WO1993010556A1 - Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor - Google Patents

Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor Download PDF

Info

Publication number
WO1993010556A1
WO1993010556A1 PCT/JP1992/001534 JP9201534W WO9310556A1 WO 1993010556 A1 WO1993010556 A1 WO 1993010556A1 JP 9201534 W JP9201534 W JP 9201534W WO 9310556 A1 WO9310556 A1 WO 9310556A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
oxide film
furnace tube
nickel
Prior art date
Application number
PCT/JP1992/001534
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Original Assignee
Tadahiro Ohmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33426191A external-priority patent/JPH05141871A/ja
Priority claimed from JP33426091A external-priority patent/JPH05144804A/ja
Priority claimed from JP33426391A external-priority patent/JP3535876B2/ja
Priority claimed from JP03342229A external-priority patent/JP3129338B2/ja
Application filed by Tadahiro Ohmi filed Critical Tadahiro Ohmi
Priority to EP19920924004 priority Critical patent/EP0614216A4/en
Publication of WO1993010556A1 publication Critical patent/WO1993010556A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Definitions

  • the present invention relates to a heat treatment apparatus such as an oxide film forming apparatus and a sintering apparatus widely used in a semiconductor manufacturing process.
  • the present invention also relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device capable of forming a highly reliable oxide film / silicon interface and a method of manufacturing the same.
  • a gas core such as oxygen or hydrogen gas was mixed into a furnace tube made of a quartz tube heated by an electric resistance heating method to form an oxide film on the surface of a silicon substrate.
  • oxygen or the like By introducing oxygen or the like and burning hydrogen, water vapor is generated, and the gas body and the water vapor are brought into contact with the heated silicon substrate.
  • the introduced hydrogen gas burns at the tip of the quartz tube, which is the furnace core tube, so the tip of the quartz tube melts and a large number of particles are generated, and this particle becomes a silicon substrate. Source of pollution.
  • the furnace tube itself for performing the oxidation reaction process must not be contaminated by particles and must be as clean as possible.
  • ultra-cleaning in the atmosphere of the thermal oxide film formation process is indispensable for realizing ultra-miniaturized LSI.
  • An object of the present invention is to provide an oxide film forming apparatus capable of performing a wet oxidation reaction process or the like in order to form a highly reliable oxide film on a surface of a substrate in a furnace tube in order to solve the above-mentioned problems of the prior art.
  • the purpose is to provide.
  • the conventional technology will be described using an example of a sintering device for terminating a danglinda bond at the oxide film / silicon interface with hydrogen.
  • a hydrogen gas or a mixed gas of an inert gas and a hydrogen gas is introduced into a furnace tube made of a quartz tube heated by an electric resistance heating method.
  • An apparatus is known which is configured to contact a heated oxide film / silicon substrate and terminate dangling bonds with hydrogen.
  • hydrogen gas or a mixture gas of an inert gas and hydrogen gas is converted into a plasma, and hydrogen ions and hydrogen active species in the plasma are brought into contact with the oxide film Z silicon substrate, and the dangling bonds are hydrogenated.
  • Devices configured to terminate are also known.
  • the present invention provides a heat treatment apparatus capable of performing active gas sintering or the like in order to form a highly reliable oxide film on the surface of a substrate in a furnace tube in order to solve the above-mentioned prior art. Intended to provide,
  • the conventional technology will be described using an oxide film as an insulating film and silicon as an example of a semiconductor.
  • a so-called sintering method has been known as one of the methods for terminating dangling bonds at an oxide film / silicon interface.
  • This method involves forming an oxide film or an oxide film and electrodes, wiring, etc. on a silicon substrate, and then bringing the mixed oxide such as hydrogen or inert gas into contact with the heated oxide film / silicon substrate. This method terminates dangling bonds at the oxide film / silicon interface with hydrogen.
  • zR raw gas or a mixed gas obtained by mixing inert gas and hydrogen gas is converted into plasma, hydrogen ions and hydrogen active species in the plasma are brought into contact with the oxide silicon substrate, and the dangling bonds are hydrogenated. Termination techniques are also known.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and has a semiconductor device having an interface between a highly reliable insulating film and a semiconductor (for example, an oxide film and a silicon interface). It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of manufacturing a device.
  • the conventional technology will be described by taking an oxide film as an insulating film and silicon as a semiconductor as an example.
  • a so-called sintering method has been known as one of the techniques for terminating a danglinda bond at an oxide film / silicon interface.
  • an oxide film or an oxide film, electrodes, wiring, and the like are formed on a silicon substrate, and then a mixture of a gas such as hydrogen and an inert gas is contacted with the heated oxide film and the silicon substrate.
  • This method terminates the danglinda bond at the oxide film-silicon interface with hydrogen.
  • ⁇ ⁇ ⁇ gas or a mixed gas obtained by mixing an inert gas and hydrogen gas is converted into a plasma, and hydrogen ions and hydrogen active species in the plasma are brought into contact with the oxide film and the silicon substrate to convert dangling bonds into hydrogen.
  • a technique of terminating at the end is also known.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and has high reliability. It is an object of the present invention to provide a semiconductor device having an interface between an insulating film and a semiconductor (for example, an oxide silicon interface). Disclosure of the invention
  • the gist of the present invention is that an openable / closable opening for carrying in / out an object to be processed, a hydrogen gas inlet for introducing gas into the inside, and an oxygen gas inlet for introducing oxygen gas into the inside are provided.
  • a core tube having;
  • Furnace tube heating means for heating the inside of the furnace tube
  • a hydrogen gas inlet pipe connected to and connected to the hydrogen gas inlet
  • An oxygen gas inlet pipe connected to and connected to the oxygen gas inlet
  • At least an inner surface of the hydrogen gas introduction pipe is made of a material containing Nigel or Niker.
  • Another gist of the present invention is a core tube having an openable / closable opening for carrying in / out an object to be processed and a gas inlet for introducing gas into the inside;
  • Furnace tube heating means for heating the inside of the furnace tube
  • a gas inlet pipe connected to the gas inlet and having a plurality of branch pipes on the gas source side;
  • At least the inner surface of at least a part or all of the branch pipe into which hydrogen gas or gas containing hydrogen is to be introduced is made of Nigel or Nigel-containing material. I do.
  • the hydrogen gas introduction pipe 2a is connected to the furnace core pipe 1 by communicating with the 7K element gas introduction port 12a, and the heating means 9 is connected to the hydrogen gas introduction pipe 2a. Arrange so that a can be heated. At this time, the inner surface of the hydrogen gas introduction pipe 2a is made of a material containing Nigel or nickel.
  • the oxygen gas introduction pipe 3 is brought into communication with the oxygen gas introduction port 1 2b to surround the furnace core pipe 1.
  • the activated hydrogen species reacts with the hydrogen species introduced into the reactor core tube 1 from the oxygen gas inlet pipe 2b through the oxygen gas inlet port 12b to generate water. Since this reaction does not involve combustion, there is no melting of the furnace tube 1 and no generation of particles. It is preferable that the downstream end of the hydrogen gas introduction pipe 2 a be located away from the side wall of the reactor core tube 1.
  • a gas inlet pipe 2 having branch pipes 2 a ′ and 2 b ′ is connected to the gas inlet 12 and connected to the reactor core pipe 1.
  • the branch pipe 2a ' is connected to the hydrogen gas source, and the branch pipe 2b' is connected to the oxygen gas source.
  • Part or all of the inner surface of the branch pipe 2a ' is made of nickel or a material containing nickel.
  • the heating means 9 is arranged so as to heat the branch pipe 2a '.
  • Figures 1-1 and 1-2 show examples in which the inlet pipe 2 is provided, but without such an inlet pipe, the inner surface of the reactor core pipe 1 is not covered with a nickel or two as shown in Figure 1_3. It may be made of a material including nickel.
  • the heating can be performed by the furnace tube heating means 4, so that the hydrogen inside the furnace tube 1 can be heated. Active species can be generated. Note that the portion made of nickel or a material containing nickel may be only on the upstream side of the position where the workpiece 5 is arranged, but the remaining portion may be made of such a material.
  • the hydrogen active species generating means is configured by forming the inner surface of the introduction tube or the furnace core tube from a material containing nickel or Nigel, but may be other than such a configuration.
  • a material containing nickel or Nigel for example, by providing a container filled with nickel (for example, fibrous nickel, mesh nickel, sponge nickel, etc.) between the raw gas source and the furnace tube, May be configured. If hydrogen gas or a gas containing hydrogen is passed through this vessel and this vessel is heated to 300 ° C. or more, 7] elementary active species can be obtained. Can be introduced.
  • the Nigel-containing material 4 is preferably, for example, a Ni-based alloy. Further, among the Ni-based alloys, a Ni-Mo alloy or a Ni-W alloy is preferable. More specifically, for example, Hastelloy (registered trademark) can be mentioned.
  • nickel-containing material for example, stainless steel electrolytically polished to a surface roughness of l / m or less may be used.
  • a passivation film formed by performing a heat treatment in an oxidizing atmosphere followed by a reduction treatment in a hydrogen atmosphere is formed on the surface of (see Japanese Patent Application No. 3-212125-92). It is more preferable to use
  • the surface of such a passivation film is mainly composed of chromium oxide, and its surface is excellent in corrosion resistance.
  • the passivation film preferably has a surface roughness of 0.5 m or less, more preferably 0.1 im or less.
  • the passivation film contains chromium oxide as a main component, but contains nickel oxide. The nickel in the nickel oxide acts as a catalyst, and hydrogen gas in contact with the surface of the passivation film is used. It is considered that active hydrogen species are generated from the hydrogen.
  • a heat treatment apparatus includes a furnace tube having an openable / closable opening for carrying in / out an object to be processed and a gas inlet for introducing gas into the furnace;
  • Furnace tube heating means for heating the inside of the furnace tube
  • a hydrogen active species generating means for generating a hydrogen active species from a hydrogen gas or a gas containing hydrogen without a plasma at an upstream side of a position of an object disposed inside the furnace tube;
  • the hydrogen activity for generating the hydrogen active species from the hydrogen gas or the gas containing hydrogen without generating plasma from the hydrogen gas or the gas containing hydrogen at the upstream side of the position of the object to be treated arranged inside the furnace tube. Since a species generating means is provided, when a hydrogen gas or a gas containing hydrogen is introduced into the hydrogen active species generating means, a hydrogen active species is generated.
  • the 7j elementary active species diffuses in the oxide film and dangling in the oxide film and at the oxide film / silicon interface. Terminate the ring bond. Therefore, a highly reliable oxide film can be obtained.
  • a hydrogen active species generating means for generating ⁇ hydrogen active species from a gas containing hydrogen or a gas containing hydrogen without generating plasma.
  • the production means may be configured, for example, as follows.
  • the gas introduction pipe 2 is connected to the furnace core pipe 1 by communicating with the gas introduction port 12, and the heating means 9 is arranged so as to heat the gas introduction pipe 2. Place.
  • the inner surface of the gas introduction pipe 2 is made of nickel or a material containing nickel).
  • a gas inlet tube having branch tubes 2a and 2b is used.
  • the branch pipe 2a is connected to a hydrogen gas source.
  • the example shown in Fig. 2-2 is for two branch pipes, but two or more branch pipes may be provided if necessary.
  • Part or all of the inner surface of the introduction tube 2 is made of a material containing nickel or nigel.
  • the inner surface of the branch pipe 2a is made of nickel or a material containing nickel (claim 11).
  • the heating means 9 is disposed so as to heat the branch pipe 2a (claim 12).
  • the heating means 9 is arranged so that the part where the branch pipes 2a and 2b join (this part becomes the mixing part 2c of the gas from the respective branch pipes 2a and 2b) can be heated. (Claim 13) o
  • the force shown in the example where the inlet pipe 2 was provided is shown as follows: ', without such an inlet pipe, as shown in Figure 2-3, the inner surface of the core tube 1 Alternatively, it may be made of a material including nickel.
  • heating means as shown in FIGS. 2-1 and 2-2, and heating can be performed by the furnace tube heating means 4, so that the inside of the furnace tube 1 is provided. l, hydrogen active species can be generated.
  • the portion made of a material containing nickel or Nigel [] may be sufficient only on the upstream side of the position where the object 5 is arranged, but the remaining portion may be made of such a material.
  • the hydrogen active species generating means is configured by forming the inner surface of the introduction tube or the furnace tube with nickel or a material containing nickel, but may be other than such a configuration.
  • the ⁇ element generation means is configured. Is also good. Inside this container
  • hydrogen active species can be obtained, and the hydrogen active species can be introduced into the furnace tube. it can.
  • Nigel or a material containing Nigel will be described.
  • Ni-based alloy As the material containing nickel, for example, a Ni-based alloy is preferable. Further, among the Ni-based alloys, an Nj-Mo-based alloy or a Ni-W-based alloy is preferable. More specifically, for example, Hastelloy (registered trademark) can be mentioned.
  • nickel-containing material for example, stainless steel having a surface roughness electrolytically polished to a surface roughness of 1 or less may be used.
  • a passivation film formed by performing a heat treatment in an oxidizing atmosphere followed by a reduction treatment in a hydrogen atmosphere is formed on the surface of (see Japanese Patent Application No. 3-212125-92). It is more preferable to use
  • the surface of such a passivation film is mainly composed of chromium oxide, and its surface is excellent in corrosion resistance.
  • the surface roughness of the passivation film is preferably 0.5 / m or less, more preferably 0.1 jam or less.
  • the passivation film contains chromium oxide as a main component, but also contains nickel oxide. The nickel in the nickel oxide acts as a catalyst, and hydrogen gas in contact with the surface of the passivation film is used. It is considered that active hydrogen species are generated from the hydrogen. ⁇
  • a method for manufacturing a semiconductor device according to the present invention is characterized in that, in the method for manufacturing a semiconductor device having an insulating film Z semiconductor interface, a hydrogen active species without plasma is brought into contact with the insulating film.
  • a method of manufacturing a semiconductor wherein a substrate having an insulating film on at least a part thereof is brought into contact with hydrogen or a gas containing hydrogen that has been brought into contact with nickel or nickel-containing material heated to a temperature of 300 ° C or more.
  • the insulating film of a semiconductor device having an insulating film / semiconductor interface (for example, a silicon oxide film / silicon interface) is provided with an L, hydrogen active species (eg, 30) without plasma.
  • an L, hydrogen active species eg, 30
  • a material containing nickel or nickel heated to a temperature of 0 ° C or more a hydrogen-activated species.
  • the active hydrogen species contacts the insulating film, it diffuses in the insulating film and terminates dangling bonds in the insulating film and at the interface between the insulating film and the semiconductor without giving damage. Therefore, a high C, highly reliable insulating film and, consequently, a semiconductor device can be obtained.
  • hydrogen active species are generated from a hydrogen gas or a gas containing hydrogen without plasma, and dangling bonds are terminated using the hydrogen active species.
  • Means for generating such hydrogen active species may be configured, for example, as follows.
  • the gas introduction pipe 2 is connected to the furnace inlet pipe 1 by communicating with the gas introduction port 12 so that the heating means 9 can heat the gas introduction pipe 2. Deploy. At this time, the inner surface of the gas introduction pipe 2 is made of nickel or a material containing nickel.
  • a gas introduction tube having branch tubes 2a and 2b 2 is connected to the gas inlet 1 2 and connected to the furnace tube 1.
  • the branch pipe 2a is connected to a hydrogen gas source.
  • the example shown in Fig. 3-2 is for two branch pipes. Force Two or more branch pipes may be provided as needed.
  • Part or all of the inner surface of the introduction tube 2 is made of Nigel or a material containing Nigel.
  • the inner surface of the branch pipe 2a is constituted by a dough containing Nigel or Nikel.
  • the heating means 9 is arranged so as to heat the branch pipe 2a.
  • the heating means 9 is arranged so as to heat the part where the branch pipes 2a and 2b join (this part becomes the mixing part 2c of the gas from the respective branch pipes 2a and 2b). You may.
  • Figures 3-1 and 3-2 show examples where the inlet pipe 2 was provided, but without such an inlet pipe, as shown in Figure 3-3, the inner surface of the core tube 1 was either It may be composed of a material containing a dagger.
  • heating means as shown in FIGS. 3-1 and 3-2, and heating can be performed by the furnace tube heating means 4. Active species can be generated. Note that the portion made of nickel or a material containing nickel may be only on the upstream side of the position where the workpiece 5 is arranged, but the remaining portion may be made of such a material.
  • the inner surface of the introduction tube or the core tube may be made of nickel or a material containing nickel, and may have a structure other than the strong structure that constitutes the hydrogen active species generating means.
  • a vessel filled with nigel eg, fibrous nickel, mesh nickel, sponge nickel, etc.
  • a gas containing hydrogen gas or hydrogen gas is passed through this container, and this container is heated to 300 or more. By doing so, a nitrogen active species can be obtained, and this hydrogen active species can be introduced into the reactor core tube.
  • the wiring portion of the semiconductor device is formed of nickel or a nickel alloy
  • the wiring portion is heated to 300 ° C. or more, and a hydrogen gas or a gas containing hydrogen is brought into contact therewith. Active hydrogen species are generated.
  • Ni-based alloy As the material 1 containing nickel, for example, a Ni-based alloy is preferable. Further, among the Ni-based alloys, a Ni-Mo-based alloy or a Ni-W-based alloy is preferable. More specifically, for example, Hastelloy (registered trademark) can be mentioned.
  • a passivation film formed by heat treatment in an oxidizing atmosphere having an impurity concentration of 10 ppb or less is preferably formed on the surface of the stainless steel.
  • a passivation film formed by heat treatment in an oxidizing atmosphere followed by reduction in a hydrogen atmosphere is formed on the surface of stainless steel (Japanese Patent Application No. 3-212125 It is more preferable to use
  • the surface of such a passivation film contains chromium oxide as a main component, and its surface is excellent in corrosion resistance.
  • contamination of gas with impurities can be extremely reduced.
  • the surface roughness of the passivation film is preferably 0.5 or less, more preferably 0.1 m or less.
  • a passivation film contains chromium oxide as a main component, but also contains a Nigel oxide.
  • the Nigel in the nickel oxide acts as a catalyst, and the hydrogen in contact with the surface of the passivation film is hydrogen. It is thought that active species of hydrogen are generated from the gas.
  • Examples of the semiconductor in the present invention include a semiconductor wafer, an insulating substrate, and a semiconductor layer formed on a semiconductor wafer.
  • the semiconductor layer for example, a compound semiconductor such as silicon, germanium, and GaAs Conductors.
  • the crystalline state of the semiconductor may be any of amorphous, polycrystalline, and single crystal.
  • examples of the insulating film include an oxide film and a nitride film.
  • This insulating film may be formed by heating (for example, a thermal oxide film), by deposition (deposited oxide film), or by any other method.
  • the temperature of nickel and a material containing nickel is 300 ° C. or higher. Below 300 ° C-the generation of active hydrogen species is not sufficient. In particular, the temperature is preferably from 300 ° C. to 450 ° C., and more preferably from 300 ° C. to 400 ° C. If the temperature exceeds 450 ° C, the amount of active hydrogen species generated increases.On the other hand, if a passivation film is not formed on the surface of nickel or a material containing nickel, impurities are released from the surface. This is because the impurities may be mixed into the gas.
  • the temperature of the substrate when the gas containing the active hydrogen species is brought into contact with the substrate having the insulating film is preferably from 20 to L ° C., more preferably from L to 200 ° C.
  • the temperature is more preferably from 20 to 450 ° C.
  • the gas brought into contact with nickel or a material containing nickel is hydrogen gas or gas containing hydrogen.
  • the gas containing hydrogen for example, a mixed gas of hydrogen gas and an inert gas (for example, Ar gas, nitrogen gas, or the like) may be used.
  • the gas flow rate is not particularly limited.
  • the semiconductor device according to the present invention has an insulating film that has been subjected to sintering treatment with a hydrogen active species without plasma.
  • the insulating film of a semiconductor device having an insulating film Z semiconductor interface has hydrogen-free plasma. It is formed by contacting an active species (for example, a hydrogen active species generated by contacting nickel or a material containing nickel heated to a temperature of 300 ° C. or more).
  • an active species for example, a hydrogen active species generated by contacting nickel or a material containing nickel heated to a temperature of 300 ° C. or more.
  • One feature of the present invention is that hydrogen active species are generated from a hydrogen gas or a gas containing hydrogen without plasma, and dangling bonds are terminated using the hydrogen active species.
  • Means for generating such hydrogen active species may be configured, for example, as follows.
  • the gas inlet 312 is connected to the gas inlet 312, the gas inlet 3102 is connected to the core tube 301, and the heating means 309 is connected to the gas inlet 311. Arrange so that 02 can be heated.
  • the inner surface of the gas inlet tube 302 is made of nickel or a material containing nickel.
  • the inside of the gas introduction pipe 302 is heated by heating the inside of the gas introduction pipe 302 to 300 ° C. or higher by a heating means and introducing hydrogen gas from the hydrogen gas source into the gas introduction pipe 302.
