WO1993014495A1 - Magnetic head assembly, its manufacture, and magnetic disc device - Google Patents

Magnetic head assembly, its manufacture, and magnetic disc device Download PDF

Info

Publication number
WO1993014495A1
WO1993014495A1 PCT/JP1993/000050 JP9300050W WO9314495A1 WO 1993014495 A1 WO1993014495 A1 WO 1993014495A1 JP 9300050 W JP9300050 W JP 9300050W WO 9314495 A1 WO9314495 A1 WO 9314495A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
magnetic
magnetic disk
completed
chip
Prior art date
Application number
PCT/JP1993/000050
Other languages
English (en)
French (fr)
Inventor
Takuya Amemiya
Yukio Miyazaki
Kazuhiko Harada
Isamu Ito
Masayoshi Shinohara
Takayuki Yamamoto
Yukio Nakamura
Minoru Takahashi
Yoshiharu Kasamatsu
Masao Hiyane
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP93901520A priority Critical patent/EP0576680B1/en
Priority to DE69333464T priority patent/DE69333464T2/de
Publication of WO1993014495A1 publication Critical patent/WO1993014495A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4826Mounting, aligning or attachment of the transducer head relative to the arm assembly, e.g. slider holding members, gimbals, adhesive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/484Integrated arm assemblies, e.g. formed by material deposition or by etching from single piece of metal or by lamination of materials forming a single arm/suspension/head unit
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4853Constructional details of the electrical connection between head and arm
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/488Disposition of heads
    • G11B5/4886Disposition of heads relative to rotating disc

