WO1992022378A1 - Process for preparing catalyst for producing methacrylic acid - Google Patents

Process for preparing catalyst for producing methacrylic acid Download PDF

Info

Publication number
WO1992022378A1
WO1992022378A1 PCT/JP1992/000747 JP9200747W WO9222378A1 WO 1992022378 A1 WO1992022378 A1 WO 1992022378A1 JP 9200747 W JP9200747 W JP 9200747W WO 9222378 A1 WO9222378 A1 WO 9222378A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
added
methacrylic acid
organic compound
parts
Prior art date
Application number
PCT/JP1992/000747
Other languages
English (en)
French (fr)
Inventor
Toru Kuroda
Motomu Ohkita
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to EP92911109A priority Critical patent/EP0543019B1/en
Priority to KR1019930700367A priority patent/KR100189486B1/ko
Priority to DE69221992T priority patent/DE69221992T2/de
Priority to US07/978,698 priority patent/US5422326A/en
Publication of WO1992022378A1 publication Critical patent/WO1992022378A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a method for preparing a catalyst used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein. Background technology>
  • An object of the present invention is to provide a method for preparing a novel catalyst which advantageously produces methacrylic acid from methacrolein.
  • the present inventors have intensively studied to improve the conventional catalyst preparation method, and as a result, it is possible to obtain a higher yield of methacrylic acid than using a catalyst prepared by the conventional method.
  • a new catalyst preparation method was found.
  • the present invention provides a catalyst for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation with molecular oxygen,
  • P, M0, V, and 0 represent phosphorus, molybdenum, vanadium, and oxygen, respectively, and X represents arsenic, antimony, bismuth, germanium, zirconium, tellurium, silver, and boron.
  • Y represents at least one element selected from the group consisting of iron, copper, zinc, chromium, magnesium, tantalum, manganese, lithium, gallium, and cell.
  • Z is selected from the group consisting of calcium, noredium, cesium, and evening lithium.
  • a high molecular weight organic compound having an average particle size of 0.01 to 10 m is added to a catalyst component having a composition represented by :), followed by molding and heat treatment. This is a method for preparing a catalyst for the production of acrylic acid.