  • Active hydrogen species are generated from the hydrogen gas in contact with the gas. This is presumably because at a temperature of 300 ° C. or higher, nickel itself constituting the gas inlet tube 302 or nickel in a nickel-containing material has a catalytic action. The active hydrogen species generated in this manner does not have plasma and does not damage the workpiece.
  • branch pipes 302a and 302b are provided as shown in Fig. 4-4.
  • the gas inlet pipe 302 is connected to the gas inlet 310 2 by connecting the gas inlet pipe 302 with the core pipe 301.
  • the branch 302a is surrounded by a hydrogen gas source.
  • FIGS. 414 is a case where there are two branch pipes, but two or more branch pipes may be provided as necessary.
  • Part or all of the inner surface of the inlet tube 302 is made of nickel or a material containing nickel. Be configured.
  • the inner surface of the branch pipe 302a is made of a material containing Nigel or Nikel.
  • the heating means 309 is arranged so as to heat the branch pipe 302a.
  • the part where the branch pipes 302a and 302b join together (this part becomes the mixing part 302c of the gas from the respective branch pipes 302a and 302b) is heated.
  • the heating means 309 may be arranged so as to obtain.
  • FIG. 4-13 and 4-4 show examples in which the inlet pipe 302 is provided, but without such an inlet pipe, as shown in FIG. It may be made of nickel-containing or nickel-containing material.
  • heating can be performed by the in-core heating means 304.
  • Hydrogen active species can be generated inside.
  • the portion made of nickel or nickel-containing material may be sufficient only on the upstream side of the position ⁇ where the substrate 300 on which the semiconductor device to be processed is formed is arranged, but the remaining portion is not sufficient. It may be constituted by such a dough.
  • the inner surface of the introduction tube or the core tube may be made of nickel or a material containing nickel, and may have a structure other than a strong structure that constitutes the hydrogen active species generating means.
  • the hydrogen active species generation means may be configured by providing a container filled with nigel (eg, fibrous nickel, mesh nickel, sponge nickel, etc.) between the hydrogen gas source and the furnace tube. Good.
  • a hydrogen-containing species can be obtained by passing a 7 ⁇ elemental gas or a hydrogen-containing gas through this vessel and heating the vessel to 300 or more, and introducing this hydrogen-active species into the furnace tube. Two things can be done.
  • the wiring portion of the semiconductor device is formed of nickel or a nickel alloy
  • the wiring portion is heated to 300 ° C. or more, and a hydrogen gas or a gas containing hydrogen is brought into contact therewith. Active hydrogen species are generated.
  • Ni-based alloy As the material containing nickel, for example, a Ni-based alloy is preferable. Also, the Ni group Among the alloys, a Ni—Mo alloy or a Ni—W alloy is preferable. More specifically, for example, Hastelloy (registered trademark) can be mentioned.
  • nickel-containing material for example, stainless steel electrolytically polished to a surface roughness of 1 / m or less may be used.
  • a passivation film formed by heat treatment in an oxidizing atmosphere followed by reduction in a hydrogen atmosphere is formed on the surface of the steel (Japanese Patent Application No. 3-212125) It is more preferable to use (proposed separately in No. 2).
  • the surface of such a passivation film contains chromium oxide as a main component, and its surface is excellent in corrosion resistance.
  • the surface roughness of the passivation film is preferably 0.5 m or less, more preferably 0.1 / zm or less.
  • the passivation film contains chromium oxide as a main component, but contains nickel oxide. Nickel in the nickel oxide acts as a catalyst, and hydrogen gas in contact with the surface of the passivation film is used as a catalyst. It is considered that active hydrogen species are generated.
  • Examples of the semiconductor in the present invention include a semiconductor wafer, an insulating substrate, and a semiconductor layer formed on a semiconductor wafer.
  • Examples of the semiconductor layer include compound semiconductors such as silicon, germanium, and GaAs.
  • the crystalline state of the semiconductor may be any of amorphous, polycrystalline, and single crystal.
  • examples of the insulating film include an oxide film and a nitride film.
  • the insulating film may be formed by heating (for example, a thermal oxide film), by deposition ('deposited oxide film), or by any other method.
  • the temperature of nickel and a material containing nickel is 300 ° C. or higher. Below 300 ° C, the generation of active hydrogen species is not sufficient. In particular, 300 ° C to 450 ° C is preferred. More preferably, the temperature is from 300 ° C. to 400 ° C. When the temperature exceeds 450 ° C, the amount of ⁇ active species generated increases.On the other hand, when a passivation film is not formed on the surface of nickel or a material containing nickel, impurities are removed from the surface. Is released, and the impurities may be mixed into the gas.
  • the temperature of the substrate when the gas containing the ⁇ element active species is brought into contact with the substrate having the insulating film is preferably 20 to: L 200 ° C, more preferably 20 to 600 ° C. More preferably, it is more preferably from 20 to 450 ° C.
  • the gas to be brought into contact with Nigel or Nigel-containing material is 7K elemental gas or gas containing hydrogen.
  • the gas containing hydrogen for example, a mixed gas of hydrogen gas and an inert gas (for example, Ar gas, nitrogen gas, or the like) may be used.
  • the gas flow rate is not particularly limited.
  • FIG. 11 is a schematic configuration diagram of a heat treatment apparatus according to Example 1-1.
  • FIG. 12 is a schematic configuration diagram of a heat treatment apparatus according to Embodiment 1-2 of the present invention.
  • FIG. 1-3 is a schematic configuration diagram of a heat treatment apparatus according to Examples 13 to 13 of the present invention.
  • FIG. 14 is a graph showing the breakdown voltage of the oxide film formed by the device of the present invention.
  • FIG. 15 is a graph showing the breakdown voltage of an oxide film formed by a conventional apparatus.
  • FIG. 2-1 is a schematic configuration diagram of a heat treatment apparatus according to Example 2-1.
  • FIG. 2-2 is a schematic configuration diagram of a heat treatment apparatus according to Example 2-2.
  • FIG. 2-3 is a schematic configuration diagram of a heat treatment apparatus according to Example 2-3.
  • FIG. 2-4 is a graph showing the hot electron resistance of the MOSFET formed by the device according to Example 2-1 and the MOSFET formed by the conventional device.
  • FIG. 2-5 is a graph showing the sub-threshold characteristics of the MOS FET TFT transistor formed by the device according to Example 2-1 and the MOS FET TFT transistor formed by the conventional device.
  • (Fig. 2-1 to Fig. 2-5)
  • furnace tube 1 furnace tube, 2 gas introduction tube, 2a branch tube, 2b branch tube, 2c mixing section, 4 furnace tube heating means (heating source), 5 silicon substrate (workpiece), 6 susceptor, 7 valve, 9 Heating means (heating source) for heating the gas inlet tube, 10 shutter, 11 opening, 12 gas inlet.
  • FIG. 3-1 is a schematic configuration diagram of the heat treatment apparatus used in Example 3-1.
  • FIG. 3-2 is a schematic configuration diagram of the heat treatment apparatus used in Example 3-2.
  • FIG. 3-3 is a schematic configuration diagram of the heat treatment apparatus used in Example 3-3.
  • Figure 3-4 is a graph showing the hot electron resistance of the MOS FET formed in Example 3-1 and the MOS FET formed by the conventional technique.
  • FIG. 3-5 is a graph showing the sub-threshold characteristics of the MOS FET type TFT transistor formed in Example 3-1 and the MOS FET type TFT transistor formed by the conventional technique.
  • furnace ⁇ 1 furnace tube, 2 gas inlet tube, 2a branch tube, 2b branch tube, 2c mixing section, furnace ⁇ :, tube heating means (heating source), 5 silicon substrate (object to be processed), 6 susceptor, 7 Valve, 9 heating means (heating source) for heating the gas inlet tube, 10 shutters, 11 openings, 12 gas inlets.
  • FIG. 4-1 is a sectional structural view of the semiconductor device according to the embodiment of the present invention.
  • FIG. 4-2 is a cross-sectional view showing a manufacturing process of the semiconductor device of the present invention.
  • FIG. 413 is a schematic configuration diagram of a heat treatment apparatus used in Example 411.
  • FIG. 4-4 is a schematic configuration diagram of the heat treatment apparatus used in Example 4-2.
  • FIG. 4-5 is a schematic configuration diagram of the heat treatment apparatus used in Examples 4-13.
  • FIG. 4-6 is a graph showing the hot electron resistance of the MOS SFET formed in Example 4-1 and the M ⁇ SFET formed by the conventional technique.
  • FIG. 4-7 is a graph showing the sub-threshold characteristics of the MOSFET TFT transistor formed in Example 4-11 and the MOSFET TFT transistor formed by the conventional technique.
  • FIG. 1-1 shows a horizontal single-tube oxidation reactor apparatus showing an embodiment of the present invention.
  • the reactor core tube 1 has a hydrogen gas inlet 12a and an oxygen gas inlet 12b formed at one end in the tube length direction.
  • a hydrogen gas inlet pipe 2a made of metal is connected, and a heating source 9 as a heating means is installed outside the hydrogen gas inlet pipe 2a.
  • the material of the hydrogen gas introducing pipe 2a may be stainless steel, hastelloy or the like in addition to nickel steel.
  • a material containing at least nickel metal may be used, and desirably a material that has been subjected to a surface treatment (for example, a dry oxygen oxidation passivation treatment) so as not to contaminate the inside of the furnace tube 1.
  • a gas supply system (not shown) is connected to the upstream side of the hydrogen gas introduction pipe 2a and the oxygen gas introduction pipe 2b via valves 7 and 8.
  • the heating source 9 includes an electric resistance heater, an infrared lamp heater, and the like.
  • a silicon substrate 5 is placed on a quartz susceptor 6 as a holding member in the furnace tube 1, and is heated by a heating source 4.
  • the heating source 4 includes an electric resistance heater, an infrared lamp heater, and the like.
  • the material of the furnace tube 1 and the susceptor 6 includes alumina, silicon carbide, aluminum nitride, boron nitride, etc. in addition to synthetic quartz and fused quartz, and does not contaminate the silicon substrate (for example, sodium ion free, heavy metal free) , Degassing free, particle free, etc.)
  • the silicon substrate 5 After the silicon substrate 5 is brought into contact with a dilute fluorine solution to remove the natural oxide film, the silicon substrate 5 is subjected to ultrapure water cleaning and drying steps. After that, it is installed on the quartz susceptor 6 and then the lid 10 of the opening 11 of the furnace tube 1 is opened, and after being loaded into the furnace tube 1 by soft landing transport, the cover 10 is closed. . Thereafter, the silicon substrate 5 is heated to 900 ° C. by the heating source 4.
  • the oxygen gas introduced into the oxygen gas introduction pipe 2b is set to a flow rate of 1000 cc Z.
  • the flow rate of the hydrogen gas introduced into the hydrogen gas introduction pipe 2a is set to 2000 cc Z.
  • the introduced hydrogen gas comes into contact with the inner surface of the hydrogen gas introduction pipe 2 a heated to 400 ° C., is activated and introduced into the reactor core tube 1, and burns with oxygen gas at a temperature of 400 ° C. Reacts without producing water vapor.
  • the temperature of the mixed section of 7K elemental gas or hydrogen active species and oxygen gas should be 500 ° C or less. New The temperature of the irK mixing section is 50 o. If it is higher than c, combustion occurs and the tip of the quartz tube that is the ⁇ element gas or hydrogen active species introduction part melts, generating particles.
  • the number of particles on the oxide film formed by the apparatus of this example was 1 or less. That is, it can be seen that the apparatus of the present invention suppresses the adhesion of particles on the silicon substrate 5.
  • FIG. 12 shows Example 1-2, in which a mixed portion 2c of 7_K elemental gas or a hydrogen active species and oxygen gas is provided in the gas introduction pipe 2.
  • FIG. That is, in this example, the gas introducing pipe 2 having the branch pipes 2a 'and 2b' and having the junction of the branch pipes 2a 'and 2b' as a mixing section was used.
  • the inner surface of the gas introduction pipe 2 is made of nickelole alloy (Hastelloy C).
  • This embodiment is substantially the same as Embodiment 1-1 in configuration and operation except that the gas mixing section is provided in the gas introduction section.
  • FIG. 13 shows Example 13 of the present invention.
  • the furnace tube 1 is made of nickel metal (Hastelloy C).
  • the heating source 4 heats the silicon substrate 5 which is the portion to be heated via the tube 1.
  • the flow rate of the oxygen gas flowing into the oxygen gas inlet 12b is set to, for example, 100 ccZ. 7]
  • Hydrogen gas as the introduced gas flowing into the raw gas inlet 12a is set at, for example, a flow rate of 10 cc / min, but comes into contact with the heated nickel metal while being introduced into the furnace tube 1.
  • the flow rate of the hydrogen gas be such that the hydrogen concentration in the furnace tube 1 is 2% by volume or less. If the hydrogen concentration is 2% by volume or more at a temperature of 500 ° C or more, elemental K burns. In the case of this example, at least particles having a diameter of 0.5 to 5 ⁇ m were not detected on the silicon substrate 5 taken out of the furnace tube after the completion of the reaction treatment.
  • FIG. 14 is a graph showing the breakdown voltage of the oxide film formed by the device of the present invention
  • FIG. 15 is a graph showing the breakdown voltage of the oxide film formed by the conventional device.
  • the horizontal axis of Fig. 1-4, 115 shows the breakdown field of the oxide film
  • the vertical axis shows the percentage of the number of oxide films that have broken down.
  • the thickness of the oxide film is 10 nm.
  • As the gate electrode n + -type polycrystalline silicon is used, and the gate electrode ′ is positively applied.
  • the oxide film formed by the apparatus of the present invention does not break down at an average electric field of the oxide film of 8 MV / cm or less.
  • dielectric breakdown occurs in the oxide film formed by the conventional device at an average electric field of the oxide film of 8 MV / cm or less. That is, it was found that the oxide film formed by the apparatus of the present invention exhibited high reliability.
  • FIG. 2-1 shows an embodiment of the present invention.
  • the heat treatment apparatus in this example is a model single tube thin-ring furnace.
  • the same or equivalent constituent members are denoted by the same reference numerals.
  • the furnace tube 1 has a gas inlet 12 for introducing gas from outside at one end in the longitudinal direction of the furnace tube,
  • a gas introduction pipe 2 is provided so as to communicate with the gas introduction port 12.
  • the gas inlet pipe 2 is made of nickel alloy (Hastelloy C: registered trademark) -metal, and a force acting as a heating means [I heat source 9 power; ing.
  • the material of the irs self-gas introducing pipe 2 may be nickel steel, stainless steel, hastelloy, etc., that is, a material containing at least nickel metal, and preferably does not contaminate the inside of the reactor core pipe 1.
  • a surface treatment for example, dry oxygen oxidation passivation treatment
  • a gas supply system (not shown) is connected to the upstream side of the gas introduction pipe 2 via a valve.
  • the self-heating source 9 may be constituted by an electric resistance heater, an infrared lamp heater, or the like.
  • an object to be processed for example, a silicon substrate 5 is placed on a quartz susceptor 6 as a holding member in the furnace tube 1 and is heated by a heating source 4 which is a furnace tube heating means.
  • the heating source 4 includes, for example, an electric resistance heater, an infrared lamp heater, and the like.
  • the material of the reactor core tube 1 and the susceptor 6 includes alumina, silicon carbide, aluminum nitride, boron nitride, etc. in addition to synthetic quartz and fused quartz, and does not contaminate the silicon substrate (for example, sodium ion free). 1, heavy metal free, degas free, particle free, etc.) Materials are desirable.
  • a MOS diode before the sintering process was formed on the silicon substrate 5. . Thereafter, the silicon substrate 5 was placed on the quartz susceptor 6, the lid 10 of the opening 11 of the furnace tube 1 was opened, and the silicon substrate 5 was loaded into the furnace tube 1 by soft landing transfer, and the cover 10 was closed. Thereafter, the silicon substrate 5 was heated to 300 ° C. by the heating source 4.
  • a mixed gas of 7j elemental gas and argon gas was introduced into the gas introduction pipe 2.
  • the mixed gas was a mixed gas of 100% hydrogen gas and argon gas, and the flow rate was set to 1000 cc / min.
  • a mixed gas of hydrogen gas and argon gas is brought into contact with the inner surface of the gas introduction pipe 2 heated to 400 ° C. by the heating source 9 to generate 7j elementary active species, and the gas passes through the gas introduction port 12. Introduced into core tube 1.
  • the silicon substrate 5 in the furnace tube 1 was heated to 300, a mixed gas was introduced into the furnace tube 1, and sintering was performed by maintaining the temperature at 300 ° C. for 30 minutes.
  • the mixed gas containing the active hydrogen species introduced from the gas inlets 12 contacted the surface of the silicon substrate 5 and diffused in the oxide film to terminate dangling bonds in the oxide film and at the oxide film silicon interface.
  • the silicon substrate 5 and the quartz susceptor 6 were carried out of the furnace tube 1 to the outside by the reverse procedure of the soft translating conveyance.
  • the interface state density of the MOS diode on the silicon substrate 5 after the sintering was measured by pseudo-constant capacitance-voltage measurement. Interface after sintering the actually measured examples - to obtain the state density 2 XI 0 ⁇ cm- 2 e V results in one less than one.
  • FIG. 2-2 shows Example 2-2, in which a gas introduction pipe 2 is provided with a mixed portion 2c of hydrogen gas or a hydrogen active species and argon gas. That is, in this example, the gas introduction pipe 2 having the branch pipes 2a and 2b was used as the gas introduction pipe. The part where the branch pipes 2a and 2b join together is the gas mixing part 2c.
  • the branch pipe 2a is connected to a hydrogen gas source (not shown), and the branch pipe 2b is connected to an argon gas source (not shown).
  • the heating means 9 is provided near the branch pipe 2a. Of course, as described above, it may be provided near the mixing section 2c.
  • This embodiment is substantially the same as the embodiment 2-1 except that the gas mixing section is provided in the gas introduction pipe.
  • the interface state density of the MOS diode on the silicon substrate 5 taken out of the furnace tube 1 is 2 xl O J cm—eV—1 or less, as in the first embodiment. Atsuta.
  • FIG. 2-3 shows Example 2-3.
  • the core tube 1 is made of nickel metal.
  • the heating source 4 heats the silicon substrate, which is the portion to be heated, via the furnace tube 1.
  • a mixed gas of hydrogen and argon as an introduction gas flowing into the gas introduction pipe 2 is set to a flow rate of, for example, 1000 cc Z, but comes into contact with the heated nickel metal while being introduced into the furnace tube 1.
  • Fig. 2-4 shows the MOS FET formed by the device according to Example 21-1 and the conventional device.
  • 5 is a graph showing the hot electron resistance of the formed MOS FET.
  • the horizontal axis in Fig. 2-4 shows the number of hot electrons injected, and the vertical axis shows the shift amount of the threshold voltage.
  • the thickness of the oxide film is 10 nm.
  • As the gate electrode ⁇ ⁇ type polycrystalline silicon is used.
  • the shift amount of the threshold voltage of the MOSFET formed by the device according to the embodiment 2-1 is as small as 0.03 V even when a 1 ⁇ 10 17 hot electron is injected.
  • the threshold voltage of the MOSFET formed by the conventional device shifts to 0.2 V, which is large. That is, it was found that the MOS FET formed by the device according to Example 2-1 exhibited high reliability.
  • FIG. 2-5 is a graph showing sub-threshold characteristics of the MOSFET type TFT formed by the device according to Example 2-1 and the MOSFET TFT formed by the conventional device.
  • the horizontal axis in Figure 2-5 represents the gate voltage, and the horizontal axis represents the drain current.
  • As a substrate an oxide film is formed on a silicon wafer, and p-type polycrystalline silicon is formed on the oxide film.
  • the MOSFET is formed on polycrystalline silicon.
  • the polycrystalline silicon is formed on glass in addition to the oxide film.
  • As the gate electrode n + -type polycrystalline silicon is used.
  • the channel length of the MOS FET is 2 zm and the channel width is 100 m. 5V is applied as the drain voltage.
  • MOSFET type T FT formed by the apparatus according to the first embodiment the gate voltage is below when the drain current 1 X 10- 1 A of 0V.
  • MOSFET type TFT formed by the conventional apparatus the gate voltage is flow even 1 x 10- 7 A current above 0V.
  • the dangling bonds at the gate oxide film polycrystalline silicon interface are terminated with hydrogen, and the dangling bonds at the grain boundaries of the polycrystalline silicon forming the channel are formed with hydrogen. Because it is terminated, the drain current can be reduced. Therefore, the sub-threshold characteristics of the M 0 SFET type TFT formed by the device according to Example 2-1 are improved. That is, it was found that the MOSFET type TFT formed by the device according to Example 1 exhibited high performance and high reliability. It should be noted that the same results as shown in FIGS. 2-4 and 2-5 were obtained even when the processing was performed by the apparatuses according to Examples 2-2 and 2-3.
  • FIG. 3-1 shows the sintering device used in the embodiment of the present invention.
  • the sintering device in this example is a model single tube sintering furnace device.
  • the same or equivalent components are denoted by the same reference numerals.
  • the furnace tube 1 has a gas inlet 12 for introducing gas from outside at one end side in the longitudinal direction of the furnace tube, and has a gas inlet 12 outside.
  • a gas introduction pipe 2 is provided in communication with the gas introduction ports 12.
  • the gas introduction pipe 2 is made of nickel alloy (Hastelloy C: registered trademark), and a heating source 9 as a heating means is installed outside the gas introduction pipe 2.
  • the material of the mi gas introduction pipe 2 may be stainless steel, hastelloy, etc., in addition to nickele steel, that is, a material containing at least nickel metal, and preferably does not contaminate the reactor core tube 1 ⁇ .
  • a surface treatment for example, a dry oxygen oxidation passivation treatment
  • a gas supply system (not shown) is connected to the upstream side of the gas introduction pipe 2 via a valve.
  • the heating source 9 may be constituted by an electric resistance heater, an infrared lamp heater, or the like.
  • an object to be processed for example, a silicon substrate 5 is placed on a quartz susceptor 6 as a holding member in the furnace tube 1 and is heated by a heating source 4 which is a furnace tube heating means.
  • the self-heating source 4 includes, for example, an electric resistance heater, an infrared lamp heater, and the like.
  • the core tube 1 and susceptor 6 are made of synthetic quartz, fused silica, alumina, silicon carbide, aluminum nitride, A material that does not contaminate the silicon substrate (eg, sodium ion-free, heavy metal-free, degassing-free, particle-free, etc.) is desirable.
  • an MS diode before the sintering process was formed on the silicon substrate 5.
  • the silicon substrate 5 was set on the quartz susceptor 6, the lid 10 of the opening 11 of the furnace tube 1 was opened, and the silicon substrate 5 was loaded into the furnace tube 1 by soft landing conveyance, and the cover 10 was closed. . Thereafter, the silicon substrate 5 was heated to 300 ° C. by the heating source 4.
