WO1988010329A1 - Method for growing single crystal from molten liquid - Google Patents

Method for growing single crystal from molten liquid Download PDF

Info

Publication number
WO1988010329A1
WO1988010329A1 PCT/JP1988/000572 JP8800572W WO8810329A1 WO 1988010329 A1 WO1988010329 A1 WO 1988010329A1 JP 8800572 W JP8800572 W JP 8800572W WO 8810329 A1 WO8810329 A1 WO 8810329A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crucible
inner cylinder
outer cylinder
melt
Prior art date
Application number
PCT/JP1988/000572
Other languages
English (en)
French (fr)
Inventor
Akira Omino
Original Assignee
Mitsui Mining Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Company, Limited filed Critical Mitsui Mining Company, Limited
Priority to DE19883876225 priority Critical patent/DE3876225T2/de
Publication of WO1988010329A1 publication Critical patent/WO1988010329A1/ja
Priority to US07/947,968 priority patent/US5312506A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Definitions

  • the present invention relates to a method for obtaining a single crystal by solidification from a melt and crystal growth.
  • the vapor pressure of the compound melt is high, the amount of the compound evaporated from the crucible is large, making it difficult to form crystals, and if the volatilization rate of one component in the compound is high, However, the melt composition deviates from the stoichiometric composition so that normal crystal growth cannot be performed, and the quality of the resulting crystal deteriorates.
  • the compound is placed in a quartz ampoule and encapsulated, or a high-frequency susceptor or a graphite crucible, which itself becomes a susceptor, is placed inside a quartz ampoule.
  • High A method such as heating from a frequency coil is used.
  • quartz begins to soften at about 120 ° C (TC and may become deformed, devitrified or exploded in the worst case at higher temperatures, and the method using quartz amble is at most 1400 The limit is to handle compounds in the melt at ° C.
  • An object of the present invention is to overcome these disadvantages
  • An object of the present invention is to provide a method for growing crystals by hermetically sealing a raw material even in a temperature range in which elbows cannot be used.
  • the method of the present invention is a method for obtaining a single crystal by solidification from a melt, comprising: an outer cylinder made of a material selected from a high melting point metal and an alloy; a high melting point metal and an alloy; a high melting point ceramic material; Using a crucible with a double structure consisting of one or more materials selected from carbon materials such as graphite, charging the raw materials into the inner cylinder, sealing the outer cylinder outer lid, and then heating This is a method of growing a single crystal from a melt, characterized by melting and performing crystal growth.
  • the first feature of the present invention is that the crucible has a dual structure consisting of an outer cylinder and an inner cylinder, and thus has a high corrosion resistance and is easy to detach generated crystals and graphite.
  • a container for solidifying and growing melt crystals in a hermetically sealed state because it combines the properties of metal and the properties of metal materials that are easy to weld and encapsulate, and has excellent properties as a crucible material but is difficult to weld. This has made it possible to use carbon materials such as graphite and ceramic materials such as BN that could not be used, and has established an industrially advantageous method for growing single crystals.
  • the second feature of the present invention is that the crucible has a double structure, so that when the crystal and the crucible, which often occur, are fixed to each other, only the inner cylinder is disposable and the outer cylinder is disposable.
  • the cylinder is designed to be used repeatedly.
  • the method of the present invention can be applied to single crystal growth of various materials capable of growing crystals from a melt, but in particular, grows crystals without changing the stoichiometric ratio of a compound having a high melting point and a high vapor pressure. It is suitable for growing crystals of ZnS, ZnSe, CdS, CdSe, GaP, GaAs, CdTe, HgS, PbS, PbSe, InP and the like.
  • a substance with a high melting point and a high vapor pressure can be crystallized while being completely sealed in the container.
  • the expensive crucible can be used repeatedly, and the crystal can be grown using a relatively inexpensive general furnace such as a vacuum furnace or an inert gas furnace. Is very advantageous.
  • FIG. 1 is a longitudinal sectional view showing one embodiment of a crucible used in the present invention.
  • FIG. 2 is a longitudinal sectional view of another embodiment different from FIG.
  • FIG. 3 is a longitudinal sectional view of a conventional tungsten crucible used in a comparative example.
  • a crucible having a double structure composed of an outer cylinder with a lid and an inner cylinder with a lid is used.
  • the material used for the cylinder is selected from metals and alloys having a melting point of 150 (TC or higher and excellent corrosion resistance. Representative examples of these materials are W, Ta, Os, Mo, Ir, Examples include metals such as Ru, Rh, and Pt, and alloys based on these metals, of which W is the most desirable because it has a high melting point, a high temperature, a low vapor pressure, and a low risk of contaminating the melt. It is one of the materials.
  • the outer cylinder has a tubular shape with one end sealed, and the open side is covered with a lid made of the same material. ..
  • the cross-sectional shape of the outer cylinder is not particularly limited, but is preferably concentric from the viewpoint of heat transfer.