  • a high molecular weight organic compound having an average particle diameter in a specific range of 0.01 to 10 ⁇ m is added at the time of molding the catalyst. If the average particle size of the polymer organic compound is smaller than 0.01 / m, secondary aggregation occurs between particles of the polymer organic compound to be used, and dust is generated when handling the polymer organic compound. Handling problems, such as easy fluttering. On the other hand, if the average particle size is larger than 10 yum, the ratio of the pores favorable for the reaction in the catalyst that has been heat-treated after molding decreases, so that the catalyst performance decreases.o
  • the particle size of the high molecular weight organic compound was measured by a scanning electron microscope, and the pore size of the catalyst was measured by a mercury intrusion method.
  • the high molecular organic compound to be added to the catalyst is not particularly limited as long as it has an average particle size within the above range, and the (meth) acrylic acid is used as a high molecular organic compound.
  • those which decompose into monomers at a relatively low temperature and evaporate and vaporize, such as methyl methacrylate and polystyrene are preferred. These may be used alone or as a mixture of two or more.
  • the amount of the high molecular organic compound to be added is suitably 0.1 to 30% by weight based on the catalyst. If the addition amount is too small, the effect of the addition will not be exhibited, and if the addition amount is too large, the mechanical strength of the catalyst after the heat treatment is lowered, which is not preferable.
  • the method for producing the catalyst having the composition used in the present invention there is no particular limitation on the method for producing the catalyst having the composition used in the present invention. As long as there is no significant uneven distribution of components, conventionally known methods of evaporating to dryness, precipitation, and oxide mixing are used. And various other methods can be used. A high molecular weight organic compound may be added to the powdery catalyst component obtained by using these methods in a wet or dry state, and then supported on a carrier or tableted to form a catalyst having a desired shape. . Heat treatment of the shaped catalyst at 200-500 ° C, preferably 300-450, can remove added high molecular organic compounds. it can.
  • the raw materials of the catalyst component having the composition represented by the above general formula P a M 0 b V e X d Y e Z f 0, used in the present invention include oxides, nitrates, carbonates, ammoniums of the respective elements. Salts, halides, etc. can be used in combination.
  • the raw materials for molybdenum include ammonium paramolybdate, molybdenum trioxide, and molybdenum chloride