  • a gas mixture of 7_ nitrogen gas and argon gas was introduced into the gas introduction pipe 2.
  • the mixed gas was a mixed gas of 100% hydrogen gas and argon gas, and the flow rate was set to 1000 cc / min.
  • a mixed gas of hydrogen gas and argon gas is brought into contact with the inner surface of the gas introduction pipe 2 heated to 400 ° C. by the heating source 9 to generate 7j elementary active species, and the gas passes through the gas introduction port 12. Introduced into core tube 1.
  • the silicon substrate 5 in the furnace tube 1 was heated to 300, the mixed gas was introduced into the furnace tube 1, and the sintering process was performed by keeping the mixture gas at 300 V for 30 minutes.
  • the mixed gas containing active hydrogen species introduced from the gas inlets 12 came into contact with the surface of the silicon substrate 5 and diffused in the oxide film, terminating the dangling bonds in the oxide film and at the oxide film silicon interface.
  • the silicon substrate 5 and the quartz susceptor 6 were carried out of the furnace tube 1 to the outside by the reverse procedure of the soft translating conveyance.
  • the silicon substrate 5 is set on the quartz susceptor 6. Placement, soft landing transfer, heating of the silicon substrate 5 in hydrogen mixed gas for 30 minutes at 300 ° C, and removal by soft landing transfer under the same conditions.
  • the interface state density of the M 0 S diode was 1>: 1 0 10 cm ⁇ “e V— 1 .
  • Interface state density of oxide film Z silicon interface in an embodiment of the present invention is 2 x 1 0 9 cm as described above - since it is under 2 e V over ⁇ , when comparing the rain's, embodiments of the present invention, It can be seen that the number of dangling bonds at the oxide film Z silicon interface is reduced.
  • Example 3-2 the apparatus shown in FIG. 3-2 was used.
  • a gas introducing pipe 2 is provided with a mixing section 2c of hydrogen gas or a hydrogen active species and argon gas. That is, in this example, the gas introduction pipe 2 having the branch pipes 2a and 2b was used as the gas introduction pipe.
  • the part where the branch pipes 2a and 2b join together is the gas mixing part 2c.
  • the branch pipe 2a is connected to a hydrogen gas source (not shown), and the branch pipe 2b is connected to an argon gas source (not shown).
  • the power heating means 9 is provided near the branch pipe 2a. Of course, as described above, it may be provided near the mixing section 2c.
  • This embodiment is substantially the same as Embodiment 3-1 except that the gas mixing section is provided in the gas introduction pipe.
  • M 0 S Daio one de the interface state density is 2 X 1 0 on divorced substrate 5 taken out from the above Example 1 and similar furnace tube 1 "cm- e V- 1 It was below.
  • Example 3-3-In Example 3-3 the apparatus shown in Fig. 3-3 was used.
  • the reactor core tube 1 is made of Nigel metal.
  • the heating source 4 heats the silicon substrate, which is the portion to be heated, via the furnace tube 1.
  • the mixed gas of hydrogen and argon as the introduction gas flowing into the gas introduction pipe 2 is set to, for example, a flow rate of 1000 cc Z, but the core metal: the nickel metal heated during the introduction into the I There is no contact.
  • the interface state density of the MOS diode on the silicon substrate 5 taken out from the silicon substrate 5 was 2 ⁇ 10 9 cm " 2 eV" 1 or less.
  • the configuration is substantially the same as that of the above-mentioned embodiment 3-1-3-2-3-3. is there. That is, the interface state density of the MOS diode on the silicon substrate 5 taken out of the furnace tube 1 was 2 ⁇ 10 9 cm- 2 eV- 1 or less as in the above-described embodiment.
  • FIG. 3-4 is a graph showing the hot electron resistance of the MOS FET formed by the device according to Example 3-1 and the MS FET formed by the conventional device.
  • the horizontal axis in Fig. 3-4 shows the number of injected hot electrons, and the vertical axis shows the shift amount of the threshold voltage.
  • the thickness of the oxidized film is 10 nm.
  • N-type polycrystalline silicon is used as the gate electrode.
  • the shift amount of the threshold voltage of the M 0 SFET formed by the device according to the embodiment 3-1 is as small as 0.03 V even when the 1 ⁇ 10 17 hot electron is injected.
  • MOSFETs formed by conventional devices have a large shift in threshold voltage of 0.2V. That is, it was found that the MOSFET formed by the device according to Example 3-1 exhibited high reliability.
  • Fig. 3-5 is a graph showing the sub-threshold characteristics of the MISFET type TFT formed by the device according to the example 3-1 and the M0SFET type TFT formed by the conventional device.
  • the horizontal axis represents the gate voltage
  • the horizontal axis represents the drain current.
  • As a substrate an oxide film is formed on a silicon wafer, and p-type polycrystalline silicon is formed on the oxide film.
  • the MOSFET is formed on polycrystalline silicon.
  • the polycrystalline silicon is formed on glass in addition to the oxide film.
  • Type polycrystalline silicon is used as the gate electrode.
  • the MOS FET has a channel length of 2 m and a channel width of 100 zm. 5V is applied as the drain voltage.
  • the gate Bok voltage is below when the drain current 1 X 10- 1 A of 0V.
  • the MOS FET type TFT formed by the conventional device has a current of 1>'10-'A or more even if the gate voltage is 0 V. Is flowing.
  • the dangling bond at the gate oxide film Z polycrystalline silicon interface is terminated with hydrogen, and the dangling bond at the grain boundary of the polycrystalline silicon forming the channel is hydrogen. Termination, the drain current can be reduced.
  • the sub-threshold characteristics of the MOS FET type TFT formed by the device according to the first embodiment are improved. That is, it was found that the MOS FET type TFT formed by the device according to Example 3-1 exhibited high performance and high reliability.
  • FIG. 41 is a cross-sectional view showing the basic structure of the semiconductor device according to this example. Here, only a pair of CMOSs included in the semiconductor device is shown.
  • 11 is the electrode on the back of the substrate, 11 is the 1) + substrate, 13 is the ⁇ buried region, 14 is the high-resistance ⁇ - region, 15 is the high-resistivity ⁇ - region, and 16 is the isolated green region. , 17, 18 11 tau region, 1 9, 20 ⁇ zone, 21, 22, 23, 24 Mo S i 9. S i 9 , T a S i g, T i S i.
  • P d 9 S i such metal Shirisai de
  • 25, 26 is a silicon oxide film which is the cylinder process (gate insulating ⁇ ), the processing method will be described in detail later.
  • 27, 28 are gate electrodes
  • 29, 30, 31 are metal electrodes such as A 1, Al Si or Al Cu
  • 32, 33, 34 are electrodes 27, 28, 29, 30, 31 insulated Is a metal fluoride film (for example, A1F when A1 is used as an electrode)
  • 35 is a PSG film for passivation or a nitride film.
  • the interface between the gate insulating film 25 and the region 14 is formed on the region 14 side from the interface between the regions 17 and 18 and the region 14, and the interface between the gate insulating film 26 and the region 15 is the region 19. It is formed in the area 15 from the rising surface of the area 20 and the area 15. In this structure, the electric field strength between the source and drain of the channel is reduced, so that the short channel Nori effect is difficult to occur.
  • the material of the gate electrode 2728 should have a high diffusion battery in both the n + regions 17, 18 and the + regions 19, 20.
  • A is set to A 1 Si or A 1 Cu, a high diffusion potential can be obtained.
  • A1 has a diffusion potential of about 0.7V for the n region and about 0.4V for the p + region.
  • the gate electrodes value eta tau region work function, as long as it has a high barrier to any of [rho tau region, may be KoToru Spot gold genus Ya metal Shirisai de. Therefore, the resistance of the gate electrode is small.
  • the potential barrier in the channel is caused by the diffusion potential of the ⁇ ⁇ substrate 12 and the gate electrode 27 with respect to the ⁇ + source region, and the diffusion potential of the ⁇ buried region 13 and the gate electrode 28 with respect to the ⁇ + source region.
  • causing the impurity density of Chiyane Le regions 14 1 5 is realized normally-off characteristics in M_ ⁇ S tiger Njisuta 10 1 4 about 10 1 6 cm- 3. That is, the regions 14 and 15 are high resistance regions, and the impurity concentration is kept low. Therefore, the channel width through which the electron hole flows is kept wide, and a short channel can be realized without lowering the movement of the carrier running through the channel. In other words, it becomes a large MOS transistor with a conversion conductance of 8 m.
  • the junction between the n 'region 17 and the region 14, the junction between the n + region 18 and the region 14, the junction between the P + region 19 and the region 15, and the junction between the P + region 20 and the region 15 The junction surface is flat, and the area of the junction surface is small, so that the fringe effect is small and the capacitance between the source region and the drain region, between the source region and the substrate, and between the drain region and the substrate is small.
  • the materials of the electrodes 29 and 30 31 are, for example, A 1 Al Si Al Cu Al Cu Si and the resistances of the source electrode and the drain electrode are small.
  • L Source resistance, drain resistance, gate resistance is small, also the source, on the drain capacitance is small, because a large transconductance g m, the Bok run Soo evening with excellent high-speed performance.
  • the source electrode and the drain electrode may be made of a metal such as, for example, Mo, Ta, Ti.
  • one p + substrate 12 with n + buried region 13 As described above, the operation of the semiconductor device described above can also be realized by using an insulated substrate such as sapphire, sibinel, quartz, A1N, or sic.
  • FIGS. An example of a manufacturing process for manufacturing the semiconductor device of FIG. 4A is shown in FIGS.
  • a p + substrate is used as the substrate 12
  • a buried region is formed in the region 13 of the ⁇ substrate 12 by, for example, thermal diffusion from a PSG film deposited by a CVD method.
  • the region 13 may be formed by ion implantation of As or As and activation annealing.
  • the separation region 16, the p-region 14, and the n-region 15 are formed, for example, as follows. After thermally oxidizing the surface of the substrate 12 having the buried region 13 by about several 10 nm, a PSG film or a BPSG film is formed to a predetermined thickness by a CVD method.
  • the thermal oxide film and the PSG film or the BPSG film corresponding to the regions 14 and 15 are removed by reactive ion etching. Subsequently, S i H 4, S i 2 H fi is had by CVD method using a S i H 9 C 1 9, area 14, 1 5 to select Epitakisha Le growth.
  • S i H 4 S i 2 H fi is had by CVD method using a S i H 9 C 1 9, area 14, 1 5 to select Epitakisha Le growth.
  • the thickness of the areas 14 and 15 is more suitable for the denoise to be made!
  • the value of t can be selected, for example, to a value of about 0.03 to 0.5 m.
  • a metal layer having a thickness of 10 to 20 nm for example, a layer made of W, Ta, Ti, Mo, or the like is selectively grown on the surfaces of the regions 14 and 15. Then, by selectively implanting, for example, As in region 14 and, for example, B and Si in region 15 by ion implantation through these metal layers, and then applying an activation anneal, as shown in FIG. as shown in) area 21, 22, 23, 24 silicide layer and eta tau area 1 7, 1 8 and to form a region 1 9, 20.
  • an activation anneal as shown in FIG. as shown in
  • an A1 film having a thickness of about 0.2 to about L.O / im is formed by a sputtering method or a CVD method, and a predetermined region is reactively activated as shown in FIG. Etch by on-etching.
  • the surface of the regions 29, 30 and 31 is fluorinated using ultra-high purity F 9 gas, for example, at 100 ° C. for about 4 hours, and then 150 ° C. in an inert gas (for example, N 9 gas). ° perform Aniru of C, 5 hours, to form an insulating layer of AIF 3 in a 1 region surface (FIG. 4 one 2 (area of d) 3 2, 3 3, 34).
  • Fig. 4-2 (d) using the regions 32, 33, and 34 as masks, Predetermined regions of the silicide layer, n + region and p + region are etched by reactive ion etching to form contact holes.
  • an oxide film is formed on the surface exposed from the contact hole by, for example, a thermal oxidation method. That is, as shown in Fig. 4-2 (e), an oxide film is formed by thermal oxidation in the silicide layer, n + region, p + region, and n-region.
  • the sintering process described below is performed.
  • the number of dangling bonds in the oxide film and at the oxide film silicon interface is small, and the oxide film and oxide film silicon interface with low trap density are formed.
  • the structure of the semiconductor device shown in FIG. 41 can be formed by forming the gate electrodes 27 and 28, etching a predetermined region, forming the passivation layer 35, and forming the electrode 11.
  • FIGS. 13 and 14 show a thin ring device used in this embodiment.
  • the sintering device in this example is a model single tube sintering furnace device.
  • the same or equivalent components are denoted by the same reference numerals.
  • the reactor core tube 301 has a gas inlet 312 for introducing a gas from the outside at one end side in the longitudinal direction of the reactor core tube.
  • a gas introduction pipe 302 is provided so as to communicate with the gas introduction port 3122.
  • the gas inlet pipe 302 is made of a nickel alloy (Hastelloy C: registered trademark), and a heating source 9 as a heating means is installed outside the gas inlet pipe 302. ing.
  • the material of the gas inlet tube 302 may be nickel steel, stainless steel, hastelloy, or the like, that is, any material containing at least nickel metal may be used. If the material has been subjected to a surface treatment (for example, dry oxygen oxidation passivation treatment) so as not to be contaminated, this is as described in the embodiment section, and the same result as in the present example can be obtained for these materials. It has been confirmed.
  • a gas supply system (not shown) is connected to the upstream side of the gas introduction pipe 302 via a valve.
  • the heating source 309 may be constituted by an electric resistance heater, an infrared lamp heater or the like.
  • an object to be processed for example, a silicon substrate 305 is placed on a quartz susceptor 306 serving as a holding member in the core tube 301, and is supplied to a heating source 304, which is furnace tube heating means. It is more heated.
  • the heating source 304 includes, for example, an electric resistance heater, an infrared lamp heater, or the like.
  • the material of the furnace tube 301 and the susceptor 306 is not limited to synthetic quartz, fused quartz, alumina, silicon carbide, aluminum nitride, boron nitride, etc., and does not contaminate the silicon substrate. (For example, sodium ion free, heavy metal free, degas free, particle free, etc.) Material f is preferred.
  • the silicon substrate 305 is placed on the quartz susceptor 306, the lid 310 of the opening 311 of the furnace tube 301 is opened, and soft-landing transport is performed.
  • the silicon substrate 304 was heated to 300 ° C. by the heating source 304.
  • a mixed gas of hydrogen gas and argon gas was introduced into the gas introduction pipe 302. Note that this mixed gas was a mixed gas of 10% hydrogen gas and argon gas, and the flow rate was set to 1000 cZ.
  • a mixed gas of elementary gas and argon gas is brought into contact with the inner surface of a gas introduction pipe 302 heated to 400 ° C. by a heating source 309 to generate 7j elementary active species. It was introduced into the core tube 301 via 312.
  • the silicon substrate 305 in the core tube 301 by heating the silicon substrate 305 in the core tube 301 to 300 ° C, introducing the mixed gas into the core tube 301, and keeping it at 300 ° C for 30 minutes. Sintering processing was performed.
  • the mixed gas containing hydrogen active species introduced from the gas inlet 312 comes into contact with the surface of the silicon substrate 3 05, diffuses in the oxide film, and forms a danglinda bond in the oxide film and the oxide film Z at the silicon interface. Terminated.
  • the silicon substrate 300 and the quartz susceptor 310 were carried out of the furnace tube 301 to the outside by the reverse procedure of the soft-transfer pseudo-transmission. Thereafter, the surface state density of the M0S diode on the silicon substrate 305 after the sintering treatment was measured by pseudo-constant capacitance-voltage measurement.
  • Sintalin as a measurement example To obtain a surfactant one state density 2 x 1 0 9 cm- 2 e V- 1 results in the following post grayed.
  • the other steps were performed under the same conditions as described above except that the active gas was not generated without heating the gas inlet tube 302, that is, onto the quartz susceptor 306 of the silicon substrate 305.
  • installation of the silicon substrate, soft-transferring, heating of the silicon substrate in a mixed gas of hydrogen and argon for 30 minutes at 300 ° C, and removal by soft-transferring were performed under the same conditions.
  • the interface state density of the MOS diode on 1305 was 1 ⁇ 10 10 cm— 2 eV— 1 .
  • the two embodiments show that the oxide film according to the embodiment of the present invention has an oxide film It can be seen that the number of dangling bonds at the / silicon interface is reduced.
  • the silicon oxide films (gate oxide films) 25 and 26 are sintered by the active hydrogen species without plasma, so that the neutral trap density in the oxide film is low. Low t ,. Even if a hot electron is injected into the oxide film during the device operation, the shift amount of the threshold voltage is small and the transistor has excellent reliability. In addition, the number of dangling bonds at the oxide-silicon interface sintered by active hydrogen species without plasma is small, and the bonding force between silicon atoms and hydrogen atoms in the oxide film and at the oxide-Z silicon interface is low. strong.
  • the semiconductor device having the structure including the oxide film formed according to the present invention, a semiconductor integrated circuit using an insulated gate transistor excellent in ultra-high speed and excellent in reliability can be realized.
  • Examples 4-2 the apparatus shown in FIG. 4-4 was used.
  • a mixing section 302c of a 7K elemental gas or a hydrogen active species and an argon gas is provided in a gas introduction pipe 302. That is, in this example, the branch pipes 302a and 302b are used as the gas introduction pipes. A gas introduction tube 302 having the same was used. The portion where the branch pipes 302a and 302b join is the gas mixing section 302c.
  • the branch pipe 302a is connected to a hydrogen gas source (not shown), and the branch pipe 302b is connected to an argon gas source (not shown).
  • the carothermal means 309 was provided in the vicinity of the branch pipe 302a. Of course, it may be provided in the vicinity of the mixing section 302c as described above.
  • This embodiment is substantially the same as the embodiment 411 in configuration and operation except that the gas mixing section is provided in the gas introduction pipe.
  • the interface state density of the MIS diode on the silicon substrate 305 taken out of the furnace tube 301 is 2 ⁇ 10, as in the first embodiment. ⁇ —2 e V— 1 or less.
  • Example 4-3 the apparatus shown in FIG. 4-5 was used.
  • the core tube 301 is made of nickel metal.
  • the heating source 304 heats the silicon substrate, which is the portion to be heated, via the furnace tube 301.
  • the mixed gas of hydrogen and argon as the introduction gas flowing into the gas introduction pipe 302 is set to, for example, a flow rate of 100 cc, but the Nigel metal heated during the introduction into the furnace core tube 301 is added to the gas. There is no contact.
  • the interface state density of the MOS diode on the silicon substrate 205 taken out of the reactor tube after the completion of the reaction treatment was 2 ⁇ 10 J cm— 2 eV— 1 or less.
  • the configuration is substantially the same as that of the above-described embodiment 41-1, 4-2, and 4-1. The same is true. That is, the interface state density of the MOS diode on the silicon substrate 205 taken out from the core tube 301 is 2 ⁇ 10 ⁇ ⁇ cm— “ eV— 1 or less as in the above embodiment. there were.
  • FIG. 416 is a graph showing the hot electron resistance of the MOS FET formed by the device according to Example 411 and the MOS FET formed by the conventional device.
  • the horizontal axis in FIG. 46 represents the number of injected hot electrons, and the vertical axis represents the shift amount of the threshold voltage.
  • the thickness of the oxide film is 1 O nm. ⁇ ⁇ type Crystalline silicon is used.
  • the shift amount of the threshold voltage of the MOS FET formed by the device according to the embodiment 4-11 is as small as 0.03 V even when a 1 ⁇ 10 17 hot electron is injected.
  • the threshold voltage of the MOS FET formed by the conventional device has shifted greatly to 0.2 ⁇ . That is, it was found that the MOSFET formed by the device according to Example 4-1 exhibited high reliability.
  • FIG. 4-7 is a graph showing the sub-threshold characteristics of the MOS SFE type TFT formed by the device according to Example 4-1 and the MOSFET TFT formed by the conventional device.
  • the horizontal axis in FIG. 417 represents the gate voltage, and the horizontal axis represents the drain current.
  • As a substrate an oxide film is formed on a silicon wafer, and P-type polycrystalline silicon is formed on the oxide film.
  • the MOSFET is formed on polycrystalline silicon.
  • the polycrystalline silicon is formed on glass in addition to the oxide film.
  • As the gate electrode n′-type polycrystalline silicon is used.
  • the channel length of MO SFET is 2 inches and the channel width is 100 m. 5V is applied as the drain voltage.
  • MOSFET type TFT formed in Example 4 one 1 the gate voltage is 0 when V drain current 1 X 10- 1 "A less
  • a MOSFET T type TFT formed by the conventional apparatus, gate -. DOO voltage is flow is 1 x 10- 7 a more current even 0 V.
  • the MO S FE T-type TFT was formed in the apparatus of the present invention, the gate oxide film / polysilicon interface dangling bond of hydrogen Since the dangling bonds at the grain boundaries of the polycrystalline silicon that are terminated and form the channel are terminated with hydrogen, the drain current can be reduced, so that the MO formed by the apparatus according to Example 4-1 is used.
  • the sub-threshold characteristic of the SFET type TFT is improved, that is, the M 0 SFET type TFT according to Example 4-1 has high performance, high L, and high reliability.
  • the insulating film in the semiconductor device of the present invention is effective if it is processed in any of the steps after forming the film.
  • passive It is effective to use a sintering process after forming the insulating layer 35.
  • the silicon substrate was exposed to electron beams and plasma to form a fine pattern.
  • the oxide film t ⁇ is damaged at the oxide silicon interface and a neutral trap is generated.
  • Neutral traps do not disappear when treated by the conventional sintering method, but in the case of sintering with active hydrogen species without plasma, 14 of the traps have disappeared and the damage has recovered.
  • the present invention can be applied not only to a single-crystal silicon surface but also to a polycrystalline silicon surface, an amorphous silicon surface, etc. .
  • TF ⁇ transistor manufacturing in the case of oxide film ⁇ polycrystalline silicon substrate, neutral traps in the oxide film and interface states at the oxide film / silicon interface have disappeared, and The level of the grain boundaries also disappears, and a highly reliable and high performance TFT transistor can be realized.
  • a substrate containing nickel or a nickel alloy is heated to a temperature of 300 ° C.
  • the electrodes 29, 30 and 31 of the semiconductor device shown in FIG. 41 are made of Nigel or Nickel alloy, after forming the gate oxide films 25 and 26, the conventional sintering method is used. By heating to a temperature of 0 ° C. or higher, traps in the oxide film and the interface state at the oxide film / silicon interface are eliminated, and a semiconductor device with excellent visibility can be realized.
  • the first to seventh aspects of the present invention it is possible to form a highly reliable and excellent oxide film on a solid surface.
  • the device of the present invention having such features, an ultrafine semiconductor device can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

