WO1993006057A1 - Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom - Google Patents

Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom Download PDF

Info

Publication number
WO1993006057A1
WO1993006057A1 PCT/JP1992/001189 JP9201189W WO9306057A1 WO 1993006057 A1 WO1993006057 A1 WO 1993006057A1 JP 9201189 W JP9201189 W JP 9201189W WO 9306057 A1 WO9306057 A1 WO 9306057A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
weight
magnesia
less
refractory
Prior art date
Application number
PCT/JP1992/001189
Other languages
English (en)
French (fr)
Inventor
Naoki Furuta
Masakazu Ootsubo
Setsunori Hamaguchi
Isao Watanabe
Yoichi Furuta
Toshihiro Suruga
Original Assignee
Krosaki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27275072&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993006057(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP03238313A external-priority patent/JP3124799B2/ja
Priority claimed from JP3308055A external-priority patent/JPH05139819A/ja
Priority claimed from JP04001782A external-priority patent/JP3124809B2/ja
Application filed by Krosaki Corporation filed Critical Krosaki Corporation
Priority to EP92920058A priority Critical patent/EP0557536B1/en
Priority to US08/039,330 priority patent/US5369066A/en
Priority to DE69211673T priority patent/DE69211673T2/de
Priority to KR1019930701471A priority patent/KR960011347B1/ko
Publication of WO1993006057A1 publication Critical patent/WO1993006057A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/047Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • C04B35/0473Refractories from grain sized mixtures containing chromium oxide or chrome ore obtained from fused grains