Definitions

  • the present invention uses a magnetic head to record and reproduce data on a magnetic disk.
  • the present invention relates to a magnetic head assembly, a method of manufacturing the same, and a magnetic disk device for performing the above-described method, and more particularly, to a magnetic head assembly using a thin film head chip, a method of manufacturing the same, and a magnetic disk device.
  • the magnetic disk device positions the magnetic head on a desired track with the magnetic head with respect to the rotating magnetic disk, and uses the magnetic head to position the magnetic head on the desired track. It is a storage device that reads data from a rack or writes data to the track.
  • This magnetic disk device is widely used as an external storage device. In accordance with the recent demand for downsizing of computer systems, magnetic disk devices are also required to be small and have a large capacity. The size of this magnetic disk also ranges from 5.25 inches to 3.5 inches.
  • the size has been reduced to 20 inches and 1.8 inches.
  • the smaller the head mass and the smaller the load of the head the better the responsiveness to the magnetic disk medium and the smaller the flying height of the head, or High-density recording is possible by touching the head.
  • FIG. 1 is a configuration diagram of a conventional magnetic head
  • FIG. 2 is a diagram illustrating a manufacturing process thereof.
  • a flexible magnetic head 9 as shown in FIG. 1 has been proposed (for example, Japanese Patent Application Laid-Open No. 178017/1991). See).
  • the head 9 has a main pole (main magnetic pole) 90 formed vertically in a dielectric flexure 96 made of aluminum oxide or the like.
  • a yoke 91 is formed in the horizontal direction by being connected to this, and a rear stud 93 is formed in the vertical direction by being connected to this yoke 91, and is connected to this to form a horizontal stud 93.
  • a return yoke 94 is formed in the direction, and these constitute a low reluctance path. This path terminates in a high reluctance gap 95 between the main pole 90 and the return yoke 9.
  • a spiral coil 92 is inductively coupled to this yoke 91, and both ends of the coil 92 are connected to a coupling pad 98 through a lead conductor 97. You.
  • This head is made by thin film formation technology and can be made very small.
  • the width D of the head 9 is 0.5 mm
  • the thickness B is 0.05 mm
  • the length A is 12 mm. .5 mm
  • the mass is 100 micrograms.
  • Such a head 9 is formed as an integrated unit using thin film and photolithographic techniques.
  • a polishing substrate 911 such as barium titanate
  • a number of heads are formed on the wafer 911 by chemical vapor deposition, ion beam deposition and stamping, and this is scribed. , Create each head.
  • the conventional technology has the following problems. 1 ⁇ ⁇
  • the lead conductor portion is also formed integrally, the number of heads created on the ⁇ 9 9-1 is limited, and for example, the 3 inch ⁇ ⁇ Can only create about 270 pieces, which will significantly increase the price of the head.
  • the head size is large, cut from wafer 911.
  • the defect of the ejected head increases, for example,
  • the purpose of the present invention is to reduce the number of heads created on the wafer.
  • Another object of the present invention is to provide for the production of heads made on wafers.
  • the purpose of the present invention is to provide a magnetic disk device.
  • Yet another object of the present invention is to provide a wafer created on a wafer.
  • Yet another object of the present invention is to provide a wafer created on a wafer.
  • Still another object of the present invention is to provide a method for producing a wafer.
  • Another object of the present invention is to provide a method for producing a magnetic head.
  • the completed magnetic head of the present invention is a magnetic disk.
  • a completed magnetic head to be attached comprising: a head chip formed by laminating an insulating layer, a magnetic pole, a coil, and a terminal portion of the coil with a thin film; A terminal portion connected to the terminal portion; and a flexible support attached to the arm and supporting the head chip is provided.
  • a magnetic disk device includes a magnetic disk, a spindle motor that rotates the magnetic disk, and an arm, and the arm crosses a track of the magnetic disk.
  • a magnetic head that moves in the direction of movement, and a magnetic head assembly attached to the arm for recording data on the magnetic disk and reading data from the magnetic disk.
  • the completed magnetic head comprises a head chip formed by laminating an insulating layer, a magnetic pole, a coil, and a terminal portion of the coil with a thin film; And a flexible support that is attached to the arm and supports the head chip.
  • the completed magnetic head was directly attached to the arm, so that the arm had flexibility and a lead conductor of that length was required. I needed it.
  • the portion where the thin films need to be laminated is mainly the low reluctance path including the magnetic pole and the coil portion, and the lead conductor portion can be formed by other means.
  • the part of the low reluctance path including this pole and the coil is It is only about 1/20 of the length of the body, and it is useless to create other parts in dozens of steps on the wafer.
  • the present invention only the low reluctance path including the magnetic poles and the coil portion, which must be created on the wafer, are created on the wafer by the thin film lamination technology, and the other portions, the relay, are formed.
  • the conductor portion By separately forming the conductor portion with a flexible support, the number of head portions that can be formed on the wafer is increased, and the cost is reduced.
  • the head chip portion becomes minute and electrical connection becomes difficult, so that a terminal portion is provided on the head chip, and a signal terminal portion of the flexible support 2 is provided. The connection was made easier.
  • the present invention is characterized in that the thin film layer direction of the head chip is set to be horizontal to the magnetic disk surface.
  • the direction of lamination of the head thin film is mainly perpendicular to the magnetic disk surface.
  • the thin film is cut out and then cut out.
  • the main pole was formed as a thin film in the horizontal direction with respect to the magnetic disk surface.
  • the direction of laminating the thin film of the head chip is set to be horizontal with respect to the magnetic disk surface, before the head chip is cut out from the wafer.
  • the main pole can be formed in the same thin film forming direction, the number of head chips on the wafer can be increased, the head chip formation process can be simplified, and the head can be provided at lower cost.
  • a blower including a plurality of rows of head chips is formed.
  • FIG. 1 is a configuration diagram of a conventional flexible magnetic head.
  • Fig. 2 is an explanatory diagram of the manufacturing process of the magnetic head in Fig. 1.
  • FIG. 3 is an exploded view of a magnetic disk device to which the present invention is applied.
  • FIG. 4 is a perspective view showing the inside of the magnetic disk device of FIG.
  • FIG. 5 is a cross-sectional view of the magnetic disk device of FIG.
  • FIG. 6 is a top view of the magnetic disk device of FIG.
  • Fig. 7 is an exploded view of the magnetic disk unit of Fig. 3 and the completed magnetic head.
  • Fig. 8 shows the magnetic disk unit of Fig. 3 It is a block diagram of a completed magnetic head.
  • FIG. 9 is a cross-sectional view of a completed magnetic head according to the first embodiment of the present invention.
  • FIG. 10 is an exploded view of the completed magnetic head of FIG.
  • FIG. 1I is a configuration diagram of the head chip of FIG.
  • FIG. 12 is an exploded view of the flexible support of FIG.
  • FIG. 13 is a view showing the relationship between the head of the completed magnetic head of FIG. 9 and the flexible support.
  • FIG. 14 is a diagram showing a state in which the head chip of the completed magnetic head of FIG. 9 and the flexible support are in contact with each other.
  • FIG. 15 is a perspective view of a completed magnetic head according to the second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the completed magnetic head of FIG.
  • FIG. 17 is a diagram showing another example of the completed magnetic head of FIG.
  • Figure 18 is a mounting diagram of the completed magnetic head of Figures 15 and 17.
  • FIG. 19 is a diagram showing the process of forming the head chips of FIGS. 15 and 17.
  • FIG. 20 is a diagram showing a manufacturing process of the completed magnetic head shown in FIGS. 15 and 17.
  • FIG. 21 is a diagram showing a block forming process of the head chip in FIG.
  • FIG. 22 is a diagram showing a process of forming the support sheet in FIG.
  • FIG. 23 is a diagram showing an assembling process of the completed magnetic head in FIG.
  • FIG. 24 is a configuration diagram of a completed magnetic head according to the third embodiment of the present invention.
  • FIG. 25 is a configuration diagram of a completed magnetic head according to the fourth embodiment of the present invention.
  • Fig. 26 is a diagram showing the process of making the completed magnetic head of Fig. 25.
  • FIG. 27 is a configuration diagram of another support sheet used for the completed magnetic head of FIG.
  • FIG. 28 is a diagram showing a process of preparing a magnetic head complete body using the support sheet of FIG. 27.
  • FIG. 29 is a cross-sectional view of a head chip of a completed magnetic head according to the fifth embodiment of the present invention.
  • FIG. 30 is a sectional view of a completed magnetic head according to the sixth embodiment of the present invention.
  • FIG. 31 is a view for explaining the manufacturing process of the head chip of FIG.
  • FIG. 32 is a block diagram of another embodiment of the support of the present invention.
  • FIG. 33 shows another embodiment of the support of the present invention.
  • FIG. 34 is a structural diagram of still another embodiment of the support of the present invention.
  • FIG. 35 is a structural view of still another embodiment of the support of the present invention.
  • FIG. 36 is a structural view of still another embodiment of the support of the present invention. 0
  • FIG. 37 is a perspective view of a completed magnetic head according to the seventh embodiment of the present invention.
  • FIG. 38 is a cross-sectional view of the completed magnetic head of FIG.
  • FIG. 39 is a sectional view of a completed magnetic head according to the eighth embodiment of the present invention.
  • FIG. 40 is a cross-sectional view of a completed magnetic head of the ninth embodiment of the present invention.
  • FIG. 41 is a cross-sectional view of the completed magnetic head of the tenth embodiment of the present invention.
  • FIG. 42 is a perspective view of a completed magnetic head of the eleventh embodiment of the present invention.
  • FIG. 43 is a cross-sectional view of the completed magnetic head of FIG.
  • FIG. 44 is a perspective view of a completed magnetic head of the 12th embodiment of the present invention.
  • Fig. 45 is a configuration diagram when the completed magnetic head of Fig. 44 is attached to an arm.
  • FIG. 46 is a perspective view of a completed magnetic head according to the thirteenth embodiment of the present invention.
  • FIG. 47 is a perspective view of a completed magnetic head of the fourteenth embodiment of the present invention.
  • FIG. 48 is a perspective view of a completed magnetic head of the fifteenth embodiment of the present invention.
  • FIG. 49 is a perspective view of a completed magnetic head of the sixteenth embodiment of the present invention.
  • FIG. 50 is a perspective view of a completed magnetic head of the seventeenth embodiment of the present invention.
  • FIG. 51 is a top view of another embodiment of the magnetic disk device of the present invention.
  • FIG. 52 is a sectional view of the magnetic disk device of FIG.
  • FIG. 53 is a top view of the event of FIG.
  • FIG. 54 is a perspective view of a completed magnetic head of the eighteenth embodiment of the present invention.
  • FIG. 55 shows another connection mechanism of the completed magnetic head of FIG.
  • FIG. 56 is a perspective view of a completed magnetic head according to the nineteenth embodiment of the present invention.
  • FIG. 57 is a view showing another connection mechanism of the completed magnetic head of FIG.
  • FIG. 58 is a perspective view of a completed magnetic head of the 20th embodiment of the present invention.
  • FIG. 59 is a perspective view of a completed magnetic head of the twenty-first embodiment of the present invention.
  • FIG. 3 is an exploded view of a magnetic disk device according to one embodiment of the present invention
  • FIG. 4 is a perspective view of the inside of the magnetic disk device of FIG. 3
  • FIG. 5 is a cross-sectional view of the magnetic disk device of FIG. 6 is a top view of the magnetic disk device of FIG. 3
  • FIG. 7 is a perspective view of the magnetic disk device of FIG.
  • the magnetic disk device shown in FIGS. 3 to 7 is a magnetic disk device that performs perpendicular magnetic recording by bringing a head into contact with a 1.8-inch magnetic disk.
  • the magnetic disk device base 60 includes a rotating shaft & 2 of the actuator 4 and a magnetic circuit 63 for driving the actuator 4, and a magnetic disk 63.
  • a fixed center shaft 64 of the disk 5 and a connector portion 65 for connection to the outside are provided.
  • a stay part 66 having a drive coil is attached to the center shaft 64.
  • the central shaft 64 has a rotor portion 50 that supports the magnetic disk 5 and has a magnet and is rotatably provided via a bearing (not shown).
  • the rotor part 50 is acted on by the magnet of the mouth part 50 by exciting the drive coil of the stay part 66. Rotate the magnetic disk 5 around the central axis 6 4.
  • the rotary shaft 62 is fitted with a rotary hole 45 (see FIG. 8) of the cylindrical portion 43 of the actuator 4 via a bearing 44, and a coil 4 at the rear of the cylindrical portion 43 is fitted. 1 is located between the magnetic circuits 63.
  • the rotor part 50 supports two magnetic disks 5.
  • four arms 3 are provided on the actuator 4 and each head chip 1 and an outer part are provided on the cylindrical portion 43.
  • a flat cable 42 (see Figs. 3 and 4) is provided for connection to the sub-circuits.
  • each head chip 1 is connected to the arm 3 It is connected to the flat cable 42 by a lead wire 30 provided along the same.
  • a circuit board such as a drive circuit (not shown) is provided on the base 60.
  • the cover 61 shown in FIG. 3 is screwed and fixed to the base 60, and the inside is sealed. Is done.
  • the height of this magnetic disk device is about 5 mm, which is a force size.
  • the arm 3 has a bent end, and a flexible support 2 provided with a head chip 1 at the end is provided with an adhesive or laser spot welding at the bent portion. Etc.
  • the arm 3 is attached to the cylindrical portion 43 with an adhesive or a screw.
  • the magnetic disk 5 is rotated by rotating the mouth part 50 by the stay part 66 and the head chip 1 is rotated by the actuator part 4.
  • the seek moves in the radial direction of the magnetic disk 5 (the direction crossing the track).
  • FIG. 9 is a configuration diagram of the completed magnetic head of the first embodiment of the present invention
  • FIG. 10 is an exploded view of the completed magnetic head of FIG. 9,
  • FIG. 11 is a magnetic head of FIG.
  • Fig. 12 is a block diagram of the completed head
  • Fig. 12 is a block diagram of the support of the completed magnetic head of Fig. 9, and Fig.
  • FIG. 13 is a diagram showing the relationship between the head chip of FIG. 11 and the support of FIG. 12, and FIG. 14 is a diagram showing the connection state of FIG.
  • head tip 1 is a probe-type vertical
  • 1, 1 0-2 constitute a low reluctance path. Also,
  • Resistive air gap is formed, and hard material is used at pole 16-1
  • a helical coil 17 is provided around the core 1 6 — 3
  • the pair of terminals 11 and 13 are exposed.
  • the magnetic disk 5 is magnetized only under poles 1 6 — 1
  • the head chip 1 is formed by laminating thin films, and the laminating direction of the thin films is perpendicular to the surface of the magnetic disk 5.
  • This head chip 1 is provided with a low reluctance path including the magnetic poles 16-1, a coil 17, terminals 11 and 13, and a lead portion is provided. Therefore, as shown in Fig. 10, the size can be extremely small, and the size can be reduced to the conventional size of 120.
  • a flexible support 2 supporting the head chip 1 is insulated on a flexible metal plate (substrate) 20 such as stainless steel.
  • An insulating layer 27 such as a resin is provided, and lead patterns 24 and 26 are formed on the insulating layer 27 using a conductive metal material such as copper.
  • an insulating protective layer 28 provided with holes so that both ends of the lead patterns 24 and 26 are exposed is provided. At one end of the exposed portion of the lead patterns 24 and 26 (the portion connected to the head chip 1), bump portions 21 and 23 are provided.
  • the connecting portion (base portion) of the flexible support 2 with the arm 3 has a large area in order to increase the connection strength with the arm 3.
  • an insulating adhesive is applied around the bumps 21 and 23 of the flexible support 2, and a head chip is formed. Connect the terminals 1 1 and 1 3 of the bump 1 to the bumps 2 of the flexible support 2
  • the bumps 21 and 23 of the flexible support 2 are protruding.
  • the flat cable 42 is linked to the screen.
  • the arm 3 allows the head chip
  • the low-resistance path including the magnetic pole, the coil and the terminal Since it is divided into a thin-film-formed head chip 1 and a flexible support member 2 having flexibility and having terminals, the number of head chips 1 formed by a wafer increases significantly. However, in this example, about 10 times or more the number of the head chips 1 obtained from the conventional wafer can be obtained from one wafer. Therefore, even if it is simply calculated, a head chip can be provided at a price of about 110.
  • the size of the head chip 1 is desirably 1.0 mm in depth (length), 0.5 mm in width, and 0.2 mm or less in thickness.
  • the flexible support 2 preferably has a width of 0.5 mm or less, a thickness of 0.1 mm or less, and a length of 11.0 mm or less.
  • FIG. 15 is a block diagram of the completed magnetic head of the second embodiment of the present invention
  • FIG. 16 is a cross-sectional view of the completed magnetic head of FIG. 15,
  • FIG. 17 is a second embodiment of the present invention.
  • FIG. 18 is a configuration diagram of another completed magnetic head of the embodiment, and
  • FIG. 18 is an explanatory diagram of a mounting state of the completed magnetic head.
  • FIGS. 15 to 18 are single-pole heads for perpendicular magnetic recording with a simplified structure.
  • the back of the head chips 1-2 has a,.
  • the leads 11, 12 and 13 are exposed.
  • the flexible supporting body 2 has lead patterns 24 and 2 for signal extraction which also serves as a lead wire. 5, 26 are formed.
  • the flexible support 2 with a lead pattern is formed by applying an insulating resist to a stainless steel sheet and conducting it.
  • a thin plate such as insulating plastic or ceramic may be used without necessarily using a metal sheet.
  • the front end of the flexible support 2 is bent 90 degrees, and on the back side of the bent portion 2a, the above-mentioned pads 11, 12, 1 Terminals 21, 22, and 23 corresponding to 3 are provided, and these are connected to the aforementioned signal lead patterns 24, 25, and 26, respectively.
  • the support 2 is shown as being formed into an elongated flat plate having the same width and the same thickness.
  • the arm 3 side is formed wider to improve rigidity in the head seek direction. It can also be done.
  • connection between the head chips 112 and the flexible support members 2 and the arms 3 holding them is also performed by using pads and lead terminals formed on each part, and also serves as an electrical connection. And joined.
  • solder is applied to each of the pads 11, 12, 13 and the lead terminals 21, 22, 23. It is effective to form a solder bump by forming a film by vapor deposition or plating or by applying a paste, and then heating after positioning and joining.
  • the area around the solder joint may be adhered and strengthened, and the joint between the flexible support 2 and the arm 3 can be performed in the same manner.
  • the connection with the head chips 1 and 2 and the connection with the arm 3 are made. Bonding can be performed using the same pattern surface of the flexible support 2.
  • the tip of the flexible support 2 is bent at a right angle, the bonding area with the head chips 112 can be increased, so that the head chip 112 and the flexible support 2 can be joined.
  • the bonding strength with the metal also increases.
  • a lead wire 30 is bonded to the end of the lead pattern of the flexible support 2 on the arm 3 side.
  • a conductor pattern may be provided on the arm 3 side and connected to the end of the lead pattern of the flexible support 2.
  • 11 to 13 are no.
  • 14 is a return yoke and is composed of NiFe (ferrite)
  • 15 is an insulating layer
  • 16 is a main pole
  • 17 is a coil
  • Reference numeral 18 denotes an insulating protective layer
  • reference numeral 19 denotes a back yoke portion, and these are made by thin-film technology.
  • the thin-film laminating direction is indicated by an arrow in the figure with respect to the surface of the magnetic disk 5. It is horizontal.
  • the return yoke 14, the insulating layer 15, and the main magnetic pole are placed on a substrate (a wafer) (not shown).
  • a coil 17 a Zenjo protective layer 18, a back yoke portion 19, and the like are sequentially formed into a thin film to form a head element portion.
  • the main pole 16 is perpendicular to the magnetic disk 5. Therefore, it is necessary to form a thin film on the part other than the main pole 16, cut out the chip, and then form another thin film on the end face of the chip. is there.
  • the main pole 16 can also be formed by forming the thin film in the thin film forming direction.
  • the cost can be reduced, the yield can be improved, and the head chip can be provided at low cost.
  • the spiral shape of the thin-film head requires a relatively large coil area if it is spiral, but the coil shape in this embodiment is a coil wound closely to the magnetic pole. Since it is a call type, the thin film formation area can be further reduced.
  • the head chip thus formed is cut out of the base board as shown in the figure, as described above, and the tip of the main magnetic pole 16 is formed at the apex of the head chip.
  • the head chips are located at positions 1 and 2, and are arranged perpendicularly to the magnetic disk 5 surface, thereby contributing to recording and reproduction.
  • the terminal 12 is formed from the back yoke portion 19 of the magnetic pole 16 formed on the head chip 112, and Grounding via the flexible support 2 causes noise mixing and loss due to charging of the magnetic poles It can prevent scratches.
  • the head chips 112 are necessary for connection with the flexible support 2.
  • the dimensions are limited only by the sizes of the heads 11, 12, and 13, and dimensions of several hundred microns or less can be easily achieved. Also, regarding the thickness, since the substrate is removed by polishing or the like, only the thin film forming part is required, and it is possible to reduce the thickness to several tens of micron. Suitable for weight reduction.
  • FIG. 18 (A) when a head structure in which the head chips 12 and 12 are supported by being joined to the flexible support body 2 whose tip is bent at a right angle is shown in FIG.
  • FIG. 18 (B) two magnetic heads are completed by one arm 3 between the magnetic disks 5 or one arm 3 is mounted.
  • Mounting that sandwiches the magnetic disk 5 composed of two completed magnetic heads uses the height of the head chips 12 to displace the flexible support 2. Thereby, the head chips 112 can be biased to the surface of the magnetic disk 5 so that mounting is easy.
  • a thin film integrated type head in which all of the head chips 112 are formed as a thin film is shown.
  • a return substrate 14 may be used instead of NiFe using a flat board instead of NiFe. In this case, the thickness becomes slightly larger.
  • the substrate A return yoke 14, an insulating layer 15, a main magnetic pole 16, a coil 17, a dielectric protection layer 18, a back yoke 19, etc. are sequentially formed on the wafer, and then the substrate 1a is formed.
  • the substrate 1a was left without being deleted, and the remaining substrate 1a was used as a contact member for contact with the magnetic disk 5 in the same manner as the contact pad 11 in FIG. The use prevents wear of the main pole 16.
  • the insulating support layer 27 was provided on the metal plate 20 on the flexible support 2, and the lead patterns 24 and 26 were provided thereon, and the flexible support 2 was covered with the protection layer 28.
  • a support (Fig. 12) is used.
  • the size of the head chip 1 can be set to, for example, about 0.5 mm in length x 0.5 mm in width x 0.1 mm in thickness, and the mass becomes 0.1 mg.
  • the area is about 0.25 square millimeters, the mass can be reduced, and many elements can be formed on the wafer.
  • the weight of the head chip 112 was 1.0 mg, and the load of the head chip 112 was 0.5 mN, and the track density was 1.7, 0 ⁇ . 0 ⁇ ⁇ ⁇ , maximum recording density of 120,000 ⁇ I, and maximum areal recording density of 2 gigabit square inch were realized.
  • a width of 0.5 mm, and a thickness of 0.2 mm or less are desirable.
  • the flexible support 2 preferably has a width of 0.5 mm or less, a thickness of 0.1 mm or less, and a length of 11.0 mm or less. Next, a method for manufacturing such a head chip will be described.
  • FIG. 19 is a diagram showing a manufacturing process of the head chip of FIG. 16 or FIG.
  • a return yoke 14 made of NiFe or the like is formed on the substrate 1a by a number of methods such as a snout ring or a vapor deposition method.
  • a 30 micron film is formed and formed into a desired yoke shape using a photolithographic technique.
  • a heat treatment in a magnetic field is applied to improve the magnetic properties of the soft magnetic film.
  • a back yoke 19 made of NiFe or the like is formed to a thickness of a few microns by a frame plating method.
  • a thin electrode layer of about 0.1 micron is formed by a vapor deposition method or the like to form a plating base, and a photo resist is formed thereon. Do not deposit Cover the area that is not covered, and apply electrical power.
  • the film is formed by electric plating.
  • Insulation layer I 5 to secure insulation between coil 4 and coil 17
  • the coil 17 and the insulating layer 18 are formed.
  • the insulating layer composed of the photo resist is spin-coated.
  • a conductor layer made of Cu is deposited by vacuum evaporation or sputtering.
  • the photo resist to be the insulating layer is formed in the same manner as described above.
  • a NiFe or CoZr-based soft magnetic film is A desired main pole pattern is obtained using a photolithography technique.
  • the thickness is depicted as being uniform, but only the tip that contributes to the recording density is reduced to the required thickness of the submicron in two layers. Further, if necessary, heat treatment in a magnetic field is applied to improve the magnetic properties of the soft magnetic film.
  • the second coil 17 17 is formed in the same manner as the formation of the first coil and the insulating layer shown in FIG. 19 (E). And an insulating layer 18 are formed.
  • the raised portions that become the connection terminals 11 and 13 from the coil 17 are formed by the frame plating method of Cu or the like. I do.
  • Ri by the method described in FIG. 1 9 (D), A 1 2 0 an insulating film made of 3, etc., Ri by the spatter Li in g method, several to several 1 0 Mi click b down approximately deposition Then, a protective film is formed, and the surface is polished flat until the connection terminals 11 and 13 are exposed.
  • connection terminals 21 and 23 to gold (Au)
  • Au gold
  • a film is formed by vapor deposition or sputtering, and is formed into a desired shape using photolithography technology.
  • the conventional head chip is used. Head chips can be manufactured in far fewer steps than in chip manufacturing methods.
  • FIG. 20 is a diagram showing a manufacturing process of the completed magnetic head shown in FIGS. 15 and 17,
  • FIG. 21 is a diagram showing a block forming process of the head chip in FIG. 20,
  • FIG. FIG. 20 is a diagram showing a process of forming a support sheet in FIG. 20,
  • FIG. 23 is a diagram showing an assembling process of a completed magnetic head in FIG.
  • the head chips 11 are arranged in a line in the width direction from the wafer 911. Cut out block 2-2 of 2.
  • the mechanical poles of the main poles 16 of each of the head chips 112 are tapered so as to be tapered.
  • the substrate 9-1 may be thinned as necessary to obtain a plurality of head chips 1-1 as shown in FIG. 21 (b). Head blocks 912 are manufactured, two in a row.
  • a support panel (support) sheet is manufactured.
  • a plate member 200 composed of a stainless steel plate is subjected to processing such as breathing, and as shown in FIG. 22 (B), a contact bar 2 is formed.
  • the support panel 2 forms a comb-like support panel sheet 200 with respect to 0 1.
  • the tip of each support spring 2 is bent 90 ° as shown in FIGS. 16 and 17.
  • the upper surface of the support panel 2 is composed of a polyimide insulating layer 27, Cu conductor layers 24 and 26, and Cu + SnPb. Connection terminals 21 and 23 and lead patterns 24 and 26 in which a polyimid protective layer 28 and the like are sequentially formed.
  • the pitch of the plate-shaped support screw 2 for supporting the head chips 112 is the same as that of the head chips 112 and 112 in FIG. 21.
  • the connection terminals 21 and 23 of the support spring 2 are provided so as to overlap the connection terminals 11 and 13 of the head chip 12.
  • FIG. 22 two lead wires,. Turns 24 and 26 are shown, but three leads, as shown in Fig. 15, are shown for head tip 112 in Fig. 21 (c). Do pattern will be provided.
  • each support panel 2 of the support panel sheet 200 is connected with each head chip 12 of the head block 9-1 2 and the connection terminal of the support panel 2 Position so that the connection terminals 11 and 13 of 21 and 23 and the connection terminals 11 and 12 of the head chip 12 overlap.
  • the head block 9-2 is joined to the support spring sheet 200.
  • the connection terminals 21 and 23 of the positioned support panel 2 and the contact terminals 11 and 13 of the head chip 12 are heated and melted, and soldered.
  • a resin adhesive is used to reinforce the adhesive and electrically and mechanically join.
  • each head chip is cut by a cutting machine such as a slicer at a position of a broken line C1 of the head block 912 of the joined body. Separate into two. Then, the base of each support panel 2 of the joined body is cut by laser irradiation at the position of the broken line C 2, and each support spring 2 is separated from the connecting bar 201. As a result, a completed magnetic head is assembled as shown in Fig. 23 (b).
  • the head chips 1-2 of the head blocks 912 and the support panel 2 of the support panel sheet 200 are not separated from each other. , Which are joined together as a large part and separated after joining Even in the case of assembling, it is extremely easy to assemble the completed magnetic head, and assembling defects are reduced.
  • FIG. 24 is a block diagram of a third embodiment of the present invention. In the figure, the same components as those shown in FIG. 16 are indicated by the same symbols.
  • the flexible support 2 and the head chip 11 are provided so as to cover the upper surface of the head chip 112 (the surface opposite to the magnetic disk 5). 2 is joined.
  • the flexible support 2 By forming the flexible support 2 from a soft magnetic material such as NiFe, the effect of a magnetic shield can be exerted, and the flexible support 2 can be provided from an opposing head (not shown). The effect of leakage noise can be reduced and the spacing between heads can be made smaller.
  • the shield effect can be further enhanced.
  • the height of the head chip 1 is used to displace the flexible support 2.
  • the mounting can be performed with the head chip 1 being biased to the surface of the magnetic disk 5 so that mounting is easy.
  • FIG. 25 is a block diagram of a fourth embodiment of the present invention.
  • FIGS. 25 (A) and (B) the same components as those shown in FIGS. 16 and 24 are denoted by the same symbols.
  • the pads 11 to 13 of the head chip ⁇ and the lead terminals 21 to 23 of the flexible support 2 are joined by the solder melting S. Have been.
  • This embodiment differs from the above-described second and third embodiments in that the distal end of the flexible support 2 is not bent but flat. In this embodiment, since the pads 11, 12, and 13 of the head chip 1 are exposed on the end face opposite to the magnetic disk 5, the flexible support 2 is not bent but is joined. This makes it easier to manufacture the support spring 2.