明細書
酸化膜形成装置、 熱処理装置並びに半導体装置及びその製造方法 技術分野
本発明は例えば半導体製造プロセスにおいて汎用される酸化膜形成装置及びシ ンタリング装置のような熱処理装置に関する。
また、 本発明は半導体装置及びその製造方法に係わり、 特に信頼性の高い酸化 膜/シリコン界面の形成が可能な半導体装置及びその製造方法に関する。
^月景: 技術
(酸化膜形成装置について)
従来、 例えば熱酸化伊装置においては、 シリコン基板の表面に酸化膜を形成す るべく、 電気抵抗加熱方式によって加熱された石英管から成る炉心管に酸素、 水 素ガス等のガス体を混合した酸素等を導入して水素を燃焼させることにより水蒸 気を生成し、 該ガス体および該水蒸気を加熱したシリコン基板に接触させるよう に構成されている。
しかし、 従来の装置は、 導入された水素ガスが炉心管である石英管の先端で燃 焼するため、 石英管の先端が溶けて、 多数のパーティクルが発生し、 このパ一テ イクルがシリコン基板の汚染源となる。
この場合、 信頼性の高い酸化膜を形成するためには、 酸化反応プロセスを行う 炉心管自体は、 パーティクルにより汚染されてはならず、 可及的に清浄化が図ら れることが要求される。
また、 電気的に安定な半導体デバイスの製造を実現するためには、 シリコン基 板に付着するパーティクル数も可及的に少なくする必要がある。
このように、 熱酸化膜形成プロセス雰囲気中の超清浄化は、 超微細化 L S Iの 実現に不可欠である。
本発明は、 上記従来技術の課題を解決すべく、 炉心管内で基板の表面に、 信頼 性の高い酸化膜を形成するためゥヱッ ト酸化反応処理等が可能な酸化膜形成装置 を提供することを目的とする。
(熱処理装置について)
従来の技術を、 酸化膜/シリコン界面のダングリンダボンドを水素で糸冬端する ためのシンタリング装置を例にとり説明する。
従来、 かかる.シンタリング装置としては、 電気抵抗加熱方式によつて加熱され た石英管から成る炉心管に、 水素ガスあるいは不活性ガスと水素ガスとを混合し た混合ガスを導入し、該ガスを加熱した酸化膜/シリコン基板に接触させ、 ダン グリングボンドを水素で終端するように構成された装置が知られている。
また、 水素ガスあるいは不活性ガスと水素ガスとを混合した混合ガスをブラズ マ化し、 プラズマ中の水素イオン及び水素活性種を、 酸化膜 Zシリコン基板に接 触させて、 ダングリングボンドを水素で終端するように構成された装置も知られ ている。
しカヽし、前者の装置においては、導入されたガス体が活性でないため、 酸化膜
/シリコン界面のダングリンダボンドの終端が不十分であり、 高! <、信頼性のデノ イスが製造されない。
—方、 後者の装置は、 プラズマ中の水素活性種を用いてダングリングボンドの 終端を行っているため、 ダングリングボンドは十分に終端され、 高い信頼性を有 するデバイスが得られることが期待される。 し力、し、 実際に後者の装置によりダ ングリングボンドの終端を行った場合、必ずしも高い信頼性を有するデバイスが 得られないことが判明した。 本発明者は、 このように、 期待に反して高い信頼性 を有するデバ'イスが得られない原因を探求した。 その結果、 後者の装置では、 プ ラズマを発生させてい.るため、 そのプラズマが酸化膜及び酸化膜 Zシリコン界面 に損傷を与えており、 そのために新たに欠陥及びダングリングボンドを生成して いることが原因であることを解明した。
結局、現在のところ、酸化膜及び酸化膜/シリコン界面に損傷をあたえること なく、 ダングリングボンドを十分に終端し得る技術は存在しない。
本発明は、 上記従来技術の^ を解決すべく、 炉心管内で基板の表面に、 信頼 性の高い酸化膜を形成するため活性ガスシンタリング等が可能な熱処理装置を提 供することを目的とする,
(半導体装置の製造方法について)
従来の技術を、 絶縁膜として酸化膜を、 半導体としてシリコンを例にとり説明 する。
従来、 酸化膜 シリコン界面のダングリングボンドを終端する方法の 1つとし ていわゆるシンタリング法が知られている。 この方法は、 シリコン基板上に酸化 膜あるいは酸化膜および電極、 配線等を形成した後、 水素、 不活性ガス等のガス 体を混合した水素等を加熱した酸化膜/シリコン基板に接触させることにより酸 化膜/シリコン界面のダングリングボンドを水素で終端する方法である。
また、 zR素ガスあるいは不活性ガスと水素ガスとを混合した混合ガスをプラズ マ化し、 プラズマ中の水素イオン及び水素活性種を、 酸化膜 シリコン基板に接 触させて、 ダングリングボンドを水素で終端する技術も知られている。
しかし、 前者の技術においては、 導入されたガス体が活性でないため、 酸化膜 /シリコン界面のダングリングボンドの終端が不十分であり、 高い信頼性のデバ イスが製造されない。
一方、 後者の技術は、 プラズマ中の水素活性種を用いてダングリングボンドの 終端を行っているため、 ダングリングボンドは十分に終端され、 高い信頼性を有 するデバイスが得られることが期待される。 し力、し、 実際に後者の技術によりダ ングリングボンドの終端を行った場合、 必ずしも高い信頼性を有するデバイスが 得られないことが判明した。 本発明者は、 このように、 期待に反して高い信頼性 を有するデバイスが得られない原因を探求した。 その結果、 後者の技術では、 プ ラズマを発生させているため、 そのプラズマが酸化膜及び酸化膜 Zシリコン界面 に損傷を与えており、 そのために新たに欠陥及びダングリングボンドを生成して いることが原因であることを解明した。
結局、 現在のところ、 酸化膜及び酸化膜 シリコン界面に損傷をあたえること なく、 ダングリングボンドを十分に終端し得る技術は存在しな L、。
本発明は、 上記従来技術の課題を解決すべくなされたものであり、 信頼性の高 ぃ絶緣膜と半導体との界面 (例えば、 酸化膜 シリコン界面) を有する半導体装 置の製造が可能な半導体装置の製造方法を提供することを目的とする。
(半導体装置について)
従来の技術を、絶緣膜として酸化膜を、 半導体としてシリコンを例にとり説明 する。
従来、 酸化膜/シリコン界面のダングリンダボンドを終端する技術の 1つとし ていわゆるシンタリング法が知られている。 この方法は、 シリコン基板上に酸化 膜あるいは酸化膜および電極、 配線等を形成した後、 水素、 不活性ガス等のガス 体を混合した水素等を加熱した酸化膜 Ζシリコン基板に接触させることにより酸 化膜 Ζシリコン界面のダングリンダボンドを水素で終端する方法である。
また、 τΚ素ガスあるいは不活性ガスと水素ガスとを混合した混合ガスをブラズ マ化し、 プラズマ中の水素イオン及び水素活性種を、 酸化膜 Ζシリコン基板に接 触させて、 ダングリングボンドを水素で終端する技術も知られている。
しかし、 前者の技術においては、 導入されたガス体が活性でないため、 酸化膜 /シリコン界面のダングリングボンドの終端が不十分であり、 高い信頼性のデバ イスが製造されない。
一方、 後者の技術は、 プラズマ中の水素活性種を用いてダングリングボンドの 終端を行っているため、 ダングリングボンドは十分に終端され、 高い信頼性を有 するデバイスが得られることが期待される。 しかし、 実際に後者の技術によりダ ングリングボンドの終端を行った場合、 必ずしも高い信頼性を有するデバイスが 得られないことが判明した。 本凳明者は、 このように、 期待に反して高い信頼性 を有するデバイスが得られない原因を探求した。 その結果、 後者の技術では、 プ ラズマを発生させているため、 そのプラズマが酸化膜及び酸化膜 シリコン界面 に損傷を与えており、 そのために新たに欠陥及びダングリングボンドを生成して いることが原因であることを解明した。
結局、現在のところ、 酸化膜及び酸化膜 Ζシリコン界面に損傷をあたえること なく、 ダングリングボンドを十分に終端し得る技術は存在せず、 酸化膜 Ζ半導体 界面の界面準位が低く、 信頼性の高い半導体装置は実現されていない。
本発明は、上記従来技術の課題を解決すべくなされたものであり、 信頼性の高 い絶縁膜と半導体との界面 (例えば、 酸化膜ノシリコン界面) を有する半導体装 置を提供することを目的とする。 発明の開示
(請求項 1乃至 7の発明について)
本発明の要旨は、 被処理物を搬出入するための開閉可能な開口部とガスを内部 に導入するための水素ガス導入口と、 酸素ガスを内部に導入するための酸素ガス 導入口とを有する炉心管と ;
該炉心管内部を加熱するための炉心管加熱手段と ;
該水素ガス導入口に連通させて接続された水素ガス導入管と ;
該酸素ガス導入口に連通させて接続された酸素ガス導入管と ;
該水素ガス導入管を加熱するための加熱手段と ;
を少なくとも有し、 該水素ガス導入管の少なくとも内表面が二ッゲル又は二ッケ ルを含む材料よりなることを特徵とする酸化膜形成装置に存在する。
本発明の他の要旨は、 被処理物を搬出入するための開閉可能な開口部とガスを 内部に導入するためのガス導入口とを有する炉心管と ;
該炉心管内部を加熱するための炉心管加熱手段と ;
該ガス導入口に連通させて接続され、 ガス源側に複数の分岐管を有するガス導 入管と ;
該水素ガス又は水素を含むガスを導入しょうとする分岐管を加熱するための加 熱手段と ;
を少なくとも有し、 水素ガス又は水素を含むガスを導入しょうとする分岐管の一 部又は全部の少なくとも内表面が二ッゲル又は二ッゲルを含む材料よりなること を特徴とする酸化膜形成装置に存在する。
請求項 1乃至 7の発明の作用
炉心管内に導入される水素または水素を含むガス体を、 3 0 0 °C以上の温度に 加熱した二ッケルまたは二ッケルを含む合金に接触させると水素活性種を生す る。 この水素活性種と、 炉心管に導入される酸素または酸素を含むガス体とを混 合させると、 水素活性種と酸素とは反応し、燃焼を伴わずに水を生成する。 従つ て、水素導入: 管の先端が溶けてパーティクルを発生することはない。
請求項 1乃至 7の発明の実施態様例
(請求項 1 )
例えば、 図 1一 1に示すように、 7K素ガス導入口 1 2 aに連通させて水素ガス 導入管 2 aを、 '炉心管 1に接続し、 かつ、加熱手段 9を水素ガス導入管 2 aを加 熱し得るように配置する。 その際、 水素ガス導入管 2 aの内面は、 二ッゲル又は ニッケルを含む材料により構成する。
一方、酸素ガス導入口 1 2 bに連通させて酸素ガス導入管 3を炉心管 1に接繞 する。
この場合、加熱手段により水素ガス導入管 2 aの内部を 3 0 0 °C以上に加熱 し、水素ガス導入管2 aに水素ガス源から水素ガスを導入すると、水素ガス導入 管 2 aの内面に接触した水素ガスから水素活性種が生成する。 これは、 3 0 0 °C 以上の温度においては、水素ガス導入管 2 aを構成するニッケル自体あるいは二 ッケルを含む材料中のニッケルが触媒作用をなすためと考えられる。 このように 生成された水素活性種は当然ブラズマをともなっていないため被処理物にダメ一 ジを与えることがない。
この水素活性種は、酸素ガス導入管 2 bから酸素ガス導入口 1 2 bを介して炉 心管 1内に導入された と反応して水を生成する。 この反応は燃焼を伴わない ため、 炉心管 1を溶融せしめることがなく、 パーティクルの発生もない。 なお、 水素ガス導入管2 aの下流側端は、 炉心管 1の側壁から離して位置せしめること が好ましい。
(請求項 2 )
また、 図 1一 2に示すように、分岐管 2 a ' , 2 b ' を有するガス導入管 2を ガス導入口 1 2に連通させて炉心管 1に接続する。 分岐管 2 a ' が水素ガス源に 接続され、 分岐管 2 b ' が酸素ガス源に接繞される。
分岐管 2 a ' の内表面の一部又は全部はニッケル又はニッケルを含む材料によ り構成する。 そして、加熱手段 9は、 この分岐管 2 a ' を加熱し得るように配置 する。 図 1— 1、 図 1—2では、 導入管 2を設けた例を示したが、 かかる導入管を設 けず、 図 1 _ 3に示すように、 炉心管 1の内表面を二ッケル又は二ッケルを含む 材料により構成してもよい。
この場合は、 図 1 — 1、 図 1 一 2で示したような加熱手段を設ける必要が無 く、 炉心管加熱手段 4により加熱を行うことができるので、 炉心管 1の内部にお いて水素活性種を生成させることができる。 なお、 ニッケル又はニッケルを含む 材料により構成する部分は、 被処理物 5の配置されている位置よりも上流側のみ でも足りるが、 残部をかかる材料により構成してもよい。
なお、 以上述べた実施態様では、 導入管ないし炉心管の内表面をニッケル又は ニッゲルを含む材料により構成して水素活性種生成手段を構成しているが、 かか る構成以外であってもよい。 例えば、 7]素ガス源と炉心管との間に、 内部にニッ ケル (例えば、 繊維状二ッケル、 網状二ッケル、 スポンジニッケル等) を充填し た容器を設けることにより 7 素活性種生成手段を構成してもよい。 この容器内を 水素ガスあるいは水素を含むガスを通過させれ、 この容器を 3 0 0 °C以上に加熱 するようにすれば、 7]素活性種が得られ、 この水素活性種を炉心管に導入するこ とができる。
次にニッケル又はニッケルを含む材 について説明する。
ニッゲルを含む材 4としては、 例えば、 N i基合金が好ましい。 また、 N i基 合金の中でも、 N i 一 M o系合金又は N i 一 W系合金が好ましい。 より具体的に は、 例えば、 ハステロィ (登録商標) があげられる。
また、 他のニッケルを含む材料としては、 例えば、 表面粗度が、 l / m以下の 表面粗度に電解研磨されたステンレス鋼を用いてもよい。 この場合、 ステンレス 鋼の表面には、 不純物濃度が 1 0 p p b以下の酸化性雰囲気中で熱処理すること により形成された不動態膜が形成されているものを用いることがより好ましく、 さらに、 ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素雰囲気 中で還元処理を行うことにより形成された不動態膜が形成されているもの (特願 平 3— 2 1 2 5 9 2号にて別途提案) を用いることがさらに好ましい。 かかる不 動態膜の表面は、 クロム酸化物を主成分としており、 その表面は耐食性に優れ、 また、 水分の吸着がきわめて少ないためガス中への不純物の混入をきわめて少な くすることができる。 なお、不動態膜の表面粗度は、 0 . 5 m以下が好まし く、 0 . 1 ii m以下がより好ましい。 なお、 かかる不動態膜は、 クロム酸化物を 主成分としているが、 ニッケノレ酸化物を含んでおり、 このニッケル酸化物中の二 ッゲルが触媒の作用をなし、不動態膜表面に接触した水素ガスから水素活性種が 生成するものと考えられる。
(請求項 8乃至 1 9の発明について)
本発明に係る熱処連装置は、被処理物を搬出入するための開閉可能な開口部と ガスを内部に導入するためのガス導入口とを有する炉心管と;
該炉心管内部を加熱するための炉心管加熱手段と;
該炉心管の内部に配置された被処理物の位置よりも上流側において、 水素ガス 又は水素を含むガスから、 プラズマを伴うことなく水素活性種を生成させるため の水素活性種祭生手段と;
を少なくとも有することを特徴とする。
請求項 8乃至 1 9の発明の作用
本発明では、 炉心管の内部に配置された被処理物の位置よりも上流側におい て、水素ガス又は水素を含むガスから、 プラズマを俘うことなく水素活性種を生 成させるための水素活性種発生手段を設けているため、 この水素活性種究生手段 に水素ガスまたは水素を含むガスを導入すると、 水素活性種が生成する。
炉心管内に、被処理物として、例えば、酸化膜の形成されたシリコン基板を配 置しておくと、 7j素活性種は酸化膜中を拡散し、酸化膜中及び酸化膜/シリコン 界面のダングリングボンドを終端する。 従って、 高い信頼性の酸化膜が得られ る。
請求項 8乃至 1 9の発明の実施態、様例
以下の本発明の実施態様例を説明する。
本発明では、 τΚ素ガス又は水素を含むガスから、 プラズマを伴うことなく τΚ素 活性種を生成させるための水素活性種発生手段を設けたことを一つの特徴とする が、 かかる水素活性種祭生手段は、例えば、次のように構成すればよい。
(請求項 9 ) 例えば、 図 2— 1に示すように、 ガス導入口 1 2に連通させてガス導入管 2 を、 炉心管 1に接続し、 かつ、 加熱手段 9をガス導入管 2を加熱し得るように配 置する。 その際、 ガス導入管 2の内面は、 ニッケル又はニッケルを含む材料によ り構成する) 。
この場合、 加熱手段によりガス導入管 2の内部を 3 0 0 °C以上に加熱し、 ガス 導入管 2に水素ガス源から水素ガスを導入すると、 ガス導入管 2の内面に接触し た水素ガスから水素活性種が生成する。 これは、 3 0 0 °C以上の温度において は、 ガス導入管 2を構成するニッケル自体あるいはニッケルを含む材料中のニッ - ゲルが触媒作用をなすためと考えられる。 このように生成された水素活性種は当 然プラズマをともなっていないため被処理物にダメージを与えることがない。
(請求項 1 0 )
また、 水素ガスを他のガス (例えば、 A r等の不活性ガス) とともに炉心管内 に導入する場合は、 図 2— 2に示すように、 分岐管 2 a , 2 bを有するガス導入 管 2をガス導入口 1 2に連通させて炉心管 1に接続する。 分岐管 2 aが水素ガス 源に接続される。 図 2— 2に示した例は分岐管が 2つの場合であるが、 必要に応 じ 2以上の分岐管を設けてもよい。
導入管 2の内表面の一部又は全部は二ッケル又は二ッゲルを含む材料により構 成する。 図 2— 2に示す例では、 分岐管 2 aの内表面をニッケル又はニッケルを 含む材料により構成してある (請求項 1 1 ) 。 そして、 加熱手段 9は、 この分岐 管 2 aを加熱し得るように配置してある (請求項 1 2 ) 。 もちろん、 分岐管 2 a , 2 bが合流する部分 (この部分がそれぞれの分岐管 2 a , 2 bからのガス の混合部 2 cとなる) を加熱し得るように加熱手段 9を配置してもよい (請求項 1 3 ) o
(請求項 1 4 )
図 2— 1、 図 2— 2では、 導入管 2を設けた例を示した力、'、 かかる導入管を設 けず、 図 2— 3に示すように、 炉心管 1の内表面を二ッゲル又は二ッケルを含む 材料により構成してもよい。
この場合は、 図 2— 1、 図 2— 2で示したような加熱手段を設ける必要が無 く、 '炉心管加熱手段 4により加熱を行うことができるので、 炉心管 1の内部にお l、て水素活性種を生成させることができる。 なお、 ニッケル又は二ッゲルを含む 材 ["により構成する部分は、被処理物 5の配置されている位置よりも上流側のみ でも足りるが、 残き ϋをかかる材料により構成してもよい。
なお、 以上述べた実施態様では、導入管ないし炉心管の内表面をニッケル又は ニッケルを含む材料により構成して水素活性種生成手段を構成しているが、 かか る構成以外であってもよい。 例えば、 水素ガス源と炉心管との間に、 内部にニッ ケル (例えば、纖維状ニッケル、網状ニッケル、 スポンジニッケル等) を充填し た容器を設けることにより τΚ素活性種生成手段を構成してもよい。 この容器内を
7Κ素ガスあるいは水素を含むガスを通過させれ、 この容器を 3 0 0 °C以上に加熱 するようにすれば、 水素活性種が得られ、 この水素活性種を炉心管に導入するこ とができる。
次に二ッゲル又は二ッゲルを含む材料について説明する。
ニッケルを含む材料としては、 例えば、 N i基合金が好ましい。 また、 N i基 合金の中でも、 N j一 M o系合金又は N i—W系合金が好ましい。 より具体的に は、 例えば、 ハステロイ (登録商標) があげられる。
また、 他のニッケルを含む材料としては、例えば、 表面粗度が、 1 以下の 表面粗度に電解研磨されたステンレス鋼を用いてもよい。 この場合、 ステンレス 鋼の表面には、 不純物濃度が 1 0 p p b以下の酸化性雰囲気中で熱処理すること により形成された不動態膜が形成されているものを用いることがより好ましく、 さらに、 ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素雰囲気 中で還元処理を行うことにより形成された不動態膜が形成されているもの (特願 平 3— 2 1 2 5 9 2号にて別途提案) を用いることがさらに好ましい。 かかる不 動態膜の表面は、 クロム酸化物を主成分としており、 その表面は耐食性に優れ、 また、 7 分の吸着がきわめて少ないためガス中への不純物の混入をきわめて少な くすることができる。 なお、 不動態膜の表面粗度は、 0 . 5 / m以下が好まし く、 0. 1 ja m以下がより好ましい。 なお、 かかる不動態膜は、 クロム酸化物を 主成分としているが、 ニッケル酸化物を含んでおり、 このニッケル酸化物中の二 ッゲルが触媒の作用をなし、 不動態膜表面に接触した水素ガスから水素活性種が 生成するものと考えられる。 ^
(請求項 2 0乃至 3 1の発明について)
本発明に係る半導体装置の製造方法は、 絶縁膜 Z半導体界面を有する半導体装 置の製造方法において、 該絶縁膜に、 プラズマを伴わない水素活性種を接触させ ることを特徵とする。
半導体の製造方法少なくとも一部に絶縁膜を有する基体に、 3 0 0 °C以上の温度 に加熱した二ッケルまたはニッケルを含む材料に接触させた水素または水素を含 むガス体を接触させることを特徴とする。
請求項 2 0乃至 3 1の発明の作用
本発明の半導体装置の製造方法においては、 絶縁膜 半導体界面 (例えば、 シ リコン酸化膜/シリコン界面) を有する半導体装置の該絶縁膜に、 プラズマを伴 わな L、水素活性種 (例えば、 3 0 0 °C以上の温度に加熱したニッケルまたは二ッ ケルを含む材料に接触させて生成せしめた水素活性種) を接触させる。 水素活性 種は、 絶縁膜に接触すると、 絶縁膜中を拡散し、 絶縁膜中および絶縁膜 半導体 界面のダングリングボンドを、 ダメ一ジを与えることなく終端する。 従って、 高 C、信頼性の絶縁膜、 ひいては半導体装置が得られる
請求項 2 0乃至 3 1の発明の実施態様例
以下の本発明の実施態様例を説明する。
(水素活性種発生手段)
本発明では、 水素ガス又は水素を含むガスから、 プラズマを伴うことなく水素 活性種を生成させ、 この水素活性種を用いてダングリングボンドを終端すること を一つの特徴とする。 かかる水素活性種を発生させるための手段 (水素活性種発 生手段) は、 例えば、 次のように構成すればよい。
