WO1993008611A1 - Method for production of nickel plate and alkali storage battery - Google Patents

Method for production of nickel plate and alkali storage battery Download PDF

Info

Publication number
WO1993008611A1
WO1993008611A1 PCT/JP1992/001359 JP9201359W WO9308611A1 WO 1993008611 A1 WO1993008611 A1 WO 1993008611A1 JP 9201359 W JP9201359 W JP 9201359W WO 9308611 A1 WO9308611 A1 WO 9308611A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
active material
electrode
nigel
powder
Prior art date
Application number
PCT/JP1992/001359
Other languages
English (en)
French (fr)
Inventor
Takehito Bogauchi
Tomonori Kishimoto
Hiroe Nakagawa
Yoshihiro Eguchi
Mitsuo Yamane
Original Assignee
Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corporation filed Critical Yuasa Corporation
Priority to DE69232392T priority Critical patent/DE69232392T2/de
Priority to US08/078,247 priority patent/US5489314A/en
Priority to JP5507606A priority patent/JP3003218B2/ja
Priority to EP92921263A priority patent/EP0571630B1/en
Publication of WO1993008611A1 publication Critical patent/WO1993008611A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a method for producing a nickel electrode plate and a method for producing an alkaline storage battery.
  • the nickel electrode plate is used for an alkaline storage battery, and examples of the alkaline storage battery include a nickel-zinc storage battery, a nickel-hydrogen storage battery, and a nickel-powered storage battery. These storage batteries are mainly used for power supplies for portable electronics equipment, portable power supplies, and power supplies for electric vehicles such as electric vehicles and scooters.
  • the batteries used as power sources have also been required to be lighter and smaller. That is, high energy density is required for alkaline storage batteries.
  • nickel plates used as the positive electrode of the battery such as sinter type, paste type, button type, and pocket type.
  • Sintered nickel electrode plates are made of a porous sintered substrate obtained by sintering Nigel powder on a porous substrate such as a perforated steel plate or nickel net. Is filled. In this electrode plate, if the porosity of the substrate is increased, the bonding between the sintered Nigel powders becomes weaker and the nickel sintered body falls off, so the practical porosity is about 80%. Degree was the limit.
  • the active material packing density was low, and an energy density of only about 400 mAhZcc was obtained.
  • the pores of the substrate are as small as 10 m or less, the method of filling the positive electrode active material was limited to a solution impregnation method in which complicated steps were repeated.
  • the button-type nickel electrode plate is made of a conductive material such as carbon powder, A small amount of an agent is added and pressed to form a pellet.
  • the pocket-type nickel electrode plate is made of perforated steel; K is made by processing a pocket, and the above-mentioned positive electrode active material is placed in the pocket. It is filled with powder. Since these electrodes are directly filled with the positive electrode active material powder and do not use a substrate sintered with nickel powder, the current collection is poor and the active material utilization is only 50 to 60%. However, the performance was significantly inferior to that of a sinter set of Nigel electrodes with an active material utilization rate of about 90%. In order to improve this, fine particles such as nickel carbonyl powder are mixed with the positive electrode active material powder. However, this only improves the performance by about 10%. The reason that the mixed nickel carbonyl powder does not work effectively is that poor conductivity and Nigel hydroxide are formed on the surface of the Nigger carbinole powder at the positive electrode charge / discharge potential.
  • the paste-type Nigel electrode plate is prepared by mixing 1 to 30 wt% of C ⁇ (—cobalt oxide) powder with the above positive electrode active material powder, and pacing the mixture with an aqueous solution such as MC (methylcellulose) or CMC (carboxymethylcellulose). And this is filled in a porous nickel fiber.
  • This electrode plate is prepared by dissolving CoO in an electrolytic solution and depositing it as ⁇ -Co (OH) 2 around the porous body and the positive electrode active material. Thus, a conductive network was formed, thereby improving the discharge performance.
  • This electrode plate required an aging step of injecting the electrolytic solution and allowing it to stand for about 1 to 3 days before performing the above charging.
  • An object of the present invention is to provide a method capable of producing a nickel electrode plate and an alkaline storage battery which has high performance and excellent productivity.
  • the positive electrode active material powder shall be the main component hydroxide two Ggeru a particle diameter of not more than 2 0 / m, a surface area of 1 0 m 2 Zg more It is characterized by mixing a cobalt compound powder as described above, filling the mixture into a three-dimensional porous substrate made of an Al-resistant metal, and oxidizing this with an oxidizing agent.
  • a positive electrode active material powder containing Nigel hydroxide as a main component has a particle size of 20 or less and a surface area of 10 m 2 Zg or more. It is characterized in that a certain cobalt compound powder is mixed, the mixture is oxidized by an oxidizing agent, and the mixture is filled in a three-dimensional porous substrate made of an Al-resistant metal.