  • the raw materials for vanadium include ammonium metavanadate and pentoxide. Vanadium and vanadium chloride can be used.
  • the catalyst used in the method of the present invention may be carrier-free, but may not have silica, aluminum, silica's alumina, magnesium, titanium, silicon byte, etc. It can be used as a force to be supported on an active carrier, or diluted with this.
  • the concentration of metacrolein in the raw material gas can be changed in a wide range, but 1 to 20% by volume is appropriate. Particularly, 3 to 10% is preferable.
  • the raw material methacrylone may contain small amounts of impurities such as water and lower saturated aldehydes, and these impurities do not substantially affect the reaction.
  • the oxygen concentration in the raw material gas is defined by the molar ratio to the metacrolein, and this value is preferably from 0.3 to 4, particularly preferably from 0.4 to 2.5.
  • the raw material gas may be diluted by adding an inert gas such as nitrogen, steam, or carbon dioxide.
  • the reaction pressure is preferably from normal pressure to several atmospheres.
  • the reaction temperature can be selected within the range of 230 to 450 ° C., and particularly preferably 250 to 400 ° C.
  • the reaction can be carried out in a fixed bed or a fluidized bed. Examples>
  • reaction rate of methacrolein and the selectivity of the produced methacrylic acid are defined as follows.
  • Reaction rate of ⁇ -rain (%) X 100 Number of moles of ⁇ -rain supplied
  • Example 1 The parts in the following Examples and Comparative Examples are parts by weight, and the analysis was performed by gas chromatography.
  • Example 1 The parts in the following Examples and Comparative Examples are parts by weight, and the analysis was performed by gas chromatography.
  • the obtained solid was dried at 130 ° C for 16 hours, and then dried at a mean particle size of 0.15 / m methyl polyacrylate (hereinafter referred to as PMM).
  • A) (abbreviated as A) was added to 100 parts of the dry solid, 3 parts of the mixture was mixed, and then molded under pressure. Used.
  • the composition of the obtained oxygen other elements of the catalyst (hereinafter the same) of 5 MO 1 2 ⁇ 7 0. 3 S b 0. 4 CU 0. was Tsu 1 K 1 dice to P.
  • This catalyst is filled in a reaction tube, and a mixed gas of 5% of methanolane, 10% of oxygen, 30% of steam and 55% of nitrogen (volume%) is contacted at a reaction temperature of 270. It lasted 3.6 seconds.
  • the reaction rate of methacrolein was 80.3%, and the selectivity of methacrylic acid was 81. 4%.
  • the comparative catalyst was the same as in Example 1.