Definitions

  • the present invention relates to a refractory material made of magnesia clinker and its application.
  • magnesia carbon brick mainly composed of Mg0 which has excellent spall resistance and slag infiltration resistance, has been widely used as a lining material for converters and smelting furnaces. Came.
  • magnesia carbon brick receives slag. It is used in a state where carbon such as graphite is always exposed on the operating surface, and the oxidation rate of carbon is accelerated, and the wear rate is remarkably increased.
  • Japanese Patent Publication No. 54-82206 discloses that fused magnesia is used for melting iron and non-ferrous metals. When used as a raw material, it is a starting point for mechanical destruction and chemical erosion, compared to using sintered magnesium, iron, etc. It is disclosed that the corrosion resistance to molten gold and slag is improved because the grain boundaries of the zong are reduced.
  • Japanese Patent Publication No. 572-27366 discloses that the aggregate can be strengthened by using high-purity magnesia for the molten magnesia.
  • an appropriate material such as 5-3 mm, 3-1 mm, 1-0 mm, etc. Grain classified and sized is used as aggregate.
  • a clinker ingot is obtained by electro-fusing a raw material containing magnesia, which has a relatively small amount of impurities, of 99.0 to 99.8 double halo%.
  • impurities of 99.0 to 99.8 double halo%.
  • electrofused magnesia is used as a refractory aggregate, C a 0 precipitated from the periclase crystal having a high C a O / S i O 2 ratio at the grain boundary penetrates the grain boundary. It is also known that it reacts with slag to produce a thickening effect of slag, which has the effect of suppressing the penetration of slag into fire grain boundaries and improving erosion.
  • An object of the present invention is to obtain a clinker having a high single crystal ratio from a relatively low-purity magnesia raw material, which has been considered impossible to produce, and to obtain an electrolysis having a high C a O / S i O 2 ratio. ⁇ in providing magnesia refractory material
  • Another object of the present invention is to provide an S-fused magnesia reactor that is stable against slag, even under high-temperature and oxidizing atmosphere conditions, and that exhibits excellent corrosion resistance even to slag with a high iron content. In providing refractory materials.
  • Another object of the present invention is to improve the corrosion resistance by suppressing the infiltration of slag into the grain boundaries by infusing the molten magnesia material with Ca0 to reduce the digestion of Ca0 itself. It is an object of the present invention to provide a refractory material for a magnesia clinker which has solved the problem.
  • Still another object of the present invention is to provide a fused or unfired brick or an amorphous refractory having excellent corrosion resistance and excellent spoiling resistance using an electro-fused magnetic cleaner having excellent corrosion resistance. To provide.
  • the alteration of the magnesium oxide in carbon brick is caused by the alteration of the grain boundary of the magnesium linker.
  • silicates or iron oxide containing iron oxides enter the magnesia grain boundary, foreign components penetrate into the brick, and the following reaction with magnesium proceeds to form a low melt. And collapse.
  • magnesia linker In producing an electrofused magnesia linker, it is melted at a high temperature.
  • periclase zirconia crystallizes from magnesia with temperature drop, the presence of impurities hinders the growth of periclase crystal, and in particular, the presence of SiO 2 is the largest factor that suppresses crystal growth.
  • the magnesia mixture having a high single crystal ratio the alteration of the grain boundaries of the magnesia mixture is suppressed, and the collapse caused by the formation of a low melt is suppressed.
  • the 0 content is 9 S.0 to 99.8 fold, and the S i 0 2 content is 0.05% by weight or less, preferably 0.02% by weight. Weight or less, more preferably 0.01 weight or less, and a CaO content of 0.1 to 2.0% by weight, and the crystal grains are generally sized for use in refractories. and when a refractory material single ⁇ ratio contained in the sizing products consist much higher, and high C a O / S i 0 electrodeposition having 2 ratio melting magnesia chestnut linker.
  • the electrofused magnesia cleaner can be mixed with other pyrotechnic materials in an amount of 10% or more by weight to obtain unburned brick or fired brick having excellent corrosion resistance.
  • C a OS i 0 »compound forms raw than fused magnesia material production initially, the penetration inhibiting into grain boundaries of the slag The amount of free C a 0 to be taken care of is destroyed, and the effect of containing C a 0 is halved.
  • the presence of Ca 2 O in the electrofused magnesia material cannot fully demonstrate its function inside the periclase crystal.
  • C a0 exerts its effect only after reacting with slag that attempts to penetrate the grain boundaries.Therefore, C a0 is concentrated at the grain boundaries. It is effective.
  • the periclase crystal is purified when the periclase crystal is crystallized from the molten magnesia during the production of the electrofused magnesia material. It is necessary to exhale at the grain boundaries.
  • the present invention intensive found that the presence of S i 0 2 is the largest obstacle to the pure growth of peri Kuresu crystal, by reducing the content of S i 0 2, the C a 0 in the crystal grain boundaries From the shochu fire material which can be made to exist, and the refractory material, it is possible to obtain a composition, an unfired brick, and an irregular refractory material for casting or stamping.
  • the single crystal ratio is high, the number of crystal grain boundaries that are the starting point of mechanical destruction and chemical erosion is reduced, so that the corrosion resistance to molten metal slag is improved and the high C a O / is S i 0 2 composition by. it remaining C a 0 gathered from the crystal grain boundary Niberi Kuresu crystal polycrystalline fused magnesia aggregate was, reacted with the slag to intrusion into the crystal grain boundaries In addition, by providing a slag enlarging effect, the slag is prevented from entering the crystal grain boundaries, thereby exhibiting a combined effect of improving corrosion resistance.
  • the content of MgO is set to 98,0 to 99.8 weight, because when the content of MgO is less than 98.0 weight, impurities are relatively increased.
  • the growth of periclase crystals from molten magnesia is hindered, and a sufficient crystal size as an electrofused magnesia material cannot be obtained, hindering the basic characteristics of electromagnetism. It is.
  • it exceeds 99.8 weight fti a sufficient C a 0 content cannot be secured.
  • the reason why the content of SiO 2 in the linker is set to 0.05% by mass or less is that if the content of SiO 2 exceeds 0.05% by weight, it will be included in the magnesia material from the beginning of production.
  • the C a 0—S i O 2 compound is formed, and the amount of free C a 0 that should be responsible for suppressing slag intrusion into the crystal grain boundaries is reduced. This is because it inhibits. For this reason, S i 0.
  • the content is preferably low, 0.03% i% or less, particularly preferably 0.02% or less.
  • the reason why the C a O content is 0.1 to 2.0% by weight is that the C a O content halo is 0.1 weight. This is because, by reacting, the slag has a thickening effect, and it is not possible to secure a sufficient amount of C a 0 sufficient to suppress intrusion into the slag crystal grain boundaries. In the case of, in the low temperature range from room temperature to 700, the temperature becomes lower than the solid solution limit of the Mg0Ca0 system.Therefore, the Ca0 phase is precipitated in the (4) The effect of increasing the resistance cannot be expected. It is preferably at least 0.2% by weight and at most 1% by weight.
  • Various flammable materials can be used as components other than fused magnesia clinker.
  • carbonaceous powders such as natural or artificial black, coke, mesophase carbon, carbon black, and diamond powder, general magnesia clinker, fused magnesium clinker with CaO content of 1.5 to 40% by weight.
  • Other ware Refractory raw materials consisting of sintered clinker, dolomite clinker aggregate and zirconium, zircon, alumina, silica, chromium ore, silicon carbide, copper, C and combinations thereof can be used.
  • the mechanical properties of the diamond such as shochu oxidation, high hardness and high strength can be fully utilized. Yes, it can be suitably used in places where oxidation resistance and wear resistance of flow control refractories such as converter tuyeres and sliding nozzles are required.
  • magnesia clinker as an aggregate used in the present invention can be obtained by electromelting magnesia recommended raw materials such as sintered magnesium, calcined magnesia, magnesium hydroxide, and magnesium carbonate. It is desirable that the crystallinity of this refractory material be as large as possible. In order to improve the resistance to swelling, it is effective to add a powder of pitch-phenol descendant molecular resin into the compound.
  • Binders used in the production of refractory bricks include phenolic resins, furan resins, epoxy resins, modified phenolic resins, melamine resins, urea resins, etc.
  • a phenolic resin or a phenolic modified resin is particularly preferred.
  • metal or alloy powders such as A1, Si, Ca, Cr, Ms, and BC is necessary to improve oxidizing properties, corrosion resistance, and high hot strength. It is valid.
  • magnesia linker composition regulation is, for example, regardless of whether it is fired refractories containing no carbon, fired refractories containing carbon, and various unfired refractories, fired refractories, and irregular shaped shochu refractories. Play.
  • carbonaceous powder when blended with refractory brick, if the content is less than S% by weight, it is inferior in resistance to slag and slag infiltration, and 40% by weight. If it is larger, kneading becomes difficult during production, workability is inferior, and oxidization of shochu becomes a problem.
  • Table 1 shows the difference in the properties of the electrofused magnesia material due to the difference in the used raw materials. Shows the confectionery with
  • Electro-fused magnesium resin melt-produced from each raw material is sized to 5 to S millimeters, 3-1 millimeters, and I to 0 millimeters, and the single crystal in the 5 to 3 millimeters Was calculated.
  • 1A and 1B show examples of the present invention
  • 1C is a comparative example
  • 1A and 1B show examples of the present invention
  • 1A and 1B show examples of the present invention
  • 1C is a comparative example
  • 1A and 1B show examples of the present invention
  • 1C is a comparative example
  • 1A and 1B show examples of the present invention
  • 1C is a comparative example
  • 1A and 1B show examples of the present invention
  • the examples of the present invention are compared with the IC of the comparative example. It shows a high single crystal ratio.
  • Table 2 shows a sample of 10 mm x 10 flim 60 mm from the ingot of this fusion material with the addition of 1 D to 1 F of the comparative example to the fusion material shown in Table 1 They were cut out and subjected to four types of edible tests.
  • Test conditions temperature, more hours 1600 e CX l5 minutes, slag Ca0 / Si0 2
  • Table 3 shows the chemical composition of the molten magnesia cleaner.
  • 2A is in the composition range specified in the present invention
  • 2B to 2I are electrofused magnesia cleaners out of the specified range.
  • each of the fused magnesia cleanliness shown in Table 3 was selected, kneaded and formed with the composition shown in Table 4, dried at 90 at 24 hours, and further dried at 250 at 10 hours.
  • an unfired refractory was obtained.
  • Tests 25 and 26 of the examples were obtained by subjecting these treatments to further firing at 100 ° C. in a reduced atmosphere.
  • Example 2 K 24 is an example containing at least 10% by weight of electrofused magnesia belonging to the present invention, and Sample Nos. 22 and 23 represent mesofused carbon and diamond powder each belonging to the present invention. This is an example of adding to a composition containing a clinker. Examples 25 and 26 are examples of sintered products.
  • Comparative Example 26 the unfired refractory was further subjected to a firing treatment (100 ° C. in a source atmosphere).
  • Comparative Example '2 1, 2 2, 2 3, 24, 25 has an incombustible fire inferior in food quality to that of the Example because the content of the electrofused magnesium prescribed in the present invention is insufficient or not included. It is an example of a thing. Comparative Example 26 is defined in the present invention! It is an example of fired refractory which does not contain fused magnesia, and is inferior in shochu edible properties as compared with Example Sample 25 containing a prescribed amount of fused magnesia of the present invention.
  • Tables 4 and 5 show the characteristics of each sample.
  • shochu erosion damage ft Numbers 1 to 4 were all measured by applying the K-frequency furnace immersion method and erosion after immersion in a melting bath at 160 for 15 minutes, respectively. The amount is indicated by an exponent, with the case of Comparative Example 1 taken as 100, where 1 is C a 0 and S i 0. Is in a slag of 2, in 2 is in a slag of 2.0 C a OZS i O 2 , in 3 is in a slag of 3.0 C a OZS i O a , and in 4 is a mill scale The spear fruit performed inside is shown.
  • Table 6 shows a sample of 10 mm X 1 O mm x 6 O mm cut out from ingots of electrofused magnesia materials with different compositions, and tested four types of shochu edible food and measured according to the Gakushin method. The results of the toughening test are shown. Table 6
  • the W brick shown in Table 8 was obtained by using an electrofused magnesia cleaner having the contents of C a 0 and S i 0 shown in Table 7.
  • 4R and 4S are within the composition range specified in the present invention
  • 4T and 4U are fusion magnesia linkers outside the specified range.
  • Each of the electrofused magnesia binders shown in Table 7 was selected to obtain the composition shown in Table 8, and an appropriate amount of a liquid phenol was added thereto, followed by friction molding.
  • a basic brick was obtained by drying at 24 ° C. for 24 hrs and curing at 250 ° Cx i for 0 hrs. And calcined at 100 O'C.
  • Example Samples 41 and 44 are examples containing 10% or more by weight of molten magnesia
  • Example Samples 42 and 43 were prepared by mixing mesophase power and diamond powder with magnesia linker. This is an example of adding.
  • Example Sample 45 is an example in which the material using flute-melting magenta cleaner contains at least 10% by weight of fuming magnesia-clinker.
  • Example samples 46 and 47 are examples of fired products.
  • Table 9 as a comparative example, as a raw material composition of magnesia, a molten composition containing 4 T and 4 U of magnesia clinker which is out of the range of the present invention in Table 7 and having a compounding amount out of the range is specified. Certain formulation compositions were treated as in the examples. The results are shown in the same table. In the table, Comparative Example f shows an example of a fired brick. Table 9
  • n Shows the case of firing.
  • Comparative Examples a, b, c, d, and e show the cases where the content of fused magnesia specified in the present invention is insufficient or not included, and the amount of carbonaceous powder is insufficient or excessive. Is an example in which the corrosion resistance is inferior to that of the example when contained in the alloy.
  • Comparative Example f is defined in the present invention! This is an example of a fired refractory that does not contain a molten magnesium permanent, and is inferior in corrosion resistance to Example 6 of the present invention containing a specified amount of electrofused magnesia.
  • the embodiment of the present invention is remarkably excellent in terms of erosion measures and numbers, regardless of whether it is unfired or fired.
  • Test conditions temperature, time 1650'CX 5 hours
  • Examples 51 and 52 using the electrofused magnesia raw material of the present invention have excellent corrosion resistance.
  • the raw materials shown in Table 12 were prepared using the fused magnesia shown in Table 10.
  • Test conditions temperature, time rush, number of cycles
  • Table 12 Materials shown in Table 12 were also used and kneaded with a sand mill to obtain a heating material for heating. Samples for quality measurement were molded at a pressure of 400 ks ⁇ cm 2 . Examples 61 and 62 by Akira Honko are concerned with the shochu dietary qualities on magnetic steel scale.
  • magnesia aggregate itself is a single crystal
  • a small amount of C a 0 ⁇ S i ⁇ component dissolved in magnesia is folded and extruded at the operating temperature on the surface of magnesia single crystal aggregate particles.
  • C a O / S i 0 2 ratio due to the high C a O / S i 0 2 ratio, it produces an effect as showing a high viscosity coating in the following form on the magnesia particles.
  • the coating with a high Ca O / S i ratio acts as a sintering agent between the basic aggregates, the spears between the base aggregates advance at the operating temperature in the unfired brick at the operating temperature. It becomes a strong refractory structure and improves corrosion resistance. Mouth. In carbon-containing basic bricks, to C a 0 / S i O 2 ratio high excess ⁇ film exists between aggregates, oxidation of the powder during the carbonaceous surface of the carbon powder is coaching Works effectively for prevention 0