  • a three-dimensional porous substrate made of an alkali-resistant metal is filled with a positive electrode active material powder containing Nigel hydroxide as a main component, and the substrate contains cobalt ion. It is characterized by being oxidized by an acid oxidizing agent in a solution.
  • a positive electrode active material powder containing Nigel hydroxide as a main component is oxidized with a oxidizing agent in a solution containing cobalt ions, and The feature is that it is filled in a three-dimensional porous substrate made of elastic metal.
  • a oxycobalt oxyhydroxide powder is mixed with a positive electrode active material powder mainly composed of Nigel hydroxide, and this mixture is made of an Al-resistant metal. It is characterized by filling a three-dimensional porous substrate.
  • a positive electrode active material powder containing Nigel hydroxide as a main component is oxidized with an oxidizing agent in a solution containing cobalt ion. Mix the powder and mix the mixture with It is characterized in that it is filled in a three-dimensional porous substrate made of a genus.
  • the first method for producing an alkaline storage battery of the present invention is characterized in that a Nigger electrode is produced by any one of the first to sixth methods for producing a Nigger electrode, and is incorporated with a zinc electrode. I have.
  • a Nigger electrode is manufactured by any of the first to sixth methods for manufacturing a Nigel electrode, and the Nigel electrode is assembled with a hydrogen electrode.
  • a third method of manufacturing a rechargeable battery according to the present invention is characterized in that a nickel electrode plate is manufactured by any one of the first to sixth methods for manufacturing a nickel electrode plate described above, and the nickel electrode plate is assembled with a power dome electrode. I have.
  • a covanolate compound or cobalt ion is oxidized by an oxidizing agent to form —CoOOH having good conductivity, which is formed on the surface of nickel hydroxide powder as a positive electrode active material, A conductive network is formed which improves the conductivity between the materials or between the positive electrode active material and the substrate.
  • FIG. 1 is a diagram showing the relationship between the number of charge / discharge cycles and the active material utilization rate of a nickel-metal dome storage battery using the Nigel electrode plates of Examples 1 to 6, and FIG. 2 is Example 2 and a comparative example.
  • FIG. 1 shows the discharge characteristics of the first and third cycles of a nickel-cadmium storage battery using the Nigel electrode plate of FIG. 1;
  • FIG. 3 shows the second example in which the particle size of C 00 is different in Example 2;
  • FIG. 4 is a graph showing the relationship between the particle size of a nickel-cadmium storage battery and an active material utilization rate using a Nigger electrode plate.
  • FIG. 4 shows a nickel electrode obtained by varying the particle size of C 000 H in Example 6.
  • FIG. 1 shows the discharge characteristics of the first and third cycles of a nickel-cadmium storage battery using the Nigel electrode plate of FIG. 1
  • FIG. 3 shows the second example in which the particle size of C 00 is different in Example 2
  • FIG. 4 is a graph showing the relationship
  • FIG. 5 is a diagram showing the relationship between the particle size of a dome storage battery and the active material utilization rate using a nickel plate.
  • FIG. 5 shows a nickel alloy using a nickel electrode plate having a different surface area of C 00 in Example 2.
  • FIG. 6 is a diagram showing discharge voltage characteristics of a nickel-zinc storage battery using the nickel electrode of Example 7 and Comparative Examples 2 and 3, respectively.
  • FIG. 7 is a Nigel of Example 8 and Comparative Example 4.
  • FIG. 8 shows the relationship between the number of charge / discharge cycles of a Nigger-Hydrogen storage battery using each electrode and the active material utilization.
  • FIG. 8 shows the Nigel electrodes of Examples 9 to 11 and Comparative Examples 5 to 7.
  • FIG. 9 shows the relationship between the number of charge / discharge cycles and the active material utilization of a nickel-metal dome storage battery of a type different from the paste type used, and Fig. 9 shows the nickel electrodes of Examples 7 and 12, respectively.
  • FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of a nickel-zinc storage battery. .
  • This mixing was performed in an aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.25, and the mixture was sufficiently stirred.
  • the obtained mixture was filtered, washed with water, dried, and then made into a paste with a 2 wt% CMC (potassium propyloxymethylcellulose) solution, and filled into a substrate made of a porous nickel fiber. After drying at C for 1 hour, it was pressed.
  • CMC potassium propyloxymethylcellulose
  • the resulting filler placed in an aqueous solution having a specific gravity of 1.2 5 mainly composed of potassium hydroxide, K 2 S 2 0 8 (the Peruokiso dipotassium sulphate), even on moles or more of C o theta oxygen It was added until gas evolved. After the reaction was completed, the packing was washed with water, dried, pressed again, and coated with Teflon on the surface. In this way, Niggel pole was obtained.
  • cobalt compounds for example, cobalt hydroxide, cobalt carbonate, etc. may be used instead of C 2 O. (Example 2)
