 (ko) 페라이트 소결체의 제조방법
JP3115506B2 (ja) 六方晶Baフェライト焼結磁石およびその製造方法ならびに極異方性リング磁石
JP2000331813A (ja) フェライト磁石粉末
JP3310936B2 (ja) 異方性酸化物磁性体の製造方法
Yamamoto et al. Effect of CaO and SiO/sub 2/additives on magnetic properties of SrZn/sub 2/-W type hexagonal ferrite
JP3944860B2 (ja) フェライト磁石粉末
Lee Synthesis and Spark Plasma Sintering of Soft Magnetic Composite in a Fe2O3–Al System by Mechanical Alloying
JP2001181057A (ja) 酸化物磁性体の製造方法および酸化物磁性体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1992915835

Country of ref document: EP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1992915835

Country of ref document: EP