  • FIG. 25 ( ⁇ ) in the configuration of FIG. 25 (A), A different connection method such as wire bonding by crimping a gold (Au) ball W is used for the leads 11 to 13 and the lead terminals 21 to 23.
  • Au gold
  • the flexible support 2 and the flexible support 2 are arranged so that the top surface of the head chip 1 (the surface opposite to the magnetic disk 5) is covered. Head chip 1 is connected.
  • the flexible support 2 can be formed of a soft magnetic material such as NiFe to exert the effect of a magnetic shield.
  • the completed magnetic head can be assembled by the method described with reference to FIG. 20 and the following drawings, and will be described with reference to FIG.
  • a supporting panel sheet 200 is prepared by connecting supporting panels 2 whose bending ends are not bent by connecting bars 201.
  • the above-described head blocks 912 are positioned at the tips of the support springs 2 of the support spring sheet 200, and the solder melt S is applied as shown in FIG. 25 (A).
  • the connection terminals 11 to 13 of the head chip 12 and the connection terminals 21 to 23 of the support panel 2 are joined.
  • the completed magnetic head is assembled. it can.
  • the width of the root of the support spring 2 is increased, and It is effective to balance the rigidity of the two.
  • the trapezoidal cantilever with a wider base has higher rigidity and better mechanical properties than the simple cantilever.
  • the support spring sheet 20 shown in FIG. At 0, if the root of each support spring 2 is made thicker, the arrangement pitch of the support springs 2 will decrease, and the number of support springs 2 that can be arranged on one support spring sheet 200 will decrease. .
  • the pitch at the tip of the support panel 2 becomes wider than the pitch of the head chips 12 and 12 arranged in the head blocks 912, and the head chip 1
  • they hinder the miniaturization of pitches which leads to a reduction in the mounting density of the head chips, and hinders cost reduction.
  • FIG. 27 The joining method for improving the characteristics of the support spring 2 while preventing the mounting density of the head chips 112 from decreasing will be described with reference to FIGS. 27 and 28.
  • FIG. 27 The joining method for improving the characteristics of the support spring 2 while preventing the mounting density of the head chips 112 from decreasing will be described with reference to FIGS. 27 and 28.
  • the support spring sheets 200 — 1 and 200 — 2 increase the thickness of the base of each support panel 2, and the pitch at the tip of the support panel 2 is changed to a head block 912. It is designed to be twice the pitch of the arranged head chips 1-2.
  • the difference between the two types of support spring sheets 2 0 0-1 and 2 0 0-2 is that when the lead pattern is directed to the same side, the support spring sheets 2 0 0-1 and 2 0 0-2 The point that the pitch of each support spring 2 is shifted by a half cycle.
  • the head block portion of the joined body is temporarily fixed to the worktable, and the head block 912 is cut off from the head block 911 by a slicer or laser irradiation. 2 is separated into two support panel sheets, and then the support panel 2 is separated from the connecting bar 201 by laser irradiation, whereby the completed magnetic head can be assembled.
  • the supporting spring sheets 200-1 and 200-2 each of the supporting panels 2
  • the two pitches are shifted by half a cycle, but two types of support panel sheets 2 0 0-1 are created.
  • the tip of the support spring 2 is shifted by half a cycle.
  • it can be realized by shifting one of the support panel sheets so as to overlap.
  • FIG. 29 is a block diagram of a fifth embodiment of the present invention.
  • two main magnetic poles 16 may not necessarily be mounted, and one of them may be used as a dummy.
  • FIG. 30 is a block diagram of a sixth embodiment of the present invention.
  • the configuration of Fig. 30 differs from the configuration of Fig. 24 in that the head 1-4 has a back yoke 19 above the substrate 1a and the return yoke 14 in the thin film stacking direction. Snow, around. An inner shape of a coil 17 is formed, and a main pole 16 is connected to the back yoke 19.
  • a ferrite board ( ⁇ ⁇ her) l a to be the return yoke 14 is used.
  • a coil 17 and an insulating layer 18-1 are formed on the substrate 1a.
  • the insulating layer made of the photo resist is spin-coated, developed, and baked to form a desired shape.
  • a conductive layer made of Cu is formed on top of this by vacuum evaporation or sputtering, and photolithography is used.
  • To form a desired spiral coil is formed.
  • the spiral coil 17 and the insulating layer 18 are completed. At this time, a portion 17-1 of the coil 17 is formed to be exposed on the insulating layer 18-2.
  • a back yoke (joint portion) 19 made of NiFe or the like is formed to a thickness of several micron by the frame plating method.
  • a thin electrode layer of about 0.1 micron is formed into a film by a vapor deposition method or the like to form a plating base, and a photo resist is formed thereon. Cover the area where the film is not to be formed, and apply electricity. After electrical plating, remove the resist and complete.
  • the film formation may be performed not only by electric plating but also by a combination of sputtering and vapor deposition.
  • a protective layer 18-2 of the coil 17 is formed.
  • the raised portions 11a and 133 which are parts of the connection terminals 11 and 13 on the part 17-1 of the coil, are connected by the frame-meshing method of (: 11). Form.
  • a main pole 16 connected to the back yoke 19 is formed on the protective layer 18-2.
  • the NiFe or CoZr-based soft magnetic film is A desired main pole pattern is obtained using a photolithography technique.
  • the thickness is shown as being uniform, but only the tip that contributes to the recording density is reduced to the required thickness of the submicron in two layers. Further, if necessary, heat treatment in a magnetic field is added to improve the magnetic properties of the soft magnetic film.
  • connection terminals 11 and 13 are formed on the raised portions 11a and 13a by a Cu frame plating method or the like.
  • the gold (Au) is formed into a film by a vapor deposition or sputtering method, and are formed into a desired shape by using a photolithography technique.
  • This process greatly reduces the number of steps compared to the process in Fig. 19, contributing to cost reduction.
  • FIG. 32 is a structural diagram of another embodiment of the support of the present invention. 13 shows a modification of the flexible support.
  • a lead pattern 24, 26 is provided on a flexible insulating plate 2-1, such as an insulating resin.
  • the lead patterns 24 and 26 can be joined by bonding or crimping, and the lead patterns 24 and 26 can be plate-shaped or linear.
  • the conductor may be an uncoated conductor or an uncoated conductor.
  • FIG. 33 is a configuration diagram of another embodiment of the support of the present invention, showing a modification of the flexible support.
  • a mechanical support 2-2 for conductors 24, 26 is provided on a flexible insulating plate 2-1, such as an insulating resin, and the conductors 24, 26 are connected to a flexible insulator 2-2.
  • the convex section is fixed by caulking. Thereafter, resin or the like may be applied for reinforcement.
  • the conductors 24 and 26 may be plate-shaped or linear, and may be an uncoated conductor or an uncoated conductor. There may be.
  • FIG. 34 is a structural view of still another embodiment of the support of the present invention, showing a modification of the flexible support.
  • a conductor foil 29 such as a copper foil is previously formed on a flexible insulating plate 2-1 such as an insulating resin by bonding, crimping, plating, or the like. Etching 29 is performed to obtain conductors 24 and 26 having a predetermined shape.
  • FIG. 35 is a structural view of still another embodiment of the support of the present invention, showing a modification of the flexible support.
  • the mold 80 for the flexible insulating plate 2-1 is installed.
  • the conductors 24 and 26 are set in advance, and the resin is injected into the mold 80 by the injection molding machine 81 so that the conductors 24 and 26 are provided. It forms a flexible insulator 2-1 such as a conductive resin.
  • FIG. 36 is a structural view of still another embodiment of the support of the present invention, showing a modification of the flexible support.
  • the flexible insulation layer 2-1 may be lined with a conductive metal.
  • the number of conductors is set to three or more. Is also good.
  • the contact type magnetic head has been described.
  • the present invention can be applied to a floating type magnetic head.
  • the magnetic disk of the magnetic disk device has been described as having a plurality of disks, a single disk may be used.
  • FIG. 37 is a perspective view of a seventh embodiment of the present invention
  • FIG. 38 is a cross-sectional view of the configuration of FIG. 37, showing another example of connection between the head chips 12 and the support 2. .
  • the configuration of the head chips 12 and 12 is the same as that of FIG. 16; 1 5) Indicates an insulating layer, 16 indicates a main magnetic pole, 17 indicates a coil, 18 indicates an insulating protective layer, and 19 indicates a back yoke portion. These are formed on the substrate 1a by thin film technology. The laminating direction is parallel to the surface of the magnetic disk 5.
  • the flexible support 2 differs from that of FIG. 16 in that it does not have a right-angled bent portion and has a flat plate shape, and as shown in FIG. 0, an insulating layer 27 is covered, signal lead lines 24 and 26 are provided thereon, and a protective layer 28 is further provided. These signal leads 24 and 26 have connections. And heads 21 and 23 and 24a and 26a.
  • the flexible support 2 has a configuration in which the tip is not bent at a right angle, so that an insulative plastic ceramic or the like can be used.
  • the contact surface is coated with an ultraviolet-curing adhesive T with a thickness of about 5 micron, irradiated with ultraviolet light (UV light), instantaneously hardened, and mechanically fixed.
  • an ultraviolet-curing adhesive T with a thickness of about 5 micron, irradiated with ultraviolet light (UV light), instantaneously hardened, and mechanically fixed.
  • connection terminals 11 and 13 of the head chip 12 and the connection terminals 21 and 23 of the flexible support 2 are connected with a bonding wire M such as a gold wire.
  • the magnetic chip is bonded to the flat support 2 on the opposite side to the magnetic disk-facing surface of the head chip 1-2.
  • the degree of parallelism with the disk surface can be obtained with high accuracy.
  • attachment since attachment is performed without heating using an ultraviolet-curable adhesive, the attachment can be easily performed without adversely affecting heat such as thermal distortion.
  • FIG. 39 is a cross-sectional view of the eighth embodiment of the present invention, and shows another example of connection between the head chips 112 and the support 2.
  • head tips 1-2 is the same as that of Fig. 38, where 11 and 13 are pads, 14 is return yoke, and Ni Fe (feature).
  • 15 is an insulating layer
  • 16 is a main magnetic pole
  • 17 is a coil
  • 18 is an insulating protective layer
  • 19 is a back yoke part, and these are wafer 1 It is created by thin film technology on a, and the thin film laminating direction is parallel to the surface of the magnetic disk 5.
  • the flexible support 2 is also substantially the same as that shown in FIG. 38, is not provided with a right-angled bent portion, is flat, and has a metal base 20 and an insulating layer 27.
  • Signal lead wires 24 and 26 are provided thereon, and a protective layer 28 is further provided.
  • These signal leads 24 and 26 are provided with symmetric pads 21 and 23 and 24a and 26a, respectively.
  • the flexible support 2 further to the mounting surface of the tip portion, the Tsu Gasi' sandwiching the outer shape of the flop 1 one 2, position Decisive order to A 1 2 0 3 or the like formed by a pair of formed by a thin film of
  • This head chip 112 provided with protrusions 20 — 1 and 2 is connected to its connection terminals 11 1 and 13 Is oriented toward the front of the flexible support 2 (to the left in the figure), and the surface (top end) parallel to the magnetic disk facing surface is attached to the mounting surface of the tip of the flexible support 2.
  • (Lower surface) is positioned with the projections 20-1 and 2, and is brought into contact.
  • the UV-curable adhesive T with a thickness of about 5 micron is applied to the contact surface, and the ultraviolet light (U
  • V light instantaneously cure and mechanically fix.
  • connection terminals 11 and 13 of the head chip 11 and the surrounding terminals 21 and 23 of the flexible support 2 are connected by a bonding wire M such as a gold wire. I do.
  • the positioning protrusions 20-1 and 2 on the flexible support 2, it is easy to determine the position of the head chips 112 and the magnetic disk.
  • the perpendicularity of the magnetic pole to the traveling direction of the magnetic pole can be obtained with high accuracy, and the azimuth loss can be reduced.
  • FIG. 40 is a cross-sectional view of the ninth embodiment of the present invention, showing another example of connection between the head chips 112 and the support 2.
  • the structure of the head chips 112 is the same as that of Fig. 38.
  • the flexible support 2 is also the same as that shown in FIG. 38, and has no right-angled bent portion, and has a flat plate shape. 1 and 13 face the back of the flexible support 2 (to the right in the figure), and the surface (top end) parallel to the magnetic disk facing surface is the top end of the flexible support 2.
  • a UV-curable adhesive T about 5 micron thick, irradiate with ultraviolet light (UV light), cure instantaneously, and fix it mechanically.
  • connection terminals 11 and 13 of the head chip 12 and the connection terminals 21 and 23 of the flexible support 2 is B i — a low melting point of Pb alloy or the like. Filler joints with solder N to form solder fillets.
  • the electrical connection is made, and the mechanical strength of the bonded portion by the adhesive is reduced. It has the effect of 'captive'.
  • the wafer substrate is formed of the return yoke 14
  • the contact surface becomes smaller, and the bonding area becomes smaller, the corner becomes smaller.
  • mechanical bonding mechanical strength can be maintained.
  • the low melting point solder N there is no possibility of causing thermal deterioration of the bonded ultraviolet curable adhesive.
  • FIG. 41 is a cross-sectional view of a tenth embodiment of the present invention, showing another example of the connection between the head chip and the flexible support.
  • the configuration of the head chips 115 is the same as the configuration of the embodiment of FIG. 40, and the solder plating, gold, or the like is deposited on the substrate 1 a of the return yoke 14.
  • a bonding pad 1 1 1 1 is provided.
  • the structure of the flexible support 2 is also substantially the same as that of the embodiment shown in FIG. 40, but is further provided at the tip of the mounting surface by a solder plating or a vapor deposition of gold or the like.
  • C 2-4 — 1 is provided.
  • the upper surface of the head chips 115 and the mounting surface of the support 2 are adhered to each other with an ultraviolet curable adhesive T.
  • the connection terminals 11 and 13 of the head chips 1-5 and the connection terminals 21 and 23 of the support 2 are filled with low-melting solder N.
  • the joining pad 111 of the head chip 115 and the mounting pad 24-1 of the support 2 are filled with low-melting-point solder N.
  • FIG. 42 is a perspective view of the eleventh embodiment of the present invention
  • FIG. 43 is a cross-sectional view of FIG. 42, showing another example of how the head chip and the support are connected to each other.
  • the head chip 16 includes a main pole 16, a coil 17 wound around the pole 16, an insulating layer 15, 18 that completely protects the pole 16 and the coil 17,
  • the configuration of FIG. 24 is the same as that of FIG. 24 in that a back yoke 19, a return yoke 14 and a connection terminal 11 are provided.
  • the head is formed in a T-shape when viewed from the thin film formation surface of the head chips 1-6. It is. Then, the magnetic pole 16 and the coil 17 around which the magnetic pole 16 is wound, and the magnetic pole 16 and the coil 17 are insulated and protected on the T-shaped vertical portion 1c. The insulating layers 15 and 18 thus formed, the knock yoke 19 and the return yoke 14 are formed. The connection terminals 11 and 13 of the coil 17 are formed on the rainy side of the T-shaped upper horizontal part.
  • head chips 1 to 6 are formed, for example, by forming a large number of head chips on a NiFe substrate substrate and viewing them from the thin film forming surface. It is created by cutting into a T-shape.
  • the size of the head chip 16 is limited by the number of turns of the coil 17 incorporated in the chip.
  • the size of the head chip 16 can be reduced to less than 100 ⁇ m, and the thickness can be reduced. Regarding this, only the thin film forming portion is sufficient, and the thickness can be reduced to several 10 micron.
  • the flexible support 2 for supporting the head chips 16 is made of a metal plate 20 such as a stainless steel sheet coated with an insulating resist and formed thereon.
  • the support 2 has a recess 2-1 formed at the tip thereof, and the vertical portion 1 c of the T-shaped head chip 16 is held by the recess 2-1. It is structured as follows. Then, as shown in FIG. 43 (A), the rear end of the support 2 is attached to the front end of the arm 3.
  • the connection terminals 11 and 13 are formed such that the connection terminals 21 and 23 of the turns 24 and 26 are close to each other.
  • the vertical shape of the T-shaped head chip 16 is inserted into the recess 2-1 formed at the tip of the support 2. Hold part 1 c, glue it with an insulating adhesive, and fix it mechanically.
  • connection terminals 11 and 13 of the coil 17 provided at the upper horizontal portion of the T-shaped head chip 16 and the concave portion 2 at the tip of the flexible support 2 are provided.
  • connection between the connection terminals 11 and 13 and the connection terminals 21 and 23 is made by gold ball bonding. Therefore, it can be done.
  • a gold ball S of about 10 micron generated at the tip of a gold wire by an electronic spark is connected to the ligated terminals 11, 13 and the ligated terminals 21, 23.
  • the connection can be made simply by crimping a gold ball between the connection terminals. Therefore, the connection method is quicker and easier than the above-mentioned method using a low melting point metal or a conductive paste. It is possible to enclose between the crisp terminals with an angle of 90 degrees.
  • the vertical portion 1 c of the T-shaped chip head 16 is sandwiched between the recesses 2-. 1 formed at the tip of the support 2 and joined, so that a strong joint is obtained. It becomes possible, and the joining operation can be performed easily.
  • the vertical portion lc of the T-shaped chip head 16 is sandwiched by the concave portion 2-1 formed at the tip of the support 2, the tip of the magnetic pole 16 of the head tip 16 is held.
  • the distance between the magnetic disk 5 and the support 2 can be shortened. Therefore, the inclination of the head chips 1 to 6 in the rolling direction can be reduced. For example, assuming that the distance between the magnetic disk and the support 2 of the head chip 11 is 1Z2, the inclination of the head chip 16 in the rolling direction is suppressed to 1Z2. This allows stable recording and playback.
  • FIG. 44 is a block diagram of a 12th embodiment of the present invention, and FIG. FIG. 44 is a mounting state diagram of the configuration of FIG.
  • the arm 3 is provided with a pair of lead pattern wires 32, and the tip of the lead pattern wire 32 is provided with a pair of arm terminal portions 31. Have been.
  • the arm 3 is made of a metal such as stainless, on coated with an insulating layer on top of its, Ri by the copper pattern, and these rie Dopata down line 3 2, the arm terminal portions 3 1 Form
  • Lead pattern wire 232 and cover with a protective layer.
  • a gimbal wire 24 having a head to which a tip 1 is connected is attached to a terminal portion 31 of the communication terminal 3.
  • the head chip 1 is constituted by a head chip having the terminal portions 11 and 13 shown in FIG. 11 on the upper surface.
  • the gimbal wires 2 to 4 are made of a 0.1 thigh diameter bronze wire, have a panel property and a conductivity, and are provided in a pair.
  • the head chip 1 Since the gimbal wires 2-4 have a paneling property, the head chip 1 is elastically supported, and the two terminal portions 11, 13, and 31 are connected. Is arm 3 lead It is connected to the pattern line 32 so that the recording / reproducing signal can be transmitted.
  • the magnetic head assembly is formed by simply connecting the terminal portions 11 and 13 of the head chip 1 and the arm terminal portion 31 of the arm 3 using the gimbal wires 2-4.
  • the head chip 1 is fine, it can be easily connected to the arm 3 via the gimbal wires 2-4, making it easy to assemble a small magnetic head assembly. Can be.
  • the gimbal line 2-4 needs only to be in contact with the two terminal portions 11, 13 and 31, the assembly process of fine parts is reduced, and a small magnetic head assembly can be easily completed. .
  • the arm 3 is provided with the lead-battery wire 32, the use of a lead wire as a wire material is not required, and the lead wire in a fine space is not required. This eliminates the need for forming, etc., and makes assembly easier.
  • FIG. 46 is a block diagram of a thirteenth embodiment of the present invention.
  • the two arm terminals 31 of the arm 3 are connected to the rain of the arm 3. It is arranged on the side part and is wider than the interval between the terminal parts 11 and 13 of the head chip 1.
  • the pair of gimbal wires 2-4 are not parallel, but are shaped like an figure of eight, and can be formed in a truss shape.
  • the rigidity of the magnetic head assembly in the seek direction can be increased, and high rigidity can be provided even with a fine wire.
  • the head chip 1 exerts a force in the seek direction during the seek operation, so the effect is large. 6
  • a gimbal wire 2-4 is provided around a rectangular lin bronze wire 2-4a, and a gold plating layer 2-4b is provided around the permalloy.
  • a single metalloy layer 2-4c can provide a shield effect.
  • FIG. 47 is an explanatory diagram of a 14th embodiment of the present invention.
  • the gin-noise wire 2-5 has a large thickness on the arm terminal 31 side.
  • the arm terminal part 31 of the arm 3 is made wider than the head chip 1 side, and the width of the arm terminal part 31 is increased.
  • one end of the pair of gimbal wires 2-5 is connected to the terminal portions 11 and 13 of the head chip 1, and the other end is connected to the arm terminal portion 31 of the arm 3.
  • the pair of zinc wires 2-5 are parallel but have a truss shape with different thicknesses on the head tip 1 side and the arm 3 side, providing rigidity in the seek direction. Can be.
  • the area of the gimbal line 2-5 on the arm 3 side can be increased, the rigidity in the seek direction can be increased, and the connection strength can be increased.
  • FIG. 48 is a configuration diagram of a fifteenth embodiment of the present invention.
  • the two arm terminal portions 31 of the arm 3 are arranged on both sides of the arm 3, and the head chip is provided. It is wider than the interval between the terminal sections 11 and 13 of 1.
  • the gimbal wires 214 are not parallel, but are shaped like an figure of eight, and can be in the shape of a torus, so that the rigidity in the seek direction can be improved. Further, between the gimbal wires 2 and 4, reinforcing plates 2 and 6 made of an insulative material are formed to form a ladder shape, thereby enhancing rigidity in the seek direction.
  • FIG. 49 is a diagram showing the structure of the 16th embodiment of the present invention
  • FIG. 50 is a diagram showing another structure of the 16th embodiment of the present invention. This shows another example of connection with 2.
  • a holding means 29 for mechanically holding the head chip 1 on the support plate 2 is provided in the connection form between the head chip 1 and the support plate 2.
  • Fig. 49 (A) holding plates 29a and 29b are provided at the end of the supporting plate 2 for holding the head chips 1 from all sides, and the head chips are provided like a socket.
  • Fig. 49 (B) which holds the chip 1, a holding plate 29b for holding the head chip 1 from both sides is provided at the tip of the support plate 2, and the head chip 1 is held. That is what you do.
  • FIG. 49 (C) and FIG. 49 (D) are both modifications of FIG. 49 (A), and the holding plate 2 that holds the head chip 1 from all sides at the tip of the support plate 2 9 a and 29 b are provided to hold the magnetic head core 21 like a socket.
  • Such holding plates 29a and 29b can be formed by sheet metal processing of the support 2, vapor deposition of aluminum oxide or the like, and can fix and position the head chips. In addition, the bonding of the head chip 1 is not required, and replacement is easy.
  • head chip 1 Terminals 1 1a, li.13a, 13b are provided on the wiring patterns 24, 26 of the support ⁇ 2. , Llb, 13a. 13b are fitted to achieve mechanical retention and electrical connection.
  • connection terminal 21c connected to the wiring pattern R is provided on one of the pair of holding plates 29b of the support member 2.
  • connection terminals 11 and 13 are provided on the side of head chip 1. Then, when the head chip 1 is inserted into the pair of holding plates 29b and held, the connection terminals 11 and 13 of the head chip 1 and the connection terminals 21 This makes electrical contact possible with c.
  • FIG. 51 is a configuration diagram of a magnetic disk device to which the seventeenth embodiment of the present invention is applied
  • FIG. 52 is a cross-sectional view of the configuration of FIG. 51
  • FIG. FIG. 54 is an explanatory view of a seventeenth embodiment of the present invention
  • FIG. 55 is an explanatory view of the connection method.
  • the magnetic disk device shown in Fig. 51 shows a magnetic disk device that performs magnetic recording by mounting a head on a 3.5-inch magnetic disk.
  • the base 60-1 of the device is provided with a 3.5-inch magnetic disk 5-1 that rotates about the spindle axis 64-1 and a magnetic circuit 63-1.
  • ⁇ , ⁇ ⁇ 4-1 is mounted so that it can rotate around the rotation axis 6 2-1.
  • this actuator has a coil 4111 at the rear, and this coil 411 1 is located between the magnetic circuits 63-1.
  • each arm 3-1 has a magnetic head core (core slider) at the tip.
  • a support plate 7 with 8 is provided.
  • This work day 411 constitutes a linear work day by means of a coil 411 and a magnetic circuit 631-1. Then, by passing an electric current through the coil 4 1, 1 1, the magnetic head core 8 is rotated about the rotating shaft 6 2-1, and the magnetic head 5 is moved to the magnetic disk 5-1. Drive seek in the direction (radial direction) crossing the rack.
  • reference numeral 7 denotes a support plate (suspension), which is made of a metal such as stainless steel having a paneling property, is covered with an insulating layer, and is made of a copper pattern.
  • a pair of wiring patterns 71 and a suspension connection terminal portion 72 are formed, and one end is fixed to the arm 3-1 by laser spot welding or the like.
  • Reference numeral 8 denotes a magnetic head core (core slider).
  • a pair of core slider connecting terminals 82 and a thin-film magnetic head 81 are provided on the side surface.
  • a magnetic head core 8 is adhered to the support plate 7 so that the contact terminal 72 of the support plate 7 and the connection terminal 82 of the magnetic head core 8 are connected to each other as shown in FIGS. 54 (B) and 55.
  • (A) is fixed in the positional relationship as shown in the figure, and a gold ball W having a diameter of about 0.1 ram is brought into contact with the gold-plated both surrounding terminals 82 and 72 by a pole bonder.
  • the connection terminals 82 and 72 are electrically and mechanically connected via the gold ball W by metal-to-metal bonding.
  • the magnetic disk 511 is located on the upper side of the figure.
  • connection terminal 72 if the wiring pattern 71 and the connection terminal 72 are provided on the support plate 7 and the connection terminal 82 is provided on the magnetic head core 8, the connection can be made by gold ball bonding. Even with a simple magnetic head core 8, the connection work can be easily performed, and the magnetic head assembly can be reduced in size.
  • FIG. 55 (B) is a modified example of the seventeenth embodiment, in which a dummy terminal 83 is provided on the inflow side of the magnetic head core 8, and the support terminal 7 is correspondingly provided.
  • a dummy terminal 73 is provided on the wiring pattern 71. Then, by using a ball bonder, a gold ball W having a diameter of about 0.1 thigh is brought into contact with the rain-connecting terminals 83, 73 provided with gold, and pressurized and ultrasonically crimped. while Due to the coupling, the two connection terminals 83 and 73 are connected via the gold pole W.
  • the magnetic head core 8 since the magnetic head core 8 is connected to the support plate 7 at both ends by the gold balls W, the magnetic head core 8 does not need to be bonded to the support plate 7, and the ball bonder is not required. Connection can be made only by the ing process, making assembly easier.
  • a lead wire is connected to the arm side terminal (see FIG. 54 (A)) of the wiring pattern 71 of the support plate 7, and the arm 3 is attached to the arm 3.
  • This wiring is easy because it is relatively large.
  • FIG. 56 is a block diagram of the eighteenth embodiment of the present invention.
  • the configuration of the magnetic disk device of the embodiment of FIG. 56 is the same as that of FIGS. 51 to 53, and shows only the magnetic head assembly.
  • a thin-film head portion 81 and a pair of core terminal portions 83 are provided on the lower surface of a magnetic head core (core slider) 8, and a pair of terminal portions 72 at the tip of a support plate 7 are provided.
  • a notch 73 is provided.
  • the thin film head 81 of the magnetic head core 8 is fitted into the notch 73 of the support plate 7, and the terminal 83 and the terminal 73 are inserted.
  • the metal of the gold plating of both terminals 83, 72 is The electrical connection is enabled by the coupling between them.
  • connection terminals 8 3 and 7 2 must be magnetized beforehand.
  • connection terminal Since it is formed on the core 8 and the support plate 7, the connection terminal
  • Synchronization is possible only by adjusting the position between 8 3 and 7 2.
  • the magnetic head core 8 is positioned by the notch 73.
  • the magnetic disk 5-1 is a thin-film head.
  • FIG. 57 is an explanatory view of a nineteenth embodiment of the present invention.
  • the configuration of the magnetic disk device is also
  • the magnetic head is the same as that shown in FIGS.
  • the conductive filler U1 is connected between terminals 82 and 72a.
  • FIG. 8 and FIG. 59 are (20) and (20) of the 20th embodiment of the present invention.
  • FIGS. 58 and 59 the configuration of the magnetic disk device is the same as that of FIGS. 51 to 53, and only the magnetic head assembly is shown. .
  • the magnetic head core 8 is mechanically attached to the support plate 7 in the connection form of the terminal 82 of the magnetic head core 8 and the terminal 72 of the support plate 7 shown in FIGS. 54 to 57.
  • a holding means 73 is provided for temporarily holding.
  • holding plates 73a and 73b are provided at the end of the support plate 7 for holding the magnetic head cores 8 from all sides, and the magnetic head cores are provided like a socket. O 0
  • a holding plate 73 b for holding the magnetic head core 8 from both sides is provided at the tip of the support plate 7, and holds the magnetic head core 8.
  • FIGS. 58 (C) and 58 (D) are both modifications of FIG. 58 (A), and the holding plate 7 holds the magnetic head core 8 from all sides at the tip of the supporting plate 7. 3a and 73b are provided to hold the magnetic head core 8 like a socket. O
  • the magnetic head core 8 is provided with the terminals 82a, and the connection caulking terminal portions 72a, 72 provided on the wiring pattern 71 of the support plate 7.
  • the terminal 82a is fitted into b to achieve mechanical holding and electrical connection.
  • a connection terminal 72 b connected to the wiring pattern 74 is provided on one of the pair of holding portions 73 b of the support plate 7.
  • a connecting terminal 82 is provided on the side surface of the magnetic head core 8. Then, when the magnetic head core ⁇ is inserted into and held by the pair of holding plates 73 b, the connecting terminals 82 a of the magnetic head core 8 and the connecting terminals of the holding plate 73 b are held. 7 2b is in contact with and electrically cyclizes.
  • the number of head chips to be made by the wafer is made because the head part made by the wafer is the minimum part that requires thin film formation and the other parts are made separately as a flexible support. And the price of such a head chip and a magnetic disk device using the same can be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Description