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glass Compositions (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

• 明 細 書
• 〔発明の名称〕
• 低シリカの鼋融マグネシアク リ ンカーを含有する耐火材と同耐火材 • を使用した製品
5 〔技術分野〕
. 本発明は、 マグネシアク リ ンカーからなる耐火材とその応用に関 • する。
• 〔背: t技術〕
- 従来から、 転炉, スチンレズ網溶製炉等の内張り材としては、 優 0 れた耐スポール性と耐スラグ浸潤性を有する M g 0を主成分とした • マグネシアカーボンれんがが広く使用されて来た。
• しかし、 転炉, ステンレス鋼溶製炉等におけるより高い精鰊温度 • と二次燃焼比率の環境の下では、 マグネシアカーボンれんがはスラ . グアタックを受け、 れんが中のマグネシアク リ ンカーがスラグ中に 5 溶出し、 稼動表面に黒絍等のカーボンが常に露出した状態で使用さ . れることになり、 カーボンの酸化が加速されて損耗速度は著しく増 . 大する。
. このため、 マグネシアカーボンれんが中の黒鉛を酸化から保護す . るために、 れんが組成に酸化され葛い金属の酸化防止剤を添加する 0 ことが行われてきた。
. しかし、 単にこのような酸化防止剤の増量等の手段では、 炉内温 . 度が 1 7 0 0で以上に達する精鍊炉においては、 ズラグ了タックに . よる脱炭反応層の溶出と酸化防止の機能は期待し難い。
. この高温下でのスラグに対する耐食性を向上させるために、 特公 5 昭 5 4 - 8 2 0 6号公報には、 電融マグネシアを鉄鐧, 非鉄用溶解 . 炉等のライニング用耐火物の原料として用いる場合、 焼結マグネシ , ァ材等を用いるのに比べて、 機械的破壊や化学的侵食の起点となる 粽晶粒界がより少なくなるために、 溶融金厲ゃスラグに対する耐食 性が向上することが開示されている。
また、 特公眧 5 7 - 2 3 7 6 6号公報には、 この ¾融マグネシア に高純度のものを使用することによって骨材が強化されることが開 示されており、 鉄鐧, 非鉄用溶解炉等のライニング用耐火物の原料 として甩いる場合、 鼋融したクリンカ一インゴッ トを粉砗した後に、 5〜3 ミ リ、 3〜1 ミ リ、 1〜0 ミ リ等の適当な粒度に分級, 整粒 したものが骨材として使用される。
この鼋融したク リンカーを W火物に耐火物骨材として使用して骨 材を強化するためには、 鼋融マグネシア材中の単結晶比率を高める ことが非常に重要な荽素となる。 単結晶サイズの大きいィンゴッ ト は、 M g Oの含有量が 9 9 . 9重量 ¾以上の脔純度マグネシア原料 を溶融して得ることができる。 しかしながら、 このような高純度マ グネシァ原料は、 非常に高価であるため光学用窓材ゃ電子用基盤材 料等の用途に限定され、 捃火物用としては不適である。
また、 電融マグネシア材中の単結晶比率を高める他の手段として 比較的不純物の少ない 9 9 . 0 - 9 9 . 8重暈%程度のマグネシア の含有原料を電融してク リ ンカーインゴッ トを得て、 このク リ ン力 一インゴッ トから比較的結晶の大きい部分のみを選択的に取り出す ことも考えられるが、 歩留りの点から高価になり実用的ではない。 —方、 電融マグネシアを耐火物骨材として使用するに際しては、 C a O / S i 0 2 比が高い組成のペリクレース結晶から結晶粒界に 析出した C a 0が、 結晶粒界へ侵入するスラグと反応してスラグの 増粘効果をもたらし、 これが、 スラグの 火物の結晶粒界への侵入 を抑制して爾食性が向上する効果があることも知られている。
しかしながら、 電融マグネシアにおいて、 高い C a O / S i 0 2 比の組成にするには、 不純物の増大によって、 逆に単結晶サイズの 成長が妨げられるという問題がある。 また、 C a 0を含有させた場 合、 C a 0自体が消化して耐火物組織を劣化させる問題もある。 本発明の目的は、 従来製出が不可能とされてきた比較的低純度の マグネシア原料から高い単結晶比率のク リ ンカーを得ると共に、 高 い C a O/S i 02 比の電融マグネシア耐火材を提供することにあ る β
本発明の他の目的は、 高温, 酸化雰囲気条件下においても、 スラ グアタックに対して安定であり、 とくに、 鉄含有量の高いスラグに 対しても優れた耐食性を示す S融マグネシアク リ ンカ一を含有する 耐火材の提供にある。
本発明のきらに他の目的は、 ¾融マグネシア材に C a 0を舍有さ せてスラグの結晶粒界への俊入抑制による耐食性を向上させるに際 して C a 0自体の消化の問題を解決した霉融マグネシアク リ ンカ一 耐火材を提供することにある。
さらには、 本発明のさらに他の目的は、 耐食性に優れた電融マグ ネシァクリ ンカーを使用して、 酎食性とともに耐スポーリ ング性に も優れた焼成あるいは不焼成のれんが、 あるいは不定形耐火物を提 供することにある。
〔発明の開示〕
—般にカーボンれんが中のマグ シアク リ ンカーの変質は、 マグ ネシァクリ ンカーの粒界の変質によってもたらされる。 すなわち、 マグネシア粒界中にシリケ一トまたは酸化鉄を含む-ンリケ一 トが侵 入することによって、 外来成分がれんが内部まで浸透し、 マグネシ ァと以下の反応が進行して低融物を形成し崩壊する。
2 MgO + S i 02 →2MgO - 2 S i Oa
Mg O + F e 0-» (Mg, F e ) 0
電融マグネシアク リンカーを製造するにあたり、 高温で溶融され たマグネシアから温度降下に伴ってペリクレース粽晶が晶出する際 に、 不純物の存在がペリクレースの結晶成長を坊げ、 その中でもと くに、 S i 02 の存在が結晶成長を抑制する最大の要因であること の解明に基づき、 一股の^純度マグネシアから製造したマグネシア クリンカーより単結晶率の高いマグネシアクリ ンカーの使用につい ての着想を得た。 この単結晶率の高いマグネシアク リ シカーの使用 によってマグネシアクリ ンカーの粒界の変質が抑制され、 低融物の 形成による崩壌が抑制される。
すなわち、 本発明は、 0含有量が 9 S . 0〜9 9. 8重聂¾ であって、 S i 02 含有量が 0. 0 5重量%以下であり、 好ましく は、 0. 0 2重量 以下、 より好ましくは、 0. 0 1重量 以下で、 且つ、 C a O含有量が 0. 1〜2. 0重量%であり、 結晶粒が一般 的に酑火物に使用される整粒とした場合に、 整粒品中に含有される 単转晶比率が格段に高く、 かつ高い C a O/S i 02 比を有する電 融マグネシアクリ ンカーからなる耐火材である。
この電融マグネシアク リ ンカーは、 他の射火材料と共に 1 0童量 %以上配合レて、 耐食性に優れた不焼成れんがあるいは焼成れんが とす'ることができる。
罨融マグネシア材中の C a 0と共に S i 02 が存在することによ て、 電融マグネシア材製造当初より C a O-S i 0» 化合物が生 成し、 スラグの結晶粒界への侵入抑制を受け持つべきフリーの C a 0量が滅じられ、 C a 0含有の効果が半減する。