例えば、 図 3— 1に示すように、 ガス導入口 1 2に連通させてガス導入管 2 を、 炉心管 1に接繞し、 かつ、 加熱手段 9をガス導入管 2を加熱し得るように配 置する。 その際、 ガス導入管 2の内面は、 ニッケル又はニッケルを含む材料によ り構成する。
この場合、 加熱手段によりガス導入管 2の内部を 3 0 0 °C以上に加熱し、 ガス 導入管 2に水素ガス源から水素ガスを導入すると、 ガス導入管 2の内面に接触し た水素ガスから水素活性種が生成する。 これは、 3 0 0 °C以上の温度において は、 ガス導入管 2を構成する二ッゲル自体あるいは二ッゲルを含む材料中の二ッ ゲルが触媒作用をなすためと考えられる。 このように生成された水素活性種は当 然プラズマをともなっていないため被処理物にダメージを与えることがない。 また、 7j素ガスを他のガス (例えば、 A r等の不活性ガス) とともに炉心管内 に導入する場合は、 図 3— 2に示すように、 分岐管 2 a , 2 bを有するガス導入 管 2をガス導入口 1 2に連通させて炉心管 1に接続する。 分岐管 2 aが水素ガス 源に接続される。 図 3— 2に示した例は分岐管が 2つの場合である力 必要に応 じ 2以上の分岐管を設けてもよい。
導入管 2の内表面の一部又は全部は二ッゲル又は二ッゲルを含む材料により構 成する。 図 3— 2に示す例では、 分岐管 2 aの内表面を二ッゲル又は二ッケルを 含む材斗により構成してある。 そして、 加熱手段 9は、 この分岐管 2 aを加熱し 得るように配置してある。 もちろん、 分岐管 2 a , 2 bが合流する部分 (この部 分がそれぞれの分岐管 2 a , 2 bからのガスの混合部 2 cとなる) を加熱し得る ように加熱手段 9を配置してもよい。
図 3— 1、 図 3— 2では、 導入管 2を設けた例を示したが、 かかる導入管を設 けず、 図 3— 3に示すように、 炉心管 1の内表面を二ッゲル又は二ッゲルを含む 材ネ斗により構成してもよい。
この場合は、 図 3— 1、 図 3— 2で示したような加熱手段を設ける必要が無 く、 炉心管加熱手段 4により加熱を行うことができるので、 炉心管 1の内部にお いて水素活性種を生成させることができる。 なお、 ニッケル又はニッケルを含む 材料により構成する部分は、 被処理物 5の配置されている位置よりも上流側のみ でも足りるが、 残部をかかる材料により構成してもよい。
なお、 以上述べた実施態様では、 導入管ないし炉心管の内表面をニッケル又は ニッケルを含む材料により構成して水素活性種生成手段を構成している力 かか る構成以外であってもよい。 例えば、 水素ガス源と炉心管との間に、 内部にニッ ゲル (例えば、 繊維状ニッケル、 網状ニッケル、 スポンジニッケル等') を充填し. た容器を設けることにより水素活性 成手段を構 してもよい。 この容器内を 水素ガスある t、〖ま水素を含むガスを通過させれ、 この容器を 3 0 0 以上に加熱 するようにすれば、 7 素活性種が得られ、 この水素活性種を炉心管に導入するこ とができる。
また、 半導体装置の配線部を二ッケルあるいはニッケル合金により形成した場 合には、 この配線部を 3 0 0 °C以上に加熱し、 そこに水素ガスまたは水素を含む ガスを接触させれば、 水素活性種が生成する。
(ニッケル、 ニッケルを含む材料)
次にニッゲル又は二ッケルを含む材料について説明する。
ニッケルを含む材 1 としては、 例えば、 N i基合金が好ましい。 また、 N i基 合金の中でも、 N i—M o系合金又は N i—W系合金が好ましい。 より具体的に は、 例えば、 ハステロィ (登録商標) があげられる。
また、 他のニッケルを含む材料としては、 例えば、 表面粗度が、 1 以下の 表面粗度に電解研磨されたステンレス鋼を用いてもよい。 この場合、 ステンレス 鋼の表面には、 不純物濃度が 1 0 p p b以下の酸化性雰囲気中で熱処理すること により形成された不動態膜が形成されて L、るものを用いることがより好ましく、 さらに、 ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素雰囲気 中で還元処理を行うことにより形成された不動態膜が形成されているもの (特願 平 3— 2 1 2 5 9 2号にて別途提案) を用いることがさらに好ましい。 かかる不 動態膜の表面は、 クロム酸化物を主成分としており、 その表面は耐食性に優れ、 また、 水分の吸着がきわめて少ないためガス中への不純物の混入をきわめて少な くすることができる。
なお、 不動態膜の表面粗度は、 0. 5 以下が好ましく、 0 . 1 m以下が より好ましい。 なお、 かかる不動態膜は、 クロム酸化物を主成分としているが、 二ッゲル酸化物を含んでおり、 このニッケル酸化物中の二ッゲルが触媒の作用を なし、 不動態膜表面に接触した水素ガスから水素活性種が生成するものと考えら れる。
(絶縁膜、 半導体)
本発明における半導体としては、 例えば、 半導体ウェハ、 絶縁基体あるいは半 導体ウェハ上に形成された半導体層ががあげられる。
半導体層としては、 例えば、 シリコン、 ゲルマニウム、 G a A s等の化合物半 導体があげられる。
また、 半導体の結晶状態としては、 アモルファス、 多結晶、 単結晶のいずれで もよい。
一方、 絶緣膜としては、 例えば、 酸化膜、 窒化膜があげられる。 この絶縁膜 は、 加熱により形成したもの (例えば、 熱酸化膜) 、 堆積により形成したもの (堆積酸化膜) 、 その他の方法で形成したもののいずれであってもよい。
(二ッケル、 二ッゲルを含む材料の温度:)
ニッケル、 ニッケルを含む材料の温度は、 3 0 0 °C以上である。 3 0 0 °C未満 - では、 水素活性種の発生が十分ではない。 特に、 3 0 0 °C〜4 5 0 °Cが好まし く、 3 0 0 °C~ 4 0 0 °Cがさらに好ましい。 4 5 0 °Cを越えた場合、 水素活性種 の発生量は増加する力 他方、 ニッケル、 ニッケルを含む材料の表面に不動態膜 が形成されていないような場合にはその表面から不純物が放出され、 その不純物 がガス中に混入するおそれがあるからである。
C処理温度)
本発明において、 水素活性種を含むガスを絶縁膜を有する基体に接触させる際 における基体温度としては、 2 0〜; L 2 0 0 °Cが好ましく、 2 0〜 6 0 0 °Cがよ り好ましく、 2 0〜4 5 0 °Cがさらに好ましい。
(ガス)
本発明では、 ニッケル又はニッケルを含む材料に接触させるガスは、 水素ガス 又は水素を含むガスである。 水素を含むガスとしては、 例えば、 水素ガスと不活 性ガス (例えば、 A rガス、 窒素ガス等) とを混合したガスを用いればよい。 な お、 ガス流量には特に限定されない。
('請求項 3 2乃至 3 9の発明について)
本発明に係る半導体装置は、 ブラズマを伴わな \水素活性種によりシンタリン グ処理された絶緣膜を有する。
請求項 3 2乃至 3 9の発明の作用
本発明の半導体装置においては、 絶緣膜 Z半導体界面 (例えば、 シリコン酸化 膜/シリコン界面) を有する半導体装置の該絶緣膜に、 プラズマを伴わない水素 活性種 (例えば、 3 0 0 °C以上の温度に加熱したニッケルまたはニッケルを含む 材料に接触させて生成せしめた水素活性種) を接触させることにより形成され る。 7K素活性種は、 絶縁膜に接触すると、 絶縁膜中を拡散し、 絶縁膜中および絶 縁膜ノ半導体界面のダングリングボンドを、 ダメージを与えることなく終端す る。 従って、 高い信頼性の絶縁膜、 ひいては半導体装置が得られる
請求項 3 2乃至 3 9の発明の実施態様例
以下の本発明の実施態様例を説明する。
冰素活性種発生手段)
本発明では、 水素ガス又は水素を含むガスから、 プラズマを伴うことなく水素 活性種を生成させ、 この水素活性種を用いてダングリングボンドを終端すること を一つの特徴とする。 かかる水素活性種を発生させるための手段 (7Κ素活性種発 生手段') は、 例えば、 次のように構成すればよい。
例えば、 図 4一 3に示すように、 ガス導入口 3 1 2に連通させてガス導入管 3 0 2を、 炉心管 3 0 1に接続し、 かつ、 加熱手段 3 0 9をガス導入管 3 0 2を 加熱し得るように配置する。 その際、 ガス導入管 3 0 2の内面は、 ニッケル又は ニッケルを含む材料により構成する) 。
この場合、 加熱手段によりガス導入管 3 0 2の内部を 3 0 0 °C以上に加熱し、 ガス導入管 3 0 2に水素ガス源から水素ガスを導入すると、 ガス導入管 3 0 2の 内面に接触した水素ガスから水素活性種が生成する。 これは、 3 0 0 °C以上の温 度においては、 ガス導入管 3 0 2を構成するニッケル自体あるいはニッケルを含 む材料中のニッケルが触媒作用をなすためと考えられる。 このように生成された 水素活性種は当然ブラズマをともなつていないため被処理物にダメ一ジを与える ことがない。
また、 水素ガスを他のガス (例えば、 A r等の不活性ガス) とともに炉心管内 に導入する場合は、 図 4— 4に示すように、 分岐管 3 0 2 a , 3 0 2 bを有する ガス導入管 3 0 2をガス導入口 3 1 2に連通させて炉心管 3 0 1に接続する。 分 岐管 3 0 2 aが水素ガス源に接繞される。 図 4一 4に示した例は分岐管が 2つの 場合であるが、 必要に応じ 2以上の分岐管を設けてもよい。
導入管 3 0 2の内表面の一部又は全部はニッケル又はニッケルを含む材料によ り構成する。 図 4— 4に示す例では、分岐管 3 0 2 aの内表面を二ッゲル又は二 ッケルを含む材料により構成してある。 そして、加熱手段 3 0 9は、 この分岐管 3 0 2 aを加熱し得るように配置してある。 もちろん、 分岐管 3 0 2 a , 3 0 2 bが合流する部分 (この部分がそれぞれの分岐管 3 0 2 a , 3 0 2 bから のガスの混合部 3 0 2 cとなる) を加熱し得るように加熱手段 3 0 9を配置して もよい。
図 4一 3、 図 4— 4では、導入管 3 0 2を設けた例を示したが、 かかる導入管 を設けず、図 4— 5に示すように、 炉心管 3 0 1の内表面を二ッケノレ又は二ッケ ルを含む材料により構成してもよい。
この場合は、 図 4一 3、 図 4一 4で示したような加熱手段を設ける必要が無 く、 伊心管加熱手段 3 0 4により加熱を行うことができるので、 炉心管 3 0 1の 内部において水素活性種を生成させることができる。 なお、 ニッケノレ又はニッケ ルを含む材料により構成する部分は、被処理物である半導体装置の形成されてい る基体 3 0 5の配置されている位 βよりも上流側のみでも足りるが、残部をかか る材斗により構成してもよい。
なお、以上述べた実施態様では、導入管ないし炉心管の内表面をニッケル又は ニッケルを含む材料により構成して水素活性種生成手段を構成している力 かか る構成以外であってもよい。 例えば、水素ガス源と炉心管との間に、 内部にニッ ゲル (例えば、繊維状ニッケル、網状ニッケル、 スポンジニッケル等) を充填し た容器を設けることにより水素活性種生成手段を構成してもよい。 この容器内を 7}素ガスあるいは水素を含むガスを通過させれ、 この容器を 3 0 0 以上に加熱 するようにすれば、水素活性種が得られ、 この水素活性種を炉心管に導入する二 とができる。
また、半導体装置の配線部を二ッケルあるいはニッケル合金により形成した場 合には、 この配線部を 3 0 0 °C以上に加熱し、 そこに水素ガスまたは水素を含む ガスを接触させれば、水素活性種が生成する。
(ニッケル、 ニッケルを含む材料)
次に二ッケル又は二ッゲルを含む材料について説明する。
ニッケルを含む材料としては、 例えば、 N i基合金が好ましい。 また、 N i基 合金の中でも、 N i— M o系合金又は N i—W系合金が好ましい。 より具体的に は、 例えば、 ハステロィ (登録商標) があげられる。
また、 他のニッケルを含む材料としては、 例えば、 表面粗度が、 1 / m以下の 表面粗度に電解研磨されたステンレス鋼を用いてもよい。 この場合、 ステンレス 鋼の表面には、 不純物濃度が 1 0 p p b以下の酸化性雰囲気中で熱処理すること により形成された不動態膜が形成されているものを用いることがより好ましく、 nさらに、 ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素雰囲 気中で還元処理を行うことにより形成された不動態膜が形成されているもの (特 願平 3 - 2 1 2 5 9 2号にて別途提案) を用いることがさらに好ましい。 かかる 不動態膜の表面は、 クロム酸化物を主成分としており、 その表面は耐食性に優 れ、 また、 水分の吸着がきわめて少ないためガス中への不純物の混入をきわめて 少なくすることができる。 なお、 不動態膜の表面粗度は、 0 . 5 m以下が好ま しく、 0 . 1 /z m以下がより好ましい。 なお、 かかる不動態膜は、 クロム酸化物 を主成分としているが、 ニッケル酸化物を含んでおり、 このニッケル酸化物中の ニッケルが触媒の作用をなし、 不動態膜表面に接触した水素ガスから水素活性種 が生成するものと考えられる。
(絶縁膜、 半導体)
本発明における半導体としては、 例えば、 半導体ウェハ、 絶縁基体あるいは半 導体ウェハ上に形成された半導体層ががあげられる。
半導体層としては、 例えば、 シリコン、 ゲルマニウム、 G a A s等の化合物半 導体があげられる。
また、 半導体の結晶状態としては、 アモルファス、 多結晶、 単結晶のいずれで もよい。
一方、 絶縁膜としては、 例えば、 酸化膜、 窒化膜があげられる。 この絶縁膜 は、 加熱により形成したもの (例えば、 熱酸化膜) 、 堆積により形成したもの ('堆積酸化膜) 、 その他の方法で形成したもののいずれであってもよい。
(ニッケル、 ニッケルを含む材料の温度)
ニッケル、 ニッケルを含む材料の温度は、 3 0 0 °C以上である。 3 0 0 °C未満 では、 水素活性種の発生が十分ではない。 特に、 3 0 0 °C〜4 5 0 °Cが好まし く、 3 0 0 °C〜4 0 0 °Cがさらに好ましい。 4 5 0 °Cを越えた場合、 τΚ素活性種 の発生量は増加するが、 他方、 ニッケル、 ニッケルを含む材料の表面に不動態膜 が形成されていないような場合にはその表面から不純物が放出され、 その不純物 がガス中に混入するおそれがあるからである。
(処理温度)
本発明において、 τΚ素活性種を含むガスを絶縁膜を有する基体に接触させる際 における基体温度としては、 2 0〜: L 2 0 0 °Cが好ましく、 2 0〜6 0 0 °Cがよ り好ましく、 2 0〜4 5 0 °Cがさらに好ましい。
(ガス)
本発明では、 二ッゲル又は二ッゲルを含む材料に接触させるガスは、 7K素ガス 又は水素を含むガスである。 水素を含むガスとしては、 例えば、 水素ガスと不活 性ガス (例えば、 A rガス、 窒素ガス等) とを混合したガスを用いればよい。 な お、 ガス流量には特に限定されない。 図面の簡単な説明
(請求項 1乃至 7について)
図 1一 1は実施例 1― 1に係る熱処理装置の概略構成図である。 図 1一 2は 本発明の実施例 1—2に係る熱処理装置の概略構成図である。 図 1—3は本発明 の実施例 1一 3に係る熱処理装置の概略構成図である。 図 1一 4は本発明の装置 で形成した酸化膜の耐圧を示すグラフである。 図 1一 5は従来の装置で形成した 酸化膜の耐圧を示すグラフである。
(図 1一 1から図 1一 5について)
(符号の説明)
1 炉心管、 2 ガス導入管、 2 a 水素ガス導入管、 2 b 酸素ガス導入管、 2 a " 分岐管、 2 b ' 分岐管、 4 加熱源、 5 シリコン基板 (被加熱 物) 、 6 サセプ夕、 Ί バルブ、 8 バルブ、 9 水素ガス導入管加熱手段、 1 0 シャッター、 1 1 開口部、 1 2 ガス導入口、 1 2 a ' 水素ガス導入 □、 1 2 b ' 酸素ガス導入口。 (請求項 8乃至 1 9について)
図 2— 1は実施例 2― 1に係る熱処理装置の概略構成図である。 図 2— 2は 実施例 2— 2に係る熱処理装置の概略構成図である。 図 2— 3は実施例 2— 3に 係る熱処理装置の概略構成図である。 図 2— 4は実施例 2— 1に係る装置で形成 した MOSFETと従来の装置で形成した MOSFETのホッ 卜エレク トロン耐 性を示すグラフである。 図 2— 5は実施例 2 - 1 に係る装置で形成した MO S F ET型 TFT トランジスタと従来の装置で形成した MO S F ET型 TFTトランジスタのサブスレシュホールド特性を示すグラフである。 · (図 2— 1から図 2— 5について)
(符号の説明')
1 炉心管、 2 ガス導入管、 2 a 分岐管、 2 b 分岐管、 2 c 混合部、 4 炉心管加熱手段 (加熱源) 、 5 シリコン基板 (被処理物) 、 6 サセプ 夕、 7 バルブ、 9 ガス導入管を加熱するための加熱手段 (加熱源) 部、 10 シャッター、 1 1 開口部、 1 2 ガス導入口。
(請求項 20乃至 31について)
図 3— 1は実施例 3— 1において用いた熱処理装置の概略構成図である。 図 3- 2は実施例 3— 2において用いたる熱処理装置の概略構成図である。 図 3— 3は実施例 3— 3において用いた熱処理装置の概略構成図である。 図 3— 4は実 施例 3— 1において形成した MO S FETと従来の技術で形成した MO S FET のホッ トエレク トロン耐性を示すグラフである。 図 3— 5は実施例 3— 1におい て形成した MO S F E T型 T F T ト ラ ンジスタと従来の技術で形成した MO S FE T型 T F Tトランジス夕のサブスレシュホールド特性を示すグラフで あ o
(図 3— 1から図 3— 5について)
(符号の説明)
1 炉心管、 2 ガス導入管、 2 a 分岐管、 2 b 分岐管、 2 c 混合部、 炉^:、管加熱手段 (加熱源) 、 5 シリコン基板 (被処理物) 、 6 サセプ 夕、 7 バルブ、 9 ガス導入管を加熱するための加熱手段 (加熱源) 部、 10 シャッター、 11 開口部、 12 ガス導入口。
('請求項 32乃至 39について)
図 4— 1は本発明の実施例に係る半導体装置の断面構造図である。 図 4一 2は 本発明の半導体装置の製造行程を示す断面図である。 図 4一 3は実施例 4一 1に お t、て用いた熱処理装置の概略構成図である。 図 4— 4は実施例 4一 2において 用いたる熱処理装置の概略構成図である。 図 4— 5は実施例 4一 3において用い た熱処理装置の概略構成図である。 図 4— 6は実施例 4— 1において形成した MO SFETと従来の技術で形成した M〇 SFETのホットエレクトロン耐性を 示すグラフである。 図 4— 7は実施例 4一 1において形成した MO SFET型 TFTトランジスタと従来の技術で形成した MOSFET型 TFTトランジスタ のサブスレシュホールド特性を示すグラフである。
(図 4— 1から図 4一 7について)
(苻号の説明)
1 1 基板表面の電極、 12 p卞基板、 13 ητ埋め込み領域、 14 高抵抗領域、 15 高抵抗率 η—領域、 16 絶縁分離領域、 17, 18 η τ領域、 19, 20 ρ+領域、 21, 22, 23, 24 金属シ リサイド、 25. 26 シ リ コ ン酸化膜 (ゲート絶緣膜) 、 27, 28 ゲート電極、 29, 30, 31 金属電極、 32, 33, 34 金属フッ化物 (A 1 F ο ) 、 35 PS G膜、 窒化膜、 301 炉心管、 302 ガス導入管、 302 a 分岐管、 302 b 分岐管、 302 c 混合部、 304 炉心管加熱手段 (加熱 源 } 、 305 シ リ コン基板 (被処理物) 、 306 サセプタ、 307 ノりレ ブ、 309 ガス導入管を力 Π熱するための加熱手段(加熱源) 。 発明を実施するための最良の形態
(請求項 1乃至 7の発明について.)
以下、本発明の実施例を図面に基づいて説明する。
(実施例 1 -1) 図 1 - 1は、 本発明の実施例を示す横型単管酸化反応炉装置である。 なお、 以 下の各実施例の説明において互いに同一又は均等の構成部材は、 同一の符号で示 す。 図 1 — 1に示すように、 炉心管 1は、 管長方向の一端側水素ガス導入口 1 2 aおよび酸素ガス導入口 1 2 bが形成され、 該水素ガス導入口 1 2 aには、 ニッケル金属で構成された水素ガス導入管 2 aが接続され、 7 素ガス導入管 2 a の外側に加熱手段たる加熱源 9が設置されている。 なお前記水素ガス導入管 2 a の材質は、 ニッケル鋼の他、 ステンレス鋼, ハステロィ等でもよい。 すなわち、 少なくともニッケル金属を含む材料であればよく、 望ましくは炉心管 1内を汚染 しないために表面処理 (例えばドライ酸素酸化不動態化処理) された材料であれ ばよ L、。 水素ガス導入管 2 aおよび酸素ガス導入管 2 bの上流側には ' ルブ 7 , 8を介して図示省略のガス供給系が接続されている。 前記加熱源 9としては、 電 気抵抗加熱ヒータ、 赤外線ランプヒータ等により構成される。
一方、 炉心管 1内の保持部材たる石英サセプ夕 6上にはシリコン基板 5が載置 され、 加熱源 4により加熱されるようになっている。 前記加熱源 4としては、 電 気抵抗加熱ヒータ、 赤外線ランプヒータ等により構成される。 炉心管 1およびサ セプタ 6の材質は、 合成石英, 溶融石英の他に、 アルミナ, シリ コンカーパイ ト、 窒化アルミニウム, 窒化ほう素等が挙げられ、 シリコン基板を汚染しない (例えばナトリウムイオンフリー, 重金属フリー, 脱ガスフリー, パーティクル フリ一等) 材料が望ましい。