明細書
磁気ヘッ ド組立体、 その製造方法及び磁気ディ ス ク装置 技術の分野
本発明は、 磁気へッ ドによ り磁気ディ ス ク に記録再生
5 を行う磁気へ ッ ド組立体、 その製造方法及び磁気ディ ス ク装置に関 し、 特に、 薄膜へッ ドチ ッ プを用いた磁気へ ッ ド組立体、 その製造方法及び磁気ディ ス ク装置に関す
背景技術
1 0 磁気ディ ス ク装置は、 回転する磁気ディ ス ク に対し、 磁気へッ ドをァ クチユエ一夕によ り、 所望の ト ラ ッ ク に 位置決め し、 磁気へッ ドによ り 当該 ト ラ ッ クのデ一夕を リ ー ド又は当該 ト ラ ッ ク にデ一夕をライ トする記憶装置 である。
1 5 こ の磁気ディ ス ク装置は、 外部記憶装置と して、 広 く 利用されている。 そ して、 近年のコ ン ピュ ータ システム のダウ ンサイ ジング化の要求に従い、 磁気ディ ス ク装置 にも小型で且つ大容量な ものが要求されている。 こ の磁 気ディ ス ク のサイ ズも、 5 . 2 5 イ ンチから 3 . 5 イ ン
20 チ、 1 . 8 イ ンチに小型化にな りつつある。
こ の磁気ディ ス ク装置の小型化、 大容量化のためには
■'
、 高密度記録が必要となる。 しか し、 高密度記録する と 、 磁気ディ ス ク媒体の磁力線が短 く なるため、 へッ ド浮 上量を ミ ク ロ ン以下に小さ く し、 面内記録又は垂直記録
25 するか又はヘッ ドを磁気ディ ス ク に接触させて、 垂直記 録する こ とが好ま しい。
このよ う にへッ ド浮上量を小さ く 又はへ ドを接触.さ せる場合には、 ヘッ ドが重いと、 磁気ディ スク媒体の ミ ク ロ ン単位の うねり、 突起に対する追従性が低下する。 逆に、 前記追従性を良く するため、 ヘッ の荷重を大 き く する と、 磁気ディ スク媒体の突起との衝突力が大き く な り、 ヘッ ドク ラ ッ シュ、 媒体ク ラ ッ シュを発生し易 く なる。
このため、 へッ ドの質量を小さ く 、 且つへッ ドの荷重 を小さ く した方が、 磁気ディ スク媒体に対する追従性が 良 く な り、 へッ ド浮上量を小さ く して、 又はへッ ドを接 触して、 高密度記録が可能となる。
図 1 は従来の磁気ヘッ ドの構成図、 図 2 はその製造ェ 程を示す図である。
例えば、 接触型垂直記録へッ ドでは、 図 1 に示すよ う な可撓性磁気へッ ド 9 が提案されている (例えば、 特許 出願公開平成 3年第 1 7 8 0 1 7号公報等参照) 。
このへッ ド 9 は、 図 1 ( B ) に示すよ う に、 酸化アル ミ ニゥム等の誘電性の撓曲体 9 6 内に、 垂直方向に主ポ ール (主磁極) 9 0 が形成され、 これに接鐃して水平方 向にヨー ク 9 1 が形成され、 このヨー ク 9 1 に接鐃して 、 垂直方向に後方スタ ツ ド 9 3 が形成され、 これに接続 して水平方向に復帰ヨーク 9 4 が形成され、 これらが低 磁気抵抗経路を構成する。 この経路は、 主ポール 9 0 と 復帰ヨー ク 9 との間の高磁気抵抗空隙 9 5 で終わる。 こ のヨ ー ク 9 1 には、 螺旋形コ イ ル 9 2 が誘導結合さ れ、 こ のコイル 9 2 の両端は、 リ ー ド導体 9 7 を通 じて 結合パッ ド 9 8 へ接続される。
こ のへッ ドは、 プローブ型へ ッ ドと称され、 薄膜形成 技術で作成され、 極めて小さ く できる。 例えば、 図 1 ( A ) に示すよ う に、 ヘッ ド 9 の幅 Dは、 0 . 5 m mであ り、 厚さ B は、 0 . 0 5 m mであ り、 長さ Aは、 1 2 . 5 m mであ り、 質量は 1 0 0 マイ ク ロ グラ ムである。 このよ う なへッ ド 9 をアームに取り付ける こ とによ り 、 へッ ドの低質量、 低荷重が可能とな り、 磁気ディ ス ク 媒体のう ねり に追従した高密度垂直記録が可能となる。
かかるヘッ ド 9 は、 薄膜及びフ ォ ト リ ソ グラ フ ィ 技術 を利用 して、 集積ュニッ ト と して形成される。 即ち、 図 2 に示すよ う に、 チタ ン酸バ リ ウム等の研磨ゥ ヱハ ー 9 一 1 上に、 ミ ク ロ ン単位で、 ス ノ、 'ッ タ リ ング、 蒸着、 メ ツ キ、 化学蒸着、 イ オ ン ビーム付着及触刻等によ り、 何 十もの工程を経て、 多数のヘッ ドをゥ ヱハ ー 9 一 1 上に 形成し、 これをス ク ラ イ ブして、 各へッ ドを作成する。
しか しながら、 従来技術では、 次の問題があった。 ①ゥ ヱハ ー 9 — 1 に作成されるへッ ドの数は、 多い方 がコス トが安価となる。 しか しながら、 従来技術では、 リ ー ド導体部分も一体に形成するため、 ゥ ヱハ ー 9 — 1 上で作成されるヘッ ドの数に限りがあ り、 例えば、 3 ィ ンチのゥ ヱハーでは、 約 2 7 0 個 しか作成できず、 へッ ドの価格が大幅に高 く なる。 ②ヘッ ドの大き さが大きレ、と、 ウ ェハー 9 一 1 から切
り 出されたヘッ ドの不良が多 く な り、 例えば、 リ ー ド導
体部分のみ不良でも、 全体が不良となり、 へ ッ ドの価格
をよ り高く する。
発明の開示
本発明の目的は、 ウ ェハーで作成されるへッ ドの数を
増加して、 へッ ドの価格を低く するための磁気へッ ド完
成体を提供するにある。
本発明の他の目的は、 ウ ェハーで作成されるへッ ドの
数を増加して、 へ ッ ドの価格を低く し、 装置 ffi格を安価
とするための磁気ディ スク装置を提供するにある。
する。
本発明の更に他の目的は、 ウ ェハーで作成されるへッ
ドの数を増加 し、 且つ薄膜作成工程を少な く して、 よ り
へッ ドの価格を低く するための磁気へッ ド完成体を提洪
するにめる。
本発明の更に他の目的は、 ウ ェハーで作成されるへッ
ドの数を増加し、 且つ薄膜作成工程を少な く して、 よ り
へッ ドの価格を低く し、 装置価格をよ り安価とするため
の磁気ディ スク装置を提供するにある。
本発明の更に他の目的は、 ウ ェハ一で作成されるへッ
1? ドの数を増加 しても、 完成体の組み立てを容易にするた
めの磁気へッ ド芫成体の製造方法を提供するにある。
このため、 本発明の磁気へッ ド完成体は、 磁気ディ ス
ク にデータを磁気記録及び再生するため、 アームに取り 付けられる磁気へッ ド完成体であって、 絶縁層 と磁極と コイ ル と該コ イ ルの端子部とを薄膜によ り積層形成 した へッ ドチ ッ プと、 前記へッ ドチ ッ プの端子部と接続され る端子部を有し、 アームに取り付け られ、 前記へッ ドチ ッ プを支持する可撓性支持体とを設けたこ とを特徴とす る
本発明の磁気ディ ス ク装置は、 磁気ディ ス ク と、 前記 磁気ディ ス ク を回転するス ピン ドルモータ と、 アームを 有し、 前記アームを前記磁気ディ ス クの ト ラ ッ ク と交叉 する方向に移動するァ クチユエ一夕 と、 前記磁気ディ ス ク にデ一夕を記録 し、 前記磁気ディ ス クからデータを読 み取るため、 前記アームに取り付けられた磁気へッ ド完 成体とを有し、 前記磁気へッ ド完成体は、 絶縁層 と磁極 と コイ ルと該コ イ ルの端子部とを薄膜によ り積層形成し たへッ ドチ ッ プと、 前記へッ ドチ ッ プの端子部と接続さ れる端子部を有し、 アームに取り付け られ、 前記へッ ド チ ッ プを支持する可撓性支持体とを有する こ とを特徴と する。
従来技術では、 磁気へッ ド完成体をアームに直接取り 付けるため、 可撓性を持たせ、 且つその分の長さの リ ー ド導体を必要と したため、 へッ ド可撓体を長 く 必要と し た。 しか し、 薄膜の積層が必要な部分は、 主に磁極を含 む低磁気抵抗経路 と コイルの部分のみであ り、 リ ー ド導 体部分は、 他の手段によ り形成でき る。
こ の磁極を含む低磁気抵抗経路と コ イ ルの部分は、 全 体の長さの僅か約 1 / 2 0 であ り、 その他の部分をゥ ハ一上で何十もの工程で作成するのは無駄である。
そこで、 本発明では、 ゥ ヱハーで作成しなければな ら ない磁極を含む低磁気抵抗経路と コイルの部分のみを、 ウ ェハー上で薄膜積層技術によ り作成し、 その他の部分 である リ ー ド導体部分を可撓性支持体で別に形成する こ とによ り、 ウ ェハ一上で作成できるへッ ド部分が数を増 加させ、 コス トの低減を図ったものである。
又、 このよう にする と、 へッ ドチ ッ プ部分が微小とな り、 電気的接続が困難となるため、 へッ ドチッ プに端子 部を設け、 可撓性支持体 2 の信号端子部と接続する よう にして、 接鐃を容易 と した。
又、 本発明では、 前記へッ ドチ ッ プの薄膜镜層方向を 、 磁気ディ スク面に対し、 水平方向と したこ とを特徵と する。
従来技術では、 へッ ドの薄膜積層方向は主に磁気ディ スク面に対して垂直方向であ り、 ゥ X ハ ー上で主磁極以 外を薄膜形成した後、 切 り 出 して、 その後に主磁極を磁 気ディ スク面に対して水平方向から薄膜形成していた。
これに対し、 本発明のよ う に、 へッ ドチッ プの薄膜積 層方向を、 磁気ディ スク面に対し、 水平方向とする と、 ウ ェハ一からへッ ドチ ッ プを切り 出す前に、 主磁極を同 一薄膜形成方向で形成でき、 ウ ェハー上のヘッ ドチ ッ プ の数を増加でき、 且つへッ ドチ ッ プの形成工程が簡易化 でき、 ヘッ ドをよ り安価に提供できる。 更に、 本発明の磁気へッ ド完成体の製造方法では、 ゥ ェハーに多数のへッ ドチ ッ プを薄膜形成プロセスによ り 形成した後、 複数個の一列のへッ ドチ ッ プを含むブロ ッ ク に切り 出 し、 次に複数の支持体を連絡バーで連結した 支持体シー トを作成し、 前記支持体シー トの各支持体に 前記ブロ ッ クの個々 のへッ ドチ ッ プを位置決め して、 接 続し、 前記ブロ ッ ク のヘッ ドチ ッ プを分離する と と も に 、 前記支持体の基部を連絡バーから分離して、 磁気へッ ド完成体を作成する こ とを特徵とする。
このよ う にする と、 へッ ドチ ッ プや支持体が小さ く て も、 ブロ ッ ク単位で組み立てができ、 且つ一度に多数の 磁気へッ ド完成体を作成でき る。
図面の簡単な説明
図 1 は従来の可撓性磁気へッ ドの構成図である。
図 2 は図 1 の磁気へッ ドの製造プロセスの説明図であ 0
図 3 は本発明が適用 される磁気ディ スク装置の分解図 である。
図 4 は図 3 の磁気ディ ス ク装置の内部を示す斜視図で ある。
図 5 は図 3 の磁気ディ ス ク装置の断面図である。
図 6 は図 3 の磁気ディ ス ク装置の上面図である。
図 7 は図 3 の磁気ディ ス ク装置のァ ク チユエ一夕及び 磁気へッ ド完成体の分解図である。
図 8 は図 3 の磁気ディ ス ク装置のァ クチユ エ一夕及び 磁気へッ ド完成体の構成図である。
図 9 は本発明の第 1 の実施例の磁気へッ ド完成体の断 面図である。
図 1 0 は図 9 の磁気へッ ド完成体の分解図である。 図 1 I は図 1 0 のへッ ドチッ プの構成図である。
図 1 2 は図 1 0 の可撓性支持体の分解図である。
図 1 3 は図 9 の磁気へッ ド完成体のへッ ドチッ プと可 撓性支持体との関係を示す図である。
図 1 4 は図 9 の磁気へッ ド完成体のへッ ドチッ プと可 撓性支持体との接鐃状態を示す図である。
図 1 5 は本発明の第 2 の実施例の磁気へッ ド完成体の 斜視図である。
図 1 6 は図 1 5 の磁気へッ ド完成体の断面図である。 図 1 7 は図 1 5 の磁気へッ ド完成体の他の例を示す図 である。
図 1 8 は図 1 5 及び図 1 7 の磁気へッ ド完成体の実装 図である。
図 1 9 は図 1 5 及び図 1 7 のヘッ ドチ ッ プの形成プロ セスを示す図である。
図 2 0 は図 1 5 及び図 1 7 の磁気へッ ド完成体の製造 プロセスを示す図である。
図 2 1 は図 2 0 におけるへッ ドチッ プのブロ ッ ク形成 過程を示す図である。
図 2 2 は図 2 0 における支持体シー トの形成過程を示 す図である。 図 2 3 は図 2 0 における磁気へッ ド完成体の組立過程 を示す図である。
図 2 4 は本発明の第 3 の実施例の磁気へッ ド完成体の 構成図である。
図 2 5 は本発明の第 4 の実施例の磁気へッ ド完成体の 構成図である。
図 2 6 は図 2 5 の磁気へッ ド完成体の作成過程を示す 図である。
図 2 7 は図 2 5 の磁気へッ ド完成体に用いる他の支持 体シー トの構成図である。
図 2 8 は図 2 7 の支持体シー トを用いた磁気へッ ド完 成体の作成過程を示す図である。
図 2 9 は本発明の第 5 の実施例の磁気へッ ド完成体の へッ ドチ ッ プの断面図である。
図 3 0 は本発明の第 6 の実施例の磁気へッ ド完成体の 断面図である。
図 3 1 は図 3 0 のへッ ドチ ッ プの製造プロセスを説明 する図である。
図 3 2 は本発明の支持体の他の実施例構成図である。 図 3 3 は本発明の支持体の別の実施例構成陣である。 図 3 4 は本発明の支持体の更に別の実施例構成図であ る o
図 3 5 は本発明の支持体の更に別の実施例構成図であ る 0
図 3 6 は本発明の支持体の更に別の実施例構成図であ る 0
図 3 7 は本発明の第 7 の実施例の磁気へッ ド完成体の 斜視図である。
図 3 8 は図 3 7 の磁気へッ ド完成体の断面図である。 図 3 9 は本発明の第 8 の実施例の磁気へッ ド完成体の 断面図である。
図 4 0 は本 ¾明の第 9 の実施例の磁気へッ ド完成体の 断面図である。
図 4 1 は本究明の第 1 0 の実施例の磁気へッ ド完成体 の断面図である。
図 4 2 は本発明の第 1 1 の実施例の磁気へッ ド完成体 の斜視図である。
図 4 3 は図 4 2 の磁気へッ ド完成体の断面図である。 図 4 4 は本発明の第 1 2 の実施例の磁気へッ ド完成体 の斜視図である。
図 4 5 は図 4 4 の磁気へッ ド完成体をアームに取り付 けた時の構成図である。
図 4 6 は本発明の第 1 3 の実施例の磁気へッ ド完成体 の斜視図である。
図 4 7 は本発明の第 1 4 の実施例の磁気へッ ド完成体 の斜視図である。
図 4 8 は本発明の第 1 5 の実施例の磁気へッ ド完成体 の斜視図である。
図 4 9 は本発明の第 1 6 の実施例の磁気へッ ド完成体 の斜視図である。 図 5 0 は本発明の第 1 7 の実施例の磁気へッ ド完成体 の斜視図である。
図 5 1 は本発明の磁気ディ スク装置の別の実施例の上 面図である。
図 5 2 は図 5 1 の磁気ディ スク装置の断面図である。 図 5 3 は図 5 1 のァ クチユエ一夕の上面図である。 図 5 4 は本発明の第 1 8 の実施例の磁気へッ ド完成体 の斜視図である。
図 5 5 は図 5 5 の磁気へッ ド完成体の他の接続機構を 示す図である。
図 5 6 は本発明の第 1 9 の実施例の磁気へッ ド完成体 の斜視図である。
図 5 7 は図 5 6 の磁気へッ ド完成体の他の接続機構を 示す図である。
図 5 8 は本発明の第 2 0 の実施例の磁気へッ ド完成体 の斜視図である。
図 5 9 は本発明の第 2 1 の実施例の磁気へッ ド完成体 の斜視図である。
発明を実施するための最良の形態
( a ) 磁気ディ スク装置の説明
図 3 は本発明の一実施例の磁気ディ スク装置の分解図 、 図 4 は図 3 の磁気ディ ス ク装置の内部の斜視図、 図 5 は図 3 の磁気ディ スク装置の断面図、 図 6 は図 3 の磁気 ディ スク装置の上面図、 図 7 は図 3 の磁気ディ ス ク装置 のァ クチユエ一夕の斜視図である。 図 3 乃至図 7 の磁気ディ スク装置は、 1 . 8 イ ンチの 磁気ディ スク に、 へッ ドを接触させて、 垂直磁気記録を 行う磁気ディ スク装置を示す。
図 3 、 図 4 に示すよ う に、 磁気ディ スク装置のベース 6 0 には、 ァクチユエ一タ 4 の回転軸 & 2 と、 ァクチュ エー夕 4 の駆動のための磁気回路 6 3 と、 磁気ディ スク 5 の固定中心軸 6 4 と、 外部との接続のためのコネ ク タ 部 6 5 とが設けられている。 こ の中心軸 6 4 には、 図 5 に示すよ う に、 駆動コイ ルを備えたステ一夕部 6 6 が取 り付けらている。 又、 中心軸 6 4 には、 - 磁気ディ ス ク 5 を支え、 磁石を有する ローター部 5 0 が図示しないベア リ ングを介して回転可能に設けられている。
従って、 中心軸 6 4 に設けたステ一夕部 6 6 の駆動コ ィルを励磁する こ とによ り、 口一ター部 5 0 の磁石と作 用 して、 ロータ一部 5 0 は、 中心軸 6 4 を中心に回転し て、 磁気ディ ス ク 5 を回転させる。
又、 回転軸 6 2 には、 ァクチユエ一夕 4 の円筒部 4 3 の回転穴 4 5 (図 8 参照) が、 ベア リ ング 4 4 を介して 嵌め込まれ、 円筒部 4 3 の後部のコイル 4 1 は、 磁気回 路 6 3 の間に位置される。 こ のァクチユエ一夕 4 の円筒 部 4 3 には、 各々へッ ドチ ッ プ 1 を先端に備えた可撓性 支持体 2 を取り付けたアーム 3 が取り付けられる。
こ こでは、 ロータ一部 5 0 は、 2枚の磁気ディ ス ク 5 を支えている。 又、 ァ クチユエ一夕 4 には、 4 つのァ一 ム 3 が設けられ、 円筒部 4 3 に、 各へッ ドチ ッ プ 1 と外 部回路との接続のためのフ ラ ッ ト ケーブル 4 2 (図 3、 図 4 参照) が設けられており、 図 8 に.示すよ う に、 各へ ッ ドチ ッ プ 1 は、 アーム 3 に沿って設けられた リ ー ド線 3 0 によ り、 フ ラ ッ トケーブル 4 2 と接続される。
こ のベース 6 0 の上には、 図示しない駆動回路等の回 路基板が設け られ、 図 4 の状態で、 図 3 のカバ一 6 1 が ベース 6 0 にネ ジ止め固定され、 内部が密閉される。
この磁気ディ ス ク装置の高さ は、 約 5 m mであ り、 力 一 ドサイ ズの ものである。
このアーム 3 は、 図 7 に示すよ う に、 先端が屈曲 して おり、 この屈曲部に、 ヘッ ドチ ッ プ 1 を先端に設けた可 橈性支持体 2 が、 接着剤又は レーザースポッ ト溶接等に よ り取り付けられる。 又、 アーム 3 は、 円筒部 4 3 に、 接着剤又はネ ジ止めによ り、 取り付けられる。
従って、 磁気ディ ス ク 5 は、 ステ一夕部 6 6 によ り 口 一夕一部 5 0 が回転する こ とによ り 回転され、 へ ッ ドチ ッ プ 1 は、 ァ ク チユエ一夕 4 によ り磁気ディ ス ク 5 の半 径方向 ( ト ラ ッ ク交叉方向) にシー ク移動する。
( b ) 第 1 の実施例の説明
図 9 は本発明の第 1 の実施例の磁気へッ ド完成体の構 成図、 図 1 0 は図 9 の磁気ヘッ ド完成体の分解図、 図 1 1 は図 9 の磁気へッ ド完成体のへッ ドチ ッ プの構成図、 図 1 2 は図 9 の磁気ヘッ ド完成体の支持体の構成図、 図
1 3 は図 1 1 のへッ ドチ ッ プと図 1 2 の支持体との関係 図、 図 1 4 は図 1 3 の接続状態を示す図である。 図 1 0 において、 ヘッ ドチッ プ 1 は、 幅 w = 0 . 4 2 m m、 長さ 】 = ◦ . 8 m m、 厚さ 0 . 0 4 mmであ り、
図 1 1 で説明する構造を有する もの、 可撓性支持体 2 は -- 、 幅 W= 0 . 4 2 111111、 長さ = 1 0 . 7 mm、 厚さ 0
. 0 5 m mであ り、 図 1 2 で説明する ものである。
図 1 1 において、 ヘッ ドチ ッ プ 1 は、 プローブ型垂直
磁気記録ヘッ ドであ り、 ボール (主磁極) 1 6 — 1 とョ
ーク 1 6 — 2 とコア 1 6 — 3 と リ ターンスタ ツ ド 1 0 —
1、 1 0 — 2 で低磁気抵抗経路を構成している。 又、 ポ
ール 1 6 — 1 と リ ター ンスタ ツ ド 1.0 — 1 の間に高磁気
抵抗空隙が形成され、 ポール 1 6 ― 1 の部分に固い材料
で搆成されたコ ンタ ク トバッ ド 1 一 I が設けられている
。 コア 1 6 — 3 の周囲には、 螺旋コイル 1 7 が設けられ
ており、 コイル 1 7 に接続して、 金 ( A u ) で形成され
た一対の接鐃端子 1 1、 1 3 が露出 している。
従って、 図 1 1 ( B ) に示すよ う に、 二層の垂直磁気
記録用磁気ディ ス ク 5 に対し、 固いコ ンタ ク トパッ ド 1
一 1 が接触する。 そ して、 ポール 1 6 — 1 からの磁力は
、 磁気ディ スク 5 の下層からポール 1 6 — 1 と リ ター ン
スタ ッ ド I 0 — 1、 1 0 — 2 の間に、 分散して戻り、 磁
気ディ スク 5 のポール 1 6 — 1 の直下のみ磁化され、 垂
直記録が行われる。 この時、 ヘッ ドチッ プ 1 では、 固い
材料のコ ンタ ク トパッ ド 1 — 1 が、 磁気ディ スク 5 に接
触するため、 接触型記録をとつても、 へッ ドチ ッ プ 1·の
磨耗が少な く 、 安定に接触記録して、 高密度記録が可能 となる。
こ こ で、 こ のヘ ッ ドチ ッ プ 1 は、 薄膜の積層によ り形 成され、 薄膜の積層方向を磁気ディ スク 5 の面に対 し、 垂直方向 と したものである。 こ のヘッ ドチ ッ プ 1 は、 磁 極 1 6 — 1 を含む低磁気抵抗経路と、 コ イ ル 1 7 と、 端 子 1 1 、 1 3 が設けられてお り、 リ ー ド部分は設けてい ないため、 図 1 0 に示したよ う に、 極めて小さ く でき、 従来の 1 2 0 の大き さ にでき る。
次に、 こ のヘッ ドチ ッ プ 1 を支持する可撓性支持体 2 は、 図 1 2 に示すよ う に、 ステン レス等の可撓性のある 金属板 (基板) 2 0 上に、 絶縁樹脂等の絶縁層 2 7 を設 け、 この上に、 銅等の導電性金属材料によ り リ ー ドバタ — ン 2 4、 2 6 を形成する。 更に、 リ ー ドパター ン 2 4 、 2 6 上に、 リ ー ドパター ン 2 4、 2 6 の両端が露出す る よ う な穴を設けた絶縁性保護層 2 8 を設けてなる。 リ — ドパタ ー ン 2 4、 2 6 の露出部分の一端 (ヘッ ドチ ッ プ 1 との接続部分) には、 バンプ部 2 1 、 2 3 を設けて いる。
又、 こ の可撓性支持体 2 のアーム 3 との接続部分 (基 部) は、 アーム 3 との接続強度を大き く するため、 大き な面積と してある。
図 1 3 、 図 1 4 によ り、 へッ ドチ ッ プ 1 と、 可撓性支 持体 2 との接続について説明する。
図 1 3 に示すよ う に、 可撓性支持体 2 のバンプ部 2 1 、 2 3 の周囲に、 絶縁性の接着剤を塗布し、 ヘッ ドチ ッ プ 1 の端子 1 1 、 1 3 を、 可撓性支持体 2 のバンプ部 2
1 、 2 3 に位置合わせする。 そ して、 ヘッ ドチ ッ プ 1 の
端子 1 1 、 1 3 を、 可撓性支持体 2 のバンプ部 2 1 、 2 ' 3 に乗せ、 圧着する と、 図 1 4 ( A ) に示すよう に、 可
撓性支持体 2 のバンプ部 2 1 、 2 3 が突き出 しているの
で、 へッ ドチッ プ 1 の端子 1 1 、 1 3 と、 可撓性支持体
2 のバンプ部 2 1 、 2 3 とが導通し、 それ以外の部分で
接着剤によ りへッ ドチ ッ プ 1 が、 可撓性支持体 2 に固定
される。 このよ う に、 可撓性支持体 2 に、 バンプ部 2 1
、 2 3 を設ける と、 0 . 5 m m幅程度の微細なチッ プへ
ッ ド 1 を、 可撓性支持体 2 に電気的接続を行いつつ、 容
易に固定できる。 '
又、 図 1 4 ( B ) に示すよう に、 可撓性支持体 2 の リ
ー ドパターン 2 4 、 2 6 のアーム側端部に リ ー ド線 3 0
を接続する。 そ して、 可撓性支持体 2 の保護層 2 8 の前
述の面積の大きな部分に接着剤を塗布し、 アーム 3 に取
り付けて、 固定する。 この リ ー ド線 3 0 は、 図 8 で説明
したフ ラ ッ トケ一ブル 4 2 に接鐃される。
この図 1 4 ( B ) では、 アーム 3 の下側に、 可撓性支
持体 2 を取り付けているが、 アーム 3 の上側に取り付け
る と、 図 9 の如 く な り、 アーム 3 によ り、 ヘッ ドチ ッ プ
1 は、 そのコ ンタ ク トノ、。ッ ド 1 一 1 で磁気ディ スク 5 に
接触して、 垂直記録、 読み取りが可能となる。
このよ う に して、 従来一体形成していた可撓性磁気へ
ッ ドを、 磁極を含む低磁気抵抗経路とコイルと端子とを 薄膜形成したへッ ドチ ッ プ 1 と、 可撓性を有し、 端子を 備える可撓性支持体 2 とに分割したので、 ゥ ヱハーで形 成されるヘッ ドチ ッ プ 1 は、 大幅に増え、 こ の例では、 従来の数の約 1 0 倍以上の数のヘッ ドチ ッ プ 1 が 1 枚の ウ ェハーか ら得られる。 従って、 単純.に計算 して も、 約 1 1 0 の価格でヘッ ドチ ッ プを提供でき る。
こ のへッ ドチ ッ プ 1 の大き さ は、 奥行 (長さ) が 1 . 0 m m、 幅が 0 . 5 m m、 厚みが 0 . 2 m m以下が望ま しい。
又、 可撓性支持体 2 は、 幅 0 . 5 m m以下、 厚み 0 . l m m以下、 長さ 1 1 . 0 m m以下の ものが望ま しい。
( c ) 第 2 の実施例の説明
図 1 5 は本発明の第 2 の実施例の磁気へッ ド完成体の 構成図、 図 1 6 は図 1 5 の磁気へッ ド完成体の断面図、 図 1 7 は本発明の第 2 の実施例の他の磁気ヘ ッ ド完成体 の構成図、 図 1 8 は磁気へッ ド完成体の実装状態説明図 である。
図 1 5 乃至図 1 8 に示す例は、 構造を単純化した垂直 磁気記録用の単磁極へッ ドである。
図 1 5 に示すよ う に、 へッ ドチ ッ プ 1 一 2 の裏面には 、 ノ、。ッ ド 1 1 、 1 2、 1 3 が露出 してお り、 一方、 可撓 性支待体 2 には、 リ ー ド線を兼用する信号引き出 し用の リ ー ドパター ン 2 4、 2 5、 2 6 が形成されている。
こ の リ ー ドパター ン付き可撓性支持体 2 は、 前述の如 く 、 ステ ン レス シー ト に絶縁性レ ジス ト を塗布して、 導 体バタ一ンを形成する こ とによ り容易に作成できるが、 必ずしも金属シー トを使用せずに、 絶縁性プラスチ ッ ク やセラ ミ ッ クス等の薄板等を用いても良い。
そ して、 この実施例では、 可撓性支持体 2 の先端部が 、 9 0 度折り 曲げられて、 その折り曲げ部 2 a の背面側 には、 前述のパッ ド 1 1 、 1 2、 1 3 と対応する端子 2 1、 2 2、 2 3 が設け られてお り、 これらは前述の信号 リ ー ドパター ン 2 4 、 2 5 、 2 6 にそれぞれ接続されて いる。 又、 支持体 2 は、 同一幅、 同一厚みの細長い平板 状に形成したもので示したが、 第 1 の実施例と同様に、 アーム 3 側を幅広く 形成して、 ヘッ ドシーク方向の剛性 を向上させる こ と もできる。
へッ ドチッ プ 1 一 2 と可撓性支持体 2及びこれらを保 持するアーム 3 との結合は、 各部品に形成されたパッ ド や リ ー ド端子を利用 して、 電気的接続を兼ねて接合され る。 例えば、 へッ ドチッ プ 1 一 2 と可撓性支持体 2 との 接合に際しては、 各パッ ド 1 1 、 1 2、 1 3 や リ ー ド端 子 2 1 、 2 2、 2 3 に、 半田を蒸着ゃメ ツキ或いはべ一 ス ト塗布で成膜して半田バンプを形成し、 位置決め後に 加熱して、 接合する方法が有効である。
尚、 接続強度を確保するためには、 半田接合部の回り を接着捕強しても良 く 、 可撓性支持体 2 とアーム 3 との 接合も同様の方法で行う こ とができる。
このよ う に、 可撓性支持体 2 の先端を直角曲げする こ とによ り、 ヘッ ドチッ プ 1 — 2 との接合及びアーム 3 と の接合を可撓性支持体 2 の同一パター ン面を用いて行う こ とができ る。 又、 可撓性支持体 2 の先端を直角曲げ し たので、 ヘッ ドチ ッ プ 1 一 2 との接合面積を大き く とれ るから、 へッ ドチ ッ プ 1 一 2 と可撓性支持体 2 との接合 強度も増加する。
尚、 アーム 3 側の可撓性支持体 2 の リ ー ドパター ンの 端部には、 リ ー ド線 3 0 を接合する。 又、 この リ ー ド線 3 0 を接合する代わ り に、 アーム 3 側に導体パター ンを 設けて、 可撓性支持体 2 の リ ー ドパタ ー ン端部と接続 し ても良い。
次に、 ヘッ ドチ ッ プ 1 一 2 の構成について、 図 1 6 に よ り説明する。 図 1 6 において、 1 1 〜 1 3 はノ、。ッ ド、 1 4 は リ ター ンヨ ー クであ り、 N i F e (フ ェ ライ ト) から構成される も の、 1 5 は絶縁層、 1 6 は主磁極、 1 7 はコイ ル、 1 8 は絶縁保護層、 1 9 はバッ ク ヨ ー ク部 を示し、 これらは薄膜技術によ り作成され、 薄膜積層方 向は、 磁気ディ ス ク 5 の面に対し、 図の矢印で示す水平 方向である。
即ち、 ヘッ ドチ ッ プ 1 を作る ときは、 図 1 9 にて後述 する よ う に、 図示しない基板 (ウ ェハ一) 上に、 リ タ一 ンヨー ク 1 4 、 絶縁層 1 5 、 主磁極 1 6 、 コィ ノレ 1 7 、 絶掾保護層 1 8 、 バッ ク ヨー ク部 1 9 等が順次薄膜形成 され、 へッ ド素子部が形成される。
こ のよ う に、 薄膜形成方向が磁気ディ ス グ面と水平な 方向 と したのは、 図 1 9 にて示すよ う に、 主磁極 1 6 を 容易に作成するためである。
即ち、 図 1 1 で示した薄膜形成方向が、 磁気ディ スク 面と垂直な方向 (図 1 1 の矢印方向) のへ ッ ドチッ プ 1 では、 主磁極 1 6 を磁気ディ スク 5 に対し垂直に形成す る必要があるため、 主磁極 1 6 以外の部分を薄膜形成し た後、 チ ッ プに切り 出 し、 その後チ ッ プの端面に、 主磁 極 1 6 を別途薄膜形成する必要がある。
これに'対し、 薄膜形成方向を磁気ディ ス ク面と平行と する と、 主磁極 1 6 もその薄膜形成方向の薄膜形成によ り、 形成でき、 へッ ドチ ッ プ 1 一 2 の製造工程が削減で き、 しかも歩留 り も向上でき、 安価にヘッ ドチッ プを提 供できる。
又、 薄膜へッ ドの コイ ル形状は、 スパイ ラ ル夕イブと する と、 比較的大きなコイル面積が必要とされるが、 こ の実施例のコイル形状は、 磁極に密着巻きされるへ リ カ ルタイプであ り、 薄膜形成面積をよ り小さ く できる。
このよ う に して、 形成されたへッ ドチ ッ プは、 前述の よう に、 基板から図示する よ う に、 野球のホームベース 型に切り 出され、 その頂点に主磁極 1 6 の先端が位置す るヘッ ドチッ プ 1 一 2 とな り、 磁気ディ スク 5 面に垂直 に配置され、 記録再生に寄与できる よ う になる。
この実施例では、 図 1 6 ( B ) に示すよ う に、 へッ ド チッ プ 1 一 2 に形成された磁極 1 6 のバッ ク ヨ ーク部 1 9 から端子 1 2 を形成し、 可撓性支持体 2 を経由 して接 地する こ とによ り、 磁極の帯電による ノ イズの混入や損 傷を防止する こ とができ る。
こ のヘッ ドチ ッ プ 1 一 2 は、 可撓性支持体 2 との接続 に必要なノ、。ッ ド 1 1 、 1 2、 1 3 の大き さで寸法が制約 されるだけであ り、 数百 ミ ク ロ ン以下の寸法を容易に実 現でき る。 又、 厚みに関 しては、 基板部分を研磨等で除 去しているため、 薄膜形成部のみとな り、 数十 ミ ク ロ ン に薄 く する こ と も可能であ り、 小型、 軽量化に適 してい る。