また、 電融マグネシア材中の Ca Oの存在位匿は、 ペリクレース 結晶内部にあってはその機能を充分に発揮することができない。 す なわち、 C a 0は結晶粒界に侵入しょうとするスラグと反応して初 めてその効果を発揮するものであり、 従って、 C a 0が結晶粒界に 集中的に存在することが効果的である。 C a 0を結晶拉界に集中させるためには、 電融マグネシア材製造 時に溶融したマグネシアからペリ クレース結晶が晶¾する際にペリ ク レース結晶の純粋化が起こり、 C a 0を不純物として結晶粒界に 吐き出すことが必要である。
本発明によって、 S i 0 2 の存在がペリ クレース結晶の純粋成長 の最大の阻害要因であることを見出し、 S i 0 2 の含有量を減じる ことによって、 C a 0を結晶粒界に集中的に存在させることを可能 にした酎火材と、 この耐火材から、 璩成、 不焼成れんが、 さらには、 流し込みあるいはスタンプ用等の不定形耐火物を得ることができる。
しかも、 本発明においては、 S i 0 2 の含有量を減じることによ つてべリクレース結晶の钝粋成長が促進され、 同程度のマグネシア 含有量のほかの電融マグネシア材と比較して、 その ¾融マグネシア ィンゴッ トにおける結晶サイズが格段に大きくなるという二次的効 果がある。
このように、 単結晶比率が高いことにより、 機械的破壊や化学的 侵食の起点となる結晶粒界がより少なくなるために、 溶融金属ゃス ラグに対する耐食性が向上すると共に、 高 C a O / S i 0 2 組成で ある.ことによって、 残った多結晶質電融マグネシア骨材の結晶粒界 にべリ クレース結晶からの C a 0が集まり、 結晶粒界へ侵人するス ラグと反応し、 スラグの増拈効果をもたらすことにより、 スラグの 結晶粒界への侵入を抑制し、 耐食性が向上するという複合効果を発 揮する。
本発明において、 M g O含有量を 9 8 , 0〜9 9 . 8重量 とし たのは、 M g O含有量が 9 8 . 0重量 未満の場合には、 不純物が 相対的に増すために、 溶融したマグネシアからペリクレース結晶が 晶出する際の結晶成長が阻害されて電融マグネシア材としての充分 な結晶サイズが得られず、 電敏マグネシァの基本的な特徵が阻害さ れる。 また、 9 9. 8重量 fti超では充分な C a 0の含有量を確保で きない。
クリ ンカー中の S i Os 含有量を 0. 0 5軍量%以下としたの'は、 S i Oi 含有量が 0. 0 5重量%を超える場合には鬈融マグネシア 材中に製造当初より C a 0— S i 02 化合物が生成し、 スラグの結 晶粒界への侵入抑制を受け持つべきフリーの C a 0量が減じられ、 結晶粒界への C a 0の集中的な存在を阻害するからである。 このた め、 S i 0。 含有量は少ないことが好ましく、 0. 0 3重 i%以下、 きらに好ましくほ 0. 0 2童 %以下である。
C a O含有量を 0. 1 ~2, 0重量%としたのは、 C a O含有暈 が 0. 1重量 米糠の原料を使用した場合には、 綜晶粒界へ侵入す るスラグと反応し、 スラグの増粘効果をもたらすことにより、 スラ グ結晶粒界への侵入を抑制するに足る充分な C a 0量が確保できな いからであり、 また、 0. 1重量%朱潢の場合には室温〜 7 0 0で の低温度域において Mg 0 · C a 0系の固溶限界以下となるために、 ペリクレース組耩中に C a 0相を析出させて粒子自体の耐熱街擊抵 抗性を高める効果が期待できなくなるためである。 好ましく は 0. 2重量%以上であり、 1重量 以下である。 2. 0重量%を越える 原料では、 C a 0が不純物として作用し、 K食性が低下し、 また電 融してクリ ンカーを得る際にペリクレース鎗品の成長を妨げるため 好ましくない。 また、 C a 0の含有量をこの範囲内とすることによ つて、 消化性の問題は生じない。
本発明による!:融マグネシアクリンカ一以外の成分としては、 種 々の射火性材料が使用可能である。 たとえば、 天然又は人造黒銥, コークス, メソフェーズカーボン, カーボンブラック, ダイヤモン ド粉末等の炭素質粉末、 一般のマグネシアクリンカー、 C a O含有 iが 1. 5〜4 0重量%の鼋融マグライムクリンカー、 その他の焼 結クリ ンカー、 ドロマイ トクリ ンカー質骨材及びジルコ二了, ジル コン, アルミナ, シリカ, ク αム鉱, 炭化珪素, Β Ν , C及びこ れらの組合せからなる耐火性原料が使用できる。
特に、 工業用ダイヤモン ド粉末を耐火物中の必要とする稼動部分 に含有させた場合には、 ダイヤモン ドの酎酸化、 高硬度, 高強度等 の機械的性質をフルに活用することが可能であり、 転炉用羽口, ス ライディ ングノズルのような流量制御用耐火物の耐酸化性と耐摩耗 性を要求される個所に好適に使用できる。
本発明で使用する骨材としてのマグネシアク リ ンカーは、 焼結マ グネシァ, 仮焼マグネシア, 水酸化マグネシウム, 炭酸マグネシゥ ム等のマグネシア奨原料を電融製造することによって得られる。 こ の耐火物原料の結晶度はできるだけ大きいことが望ましい。 耐スボ —ル性を向上させるためには、 配合中へのピッチゃフエノ一ル系裔 分子樹脂粉末等の添加も有効である。
耐火れんがを製造するに際して使用されるバインダーとしては、 フエノール樹脂、 フラン樹脂、 エポキシ榭脂、 変性フ ノール樹脂、 メラ ミ ン樹脂、 尿素樹脂等が使用できるが、 残留炭素量及び価格の 点でフ ノール樹脂又はフユノール変性樹脂が特に好ましい。
さらに、 耐火れんがの製造において、 A 1 , S i , C a , C r, M s , B C ような金属あるいは合金粉末を配合することは、 酎酸化 性、 耐食性、 高熱間強度を改善するために有効である。
上記マグネシアク リ ンカーの組成規定による作用は、 たとえば、 カーボンを含有しない焼成耐火物, カーボン含有の焼成耐火物及び 各種の不焼成耐火物, 焼成耐火物, 不定形酎火物の如何を問わず奏 する。
また、 耐火れんがに炭素質粉末を配合する場合には、 S重量%ょ り少ないと耐スボール性と耐スラグ浸潤性の点で劣り、 4 0重量 より多いと製造に際して混練が困難となり、 作業性に劣り、 酎酸化 性が 題となる。
(発明を実施するための最良の形態〕 実施例 1
表 1 は使用原料の違.いによる電融マグネシア材の特性の違いを示 すもので、 所定の鼋融マグネシア材を、 適宜通常使用されるマグネ シァ原料を焼結して出発原料として、 これを 齄した結菓を示す。
表 1
Figure imgf000010_0001
※各原料から溶融製造した電融マグネシア ン ゃィンゴ トを 5〜S ミ リ, 3〜 1 ミ リ, I〜 0 ミ リに粉砗 '整粒し、 その 5 〜 3 ミ リ中における単結晶の重量比率を算出した。
同表において、 1 Aおよび 1 Bが本発明の実施例を示し、 1 Cは 比較例であって、 本発明の実施例における 1 Aおよび 1 B.は、 比較 例である I Cと对比して高い単結晶比率を示す。
表: 2は、 表 1 に示す鼋融材に、 きらに、 比較例の 1 D〜 1 Fを加 え、 この鼋融材のィンゴッ トから、 1 0 mmx 1 0 flim 6 0 mmの試料 *切り出して、 4種類の ίί食性のテス トを行った。 表 2
Figure imgf000011_0001
※※!;融マグネシア材のィンゴッ トから 10X10X60ミ リのサンブ ルを切 Wし、 耐食性をテストした。
*1 : 高周波炉浸滇法
一 テスト条件; ¾度, 時問 1600X!X15分、 スラグ Ca0/Si02 : 高周波炉澄滾法
テスト条件;温度, 時問 1600eCX l5分、 スラグ Ca0/Si02