  • Comparative catalyst was added in the same manner as in Example 1 except that the average particle size of ⁇ ⁇ ⁇ ⁇ ⁇ added during pressure molding was 20 m.
  • the obtained solid was dried with 130 at 16 hours, 3 parts of polystyrene having an average particle size of 5 m was added to 100 parts of the dried solid, mixed, and pressure-molded.
  • a catalyst heat-treated at 380 for 3 hours under air flow was used as a catalyst.
  • Pi M 0 J 2 V 0.5 CU 0.2 CS 0.8 was prepared, and the reaction was carried out using this catalyst under the same reaction conditions as in Example 2.
  • the in-reaction rate was 85.3% and the selectivity for methacrylic acid was 84.2%.
  • a comparative catalyst was prepared in the same manner as in Example 2 except that the average particle size of the polystyrene added during the pressure molding was 50 m.
  • Example 1 Each of the catalysts shown in Table 1 was prepared according to Example 1, and reacted under the same conditions as in Example 1 except for the reaction temperature, and the results shown in Table 1 were obtained.
  • the comparative catalysts of Table 1 were prepared according to Examples 3 to 11 except that the high molecular weight organic compound added at the time of pressure molding was larger than 10 m in average particle size. The reaction was carried out under the same conditions as in 1 and the results in Table 1 were obtained.
  • the catalyst prepared by the method of the present invention has a preferred pore structure for the gas phase catalytic oxidation reaction of evening lane, and has an effect of improving the selectivity of evening acrylic acid. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書 メ 夕 ク リ ル酸製造用触媒の調製法 ぐ技術分野 >
本発明はメ タ ク ロ レイ ンの気相接触酸化によ り メ タ ク リ ル酸を製造する際に使用する触媒の調製法に関する も のである。 く背景技術 >
従来、 メ タ ク ロ レイ ンを気相接触酸化してメ タ ク リ ル 酸を製造する方法及び触媒に関 し、 数多 く の提案がなさ れている。 その中には細孔制御を目的と して触媒調製時 にセルロース、 ポ リ ビニ リ アルコールな どの有機物質を 使用する方法を開示している ものがある (英国公開特許 第 2 0 3 7 6 0 4 号明細書) 。 細孔制御を目的と した も のに特開昭 6 0 - 2 3 9 4 3 9 号に開示の発明がある。 しかしこれらは反応成績が充分でなかった り触媒活性の 経時低下が大きかった り、 後処理が煩雑であるな どの欠 点を有し、 工業触媒と しての使用に際 しては更に改良が 望まれているのが現状である。
<発明の開示〉
本発明は、 メ タ ク ロ レイ ンから メ 夕 ク リ ル酸を有利に 製造する新規な触媒の調製法の提供を目的と している。 本発明者らは、 従来の触媒調製法を改善すべ く 鋭意研 究した結果、 従来の方法で調製された触媒を使用する場 合よ り も メ タ ク リ ル酸が高収率で得られる新規な触媒の 調製法を見い出 した。 本発明は、 メ タ ク ロ レ イ ンを分子 状酸素で気相接触酸化しメ タ ク リ ル酸を製造するための 触媒であって、
一般式
P a M O b V c X d Y e Z f O ,