こ のよ う に、 ヘッ ドチ ッ プ 1 一 2 を、 先端が直角曲げ された可撓性支持体 2 に接合 して支持したへッ ド構造と する と、 図 1 8 ( A ) に示すよ う に、 磁気ディ ス ク 5 間 への 1 本のアーム 3 による 2 個の磁気へッ ド完成体の実 装や、 或いは図 1 8 ( B ) に示すよ う に、 1 本のアーム 3 の 2 個の磁気へッ ド完成体よ る磁気ディ ス ク 5 を挟み こむよ うな実装が、 ヘッ ドチ ッ プ 1 一 2 の高さを利用 し て、 可撓性支持体 2 を変位させる こ とによ り、 へッ ドチ ッ プ 1 一 2 を磁気ディ スク 5 面に付勢状態に して行う こ とができ、 実装が容易 となる。
以上説明 した実施例では、 ヘッ ドチ ッ プ 1 一 2 の全て を薄膜形成した薄膜一体型へッ ドを示したが、 図 1 7 に 示すよ う に、 補強のため、 基板 (ウ ェハ一) の一部 1 a を残しても良 く 、 又、 N i F e の代わ り に、 フ ヱ ラ イ ト 基板を用いて、 リ タ ー ンヨ ー ク 1 4 を兼用 して も良い。 この場合、 厚みは若干大き く なる。
即ち、 前述 した図 1 5 、 図 1 6 の実施例では、 基板 ( ウ ェハー) 上に、 リ ターンヨ ーク 1 4、 絶縁層 1 5、 主 磁極 1 6、 コイル 1 7、 絶緣保護層 1 8、 バッ ク ヨーク 部 1 9等を順次薄膜形成した後、 基板 1 aを削除したが 、 これを削除せずに残し、 残した基板 1 aを図 1 1 のコ ンタ ク トパッ ド 1 一 1 と同様に、 磁気ディ スク 5 との接 触の際の、 接触部材として使用する こ とによ り、 主磁極 1 6 の磨耗を防止するものである。
又、 この例では、 可撓性支持体 2 に、 金属板 2 0 に絶 縁層 2 7を設け、 この上に リ ー ドパター ン 2 4、 2 6を 設けて、 保護曆 2 8 で被覆した支持体 (図 1 2 ) を用い ている。
この実施例でも、 ヘッ ドチ ッ プ 1 の大きさを、 例えば 、 長さ 0. 5 mm x幅 0. 5 mm x厚み 0. 1 mm程度 にでき、 質量は、 0. l m g となり、 素子部の面積は、 0. 2 5平方 ミ リ メ ー トル程度で済み、 質量を小さ く で き、 且つウ ェハー上に多数の素子を作成できる。
このよう な磁気へッ ド完成体を用いて、 接触型で垂直 磁気記録した。 この時のヘッ ドチッ プ 1 一 2の重量は、 1 . 0 m g、 ヘッ ドチッ プ 1 一 2の荷重が、 0. 5 m N と したとこ ろ、 ト ラ ッ ク密度が、 1 7、 0 Θ 0 Τ Ρ Ι、 最大記録密度が、 1 2万 Β Ρ I、 最大面記録密度が、 2 ギガビッ ト 平方ィ ンチの高密度記録が実現できた。
又、 ヘッ ド浮上量を、 0 . 0 7 ミ ク ロ ン と した場合で も、 最大面記録密度が、 1 ギガビッ ト Ζ平方イ ンチの結 果が得られた。 このへッ ドチ ッ プ 1 の大き さ は、 奥行 (長さ) が 1 .
O m m、 幅が 0 . 5 m m、 厚みが 0 . 2 m m以下が望ま しい。
又、 可撓性支持体 2 は、 幅 0 . 5 m m以下、 厚み 0 . 1 m m以下、 長さ 1 1 . 0 m m以下の ものが望ま しい。 次に、 かかるへッ ドチ ッ プの製造方法について説明す 0
図 1 9 は図 1 6 又は図 1 7 のヘッ ドチ ッ プの製造プロ セスを示す図である。
図 1 9 ( A ) に示すよ う に、 AL 203 TiC等の基板 (ゥ ェ ハ一) 1 a に、 へッ ドチ ッ プ完成体を保護するための絶 縁保護層 1 0 0 を形成する。 こ の保護層 1 0 0 と して、 AL 203 等の膜を、 スパッ タ リ ングや蒸着法によ り、 数〜 数 1 0 ミ ク ロ ンの厚みに、 基板 1 a の前面に形成する。
次に、 図 1 9 ( B ) に示すよ う に、 基板 1 a上に、 Ni Fe等からなる リ ター ンヨ ー ク 1 4 を、 ス ノ ッ タ リ ン グや 蒸着法によ り、 数〜 3 0 ミ ク ロ ン成膜して、 フ ォ ト リ ソ グラ フ ィ 一技術を使用 して、 所望のヨ ー ク形状に形成す る。 こ の時、 必要に応じて、 軟磁性膜の磁気特性を向上 させるため、 磁場中の熱処理な どを加える。
次に、 図 1 9 ( C ) に示すよ う に、 NiFe等か らなるバ ッ ク ヨ ー ク 1 9 をフ レームメ ツ キ法によ り、 数 ミ ク ロ ン 厚みに形成する。 フ レームメ ツ キ法は、 0 . 1 ミ ク ロ ン 程度の薄い電極層を、 蒸着法等によ り、 成膜して、 メ ッ キベースを形成し、 その上にフ ォ ト レ ジス トで成膜しな い部分を覆い隠して、 電気メ ツ キする。 電気メ ツ キ後に
、 レ ジス トを除去して完成する。 尚、 成膜は電気メ ツ キ
だけでな く 、 スパッ タ リ ングや蒸着法を組み合わせても *一 良い。
この場合も、 必要に応じて、 軟磁性膜の磁気特性を向
上させるため、 磁場中の熱処理などを加える。
次に、 図 1 9 ( D ) に示すよう に、 リ ター ンヨー ク 1
4 とコイル 1 7 との絶縁を確保するため、 絶縁層 I 5 を
形成する。 絶縁層 1 5 の形成には、 A1 203 等からなる膜
を、 スパッ タ リ ングや蒸着法によ り、 数〜数 1 0 ミ ク ロ
ン程度成膜して、 その後表面を平面研磨して、 バッ ク ョ
ーク 1 9 を露出する。
次に、 図 1 9 ( E ) に示すよ う に、 絶縁層 1 5 上に、
コイル 1 7 と絶縁層 1 8 とを形成する。
即ち、 フ ォ ト レ ジス トからなる絶縁層をス ピ ンコー ト
し、 現像し、 焼成な ど経由 して、 所望の形状に形成する
。 その上に、 Cuからなる導体層を真空蒸着やスパッ タ リ
ング法によ り成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用
して、 所望のコイ ル形状に形成する。 更に、 その上に、
絶縁層となる フ ォ ト レ ジス トを前述と同様に形成する こ
とによ り、 1 層目のコイ ル 1 7 と絶縁曆 1 8 とが完成す
次に、 図 1 9 ( F ) に示すよ う に、 主磁極 1 6 を形成
する。
即ち、 N i Feや C o Zr系軟磁性膜を、 スパッ タ リ ングゃ蒸 着法で成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用 して、 所望の主磁極パター ンを得る。 図では、 均一の厚みに描 いたが、 2 層に して記録密度に寄与する先端部のみをサ ブ ミ ク ロ ンの必要な厚みに薄 く する。 更に、 必要に応じ て、 軟磁性膜の磁気特性を向上させるため、 磁場中の熱 処理な どを加える。
次に、 図 1 9 ( G ) に示すよ う に、 図 1 9 ( E ) で示 した 1 層目のコ イ ルと絶縁層の形成と同様の方法で、 2 層目 のコイ ル 1 7 と絶縁層 1 8 とを形成する。
次に、 図 1 9 ( G ) に示すよ う に、 コィ ノレ 1 7 からの 接続端子 1 1 、 1 3 となる盛り上げ部を、 C uの フ レ ーム メ ツ キ法等によ り形成する。
更に、 図 1 9 ( D ) で説明 した方法によ り、 A 1 20 3 等 からなる絶縁膜を、 スパッ タ リ ン グ法によ り、 数〜数 1 0 ミ ク ロ ン程度成膜して、 保護膜を形成し、 接続端子 1 1 、 1 3 が露出する まで表面を平面研磨する。
次に、 図 1 9 ( H ) に示すよ う に、 接続端子 2 1 、 2 3 の接続を、 金 ( A u ) ボンディ ングする場合等は、 保 護膜形成後に、 金 ( A u ) を蒸着やスパッ タ リ ン グ法に よ り成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用 して、 所 望の形状に形成する。
こ のよ う に して、 ゥ ヱノヽ一プロ セスを完了 し、 こ の後 は、 機械加工によ りへッ ドチ ッ プに分離する。
このよ う に、 主磁極 1 6 を含めた全てのエレ メ ン トを 同一の薄膜形成方向で形成でき るため、 従来のへッ ドチ ッ プ製造方法に比べ、 はるかに工程を少な く して、 へッ ドチ ッ プを製造できる。
ところで、 このよ う なヘッ ドチッ プ 1 一 2 は微細なた め、 個々 に支持体 2 に取り付ける こ とは、 極めて作業性 が悪い。 そこで、 次のよ う に して、 支持体 2 とヘッ ドチ ッ プ 1 一 2 とを接鐃したへッ ド完成体を組み立てる。
図 2 0 は図 1 5 及び図 1 7 の磁気へッ ド完成体の製造 プロセスを示す図、 図 2 1 は図 2 0 におけるヘッ ドチッ ' プのブロ ッ ク形成過程を示す図、 図 2 2 は図 2 0 におけ る支持体シー トの形成過程を示す図、 図 2 3 は図 2 0 に おける磁気へッ ド完成体の組立過程を示す図である。
①図 1 9 で説明 したプロセスによ り、 図 2 1 ( a ) に 示すよ う に、 基板 (ゥ ヱハー) 9 一 1 に、 図 2 1 ( c ) 、 ( d ) に示すよ う な構成の多数のヘッ ドチ ッ プ 1 一 2 薄膜プロセスによ り作成する。 このヘッ ドチ ッ プ 1 一 2 の構成は、 図 1 6 、 図 1 7 で説明したものと同一の構成 のものであ り、 説明は省略する。
そ して、 図 2 0 のへッ ドブロ ッ ク製造工程 I において 、 図 2 1 C A ) に示すよ う に、 ウ ェハー 9 一 1 から幅方 向に一列に並んだへッ ドチ ッ プ 1 一 2 のブロ ッ ク 9 - 2 を切り 出す。 そ して、 こ のブロ ッ ク 9 一 2 において、 図 2 1 ( c ) に示すよ う に、 各ヘッ ドチッ プ 1 一 2 の主磁 極 1 6 の先端が先細となる よ う に、 機械加工する。 更に 、 必要に応じて、 基板 9 — 1 を薄肉加工する こ とによ り 、 図 2 1 ( b ) に示すよ うな複数個のヘッ ドチッ プ 1 — 2 が、 横に一列に並んだヘッ ドブロ ッ ク 9 一 2 が製造さ れる。
②次に、 図 2 0 に示すよ う に、 支持パネ (支持体) シ — トを製造する。 図 2 2 ( A ) に示すよ う に、 ステ ン レ ス板から構成される板状部材 2 0 0 にブレス等の加工を 施し、 図 2 2 ( B ) に示すよ う に、 連絡バー 2 0 1 に対 して支持パネ 2 が、 櫛歯状に形成された支持パネ シー ト 2 0 0 を形成する。 そ して、 こ の実施例では、 各支持バ ネ 2 の先端は、 図 1 6 、 図 1 7 で示したよ う に、 9 0 ° 折り曲げられる。
この支持パネ 2 の上面には、 図 1 2 で示したよ う に、 ポ リ イ ミ ド絶縁層 2 7 と、 C u導体層 2 4、 2 6 と、 C u + S n P b から構成される接続端子 2 1 、 2 3 と、 ボ リ イ ミ ド保護層 2 8 な どが順次形成された リ ー ドパター ン 2 4、 2 6 が設け られる。
このへッ ドチ ッ プ 1 一 2 を支持するための板状の支持 ノく ネ 2 の ピッ チは、 図 2 1 のヘッ ドブロ ッ ク 9 一 2 に並 ぶヘッ ドチ ッ プ 1 一 2 の ピッ チ と同 じであ り、 支持バネ 2 の接続端子 2 1 、 2 3 は、 へッ ドチ ッ プ 1 一 2 の接続 端子 1 1 、 1 3 に重なる よ う に設けられる。
尚、 図 2 2 では、 2 本の リ ー ド ノ、。タ ー ン 2 4、 2 6 が 示されているが、 図 2 1 ( c ) のへッ ドチ ッ プ 1 一 2 に 対しては、 図 1 5 に示 したよ う に、 3 本の リ ー ドパタ ー ンを設ける。
③次に、 図 2 0 に示すよ う に、 ヘッ ドブロ ッ ク 9 一 2 と支持パネシー ト 2 0 0 とを位置決めする。 図 2 3 に示 すよう に、 支持パネ シー ト 2 0 0 の各支持パネ 2 に、 へ ッ ドブロ ッ ク 9 一 2 の各へッ ドチッ プ 1 一 2 を、 支持ノく ネ 2 の接続端子 2 1 、 2 3 とヘッ ドチ ッ プ 1 一 2 の接続 端子 1 1 、 1 3 とが重なる よ う に位置決めする。
④次に、 図 2 0 に示すよう に、 ヘッ ドブロ ッ ク 9 — 2 と支持バネシ一 ト 2 0 0 とを接合する。 図 2 3 に示すよ う に、 位置決めした支持パネ 2 の接続端子 2 1 、 2 3 と ヘッ ドチ ッ プ 1 一 2 の接鐃端子 1 1 、 1 3 とを、 加熱溶 融して、 半田接続する と と もに、 樹脂接着材を用いて、 接着補強して、 電気的及び機械的に接合する。
⑤更に、 図 2 0 に示すよう に、 ヘッ ドブロ ッ ク 9 一 2 と支持パネ シ一 ト 2 0 0 とを接合体から各磁気へッ ド完 成体を作成する。 図 2 3 ( a ) に示すよ う に、 前記接合 体のヘッ ドブロ ッ ク 9 一 2 の破線 C 1 の位置で、 スライ サ一等の切断機械によ り切断して、 各へッ ドチ ッ プ 1 一 2 に分離する。 そ して、 前記接合体の各支持パネ 2 の基 部を、 破線 C 2 の位置で、 レーザ照射によ り切断して、 各支持バネ 2 を連絡バー 2 0 1 から分雜する。 これによ り、 図 2 3 ( b ) に示すよ う に、 磁気へッ ド完成体が組 み立て られる。
このよ う にして、 へッ ドブロ ッ ク 9 一 2 の各へッ ドチ ッ プ 1 — 2 と、 支持パネシー ト 2 0 0 の各支持パネ 2 と が、 いずれも切 り離される こ とな く 、 大きな部品のまま 接合され、 接合後分離するため、 かかる微細なヘッ ドチ ッ プと して も、 磁気へッ ド完成体の組み立てが極めて容 易 とな り、 組み立て不良も減少する。
( d ) 第 3 の実施例の説明
図 2 4 は本発明の第 3 の実施例構成図である。 図中、 図 1 6 で示 した もの と同一の ものは、 同一の記号で示 し てある。
この実施例では、 へッ ドチ ッ プ 1 一 2 の上面 (磁気デ イ ス ク 5 と反対側の面) をカバーする よ う に、 可撓性支 持体 2 とへッ ドチ ッ プ 1 一 2 とを接合 している。 こ の可 撓性支持体 2 を、 N i F e 等の軟磁性体で形成する こ と によ り、 磁気シール ドの効果を発揮させる こ とができ、 図示 しない対向するへッ ドからの漏洩ノ イズの影響を少 な く でき、 ヘ ッ ド間の間隔をよ り小さ く でき る。
特に、 可撓性支持体 2 の先端部を、 直角曲げして、 へ ッ ドチ ッ プ 1 を包み込むよ う に接続すれば、 シール ド効 果をよ り高める こ とができ る。
この例でも、 第 2 の実施例と同様に、 図 2 4 ( B ) に 示すよ う に、 ヘッ ドチ ッ プ 1 の高さを利用 して、 可撓性 支持体 2 を変位させる こ とによ り、 ヘッ ドチ ッ プ 1 を磁 気ディ ス ク 5 面に付勢状態に して行う こ とができ、 実装 が容易 となる。
( e ) 第 4 の実施例の説明
.図 2 5 は本発明の第 4 の実施例構成図である。
図 2 5 ( A ) 、 ( B ) において、 図 1 6 、 図 2 4 で示 した もの と同一のものは、 同一の記号で示 してある。 図 2 5 (A) の実施例では、 半田溶融 Sによって、 へ ッ ドチ ッ プ ί のパッ ド 1 1 〜 1 3 と、 可撓性支持体 2の リ ー ド端子 2 1 〜 2 3が接合されている。
この実施例が、 前述の第 2、 第 3 の実施例と異なるの は、 可撓性支持体 2の先端が折り曲げられておらず、 平 坦になっている点である。 この実施例では、 へッ ドチッ プ 1 のパッ ド 1 1 、 1 2、 1 3 を磁気ディ スク 5 と反対 側の端面に露出させているので、 可撓性支持体 2 を曲げ ずに接鐃する こ とが可能となり、 支持バネ 2の製造がよ り容易 となる。
但し、 この場合は、 支持体 2 との接合面が 9 0度異な るので、 半田接合が複雑となる。
—方、 図 2 5 ( Β ) の例では、 図 2 5 ( A ) の構成に おいて、 ノ、。ッ ド 1 1 〜 1 3 と リ ー ド端子 2 1 〜 2 3 を、 金 (A u ) ボール Wの圧着による ワイヤーボンディ ング 等の別の接続方法を用いる。 これによ り、 図 2 5 (A) のよう に、 ヘッ ドチ ッ プ 1 一 2 と支持体 2 との接合面が 9 0度異なる場合でも、 確実に接合できる。
これらの実施例でも、 第 3 の実施例と同様に、 へッ ド チ ッ プ 1 の上面 (磁気ディ スク 5 と反対側の面) をカバ 一する よ う に、 可撓性支持体 2 とヘッ ドチ ッ プ 1 とが接 合されている。 このため、 可撓性支持体 2を、 N i F e 等の軟磁性体で形成して、 磁気シール ドの効果を発揮さ せる こ とが可能である。
このよ う な支持パネ 2の先端を折り 曲げない場合でも 、 図 2 0 以下によ り説明 した方法で磁気へッ ド完成体の 組み立てができ、 図 2 6 によ り説明する。
図 2 6 ( A ) に示すよ う に、 先端を折り 曲げない支持 パネ 2 を連結バー 2 0 1 で連結した支持パネ シー ト 2 0 0 を作成する。 次に、 前述したヘッ ドブロ ッ ク 9 一 2 を 支持バネ シ一 ト 2 0 0 の各支持バネ 2 の先端に位置決め し、 図 2 5 ( A ) で示 したよ う に、 半田溶融 S によ りへ ッ ドチ ッ プ 1 一 2 の接続端子 1 1 〜 1 3 と支持パネ 2 の 接続端子 2 1 〜 2 3 とを接合する。
そ して、 同様に、 へッ ドブロ ッ ク 9 一 2 からへッ ドチ ッ プ 1 一 2 を分離し、 支持パネ 2 を連絡バー 2 0 1 から 分離すれば、 磁気へッ ド完成体を組み立てでき る。
こ の時、 図 2 5 ( A ) に示したよ う に、 ヘッ ドチ ッ プ 1 一 2 と、 支持パネ 2 との接合面が 9 0 0 異な り、 半田 接合に手間がかかる こ とから、 図 2 5 ( B ) に示したよ う に、 金ボール Wの圧着によ る ワイヤ一ボンディ ン グ等 の方法を取る こ とが望ま しい。
と こ ろで、 磁気へッ ド完成体の支持パネ特性を向上す るには、 図 1 2 で示したよ う に、 支持バネ 2 の根本の幅 を広 く して、 上下方向 と シー グ方向の剛性バラ ンスをと る こ とが有効である。 即ち、 支持パネの剛性は、 単純片 持ち梁に比べて、 根本を広 く した台形片持ち梁の方が強 く 、 機械的特性が優れている こ とは、 周知の通り である と こ ろが、 図 2 2 に示した構成の支持バネ シ一 ト 2 0 0 において、 各支持バネ 2 の根本部分を太く する と、 支 持バネ 2 の配列ピッ チが低下し、 一枚の支持バネシー ト 2 0 0 に配置できる支持バネ 2 の数が減る こ とになる。
これに伴って、 支持パネ 2 の先端部の ピッ チが、 へッ ドブロ ッ ク 9 一 2 に並べられたへッ ドチ ッ プ 1 一 2 の ピ ツ チよ り広く な り、 ヘッ ドチッ プ 1 一 2 の ピ ッ チの微小 化を阻害し、 ヘッ ドチ ッ プ 1 一 2 の実装密度の低下を招 き、 コス ト低減を阻害する。
このへッ ドチッ プ 1 一 2 の実装密度の低下を防止しつ つ、 支持バネ 2 の特性を向上するための接合方法につい て、 図 2 7、 図 2 8 によ り説明する。
図 2 7 ( a ) に示すよう に、 2種類の支持パネ シー ト 2 0 0 — 1 、 2 0 0 — 2 を作成する。 この支持バネシ一 ト 2 0 0 — 1 、 2 0 0 — 2 は、 各支持パネ 2 の根本部分 を太 く し、 支持パネ 2 の先端部の ピッ チが、 へッ ドブロ ッ ク 9 一 2 に並べられたへッ ドチッ プ 1 一 2 の ピッ チの 2倍となる よ う に してある。
2種類の支持バネシー ト 2 0 0 — 1、 2 0 0 — 2 の違 いは、 リ ー ドパターンを同じ側に向けた時に、 支持バネ シー ト 2 0 0 — 1 、 2 0 0 — 2 の各支持バネ 2 の ピッ チ が半周期ずれている点である。
この 2 種類の支持バネシー ト 2 0 0 — 1、 2 0 0 - 2 を、 図 2 7 C b ) に示すよ う に、 重ねる と、 重ねた支持 バネシー ト 2 0 0 — 1、 2 0 0 — 2 において、 支持バネ 2 の先端部の ピッチは、 へッ ドブロ ッ ク 9 一 2 に並べら れたべ ッ ドチ ッ プ 1 一 2 の ピッ チに等し く なる。
こ のよ う に、 重ねた支持ノく ネ シー ト 2 0 0 — 1 、 2 0 0 — 2 において、 支持バネ 2 の先端部の ピッ チは、 へッ ドブロ ッ ク 9 一 2 に並べられたへッ ドチ ッ プ 1 一 2 の ピ ツ チに等し く なるため、 図 2 8 に示すよ う に、 図 2 6 と 同様に、 各支持パネ 2 の先端部の下面に、 へッ ドブロ ッ ク 9 — 2 を接合すれば良い。
そ して、 同様に、 接合体のへ ッ ドブロ ッ ク部を加工台 に仮止め し、 スラ イサーや レーザ照射によ って、 へ ッ ド ブロ ッ ク 9 一 2 からヘッ ドチ ッ プ 1 一 2 を分離して、 2 枚の支持パネ シー ト に分割し、 その後、 レーザ照射によ り、 支持パネ 2 を連絡バー 2 0 1 から分離すれば、 磁気 へッ ド完成体を組み立てでき る。
尚、 図 2 7 、 図 2 & で示した実施例では、 リ ー ドバタ ー ンを同 じ側に向けた時に、 支持バネ シー ト 2 0 0 - 1 、 2 0 0 — 2 の各支持パネ 2 の ピッ チを半周期ずら して 2種類作成したが、 1 種類の支持パネ シー ト 2 0 0 — 1 を作成し、 これを 2 枚重ねる時に、 支持バネ 2 の先端部 が半周期ずれる よ う に、 一方の支持パネ シー トをずらせ て重ねる こ とによ つて も実現でき る。 ·
( f ) 第 5 の実施例の説明
図 2 9 は本発明の第 5 の実施例構成図である。
こ の図では、 チ ッ プへッ ド 1 — 3 の正面断面図のみを 示してあ り、 2 個の主磁極 1 6 を両側面に寄せて形成し 、 へッ ドチ ッ プ 1 に 2 箇所の突出部を設ける こ とによ り 、 ヘッ ド組み立て体のロー リ ング方向の捩じ り復元力を 大き く する よう に したものである。
又、 この場合は、 必ずしも主磁極 1 6 を 2 個実装せず 、 片方をダミ ー と しても良い。
( g ) 第 6 の実施例の説明
図 3 0 は本発明の第 6 の実施例構成図である。
図中、 図 1 5 、 図 1 6 、 図 1 7、 図 2 4 で示したもの と同一のものは、 同一の記号で示してある。
図 3 0 の構成において、 図 2 4 の構成と異なるのは、 へッ ドチッ プ 1 — 4 において、 基板 1 a と復帰ヨー ク 1 4 の薄膜積曆方向の上のバッ ク ヨ ーク 1 9 の周囲に、 ス ノ、。ィ ラル形状のコ ィ ノレ 1 7 を形成し、 こ のバッ クヨー ク 1 9 に主磁極 1 6 を接続したものである。
こ の構成による と、 コイル 1 7 が同一面のため、 へッ ドチ ッ プ 1 一 4 の薄膜形成工程をよ り少な く する こ とが できる。 これを図 3 1 の図 3 0 のへッ ドチッ プの形成プ ロセス説明図によ り説明する。
図 3 1 ( A ) に示すよ う に、 復帰ヨーク 1 4 となる フ エ ライ ト基板 (ゥ ヱハー) l a を用いる。
次に、 図 3 1 ( B ) に示すよ う に、 基板 1 a上に、 コ ィル 1 7 と絶縁曆 1 8 — 1 とを形成する。
即ち、 フ ォ ト レ ジス トからなる絶縁層をス ピ ンコー ト し、 現像し、 焼成な ど経由 して、 所望の形状に形成する 。 その上に、 Cuからなる導体層を真空蒸着やスパッ タ リ ング法によ り成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用 して、 所望のスパイ ラルコ イ ル形状に形成する。 更に、 その上に、 絶縁層となる フ ォ ト レ ジス トを形成する こ と によ り、 スパイ ラルコィノレ 1 7 と絶縁層 1 8 とが完成す る。 こ の時、 コイ ル 1 7 の一部 1 7 — 1 を絶縁層 1 8 — 2上に露出 して形成する。
次に、 図 3 1 ( C ) に示すよ う に、 N i Fe等からなるバ ッ ク ヨー ク (つなぎ部) 1 9 をフ レーム メ ツ キ法によ り 、 数 ミ ク ロ ン厚みに形成する。 フ レームメ ツ キ法は、 0 . 1 ミ ク ロ ン程度の薄い電極層を、 蒸着法等によ り、 成 膜して、 メ ツ キベースを形成し、 その上にフ ォ ト レ ジス トで成膜しない部分を覆い隠 して、 電気メ ツ キする。 電 気メ ツ キ後に、 レジス トを除去して完成する。 尚、 成膜 は電気メ ツ キだけでな く 、 スパッ タ リ ングや蒸着法を組 み合わせても良い。
そ して、 コイル 1 7 の保護層 1 8 — 2 を形成する。 絶 縁層 1 5 の形成には、 A 1 2 0 3 等からなる膜を、 スパッ 夕 リ ングや蒸着法によ り、 数〜数 1 0 ミ ク ロ ン程度成膜し て、 その後表面を平面研磨して、 バッ ク ヨ ー ク 1 9 を露 出する。
同時に、 コイ ルの一部 1 7 — 1 の上に接続端子 1 1 、 1 3 の一部となる盛り上げ部 1 1 a 、 1 3 3 を、 (:11の フ レームメ ツ キ法等によ り形成する。
次に、 図 3 1 ( D ) に示すよ う に、 保護層 1 8 — 2 上 にバッ ク ヨー ク 1 9 と接続する主磁極 1 6 を形成する。
即ち、 N i F eや C o Zr系軟磁性膜を、 スパッ タ リ ン グゃ蒸 着法で成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用 して、 所望の主磁極パター ンを得る。 図では、 均一の厚みに描 いたが、 2 層に して記録密度に寄与する先端部のみをサ ブミ ク ロ ンの必要な厚みに薄く する。 更に、 必要に応じ て、 軟磁性膜の磁気特性を向上させるため、 磁場中の熱 処理などを加える。
同時に、 盛り上げ部 1 1 a、 1 3 a の上に、 接続端子 1 1 、 1 3 を、 Cuのフ レームメ ツ キ法等によ り形成する o
次に、 図 3 1 ( E ) に示すよ う に、 図 3 1 ( C ) で説 明した方法によ り、 A 1203 等からなる絶縁膜を、 スパッ タ リ ング法によ り、 数〜数 1 0 ミ ク ロ ン程度成膜して、 保護膜を形成し、 接続端子 2 1 、 2 3 が露出する まで表 面を平面研磨する。
次に、 図 3 1 ( F ) に示すよ う に、 接続端子 2 1 、 2 3 の接銃を、 金 ( A u ) ボンディ ングする場合等は、 保 護膜形成後に、 金 ( A u ) を蒸着やスパッ タ リ ング法に よ りノ ンプ部 1 1 b、 1 3 b を成膜し、 フ ォ ト リ ソ グラ フ ィ ー技術を使用 して、 所望の形状に形成する。
このよ う に して、 ゥ ヱハ一プロセスを完了 し、 この後 は、 機械加工によ りへッ ドチップに分離する。
このプロセスでは、 図 1 9 のプロセスに比し、 大幅に 工程を少な く でき、 コス ト低減に寄与する。
( g ) 支持体の他の実施例の説明
図 3 2 は本発明の支持体の他の実施例構成図であ り、 可撓性支持体の変形例を示している。
この実施例では、 絶縁性樹脂等の可撓性絶縁板 2 — 1 に、 リ ー ドパター ン 2 4、 2 6 を設けた ものである。
こ の リ ー ドパター ン 2 4、 2 6 の接合は、 接着によ つ て良 く 、 圧着によ って も良 く 、 リ ー ドパター ン 2 4、 2 6 は、 板状でも良く 、 線状でも良 く 、 被覆無し導体であ つて も、 被覆無し導体であ って も良い。
図 3 3 は本発明の支持体の別の実施例構成図であ り、 可撓性支持体の変形例を示している。
この実施例では、 絶縁性樹脂等の可撓性絶縁板 2 - 1 に、 導体 2 4、 2 6 の機械的支持部 2 — 2 を設け、 導体 2 4、 2 6 を可撓性絶緣扳 2 - 1 の機械的支持部 2 - 2 に設置後、 凸部をか しめる こ とによ り固定する ものであ る。 その後、 補強のため、 樹脂等を塗布して も良 く 、 導 体 2 4、 2 6 は、 板状でも良 く 、 線状でも良 く 、 被覆無 し導体であって も、 被覆無し導体であって も良い。
図 3 4 は本発明の支持体の更に別の実施例構成図であ り、 可撓性支持体の変形例を示している。
こ の実施例では、 絶縁性樹脂等の可撓性絶縁板 2 - 1 に、 銅箔等の導体箔 2 9 を予め接着、 圧着、 メ ツ キ等に よ り形成しておき、 その導体箔 2 9 をエ ッ チ ングして、 所定形状の導体 2 4、 2 6 を得る ものである。
図 3 5 は本発明の支持体の更に別の実施例構成図であ り、 可撓性支持体の変形例を示している。
この実施例では、 可撓性絶縁板 2 — 1 用の金型 8 0 を 用意しておき、 これに導体 2 4、 2 6 をセ ッ ト して、 射 出成形機 8 1 によ り樹脂を金型 8 0 に射出 して、 導体 2 4、 2 6 を設けた絶緣性樹脂等の可撓性絶緣扳 2 — 1 を 形成する ものである。
図 3 6 は本発明の支持体の更に別の実施例構成図であ り、 可撓性支持体の変形例を示している。
こ の実施例では、 2 本の導体 2 4、 2 6 を 2 つの絶縁 体 2 — 3、 2 — 4 で挟み込むこ とによ り、 導体 2 4、 2 & を設けた絶縁性樹脂等の可撓性絶縁扳 2 — 1 を形成す る ものである。 こ の絶縁体 2 — 3、 2 — 4 同士の接合は 、 接着でも良いし、 機械的摩擦力によっても良い。
又、 いずれの場合も、 可撓性絶縁扳 2 — 1 に導電性の 金属で裏打ち しても良 く 、 第 2 の実施例等のよ う に、 導 体の数を 3 本以上と しても良い。
上述の実施例では、 接触形磁気へッ ドで説明したが、 浮上形磁気へッ ドにも適用できる。
磁気ディ スク装置の磁気ディ スクを複数枚の もので説 明したが、 1 枚のものでも良い。
( h ) 第 7 の実施例の説明
図 3 7 は本発明の第 7 の実施例斜視図、 図 3 8 は図 3 7 の構成の断面図であ り、 ヘッ ドチ ッ プ 1 一 2 と支持体 2 との他の接続例を示す。
へッ ドチッ プ 1 一 2 の構成は、 図 1 6 の もの と同一で あ り、 1 1、 1 3 はノ、'ッ ド、 1 4 は リ ター ンヨークであ り、 N i F e (フ ェ ライ ト) から構成される もの、 1 5 は絶縁層、 1 6 は主磁極、 1 7 はコイル、 1 8 は絶縁保 護層、 1 9 はバッ ク ヨー ク部を示し、 これらはゥ ヱハ一 1 a上に薄膜技術によ り作成され、 薄膜積層方向は、 磁 気ディ ス ク 5 の面に対し、 平行方向である。
一方、 可撓性支持体 2 は、 図 1 6 の ものと異な り、 直 角曲げ部が設け られてお らず、 平板形状であ り、 図 1 2 に示したよ う に、 金属板ベース 2 0 に、 絶縁層 2 7 を被 覆し、 その上に信号 リ ー ド線 2 4、 2 6 を設け、 更に保 護層 2 8 を設けてある。 この信号リ ー ド 2 4、 2 6 には 、 接続ノ、。ッ ド 2 1 、 2 3 と、 2 4 a、 2 6 a とを設けて ある。 この可撓性支持体 2 には、 先端を直角曲げ しない 構成のため、 絶縁性プラスチ ッ クゃセラ ミ ッ ク等を用い る こ とができ る。
こ のヘッ ドチ ッ プ 1 一 2 を、 その接続端子 1 1 、 1. 3 を可撓性支持体 2 の先方 (図の左方) に向けた姿勢で、 磁気ディ ス ク対向面に平行な面 (上端面) を可撓性支持 体 2 の先端部の取り付け面 (下面) に当接させる。
こ の当接面には、 厚さ 5 ミ ク ロ ン程度の紫外線硬化形 接着剤 Tを塗布し、 紫外線 ( U V光) を照射し、 瞬間硬 化させて、 機械的に固定する。