= 2.0
*S : 高周波炉浸渣法
― テスト条件 ;温度, 時間 1600"CX15分、 スラグ Ca0/Si02 ネ : 高周波伊浸瀵法
テスト条件;温度, 時間 1600eCx i5分、 ミルスケール 同表から、 本発明に係る実施例の 1 A、 I Bの場合には、 その耐 食性は他の比較例 1 C〜 1 Fに比べ格段に優れている'ことが判る。 これによつて、 本発明に係る電融マグネシア材を、 成形、 不定形、 不焼成、 焼成の何れの酎火物の骨材として使用しても、 これによつ て優れた耐火物が得られることが判る。
実施例 2
使用した!;融マグネシアクリ ンカーの化学組成を表 3に示す。 同 表において、 2 Aは本発明に規定する組成筘囲內にあり、 2 B〜 2 I は本規定の範囲外の電融マグネシアクリ ンカーである。 表 3
(重量 ¾0
Figure imgf000012_0001
実施例として、 表 3の電融マグネシアクリン力一をそれぞれ選択 して表 4に示す配合組成物を混練成形し、 9 0でで 2 4時間乾燥し て、 さらに 2 5 0でで 1 0時閟の硬化処理を施して不焼成耐火物を 得た。
同表において、 実施例の試籽 2 5 , 2 6はこれらの処理を施した 後さらに遝元雰囲気中 1 0 0 0 'Cで焼成したものである。
実施例 2 K 2 4は本発明に属する電融マグネシアを 1 0重量 以上を含有する例であり、 試料番号 2 2 , 2 3はメソフューズカー ボン、 ダイヤ粉末をそれぞれ本 明に属する ¾1融マグネシアクリン カーを含有する配合に添加させた例である。 実施例 2 5、 2 6は焼 成品の例である。
比較のためにマグネシア原料の組成として本発明の規定の範囲外 にある鼋融マグネシアクリンカ一 2 C〜2 Iを含有してなり、 かつ 発明に属する電融マグネシアクリンカーの量が規定外にある表 5 に示す配合組成物を上記の実施例と同様に処理して表 5に示す品質 データを得た 9
比較例 2 6は前記の不焼成耐火物にさらに焼成処理 ( 1 0 0 0 'C 遝元雰囲気中〉 を施したものである。
比較例' 2 1 , 2 2 , 2 3., 2 4 , 2 5は本発明に規定する電融マ グネシァの含有量が不足または含まないために財食性が実施例に較 ベ劣る不焼成 火物の例である。 比較例 2 6は本発明に規定する!;融マグネシアを含まない焼成耐 火 の例であり、 本発明の電融マグネシアを規定量含む実施例試料 2 5に較べ酎食性が劣る。
表 4及び.表 5に各試料の特性を示す。 表 4及び表 5において、 酎 食性溶損 ft数 1〜4は何れも K周波炉浸漬法を適用し、 それぞれ、 1 6 0 0での溶融浴中に 1 5分浸潰した後の溶損量を、 比較例 1 の 場合を 1 0 0 として、 指数によって示すものであり、 1 においては C a 0ノ S i 0。 が 2のスラグ中に、 2においては C a OZS i 02 が 2. 0のスラグ中に、 3においては C a OZS i Oa が 3 . 0のスラグ中に、 さらに、 4においてはミルスケール中で行った 鎗果を示す。
表 4
Figure imgf000013_0001
不焼成の場合を示す。
焼成の場合を示す 0 表 5
** 比較例試料 21* 22* 23* 24* 25* 26 組成 (童
鼋敲マグネシァ
S融マグネシア 70 74
74 鼋融マグネシア 74
電融マグネシア 74
¾融マグネシア 22222 74 炭素贫粉末 ADECB
天然黒鉛 20 20 20 20 20 20 メソフ J1—ズカ一ボン
ダイヤ粉末
3 3 3 3 3 3 金属 A 3 3 有機转佥剤 3 3 S 特性
窩比重 2.82 2.85 2.97 2.86 2.84 2.85 見掛気孔率 ( ), ,、 3.9 4.0 3.6 3.7 3.8 1.9 圧縮強さ (kg/cm2) 410 420 468 438 412 395 熱間曲げ強さ C kg/cm*) 125 120 146 132 124 140 酎食性溶損揞数 1 100 98 111 121 100 99
2 100 110 107 112 103 ISO
3 100 103 103 106 116 122
4 100 99 108 136 127 102
* 不焼成の場合を示す。
焼成の場合を示す。
これから明らかなように、 本発明の実施例のものは、 比較例に対 して溶損指数において不焼成と焼成を問わず、 格段に優れているこ とが判る。
実施例 3
表 6に組成の異なる電融マグネシア材のインゴッ トから 1 0 mm X 1 O mmx 6 O mmの試料を切り出して、 4種類の酎食性のテス トを行った結果と学振法に準じて測定した滔化試験の結果を示す。 表 6
Figure imgf000015_0001
※電融マグネシア材のインゴッ トから、 lOmmXlO讓 X 601 1のサンブ ルを切出し、 酎食性テス トを行った。
* 1 : 高周波炉浸演法くテスト条件 ; 温度, 時間 1600^X 15分 ス ゲ Cafi/^O ■= 1 9. 、
* 2 : 高周波炉浸漬法 <テス ト条件;温度, 時間 1600で X15分 ス ラグ Ca0/Si02 = 2.0 >
* S : 商周波炉浸 ¾法くテスト条仵 ; 温度, 時間 160(TCX 分 ス ラグ Ca0/Si02 = 3.0 >
* 4 : 高周波炉浸潰法くテスト条件; 温度, 時閬 1600eCX15分 ミ ルスケール >
* * : 霉融マグネシア材を粉砕, 整粒して 3.36— 1.00脑の粒度品を 採り、 学搌法に^じてォ一トク レーブによる消化性テス トを行った, くオー トクレープ処理条件 ί 5気圧 Χ 3時間、 温度 130〜136で : > 同表から、 本発明の実施例の 3 J 3 Mの場合には、 消化の問題 もなく、 その耐食性は他の比較例 N Qに比べ格段に優れているこ とが判る。 これによつて本発明に係る電融マグネシア材を、 定形, 不定形, 焼成, 不焼成のいずれの耐火物.の原料として使用しても、 これによつて優れた耐火物が得られることが判る。
実施例 4
表.7に示す C a 0と S i 0の含有量を有する電融マグネシアク リ ンカーを使用して、 表 8に示す W火れんがを得た。 表 7において、 4 R, 4 Sは本発明に規定する組成範囲内にあり 4 T, 4 Uは本規定の範囲外の ¾融マグネシアク リ ンカーである。
表 7
Figure imgf000016_0001
表 8 実施例試料 41* 42* 48* 44* 45* 46** 47** 踅融マグネシア 4 R 50 50 50 10 10 50 50
1;融マ ネシア 4 S 24 24 24 24 36 電融マグネシア 4 T 2
霉融マグネシア 4 ϋ 64 15
電融 7グライムクリン力- 50
炭 天然黒鉛 20 15 15 20 20 20 10 ソフエ-ズ力-ボン 5
末 ダイヤ粉末 3
金属 3 3 8 3 2 3 2 有機結合剤 3 3 3 3 3 3 2 篱比重 2.87 2.86 2.86 2.88 2.85 2.80 2.81 見掛気孔率 〉 3.7 3.7 3.7 3.7 Z.8 6.7 6.6 特 圧縮強さ(kg/coO 440 452 462 432 415 442 450 熱間曲げ強さ(kg/cnf) 136 1 5 140 131 115 138 141 性
耐食性溶損指数※ 1 93 88 92 96 88 88 86