  • Hydroxidizing power A spherical nickel hydroxide powder containing 5 wt% of a dome was mixed with a CoO powder having a particle diameter of 1 m and a surface area of 70 m 2 Zg in a weight ratio of 95: 5. This mixing was carried out in an aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.25, and sufficiently stirred.
  • the obtained mixture was filtered, washed with water, dried, then made into a paste with a 2 wt% CMC solution, filled into a substrate made of a porous nickel fiber, dried at 80 ° C for 1 hour, and pressed. Then, the surface was coated with Teflon. Thus, a nickel electrode plate was obtained.
  • cobalt compound for example, cobalt hydroxide, cobalt carbonate, or the like may be used.
  • Spherical nickel hydroxide powder containing 5 wt% of a hydroxylation dome was made into a paste with a 2 wt% CMC solution, filled into a substrate made of a porous nickel fiber, dried at 80 for 1 hour, and pressed.
  • Spherical Nigel Hydroxide powder containing 5 wt% of hydroxylating dorm is dissolved in a saturated state with cobalt ion, and specific gravity mainly composed of hydroxylating rheum 1. Placed in 25 aqueous solution, oxygen gas was added until generates K 2 S 2 0 8 shall apply in more moles of cobalt ions.
  • the powder was filtered, washed with water, dried, then made into a paste with a 2 wt% CMC solution, filled into a substrate made of a porous nickel fiber, dried at 80 ° C for 1 hour, and pressed. The surface was coated with Teflon. ⁇ obtained nickel pole ⁇
  • CoOOH powder having a particle size of l; ⁇ m was mixed at a weight ratio of 95: 5 with a spherical nickel hydroxide powder containing 5 wt% of a hydroxylating dome.
  • the obtained mixture was filtered, washed with water, dried, and then made into a paste with a 2 wt% CMC solution, filled into a substrate made of porous nickel fiber, dried at 80 ° C for 1 hour, pressed, and pressed. Was coated with Teflon. Thus, a nickel electrode plate was obtained.
  • the obtained mixture was filtered, washed with water, dried, made into a paste with a 2 wt% CMC solution, filled into a substrate made of a nickel loose porous material, dried at 80 ° C for 1 hour, and pressed. The surface was coated with Teflon. Thus, a nickel electrode plate was obtained.
  • the obtained mixture was filtered, washed with water, dried, then made into a paste with a 2 wt% CMC solution, filled into a substrate made of a porous nickel fiber, dried at 80 ° C for 1 hour, pressed, and pressed. Teflon coating was performed. Thus, a nickel electrode plate was obtained.
  • Each of the nickel plates obtained in Examples 1 to 6 and Comparative Example 1 was used as a positive electrode, and was combined with a negative electrode composed of a paste-type cadmium electrode plate and a separator composed of a polyamide-based nonwoven fabric to have a nominal capacity of 2.
  • Nickel power of OAh Dummy storage batteries A! Ae and B! Were assembled.
  • the storage battery A ⁇ A 6 represents that using a nickel plate of Examples 1-6, respectively, the storage battery B! Shows that using a nickel plate of Comparative Example 1.
  • As the electrolytic solution an aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.25 was used. The electrolyte was injected in such an amount as to fill the positive electrode, the negative electrode, and 90% of the separator.
  • the storage battery B after injecting the electrolyte, undergoes an aging process and is formed by charging.
  • the charging condition was a charging current of 0.1 CA for 11 hours, and the discharging condition was a discharging current of 0.2 CA.
  • Figure 1 shows the results.
  • ⁇ 00 is not completely turned into ⁇ - ⁇ OOH in the initial stage, so the conductivity is low and the charge / discharge reaction is insufficient.
  • the particle size of Co 0 used was 10 am, 20 ⁇ , and 30 m, and a nickel electrode plate was formed in the same manner as in Example 2, respectively.
  • the particle size of Co0OH used was 10 m and 50 fi ⁇ 100 m, and a Nigel pole was formed in the same manner as in Example 6.
  • a storage battery similar to the above is formed using each of these Nigger plates, and after several cycles of charging and discharging, the safety is obtained.
  • the determined active material utilization was examined. Figures 3 and 4 show the results. As can be seen from Fig. 3, when the particle size of C00 exceeds 20 m, the active material utilization decreases, and as can be seen from Fig. 4, the particle size of C0 OOH exceeds 50 // m And the active material utilization rate decreases. Therefore, it is preferable that Co 0 used has a particle size of 20 m or less, and that CoOOH used has a particle size of 50 zm or less.
  • the surface area of C00 used was 10 m 2 Zg, 2 OmVg. 50 m 2 / g, and 100 m 2 Zg, and a nickel electrode plate was formed in the same manner as in Example 2.
  • a storage battery similar to the above was formed using each of these nickel plates, and a stable active material utilization rate after several cycles of charging and discharging was examined.
  • Figure 5 shows the results. As can be seen from FIG. 5, when the surface area of CoO is smaller than 10 m 2 Zg, the utilization rate of the active material decreases. Therefore, it is preferable that Co ⁇ used has a surface area of 1 Om 2 ng or more.
  • Example 2 In the same manner as in Example 2, the same nickel electrode plate as in Example 2 was obtained.
  • the aqueous solution mainly composed of potassium hydroxide had a specific gravity of 1.35.