シリコン基板 5は、 希フッ素溶液に接触させて自然酸化膜を除去した後、 シリ コン基板 5の超純水洗浄、 乾燥工程を行う。 その後、 石英サセプ夕 6上に設置さ れた後、 炉心管 1の開口部 1 1の蓋体 1 0を開き、 ソフトランデイング搬送によ つて炉心管 1内に搬入した後蓋体 1 0を閉める。 その後前記加熱源 4によってシ リコン基板 5は 9 0 0 °Cに力 []熱される。 酸素ガス導入管 2 bに導入される酸素ガ スは 1 0 0 0 c c Z分の流量に設定される。 前記水素ガス導入管 2 aに導入され る水素ガスは 2 0 0 0 c c Z分の流量に設定される。 前記導入水素ガスは 4 0 0 °Cに加熱された水素ガス導入管 2 aの内表面に接触し、 活性化されて炉心管 1に 導入され、 4 0 0 °Cの温度で酸素ガスと燃焼を伴わずに反応して水蒸気を生成す る。 7K素ガスまたは水素活性種と酸素ガスの混合部の温度は 5 0 0 °C以下が望ま しい。 irK混合部の温度が 5 0 o。cより高い場合は、 燃焼が起こり、 τκ素ガスま たは水素活性種導入部である石英管の先端が溶けて、 パーティクルを発生する。 シリコン基扳 5を 1 2 0分間 9 0 0 °Cで方 Π熱した後、 I !己ソフトランデイング搬 送の逆の手順によつてシリコン基板 5および石英サセプタ 6を炉心管 1から外部 に搬出させる。 その後酸化反応処理後のシリコン上のパーティクルを例えばゥェ '、表面検査器により計測する。 その実施例として反応処理後のシリコンゥヱハ上 のパーティクノレ数は少なくとも 0. 5〜5 Ai m径のものは検出されないという結 果を得た c
—^ ff己水素ガス導入管 2 aを加熱せずに、 炉心管 1中の水素ガス導入部石英 管先端で水素を燃焼させた以外は、 他の工程を前述と同じ条件で、 すなわちシリ コン基板 5の希フッ酸溶液よる自然酸化膜除去, 超純水洗净, 乾燥行程, 石英サ セプタ 6上への設置, ソフトランデイング搬送, 酸素ガス中でのシリコン基板 5 の 1 2 0分間 9 0 0 °Cでの加熱、 ソフ トランディング搬送による取り出しを同じ 条件で行ったところ、 シリコン基板 5上の 0. 5 ~ 5 Ai m径のパーティクルの数 は 1 4個であった。
本例の装置で形成した酸化膜上のパーティクノレ数は 1個以下であつた。 すなわ ち、本発明の装置は、 シリコン基板 5上へのパーティクルの付着を抑制すること がわかる。
(実施例 1 - 2 )
図 1一 2は、 実施例 1一 2を示すもので、 7_K素ガスまたは水素活性種と酸素ガ スとの混合部 2 cをガス導入管 2に設けたものである。 すなわちあ、 本例では、 分岐管 2 a ' , 2 b ' を有し、 分岐管 2 a ' , 2 b ' の合流部が混合部となるガ ス導入管 2を用いた。 このガス導入管 2の内面はニッケノレ合金 (ハステロイ C により構成されている。
本実施例は、 ガス混合部をガス導入部に設けている以外実質的にはその構成及 び作用は上記実施例 1— 1と同様である。
すなわち、 本実施例の場合、上記実施例 1 - 1と同様炉心管 1から取り出され たシリコン基板 5上のパーテイクルは検出されなかつた。
(実施例 1一 3 ) 図 1 一 3は実施例 1 一 3を示すものである。 本実施例は炉心管 1をニッケル金 属 (ハステロイ C ) で構成したものである。
なお、 加熱源 4は伊心管 1を介して被加熱部たるシリコン基板 5を加熱する。 酸素ガス導入口 1 2 bに流す導入ガスとしての酸素ガスは例えば 1 0 0 0 c c Z分の流量に設定される。 7]素ガス導入口 1 2 aに流す導入ガスとしての水素ガ スは例えば 1 0 c c /分の流量に設定されるが炉心管 1に導入される間に加熱さ れたニッケル金属に接触することはない。 シリコン基板 5を 5 0 0 °C以上に加熱 する場合は、 前記水素ガスの流量は、 炉心管 1内での水素の濃度が、 2容積%以 下にすることが望ましい。 5 0 0 °C以上の温度で水素濃度が 2容積%以上の場 合、 K素が燃焼する。 本実施例の場合、 反応処理終了後に炉心管から取り出され たシリコン基板 5上には、 少なくとも 0 . 5〜5〃m径のパーティクルは検出さ れなかった。
なお、 縦型に構成されている以外は実質的にはその構成は、 上記実施例 1 一 1、 1—2、 1— 3と同様の実施例においては、 その作用はいずれも上記実施例 と同様である。 すなわち、 上記実施例と同様炉心管 1から取り出されたシリコン 基板 5上のパーティグルは検出されなかった。
図 1 一 4は、 本発明の装置で形成した酸化膜の耐圧を示すグラフであり、 図 1 一 5は、 従来の装置で形成した酸化膜の耐圧を示すグラフである。 図 1 — 4、 1 一 5の横軸は、 酸化膜の絶縁破壊電界を表し、 縦軸は絶縁破壊した酸化膜の数の 百分率を表している。 酸化膜の厚さは 1 0 n mである。 ゲート電極としては n +型多結晶シリコンが使用され、 ゲート電極'は正に印加されている。
本発明の装置で形成した酸化膜は、 8 M V/ c m以下の酸化膜の平均電界では 絶縁破壊しない。 一方、 従来の装置で形成した酸化膜は、 8 M V / c m以下の酸 化膜の平均電界で絶縁破壊が発生している。 すなわち、 本発明の装置で形成した 酸化膜は高い信頼性を示すことがわかった。
(請求項 8乃至 1 9の発明について)
以下、 本発明の実施例を図面に基づいて説明する。
(実施例 2— 1 ) 図 2— 1に、 本発明の実施例を示す。
本例における熱処理装置は、 模型単管シン夕リング炉装置である。 なお、 以下 の各実施例の説明においてお互いに同一又は均等の構成部材は、 同一の符号で示 す。
図 2— 1に示すように、本例の装置において、炉心管 1は、 炉心管の長手方向 の一端側に外部からガスを導入するためのガス導入口 1 2を有し、 そのそとがわ には、 ガス導入口 1 2に連通させてガス導入管 2が設けられている。
本例においては、 ガス導入管 2は、 ニッケノレ合金 (ハステロイ C :登録商標) - 金属で構成されており、 また、 ガス導入管 2の外側には加熱手段たる力 [I熱源 9力; 設置されている。
なお、 irs己ガス導入管 2の材質は、 ニッケル鋼の他、 ステンレス鋼、 ハステロ ィ等でもよい、 すなわち、少なくともニッケノレ金属を含む材料であればよく、 望 ましくは炉心管 1内を汚染しないために表面処理 (例えばドライ酸素酸化不動態 化処理) された材料であればよいことは実施態様の項で述べた通りであり、 これ らについても本例と同様の効果が得られることが確認されている。
ガス導入管 2の上流側にはバルブを介して図示省略のガス供給系が接続されて いる。 if己加熱源 9としては、 電気抵抗加熱ヒータ、 赤外線ランプヒータ等によ り構成すればよい。
一方、 炉心管 1内の保持部材たる石英サセプタ 6上にば、 被処理物、 例えば、 シリコン基板 5が載置され、 炉心管加熱手段である加熱源 4により加熱されるよ うになつている。前記加熱源 4としては、例えば、 電気抵抗加熱ヒータ、 赤外線 ランプヒータ等により構成される。 なお、 炉心管 1及びサセプ夕 6の材質は、 合 成石英、 溶融石英の他に、 アルミナ、 シリコンカーバイト、 窒化アルミニウム、 窒化ほう素等が挙げられ、 シリコン基板を汚染しない (例えばナトリウムイオン フリ一、重金属フリ一、脱ガスフリ一、 パーティクルフリ一等) 材料が望まし い。
以下に図 2— 1に示す装置を用いてシンタリングを行った例を述べる。
本例では、 シリコン基板 5上には、 シンタリング処理前の MO Sダイォードを 形成した。 . その後、 シリコン基板 5は石英サセプタ 6上に設置し、 炉心管 1の開口部 1 1 の蓋体 1 0を開き、 ソフトランディング搬送によって炉心管 1内に搬入し、 蓋体 1 0を閉めた。 その後、 前記加熱源 4によつてシリコン基板 5を 3 0 0 °Cに加熱 した。
ガス導入管 2に、 7j素ガスとアルゴンガスの混合ガスを導入した。 なお、 この 混合ガスは、 1 0 %の水素ガスとアルゴンガスの混合ガスであり、 流量は、 1 0 0 0 c c /分に設定した。
水素ガスとアルゴンガスとの混合ガスを、 加熱源 9により 4 0 0 °Cに加熱した ガス導入管 2の内表面に接触し、 7j素活性種を生成させ、 ガス導入口 1 2を介し て炉心管 1内に導入した。
一方、 炉心管 1内のシリコン基板 5は 3 0 0 に加熱し、 混合ガスを炉心管 1 に導入後、 3 0分間 3 0 0 °Cに保持することによりシンタリング処理を行つた。 ガス導入口 1 2から導入された水素活性種を含む混合ガスはこのシリコン基板 5 の表面に接触し、 酸化膜中を拡散し、 酸化膜中及び酸化膜 シリコン界面のダン グリングボンドを終端した。
シンタリング処理後、 前記ソフ ト トランデイ ング搬送の逆の手順によってシリ コン基板 5及び石英サセプタ 6を炉心管 1から外部に搬出した。
その後、 シンタリング処理後のシリコン基板 5上の M O Sダイォ一 ドの界面準 位密度を擬定容量一電圧測定により計測した。 その実測例としてシンタリング後 の界面—準位密度 2 X I 0 ύ c m— 2 e V一 1以下という結果を得た。
(比較例)
一方、 前記ガス導入管 2を加熱せずに、 活性水素を生成しないこと以外は、 他 の行程を前述と同じ条件で、 すなわちシリコン基板 5の石英サセプタ 6上への設 置、 ソフトランディング搬送、 水素/アルゴン混合ガス中でのシリコン基板 5の 3ひ分間 3 0 0てでの加熱、 ソフ トランディング搬送による取り出しを同じ条件 で行なつたところ、 シリコン基板 5上に M O Sダイォードの界面準位密度は 1 >: 1 0 1 0 c m— e V— 1であった。
本発明の実施例における酸化膜 Zシリコン界面の界面準位密度は前述した通り 2 1 0 ° c m - - e V " 1以下であるので、 両者を比較すると、 本発明の実施 例は、酸化膜 Zシリコン界面のダングリングボンド数を低減することがわかる。 (実施例 2 - 2 )
図 2— 2は、実施例 2— 2を示すもので、 水素ガス又は水素活性種とアルゴン ガスとの混合部 2 cをガス導入管 2に設けたものである。 すなわち、本例では、 ガス導入管として、分岐管 2 a , 2 bを有するガス導入管 2を用いた。 分岐管 2 a , 2 bが合流する部分がガスの混合部 2 cとなる。本例では、 分岐管 2 aは 水素ガス源(図示せず) に接続され、分岐管 2 bはアルゴンガス源 (図示せず) に接続されている。 また、 本例では、 加熱手段 9は、 分岐管 2 aの近傍に設け た。 もちろん混合部 2 c近傍に設けてもよいことは前述した通りである。
本実施例は、 ガス混合部をガス導入管に設けて 、る以外実質的にはその構成及 び作用は上記実施例 2— 1と同様である。
すなわち、本実施例の場合、上記実施例 1と同様炉心管 1から取り出されたシ リコン基板 5上の MO Sダイォ一ドの界面準位密度は 2 x l O J c m— e V— 1以下であつた。
(実施例 2— 3.)
図 2— 3は実施例 2 - 3を示すものである。本実施例は炉心管 1をニッケル金 属で構成したものである。
なお、加熱源 4は炉心管 1を介して被加熱部たるシリコン基板を加熱する。 ガス導入管 2に流す導入ガスとしての水素とアルゴンの混合ガスは例えば 1 0 0 0 c c Z分の流量に設定されるが炉心管 1に導入される間に加熱された二 ッケル金属に接触することはない。本実施例の場合、反応処理終了後に炉心管か ら取り出されたシリコン基板 5上の MO Sダイォードの界面準位密度は 2 >: 1 0 9 c m— 2 e V— 1以下であつた。
なお、縦型に構成されている以外は実質的にはその構成は、 上記実施例 2— 1、 2— 2、 2— 3と同様の実施例においては、 その作用はいずれも上記実施例 と同様である。 すなわち、上記実施例と同様炉心管 1から取り出されたシリコン 基板 5上の MO Sダイォードの界面準位密度は 2 X 1 0 c m— e V一 1以下 めつた 0
図 2— 4は、実施例 2一 1に係る装置で形成した MO S F E Tと従来の装置で 形成した MOS FETのホッ 卜エレク トロン耐性を示すグラフである。 図 2— 4 の横軸は注入したホッ 卜エレク トロンの数を表し、 縦軸はしきい値電圧のシフト 量を表している。 酸化膜の厚さは 10 nmである。 ゲー卜電極としては η τ型多 結晶シリコンが使用されている。
実施例 2— 1に係る装置で形成した MOSFETは、 1 x 101 7のホッ トェ レク トロンを注入してもしきい値電圧のシフト量は 0. 03 Vと小さい。 一方、 従来の装置で形成した MOSFETは、 しきい値電圧が 0. 2 Vと大きくシフ ト している。 すなわち、 実施例 2— 1に係る装置で形成した MOS FETは高い信 頼性を示すことがわかった。
図 2— 5は、 実施例 2 - 1に係る装置で形成した MO S FE T型 T F Tと従来 の装置で形成した MOSFET型 TFTのサブスレシュホールド特性を示すグラ フである。 図 2— 5の横軸は、 ゲート電圧を表し、 横軸はドレイン電流を表して いる。 基板としては、 シリコンウェハ上に酸化膜を形成し、 酸化膜上に p型多結 晶シリコンを形成している。 MOSFETは、 多結晶シリコン上に形成してい る。 前記多結晶シリコンは、 酸化膜の他、 ガラス上に形成される。 ゲー卜電極と しては n +型多結晶シリコンが使用されている。 MO S FE Tのチャネル長さは 2 zm、 チャネル幅は 100 mである。 ドレイン電圧としては、 5Vが印加さ れている。
実施例 1に係る装置で形成した MOSFET型 T FTは、 ゲート電圧が 0Vの 場合ドレイン電流 1 X 10— 1 A以下である。 一方、 従来の装置で形成した MOSFET型TFTは、 ゲート電圧が 0Vでも 1 x 10— 7 A以上の電流が流 れている。
本発明の装置で形成した MO SFET型 TFTでは、 ゲート酸化膜ノ多結晶シ リコン界面のダングリングボンドが水素で終端され、 かつチャネルを形成する多 結晶シリコンの粒界のダングリングボンドが水素で終端されるため、 ドレイン電 流を低減できている。 そのため、 実施例 2— 1 に係る装置で形成した M 0 S F E T型 T F Tのサブスレシュホールド特性が向上している。 すなわち、 実施例 1に係る装置で形成した MO SFE T型 T F Tは高い性能及び高い信頼性 を示すことがわかった。 なお、 実施例 2— 2、 実施例 2— 3に係る装置で処理した場合においても図 2 - 4、 図 2— 5に示すと同様な結果が得られている。
(請求項 2 0乃至 3 1の発明について)
以下、 本発明の実施例を図面に基づいて説明する。
(実施例 3— 1 )
図 3— 1に、本発明の実施例で用いたシンタリング装置を示す。
本例におけるシンタリング装置は、 模型単管シンタリング炉装置である。 な お、 以下の各実施例の説明においてお互いに同一又は均等の構成部材は、 同一の 符号で示す。
図 3—1に示すように、 本例の装置において、 炉心管 1は、 炉心管の長手方向 の一端側に外部からガスを導入するためのガス導入口 1 2を有し、 その外側に は、 ガス導入口 1 2に連通させてガス導入管 2が設けられている。
本例においては、 ガス導入管 2は、 ニッケノレ合金 (ハステロイ C :登録商標) で構成されており、 また、 ガス導入管 2の外側には加熱手段たる加熱源 9が設置 されている。
なお、 mi己ガス導入管 2の材質は、 ニッケノレ鋼の他、 ステンレス鋼、 ハステロ ィ等でもよい、 すなわち、 少なくともニッケル金属を含む材料であればよく、 望 ましくは炉心管 1內を汚染しないために表面処理 (例えばドライ酸素酸化不動態 化処理) された材料であればよいことは実施態様の項で述べた通りであり、 これ らについても本例と同様の結果が得られる とが確認されている。
ガス導入管 2の上流側にはバルブを介して図示省略のガス供給系が接続されて いる。 前記加熱源 9としては、 電気抵抗加熱ヒータ、 赤外線ランプヒータ等によ り構成すればよい。
一方、 炉心管 1内の保持部材たる石英サセプタ 6上には、 被処理物、 例えば、 シリコン基板 5力載置され、 炉心管加熱手段である加熱源 4により加熱されるよ うになつている。 ?1己加熱源 4としては、 例えば、 電気抵抗加熱ヒータ、 赤外線 ランプヒータ等により構成される。 なお、 垆心管 1及びサセプ夕 6の材質は、 合 成石英、 i香融石英の他に、 アルミナ、 シリコンカーバイト、 窒化アルミ ゥム、 窒化ほう素等が挙げられ、 シリコン基板を汚染しない (例えばナトリウムイオン フリー、 重金属フリー、 脱ガスフリー、 パーティ クルフリー等) 材^ が望まし い。
以下に図 3— 1に示す装置を用いてシンタリングを行った例を述べる。
本例では、 シリコン基板 5上には、 シンタリング処理前の M〇 Sダイオードを 形成した。
その後、 シリコン基板 5を、 石英サセプタ 6上に設置し、 炉心管 1の開口部 1 1の蓋体 1 0を開き、 ソフトランディング搬送によって炉心管 1内に搬入し、 蓋体 1 0を閉めた。 その後、 前記加熱源 4によってシリコン基板 5を 3 0 0 °Cに 加熱した。
ガス導入管 2に、 7_Κ素ガスとアルゴンガスの混合ガスを導入した。 なお、 この 混合ガスは、 1 0 %の水素ガスとアルゴンガスの混合ガスであり、 流量は、 1 0 0 0 c c /分に設定した。
水素ガスとアルゴンガスとの混合ガスを、 加熱源 9により 4 0 0 °Cに加熱した ガス導入管 2の内表面に接触し、 7j素活性種を生成させ、 ガス導入口 1 2を介し て炉心管 1内に導入した。
一方、 炉心管 1内のシリコン基板 5は 3 0 0 に加熱し、 混合ガスを炉心管 1 に導入後、 3 0分間 3 0 0 Vに保持することによりシンタリング処理を行つた。 ガス導入口 1 2から導入された水素活性種を含む混合ガスはこのシリコン基板 5 の表面に接触し、 酸化膜中を拡散し、 酸化膜中及び酸化膜 シリコン界面のダン グリングボン ドを終端した。
シンタリング処理後、 前記ソフ ト トランデイ ング搬送の逆の手順によってシリ コン基板 5及び石英サセプ夕 6を炉心管 1から外部に搬出した。
その後、 シンタリング処理後のシリコン基板 5上の M O Sダイォードの界面準 位密度を擬定容量—電圧測定により計測した。 その実測例としてシンタリング後 の界面—準位密度 2 X 1 0 9 c m— 2 e V— 1以下という結果を得た。
(比較例)
一方、 前記ガス導入管 2を加熱せずに、 活性水素を生成しないこと以外は、 他 の行程を前述と同じ条件で、 すなわちシリコン基板 5の石英サセプ夕 6上への設 置、 ソフトランデイング搬送、水素 Zァルゴン混合ガス中でのシリコン基扳 5の 3 0分間 3 0 0 °Cでの加熱、 ソフトランデイング搬送による取り出しを同じ条件 で行なつたところ、 シリコン基板 5上に M 0 Sダイォードの界面準位密度は 1 >: 1 0 1 0 c m- " e V— 1であった。
本発明の実施例における酸化膜 Zシリコン界面の界面準位密度は前述した通り 2 x 1 0 9 c m- 2 e Vー丄以下であるので、雨者を比較すると、本発明の実施 例は 、酸化膜 Zシリコン界面のダングリングボンド数を低減することがわか る。
(実施例 3— 2 )
実施例 3 - 2では、 図 3— 2に示す装置を用いた。 この装置は、 水素ガス又は 水素活性種と Ύルゴンガスとの混合部 2 cをガス導入管 2に設けたものである。 すなわち、本例では、 ガス導入管として、分岐管 2 a , 2 bを有するガス導入管 2を用いた。 分岐管 2 a, 2 bが合流する部分がガスの混合部 2 cとなる。本例 では、分岐管 2 aは水素ガス源(図示せず) に接続され、 分岐管 2 bはアルゴン ガス源(図示せず) に接繞されている。 また、本例では、力 Π熱手段 9は、分岐管 2 aの近傍に設けた。 もちろん混合部 2 c近傍に設けてもよいことは前述した通 りである。
本実施例は、 ガス混合部をガス導入管に設けて 、る以外実質的にはその構成及 び作用は上記実施例 3— 1と同様である。
すなわち、本実施例の場合、上記実施例 1と同様炉心管 1から取り出されたシ リコン基板 5上の M 0 Sダイォ一ドの界面準位密度は 2 X 1 0 " c m— e V— 1以下であった。
(実施例 3 - 3 ) - 実施例 3 - 3では図 3— 3に示す装置を用いた。 この装置は、 炉心管 1を二ッ ゲル金属で構成したものである。
なお、加熱源 4は炉心管 1を介して被加熱部たるシリコン基板を加熱する。 ガス導入管 2に流す導入ガスとしての水素とアルゴンの混合ガスは例えば 1 0 0 0 c c Z分の流量に設定されるが炉心管: Iに'導入される間に加熱された二 ッケル金属に接触することはない。本実施例の場合、反応処理終了後に炉心管か ら取り出されたシリコン基板 5上の MO Sダイォ一ドの界面準位密度は 2 X 109 cm" 2 e V" 1以下であつた。
なお、 縦型に構成されている以外は実質的にはその構成は、 上記実施例 3 - 1 3— 2 3— 3と同様の実施例においては、 その作用はいずれも上記実施例 と同様である。 すなわち、 上記実施例と同様炉心管 1から取り出されたシリコン 基板 5上の MOSダイォ—ドの界面準位密度は 2 X 109 cm— 2 e V— 1以下 .であった。
図 3— 4は、 実施例 3― 1に係る装置で形成した MO S FE Tと従来の装置で 形成した M〇S FETのホッ 卜エレク トロン耐性を示すグラフである。 図 3— 4 の横軸は注入したホッ トエレク トロンの数を表し、 縦軸はしきい値電圧のシフ卜 量を表している。 酸ィ匕膜の厚さは 10 nmである。 ゲート電極としては n 型多 結晶シリコンが使用されている。
実施例 3— 1に係る装置で形成した M 0 S F E Tは、 1 X 101 7のホッ トェ レク トロンを注入してもしきい値電圧のシフト量は 0. 03 Vと小さい。 一方、 従来の装置で形成した MOSFETは、 しきい値電圧が 0. 2Vと大きくシフ ト している。 すなわち、 実施例 3— 1に係る装置で形成した MOSFETは高い信 頼性を示すことがわかった。
■ 図 3— 5は、 実施例 3— 1に係る装置で形成した MO S FE T型 T F Tと従来 の装置で形成した M 0 S F E T型 T F Tのサブスレシュホールド特性を示すグラ フである。 図 3— 5の横軸は、 ゲート電圧を表し、 横軸はドレイン電流を表して いる。 基板としては、 シリコンウェハ上に酸化膜を形成し、 酸化膜上に p型多結 晶シリコンを形成している。 MOSFETは、 多結晶シリコン上に形成してい る。 前記多結晶シリコンは、 酸化膜の他、 ガラス上に形成される。 ゲート電極と しては 型多 結晶シリコンが使用されている。 MOS FETのチャネル長さ は 2 m、 チャネル幅は 100 zmである。 ドレイン電圧としては、 5Vが印加 されている。