(こ こで式中 P、 M 0、 V及び 0はそれぞれ リ ン、 モ リ ブデン、 バナジウム及び酸素を示し、 Xは砒素、 ア ンチ モ ン、 ビスマス、 ゲルマニウム、 ジルコニウム、 テルル、 銀及びホウ素からなる群よ り選ばれた少な く と も 1 種の 元素を示し、 Yは鉄、 銅、 亜鉛、 ク ロム、 マ グネ シウム、 タ ンタル、 マ ンガン、 ノく リ ウム、 ガ リ ウム、 セ リ ウム及 びラ ン タ ンからなる群よ り選ばれた少な く と も 1 種の元 素を示し、 Z はカ リ ウム、 ノレ ビジゥム、 セ シウム及び夕 リ ゥ厶からなる群よ り選ばれた少な く と も 1 種の元素を 示す。 a、 b、 c、 d、 e及び f は各元素の原子比率を 表し、 b = 1 2 のとき a = 0 . 5〜 3、 c = 0 . 0 1 〜 3、 d = 0〜 3、 e = 0〜 3、 f = 0 . 0 1〜 3 であ り、 gは前記各成分の原子価を満足するのに必要な酸素原子 数である。 :) で表される組成を有する触媒成分に、 平均 粒径 0 . 0 1 〜 1 0 mの高分子有機化合物を添加し、 成型し、 熱処理する こ とよ りなる メ タ ク リ ル酸製造用触 媒の調製法である。 く発明の最も好ま しい実施態様 >
本発明においては、 0 . 0 1 〃 mない し 1 0 〃 m とい う特定の範囲の平均粒径を持つ高分子有機化合物が触媒 の成型時に添加されている こ とが重要である。 高分子有 機化合物の平均粒径が 0 . 0 1 // mよ り小さいと、 使用 する高分子有機化合物の粒子同士の間で二次凝集が起こ つた り、 高分子有機化合物の取扱い時に粉塵が舞いやす いな ど取り扱い上の問題が生ずる。 また平均粒径が 1 0 yu mよ り大きい と、 成型後に熱処理された触媒中の反応 に好ま しい細孔の割合が低下するため触媒性能が低下す o
上記の特定の平均粒径を有する高分子有機化合物の添 加が触媒性能向上に寄与する効果は厳密には明 らかでは ないが、 触媒の成型後に行われる熱処理 ( 2 0 0 〜 5 0 0 °C ) によ って、 触媒中に直径 1 0 0 〜 1 0 0 0 O A程 度の細孔が増大する こ と よ り、 こ の高分子有機化合物の 添加によ り、 メ タ ク ロ レ イ ン力、ら メ タ ク リ ル酸を製造す る酸化反応に と って理想的な細孔構造が触媒中に生成さ れる もの と考え られる。
なお、 高分子有機化合物の粒径の測定は走査型電子顕 微鏡で行ない、 触媒の細孔径の測定は水銀圧入法で行な つた。
本発明において、 触媒に添加する高分子有機化合物と しては上記の範囲内の平均粒径を有する ものであれば、 特に限定はない力く、 ( メ タ) ア ク リ ル酸の チ儿、 ェチ ル プ口 ピル、 ブチル、 又はィ ソブチルエステルの重合 体ゃスチ レ ン又は 一 メ チルスチ レ ンなどの重合体のよ う に加熱よる分解又は燃焼によ り、 容易に除去される も のが好ま しい。 特にポ リ メ 夕 ク リ ル酸メ チル、 ポ リ スチ レ ン等の比較的低い温度で単量体に分解し、 気化蒸発す る ものが好ま しい。 これらは単独でも、 二種以上混合 し て使用 しても よい。
また、 高分子有機化合物の添加量は、 触媒に対し、 0 . 1 〜 3 0 重量%が適当である。 添加量が少なすぎる と、 添加の効果が現れず、 添加量が多すぎる と、 熱処理 後の触媒の機械的強度が低下するため好ま し く ない。
本発明に用いられる組成の触媒を製造する方法には特 に限定はな く 、 成分の著しい偏在を伴わない限り、 従来 からよ く 知られている蒸発乾固法、 沈澱法、 酸化物混合 法等の種々 の方法を用いる こ とができる。 これらの方法 を用いて得られた粉状の触媒成分に高分子有機化合物を 湿式又は乾式状態で加え、 次いで担体に担持させたり、 打錠した り して所望の形状の触媒に成型すればよい。 成 型された触媒を 2 0 0 〜 5 0 0 °C、 好ま し く は 3 0 0 〜 4 5 0 でで熱処理する こ とによ り添加した高分子有機化 合物を除去する こ とができ る。
本発明において用いる上記一般式 P a M 0 b V e X d Y e Z f 0 , で表される組成を有する触媒成分の原料と しては各元素の酸化物、 硝酸塩、 炭酸塩、 ア ンモニゥム 塩、 ハロゲン化物などを組合せて使用する こ とができ る。 例えば、 モ リ ブデン原料と してはパラモ リ ブデン酸ア ン モニゥ 厶、 三酸化モ リ ブデン、 塩化モ リ ブデン等、 バナ ジゥ厶原料と してはメ タバナジ ン酸ア ンモニゥ厶、 五酸 化バナジウム、 塩化バナジウム等が使用でき る。
本発明の方法で用いる触媒は無担体でも よいが、 シ リ 力、 アル ミ ナ、 シ リ カ ' アル ミ ナ、 マ グネ シア、 チ タ二 ァ、 シ リ コ ン力 一バイ ト等の不活性担体に担持させる力、、 あるいはこれで希釈 して用いる こ と もでき る。
本発明で得られる触媒の利用に際 して、 原料ガス中の メ タ ク ロ レ イ ンの濃度は広い範囲で変える こ とができ る が、 容量で 1 〜 2 0 %が適当であ り、 特に 3 〜 1 0 %カ 好ま しい。 原料メ タ ク ロ レイ ンは、 水、 低級飽和アルデ ヒ ド等の不純物を少量含んでいて も よ く 、 これらの不純 物は反応に実質的な影響与えない。
接触酸化を行う際の酸素源と しては空気を用いるのが 経済的であるが、 必要な らば純酸素で富化した空気も用 いう る。 原料ガス中の酸素濃度はメ タ ク ロ レ イ ン に対す るモル比で規定され、 こ の値は 0 . 3 〜 4 、 特に 0 . 4 〜 2 . 5 が好ま しい。 原料ガスは窒素、 水蒸気、 炭酸ガ ス等の不活性ガスを加えて希釈 して も よい。
反応圧力は常圧から数気圧までがよい。 反応温度は 2 3 0 〜 4 5 0 °Cの範囲で選ぶこ とができ るが、 特に 2 5 0 〜 4 0 0 でが好ま しい。 反応は固定床でも流動床でも 行な う こ とができ る。 ぐ実施例 >
以下、 本発明による触媒の調製法及び、 それを用いて の反応例を具体的に説明する。
実施例、 比較例中、 メ タ ク ロ レ イ ン の反応率、 生成す る メ タ ク リ ル酸の選択率は下記によ り定義される。
反応した タク ϋレイン のモル数
夕ク πレインの反応率(%) = X 1 00 供給 した ク πレイン のモル数
生-成した クリル 酸のモル数
ヌタクリル酸の選択率 (:%) = : 1 00 反応した ク []レイン のモル数