  • a nickel-zinc storage battery with a nominal capacity of 2.0 Ah is combined with a negative electrode composed of a sheet-type zinc electrode, a liquid retaining paper composed of a cellulosic nonwoven fabric, and a separator composed of microporous polypropylene. assembly of the a 7.
  • an aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.35 was used as the electrolyte. The electrolyte was injected in an amount that satisfies 90% of the positive electrode, the negative electrode, the liquid retaining paper, and the separator.
  • Example 3 Before assembling the nickel electrode plate obtained in Comparative Example 1 in a battery, the nickel electrode plate was immersed in the same electrolyte solution as in Example 7 to perform an aging step, and after charging and forming, the test was performed. Incorporated into the battery in the same manner as in Example 7, to form a nickel one zinc battery B 2. (Comparative Example 3)
  • the charge condition was a charge current of 3 A for 11 hours, and the discharge condition was a discharge current of 6 A.
  • Fig. 6 shows the results.
  • Table 1 shows the amount of self-discharge when left at 40 ° C for 20 days.
  • Niggel electrode plate As in Example 7 was obtained. Using this Nigel electrode plate as a positive electrode, a negative electrode comprising a paste-type hydrogen absorbing electrode plate, and a separator comprising a polyamide-based nonwoven fabric Leh and evening and in combination, Assemble the nominal capacity 2. 0 Ah nickel monohydrogen battery A 8.
  • the hydrogen storage alloy used for the hydrogen storage electrode plate is MmN i 4.2 A10.3 Co. It consists of five.
  • Mm is a metal that is a mixture of rare earth elements.
  • the electrolyte an aqueous solution mainly composed of potassium hydroxide and having a specific gravity of 1.26 was used. The electrolyte was injected in an amount that satisfies 90% of the cathode, anode, and separator.
  • Example 2 Differ only Example 2 and format, cylinder type, pocket type, to form a nickel electrode plate of the button type, using these, to form a nickel one cadmium storage battery A 9, A 10, A n .
  • Nickel carbonyl powder was mixed with spherical nickel hydroxide powder containing 5 wt% of a hydroxylating dormant, and using this mixture, a pocket-type or button-type nickel electrode was formed. with, form a nickel one cadmium storage batteries B 6, B 7 Done.
  • the storage battery A 9 ⁇ Au shows a high Ikatsu material utilization ratio from the first cycle.
  • the reason for this is the same as in the case of the storage battery Ai ⁇ A 6
  • a substrate made of a nickel fiber porous material with a thickness of 1.5 mm and a porosity of 95% is immersed in a plating bath containing diammonium cobalt sulfate, ammonium chloride, sodium chloride, etc., and subjected to the plating process.
  • a plating bath containing diammonium cobalt sulfate, ammonium chloride, sodium chloride, etc. was subjected to 0.1-0.3 m Copa'noreth plating.
  • Example 7 the same paste-like mixture as in Example ⁇ was obtained in the same manner as in Example 7, and the mixture was filled into the above-mentioned substrate coated with cobalt, dried at 80 ° C for 1 hour, pressed, and pressed on the surface. Teflon coating was performed to obtain a nickel electrode plate. Using this nickel plate, a Nigel-zinc storage battery with a nominal capacity of 1 OAh and the same configuration as in Example 7 was used. Formed two .
  • the relationship between the number of charge / discharge cycles and the discharge capacity of storage batteries A 7 and A I2 was examined.
  • the charging condition was a charging current of 0.1 CA for 11 hours, and the discharging condition was a discharging current of 0.2 CA.
  • Figure 9 shows the results.
  • the storage battery A 7 whereas became life 200 cycles became life battery A 12 30 acyclic.
  • This Kobanore Bok plated of the substrate is changed to irreversible C 000 H in a single charge and discharge, the conductive efficiency between the substrate and the positive electrode active material, compared with the battery A 7, is improved This is because the.
  • the productivity is improved because a charging step and a discharging step for forming are not required.
  • the intermediate products up to —C O OOH do not cause short circuit and do not adversely affect the zinc electrode.
  • the remaining amount of C O is small, stable performance is obtained.
  • Alkaline storage batteries such as nickel-zinc storage batteries can be provided.
  • a nickel electrode plate formed in the same manner as in Embodiments 1 and 3 to 6 may be used.
  • Cobalt plating of the substrate may be applied to a Nigel electrode plate formed in the same manner as in Examples 1 and 3 to 6. .
  • a nickel foam may be used as the substrate. Further, an alkali-resistant metal other than nickel may be used.
  • N a 2 S 2 0 8 may be used (NH 4) S 2 ⁇ 8, H 2 ⁇ 2.
  • a nickel electrode plate having a high active material utilization rate from the first cycle and having excellent discharge characteristics and thus an alkaline storage battery can be provided with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
二ッゲル極板の製造法及びアル力リ蓄電池の製造法
技術分野
本発明は、 ニッケル極板の製造法及びアル力リ蓄電池の製造法に関する ものである。 ニッケル極板はアルカリ蓄電池に用いられるものであり、 ァ ルカリ蓄電池としては、 ニッケル一亜鉛蓄電池、 ニッケル一水素蓄電池、 ニッケル一力 ドミゥム蓄電池などが挙げられる。 これらの蓄電池は、 主と して、 ポータブルエレク トロニクス機器用電源、 可搬用電源、 電気自動車 やスクーターなどの電動車両用電源などに用いられている。
背景技術
近年、 ポータブルエレク トロニクス機器などの軽量化が急速に進む中で、 その電源として用いられるアル力リ蓄電池にも軽量化、 小形化が要求され ている。 即ち、 アルカリ蓄電池には高エネルギー密度化が要求されている。 アル力リ蓄電池の正極として用いられるニッケル極板には、 シンター式、 ペースト式、 ボタン式、 ポケッ ト式など種々の形式のものが知られている。' シンター式ニッケル極板は、 穿孔鋼板又はニッケルネッ トなどの多孔性 基板に二ッゲル粉末を焼結させてなる多孔性焼結基板に、 水酸化二ッゲル を主成分とする正極活物質の粉末を充填したものである。 この極板では、 基板の多孔度を高くすると、 焼結された二ッゲル粉末の相互間の結合が弱 くなり、 ニッケル焼結体の脱落が生じるので、 実用上の多孔度は 8 0 %程 度が限界であった。 このため、 活物質充填密度が低く、 4 0 0 mA h Z c c程度のエネルギー密度しか得られなかった。 また、 基板の細孔が 1 0 m以下と小さいため、 正極活物質の充填方法は、 繁雑な工程を繰り返す溶 液含浸法に限られていた。