—方、 ヘッ ドチ ッ プ 1 一 2 の接続端子 1 1 、 1 3 と、 可撓性支持体 2 の接続端子 2 1 、 2 3 との間は、 金線等 のボンディ ングワイヤ Mで接続する。
こ の実施例では、 平面の支持体 2 に、 へッ ドチ ッ プ 1 _ 2 の磁気ディ ス ク対向面と反対面を接着するため、 磁 気ディ スク面との平行度が精度良 く 得られる。 又、 取り 付けに、 紫外線硬化型接着剤による加熱を伴わない接着 をとるため、 熱歪み等の熱的悪影響を与える こ とな く 、 容易に取り付けが可能となる。
( i ) 第 8 の実施例の説明
図 3 9 は本発明の第 8 の実施例の断面図であ り、 へッ ドチ ッ プ 1 一 2 と支持体 2 との他の接続例を示す。
へッ ドチッ プ 1 — 2 の構成は、 図 3 8 の もの と同一で あ り、 1 1 、 1 3 はパッ ド、 1 4 は リ ター ンヨ ークであ り、 N i F e (フ ェ ライ ト) から構成される もの、 1 5 は絶縁層、 1 6 は主磁極、 1 7 はコイル、 1 8 は絶縁保 護層、 1 9 はバッ ク ヨー ク部を示し、 これらはウ ェハー 1 a上に薄膜技術によ り作成され、 薄膜積層方向は、 磁 気ディ スク 5 の面に対し、 平行方向である。
—方、 可撓性支持体 2 も、 図 3 8 のものほぼ同一であ り、 直角曲げ部が設けられておらず、 平扳形状であ り、 金属扳ベース 2 0 に、 絶縁層 2 7 を被覆し、 その上に信 号リ ー ド線 2 4、 2 6 を設け、 更に保護層 2 8 を設けて ある。 この信号リ ー ド 2 4、 2 6 には、 接鐃パッ ド 2 1 、 2 3 と、 2 4 a、 2 6 a とを設けてある。 この可撓性 支持体 2 には、 更に、 その先端部の取り付け面に、 へッ ドチッ プ 1 一 2 の外形を挟み、 位置决めする A 1 203 等の 薄膜形成してなる一対の突起 2 0 — 1 、 2 を設けてある このヘッ ドチ ッ プ 1 一 2 を、 その接続端子 1 1 、 1 3 を可撓性支持体 2 の先方 (図の左方) に向けた姿勢で、 磁気ディ ス ク対向面に平行な面 (上端面) を可撓性支持 体 2 の先端部の取 り付け面 (下面) に、 突起 2 0 - 1 、 2 で位置決め して、 当接させ、 当接面には、 厚さ 5 ミ ク ロ ン程度の紫外線硬化形接着剤 Tを塗布し、 紫外線 ( U
V光) を照射し、 瞬間硬化させて、 機械的に固定する.。
—方、 ヘッ ドチ ッ プ 1 一 2 の接続端子 1 1 、 1 3 と、 可撓性支持体 2 の接繞端子 2 1 、 2 3 との間は、 金線等 のボンディ ン グワイヤ Mで接続する。
こ のよ う に、 可撓性支持体 2 に、 位置決め突起 2 0 — 1 、 2 を設ける こ と によ り、 ヘ ッ ドチ ッ プ 1 一 2 の位置 決めが容易 とな り、 磁気ディ ス ク の進行方向に対する磁 極の直角度を精度良 く 得る こ とができ、 ア ジマス損を少 な く でき る。
( j ) 第 9 の実施例の説明
図 4 0 は本発明の第 9 の実施例の断面図であ り、 へッ ドチ ッ プ 1 一 2 と支持体 2 との他の接続例を示す。
へッ ドチ ッ プ 1 一 2 の構成は、 図 3 8 の もの と同一で ある。 一方、 可撓性支持体 2 も、 図 3 8 の もの と同一で あ り、 直角曲げ部が設けられておらず、 平板形状である こ のヘッ ドチ ッ プ 1 一 2 を、 その接続端子 1 1 、 1 3 を可撓性支持体 2 の後方 (図の右方) に向けた姿勢で、 磁気ディ ス ク対向面に平行な面 (上端面) を可撓性支持 体 2 の先端部の取り付け面 (下面) に当接させ、 当接面 には、 厚さ 5 ミ ク ロ ン程度の紫外線硬化形接着剤 Tを塗 布し、 紫外線 ( U V光) を照射し、 瞬間硬化させて、 機 械的に固定する。
—方、 ヘッ ドチ ッ プ 1 一 2 の接続端子 1 1、 1 3 と、 可撓性支持体 2 の接続端子 2 1、 2 3 との間は、 B i — P b系合金等の低融点半田 Nで、 半田フ ィ レ ツ 卜を形成 する よ う に、 隅肉接合する。
このよう に、 ヘッ ドチ ッ プ 1 一 2 と支持体 2 とを低融 点半田で隅肉接合する こ とによ り、 電気的接続を行いつ つ、 接着剤による接着部の機械的強度を捕強する'効果が ある。 特に、 ウ ェハ一基板を リ ターンヨーク 1 4 で形成 する場合には、 ヘッ ドチッ プ 1 一 2 が薄く なり、 当接面 が小さ く な り、 接着面積が小さ く なつても、 前記隅肉接 合によって、 機械的強度を保持できる。 又、 低融点半田 Nを用いる こ とによ り、 接着した紫外線硬化型接着剤に 熱劣化を起こすおそれがない。
( k ) 第 1 0 の実施例の説明
図 4 1 は本発明の第 1 0 の実施例の断面図であ り、 へ ッ ドチ ッ プと可撓性支持体との接続の他の例を示す。 図 4 1 において、 ヘッ ドチ ッ プ 1 一 5 の構成は、 図 4 0 の実施例の構成に加えて、 リ ター ンヨ ーク 1 4 の基板 1 a に、 半田メ ツ キや金等の蒸着等による接合パ ッ ド 1 1 一 1 が設けられている。 又、 可撓性支持体 2 の構成も 、 図 4 0 の実施例とほぼ同一であるが、 更に取り付け面 の先端に半田メ ツキや金等の蒸着等による取り付けパッ ド 2 4 — 1 が設けられている。
こ の実施例では、 ヘ ッ ドチ ッ プ 1 一 5 の上面と、 支持 体 2 の取り付け面とを紫外線硬化型接着剤 Tによ り接着 する。 又、 へッ ドチ ッ プ 1 - 5 の接続端子 1 1 、 1 3 と 支持体 2 の接続端子 2 1 、 2 3 とを低融点半田 Nによ る 隅肉半田する。 更に、 へッ ドチ ッ プ 1 一 5 の接合パ ッ ド 1 1 一 1 と支持体 2 の取り付けパ ッ ド 2 4 — 1 とを低融 点半田 Nによる隅肉半田する。
こ のよ う にする と、 へッ ドチ ッ プ 1 一 5 の前後両側面 を低融点半田で隅肉接合するため、 機械的接続がよ り強 固となる。
( 1 ) 第 1 1 の実施例の説明
図 4 2 は本発明の第 1 1 の実施例の斜視図、 図 4 3 は 図 4 2 の断面図であ り、 へッ ドチ ッ プと支持体との他の 接繞例を示す。
ヘッ ドチ ッ プ 1 一 6 は、 主磁極 1 6 、 こ の磁極 1 6 を 巻回 したコイ ル 1 7、 これら磁極 1 6 、 コィ ノレ 1 7 を絶 緣保護 した絶縁層 1 5、 1 8 、 バッ ク ヨ ー ク 1 9 、 リ タ — ンヨー ク 1 4 及び接続端子 1 1 が設け られている点で は、 図 2 4 の構成と同一である。
こ の実施例の相違する点は、 図 4 2 、 図 4 3 ( B ) に 示すよ う に、 ヘッ ドチ ッ プ 1 — 6 の薄膜形成面から見て 、 T字状に形成されている点である。 そ して、 その丁字 状の垂直部 1 c に、 前記磁極 1 6 と、 磁極 1 6 を巻回 し たコイ ル 1 7 、 これら磁極 1 6 、 コ ィ ノレ 1 7 を絶縁保護 した絶縁層 1 5、 1 8、 ノくッ ク ヨーク 1 9 、 リ ターンョ ーク 1 4 が形成されている。 又、 その T字状の上方の水 平部の雨側に、 コ イル 1 7 の接続端子 1 1 、 1 3 が形成 されている。
こ のへッ ドチ ップ 1 — 6 は、 前述のよ う に、 例えば、 N i F e のゥ ヱハー基板上に多数のへッ ドチ ッ プを形成 しておき、 これを薄膜形成面から見て、. T字形伏に切り 出すこ とによ り作成される。 こ のヘッ ドチ ッ プ 1 一 6 は 、 チ ッ プ内に組み込まれる コイル 1 7 の巻回数で大き さ が制限されるが、 数 1 0 0 ミ ク ロ ン以下の寸法を実現で き、 厚みに関 しても、 薄膜形成部のみあれば良 く 、 数 1 0 ミ ク ロ ンに薄く ずる こ と もできる。
尚、 N i F e のゥ ヱハー基板上に、 多数形成されたへ ッ ドチッ プ 1 一 6 を T字形状に切り 出 したときに、 N i F e のウ ェハー基板の一部が、 前記リ ター ンヨ ーク 1 4 となる。 又、 N i F e のウ ェハー基板の代わ り に、 フ エ ライ トのウ ェハー基板を用いて、 フ ヱ ライ 卜の リ ター ン ヨーク 1 4 とする こ と もできる。 この場合、 ヘッ ドチッ プ 1 一 6 の厚みは若干厚く なる。
次に、 こ のヘッ ドチッ プ 1 一 6 を支持する可撓性支持 体 2 は、 前述したよう に、 絶縁用レジス トを塗布したス テン レスシー ト等の金属板 2 0 と、 その上に形成される 信号リ ー ドパターン 2 4、 2 6 と、 この上に設けられた 絶緣保護層 2 8 と、 信号 リ ー ドパターン 2 4、 2 6 をそ の両端で露出させた接鐃端子 2 1、 2 3、 2 a . 2 6 a どを有する。
更に、 かかる支持体 2 は、 その先端に、 凹部 2 — 1 が 形成されてお り、 こ の凹部 2 — 1 で T字形状のヘッ ドチ ッ プ 1 一 6 の垂直部 1 c を挟持する よ う に構成している 。 そ して、 図 4 3 ( A ) に示すよ う に、 この支持体 2 の 後端部が、 アーム 3 の前端に、 取り付けられる。
こ の支持体 2 の先端部に形成した凹部 2 — 1 に、 前記 T字形状のへッ ドチ ッ プ 1 一 6 の垂直部 1 c を挟持した 場合に、 T字形状のへッ ドチ ッ プ 1 一 6 の上方水平部に 設けたコイル 1 7 の接続端子 1 1 、 1 3 と、 可撓性支持 体 2 の先端部の凹部 2 - 1 の両側部に設けた信号 リ 一 ド ノ、。ター ン 2 4、 2 6 の接続端子 2 1 、 2 3 とが近接する よ う に、 前記接続端子 1 1 、 1 3 が形成されている。
こ のへッ ドチ ッ プ 1 一 6 と支持体 2 とを組み立てる に は、 支持体 2 の先端部に形成した凹部 2 - 1 に、 前記 T 字形状のへッ ドチ ッ プ 1 一 6 の垂直部 1 c を挟持させ、 絶縁性接着剤で接着して、 機械的に固定する。
そ して、 T字形状のへッ ドチ ッ プ 1 一 6 の上方水平部 に設けたコイ ル 1 7 の接続端子 1 1 、 1 3 と、 可撓性支 持体 2 の先端部の凹部 2 — 1 の両側部に設けた信号 リ ー ドパター ン 2 4、 2 6 の接続端子 2 1 、 2 3 とを、 低融 点金属又は導電性ペイ ン ト S を付着して、 電気的接続を 行う。
この時、 前述したよ う に、 接続端子 1 1 、 1 3 と接続 端子 2 1 、 2 3 との接続を、 金ボールボンディ ング法に よって行う こ と もできる。 この方法は、 電子スパーク に よ り 金ワイ ヤーの先端に発生した数 1 0 ミ ク ロ ン程度の 金ボール Sを、 接鐃端子 1 1 、 1 3 と接鐃端子 2 1 、 2 3 との間に押し付ける こ とによって、 接鐃する方法であ る。 この接続法では、 接続端子間に、 金ボールを圧着す るだけで接続でき るため、 上述した低融点金属又は導電 性ペイ ン トを使用する方法よ り、 迅速で且つ容易に、 互 いに 9 0 度の角度を持つ接繚端子間を接繞する こ とがで きる。
又、 T字形状のチ ッ プへッ ド 1 一 6 の垂直部 1 c を、 支持体 2 の先端に形成された凹部 2 — .1 に挟持して、 接 合するので、 強固な接合が可能となり'、 しかも接合作業 を容易に行う こ とができる。
更に、 T字形状のチ ッ プヘッ ド 1 一 6 の垂直部 l c を 、 支持体 2 の先端に形成された凹部 2 — 1 に挟持するた め、 ヘッ ドチッ プ 1 一 6 の磁極 1 6 の先端と支持体 2 と の間隔を小さ く でき、 これによ り、 支持体 2 と磁気ディ スク 5 との距離を短 く できる。 このため、 ヘッ ドチッ プ 1 — 6 のロー リ ング方向の傾きを減少する こ とができる 。 例えば、 磁気ディ スク とへッ ドチッ プ 1 一 の支持体 2 との間隔を、 従来の 1 Z 2 とする と、 ヘッ ドチッ プ 1 一 6 のロー リ ング方向の傾きを、 1 Z 2 に抑える こ とが でき、 記録、 再生を安定に行う こ とができる。
( m ) 第 1 2 の実施例の説明
図 4 4 は本発明の第 1 2 の実施例の構成図、 図 4 5 は 図 4 4 の構成の実装状態図である。
図 4 5 に示すよ う に、 アーム 3 には、 一対の リ ー ドパ ター ン線 3 2 が設けられ、 リ ー ドパター ン線 3 2 の先端 には、 一対のアーム端子部 3 1 が設け られている。
このアーム 3 は、 ステン レス等の金属で構成され、 そ の上に絶縁層を被覆した上に、 銅パター ンによ り、 これ ら リ ー ドパター ン線 3 2 と、 アーム端子部 3 1 を形成し
、 リ ー ドパター ン線 2 3 2 、 保護層で被覆する。
この了一ム 3 の端子部 3 1 には、 先端にへッ ドチ ッ プ 1 を接続したジ ンバル線 2 4 が取り付け られる。
図 4 4 ( A ) に示すよ う に、 ヘッ ドチ ッ プ 1 は、 図 1 1 で示した端子部 1 1 、 1 3 を上面に有するヘ ッ ドチ ッ プで構成される。 一方、 ジンバル線 2 — 4 は、 直径 0 . 1 腿の リ ン青銅線で構成され、 パネ性と導電性とを有し 、 一対設け られる。
そ して、 図 4 4 ( B ) に示すよ う に、 並行な.一対のジ ンバル線 2 4 の一端を、 ヘッ ドチ ッ プ 1 の端子部 1 1 、 1 3 に、 熱又は超音波圧着等で接続し、 他端を、 アーム 3 のアーム端子部 3 1 に、 同様に、 熱又は超音波圧着等 で接続する と、 アーム 3 と、 へッ ドチ ッ プ 1 とが、 並行 なジ ンバル線 2 — 4 によ り、 電気的に、 機械的に接続さ れる。
このジンバル線 2 — 4 は、 パネ性を有しているので、 へッ ドチ ッ プ 1 を弾性支持し、 両端子部 1 1 、 1 3 と 3 1 を接続するので、 へッ ドチ ッ プ 1 がアーム 3 の リ ー ド パター ン線 3 2 に接続され、 記録再生信号の伝達が可能 となる。
このよ う に、 ジンバル線 2 — 4 を用いて、 ヘッ ドチ ッ プ 1 の端子部 1 1 、 1 3 と、 アーム 3 のアーム端子部 3 1 とを接鐃するだけで、 磁気へッ ドアセ ンブリ が完成す るので、 へッ ドチッ プ 1 が微細であつても、 容易にジン バル線 2 — 4 によ り アーム 3 と接続でき、 小型の磁気へ ッ ドアセ ンブ リ を容易に組立る こ とができる。
又、 ジンバル線 2 - 4 を、 両端子部 1 1 、 1 3 と 3 1 に接繞する工程で済むので、 微細部品の組立工程が減少 し、 小型の磁気へッ ドアセンブリ を容易に完成できる。
しかも、 部品点数も減少するため、 組立の容易さ と組 み合わせて、 低コス トで小型の磁気へッ ドアセンブリ を 作製できる。
更に、 この例では、 アーム 3 に、 リ ー ドバタ一ン線 3 2 を設けているので、 線材と しての リ ー ド線を使用 しな く て済み、 微細なスペースでの リ ー ド線のフ ォ ー ミ ング 等が必要な く 、 組立が更に容易となる。
ジンバル線 2 — 4 を 2本並行に設けているため、 へッ ドチッ プ 1 のロー リ ング方向に対する強度を付与する こ とができる。
( n ) 第 1 3 の実施例の説明
図 4 6 は本発明の第 1 3 の実施例構成図である。
この実施例では、 図 4 6 ( A ) 、 ( C ) に示すよ う に 、 アーム 3 の 2 つのアーム端子部 3 1 を、 アーム 3 の雨 側部分に配置し、 ヘッ ドチ ッ プ 1 の端子部 1 1 、 1 3 の 間隔よ り広 く したものである。
このよ う にする と、 一対のジンバル線 2 — 4 の一端を 、 ヘッ ドチ ッ プ 1 の端子部 1 1 、 1 3 に接続し、 他端を アーム 3 のアーム端子部 3 1 に接続する と、 一対のジ ン バル線 2 — 4 は、 並行でな く 、 八の字状にな り、 ト ラ ス 形とする こ とができ る。
このため、 磁気へッ ドアセ ンブ リ のシー ク方向に対す る剛性を高める こ とができ、 微細な線材でも、 高い剛性 を付与する こ とができ る。 特にへッ ドが接触して、 記録 再生を行う接触形へッ ドでは、 シー ク動作の際、 へ ッ ド チ ッ プ 1 にシー ク方向の力がかかるため、 効果が大きい 又、 図 4 6 ( B ) に示すよ う に、 ジ ンバル線 2 — 4 を 、 角形形状の リ ン青銅線 2 — 4 a の周囲に、 金メ ッ キ層 2 — 4 b を設け、 更にその周囲にパーマロイ層 2 — 4 c をメ ツ キする構成とする こ とによ り、 ノヽ。一マロイ層 2 — 4 c によ り シール ド効果を持たせる こ とができ る。
こ の シール ド効果は、 へ ッ ドチ ッ プ 1 が微細となる と 、 記録再生信号が微弱とな り、 ノ イ ズの影響を受けやす いこ とから、 記録再生機能の向上に極めて効果がある。 ( 0 ) 第 1 4 の実施例の説明
図 4 7 は本発明の第 1 4 の実施例説明図である。
こ の実施例では、 図 4 7 ( A ) ( B ) に示すよ う に 、 ジンノく ル線 2 — 5 において、 アーム端子部 3 1 側の太 さを、 へッ ドチッ プ 1 側の太さ よ り太 く して、 且つァ一 厶 3 のアーム端子部 3 1 の幅を大き く したものである'。
このよ う にする と、 一対のジンバル線 2 — 5 の一端を 、 へッ ドチッ プ 1 の端子部 1 1、 1 3 に接続し、 他端を アーム 3 のアーム端子部 3 1 に接続する と、 一対のジン ノくル線 2 — 5 は、 並行であるが、 ヘッ ドチ ッ プ 1 側と、 アーム 3 側とで太さが異なる トラス形とな り、 シー ク方 向に対する剛性を与える こ とができる。
又、 この構成では、 アーム 3 側のジンバル線 2 — 5 の 接鐃面積が大き く な り、 よ り シーク方向の剛性が高く な り、 且つ接続強度も大き く できる。
( ) 第 1 5 の実施例の説明
図 4 8 は本発明の第 1 5 の実施例構成図である。
この実施例では、 図 4 8 に示すよう に、 図 4 6 の実施 例と同様に、 アーム 3 の 2 つのアーム端子部 3 1 を、 ァ ーム 3 の両側部分に配置し、 ヘッ ドチ ッ プ 1 の端子部 1 1、 1 3 の間隔よ り広く している。
このため、 一対のジンバル線 2 — 4 の一端を、 へッ ド チ ップ 1 の端子部 1 1、 1 3 に接続し、 他端をアーム 3 のアーム端子部 3 1 に接続する と、 一対のジンバル線 2 一 4 は、 並行でな く 、 八の字状にな り、 ト ラス形とする こ とができ、 シー ク方向に対する剛性を向上できる。 更に、 ジンバル線 2 — 4 間に、 絶緣物で構成された補 強板 2 — 6 を形成して、 はしご形と し、 よ り シーク方向 に対する剛性を強めたものである。 ( q ) 第 1 6 の実施例の説明
図 4 9 は本発明の第 1 6 の実施例の構成図、 図 5 0 は 本発明の第 1 6 の実施例の他の構成を示す図であ り、 へ ッ ドチ ッ プ 1 と支持体 2 との他の接続例を示すものであ る。
これらの実施例は、 へッ ドチ ッ プ 1 と支持板 2 との接 続形態において、 へッ トチ ッ プ 1 を支持板 2 に機械的に 保持する保持手段 2 9 を設けた ものである。
図 4 9 ( A ) では、 支持板 2 の先端に、 へッ ドチ ッ プ 1 を四方から保持する保持板 2 9 a、 2 9 b を設け、 ソ ケ ッ トのよ う に、 ヘッ ドチ ッ プ 1 を保持する ものである 図 4 9 ( B ) では、 支持板 2 の先端に、 へッ ドチ ッ プ 1 を両側から保持する保持板 2 9 b を設け、 へッ ドチ ッ プ 1 を保持する ものである。
図 4 9 ( C ) 、 図 4 9 ( D ) は、 いずれも図 4 9 ( A ) の変形例であ り、 支持板 2 の先端に、 ヘッ ドチ ッ プ 1 を四方から保持する保持板 2 9 a、 2 9 b を設け、 ソケ ッ トのよ う に、 磁気へッ ドコア 2 1 を保持する ものであ る。
このよ う な保持板 2 9 a、 2 9 b は、 支持体 2 の板金 加工や、 酸化アル ミ ニウム等の蒸着等によ り形成でき、 へッ ドチ ッ プの固定と位置決めが可能となる他に、 へッ ドチ ッ プ 1 の接着が不要とな り、 交換も容易 となる。 又、 図 5 0 ( A ) 、 ( B ) の例では、 ヘッ ドチ ッ プ 1 に端子 1 1 a、 l i . 1 3 a、 1 3 bを設け、 支持扳 2の配線パター ン 2 4、 2 6 に設けた接続かしめ端子部 2 1 a、 2 3 a に、 端子 1 1 a、 l l b、 1 3 a . 1 3 bを嵌め込み、 機械的保持と電気的接続とを図ったもの である。
更に、 図 5 0 ( C ) の例では、 支持扳 2の一対の保持 板 2 9 bの一方に、 配線パターン Rに接続された接镜端 子 2 1 cを設ける。 これと ともに、 へッ ドチ ッ プ 1 の側 面に接続端子 1 1、 1 3 を設ける。 そして、 へッ .ドチッ プ 1 を一対の保持板 2 9 bに挿入して、 保持させた時に 、 ヘッ ドチッ プ 1 の接続端子 1 1 、 1 3 と、 保持扳 2 9 bの接続端子 2 1 c とが接触して、 電気的な接続を可能 と したものである。
( r ) 第 I 7の実施例の説明
図 5 1 は本発明の第 1 7の実施例が適用される磁気デ イ スク装置の構成図、 図 5 2 は図 5 1 の構成の断面図、 図 5 3 は図 5 1 のァクチユエ一夕の正面図、 図 5 4 は本 発明の第 1 7の実施例の説明図、 図 5 5 はその接続方法 の説明図である。
図 5 1 の磁気ディ ス ク装置は、 3. 5 イ ンチの磁気デ イ スクに、 へッ ドを淳上させて、 磁気記録を行う磁気デ ィ スク装置を示す。
装置のベース 6 0 — 1 には、 ス ピン ドル軸 6 4 — 1 を 中心に回転する 3. 5 イ ンチの磁気ディ ス ク 5 — 1 と、 磁気回路 6 3 - 1 とが設けられてお り、 ァ クチユエ一夕 4 — 1 が、 回転軸 6 2 — 1 を中心に回転可能に取り 付け られている。
こ のァ ク チユエ一夕 4 一 】 は、 図 5 1 、 図 5 2 、 図 5 3 に示すよ う に、 後部にコイ ル 4 1 一 1 が設けられてお り、 こ のコイル 4 1 一 1 は、 磁気回路 6 3 — 1 間に位置 される。
図 5 2 に示すよ う に、 ァ ク チユエ一夕 4 一 1 の前部に は、 9 個のアーム 3 — 1 が形成され、 各アーム 3 — 1 に は、 先端に磁気ヘッ ドコア (コアスライ ダー) 8 を有す る支持板 (サスペ ン シ ョ ン) 7 が設けられている。
こ のァ クチユ エ一夕 4 一 1 は、 コ ィ ノレ 4 1 一 1 と磁気 回路 6 3 一 1 によ り リ ニアァ クチユエ一夕を構成する。 そ して、 コイ ル 4 1 一 1 に電流を流すこ とによ り、 回転 軸 6 2 — 1 を中心に回動 して、 磁気へッ ドコア 8 を、 磁 気ディ スク 5 — 1 の ト ラ ッ ク と交叉する方向 (半径方向 ) にシー ク駆動する。
図 5 4 において、 7 は支持板 (サスペン シ ョ ン) であ り、 ステ ン レス等のパネ性のある金属で構成され、 その 上に絶縁層を被覆 した上に、 銅パター ンによ り、 一対の 配線パター ン 7 1 と、 サスペ ン シ ョ ン接続端子部 7 2 を 形成し、 アーム 3 — 1 に一端がレーザースポ ッ ト溶接等 で固定される。
8 は磁気へッ ドコア (コアスライ ダー) であ り、 側面 に一対のコアスライ ダー接鐃端子 8 2 と、 薄膜磁気へッ ド 8 1 が設けられている。 この支持板 7 に、 磁気へッ ドコア 8 を接着して、 支持 板 7 の接鐃端子 7 2 と、 磁気へッ ドコア 8 の接続端子 8 2 とが、 図 5 4 ( B ) 、 図 5 5 ( A ) に示すよ う な位置 関係に固定され、 ポールボンダ一により、 径 0 . 1 ram程 度の金ボール Wを金メ ッ キされた両接繞端子 8 2、 7 2 に接触させ、 加圧、 超音波圧着する と、 金属間結合によ り、 両接続端子 8 2、 7 2 が金ボール Wを介して電気的 、 機械的に接続される。 尚、 この例では、 磁気ディ スク 5 一 1 は、 図の上側に位置する。
このよ う に、 支持板 7 に配線パターン 7 1 と接続端子 7 2を設け、 磁気へッ ドコア 8 に接続端子 8 2 を設けて お く と、 金ボールボンディ ングによ り接続できるため、 微細な磁気ヘッ ドコア 8 でも、 容易に接続作業が可能と なり、 磁気へッ ドアセ ンブリ の小型化が実現できる。
又、 リ ー ド線のよ う に、 配線作業が不要となるため、 微細なサスペンシ ョ ンでの困難な配線作業をしな く て済 み、 一層組み立て作業が容易 となる。
更に、 部品点数も減少し、 組み立て作業を容易 と し、 小型の磁気へッ ドアセ ンブ リ を実現できる。
図 5 5 ( B ) は、 第 1 7 の実施例の変形例であ り、 磁 気ヘッ ドコア 8 の流入側に、 ダミ ー端子 8 3 を設け、 こ れに対応して、 支持扳 7 の配線パター ン 7 1 にダ ミ ー端 子 7 3 を設ける。 そ して、 ボールボンダ一によ り、 径 0 . 1 腿程度の金ボール Wを金メ ッキされた雨接続端子 8 3、 7 3 に接触させ、 加圧、 超音波圧着する と、 金属間 結合によ り、 両接続端子 8 3、 7 3 が金ポール Wを介 し ご接^ ォ" Lる 0
このよ う にする と、 磁気ヘッ ドコア 8 は、 支持板 7 に 金ボール Wによ り両端が接続されるため、 磁気へ ッ ドコ ァ 8 を、 支持板 7 に接着する必要がな く 、 ボールボンデ イ ング工程のみで接続が可能とな り、 一層組み立てが容 易となる。
尚、 この例では、 支持板 7 の配線パター ン 7 1 のァ一 ム側端子 (図 5 4 ( A ) 参照) に リ ー ド線を接続し、 ァ —ム 3 に取り付けるが、 アーム 3 は比較的大きいため、 この配線は容易である。
( s ) 第 1 8 の実施例の説明
図 5 6 は本発明の第 1 8 の実施例構成図である。
図 5 6 の実施例の磁気ディ ス ク装置の構成は、 図 5 1 乃至図 5 3 の もの と変わ りな く 、 磁気へッ ドアセ ンブ リ のみを示している。
この実施例では、 磁気へッ ドコア (コアスライ ダー) 8 の下面に薄膜へッ ド部 8 1 と、 一対のコア端子部 8 3 を設け、 支持板 7 の先端の一対の端子部 7 2 間に切り欠 き部 7 3 を設けてある。
そ して、 図 5 6 ( B ) に示すよ う に、 磁気へッ ドコア 8 の薄膜へッ ド部 8 1 を、 支持板 7 の切り欠き部 7 3 に 嵌め込み、 端子 8 3 と、 端子 7 2 とを接触させ、 図 5 6 ( C ) に示すよ う に、 磁気へッ ドコア 8 側から超音波及 び熱を加える と、 両端子 8 3、 7 2 の金メ ッ キ部の金属 間結合によ り、 電気的接続が可能となる。
このよ う にする と、 接続端子 8 3、 7 2 を予め磁気へ
^ ッ ドコア 8 と、 支持板 7 に形成してあるので、 接続端子
8 3、 7 2 間の位置合わせだけで、 接鐃が可能とな り、
微小部品の接鐃作業が容易となる。
又、 切 り欠き部 7 3 によ り、 磁気へッ ドコア 8 を位置
決め しているので、 容易に位置合わせができる。
尚、 この例では、 磁気ディ ス ク 5 — 1 は、 薄膜ヘッ ド
8 1 の下側に位置する。
( t ) 第 1 9 の実施例の説明
図 5 7 は本発明の第 1 9 の実施例説明図である。
図 5 7 の実施例においても、 磁気ディ スク装置の構成
は、 図 5 1 乃至図 5 3 のもの と変わりな く 、 磁気へッ ド
アセンブリ のみを示している。
この実施例では、 図 5 6 の実施例の構成において、 即
ち、 磁気ヘッ ドコア (コアスライ ダー) 8 の下面に薄膜
へッ ド部 8 1 と、 一対のコア端子部 8 2 を設けた構成に
おいて、 図 5 7 ( C ) に示すよ う に、 支持扳 7 の接続端
子 7 2 a に、 導電性フ イ ラ— U 1 を含む導電性接着剤 U
を塗布し、 コア端子部 8 2 を乗せ、 接着する。 '
この時、 導電性接着剤 ϋの導電性フ イ ラ一 U I が、 端
子 8 2、 7 2 a に導かれる よ う に、 磁界又は電界を印加
する と、 導電性フ ィ ラー U 1 が、 端子 8 2、 7 2 a 間に
集中し、 端子間抵抗を下げ、 且つ端子部分以外では、 導
電性を示さないよ う にでき、 隣の端子との短絡を防止で き る。
このよ う にする と、 導電性接着剤 Uの塗布のみで接続 でき、 微小な磁気ヘッ ドコア 8 の接続作業が容易 となる ( u ) 第 2 0 の実施例の説明
図 8 、 図 5 9 は本発明の第 2 0 の実施例構成図 (そ の 1 ) 、 (その 2 ) である。
図 5 8 、 図 5 9 の実施例において も、 磁気ディ ス ク装 置の構成は、 図 5 1 乃至図 5 3 の もの と変わ り な く 、 磁 気へッ ドアセ ンブリ のみを示 している。
この実施例では、 図 5 4 乃至図 5 7 で示した磁気へ ッ ドコア 8 の端子 8 2 と支持板 7 の端子 7 2 の接続形態に おいて、 磁気へッ ドコア 8 を支持板 7 に機械的に保持す る保持手段 7 3 を設けた ものである。
図 5 8 ( A ) では、 支持板 7 の先端に、 磁気へッ ドコ ァ 8 を四方から保持する保持板 7 3 a、 7 3 b を設け、 ソケ ッ 卜のよ う に、 磁気へッ ドコア 8 を保持する もので め O 0
図 5 8 ( B ) では、 支持板 7 の先端に、 磁気へ ッ ドコ ァ 8 を両側から保持する保持板 7 3 b を設け、 磁気へッ ドコア 8 を保持する ものである。
図 5 8 ( C ) 、 図 5 8 ( D ) は、 いずれも図 5 8 ( A ) の変形例であ り、 支持板 7 の先端に、 磁気へ ッ ドコア 8 を四方から保持する保持板 7 3 a、 7 3 b を設け、 ソ ケ ッ ト のよ う に、 磁気へッ ドコア 8 を保持する ものであ る o
このよ う にする と、 磁気ヘッ ドコア 8 の接着が不要と な り、 交換も容易 となる。
又、 図 5 9 ( A ) 、 ( B ) の例では、 磁気ヘッ ドコア 8 に端子 8 2 a を設け、 支持板 7 の配線パター ン 7 1 に 設けた接続かしめ端子部 7 2 a、 7 2 b に、 端子 8 2 a を嵌め込み、 機械的保持と電気的接続とを図ったもので ある。
更に、 図 5 9 ( C ) の.例では、 支持板 7 の一対の保持 扳 7 3 b の一方に、 配線パター ン 7 4 に接続された接続 端子 7 2 b を設ける。 これと と もに、 磁気へッ ドコア 8 の側面に接鐃端子 8 2 を設ける。 そ して、 磁気へッ ドコ ァ έ を一対の保持板 7 3 b に揷入して、 保持させた時に 、 磁気へッ ドコア 8 の接続端子 8 2 a と、 保持板 7 3 b の接続端子 7 2 b とが接触して、 電気的に接鐃する もの である。
以上、 本発明を実施例によ り説明したが、 本発明の主 旨の範囲内において、 種々 の変形が可能であ り、 これら を本発明から排除する ものではない。 .
産業上の利用可能性
ウ ェハーで作成するへッ ド部分を薄膜形成が必要な最 小部分と し、 他の部分は可撓性支持体と して別途作成す るので、 ウ ェハーで作成するへッ ドチッ プの数を大幅に 増加でき、 かかるへッ ドチ ッ プ及びこれを用いた磁気デ イ スク装置の価格を大幅に低 く できる。