  • the inner cylinder is made of the metal or alloy material used for the outer cylinder, carbon material such as graphite, quartz, carbon-coated quartz, azoremina, BN, ⁇ N, BeO, CaF 2 , preferred MgO, SiC, SiO, Ce0 2 , Th0 2, Zr0 2, Z r S i 0 4 refractory Serra Mi, such as selected from the source box material, that the inner lid is made of the inner cylinder of the same material New
  • the outer shape of the inner cylinder should fit into the inner shape of the outer cylinder, and the inner shape can be any shape according to the shape of the crystal as the eye.
  • the inside of the inner cylinder is preferably tapered so that it tapers toward the bottom. Since the inner cylinder is not required to be as strong as the outer cylinder, relatively weak materials can be used and the wall thickness can be thin.
  • the material of the outer cylinder and the inner cylinder of the crucible is appropriately selected from the above materials and used.
  • the outer cylinder material is W
  • the inner cylinder material is graphite or BN, which is the most versatile.
  • each member be sufficiently cleaned in advance by means such as cleaning and baking.
  • the crystal raw material is charged into the inner cylinder 3.
  • the raw material for the crystal may be used as it is, but it is desirable to use it in a state where the bulk density is increased by pressing or sintering.
  • the inner cylinder filled with the raw material is charged into the outer cylinder 1, and the inner lid 4 made of the same material as the inner cylinder is placed.
  • the outer lid 2 made of the same material as the outer cylinder is placed in a vacuum or inactive.
  • the outer cylinder and the outer lid are welded and sealed at the welded part 5 in a gas atmosphere at normal pressure or under pressure.
  • the crucible is placed in a vacuum device, for example, by cooling all parts other than the top of the crucible with a water-cooled cooling block.
  • the outer lid and the outer cylinder body are separated by means such as an electron beam or a single laser beam while completely suppressing evaporation of water. Weld it. Electron beam welding is usually performed in a vacuum, but if a laser beam or the like is used, welding in an inert gas atmosphere is also possible.If crystal growth in an inert gas atmosphere is desired, pass through the crucible. It is also possible to replace with gas.
  • the raw material sealed in the metal outer cylinder is crystallized by a conventionally known method, for example, the Bridgeman method, using an inert gas furnace or a vacuum furnace.
  • the crucible is cooled, the upper part is cut, and the inner cylinder is removed. If the length of the upper part of the outer cylinder is sufficiently long, the outer cylinder can be used repeatedly. If the outer cylinder becomes shorter due to repeated reuse, it can be welded and added.
  • the inner cylinder is made of graphite or BN, etc., and in most cases, if the inner shape is tapered so that the inner shape becomes narrower toward the bottom so that the crystals formed are likely to come off. Can be easily removed and reused as is. If the crystal does not come off from the inner cylinder, destroy the inner cylinder and extract the crystal. In other words, the inner cylinder is thrown away, but it is much more economical than destroying the entire crucible. In such a case, it is possible to make a cut in the outer periphery of the inner cylinder in advance to facilitate removal of the crystal.
  • a single crystal of ZnSe (melting point I 520 ° C) was grown using a crucible having the structure shown in Fig. 1 in which the outer cylinder was made of tungsten and the inner cylinder was made of pyrolytic graphite.
  • each unit member of the crucible was Sorasho city cleaned at about 170 (TC vacuo.
  • About 15g of ZnSe (Merck) raw material powder was compression-molded at 15 Kg / cm 3 at a rubber press, the inner cylinder of this the charged, charged to the outer cylinder after the inner lid was welded sealed under a pressure of about 10_ 5 Torr is input to the electron beam welding device placed outside lid.
  • Example 3 The same operation as in Example 1 was carried out except that the outer cylinder was made of tungsten, the inner cylinder was made of pyrolytic BN, the maximum temperature of the crystal growing apparatus was 1290 ° C, and GaAs powder was used as a raw material. Then, a crystal of GaAs (melting point 1237 ° C) was grown. The finished crystal could be easily dislodged from the inner tube of Pi-Litic BN. The obtained crystals had a bluish metallic color, and no evidence of reaction between BN and GaAs was found. Tungsten in the crystal was analyzed by ICP spectroscopy, but no tungsten was detected.
  • Example 3 Example 3
  • a single crystal of ZnSe was grown using a crucible with the structure shown in Fig. 2 in which the outer cylinder was made of molybdenum and the inner cylinder was made of pyrolytic BN.
  • each member of the crucible was baked and cleaned at about 1700 ° C. in a vacuum.
  • About 15 g of ZnSe (manufactured by Rare Metallic) crystal pieces (size: 1 mm x 1 mm) were loaded into the inner cylinder, and the others were grown in the same manner as in Example 1.