下記実施例、 比較例中の部は重量部であ り、 分析はガ ス ク ロ マ ト グラ フ ィ ー に よ っ た。 実施例 1
パラ モ リ ブデ ン酸ア ンモニゥ ム 1 0 0 部、 メ タ ノくナ ジ ン酸ア ン モニゥ 厶 1 . 6 6 部及び硝酸カ リ ウ ム 4 . 7 7 部を純水 3 0 0 部に溶解した。 これに 8 5 % リ ン酸 8 . 1 6 部を純水 1 0 部に溶解したものを加え、 さ らに三酸 化ア ンチモ ン 2 . 7 5 部を加え攪拌しながら 9 5 °Cに昇 温した。 つぎに、 硝酸銅 1 . 1 4部を純水 3 0 部に溶解 したも のを加え、 混合液を加熱攪拌しながら蒸発乾固し た。
得られた固形物を 1 3 0 °Cで 1 6 時間乾燥後、 平均粒 怪 0 . 1 5 / mのポ リ タ ク リ ル酸メチル (以下 P M M A と略す) を乾燥固形物 1 0 0 部に対 し 3 部添加 して混 合 した後加圧成型 し、 空気流通下に 3 8 0 °Cで 5 時間熱 処理した も のを触媒と して用いた。
得られた触媒の酸素以外の元素の組成 (以下同 じ) は P に 5 M O 1 2 λ7 0. 3 S b 0. 4 C U 0 . 1 K 1 でめ っ た。 本触媒を反応管に充填し、 メ タ ク ロ レ イ ン 5 %、 酸素 1 0 % . 水蒸気 3 0 % , 窒素 5 5 % (容量% ) の混合ガ スを反応温度 2 7 0 で、 接触時間 3 . 6 秒で通 じた。 生 成物を捕集し、 ガス ク ロマ ト グラ フ ィ ーで分析した と こ ろ、 メ タ ク ロ レ イ ン反応率 8 0 . 3 % . メ タ ク リ ル酸選 択率 8 1 . 4 %であった。
比較例 1
加圧成型時に Ρ Μ Μ Αを添加 しない点以外は、 実施例 1 に準じて比較触媒
P 1 . 5 M 0 1 2 V 0. 3 S b 0 . 4 C U i K l を調製し、 こ の触媒を用いて実施例 1 と同 じ反応条件で反応を行な つ た と こ ろ、 メ タ ク ロ レ イ ン反応率 8 0 . 6 % , メ タ ク リ ル酸選択率 7 9 . 7 %であった。
比較例 2
加圧成型時に添加する Ρ Μ Μ Αの平均粒径が 2 0 m である点以外は、 実施例 1 に準じて比較触媒
P 5 M 0 1 2 V 0 . 3 S b。.4 C u o. , を調製し、 こ の触媒を用いて実施例 1 と同 じ反応条件で反応を行な つ た と こ ろ、 メ タ ク ロ レ イ ン反応率 8 0 . 4 % , メ タ ク リ ル酸選択率 7 9 . 3 9 であった。 この結果は P MM Aを 全く 添加 しなかった場合と同等も し く はやや低下した成 績であ り、 添加する物質の平均粒径が大きな意味を有し ている こ とがわかる。
実施例 2
三酸化モ リ ブデン 1 0 0 部、 五酸化バナジウム
2 . 6 3 部、 8 5 % リ ン酸 6 . 6 7部を純水 8 0 0 部と 混合する。 これを還流下で 3 時間加熱攪拌した後、 酸化 銅 0 . 9 2部を加え、 再び還流下で 2 時間加熱攪拌した c このスラ リ ーを 5 0 °Cまで冷却し、 重炭酸セ シウム
8 . 9 8 部を純水 3 0 部に溶解したものを加え 1 5 分間 攪拌する。 つぎに、 硝酸ア ンモニゥム 1 0 部を純水 3 0 部に溶解したものを加え、 混合液を 1 0 0 °Cに加熱攪拌 しながら蒸発乾固した。
得られた固形物を 1 3 0 でで 1 6 時間乾燥後、 平均粒 径 5 mのポ リ スチ レ ンを乾燥固形物 1 0 0 部に対し 3 部添加 して混合後加圧成型し、 空気流通下に 3 8 0 でで 3 時間熱処理した ものを触媒と して用いた。
こ の触媒'の組成は
P i M O I 2V 0. 5 C u 0. 2 し S o. 8 であつ 。
こ の触媒を用いて、 反応温度を 2 8 5 でと した以外は 実施例 1 と同 じ反応条件で反応を行なったとこ ろ、 メ タ ク ロ レ イ ン反応率 8 4 . 9 % . メ タ ク リ ル酸選択率
8 5 . 7 9 であ っ た。
比較例 3
加圧成型時にポ リ スチ レ ンを添加しない点以外は、 実 施例 2 に準じて比較触媒
P i M 0 J 2 V 0. 5 C U 0. 2 C S 0. 8 を調製 し、 こ の触媒 を用いて実施例 2 と同 じ反応条件で反応を行なった と こ ろ、 メ タ ク ロ レ イ ン反応率 8 5 . 3 %、 メ タ ク リ ル酸選 択率 8 4 . 2 %であった。
比較例 4
加圧成型時に添加するポ リ スチ レ ンの平均粒径が 5 0 mである点以外は、 実施例 2 に準じて比較触媒
P , M 0 , 2 V 0 . 5 C U 0 . 2 C S 0. 8 を調製し、 こ の触媒 を用いて実施例 2 と同 じ反応条件で反応を行な った と こ ろ、 メ タ ク ロ レ イ ン反応率 8 5 . 0 %、 メ タ ク リ ル酸選 択率 8 3 . 8 %であ った。
実施例 3 〜 1 1
実施例 1 に準じて表 1 の各触媒を調製し、 反応温度を 除いては実施例 1 と同一条件で反応し、 表 1 の結果を得 た。
比較例 5 〜 〗 3
加圧成型時に高分子有機化合物を添加 しない点以外は、 実施例 3 〜 1 1 に準じて表 1 の比較触媒を調製 し、 実施 例 3 〜 1 1 と同一条件で反応 し、 表 1 の結果を得た。
比較例 1 4 〜 2 2
加圧成型時に添加する高分子有機化合物を、 平均粒径 1 0 mよ り大きい もの と した点以外は、 実施例 3 〜 1 1 に準じて表 1 の比較触媒を調製し、 実施例 3 〜 1 1 と 同一条件で反応し、 表 1 の結果を得た。
Figure imgf000012_0001
<産業上の利用可能性 >
本発明の方法で調製した触媒は 夕 ク 口 レイ ンの気相 接触酸化反応に と って好ま しい細孔構造を有してお り、 夕 ク リ ル酸の選択率を向上する効果を有する。