^2 88 87 85 92 94 87 86 3 84 82 83 87 109 84 87 ^ 80 78 79 89 104 78 84 * 不焼成の場合を示す。
** 焼成の場合を示す。
1 高周波炉浸潦法 テス ト条件 ; 温度, 時間 1600'CX 15分 ス ラグ Ca0/Si02 = l*2
2 髙周波炉 S演法 テス ト条件 ;湿度, 時問 160CTCX 15分 ス ラ 7CaO/Si02 = 2.0
3 商周波炉浸 ¾法 テス ト条件 ; 温度, 時間 1600'C x 分 ス ラグ Ca0/Si02-3.0
4 高周波炉浸潸法 テス ト条件 ; 温度, 時間 1600eCxl5分 ミ ルスケール
表 7に示すそれぞれの電融マグネシアク リ ンカ一を選択して表 8 に示す配合組成を得、 これに、 液状のフ Λノール某バインダーを適 量添加して、 フリ クショ ン成形、 9 0 °C X 2 4 h rの乾燥、 2 5 0 "Cx i 0 h rの硬化処理を施して塩基性れんがを得た。 実施例 4 6, 4 7はこれらの処理を施した後、 更に遝元雰囲気中で、 1 0 0 O 'C で焼成したものである。
実施例試料 4 1 , 4 4は、 ¾融マグネシアを 1 0重量 以上含有 する例であり、 実施例試料 4 2, 4 3はメソフヱーズ力一ボン, ダ ィャ粉末をマグネシアク リンカ一を配合に添加させた例である。
また、 実施例試料 4 5は、 笛融マグライムクリ ンカ一を使用した 材質に ¾融マグネシアク リ ンカ一を 1 0重量 以上含有する例であ る。 実施例試料 4 6 , 4 7は、 焼成品の例である。
表 9に比較例として、 マグネシア原料組成として、 表 7において 本発明の規定の範囲外にある ¾融マグネシアクリ ンカ一 4 T, 4 U を含有し、 その配合量が規定外にある配合組成である配合組成物を 実施例と同様に処理した。 その結果を同表に示す。 同表において、 比較例 f は焼成れんがの例を示す。 表 9
Figure imgf000018_0001
* 不焼成の場合を示す。
n 焼成の場合を示す。
※ ^ 高周波炉浸漬法 テスト条件;温度, 時間 1600eCX15分 ス
※ 高周波炉澄漬法 テス ト条件;温度, 時問 1600'CX15分 ス ラグ Ca0/Si02 = 2.0
离茵波炉浸滾法 テスト条件:温度, 時間 1600eCxi5分 ス ラグ GaO/Si02==3.0
窩周波炉浸漬法 テス ト条件;温度, 時間 1600'Cxl5分 ミ ルスケール
比較例 a, b, c, d, eは、 本発明に規定する電融マグネシア の含有量が不足又は含まない場合及び炭素質粉末量が不足又は過剰 に含まれた場合に耐食性が実施例に比ぺ劣る例である。
比較例 f は、 本発明に規定する!融マグ永シァを含まない焼成耐 火物の例であり、 本発明の電融マグネシアを規定量含む実施例 6 に 比ぺ耐食性が劣る。
これから明らかなように、 本発明の実施例のものは、 溶損措,数に おいて不焼成と焼成とを問わず格段に優れていることが判る。
実施例 5
本発明をキャスタブルに適用した例について説明する。
表 1 0 実施例試料 比較例
5 A 5 B 5 C
化 g 0 99.18 99.44 99.50
重成 C a 0 0.67 0.45 0.24
S i O. 0.05 0.01 0.08
表 1 1
Figure imgf000020_0001
*1:高周波炉内張り侵食法
テスト条件 ;温度, 時間 1650'CX 5時間
スラグ CaO/Si0a = S.O
表 1 0からなる電融マグネシア尿料を用い、 混練, 鋅込みを行い 1 1のキャスタプル酎火物を得た。 铸込み成分はいずれも 5. 6 - であった。 本発明の電融マグネシア原料を用いた実施例 5 1 , 5 2は耐食性に優れていることが判る。
実施例 6
本発明をラミ ング材に適用した例を示す。
表 1 0に示す電融マグネシアを用いて表 1 2に示す原料を調製し
表 1 2 実施例 実施例 比較例 試料 61 試料 62 試料 61
¾融マグネシア 5 A 5〜 3 15
3 1 讓 30
1 ― 0 mm 24
電融 グネシア 5 B 5〜 8讓 15
配 3〜 1腿 30
合 1〜 0廳 24
罨融マグネシア 5 C 5〜 3鼴 15
3〜 1 nun 30
% 1〜 0鼴 24 焼結マグネシア微粉 28 28 28 苦汁 (32ボーメ) + 5 + 5 + 5 シリカフラワー 3 3 3 碰砂 + 0.5 + 0.5 + 0.5 かさ比重 (¾
110eCX24h 2.98 2.99 2.96 1500*C 8h 2.93 2.93 2.89 兒掛け気孔率 (%)
110°Cx24h 14,3 14.0 14.8 物 1500*C X 3h 20.0 19.8 20.1 曲げ強さ (kg/cm1)
性 110*CX24h 81 71 86
1500eC 3h 103 92 109 線変化率 ( ) 1500'C x 3h -0.16 一 0.13 -0.20 酎食性 *1 溶撗指数 84 77 100 *1: 回転侵食試睽 _
テスト条件 :温度, 時藺, サイクル数
1450· 30分, 10回
侵食剤 電磁鍋スケール
さらに、 表 1 2に示す材料も用い、 サン ドミルで混練し、 加熱伊 用ラミ ング材を得た。 品質測定用の試料は圧力 4 0 0 ks^ c m2 で成形した。 本港明による実施例 61 , 62 は ¾磁鋼スケールに対 する酎食性に傻れたものである。
〔産業上の利用可能性〕
( 1 ) 比較的低鈍度のマグネシア原料から、 単結晶比率と共に C O/S i 02 比が高い電融マグネシア骨材を得ることができ、 結 晶粒界中の C a O/S i 02 比率が高いために結晶粒界へ侵入した スラグと反応してスラグの増拈効果をもたらすことにより、 スラグ の結晶粒界への侵入を抑制することができ、 これを骨材として使用 することによって優れた尉食性を示すれんがを得ることができる。
( 2) 本癸明の鼋融材を骨材として使用することによって、 尉火 物の熟間強度、 熱間における靱性、 弾性率を向上できる。
( 3) 同程度のマグネシア摊度の原料を溶融した場合、 本発明の 範囲の鼋融マグネシアを製造した方が鼋カ原単位の低减となり、 安 価なマグネシア材を得ることができる。
(4) マグネシア骨材自体が単結晶であるために、 マグネシア中に 固溶した微量の C a 0 · S i Οί 成分が、 使用温度においてマグネシア単結晶骨材粒子の表面に折 ffi, 侵出し、 粒子表面を濡らすが、 C a O/S i 02 比率が高いために、 粘性の高い皮膜をマグネシア 粒子上に形成して以下に示すような効果を生じる。
ィ. 高 Ca O/S i 比率の高い皮膜自体が塩基性骨材間の焼 锫剤として作用するため、 不焼成れんがにおいては使用温度下で、 塩基佳骨材間の垸鎗が進み、 商強度の耐火組織となり耐食性が向上 する。 口. カーボン含有の塩基性れんがにおいては、 C a 0/S i O2 比率の高い過多拈性皮膜が骨材間に存在するために、 カーボン粉末 の表面がコーチングされて炭素質時粉末の酸化防止に有効に作痏す る 0
( 5 ) 従って、 二次燃焼比率の高い転炉やステンレス鋼溶製炉等の 高温精鍊.伊の焼成あるいは不焼成の內張りれんがとしで好適に使用 できる。
( 6 ) 単に通常の耐火物のみならず、 単結晶比率が髙いことを利 用して、 安価な光学用窓材, 電子用基盤材, マグネシア単鎗晶るつ ぼ等用のファインセラミ 、yクス領域への適用も可能である。