ボタン式ニッケル極板は、 上記正極活物質粉末にカーボン粉末等の導電 剤を少量加え、 プレスしてペレツ ト状としたものであり、 ポケッ ト式ニッ ケル極板は、穿孔鋼; Kにポケット部を加工して作り、 ポケッ ト部の中に上 記正極活物質粉末を充填したものである。 これらの極板では、正極活物質 粉末を直接に充填しており、 ニッケル粉末を焼結した基板を用いてはいな いので、集電性が乏しく、 50〜 60%の活物質利用率しか得られず、 活 物質利用率が 90 %程度もあるシンタ一式二ッゲル極板に比して性能が大 幅に劣っていた。 これを改良するために、 上記正極活物質粉末にニッケル カルボニル粉末のような微細な粒子を混合することが行なわれている。 し かし、 これによつても、 約 10%程度だけ性能が向上するにすぎない。 混 合したニッケルカルボニル粉末が有効に作用しないのは、 正極充放電電位 で二ッゲルカルボ二ノレ粉末の表面に導電性の悪 t、二ッゲル水酸化物が形成 されるからである。
ペースト式ニッゲル極板は、上記正極活物質粉末に l〜30wt%の C οθ (—酸化コバルト) の粉末を混合し、 この混合物を MC (メチルセル ロース) 、 CMC (カルボキシメチルセルロース) などの水溶液でペース トとし、 これをニッケル綞維多孔体に充填したものである。 この極板は、 CoOを電解液中に溶解させ、 ^一 Co (OH) 2として上記多孔体及び 正極活物質の周囲に析出させ、 その後の充電により化成して導電性の良好 な yg— CoOOHからなる導電性ネットワークを形成し、 これにより放電 性能を良好にしたものである。 この極板では、 上記充電を行なう前に、 電 解液を注液した後に 1〜 3日程度静置するというエージング工程が必要で あった。 エージング工程を経ないと、 式 (I) に示す CoOの溶解反応及 び式 (II) に示す^一 Co (OH) 2の析出反応が殆んど起こらなくなり、 式 (III)、 (IV) に示す導電性ネットワークの形成反応が困難となり、 活 物質利用率が低下する。 C oO + OH- ~~ > HC o OO- … (I )
HC 0OO- + H2O ~~ > yg-C o (OH) 2+OH- … (II) HC o〇〇_ ~ > C o OOH+ e - -(III) β— C o (OH) 2 ~~ > S-C o OOH + H20+ e- … (IV) しかし、 ペースト式ニッケル極板には、 次のような問題点があった。
①コバルトの電解液への溶解度が低く、 電解液の量も少ないので、 式 (I ) の反応は十分には生じない。 このため、 十分な導電性ネッ トワークを形成 するためには、 エージング工程を長く行なうか、 数サイクルの充放電を繰 り返す必要があり、 生産性が悪かった。
②溶解したコバルト錯イオンは拡散して; β— C o (OH) 2として各部に 析出するが、 セパレータに析出した場合にはショートを生じやすくなり、 また、 負極に析出した場合には、 負極が亜鉛極であると、 負極において、 水素ガスが激しく発生し、 水素過電圧が低下し、 自己放電が増加する。 こ のため、 ニッケル一亜鉛蓄電池に適用する場合には、 ニッケル極板を予め 亜鉛極とは別に化成して C oOを^一 C oOOHに変換してから蓄電池に 組込む必要があった。 そのために、 製作の工程数を要し、 充電のための設 備も必要とした。 しかも、 化成、 水洗などの工程を経るので、 活物質の脱 落や導電性ネッ トワークの破損が生じ、 活物質量が減少したり、 活物質利 用率が低下したりするという問題があつた。
③ C oOは、 空気中で放置すると酸化されて C o 304となり、 ^一 C oO 0 Hには変換されなくなるので、 C oOに基づく電池性能が安定しては得 られなくなる。
発明の開示
本発明は、 高性能であり、 生産性に優れた、 ニッケル極板及びアルカリ 蓄電池を製造できる方法を提供することを目的としている。 本発明の第 1の二ッゲル極板の製造法は、 水酸化二ッゲルを主成分とす る正極活物質粉末に、 粒径が 2 0 / m以下であり、表面積が 1 0 m2Zg 以上であるコバルト化合物粉末を混合し、 この混合物を耐アル力リ性金属 からなる三次元多孔性の基板に充填し、 これを酸化剤により酸化したこと を特徵としている。
本発明の第 2の二ッゲル極板の製造法は、 水酸化二ッゲルを主成分とす る正極活物質粉末に、 粒径が 2 0 以下であり、 表面積が 1 0 m2Z g 以上であるコバルト化合物粉末を混合し、 この混合物を酸化剤により酸化 し、 これを耐アル力リ性金属からなる三次元多孔性の基板に充填したこと を特徵としている。
本発明の第 3の二ッゲル極板の製造法は、水酸化二ッゲルを主成分とす る正極活物質粉末を耐アルカリ性金属からなる三次元多孔性の基板に充填 し、 これをコバルトイォンを含む溶液中にて酸ィ匕剤により酸化したことを 特徵としている。
本発明の第 4の二ッゲル極板の製造法は、 水酸化二ッゲルを主成分とす る正極活物質粉末をコバルトイオンを含む溶液中にて酸化剤により酸ィヒし、 これを耐アル力リ性金属からなる三次元多孔性の基板に充填したことを特 徵としている。
本発明の第 5のニッゲル極板の製造法は、 水酸化二ッゲルを主成分とす る正極活物質粉耒にォキシ水酸ィヒコバルト粉末を混合し、 この混合物を耐 アル力リ性金属からなる三次元多孔性の基板に充填したことを特徵として いる。
本発明の第 6の二ッゲル極板の製造法は、水酸化二ッゲルを主成分とす る正極活物質粉末をコバルトィォンを含む溶液中にて酸化剤により酸化し、 これにォキシ水酸化コバルト粉末を混合し、 の混合物を耐アル力リ性金 属からなる三次元多孔性の基板に充填したことを特徴としている。
本発明の第 1のアルカリ蓄電池の製造法は、 上記第 1ないし第 6のいず れかの二ッゲル極板の製造法によりニッゲル極板を製造し、 亜鉛極と組込 むことを特徴としている。
本発明の第 2のアル力リ蓄電池の製造法は、 上記第 1ないし第 6のいず れかの二ッゲル極板の製造法によりニッゲル極板を製造し、 水素極と組込 むことを特徴としている。
本発明の第 3のアル力リ蓄電池の製造法は、 上記第 1ないし第 6のいず れかのニッケル極板の製造法によりニッケル極板を製造し、 力 ドミゥム極 と組込むことを特徴としている。
本発明においては、 コバノレ卜化合物やコバルトイオンが酸化剤により酸 化されて導電性の良好な — C o O O Hとなって、 正極活物質である水酸 化ニッケル粉末の表面に形成され、 正極活物質相互間や正極活物質と基板 との間の導電効率を良好とする導電性ネッ トワークが形成される。
図面の簡単な説明
第 1図は実施例 1〜 6のニッゲル極板をそれぞれ用いた二ッケルー力 ド ミゥム蓄電池の充放電サイクル数と活物質利用率との関係を示す図、 第 2 図は実施例 2及び比較例 1の二ッゲル極板を用いたニッケル一カ ドミウム 蓄電池の 1サイクル目及び 3サイクル目の放電特性を示す図、 第 3図は実 施例 2において C 0 0の粒径を異ならせてなる二ッゲル極板を用いた二ッ ゲル一力 ドミゥム蓄電池の粒径と活物質利用率との関係を示す図、 第 4図 は実施例 6において C 0 00 Hの粒径を異ならせてなるニッケル極板を用 いたニッケル一力 ドミゥム蓄電池の粒径と活物質利用率との関係を示す図、 第 5図は実施例 2において C 0 0の表面積を異ならせてなるニッケル極板 を用いたニッケル一力 ドミゥム蓄電池の表面積と活物質利用率との関係を 示す図、 第 6図は実施例 7及び比較例 2、 3のニッケル極扳をそれぞれ用 いた二ッケルー亜鉛蓄電池の放電電圧特性を示す図、 第 7図は実施例 8及 び比較例 4のニッゲル極扳をそれぞれ用いた二ッゲル—水素蓄電池の充放 電サイクル数と活物質利用率との関係を示す図、 第 8図は実施例 9〜1 1 及び比較例 5〜 7のニッゲル極扳をそれぞれ用いたペースト式とは異なる 形式のニッケル一力ドミゥム蓄電池の充放電サイクル数と活物質利用率と の関係を示す図、第 9図は実施例 7、 1 2のニッケル極扳をそれぞれ用い た二ッケルー亜鉛蓄電池の充放電サイクル数と放電容量との関係を示す図 でめ。。
癸明を実施するための最良の形態
(実施例 1 )
水酸化力ドミゥムを 5 w t %含有した球状水酸化ニッケル粉末に、 粒径 l #m、 表面積 7 O m2Zgの C o O (—酸化コバルト) 粉末を、 重量比 9 5 : 5の割合で混合した。 この混合は、 水酸化カリウムを主体とする比 重 1. 2 5の水溶液中にて行ない、 充分に攪拌した。
得られた混合物を、 濾過し、 水洗し、乾燥した後、 2 w t % CM C (力 ルポキシメチルセルロース) 溶液でペースト状とし、 ニッケル繊維多孔体 からなる基板に充填し、 8ひ。 Cで 1時間乾燥後、 プレスした。
得られた充填体を、 水酸化カリウムを主体とする比重 1. 2 5の水溶液 に入れ、 K2S 208 (ペルォキソ二硫酸カリウム) を、 C ο θのモル数以 上であって酸素ガスが発生するまで加えた。 反応終了後、 充填体を、 水洗 し、 乾燥し、 再度プレスし、 表面にテフロンコーティングを行なった。 こ うして二ッゲル極扳を得た。
なお、 C o Oの代わりに、 他のコバルト化合物、 例えば水酸化コバルト、 炭酸コバルトなどを用いてもよい。 (実施例 2 )
水酸化力 ドミゥムを 5 wt%含有した球状水酸化ニッケル粉末に、 粒径 1 m、 表面積 70m2Zgの CoO粉末を、 重量比 95 : 5の割合で混 合した。 この混合は、 水酸化カリウムを主体とする比重 1. 25の水溶液 中にて行ない、 充分に攪拌した。
次に、 上記水溶液中に、 K2S 208を C οθのモル数以上であって酸素 ガスが発生するまで加えた。
反応終了後、 得られた混合物を、 濾過し、 水洗し、 乾燥した後、 2wt %CMC溶液でペースト状とし、 ニッケル繊維多孔体からなる基板に充填 し、 80°Cで 1時間乾燥後、 プレスし、 表面にテフロンコーティングを行 なった。 こうしてニッケル極板を得た。
なお、 C 00の代わりに、 他のコバルト化合物、 例えば水酸化コバルト、 炭酸コバルトなどを用いてもよい。
(実施例 3 )
水酸化力ドミゥムを 5 wt%含有した球状水酸化ニッケル粉末を、 2w t%CMC溶液でペースト状とし、 ニッケル繊維多孔体からなる基板に充 填し、 80 で1時間乾燥後、 プレスした。
得られた充填体を、 コバルトィォンを飽和状態で溶解しており水酸化力 リウムを主体とする比重 1. 25の水溶液中に入れ、 K2S 208をコバル トイォンのモル数以上であつて酸素ガスが発生するまで加えた。 反応終了 後、 充填体を、 水洗し、 乾燥し、 プレスし、 表面にテフロンコ一ティング を行なった。 こうしてニッケル極板を得た。
(実施例 4 )
水酸化力ドミゥムを 5 w t %含有した球状水酸化二ッゲル粉末を、 コバ ノレトイォンを飽和状態で溶解しており水酸化力リゥムを主体とする比重 1. 25の水溶液中に入れ、 K2S 208をコバルトイオンのモル数以上であつ て酸素ガスが発生するまで加えた。
反応終了後、 粉末を、 濾過し、水洗し、 乾燥した後、 2wt%CMC溶 液でペースト状とし、 ニッケル繊維多孔体からなる基板に充填し、 80°C で 1時間乾燥後、 プレスし、 表面にテフロンコーティングを行なった。 こ うしてニッケル極扳を得た σ
(実施例 5)
水酸化力ドミゥムを 5 wt%含有した球状水酸化ニッケル粉末に、 粒径 l;^mのCoOOH粉末を、重量比 95 : 5の割合で混合した。
得られた混合物を、 濾過し、水洗し、 乾燥した後、 2wt%CMC溶液 でペースト状とし、 ニッケル維維多孔体からなる基板に充填し、 80°Cで 1時間乾燥後、 プレスし、 表面にテフロンコーティングを行なった。 こう してニッケル極板を得た。
C実 例 6 )
水酸化力ドミゥムを 5 wt%含有した球状水酸化ニッケル粉末を、 コバ ル卜イオンを飽和状態で溶解しており水酸化力リゥムを主体とする比重 1. 25の水溶液中に入れ、 K2S 208をコバル卜イオンのモノレ数以上であつ て酸素ガスが発生するまで加えた。
反応終了後、 粉末を、 濾過し、 水洗し、 乾燥した。 得られた粉末に、 粒 径 1 mの CoOOH粉末を、 重量比 95: 5の割合で混合した。