実施例 3— 1に係る装置で形成した MOS FE T型 TFTは、 ゲー卜電圧が 0Vの場合ドレイン電流 1 X 10— 1 A以下である。 一方、 従来の装置で形成 した MO SFE T型 T F Tは、 ゲ—ト電圧が 0 Vでも 1 >' 10— ' A以上の電流 が流れている。本発明の装置で形成した MO SFET型 TFTでは、 ゲ一ト酸化 膜 Z多結晶シリコン界面のダングリングボンドが水素で終端され、 かつチャネル を形成する多結晶シリコンの粒界のダングリングボンドが水素で終端されるた め、 ドレイン電流を低減できている。 そのため、実施例 1に係る装置で形成した MO SFET型 TFTのサブスレシュホールド特性が向上している。 すなわち、 実施例 3— 1に係る装置で形成した MO SFET型 TFTは高い性能及び高い信 頼性を示すことがわかった。
なお、実 ί例 3— 2、 実施例 3— 3に係る装置で処理した場合においても図 3 —4、 図 3— 5に示すと同様な結果が得られている。
(請求項 32乃至 39の発明について》
以下、本発明の実施例を図面に基づいて説明する。
(実施例 4— 1)
図 4一 1に本実施例に係る半導体装置の基本構造を断面図で示す。 . ここでは半導体装置内に含まれる 1対の CMOSのみを示す。 図 4—1で、 11は基板裏面の電極、 11は1)+基板、 13は ητ埋め込み領域、 14は高抵 抗 Ρ— 領域、 15は高抵抗率 η—領域、 16は絶緑分離領域、 17, 18は11 τ領域、 1 9, 20は ρ卞領域、 21, 22, 23, 24は Mo S i 9. S i 9, T a S i g, T i S i 。もしくは P d 9 S i等の金属シリサイ ド、 25 , 26はシリンダ処理されたシリコン酸化膜(ゲート絶緣膜) であり、 その 処理方法は後に詳述する。 27, 28はゲート電極、 29, 30, 31は A 1 , A l S i もしくは A l Cu等の金属電極、 32, 33, 34は、 電極 27 , 28, 29, 30, 31を絶縁分離するための金属フッ化膜(電極として例えば A 1を用いた場合は A 1 F。) 、 35はパッシベーシヨン用 PS G膜もしくは窒 化膜である。
図 4一 1で、 ゲート絶縁膜 25と領域 14の界面は領域 17, 18と領域 14 の界面より領域 14側に形成されており、 ゲ一ト絶緣膜 26と領域 15の界面は 領域 19. 20と領域 15との昇面より領域 15 に形成されている。 この構造 では、 チヤネル部のソースとドレインの問の電界強度が軽減されるため短チャネ ノレ効果が起こりにく い。
図 4— 1で、 ゲート電極 27 28の材料は n +領域 17, 1 8と +領域 19, 20の両方の領域に対して高い拡散電池がもつものが望ましい。 例えば、 Aし A 1 S iもしくは A 1 C uにすると、 高い拡散電位 が得られる。 A 1で は、 n 領域に対して 0. 7V程度、 p+領域に対して 0. 4V程度の拡散電位 を持つことになる。 もちろん、 ゲート電極は仕事関数の値が η τ領域、 ρ τ領域 のいずれに対しても高いバリアを持つものであればよく、 高融 点金 属ゃ金属 シリサイ ドでもよい。 したがって、 ゲート電極の抵抗は小さい。
また、 この構造では、 η +ソース領域に対する ρ τ基板 12とゲート電極 27 の拡撒電位によって、 および ρ +ソース領域に対する η 埋め込み領域 1 3と ゲート電極 28の拡散電位によって、 チャネル中に電位障壁を生じさせ、 チヤネ ル領域 14 1 5の不純物密度が 101 4 101 6 cm— 3程度で M〇 Sトラ ンジスタでのノーマリオフ特性を実現している。 すなわち、 領域 14及び 15は 高抵抗領域であって、 不純物濃度は低く保たれている。 したがって、 電子ゃホ一 ルが流れるチャネル幅が広く保たれ、 チヤネルを走るキャリァの移動が低下する ことなく短チャネルが実現できる。 すなわち、 変換コンダクタンス 8mの大きな MO Sトランジスタとなる。
図 4—1で、 n '領域 17と領域 14との接合面、 n+領域 18と 領域 14 との接合面、 P+領域 1 9と領域 1 5との接合面、 および P+領域 20と領域 15との接合面は平面であり、 接合面の面積が小さいためフリンジ効果が少く ソース領域とドレイン領域間およびソース領域と基板間、 ドレイン領域と基板間 の容量が小さい。
図 4一 1において、 電極 29, 30 31の材料は、 例えば A 1 A l S i A l Cu A l Cu S iであり、 ソース電極及びドレィン電極の抵抗が小さ L ソース抵抗、 ドレイン抵抗、 ゲート抵抗が小さく、 また、 ソース、 ドレイン容量 も小さい上に、 変換コンダクタンス gmが大きいから、 高速性能に優れた卜ラン ジス夕となる。 もちろん、 ソース電極およびドレイン電極は例えば Mo, , T a, T i等の金属でもよい。
図 4一 1で、 基板として n +埋め込み領域 13を備えている p+基板 12につ l、て説明したが、以上述べた半導体装置の動作はサファイア、 スビネル、 石英、 A 1 Nもしくは S i C等の絶 «基板を用いても実現される。
次に、 図 4— 1の半導体装置を製作するための製 5 程の一例を図 4一 2に示 す。基板 1 2に p+基板を用いた場合につき説明する。 ρτ基板 1 2の領域 1 3 に、例えば CVD法で堆積した PSG膜から Ρの熱拡散で 埋め込み領域を形 成する。 もちろん領域 1 3は Ρもしくは A sのイオン注入及び活性化ァニールで 形成してもよい。分離領域 1 6、 p—領域 14、 n—領域 1 5は例えば次のよう に形成する。埋め込み領域 1 3を有する基板 12の表面を数 1 0 nm程度熱酸化 した後、 P SG膜あるいは BP S G膜を所定の厚さに CVD法で成膜する。 領域 14、 1 5に相当する部分の熱酸化膜及び P SG膜あるいは BP S G膜をリアク ティブイオンエッチングにより除去する。 続いて、 S i H4、 S i 2Hfiあるい は S i H9 C 1 9を用いた CVD法により、領域 14, 1 5を選択ェピタキシャ ル成長させる。 このようにして図 4— 2 ( a ) に示す構造が形成されるが、以上 の方法に限らず他のいかなる方怯で形成しても良い。 なお、領域 14、 1 5の厚 さは、つくるデノく'ィスにより適!^択すればよ t、が、例えば、 0. 03〜 0. 5 m程度の値に選べばよい。
次に、領域 14 , 1 5の表面上に選択的に 1 0〜 20 n mの厚さの金属層、例 えば W, Ta, T i , Mo等よりなる層を成長させる。 その後、 これらの金属層 をスルーするイオン注入によって、領域 14に例えば Asを、 領域 1 5に例えば Bと S iを選択的に打ち込み、 ついで活性化ァニールを施すことによって、 図 4 — 2 (b) に示すように、領域 21, 22, 23, 24のシリサイド層と η τ領 域 1 7, 1 8および、領域 1 9, 20を形成する。
次に、 スパッタ法もしくは CVD法等で、 0. 2〜: L. O /im程度のたとえ ば A 1膜を形成し、 図 4一 2 (c) に示すように所定の領域をリアクティブィォ ンエッチングによってエッチングする。 領域 29, 3 0, 3 1の表面を、 超高純 度 F 9ガスを用いて例えば 1 00°C、 4時間程度フッ化し、 ついで、不活性ガス (例えば N 9ガス) 中で 1 5 0 °C, 5時間のァニールを行い、 A 1領域表面に A I F 3の絶縁層 (図 4一 2 (d) の領域 3 2, 3 3, 34) を形成する。 次 に、図 4— 2 (d) に示すように、領域 32, 33, 34をマスクとして、 金属 シリサイ ド層、 n +領域、 p +領域の所定の領域をリアクティブイオンエツチン グによりエッチングし、 コンタク トホールを形成する。
次に、 コンタク 卜ホールから露出している面に酸化膜を例えば、 熱酸化法で形 成する。 すなわち、 図 4— 2 ( e ) に示すように、 シリサイ ド層、 n +領域、 p +領域、 n一領域に、 熱酸化により酸化膜が形成される。
次いで、 以下に述べるシンタリング処理を行う。 以下に述べるシンタリング処 理により酸化膜中および酸化膜 シリコン界面のダングリングボンド数が少な く、 卜ラップ密度が低い酸化膜および酸化膜ノシリコン界面を形成される。 さらに、 図 4一 1に示す半導体装置の構造は、 ゲート電極 2 7, 2 8の形成及 び所定領域のェッチング、 パッシベーシヨン層 3 5の形成、 そして電極 1 1の形 成によって作成できる。
図 4一 3に、 本実施例で用いたシン夕リング装置を示す。
本例におけるシンタリング装置は、 模型単管シンタリング炉装置である。 な お、 以下の説明においてお互いに同一又は均等の構成部材は、 同一の符号で示 す。
図 4一 3に示すように、 本例の装置において、 炉心管 3 0 1は、 炉心管の長手 方向の一端側に外部からガスを導入するためのガス導入口 3 1 2を有し、 その外 側には、 ガス導入口 3 1 2に連通させてガス導入管 3 0 2が設けられている。 本例においては、 ガス導入管 3 0 2は、 ニッケル合金 (ハステロイ C :登録商 標) で構成されており、 また、 ガス導入管 3 0 2の外側には加熱手段たる加熱源 9が設置されている。
なお、 前記ガス導入管 3 0 2の材質は、 ニッケル鋼の他、 ステンレス鋼、 ハス テロィ等でもよい、 すなわち、 少なくともニッケル金属を含む材料であればよ く、 望ましくは炉心管 3 0 1内を汚染しないために表面処理 (例えばドライ酸素 酸化不動態化処理) された材料であれば 、ことは実施態様の項で述べた通りで あり、 これらについても本例と同様の結果が得られることが確認されて tゝる。 ガス導入管 3 0 2の上流側にはバルブを介して図示省略のガス供給系が接続さ れている。 前記加熱源 3 0 9としては、 電気抵抗加熱ヒータ、 赤外線ランプヒー タ等により構成すればよい。 一方、炉心管 3 0 1内の保持部材たる石英サセプ夕 3 0 6上には、被処理物、 例えば、 シリコン基板 3 0 5が載置され、炉心管加熱手段である加熱源 3 0 4に より加熱されるようになっている。前記加熱源 3 0 4としては、例えば、 電気抵 抗加熱ヒータ、赤外線ランプヒータ等により構成される。 なお、 炉心管 3 0 1及 びサセプタ 3 0 6の材質は、 合成石英、 溶融石英の他に、 アルミナ、 シリコン 力一バイ ト、窒化アルミニウム、窒化ほう素等が挙げられ、 シリコン基板を汚染 しない (例えばナトリゥムイオンフリ一、重金属フリ―、脱ガスフリ一、パ―テ イクルフリ一等)材 f斗が望ましい。
以下に、 図 4一 3に示す装置を用いてシンタリングを行つたより具体的例を述 ベる。
コンタク トホールに酸化膜を形成後、 シリコン基板 3 0 5を、 石英サセプタ 3 0 6上に設置し、 炉心管 3 0 1の開口部 3 1 1の蓋体 3 1 0を開き、 ソフ トラ ンディング搬送によって炉心管 3 0 1内に搬入し、蓋体 3 1 0を閉めた。 その 後、前記加熱源 3 0 4によってシリコン基板 3 0 5を 3 0 0 °Cに加熱した。 ガス導入管 3 0 2に、水素ガスとアルゴンガスの混合ガスを導入した。 なお、 この混合ガスは、 1 0 %の水素ガスとアルゴンガスの混合ガスであり、 流量は、 1 0 0 0 c c Z分に設定した。
7素ガスとアルゴンガスとの混合ガスを、加熱源 3 0 9により 4 0 0 °Cに加熱 したガス導入管 3 0 2の内表面に接触し、 7j素活性種を生成させ、 ガス導入口 3 1 2を介して炉心管 3 0 1内に導入した。
—方、炉心管 3 0 1内のシリコン基板 3 0 5を 3 0 0 °Cに加熱し、混合ガスを 炉心管 3 0 1に導入後、 3 0分間 3 0 0 °Cに保持することによりシンタリング処 理を行った。 ガス導入口 3 1 2から導入された水素活性種を含む混合ガスはこの シリコン基板 3 0 5の表面に接触し、 酸化膜中を拡散し、酸化膜中及び酸化膜 Z シリコン界面のダングリンダボンドを終端した。
シンタリング処理後、前記ソフト トランデイング擬送の逆の手順によってシリ コン基板 3 0 5及び石英サセプ夕 3 0 6を炉心管 3 0 1から外部に搬出した。 その後、 シンタリング処理後のシリコン基板 3 0 5上の M 0 Sダイォ一ドの界 面準位密度を擬定容量一電圧測定により計測した。 その実測例としてシンタリン グ後の界面一準位密度 2 x 1 0 9 c m— 2 e V— 1以下という結果を得た。
(比較例)
一方、 前記ガス導入管 3 0 2を加熱せずに、 活性水素を生成じないこと以外 は、 他の行程を前述と同じ条件で、 すなわちシリコン基板 3 0 5の石英サセプ夕 3 0 6上への設置、 ソフ トランデイ ング搬送、 水素ノアルゴン混合ガス中でのシ リコン基板 3 0 5の 3 0分間 3 0 0 °Cでの加熱、 ソフ トランデイング搬送による 取り出しを同じ条件で行なったところ、 シリコン基板 3 0 5上に M O Sダイォー ドの界面準位密度は 1 X 1 0 1 0 c m— 2 e V— 1であった。 - 本発明の実施例における酸化膜 シリコン界面の界面準位密度は前述した通り 2 X 1 0 ΰ c m " " e V - 以下であるので、 両者を比較すると、 本発明の実施 例は、 酸化膜/シリコン界面のダングリングボンド数を低減することがわかる。
結局、 図 4— 1で、 シリコン酸化膜 (ゲ一ト酸化膜) 2 5, 2 6はプラズマを 伴わない水素活性種によりシンタリング処理されているため、 酸化膜中の中性ト ラップ密度が低 t、。 デバィス動作時にホッ 卜エレク トロンが酸化膜中に注入され てもしきい値電圧のシフト量が小さく信頼性能に優れたトランジスタとなる。 ま た、 ブラズマを伴わな 、水素活性種によりシンタリング処理された酸化膜ノシリ コン界面においてダングリングボンド数が少なく、 かつ酸化膜中および酸化膜 Z シリコン界面のシリコン原子と水素原子の結合力が強い。 デバイス動作時にホッ トエレク トロンが酸化膜中に注入されてもシリコン原子と 7 素原子との結合が切 断されず、 酸化膜中のトラップまた酸化膜ノシリコン界面の界面準位が生成され ないため、 変換コンダクタンスが低下せず、 信頼性能に優れ、 超高速性能を維持 するトランジスタとなる。
このように、 本発明で形成された酸化膜を備えた構造の半導体装置により、 超 高速性に優れかつ信頼性に優れた絶縁ゲート型トランジスタを用いた半導体集積 回路を実現できる。
(実施例 4一 2 )
実施例 4一 2では、 図 4— 4に示す装置を用いた。 この装置は、 7K素ガス又は 水素活性種とアルゴンガスとの混合部 3 0 2 cをガス導入管 3 0 2に設けたもの である。 すなわち、 本例では、 ガス導入管として、 分岐管 3 0 2 a, 3 0 2 bを 有するガス導入管 3 0 2を用いた。分岐管 3 0 2 a , 3 0 2 bが合流する部分が ガスの混合部 3 0 2 cとなる。本例では、分岐管 3 0 2 aは水素ガス源 (図示せ ず) に接繞され、分岐管 3 0 2 bはアルゴンガス源(図示せず) に接続されてい る。 また、本例では、カロ熱手段 3 0 9は、分岐管 3 0 2 aの近傍に設けた。 もち ろん混合部 3 0 2 c近傍に設けてもよいことは前述した通りである。
本実施例は、 ガス混合部をガス導入管に設けて ゝる以外実質的にはその構成及 び作用は上記実施例 4一 1と同様である。
すなわち、本実施例の場合、上記実施例 1と同様炉心管 3 0 1から取り出され たシリコン基板 3 0 5上の MO Sダイォードの界面準位密度は 2 χ 1 0 。πι— 2 e V—1以下であった。
(実施例 4 - 3 )
実施例 4— 3では図 4— 5に示す装置を用いた。 この装置は、炉心管 3 0 1を ニッケル金属で構成したものである。
なお、加熱源 3 0 4は炉心管 3 0 1を介して被加熱部たるシリコン基板を加熱 する。
ガス導入管 3 0 2に流す導入ガスとしての水素とアルゴンの混合ガスは例えば 1 0 0 0 c c 分の流量に設定されるが炉心管 3 0 1に導入される間に加熱され たニッゲル金属に接触することはない。本実施例の場合、反応処理終了後に炉心 管から取り出されたシリコン基板 3 0 5上の MO Sダイォードの界面準位密度は 2 x 1 0 J c m— 2 e V—1以下であった。
なお、縦型に構成されている以外は実質的にはその構成は、上記実施例 4一 1、 4— 2、 4一 3と同様の実施例においては、 その作用はいずれも上記実施例 と同様である。すなわち、上記実施例と同様伊心管 3 0 1から取り出されたシリ コン基板 3 0 5上の MO Sダイォ一ドの界面準位密度は 2 X 1 0 ϋ c m— " e V — 1以下であった。
図 4一 6は、実施例 4一 1に係る装置で形成した MO S F E Tと従来の装置で 形成した MO S F E Tのホットエレクトロン耐性を示すグラフである。 図 4一 6 の横軸は注入したホットエレク卜ロンの数を表し、縦軸はしきい値電圧のシフト 量を表している。酸化膜の厚さは 1 O nmである。 ゲート電極としては η τ型多 結晶シリコンが使用されている。
実施例 4一 1に係る装置で形成した MO S F E Tは、 1 X 101 7のホッ トェ レク トロンを注入してもしきい値電圧のシフト量は 0. 03 Vと小さい。 一方、 従来の装置で形成した MOS FETは、 しきい値電圧が 0. 2λ と大きくシフ ト している。 すなわち、 実施例 4— 1に係る装置で形成した MOSFETは高い信 頼性を示すことがわかった。
図 4— 7は、 実施例 4— 1に係る装置で形成した MO SFE Τ型 T F Τと従来 の装置で形成した MOSFET型 TFTのサブスレシュホールド特性を示すグラ フである。 図 4一 7の横軸は、 ゲート電圧を表し、 横軸はドレイン電流を表して いる。 基板としては、 シリコンウェハ上に酸化膜を形成し、 酸化膜上に P型多結 晶シリコンを形成している。 MOSFETは、 多結晶シリコン上に形成してい る。 前記多結晶シリコンは、 酸化膜の他、 ガラス上に形成される。 ゲート電極と しては n '型多 結晶シリコンが使用されている。 MO S F E Tのチャネル長さ は 2 in、 チャネル幅は 100 mである。 ドレイン電圧としては、 5Vが印加 されている。
実施例 4一 1において形成した MOSFET型 TFTは、 ゲート電圧が 0 Vの 場合ドレイン電流 1 X 10— 1 " A以下である。 一方、 従来の装置で形成した MOSFE T型 T F Tは、 ゲ—ト電圧が 0 Vでも 1 x 10— 7 A以上の電流が流 れている。 本発明の装置で形成した MO S FE T型 TFTでは、 ゲート酸化膜/ 多結晶シリコン界面のダングリングボンドが水素で終端され、 かつチャネルを形 成する多結晶シリコンの粒界のダングリングボンドが水素で終端されるため、 ド レイン電流を低減できている。 そのため、 実施例 4— 1に係る装置で形成した MO S FET型 TFTのサブスレシュホールド特性が向上している。 すなわち、 実施例 4— 1に係る M 0 S F E T型 T F Tは高い性能及び高 L、信頼性を示すこと がわかった。
なお、 実施例 4— 2、 実施例 4— 3に係る装置においても図 4一 6、 図 4— 7 に示すと同様な結果が得られている。
なお、 本発明の半導体装置における絶縁膜は、 膜を形成した後の工程であれ ば、 いずれの工程で処理したものであって有効である。 例えば、 パッシベ一ショ ン層 3 5を形成した後にシンタリング処理を行ったものであっても有効である- 特に、 酸化膜を形成した後、 微細パターンを形成するためにシリコン基板は電子 ビームおよびブラズマに曝された場合、 酸化膜ある tゝは酸化膜ノシリコン界面が 損傷を受けて、 中性トラップが生成される。 従来のシンタリング法で処理すると 中性トラップが消滅しないが、 プラズマを伴わない水素活性種によるシン夕リン グを行ったものは、 中 14トラップが消滅し、 損傷が回復している。
これまで単結晶シリコン表面を主として対象に取り上げて説明したが、 本発明 は単結晶シリコン表面だけでなく、 多結晶シリコン表面および非晶質シリコン表 面等 ί、かなる結晶性シリコンにも適用できる。 例えば、 T F Τトランジス夕製造 にお 、て、 酸化膜 Ζ多結晶シリコン基板の場合、 酸化膜中の中性トラップおよび 酸化膜/シリコン界面の界面準位は消滅しており、 さらに多結晶シリコン中の粒 界の準位も消滅し、 、 高信頼性かつ高性能 T F Tトランジスタを実現できる。 また、 半導体装置の一部に二ッゲルまたは二ッケル合金を有する半導体装置の 製造において、 ニッケルまたはニッケル合金を有する基板を 3 0 0 °C以上の温度 に加熱させて水素ガスまたは水素ガスと不活性ガスの混合ガスを接触させること により、 本発明の方法と同様な効果を実現することができる。 例えば、 図 4一 1 に示す半導体装置の電極 2 9 , 3 0 , 3 1がニッゲルまたは二ッケノレ合金である 場合、 ゲート酸化膜 2 5, 2 6を形成後、従来のシンタリング法で 3 0 0 °C以上 の温度に加熱することにより、 酸化膜中のトラップおよび酸化膜/シリコン界面 の界面準位を消滅させ、 信顕性に優れた半導体装置を実現できる。 産業上の利用可能性
請求項 1乃至 7の発明によれば、 固体表面に信頼性の高い優れた酸化膜を形成 することができる。 こうした特徵を持つ本発明の装置により、 超微細化半導体デ バイスを実現することができる。
請求項 8乃至 1 9の発明によれば、 固体表面に信頼性の高い優れた MO S トラ ンジスタを製造することができる。 こうした特徴を持つ本発明の装置により、 超 微細化半導体デ'ぐィスを実現することができる。 '
請求項 2 0乃至 3 1の発明によれば、 信頼性の高い半導体装置を製造すること ができる。 こうした特徴を持つ本発明の方法により、 超微細化半導体デバイスを 実現することができる。
請求項 3 2乃至 3 9の発明によれば、 信頼性が高く、 超微細化された半導体装 置を実現することができる。