Claims

1. 一般式
P a M O b V c d Y e Z f O ,
5 (こ こで式中 P、 M 0、 V及び 0はそれぞれ リ ン、 モ リ ブデン、 バナジウム及び酸素を示し、 Xは砒素、 ア ンチ モ ン、 ビスマス、 ゲ請ルマニウ ム、 ジルコニウム、 テルル 銀及びホウ素からなる群よ り選ばれた少な く と も 1 種の 元素を示し、 Yは鉄、 銅、 亜鉛、 ク ロム、 マグネ シウム
10 タ ンタル、 マ ンガン、 バ リ ウム、 ガ リ ウム、 セ リ ウム及 びラ ンタ ンからなる群よ り選ばれた少な く と も 1 種の元 囲
素を示し、 Zはカ リ ウム、 ゾレビジゥム、 セシウム及び夕 リ ウ厶からなる群よ り選ばれた少な く と も 1 種の元素を 示す。 a、 b、 c、 d、 e 及び f は各元素の原子比率を
15 表し、 b = 1 2 の とき a = 0 . 5〜 3、 c = 0 . 0 1 〜 3、 d = 0〜 3、 e = 0〜 3、 f = 0 . 0 1 〜 3 でぁ り - gは前記各成分の原子価を満足するのに必要な酸素原子 数である。 ) で表される組成を有する、 触媒成分に、 平 均粒径 0 . 0 1 〜 1 0 111の高分子有機化合物を添加し
20 て成型し、 熱処理する こ とを特徵とする メ タ ク ロ レイ ン の気相接触酸化による メ タ ク リ ル酸製造用触媒の調製法
• 2. 添加する高分子有機化合物がポ リ タ ク リ ル酸 メ チル及び Z又はポリ スチ レ ンである こ とを特徴とする請 求項 1 の調製法。
PCT/JP1992/000747 1991-06-12 1992-06-11 Process for preparing catalyst for producing methacrylic acid WO1992022378A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP92911109A EP0543019B1 (en) 1991-06-12 1992-06-11 Process for preparing catalyst for producing methacrylic acid
KR1019930700367A KR100189486B1 (ko) 1991-06-12 1992-06-11 메타크릴산 제조용 촉매의 제조방법
DE69221992T DE69221992T2 (de) 1991-06-12 1992-06-11 Verfahren zur herstellung eines katalysators fuer die zubereitung von methacrylsaeure
US07/978,698 US5422326A (en) 1991-06-12 1992-06-11 Process for preparing a catalyst for producing methacrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3140120A JP2814317B2 (ja) 1991-06-12 1991-06-12 メタクリル酸製造用触媒の調製法
JP3/140120 1991-06-12

Publications (1)

Publication Number Publication Date
WO1992022378A1 true WO1992022378A1 (en) 1992-12-23

Family

ID=15261372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000747 WO1992022378A1 (en) 1991-06-12 1992-06-11 Process for preparing catalyst for producing methacrylic acid

Country Status (6)

Country Link
US (1) US5422326A (ja)
EP (1) EP0543019B1 (ja)
JP (1) JP2814317B2 (ja)
KR (1) KR100189486B1 (ja)
DE (1) DE69221992T2 (ja)
WO (1) WO1992022378A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272745B2 (ja) * 1991-06-06 2002-04-08 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
DE19638249A1 (de) * 1996-09-19 1998-03-26 Basf Ag Verfahren zur Herstellung einer katalytisch aktiven Multimetalloxidmasse
JP3887511B2 (ja) * 1999-05-19 2007-02-28 三菱レイヨン株式会社 触媒の製造方法
JP3702710B2 (ja) 1999-06-15 2005-10-05 住友化学株式会社 メタクリル酸製造用触媒およびメタクリル酸の製造方法
KR100915078B1 (ko) * 2006-12-01 2009-09-02 주식회사 엘지화학 신규한 헤테로폴리산계 촉매 및 이의 제조방법
JP5362370B2 (ja) * 2009-01-14 2013-12-11 三菱レイヨン株式会社 メタクリル酸合成用触媒の製造方法
CN103831131B (zh) 2012-11-21 2016-04-06 上海华谊丙烯酸有限公司 催化剂、其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573347A (en) * 1978-11-28 1980-06-03 Ube Ind Ltd Catalyst for production of methacrylic acid
JPS583644A (ja) * 1981-06-26 1983-01-10 デグツサ・アクチエンゲゼルシヤフト 耐摩耗性被膜触媒の製法
JPS63256137A (ja) * 1987-03-31 1988-10-24 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 酸化触媒の製造方法、およびイソ酪酸またはその抵級エステルの酸化脱水素方法
JPS63315148A (ja) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2040546A5 (ja) * 1969-04-02 1971-01-22 Toyo Soda Mfg Co Ltd
US4092269A (en) * 1976-10-15 1978-05-30 Monsanto Company Phosphorus-vanadium-oxygen catalysts having a specific pore volume
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
JPS60239439A (ja) * 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸の製造方法
JPS62201643A (ja) * 1986-02-28 1987-09-05 Nippon Oil Co Ltd 水素化触媒の製造法
JP2974826B2 (ja) * 1991-07-17 1999-11-10 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸製造用触媒の調製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573347A (en) * 1978-11-28 1980-06-03 Ube Ind Ltd Catalyst for production of methacrylic acid
JPS583644A (ja) * 1981-06-26 1983-01-10 デグツサ・アクチエンゲゼルシヤフト 耐摩耗性被膜触媒の製法
JPS63256137A (ja) * 1987-03-31 1988-10-24 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 酸化触媒の製造方法、およびイソ酪酸またはその抵級エステルの酸化脱水素方法
JPS63315148A (ja) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0543019A4 *