得られた混合物を、 濾過し、水洗し、 乾燥した後、 2wt%CMC溶液 でペースト状とし、 ニッケル緩維多孔体からなる基板に充填し、 80°Cで 1時間車燥後、 プレスし、 表面にテフロンコーティングを行なった。 こう してニッケル極板を得た。
(比較例 1) 水酸化力 ドミゥムを 5 wt%含有した球状水酸化ニッケル粉末に、 粒径 l//m、 表面積 70m2Zgの CoO粉末を、 重量比 95 : 5の割合で混 合した。 この混合は、 水酸化カリウムを主体とする比重 1. 25の水溶液 中にて行ない、 充分に攪拌した。
得られた混合物を、 濾過し、 水洗し、 乾燥した後、 2wt%CMC溶液 でペースト状とし、 ニッケル繊維多孔体からなる基板に充填し、 80°Cで 1時間乾燥後、 プレスし、 表面にテフロンコーティングを行なった。 こう してニッケル極板を得た。
実施例 1〜6及び比較例 1において得られたニッケル極板を、 それぞれ 正極として用い、 ペースト式カ ドミゥム極板からなる負極、 及びポリアミ ド系不織布からなるセパレー夕と組合せて、 公称容量 2. OAhのニッケ ルー力 ドミゥム蓄電池 A! Ae及び B!を組立てた。 なお、 蓄電池 A 〜 A 6はそれぞれ実施例 1〜6のニッケル極板を用いたものを示し、 蓄電池 B!は比較例 1のニッケル極板を用いたものを示す。 電解液としては、 水 酸化カリウムを主体とする比重 1. 25の水溶液を用いた。 電解液は、 正 極、 負極、 及びセパレー夕の 90%を満たす量だけ注液した。 なお、 蓄電 池 B,は、 電解液を注液後、 エージング工程を行ない、 充電により化成し ている。
蓄電池 Ai〜A6及び について、 充放電サイクル数と活物質利用率と の関係を調べた。 なお、 充電条件は充電電流 0. 1 CAで 11時間、 放電 条件は放電電流 0. 2 C Aとした。 第 1図はその結果を示す。
また、 蓄電池 A2及び について、 1サイクル目及び 3サイクル目の放 電特性を調べた。 なお、 充放電条件は上記と同じとした。 第 2図はその結 果を示す。
第 1図からわかるように、 蓄電池 A ,〜A 6では 1サイクル目から高い活 物質利用率を示しているが、 蓄電池 では初斯サイクルにおける活物質 利用率は低く、 その安定化まで 3サイクノレ程度を要している。 また、 第 2 図からわかるように、 蓄電池 A2では、 1サイクル目から放電容量が一定 である。 これは、 次の理由による。 即ち、 蓄電池 Ai〜A6では、 CoOや コバルトィォンが酸化剤である K 2 S 208により酸化されて導電性の良好 な^一 C 000 Hとなって、 正極活物質である水酸化二ッゲル粉末の表面 に形成され、正極活物質相互間や正極活物質と基板との間の導電効率を良 好とする導電性ネットワークが形成されるからであるが、 蓄電池 では、 充電による化成を行なった時、 初期においては、 〇00が完全には^ー〇 oOOHとならないために、 導電効率が低く、 充放電反応が不十分となる からである。 なお、 蓄電池 A!、 A2のニッケノレ極板では、 正極活物質粉末 と C o 0粉末との混合がアル力リ水溶液中で行なわれているので、 両者は 非常に均一に混合される。 このため、 ^一 CoOOHは、 正極活物質粉末 の表面を覆って形成され、 即ち正極活物質粉末を被覆して形成され、上記 導電効率を'より良好とする導電性ネッ トワークが形成されることとなる。 - 従って、 蓄電池 A!、 A2の活物質利用率はより高いものとなっている。
なお、 蓄電池 Ai〜A6のニッケル極板をしばらく空気中に放置した後に 使用しても、上記と同様の効果が得られた。 これは、 CoOやコバルトィ オンが既に酸化剤によって酸ィヒされて^一 Co 00Hとなっているからで あ 。
また、 用いる Co 0の粒径を、 10 am、 20 βπι、 30 mとし、 そ れぞれ実施例 2と同様にしてニッケル極板を形成した。 また、 用いる Co 0 OHの粒径を 10 m、 50 fi ^ 100 mとし、 それぞれ実施例 6 と同様にして二ッゲル極扳を形成した。 これらのニッゲル極板をそれぞれ 用いて上記と同様の蓄電池を形成し、 充放電を数サイクル行なった後の安 定した活物質利用率を調べた。 第 3図及び第 4図はその結果を示す。 第 3 図からわかるように、 C 00は粒径が 20 mを越えると活物質利用率が 低くなり、 また、 第 4図からわかるように、 C 0 OOHは粒径が 50 //m を越えると活物質利用率が低くなる。 従って、 用いる Co 0は粒径が 20 m以下であるものが好ましく、 また、 用いる CoOOHは粒径が 50 z m以下であるものが好ましい。
また、 用いる C 00の表面積を、 10m2Zg、 2 OmVg. 50 m2 /g、 100m2Zgとし、 それぞれ実施例 2と同様にしてニッケル極板 を形成した。 これらのニッケル極板をそれぞれ用いて上記と同様の蓄電池 を形成し、 充放電を数サイクル行なつた後の安定した活物質利用率を調べ た。 第 5図はその結果を示す。 第 5図からわかるように、 CoOの表面積 が 10m2Zgより小さいと、 活物質利用率が低くなる。 従って、 用いる C οθは表面積が 1 Om2ノ g以上であるものが好ましい。
(実施例 7 )
実施例 2と同様にして、 実施例 2と同じニッケル極板を得た。 なお、 水 酸化カリウムを主体とする水溶液としては、 比重 1. 35のものを用いた。 このニッケル極板を正極として用い、 シート式亜鉛極板からなる負極、 セルロース系不織布からなる保液紙、 及び微孔性ポリプロピレンからなる セパレータと組合せて、 公称容量 2. 0 Ahのニッケル一亜鉛蓄電池 A 7 を組立てた。 電解液としては、 水酸化カリウムを主体とする比重 1. 35 の水溶液を用いた。 電解液は、 正極、 負極、 保液紙、 及びセパレー夕の 9 0 %を満たす量だけ注液した。
(比較例 2 )
比較例 1で得たニッケル極板を、 電池に組込む前に、 実施例 7と同じ電 解液中に浸漬してエージング工程を行ない、 充電して化成した後に、 実施 例 7と同様にして電池に組込んで、 ニッケル一亜鉛蓄電池 B 2を形成した。 (比較例 3 )
比較例 1で得た二ッゲル極扳を、 実施例 7と同様にして電池に組込み、 その後にエージング工程を行ない、 充電して化成して、 ニッケル一亜鉛蓄 電池 B 3を形成した。
蓄電池 A7、 : B 2、 及び B 3について、 充放電試験を行ない、 放電電圧特 性を調べた。 なお、 充電条件は充電電流 3 Aで 1 1時間、放電条件は放電 電流 6 Aとした。 その結果を第 6図に示す。 また、 4 0 °Cで 2 0日間放置 した場合の自己放電量を第 1表に示す。
[第 1表]
Figure imgf000014_0001
第 6図及び第 1表からわかるように、 蓄竃池 A7は、 蓄電池 B 2、 B 3に 比して、 放電電圧特性及び自己放電量が共に優れている。 この理由は、 蓄 電池 A!^Aeの場合と同様であるとともに、亜鉛極の自己放電性能が次の 理由により優れているからである。 即ち、 (1) ;5— C o O O Hは可逆性が 殆んどないこと、 (2) C ο θの残存量が極めて少ないこと、 (3) 一 C o 0 0 Hに至るまでの中間生成物の溶出による亜鉛極への悪影響がないこと。 なお、 蓄電池 A7の二ッゲル極扳をしばらく空気中に放置した後に使用 しても、上記と同様の効果が得られた。
(実施例 8 )
実施例 7と同じニッゲル極板を得、 このニッゲル極板を正極として用い、 ペースト式水素吸蔵極板からなる負極、 ポリアミ ド系不織布からなるセパ レー夕と組合せて、 公称容量 2. 0 Ahのニッケル一水素蓄電池 A8を組 立てた。 上記水素吸蔵極板に用いる水素吸蔵合金は、 MmN i 4 . 2 A 10 . 3 C o。. 5からなるものである。 なお、 Mmは希土類元素の混合物であるミ ツ シュメタルである。 電解液としては、 水酸化カリウムを主体とする比重 1. 26の水溶液を用いた。 電解液は、 正極、 負極、 及びセパレー夕の 90% を満たす量だけ注液した。
(比較例 4 )
比較例 1で得た二ッゲル極板を、 実施例 8と同様にして電池に組込み、 その後にエージング工程を行ない、 充電して化成して、 ニッケル一水素蓄 電池 B4を形成した。
蓄電池 A8及び B4について、 充放電サイクル数と活物質利用率との関係 を調べた。 充電条件は充電電流 300mAで 10. 5時間、 放電条件は放 電電流 600mAで終止電圧 1. 00Vとした。 第 7図.はその結果を示す。 第 7図からわかるように、 蓄電池 A 8では 1サイクル目から高い活物質 利用率を示している。 この理由は、 蓄電池 A,〜A6の場合と同じである。 (実施例 9~11)
実施例 2と形式のみ異なる、 円筒式、 ポケッ ト式、 ボタン式のニッケル 極板を形成し、 これらを用いて、 ニッケル一カ ドミウム蓄電池 A9、 A10、 Anを形成した。
(比較例 5〜 7 )
比較例 1と形式のみ異なる、 円筒式のニッケル極板を形成し、 これを用 いて、 ニッケル一力 ドミゥム蓄電池 B5を形成した。 また、 水酸化力 ドミ ゥムを 5 w t%含有した球状水酸化ニッケル粉末に、 ニッケルカルボニル 粉末を混合し、 この混合物を用いて、 ポケッ 卜式、 ボタン式のニッケル極 板を形成し、 これらを用いて、 ニッケル一カ ドミウム蓄電池 B6、 B7を形 成した。
蓄電池 A9〜Au及び B5〜B7について、 充放電サイクル数と活物質利 用率との闋係を調べた。 なお、充電条件は充電電流ひ. 1 CAで 11時間、 放電条件は放電電流 0. 2CAとした。 第 8図はその結果を示す。
第 8図からわかるように、 蓄電池 A9〜Auでは、 1サイクル目から高 い活物質利用率を示している。 この理由は蓄電池 Ai〜A6の場合と同じで
(実施例 12)
厚さ 1. 5mm、 多孔度 95%のニッケル繊維多孔体からなる基板を、 硫酸二アンモニゥムコバルト、 塩化アンモニゥム、 塩化ナトリウムなどを 含有するめつき浴中に浸漬してめつき処理し、 上記基板に 0. 1〜0. 3 mのコパ'ノレトめっきを施した。
—方、 実施例 7と同様にして実施例 Ίと同じペースト状の混合物を得、 これを、 コバルトめつきされた上記基板に充填し、 80°Cで 1時間乾燥後、 プレスし、 表面にテフロンコーティングを行なって、 ニッケル極板を得た。 このニッケル極板を用い、 実施例 7と同様の構成の公称容量 1 OAhの 二ッゲル—亜鉛蓄電池 A! 2を形成した。
蓄電池 A7、 AI2について、 充放電サイクル数と放電容量との関係を調 ベた。 なお、 充電条件は充電電流 0. 1 CAで 11時間、 放電条件は放電 電流 0. 2 C Aとした。 第 9図はその結果を示す。
第 9図からわかるように、 蓄電池 A7が 200サイクルで寿命となった のに対し、 蓄電池 A12は 30ひサイクルで寿命となった。 これは、 基板の コバノレ卜めつきが 1回の充放電で不可逆な C 000 Hに変化し、 基板と正 極活物質との間の導電効率を、 蓄電池 A7に比して、 より向上させたから である。 以上、 実施例 1〜1 2に記載のように、 本発明によれば、 1サイクル目 から活物質利用率が高く、 放電特性に優れたニッケル極板、 ひいては、 ァ ルカリ蓄電池を提供することができる。 また、 本発明の方法によれば、 ェ 一ジング工程や化成のための充放電が不要であるので、 生産性は良好とな る。 また、 — C o O O Hに至るまでの中間生成物が、 ショートの原因と なったり、 亜鉛極に悪影響を与えたりすることはなく、 更に、 C o Oの残 存量も少ないので、 安定した性能を有するニッケル一亜鉛蓄電池などのァ ルカリ蓄電池を提供することができる。
(他の実施例)
(1) ニッケル一亜鉛蓄電池及びニッケル—水素蓄電池としては、 実施例 1、 3〜6と同様の方法で形成したニッケル極板を用いてもよい。
(2) 基板をコバルトめっきすることは、 実施例 1、 3〜6と同様の方法で 形成するニッゲル極板に適用してもよい。 .
(3) 基板としては、 ニッケル発泡体を用いてもよい。 また、 ニッケル以外 の耐アルカリ性金属を用いてもよい。
(4) 酸化剤としては、 N a 2 S 208、 (N H 4) S 28、 H 22などを用い てもよい。
産業上の利用可能性
本発明によれば、 1サイクル目から活物質利用率が高く、 放電特性に優 れたニッケル極板、 ひいては、 アルカリ蓄電池を、 生産性良く提供できる ので、 利用価値は大である。