Claims

if 求 の 範 囲
1. MgO含有量が 9 8. 0〜9 9. 8重量 であって、 S i Oi 含有量が 0. 0 5重量%以下であり、 且つ、 C a 0含有量が 0. 1 〜2, 0重量 である電融マグネシア材。
2. 1^ 0含有量が9 8, 0〜9 9. 8重量%であって、 S i 02 含有量が 0. 0 5重量%以下であり、 且つ、 C a 0含有量が 0. 1 〜2. 0重量%である ¾融マグネシアを含有する酎火物。
3. MgO含有量が 9 8. 0〜9 9. 8重量%であって、 S i 02 含有量が 0. 0 5重量 ½以下であり、 且つ、 C a 0含有量が 0. I 〜2. 0重量%である ¾融マグネシアと、 炭素質材科とを含有して なる耐火物。
4. 霉融マグネシアの含有量が 1 0重量^以上である諝求項 3に 記載の 火物。
5. 耐火物が、 セラミックス製品、 不焼成れんが、 焼成れんが及 び不定形耐火物の中の何れかである請求項 2または證求項 3に記載 の酎火物。.
8. ^ 0含宵量が9 8. 0〜9 9. 8重量%であって、 S i 02 含有量が 0. 0 5重量 以下であり、 且つ、 C a O含有量が 0. 2 〜1. 0重量%である大結晶質電融マグネシア材。
7. MgO含有量が 9 8. 0〜9 9. 8重量 であって、 S i 02 含有量が 0. 0 5重量 以下、 且つ、 C a 0含 量が 0. 2〜2. 0重量? ίである大結晶質電融マグネシア材。
8. 1^ 0含有量が9 8, 0〜9 9. 8重量 であって、 S i 02 含有量が 0, 0 2重量^以下、 且つ、 C a 0含有量が 0. 2〜2. 0重量 であり、 且つ、 低シリカ質ペリクレ一ス转晶粒界にライム が析出した電敲マグネシア材。
9, Mg O含有量が 9 8. 0〜9 9. 8重量%であって、 S i 02 含有量が 0. 0 5重量? (ί以下、 且つ、 C a O含有量が 0. 2〜2. 0重量%である大結晶質電融マグネシアを含有する耐火物。
1 0, MgO含有量が 9 8. 0〜9 9. 8重暈 であって、 S i 02 含有量が 0. 0 5重量%以下であり、 且つ、 C a O含有量が 0 . 2〜し 0重量 96である大結晶質電融マグネシアクリ ンカーを 1 0重量%以上含有してなる耐火物。
1 1. Mg O含有量が 9 8. 0〜9 9. 8重量%であって、 S i 0, が 0, 0 3重量 ¾以下であり, 旦っ、 C a O含有量が 0. 1〜 1. 0重量である大結品资マグネシアク リ ンカ一を 1 0重量 以上 配合してなる耐火物。
1 2. Mg O含有量が 9 8. 0〜9 9. 8重量%であって、 S i
◦ 2 を 0. 0 2重量%以下、 且つ、 C a 0を 0. 2〜2, 0重量% 含有し、 低シ 力質結晶粒界にライムを析出した電融マグネシアク リ ンカーを 1 0重量%以上配合してなる耐火物。
し3. Mg O含有量が 9 8. 0〜9 9, 8重量%であって、 S i 02 を 0. 0 2重量 以下、 且つ、 C a Oを 0. 2〜2. 0重量 含有し、 低シリカ質結晶粒界にラィムを析出した ¾融マグネシァク リ ンカ一を 1 0重量%以上と、 炭素質材料を含有してなる耐火物。
I 4. 火物が、 不定形耐火物、 不焼成れんがあるいは焼成れん がの何れかである請求項 9、 1 0、 1 1、 1 2または 1 8に記載の 耐火物。
1 5. MgO含有量が 9 8. 0〜9 9. 8重量 、 S i 02 含有 量が 0. 0 5重量%以下であり、 且つ、 C a O含有量が 0, 1〜2 , 0重量%である大結晶質電融マグネシアを含有する光学用窓材, 電子用基盤材, マグネシア単結晶るつぼ等用のファインセラ ミ ック ス 0
1 6. Mg O含有量が 9 8, 0〜9 9. 8重量 であつ.て、 S i 93/06057 一 0.
24— 含有量が 0. 0 5重量 以下、 且つ、 C a 0含有量が 0. 2〜 2. 0重量 である大結晶質 ¾融マグネシアを含有する光学用窓材, 霪子基盤材, マグネシア単結晶るっぽ等用のファインセラミ ックス。
1 7. MgO含有量が 9 8. 0〜9 9, 8重量 、 S i 02 含有 量が 0. 0 2重量%以下、 且つ、 C a 0含有量が 0. 2〜2. 0重 量 である低シリ力質べリクレース結晶粒界にライムが析出した霉 融マグネシアクリ ン力一を含有する光学用窓材, 電子用基盤材, マ グネシァ単結晶るっぽ等用のファインセラミ ッ クス。
PCT/JP1992/001189 1991-09-18 1992-09-18 Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom WO1993006057A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP92920058A EP0557536B1 (en) 1991-09-18 1992-09-18 Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom
US08/039,330 US5369066A (en) 1991-09-18 1992-09-18 Refractory material and product thereof containing low-silica electrofused magnesia clinker
DE69211673T DE69211673T2 (de) 1991-09-18 1992-09-18 Feuerfeste zusammensetzung enthaltend elektrisch geschmolzenes magnesiumoxid mit geringem siliciumdioxid-anteil und daraus hergestellte produkt
KR1019930701471A KR960011347B1 (ko) 1991-09-18 1992-09-18 저실리카 전융 마그네시아 클링카를 함유하는 내화재와 이 내화재를 사용한 제품