Also Published As

Publication number Publication date
JPH04367737A (ja) 1992-12-21
KR930701231A (ko) 1993-06-11
JP2814317B2 (ja) 1998-10-22
EP0543019B1 (en) 1997-09-03
US5422326A (en) 1995-06-06
DE69221992D1 (de) 1997-10-09
DE69221992T2 (de) 1998-02-05
KR100189486B1 (ko) 1999-06-01
EP0543019A4 (en) 1993-10-06
EP0543019A1 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JP4794727B2 (ja) アルカンの酸化に有用な触媒
WO2010074177A1 (ja) アクリル酸の製造方法
US8076509B2 (en) Process for producing acrylic acid
JP2974826B2 (ja) メタクロレイン及びメタクリル酸製造用触媒の調製法
WO2004004900A1 (ja) メタクリル酸製造用触媒の製造方法
WO1992022378A1 (en) Process for preparing catalyst for producing methacrylic acid
JP2852712B2 (ja) アクロレイン及びアクリル酸合成用触媒及びその製造法
JP3959836B2 (ja) アクリル酸製造用触媒の製造方法
JP5100520B2 (ja) α,β−不飽和カルボン酸合成用触媒の製造方法
JP2011224536A (ja) グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法および親水性樹脂の製造方法
JPH0810621A (ja) 不飽和カルボン酸製造用触媒の製造法
JP3710944B2 (ja) メタクリル酸製造用触媒、その製造法、およびメタクリル酸の製造方法
JP5362370B2 (ja) メタクリル酸合成用触媒の製造方法
JP2000296336A (ja) メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP3251642B2 (ja) 不飽和カルボン酸製造用触媒の調製法
JPH05293389A (ja) アクロレイン及びアクリル酸製造用触媒の調製法
JP2008000710A (ja) メタクリル酸製造用ヘテロポリ酸系触媒の製造方法
JPS6032608B2 (ja) 不飽和化合物の製造方法
JP2003154273A (ja) メタクリル酸製造用触媒の製造方法、メタクリル酸製造用触媒、および、メタクリル酸の製造方法
JPH11226412A (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2003251187A (ja) メタクロレインおよび/またはメタクリル酸製造用触媒、その製造方法、および、メタクロレインおよび/またはメタクリル酸の製造方法
JPH03167152A (ja) メタクリル酸の製造法
WO2000072964A1 (fr) Production d&#39;acide methacrylique et catalyseur a cet effet
JPH07251075A (ja) 不飽和カルボン酸合成用触媒及びそれを用いた不飽和カルボン酸の製造方法
JP2003190798A (ja) メタクリル酸製造用触媒の製造方法、この方法により製造される触媒、および、メタクリル酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992911109

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992911109

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992911109

Country of ref document: EP