Claims

請 求 の 範 囲
1. 水酸化ニッケルを主成分とする正極活物質粉末に、 粒径が 2 0 m 以下であり、 表面積が 1 0 m2Z g以上であるコバルト化合物粉末を混合 し、 この混合物を耐アル力リ性金属からなる三次元多孔性の基板に充填し、 これを酸化剤により酸化したことを特徴とするニッゲル極板の製造法。
2. 水酸化ニッケルを主成分とする正極活物質粉末に、 粒径が 2 0 m 以下であり、 表面積が 1 0 m 2/ g以上であるコバルト化合物粉末を混合 し、 この混合物を酸ィヒ剤により酸化し、 これを耐アルカリ性金属からなる 三次元多孔性の基板に充填したことを特徵とする二ッゲル極板の製造法。
3. 正極活物質粉末とコバルト化合物粉末との混合を、 アルカリ水溶液 中にて行なう請求項 1又は 2記載の二ッゲル極板の製造法。
4. 水酸化ニッケルを主成 3^とする正極活物質粉末を耐アル力リ性金属 からなる三次元多孔性の基板に充填し、 これをコバルトイオンを含む溶液 中にて酸化剤により酸化したことを特徴とする二ッゲル極板の製造法。
5. 水酸化ニッケルを主成分とする正極活物質粉末をコバルトイオンを 含む溶液中にて酸化剤により酸化し、 これを耐アルカリ性金属からなる三 次元多孔性の基板に充填したことを特徵とするニッゲル極板の製造法。
6. 水酸化二ッゲルを主成分とする正極活物質粉末にォキシ水酸化コバ ルト粉末を混合し、 この混合物 耐ァルカリ性金属からなる三次元多孔性 の基板に充填したことを特徵とするニッゲル極板の製造法。
7 · 水酸化二ッゲルを主成分とする正極活物質粉末をコバノレ卜イオンを 含む溶液中にて酸化剤により酸化し、 これにォキシ水酸化コバルト粉末を 混合し、 この混合物を耐アル力リ性金属からなる三次元多孔性の基板に充 填したことを特徵とする二ッゲル極板の製造法。
8. ォキシ水酸化コバルトは粒径が 5 0 # m以下のものである請求項 6 又は Ί記載の二ッゲル極板の製造法。
9. 基板がコバルトめつきされている請求項 1、 2、 4、 5、 6、 又は 7記載のニッケル極板の製造法。
10. 基板は繊維多孔体又は発泡体である請求項 1、 2、 4、 5、 6、 又は 7記載の二ッゲル極板の製造法。
11. 酸化剤は、 K2S28、 Na2S 208、 (NH4) S 208、 又は H2 02である請求項 1、 2、 4、 5、 又は 7記載のニッケル極板の製造法。
12. 請求項 1、 2、 4、 5、 6、 又は 7記載の方法によりニッケル極 板を製造し、 亜鉛極と組込むことを特徵とするアル力リ蓄電池の製造法。
13. 請求項 1、 2、 4、 5、 6、 又は 7記載の方法によりニッケル極 板を製造し、 水素極と組込むことを特徵とするアル力リ蓄電池の製造法。
14. 請求項 1、 2、 4、 5、 6、 又は 7記載の方法によりニッケル極 板を製造し、 力ドミゥム極と組込むことを特徵とするアルカリ蓄電池の製 造法。
PCT/JP1992/001359 1991-10-21 1992-10-20 Method for production of nickel plate and alkali storage battery WO1993008611A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69232392T DE69232392T2 (de) 1991-10-21 1992-10-20 Verfahren zur herstellung einer nickelplatte und einer alkalibatterie
US08/078,247 US5489314A (en) 1991-10-21 1992-10-20 Manufacturing method of nickel plate and manufacturing method of alkaline battery
JP5507606A JP3003218B2 (ja) 1991-10-21 1992-10-20 ニッケル極板の製造法及びアルカリ蓄電池の製造法
EP92921263A EP0571630B1 (en) 1991-10-21 1992-10-20 Method for production of nickel plate and alkali storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30232491 1991-10-21
JP3/302324 1991-10-21

Publications (1)

Publication Number Publication Date
WO1993008611A1 true WO1993008611A1 (en) 1993-04-29

Family

ID=17907572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001359 WO1993008611A1 (en) 1991-10-21 1992-10-20 Method for production of nickel plate and alkali storage battery

Country Status (4)

Country Link
US (1) US5489314A (ja)
EP (1) EP0571630B1 (ja)
DE (1) DE69232392T2 (ja)
WO (1) WO1993008611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014666A1 (en) * 1994-11-02 1996-05-17 Ovonic Battery Company, Inc. Enhanced nickel hydroxide positive electrode materials for alkaline rechargeable electrochemical cells