Claims

請 O求の範囲
1 . 磁気ディ ス ク ( 5 ) にデータを磁気記録及び再生す るため、 アーム ( 3 ) に取り付けられる磁気へ ッ ド完成 体であって、
絶縁層 と磁極 ( 1 6 ) と コイ ル ( 1 7 ) と前記コイ ル ( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを薄膜によ り積層形 成したヘッ ドチ ッ プ ( 1 ) と、
前記ヘッ ドチ ッ プ ( 1 ) の端子部 ( 1 1 、 1 3 ) と リ 一 ド部を有し、 前記アーム ( 3 ) に取り付け られ、 前記 へッ ドチ ッ プ ( 1 ) を支持する可撓性支持体 ( 2 ) とを 設けたこ とを特徵とする磁気へッ ド完成体。
2. 請求の範囲 1 において、
前記へッ ドチ ッ プ ( 1 ) は、 前記磁極 ( 1 6 ) を主磁 極と して、 前記コイ ル ( 1 7 ) が巻回される と と もに、 磁束 リ ター ン部 ( 1 0 ) を設けた垂直記録用単磁極へッ ドである こ とを特徴とする磁気へッ ド完成体。
3 . 請求の範囲 1 において、
前記へッ ドチ ッ プ ( 1 ) は、 前記薄膜形成方向が前記 磁気ディ ス ク ( 5 ) 面と平行方向である こ とを特徵とす る磁気へッ ド完成体。
4. 請求の範囲 1 において、
前記へッ ドチ ッ プ ( 1 ) は、 前記薄膜形成方向が前記 磁気ディ ス ク ( 5 ) 面と垂直方向である こ とを特徴とす る磁気へッ ド完成体。
5 . 請求の範囲 1 において、 前記可撓性支持体 ( 2 )。は、 弾性を有する支持扳 ( 2 0 ) に前記端子部 ( 2 4 a、 2 6 a ) を有する信号 リ ― ドパターン ( 2 4、 2 6 ) を設けたものである こ とを特 徵とする磁気へッ ド完成体。
6 . 請求の範囲 5 において、
前記支持板 ( 2 0 ) が、 絶縁板である こ とを特徵とす る磁気へッ ド完成体。
7. 請求の範囲 5 において、
前記支持扳 ( 2 0 ) が、 金属板 ( 2 0 ) に絶縁層 ( 2
7 ) を設たものであ り、 前記絶縁層 ( 2 7 ) 上に前記信 号リ一 ドパ夕— ンを設けたものである こ とを特徵とする 磁気ヘッ ド完成体。
8 . 請求の範囲 5 又は 6 又は 7 において、
前記可撓性支持体 ( 2 ) は、 前記アーム ( 3 ) 側の固 定端側の幅を広く した ものである こ とを特徵とする磁気 へッ ド完成体。
9 . 請求の範囲 5 又は 6又は 7 において、
前記可撓性支持体 ( 2 ) の先端部が、 直角曲げされ、 前記直角曲げした部分に前記へッ ドチッ プ ( 1 ) を固定 したこ とを特徵とする磁気へッ ド完成体。
1 0 . 請求の範囲 9 において、
前記可撓性支持体 ( 2 ) の前記直角曲げした部分が前 記チッ プへッ ド ( 1 ) を覆う よう に、 前記直角曲げした 部分の内側に前記へッ ドチッ プ ( 1 ) を固定したこ とを 特徵とする磁気へッ ド完成体。
1 1 . 請求の範囲 1 において、
前記可撓性支持体 ( 2 ) の前記端子部 ( 2 1 、 2 3 ) と、 前記ヘッ ドチ ッ プ ( 1 ) の端子部 ( 1 1 、 1 3 ) と を金ボールの圧着によ り接続したこ とを特徵とする磁気 へッ ド完成体。
1 2. 請求の範囲 5又は 6又は 7 において、
前記へッ ドチ ッ プ ( 1 ) に凸部を設ける と と もに、 前 記可撓性支持体 ( 2 ) に前記へッ ドチ ッ プ ( 1 ) の凸部 が勘合される凹部を設けたこ とを特徵とする磁気へッ ド 完成体。
1 3. 請求の範囲 5又ほ 6又は 7 において、
前記へッ ドチ ッ プ ( 1 ) が、 前記可撓性支持体 ( 2 ) に、 前記へッ ドチ ッ プ ( 1 ) の両面で接続されたこ とを 特徴とする磁気へ ッ ド完成体。
1 4. 請求の範囲 1 において、
前記可撓性支持体 ( 2 ) は、 弾性と導電性を有する一 対の接繞部材である こ とを特徵とする磁気へッ ド完成体 ο
1 5 . 磁気ディ ス ク ( 5 ) にデータを磁気記録及び再生 するため、 アーム ( 3 ) に取り付けられる磁気へッ ド完 成体であって、
奥行 1 . O mm以下、 幅 0 . 5 mm以下及び厚み 0 . 2 m m以下の薄膜ヘッ ドチ ッ プ ( 1 ) と、
前記薄膜へッ ドチ ッ プ ( 1 ) を支持する可撓性支持体 ( 2 ) とを備えたこ とを特徴とする磁気ヘッ ド完成体。
1 6. 磁気ディ ス ク ( 5 ) にデ一夕を磁気記録及び再生 するため、 アーム ( 3 ) に取り付けられる磁気へッ ド完 成体であって、
絶縁層と磁極 ( 1 6 ) と コイル ( 1 7 ) と前記コイ ル
( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを薄膜によ り積層形 成したへッ ドチ ッ プ ( 1 ) と、
前記ァーム ( 3 ) に取り付けられ、 前記へッ ドチ ッ プ
( 1 ) を支持する幅 0 . 5 mm以下、 厚み 0. 1 mm以 下及び長さ 1 1 mm以下の可撓性支持体 ( 2 ) とを備え たこ とを特徴とする磁気へッ ド完成体。
1 7. 請求の範囲 1 又は 1 5又は 1 6 において、
前記へッ ドチ ッ プ ( 1 ) が、 前記可撓性支持体 ( 2.) によ り、 前記磁気ディ スク ( 5 ) に接触する接触型へッ ドである こ とを特徵とする磁気へッ ド完成体。
1 8 . 磁気ディ ス ク ( 5 ) にデータを磁気記録及び再生 するため、 アーム ( 3 ) に取り付けられる磁気へッ ド完 成体の製造方法であつて、
基板上に絶縁層と磁極 ( 1 6 ) とコイル ( 1 7 ) と前 記コイ ル ( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを有する多 数のへッ ドチ ッ プ ( 1 ) を薄膜形成するステッ プと、 前記基板から前記へッ ドチ ッ プ .( 1 ) を切り 出すステ ッ プと、
前記へッ ドチッ プ ( 1 ) の端子部 ( 1 1、 1 3 ) に、 リ ー ド部を有する可撓性支持板 ( 2 ) を接続するステツ プとを有する こ とを特徵とする磁気へッ ド完成体の製造 方法。
1 9. 磁気ディ ス ク ( 5 ) にデータを磁気記録及び再生 するため、 アーム ( 3 ) に取 り付け られる磁気へッ ド完 成体の製造方法であ って、
基板上に絶縁層 と磁極 ( 1 6 ) と コイル ( 1 7 ) と前 記コ イ ル ( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを有する多 数のへッ ドチ ッ プ ( 1 ) を薄膜形成するステ ッ プと、 前記基板から前記へッ ドチ ッ プ ( 1 ) が複数個一列に 並んだへッ ドブロ ッ クを切り 出すステ ッ プと、
前記ヘッ ドチ ッ プ ( 1 ) の端子部 ( 1 1 、 1 3 ) に接 続される リ ー ドパター ンが形成された支持扳 ( 2 ) を前 記へッ ドチ ッ プ ( 1 ) の ピッ チで複数個連絡バーに取り 付けた支持体シー トを作成するステ ッ プと、
前記支持板シー トの前記支持板の各先端に、 前記へ ッ ドブロ ッ ク の各ヘッ ドチ ッ プを位置決め し、 前記各へ ッ ドチ ッ プの端子部と前記支持板の リ ー ドパター ン とを接 続するステ ッ プと、
前記へッ ドブロ ッ クから各へッ ドチ ッ プを分離する と と もに、 前記各支持体の基部を前記連絡バーか ら分離し て、 前記へッ ドチ ッ プを支持する支持体を有する磁気へ ッ ド完成体を形成するステ ッ プとを有する こ とを特徴と する磁気へッ ド完成体の製造方法。
2 0 . 磁気デイ ス ク ( 5 ) と、
前記磁気ディ ス ク ( 5 ) を回転するス ピ ン ドルモータ と、 アーム ( 3 ) を有し、 前記アーム ( 3 ) を前記磁気デ イ ス ク ( 5 ) の ト ラ ッ ク と交叉する方向に移動するァ ク チユエ一タ ( 4 ) と、
前記磁気ディ ス ク ( 5 ) にデータを記録し、 前記磁気 ディ ス ク ( 5 ) からデ一夕を読み取るため、 前記アーム ( 3 ) に取り付けられる磁気へッ ド完成体とを有し、 前記磁気へッ ド完成体は、
絶掾層 と磁極 ( 1 6 ) とコイル ( 1 7 ) と前記コイル ( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを薄膜によ り積層形 成したヘッ ドチ ッ プ ( 1 ) と、
前記へッ ドチ ッ プ ( 1 ) の端子部 ( 1 1 、 1 3 ) と接 鐃される リ ー ド部を有し、 前記アーム ( 3 ) に取り付け られ、 前記へッ ドチ ッ プ ( 1 ) を支持する可撓性支持体 ( 2 ) とを有する こ とを特徵とする磁気ディ スク装置。
2 1 . 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記へッ ドチッ プ ( 1 ) は、 前記磁極 ( 1 6 ) を主磁極と して、 前記コイル ( 1 7 ) が巻回される と と もに、 磁束リ ター ン部 ( 1 0 ) を設け た垂直記録用単磁極へッ ドである こ とを特徵とする磁気 ディ スク装置。
2 2. 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記へッ ドチ ッ プ ( 1 ) は、 前記薄膜形成方向が前記磁気ディ スク ( 5 ) 面と平行方 向である こ とを特徵とする磁気ディ スク装置。
2 3. 請求の範囲 2 0 において、 前記磁気へッ ド完成体の前記へッ ドチ ッ プ ( 1 ) は、 前記薄膜形成方向が前記磁気ディ ス ク ( 5 ) 面と垂直方 向である こ とを特徵とする磁気ディ スク装置。
2 4 . 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) は、 弾性を有する支持板 ( 2 0 ) に前記端子部 ( 2 4 a、 2
6 a ) を有する信号リ ー ドパター ン ( 2 4、 2 6 ) を設 けた ものである こ とを特徵とする磁気ディ ス ク装置。
2 5 . 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) の前 記支持板 ( 2 0 ) が、 絶縁板である こ とを特徵とする磁 気ディ ス ク装置。
2 6 . 請求の範囲 2 4 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) の前 記支持板 ( 2 0 ) が、 金属板 ( 2 0 ) に絶縁層 ( 2 7 ) を設た ものであ り、 前記絶縁層 ( 2 7 ) 上に前記信号 リ ー ドパター ンを設けたものである こ とを特徵とする磁気 ディ ス ク装置。
2 7 . 請求の範囲 2 4 又は 2 5 又は 2 6 において、 前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) は、 前記アーム ( 3 ) 側の固定端側の幅を広 く した ものであ る こ とを特徴とする磁気ディ ス ク装置。
2 8 . 請求の範囲 2 4 又は 2 5 又は 2 6 において、 前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) の先 端部が、 直角曲げされ、 前記直角曲げした部分に前記へ ッ ドチ ッ プ ( 1 ) を固定したこ とを特徵とする磁気ディ スク装置。
2 9 . 請求の範囲 2 8 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) の前 記直角曲げした部分が前記チ ッ プへッ ド ( 1 ) を覆う よ う に、 前記直角曲げした部分の内側に前記へッ ドチッ プ ( 1 ) を固定したこ とを特徵とする磁気ディ スク装置。
3 0 . 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) の前 記端子部 ( 2 1 、 2 3 ) と、 前記へッ ドチ ップ ( 1 ) の 端子部 ( 1 1 、 1 3 ) とを金ポールの圧着によ り接続し たこ とを特徵とする磁気ディ ス ク装置。
3 1 . 請求の範囲 2 4又は 2 5 又は 2 & において、 前記磁気へッ ド完成体の前記へッ ドチッ プ ( 1 ) に凸 部を設ける と と もに、 前記磁気へッ ド完成体の前記可撓 性支持体 ( 2 ) に前記へッ ドチッ プ ( 1 ) の凸部が勘合 される凹部を設けたこ とを特徵とする磁気ディ スク装置
O
3 2 . 請求の範囲 2 4 又は 2 5 又は 2 6 において、 前記磁気へッ ド完成体は、 前記へッ ドチ ッ プ ( 1 ) が 、 前記可撓性支持体 ( 2 ) に、 前記へッ ドチッ プ ( 1 ) の両面で接鏡されたこ とを特徵とする磁気ディ ス ク装置
0
3 3 . 請求の範囲 2 0 において、
前記磁気へッ ド完成体の前記可撓性支持体 ( 2 ) は、 弾性と導電性を有する一対の接続部材である こ とを特徴 とする磁気デイ ス ク装置。
3 4. 磁気ディ ス ク ( 5 ) と、
前記磁気ディ ス ク ( 5 ) を回転するス ピ ン ドルモータ と、
アーム ( 3 ) を有し、 前記アーム ( 3 ) を前記磁気デ イ スク ( 5 ) の ト ラ ッ ク と交叉する方向に移動するァ ク チユエ一夕 ( 4 ) と、
前記磁気ディ ス ク ( 5 ) にデータを記録し、 前記磁気 ディ ス ク ( 5 ) からデータを読み取るため、 前記アーム ( 3 ) に取 り付けられる磁気へッ ド完成体とを有し、 前記磁気へッ ド完成体は、
奥行 1 . O mm以下、 幅 0 . 5 mm以下及び厚み 0 . 2 mm以下の薄膜へッ ドチ ッ プ ( 1 ) と、
前記薄膜へッ ドチ ッ プ ( 1 ) を支持する可撓性支持体 ( 2 ) とを備えた こ とを特徵とする磁気ディ ス ク装置。
3 5 . 磁気デイ ス ク ( 5 ) と、
前記磁気ディ ス ク ( 5 ) を回転するス ピン ドルモ一夕 と、
アーム ( 3 ) を有し、 前記アーム ( 3 ) を前記磁気デ イ ス ク ( 5 ) の ト ラ ッ ク と交叉する方向に移動するァ ク チユエ一夕 ( 4 ) と、
前記磁気ディ ス ク ( 5 ) にデータを記録し、 前記磁気 ディ スク ( 5 ) からデータを読み取るため、 前記アーム ( 3 ) に取り付け られる磁気へッ ド完成体とを有し、 前記磁気へッ ド完成体は、
絶縁層と磁極 ( 1 6 ) と コ イ ル ( 1 7 ) と前記コ イ ル ( 1 7 ) の端子部 ( 1 1 、 1 3 ) とを薄膜によ り積曆形 成したへッ ドチ ッ プ ( 1 ) と、
前記アーム ( 3 ) に取り付けられ、 前記へッ ドチ ッ プ ( 1 ) を支持する輻 0. 5 mm以下、 厚み 0. 1 mm以 下及び長さ 1 1 mm以下の可撓性支持体 ( 2 ) とを備え たこ とを特徵とする磁気ディ スク装置。
3 6. 請求の範囲 2 0又は 3 4又は 3 5 において、 前記磁気へッ ド完成体の前記へッ ドチッ プ ( 1 ) が、 前記可撓性支持体 ( 2 ) によ り、 前記磁気ディ スク ( 5 ) に接触する接触型へッ ドである こ とを特徵とする磁気 ディ スク装置。
PCT/JP1993/000050 1992-01-20 1993-01-18 Magnetic head assembly, its manufacture, and magnetic disc device WO1993014495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP93901520A EP0576680B1 (en) 1992-01-20 1993-01-18 Magnetic head assembly, its manufacture, and magnetic disc device
DE69333464T DE69333464T2 (de) 1992-01-20 1993-01-18 Magnetkopfanordnung, dessen herstellung und magnetplattengerät