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP3/238313 1991-09-18
JP03238313A JP3124799B2 (ja) 1991-09-18 1991-09-18 低シリカ電融マグネシアクリンカー含有耐火れんが
JP3/308055 1991-11-22
JP3308055A JPH05139819A (ja) 1991-11-22 1991-11-22 低シリカ質の電融マグネシア材
JP04001782A JP3124809B2 (ja) 1992-01-08 1992-01-08 低シリカ質のマグネシアクリンカー含有耐火れんが
JP4/1782 1992-01-08

Publications (1)

Publication Number Publication Date
WO1993006057A1 true WO1993006057A1 (en) 1993-04-01

Family

ID=27275072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001189 WO1993006057A1 (en) 1991-09-18 1992-09-18 Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom

Country Status (7)

Country Link
US (1) US5369066A (ja)
EP (1) EP0557536B1 (ja)
KR (1) KR960011347B1 (ja)
AT (1) ATE139516T1 (ja)
DE (1) DE69211673T2 (ja)
ES (1) ES2088593T3 (ja)
WO (1) WO1993006057A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW300861B (ja) * 1995-05-02 1997-03-21 Baker Refractories
KR100331462B1 (ko) * 1999-12-30 2002-04-09 신승근 고열응력 저항성용 마그네시아-카본질 벽돌
KR101330579B1 (ko) * 2011-11-29 2013-11-18 현대제철 주식회사 래들의 벽체 구조
EP3705463A1 (en) * 2013-08-05 2020-09-09 Imertech Sas Castable refractory compositions, their use in the formation of refractory linings, and methods for producing such compositions
CN107129312A (zh) * 2017-05-16 2017-09-05 武汉科技大学 一种中间包用钙质干式料及其制备方法
CN111439992A (zh) * 2020-04-23 2020-07-24 北京利尔高温材料股份有限公司 一种连铸中间包用耐侵蚀浇注料及制备方法
CN114773076A (zh) * 2022-04-18 2022-07-22 北京联合荣大工程材料股份有限公司 适用于转炉炉体空腔造衬的自流填充料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096606A (ja) * 1973-12-27 1975-07-31
JPS61111961A (ja) * 1984-11-06 1986-05-30 科学技術庁無機材質研究所長 耐水和性高緻密質マグネシア焼結体の製造法
JPS61132557A (ja) * 1984-11-29 1986-06-20 新日本化学工業株式会社 マグネシア焼結体
JPS61232264A (ja) * 1985-04-03 1986-10-16 新日本製鐵株式会社 マグネシア・カ−ボンれんが
JPH01103936A (ja) * 1987-10-15 1989-04-21 Shin Nippon Kagaku Kogyo Co Ltd 高密度マグネシア・クロム系クリンカーおよびその製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1361187A (en) * 1970-10-09 1974-07-24 Steetley Mfg Ltd Refractory substance
GB1413985A (en) * 1972-02-11 1975-11-12 Steetley Mfg Ltd Refractory magnesia
JPS548206A (en) * 1977-06-20 1979-01-22 Kojin Kk Method of recovering waste gas heat of boiler by double heat transmission pipe system
JPS59190218A (ja) * 1983-04-12 1984-10-29 Ube Kagaku Kogyo Kk 高密度マグネシアクリンカ−及びその製造法
JPH07108805B2 (ja) * 1991-05-20 1995-11-22 黒崎窯業株式会社 高熱間強度・高耐スポール性マグネシア・カーボンれんが

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096606A (ja) * 1973-12-27 1975-07-31
JPS61111961A (ja) * 1984-11-06 1986-05-30 科学技術庁無機材質研究所長 耐水和性高緻密質マグネシア焼結体の製造法
JPS61132557A (ja) * 1984-11-29 1986-06-20 新日本化学工業株式会社 マグネシア焼結体
JPS61232264A (ja) * 1985-04-03 1986-10-16 新日本製鐵株式会社 マグネシア・カ−ボンれんが
JPH01103936A (ja) * 1987-10-15 1989-04-21 Shin Nippon Kagaku Kogyo Co Ltd 高密度マグネシア・クロム系クリンカーおよびその製造法

Also Published As

Publication number Publication date
EP0557536B1 (en) 1996-06-19
EP0557536A1 (en) 1993-09-01
DE69211673T2 (de) 1997-02-20
ATE139516T1 (de) 1996-07-15
ES2088593T3 (es) 1996-08-16
US5369066A (en) 1994-11-29
KR960011347B1 (ko) 1996-08-22
EP0557536A4 (en) 1994-06-29
KR930703215A (ko) 1993-11-29
DE69211673D1 (de) 1996-07-25

Similar Documents

Publication Publication Date Title
WO1993006057A1 (en) Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom
JP4328053B2 (ja) マグネシア−スピネル質れんが
WO1998050184A1 (fr) Ajutage pour coulage continu d&#39;acier
JPH0323275A (ja) 流し込み用不定形耐火物
JPH11147758A (ja) 耐火物原料の製造方法
JP3124799B2 (ja) 低シリカ電融マグネシアクリンカー含有耐火れんが
JPH04130066A (ja) マグネシア―オリビン系不定形耐火材料
JPH078738B2 (ja) 黒鉛含有溶融金属精錬用耐火れんが
JPH08175877A (ja) キャスタブル耐火物
JP3124809B2 (ja) 低シリカ質のマグネシアクリンカー含有耐火れんが
JPH11278918A (ja) 塩基性耐火物原料ならびに塩基性耐火物およびその製造方法ならびにそれを使用した金属精錬窯炉および焼成炉
JP2552987B2 (ja) 流し込み成形用耐火物
JP3002296B2 (ja) 粗骨材ブレンドマグネシア・カーボン質耐火物の製造方法
JP4058649B2 (ja) ロータリーキルン用塩基性れんが
JP2003306388A (ja) 電融スピネル原料及びこれを用いた耐火物
JPH0450178A (ja) カーボン含有取鍋内張り不定形耐火物
JPH11147755A (ja) 定形耐火物
JPH07206511A (ja) マグネシア質クリンカー、不定形耐火物及び製鋼用取鍋
JP2765458B2 (ja) マグネシア・カ−ボン系耐火物
JP3400494B2 (ja) 溶融金属用塩基性耐火物
JPH07300360A (ja) マグネシア質耐火物
JPH07106946B2 (ja) 取鍋内張り用不定形耐火物
JPH03232761A (ja) マグネシア含有耐火物素材の製造方法
JPH07237960A (ja) セメントロータリーキルン用耐火物
JPH03232762A (ja) マグネシア含有耐火物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 08039330

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1992920058

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992920058

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992920058

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992920058

Country of ref document: EP