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708349A (en) * 1995-02-23 1998-01-13 Kabushiki Kaisha Toshiba Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
US5744259A (en) * 1995-05-25 1998-04-28 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
JP3533032B2 (ja) * 1996-04-03 2004-05-31 松下電器産業株式会社 アルカリ蓄電池とその製造方法
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
JP2947284B2 (ja) * 1997-12-26 1999-09-13 松下電器産業株式会社 アルカリ蓄電池用非焼結式正極およびこれを用いたアルカリ蓄電池
US6177213B1 (en) 1998-08-17 2001-01-23 Energy Conversion Devices, Inc. Composite positive electrode material and method for making same
US6270535B1 (en) * 1998-09-04 2001-08-07 Moltech Power Systems, Inc. Method of forming CoOOH and NiOOH in a NiMH electrochemical cell and an electrochemical cell formed thereby
US6790559B2 (en) * 2001-03-15 2004-09-14 Powergenix Systems, Inc. Alkaline cells having positive nickel hydroxide electrodes with fluoride salt additives
MX241166B (es) * 2001-06-29 2006-10-16 Ovonic Battery Co Bacteria de almacenamiento de hidrogeno; electrodo de niquel positivo; material activo de electrodo positivo y metodos para fabricarlos.
WO2003021698A1 (fr) * 2001-09-03 2003-03-13 Yuasa Corporation Materiau pour electrode de nickel et procede de production de ce materiau, electrode de nickel et accumulateur alcalin
US6991875B2 (en) * 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode
US20040076881A1 (en) * 2002-10-17 2004-04-22 Bowden William L. Method of making a battery
JP4412936B2 (ja) * 2003-07-31 2010-02-10 パナソニック株式会社 オキシ水酸化コバルトおよびその製造方法ならびにそれを用いたアルカリ蓄電池
US9406934B2 (en) 2012-02-07 2016-08-02 Basf Corporation Rechargeable battery cell with improved high temperature performance
US9425456B2 (en) 2012-02-07 2016-08-23 Ovonic Battery Company, Inc. Rechargeable battery cell with improved high temperature performance
US20150372285A1 (en) * 2014-06-24 2015-12-24 Basf Corporation Metal Hydride Battery Electrodes
US10587012B2 (en) 2015-03-26 2020-03-10 Basf Corporation Electrolyte compositions comprising ionic liquids and metal hydride batteries comprising same
CN108886175B (zh) 2016-03-28 2022-08-02 巴斯夫公司 用于再充式电池组的硅基固体电解质
WO2022145030A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Salt containing electrolytes that promote the formation of proton-conducting rechargeable batteries
WO2022145028A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Group 14 element-containing metal hydrides with a superlattice structure for use in proton-conducting rechargeable batteries
WO2022145029A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Group 14 element-containing metal hydride with a superlattice structure for use in hydrogen storage.
WO2022145027A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Ionic liquid electrolytes including salt additives for use in proton-conducting rechargeable batteries
US20240063376A1 (en) 2020-12-29 2024-02-22 Kawasaki Motors, Ltd. Bulk si-anode for use in proton-conducting rechargeable batteries
WO2022145026A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Si-containing alloy for the anode of proton-conducting rechargeable batteries
WO2022145031A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Processes of hydrogen annealing of si-surfaces
JP2024519726A (ja) 2021-05-13 2024-05-21 カワサキモータース株式会社 プロトンおよび水酸化物イオン伝導性ポリマーベースのセパレータを備えるバイポーラ電池
CN117546335A (zh) 2021-06-21 2024-02-09 川崎摩托株式会社 质子传导性充电电池及方法
WO2023007751A1 (en) 2021-07-30 2023-02-02 Kawasaki Motors, Ltd. Si-containing metal hydrides with expanded superlattice structure for use in proton-conducting rechargeable electrochemical cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200555A (ja) * 1987-10-15 1989-08-11 Sanyo Electric Co Ltd アルカリ蓄電池用正極板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049027A (en) * 1976-08-26 1977-09-20 Yardney Electric Corporation Active material for pressed nickel electrodes
JPS544335A (en) * 1977-06-10 1979-01-13 Tokyo Shibaura Electric Co Method of making nickel active material for alkali cell
EP0028072B1 (en) * 1979-10-03 1984-08-01 LUCAS INDUSTRIES public limited company A nickel electrode, a method of producing the nickel electrode and an electrochemical cell employing the nickel electrode
CA1113802A (en) * 1980-09-02 1981-12-08 William A. Armstrong Mixed oxide oxygen electrode
JPS58152371A (ja) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd アルカリ電池用正極板の製造法
JPS5923464A (ja) * 1982-07-29 1984-02-06 Matsushita Electric Ind Co Ltd 電池用ニツケル電極の製造法
JPS5983348A (ja) * 1982-11-04 1984-05-14 Matsushita Electric Ind Co Ltd ニツケル正極の製造法
JPS59111264A (ja) * 1982-12-14 1984-06-27 Japan Storage Battery Co Ltd アルカリ電池用正極板
JPS59128765A (ja) * 1983-01-13 1984-07-24 Japan Storage Battery Co Ltd 非水電解液電池
US4935318A (en) * 1987-03-25 1990-06-19 Matsushita Electric Industrial Co., Ltd. Sealed type nickel-hydride battery and production process thereof
JPH0724218B2 (ja) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション アルカリ電池用ニッケル電極及びこれを用いた電池
EP0403052B1 (en) * 1989-06-15 1995-06-21 Yuasa Corporation Nickel electrode and alkaline battery using the same
JPH0824041B2 (ja) * 1990-05-21 1996-03-06 株式会社ユアサコーポレーション ニッケル極板の製造法
JPH07114123B2 (ja) * 1990-06-04 1995-12-06 湯浅電池株式会社 ニッケル亜鉛蓄電池の製造法
JPH0824042B2 (ja) * 1990-09-19 1996-03-06 株式会社ユアサコーポレーション ニッケル水素蓄電池の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200555A (ja) * 1987-10-15 1989-08-11 Sanyo Electric Co Ltd アルカリ蓄電池用正極板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014666A1 (en) * 1994-11-02 1996-05-17 Ovonic Battery Company, Inc. Enhanced nickel hydroxide positive electrode materials for alkaline rechargeable electrochemical cells

Also Published As

Publication number Publication date
EP0571630A4 (en) 1995-04-19
EP0571630A1 (en) 1993-12-01
DE69232392D1 (de) 2002-03-14
DE69232392T2 (de) 2002-08-29
US5489314A (en) 1996-02-06
EP0571630B1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
WO1993008611A1 (en) Method for production of nickel plate and alkali storage battery
JP3558590B2 (ja) アルカリ蓄電池用正極活物質の製造方法
WO1992008251A1 (fr) Electrode d'accumulation d'hydrogene, electrode au nickel, et accumulateur nickel-hydrogene
US20010008729A1 (en) Positive electrode active material for alkaline storage batteries, positive electrode for alkaline storage batteries, and alkaline storage battery
JP2000003707A (ja) アルカリ蓄電池
JPH1074512A (ja) ニッケル水素二次電池とその正極
JP4474722B2 (ja) アルカリ蓄電池とそれに用いるアルカリ蓄電池用正極
CN100511782C (zh) 一种碱性二次电池正极材料及碱性二次电池
JP2987873B2 (ja) アルカリ蓄電池
JP3003218B2 (ja) ニッケル極板の製造法及びアルカリ蓄電池の製造法
JP2926732B2 (ja) アルカリ二次電池
JP3384109B2 (ja) ニッケル極板
JP3397216B2 (ja) ニッケル極板とその製造方法およびこれを用いたアルカリ蓄電池
JPH097591A (ja) 水素吸蔵合金及びその製造方法並びにそれを用いた水素吸蔵合金電極
JP4531874B2 (ja) ニッケル・金属水素化物電池
JP3075114B2 (ja) アルカリ蓄電池用ニッケル正極
JP2003109586A (ja) ニッケル電極活物質ペーストの製造方法、ニッケル電極活物質ペースト、ニッケル電極およびアルカリ蓄電池
JPH1186860A (ja) アルカリ蓄電池用水酸化ニッケル活物質およびそれを用いたペ−スト式水酸化ニッケル正極板
JP2005183339A (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JP2020087703A (ja) 亜鉛電池用負極の製造方法及び亜鉛電池の製造方法
JP2021185560A (ja) 亜鉛電池用負極及び亜鉛電池
JP2003142089A (ja) ニッケル電極活物質の製造方法、ニッケル電極活物質、ニッケル電極用活物質ペーストの製造方法、ニッケル電極およびアルカリ蓄電池
JP2013164991A (ja) ニッケル水素蓄電池
JPH02234357A (ja) ニッケル電極用活物質及びこれを用いたニッケル―水素電池の製造法
JPH0824042B2 (ja) ニッケル水素蓄電池の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992921263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08078247

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992921263

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992921263

Country of ref document: EP