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP767992 1992-01-20
JP4/7679 1992-01-20
JP15949692 1992-06-18
JP4/159496 1992-06-18
JP18380092 1992-07-10
JP4/183800 1992-07-10
JP4/217077 1992-08-17
JP21707792 1992-08-17
JP23118492 1992-08-31
JP4/231184 1992-08-31
JP4/231185 1992-08-31
JP23118592 1992-08-31
JP27992092 1992-10-19
JP4/279920 1992-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/896,729 Continuation US6141182A (en) 1992-01-20 1997-07-18 Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements

Publications (1)

Publication Number Publication Date
WO1993014495A1 true WO1993014495A1 (en) 1993-07-22

Family

ID=27563419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000050 WO1993014495A1 (en) 1992-01-20 1993-01-18 Magnetic head assembly, its manufacture, and magnetic disc device

Country Status (5)

Country Link
US (3) US6002550A (ja)
EP (2) EP0576680B1 (ja)
KR (1) KR0133373B1 (ja)
DE (1) DE69333464T2 (ja)
WO (1) WO1993014495A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605984A3 (en) * 1993-01-08 1996-01-31 Ibm Unit structure of magnetic transducer and suspension.
US5644452A (en) * 1994-04-18 1997-07-01 Seagate Technology, Inc. Apparatus connecting a flexible circuit to an actuator arm of a disc drive
US5712748A (en) * 1996-06-11 1998-01-27 Seagate Technology, Inc. Slider-suspension in a disc drive
US5889635A (en) * 1996-09-13 1999-03-30 Nec Corporation Magnetic head slider and magnetic disk apparatus for redistributing a lubricant
US5991120A (en) * 1996-06-18 1999-11-23 Nec Corporation Contact type magnetic disk apparatus
US6040031A (en) * 1996-03-13 2000-03-21 Nec Corporation Contact recording magnetic disk device
US6181517B1 (en) 1994-12-26 2001-01-30 Nec Corporation Magnetic disc drive system with liquid film lubricating agent
US6385013B1 (en) 1998-06-09 2002-05-07 Nec Corporation Contact type magnetic disc apparatus

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600631B1 (en) * 1989-11-27 2003-07-29 Censtor Corp. Transducer/flexure/conductor structure for electromagnetic read/write system
US6320725B1 (en) * 1989-11-27 2001-11-20 Censtor Corporation Hard disk drive having ring head with predominantly perpendicular media fields
US6341415B2 (en) * 1992-08-31 2002-01-29 Fujitsu Limited Method for assembling a magnetic head assembly and magnetic disk drive using bonding balls connecting magnetic head terminals to wiring terminals
JP3667354B2 (ja) * 1992-11-27 2005-07-06 富士通株式会社 ヘッドスライダ支持体
JP2955829B2 (ja) * 1994-04-15 1999-10-04 ハッチンソン テクノロジー インコーポレイテッド ヘッドサスペンション
JPH08212516A (ja) * 1995-01-31 1996-08-20 Masaaki Matsui 支持ビームに対する接触型薄膜磁気ヘッド素子の接合方法
JP3383455B2 (ja) * 1995-02-10 2003-03-04 正顯 松井 支持ビームに対する磁気ヘッド素子の接合方法
US5608591A (en) * 1995-06-09 1997-03-04 International Business Machines Corporation Integrated head-electronics interconnection suspension for a data recording disk drive
JP2943779B2 (ja) * 1997-08-11 1999-08-30 日本電気株式会社 磁気ヘッドスライダ支持機構及び磁気ディスク装置
JP3057037B2 (ja) * 1997-09-26 2000-06-26 インターナショナル・ビジネス・マシーンズ・コーポレイション 超音波接着実行方法、サスペンション・アセンブリを変形させ維持させ解除する方法
US6278583B1 (en) * 1997-10-31 2001-08-21 Questek Innovations, Inc. Low impedance head/preamplifier chip position in a disk drive
CN1184616C (zh) * 1998-12-04 2005-01-12 阿尔卑斯电气株式会社 磁头和磁头的制造方法及其所用的连接用毛细管
US7116523B2 (en) * 1998-12-21 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Interconnect module for use in a suspension assembly
FR2795201B1 (fr) * 1999-06-15 2001-08-31 Gemplus Card Int Dispositif et procede de fabrication de dispositifs electroniques comportant au moins une puce fixee sur un support
US6757135B2 (en) * 2000-07-28 2004-06-29 Seagate Technology Llc Leading edge bond pads
JP3630088B2 (ja) * 2000-09-19 2005-03-16 Tdk株式会社 ヘッドアームアセンブリの製造方法
US20020057531A1 (en) * 2000-11-15 2002-05-16 Seagate Technology Llc HGA ballbond assembly with wafer process assembly features
US7095594B2 (en) * 2000-11-28 2006-08-22 Texas Instruments Incorporated Active read/write head circuit with interface circuit
US6728065B2 (en) * 2001-03-29 2004-04-27 Seagate Technology Llc Single pole magnetic recording head for perpendicular magnetic recording
US6995950B2 (en) * 2001-04-09 2006-02-07 Maxtor Corporation Transverse biased shields for perpendicular recording to reduce stray field sensitivity
US6771464B2 (en) * 2001-10-19 2004-08-03 Seagate Technology Llc Perpendicular magnetic recording head with a laminated main write pole
US7333294B1 (en) 2001-12-18 2008-02-19 Seagate Technology Llc Perpendicular writer with reduced side track writing
US7307816B1 (en) 2001-12-21 2007-12-11 Western Digital (Fremont), Llc Flexure design and assembly process for attachment of slider using solder and laser reflow
US6796018B1 (en) 2001-12-21 2004-09-28 Western Digital (Fremont), Inc. Method of forming a slider/suspension assembly
US6785094B2 (en) * 2002-04-24 2004-08-31 Hitachi Global Storage Technologies Weld free high performance laminate suspension
US7203033B2 (en) * 2002-10-02 2007-04-10 Seagate Technology Llc Head gimbal assembly with an integrated mechanical and electrical attachment and a stiff plate
US7289285B2 (en) * 2002-10-24 2007-10-30 Charles Frederick James Barnes Information storage systems
US7681302B2 (en) * 2003-01-27 2010-03-23 Sae Magnetics (H. K.) Ltd. Method for manufacturing a hard disk drive arm
US7239485B2 (en) * 2003-08-21 2007-07-03 Seagate Technology Llc Localized heating element for a suspension assembly
US7177246B2 (en) * 2003-09-12 2007-02-13 Hewlett-Packard Development Company, L.P. Optical disk drive focusing apparatus using sum signal
US6993835B2 (en) * 2003-12-04 2006-02-07 Irvine Sensors Corp. Method for electrical interconnection of angularly disposed conductive patterns
US20050231852A1 (en) * 2004-04-14 2005-10-20 Hong Tian Slider for high density magnetic recording
US20060132978A1 (en) * 2004-04-14 2006-06-22 Hong Tian Slider for high density magnetic recording
US7296338B2 (en) * 2004-07-30 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for providing a reverse air bearing surface head with trailing shield design for perpendicular recording
JP2006048734A (ja) * 2004-07-30 2006-02-16 Fujitsu Ltd 磁気ディスク装置のヘッド支持機構
US7643249B2 (en) * 2004-10-04 2010-01-05 Tdk Corporation Supporting mechanism for magnetic head slider and testing method for the magnetic head slider
JP4028554B2 (ja) * 2005-02-08 2007-12-26 アルプス電気株式会社 磁気ヘッド装置
JP4008478B2 (ja) * 2005-07-13 2007-11-14 Tdk株式会社 磁界検出素子、基体、ウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、および磁界検出素子の製造方法
KR100891531B1 (ko) * 2007-09-10 2009-04-03 주식회사 하이닉스반도체 패턴 정렬 불량 검출 장치
US8542465B2 (en) 2010-03-17 2013-09-24 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
US8885299B1 (en) 2010-05-24 2014-11-11 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US8665567B2 (en) 2010-06-30 2014-03-04 Western Digital Technologies, Inc. Suspension assembly having a microactuator grounded to a flexure
WO2013138619A1 (en) 2012-03-16 2013-09-19 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (dsa) disk drive head suspension
WO2013142711A1 (en) 2012-03-22 2013-09-26 Hutchinson Technology Incorporated Ground feature for disk drive head suspension flexures
JP6251745B2 (ja) 2012-09-14 2017-12-20 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated 2段始動構造部を有するジンバル形撓み部材及びサスペンション
US8896968B2 (en) 2012-10-10 2014-11-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8941951B2 (en) 2012-11-28 2015-01-27 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
US8891206B2 (en) 2012-12-17 2014-11-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
US8896969B1 (en) 2013-05-23 2014-11-25 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US8717712B1 (en) 2013-07-15 2014-05-06 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US8896970B1 (en) 2013-12-31 2014-11-25 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US8867173B1 (en) 2014-01-03 2014-10-21 Hutchinson Technology Incorporated Balanced multi-trace transmission in a hard disk drive flexure
US9070392B1 (en) 2014-12-16 2015-06-30 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9318136B1 (en) 2014-12-22 2016-04-19 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US9296188B1 (en) 2015-02-17 2016-03-29 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
WO2017003782A1 (en) 2015-06-30 2017-01-05 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US9646638B1 (en) 2016-05-12 2017-05-09 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
US10460754B2 (en) * 2018-02-05 2019-10-29 Western Digital Technologies, Inc. Slider and suspension arm interconnection for magnetic storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881719U (ja) * 1981-11-27 1983-06-02 ソニー株式会社 多チヤンネル薄膜磁気ヘツド
JPS5938920A (ja) * 1982-08-25 1984-03-03 Matsushita Electric Ind Co Ltd 多チヤンネル薄膜磁気ヘツド

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706861A (en) * 1969-09-18 1972-12-19 Rca Corp Apparatus for mounting and spacing a signal transducer with respect to a recording medium
NL7908611A (nl) * 1979-11-28 1981-07-01 Philips Nv Geintegreerde magneetkopconstructie.
JPS57167172A (en) * 1981-04-07 1982-10-14 Victor Co Of Japan Ltd High density information recording and reproducing system
JPS5881719A (ja) * 1981-11-11 1983-05-17 カゴメ株式会社 多段液槽への溶液自動供給装置
JPS59168968A (ja) * 1983-03-17 1984-09-22 Fujitsu Ltd 磁気記憶装置
JPS6029914A (ja) 1983-07-29 1985-02-15 Nippon Telegr & Teleph Corp <Ntt> 薄膜ヘツド
US4546541A (en) * 1983-10-14 1985-10-15 Applied Magnetics Corporation Method of attaching electrical conductors to thin film magnetic transducer
JPH0329769Y2 (ja) * 1984-10-05 1991-06-25
JPS61104313A (ja) * 1984-10-22 1986-05-22 Sharp Corp 薄膜磁気ヘツド装置
JPS61153117A (ja) 1984-12-26 1986-07-11 Mitsubishi Electric Corp 磁気フイルタ
US4731920A (en) * 1985-06-26 1988-03-22 Fuji Photo Film Co., Ltd. Method for mounting a magnetic head
US4645280A (en) * 1985-08-08 1987-02-24 Rogers Corporation Solderless connection technique between data/servo flex circuits and magnetic disc heads
US4761699A (en) * 1986-10-28 1988-08-02 International Business Machines Corporation Slider-suspension assembly and method for attaching a slider to a suspension in a data recording disk file
US4789914A (en) * 1986-10-28 1988-12-06 International Business Machines Corporation Thin film magnetic read-write head/arm assemblies
JPS63292405A (ja) * 1987-05-15 1988-11-29 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション 垂直磁気記録用磁気ヘツド
US4833556A (en) * 1987-12-22 1989-05-23 Eastman Kodak Company Low drag stabilizer device for stabilizing the interface between a transducer and a moving medium
JP2613906B2 (ja) * 1987-12-28 1997-05-28 日本放送協会 薄膜磁気ヘッド及びその製造方法
JPH01263906A (ja) 1988-04-15 1989-10-20 Hitachi Ltd ダブルアジマス薄膜磁気ヘッド及びその組立体
JPH073739B2 (ja) * 1988-04-19 1995-01-18 株式会社日立製作所 磁気ヘッド組立体
JPH029068A (ja) * 1988-06-27 1990-01-12 Nippon Telegr & Teleph Corp <Ntt> 記録及び/又は再生方法
US5047884A (en) * 1989-01-17 1991-09-10 Fuji Photo Film Co., Ltd. Magnetic head having a control portion for generating negative pressure
JPH0782630B2 (ja) * 1989-02-28 1995-09-06 三菱電機株式会社 薄膜磁気ヘッド装置
US5001583A (en) * 1989-04-19 1991-03-19 Tdk Corporation Flexible polymeric resinous magnetic head supporting device
US5006946A (en) * 1989-04-19 1991-04-09 Tdk Corporation Flexible polymeric resinous magnetic head supporting device
JP2713762B2 (ja) * 1989-05-03 1998-02-16 ティーディーケイ株式会社 ヘッド支持装置
JP2758436B2 (ja) * 1989-05-03 1998-05-28 ティーディーケイ株式会社 ヘッド支持装置
JP2595097B2 (ja) * 1989-07-05 1997-03-26 株式会社日立製作所 回転磁気ヘッド装置
US4996623A (en) * 1989-08-07 1991-02-26 International Business Machines Corporation Laminated suspension for a negative pressure slider in a data recording disk file
US5453315A (en) * 1989-11-27 1995-09-26 Censtor Corp. Unitary micro-flexure structure and method of making same
US5550691A (en) * 1989-11-27 1996-08-27 Censtor Corp. Size-independent, rigid-disk, magnetic, digital-information storage system with localized read/write enhancements
US5111351A (en) * 1989-11-27 1992-05-05 Censtor Corp. Integrated magnetic read/write head/flexure/conductor structure
US5490027A (en) * 1991-10-28 1996-02-06 Censtor Corp. Gimbaled micro-head/flexure/conductor assembly and system
US5041932A (en) * 1989-11-27 1991-08-20 Censtor Corp. Integrated magnetic read/write head/flexure/conductor structure
JP2693614B2 (ja) * 1990-02-05 1997-12-24 アルプス電気株式会社 薄膜磁気ヘッド及びその製造方法
JPH03245312A (ja) * 1990-02-22 1991-10-31 Tdk Corp 薄膜磁気ヘッド
JPH04137209A (ja) * 1990-04-19 1992-05-12 Sumitomo Special Metals Co Ltd 垂直磁気記録再生用薄膜ヘッド
US5285341A (en) * 1990-12-17 1994-02-08 Canon Kabushiki Kaisha Thin film magnetic head
ATE157189T1 (de) * 1991-04-10 1997-09-15 Censtor Corp Verschleissarmer kopf zur wiedergabe und aufnahme mit berührung auf einem magnetischen träger
EP0518626A3 (en) * 1991-06-10 1993-03-17 Fujitsu Limited Magnetic disk drive and method for assembling the same
US5200867A (en) * 1991-07-02 1993-04-06 International Business Machines Corporation Transducer carrier for disk file with liquid film head-disk interface
JP3104328B2 (ja) * 1991-10-22 2000-10-30 ソニー株式会社 垂直磁気記録装置及び垂直磁気記録再生装置
FR2684479B1 (fr) * 1991-11-29 1994-01-07 Commissariat A Energie Atomique Ressort pour patin de vol, procede de realisation de ce ressort et machine mettant en óoeuvre ce procede.
CA2090708A1 (en) * 1992-04-30 1993-10-31 Jeffrey Merritt Mckay Combination transducer/slider/suspension and method for making
US5327310A (en) * 1992-06-25 1994-07-05 Read-Rite Corporation Thin film contact recording head
JP2721783B2 (ja) * 1992-08-19 1998-03-04 インターナショナル・ビジネス・マシーンズ・コーポレイション 薄膜磁気ヘッド変換器/懸架部の組合せシステム並びにその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881719U (ja) * 1981-11-27 1983-06-02 ソニー株式会社 多チヤンネル薄膜磁気ヘツド
JPS5938920A (ja) * 1982-08-25 1984-03-03 Matsushita Electric Ind Co Ltd 多チヤンネル薄膜磁気ヘツド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0576680A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605984A3 (en) * 1993-01-08 1996-01-31 Ibm Unit structure of magnetic transducer and suspension.
US5644452A (en) * 1994-04-18 1997-07-01 Seagate Technology, Inc. Apparatus connecting a flexible circuit to an actuator arm of a disc drive
US6181517B1 (en) 1994-12-26 2001-01-30 Nec Corporation Magnetic disc drive system with liquid film lubricating agent
US6040031A (en) * 1996-03-13 2000-03-21 Nec Corporation Contact recording magnetic disk device
US5712748A (en) * 1996-06-11 1998-01-27 Seagate Technology, Inc. Slider-suspension in a disc drive
US5991120A (en) * 1996-06-18 1999-11-23 Nec Corporation Contact type magnetic disk apparatus
US5889635A (en) * 1996-09-13 1999-03-30 Nec Corporation Magnetic head slider and magnetic disk apparatus for redistributing a lubricant
US6385013B1 (en) 1998-06-09 2002-05-07 Nec Corporation Contact type magnetic disc apparatus
US6671129B2 (en) 1998-06-09 2003-12-30 Nec Corporation Contact type magnetic disc apparatus

Also Published As

Publication number Publication date
DE69333464T2 (de) 2004-09-09
US6002550A (en) 1999-12-14
DE69333464D1 (de) 2004-05-06
KR0133373B1 (en) 1998-04-22
EP0911809A3 (en) 2006-11-15
EP0576680B1 (en) 2004-03-31
US6141182A (en) 2000-10-31
EP0911809A2 (en) 1999-04-28
EP0576680A1 (en) 1994-01-05
US6229673B1 (en) 2001-05-08
EP0576680A4 (ja) 1994-02-16

Similar Documents

Publication Publication Date Title
WO1993014495A1 (en) Magnetic head assembly, its manufacture, and magnetic disc device
US7724478B2 (en) Magnetic disk drive, wiring connection structure and terminal structure
JP3154654B2 (ja) 薄膜積層構造のサスペンション/アクチュエータの一体型アセンブリおよびその製造方法
US6125014A (en) Via-less connection using interconnect traces between bond pads and a transducer coil of a magnetic head slider
US6796018B1 (en) Method of forming a slider/suspension assembly
US6351354B1 (en) Head to flexure interconnection for disc drive microactuator
US6781286B2 (en) Piezoelectric driving device
US6404706B1 (en) Laser mounting for a thermally assisted GMR head
JP5285550B2 (ja) 圧電アクチュエータの給電構造、及びヘッドサスペンション
JPH06195625A (ja) 磁気構造体およびこれを用いた磁気ヘッド
JP2006503402A5 (ja)
KR100370717B1 (ko) 데이터 기록 장치 및 헤드 스택 조립체
US5831788A (en) Circuit connector
US6341415B2 (en) Method for assembling a magnetic head assembly and magnetic disk drive using bonding balls connecting magnetic head terminals to wiring terminals
JP2693614B2 (ja) 薄膜磁気ヘッド及びその製造方法
US4215467A (en) Method of producing a magnetic head platform
JP2544580B2 (ja) 磁気ヘッド組立体、その製造方法及び磁気ディスク装置
US5999376A (en) Magnetic head device with terminal portions of conductive patterns extending outwardly from printed writing board to contact head chip lead wires
JP2003317217A (ja) 磁気ヘッドアセンブリ及びそれを用いた磁気ディスク記憶装置
JP3731731B2 (ja) 磁気ヘッド装置の製造方法
JP5001910B2 (ja) 電極端子の接続構造及びハードディスク装置
JPH1186253A (ja) 磁気ディスク記憶装置
JPH11167703A (ja) 薄膜磁気ヘッド組立体及びその製造方法
JP2002245732A (ja) 情報記録再生ディスク装置
JPH11213333A (ja) 薄膜磁気ヘッド組立体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 1993 30365

Country of ref document: US

Date of ref document: 19930317

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1993901520

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1019930702616

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1993901520

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993901520

Country of ref document: EP