Claims

請求の範囲
1 . 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入する δ ための水素ガス導入口と、酸素ガスを内部に導入するための酸素ガス導入口とを 有する戶心管と;
該炉心管内部を加熱するための:^心管加熱手段と;
該水素ガス導入口に 通させて接繞された水素ガス導入管と;
該酸素ガス導入口に連通させて接続された酸素ガス導入管と;
該水素ガス導入管を加熱するための加熱手段と;
を少なくとも有し、該水素ガス導入管の少なくとも内表面が二ッゲル又は二ッケ ルを含む材料よりなることを mとする酸化膜形成装置。
2. 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入する ためのガス導入口とを有する炉心管と;
該炉心管内部を加熱するための炉心管加熱手段と;
該ガス導入口に連通させて接続され、 ガス源側に複数の分岐管を有するガス導 入管と;
該水素ガス又は水素を含むガスを導入しょうとする分岐管を加熱するための加 熱手段と;
を少なくとも有し、水素ガス又は水素を含むガスを導入しょうとする分岐管の一 部又は全部の少なくとも内表面が二ッゲル又は二ッゲルを含む材料よりなること を特徵とする酸化膜形成装置。
3. 被処理物を搬出入するための開閉可能な開口部と水素ガスを内部に導入 するための水素ガス導入口と酸素ガスを内部に導入するための酸素ガス導入口を 有する ί戶心管と;
該伊心管内部を加熱するための炉心管加熱手段と;
を有し、該炉心管の、少なくとも被処理物が配置された位置よりも上流側の少な くとも内表面がニッゲル又はニッゲルを含む材料よりなることを特徵とする酸化
4. 前記ニッケルを含む材料は、 N i—M o系合金又は N i—W系合金であ ることを特徵とする請求項 1乃至請求項 3のいずれか 1項に記載の酸化膜形成装
5 . 前記ニッケルを含む材料は、 表面粗度が、 1 以下の表面粗度に電解 研磨されたステンレス鋼であることを特徴とする請求項 1乃至請求項 3の L、ずれ か 1項に記載の酸化膜形成装置。
6. 前記ステンレス鋼の表面には、 不純物濃度が 1 0 p p b以下の酸化性雰 囲気中で熱処理することにより形成された不動態膜が形成されていることを特徴 とする請求項 5記載の酸化膜形成装置。
7 . 前記ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素雰 囲気中で還元処理を行うことにより形成された不動態膜が形成されていることを 特徴とする請求項 5記載の酸化膜形成装置。
8 . 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入する ためのガス導入口とを有する炉心管と ;
該炉心管内部を加熱するための炉心管加熱手段と ;
該炉心管の内部に配置された被処理物の位置よりも上流側において、 水素ガス 又は水素を含むガスから、 プラズマを伴うことなく水素活性種を生成させるため の水素活性種発生手段と ;
を少なくとも有することを特徴とする熱処理装置。
9 . 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入する ためのガス導入口とを有する炉心管と;
該炉心管内部を加熱するための炉心管加熱手段と ;
該ガス導入口に連通させて接続されたガス導入管と ;
該ガス導入管を加熱するための加熱手段と ;
を少なくとも有し、 該ガス導入管の少なくとも内表面がニッケル又は二ッケルを 含む材料よりなることを特徵とする熱処理装置。
1 0. 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入す るためのガス導入口とを有する炉心管と ;
該炉心管内部を加熱するための炉心管加熱手段と ; 該ガス導入口に連通させて接続され、 ガス源側に複数の分岐管を有するガス導 入管と;
該ガス導入管を加熱するための力 U熱手段と;
を少なくとも有し、該ガス導入管の一部又は全部の少なくとも内表面が二ッゲル 又は二ッケルを含む材料よりなることを とする熱処理装置。
1 1 . 水素ガス又は水素を含むガスを導入しょうとする前記分岐管の少なく とも内表面が二ッケル又は二ッケルを含む材 I·よりなることを特徵とする請求項 1 0記載の熱処理装置。
1 2. 前記加熱手段は、水素ガス又は水素を含むガスを導入しょうとする前 記分岐管を加熱し得るようにして配置されていることを特徵とする請求項 1 1記
1 3. 前記分岐管が合流する部分から mi己炉心管のガス導入口までの部分の 少なくとも内表面が二ッゲル又は二ッゲルを含む合金よりなり、 前記加熱手段 は、該部分を加熱し得るようにして配置されていることを特徴とする請求項 1 0
1 . 被処理物を搬出入するための開閉可能な開口部とガスを内部に導入す るためのガス導入口とを有する炉心管と;
該炉心管内部を加熱するための炉心管加熱手段と;
を有し、該炉心管の、少なくとも被処理物が配置された位置よりも上流側の少な くとも内表面が二ッゲル又は二ッゲルを含む材料よりなることを特徵とする熱処
1 5 - M -ッゲルを含む材料は、 N i— M 0系合金又は N i— W系合金で あることを特徵とする請求項 8乃至請求項 1 4 01、ずれか 1項に記載の熱処理装 置。
1 6 . 前記ニッケルを含む材料は、表面粗度が、 1 r m以下の表面粗度に電 解研磨されたステンレス鋼であることを特徴とする請求項 8乃至 1 4の 、ずれか 1項に記載の熱処理装置。
1 7. 前記ステンレス鐧の表面には、不純物濃度が 1 0 p p b以下の酸化性 雰囲気中で熱処理することにより形成された不動態膜が形成されていることを特 徵とする請求項 1 6記載の熱処理装置。
1 8 . 前記ステンレス鋼の表面には、 酸化性雰囲気中で熱処理した後、 水素 雰囲気中で還元処理を行うことにより形成された不動態膜が形成されていること を特徴とする請求項 1 6記載の熱処理装置。
1 9 . 前記熱処理装置は、 酸化膜ノシリコン界面のダングリングボンドを終 端させるための熱処理装置である請求項 8乃至 1 8のいずれか 1項に記載の熱処
2 0 . 絶縁膜 Z半導体界面を有する半導体装置の製造方法において、 該絶縁 膜に、 プラズマを伴わない水素活性種を接触させることを特徴とする半導体の製 造方法。
2 1 . 前記プラズマを伴わない水素活性種は、 3 0 0 °C以上の温度に加熱し た二ッケルまたは二ッケルを含む材料に、 7j素ガスまたは水素を含むガスを接触 させて生成させることを特徵とする請求項 2 0記載の半導体装置の製造方法。
2 2 . 前記水素を含むガスは水素と不活性ガスの混合ガスである請求項 2 1 に記載の半導体装置の製造方法。
2 3 . 前記不活性ガスは窒素もしくはアルゴンまたはこれらの混合ガスであ る請求項 2 2に記載の半導体装置の製造方法。
2 4 . 前記絶縁膜を 2 0〜 1 2 0 0 °Cの温度で加熱することを特徴とする請 求項 2 0乃至請求項 2 3のいずれか 1項に記載の半導体装置の製造方法。
2 5 . 前記絶縁膜を 2 0〜6 0 0 °Cの温度で加熱することを特徴とする請求 項 2 4に記載の半導体装置の製造方法。
2 6 . 前記絶縁膜をを 2 0〜4 5 0 °Cの温度で加熱することを特徴とする請 求項 2 5に記載の半導体装置の製造方法。
2 7 . 前記絶縁膜はシリコン酸化膜であることを特徴とする請求項 2 0乃至 請求項 2 6のいずれか 1項に記載の半導体装置の製造方法。
2 8 . 前記シリコン酸化膜はシリコン熱酸化シリコン酸化膜もしくは堆積シ リコン酸化膜またはこれらの窒化処理された膜である請求項 2 7に記載の半導体 装置の製造方法。
2 9 . 前記半導体は、 シリコンウェハまたは絶縁基体もしくはシリコンゥェ WO 93/10556 Al≥ PCT/JP92/01534 ハ上に形成されたシリコン層であることを特徴とする請求項 2 0ないし請求項 2 8の ί、ずれか 1項に記載の半導体装置の製造方法。
3 0. ¾ fl己シリコン層はアモルファスシリコン層、 多結晶シリコン層または 単結晶シリコン層であることを特徴とする請求項 2 9記載の半導体装置の製造方
3 1 . 半導体装置の配線部を二ッゲルまたは二ッゲル合金により形成し、水 素ガスまたは水素を含むガスを該配線部に接触させることにより水素活性種を生 成せしめることを特徴とする請求項 2 1記載の半導体装置の製造方法。
3 2. プラズマを伴わな t vj素活性種によりシンタリング処理された絶縁膜 を有することを特徴とする半導体装置。
3 3. 前記水素活性種は、水素ガスまたは水素を含むガスを、 3 0 0 °C以上 の温度に加熱したニッゲルまたは二ッケルを含む材料に接触さしめて生成させて ものであることを特徴とする請求項 3 2記載の半導体装置。
3 4. 前記絶緣膜はシリコン酸化膜であり、該シリコン酸化膜は、 M 0 Sの ゲート絶縁膜であることを特徴とする請求項 3 2または請求項 3 3に記載の半導
3 5. 己絶縁膜はシリコン酸化膜であり、該シリコン酸化膜は、 M0 Sの 層間絶縁膜であることを特徴とする請求項 3 2または請求項 3 3に記載の半導体
3 6 · 前記絶緣膜はシリコン酸化膜であり、該シリコン酸化膜は、 MO Sの ゲート電極とソースまたはドレイン電極の を絶縁分離する絶緣膜であることを 特徴とする請求項 3 2または請求項 3 3に記載の半導体装置。
3 7. 前記シリコン酸化膜と、 シリコンとの界面準位密度が 2 X 1 0 。 c m
2 e \'—丄以下であることを特徴とする請求項 3 2乃至請求項 3 6のいずれか
1項に記載の半導体装置。
3 8. tiff己シリコン酸化膜は、 シリコン熱酸化膜もしくは堆積シリコン酸化 膜またはこれらの窒化処理された膜であることを特徴とする請求項 3 2乃至請求 項 3 7の t、ずれか 1項に記載の半導体装置。
3 9. 前記シリコン層はアモルファスシリコン層、 多結晶シリコン層または 単結晶シリ コン層であることを特徴とする請求項 3 8記載の半導体装置。
PCT/JP1992/001534 1991-11-22 1992-11-24 Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor WO1993010556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19920924004 EP0614216A4 (en) 1991-11-22 1992-11-24 APPARATUS FOR FORMING AN OXIDE FILM, HOT PROCESSING APPARATUS, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF.

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP3/334263 1991-11-22
JP3/334260 1991-11-22
JP33426191A JPH05141871A (ja) 1991-11-22 1991-11-22 熱処理装置
JP33426091A JPH05144804A (ja) 1991-11-22 1991-11-22 半導体装置の製造方法
JP33426391A JP3535876B2 (ja) 1991-11-22 1991-11-22 半導体装置及びその製造方法
JP3/334261 1991-11-22
JP03342229A JP3129338B2 (ja) 1991-11-29 1991-11-29 酸化膜形成装置
JP3/342229 1991-11-29

Publications (1)

Publication Number Publication Date
WO1993010556A1 true WO1993010556A1 (en) 1993-05-27

Family

ID=27480512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001534 WO1993010556A1 (en) 1991-11-22 1992-11-24 Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor

Country Status (2)

Country Link
EP (1) EP0614216A4 (ja)
WO (1) WO1993010556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965013A (zh) * 2019-12-17 2020-04-07 西安优耐特容器制造有限公司 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110316B2 (ja) * 1996-07-25 2000-11-20 日本電気株式会社 外部燃焼酸化装置
KR100203780B1 (ko) * 1996-09-23 1999-06-15 윤종용 반도체 웨이퍼 열처리 장치
TW577129B (en) 1997-03-05 2004-02-21 Hitachi Ltd Method for fabricating semiconductor integrated circuit device
JPH11288893A (ja) 1998-04-03 1999-10-19 Nec Corp 半導体製造装置及び半導体装置の製造方法
KR100560867B1 (ko) * 2000-05-02 2006-03-13 동경 엘렉트론 주식회사 산화방법 및 산화시스템
JPWO2003005435A1 (ja) * 2001-07-05 2004-10-28 大見 忠弘 基板処理装置および基板処理方法、基板平坦化方法
JP5615207B2 (ja) 2011-03-03 2014-10-29 株式会社東芝 半導体装置の製造方法
FI128442B (en) 2017-06-21 2020-05-15 Turun Yliopisto Silicon structure with crystalline silica

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224116A (ja) * 1984-03-16 1984-12-17 Hitachi Ltd 非晶質シリコン膜の製造装置
JPS62198128A (ja) * 1986-02-26 1987-09-01 Toshiba Corp シリコン酸化膜形成方法及び装置
JPH01133364A (ja) * 1987-11-18 1989-05-25 Matsushita Electron Corp 半導体装置の製造方法
JPH03212592A (ja) 1990-01-17 1991-09-18 Matsushita Electric Works Ltd シャッタ開閉用駆動モータ制御回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224116A (ja) * 1984-03-16 1984-12-17 Hitachi Ltd 非晶質シリコン膜の製造装置
JPS62198128A (ja) * 1986-02-26 1987-09-01 Toshiba Corp シリコン酸化膜形成方法及び装置
JPH01133364A (ja) * 1987-11-18 1989-05-25 Matsushita Electron Corp 半導体装置の製造方法
JPH03212592A (ja) 1990-01-17 1991-09-18 Matsushita Electric Works Ltd シャッタ開閉用駆動モータ制御回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0614216A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965013A (zh) * 2019-12-17 2020-04-07 西安优耐特容器制造有限公司 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法
CN110965013B (zh) * 2019-12-17 2023-04-07 西安优耐特容器制造有限公司 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法

Also Published As

Publication number Publication date
EP0614216A1 (en) 1994-09-07
EP0614216A4 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US6784038B2 (en) Process for producing semiconductor integrated circuit device and semiconductor integrated circuit device
JP4525958B2 (ja) 半導体装置の製造方法
TWI227531B (en) Manufacturing method of semiconductor integrated circuit device
KR100202003B1 (ko) 반도체 및 반도체기판표면의 산화막의 형성방법
JP4029595B2 (ja) SiC半導体装置の製造方法
JP2007053227A (ja) 半導体素子およびその製造方法
TW200926303A (en) Semiconductor device manufacturing method and semiconductor device
US6815299B2 (en) Method for manufacturing silicon carbide device using water rich anneal
EP2584595B1 (en) Silicon carbide semiconductor device manufacturing method
WO2008018342A1 (fr) Dispositif semi-conducteur au carbure de silicium et son procédé de fabrication
JP2003243653A (ja) 炭化珪素半導体装置の製造方法
WO2005010244A1 (ja) 炭化珪素製品、その製造方法、及び、炭化珪素製品の洗浄方法
KR20040014978A (ko) 탄화규소 금속-산화물 반도체 전계 효과 트랜지스터에서반전 층 이동도의 개선 방법
WO1993010556A1 (en) Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor
JP3733792B2 (ja) 炭化珪素半導体素子の製造方法
JP3122125B2 (ja) 酸化膜の形成方法
US20110309376A1 (en) Method of cleaning silicon carbide semiconductor, silicon carbide semiconductor, and silicon carbide semiconductor device
JP3855019B2 (ja) 金属、酸化膜及び炭化珪素半導体からなる積層構造体
JP3535876B2 (ja) 半導体装置及びその製造方法
JPH05144804A (ja) 半導体装置の製造方法
WO1990013912A1 (en) Silicon oxide film and semiconductor device having the same
JP2002100633A (ja) 熱処理装置
JP3917282B2 (ja) 半導体基板表面の絶縁膜の形成方法
JP3959203B2 (ja) 半導体装置の製造方法
JPH05141871A (ja) 熱処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 244124

Date of ref document: 19940519

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1992924004

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992924004

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992924004

Country of ref document: EP