  • the resulting crystals were easily able and Hazusuko from the inner cylinder of the pie B Li Ti click BN, the bottom tip of the capillary remaining crystals ⁇
  • a single crystal of ZnSe was grown under exactly the same conditions as in Example 1 except that a tungsten crucible shown in Fig. 3 was used. The resulting crystal did not come off the crucible, and in order to remove it, it was necessary to cut the crucible into several pieces using a diamond cutter. At this time, water and tungsten chips that wet the blade of the diamond cutter were attached to the crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書
融液からの単結晶育成方法
技 術 分 野
本発明は融液からの固化、 結晶成長によ り単結晶を 得る ための方法に関する。
背 景 技 術
近年、 電子工業等の発展に と もない、 結晶育成技術 は工業的にきわめて重要な技術と なっている。 ま た、 新しい機能素子の材料と して S i、 G eなどの単体元素材 料に加えて G a A s , C d S , Z n S e 等の化合物材料が重要視 される よ う になつてきた。 これら材料の単結晶を製造 す る方法の一つ と して融.液か ら固化させる方法があ る。 こ の方法は大きい結晶を比較的容易に作り得る こ とから単結晶の育成方法と して多用されている。
しかしながら、 化合物の融液の蒸気圧が高いと るつ ぼからの化合物の蒸発量が多く 、 結晶を作成するのが 困難と な り 、 ま た、 化合物中の一つの成分の揮発速度 が大きければ、 融液組成が化学量論的組成からずれて 正常な結晶成長を行えないばか り か、 出来上がつ た結 晶の品質が低下する という欠点がある。
通常、 これらの問題を避ける ためには、 石英のアン プル内に化合物をいれて封入するか、 石英アンプル内 に高周波のサセプターやそれ自体がサセブターと なる 黒鉛るつぼを用いて、 石英アンプルの外におかれた高 周波コ イ ルから加熱する と いっ た方法がと られてい る。 しかし、 石英は約 12 0 (TCで軟化し始め、 それ以上 の温度になる と変形した り 、 失透したり 、 最悪の場合 爆発するおそれもあ り 、 石英アンブルを用いる方法で はせいぜい 1 400 °Cの融液の化合物を取り扱う のが限度 である。
1 40 (TC以上の融点を持つ高融点化合物に対しては、 黒鉛等のるつぼにいれ、 これを高圧容器にいれてアル ゴン等の不活性ガスで加圧し、 化合物の蒸発をおさえ ながら結晶成長を行う方法、 いわゆる高圧溶融法が従 来行われている。
しかし、 この方法では、' るつぼが密閉されていない ので融液の蒸発や化学量論的組成からのずれを本質的 に避ける こ とができず、 さらに高圧容器やヒーターの 材料が腐食した り 、 これらの材料物質によ り結晶が汚 染されたり する欠点を有している。 また、 融点 1 40 (TC 以上の化合物の場合、 高融点金属のるつぼに原料を装 入し、 溶融密封したのち加熱し結晶成長を行う方法も 考えられる、 多く の場合生成した結晶がるつぼからは ずれにく く 、 また融液と金属の接触部での腐食や金属 による汚染が生じた り する欠点があ り実用化には問題 があつ 。
発 明 の 開 示
本発明の目的はこれらの欠点を解決し、 石英アンプ 一 一 ルが使用できない温度域でも、 原料を密封封入して結 晶を育成する方法を提供する こ と にある。
本発明の方法は、 融液からの固化によって単結晶を 得る方法において、 高融点金属および合金から選ばれ る材料からなる外筒と、 高融点金属および合金、 高融 点セラ ミ ッ クス材料ならびに黒鉛等の炭素材料から選 ばれる一種以上の材料からなる内筒で構成される二重 構造のるつぼを使用し、 原料を内筒内に装入して外筒 外蓋を密封封入したのち、 加熱溶融して結晶成長をお こなわしめる こ と を特徴とする融液からの単結晶育成 方法である。
本発明の特徴の第一は、 るつぼを外筒と内筒よ.り な る二重構造とする こ と によ り 、 耐蝕性が強く ま た生成 した結晶が外れ易いという黒鉛およびセラ ミ ッ クスの 特性と、 溶接封入が容易と いう金属材料の特性を組合 せ、 るつぼの材料と して優れた特性を有しながら溶接 が困難なため密封状態で融液結晶を固化育成する際の 容器と して使用できなかっ た黒鉛などの炭素材料およ び B Nなどのセラ ミ ッ クス材料の使用を可能に し、 工業 的に有利な単結晶育成方法を確立した点にある。
また、 本発明の特徴の第二は、 るつぼを二重構造と する こ と によ り 、 往々 にして起き易い結晶と るつぼの 固着が生じた場合には内筒のみを使捨てに し、 外筒は 繰 り返し使用でき る よ う に したこ とである。 本発明の方法は融液からの結晶育成が可能な各種材 料の単結晶育成に適用できるが、 特に高融点で高い蒸 気圧をもつ化合物の化学量論比を変化させる こ となく 結晶を育成する こ とが可能であ り 、 ZnS, ZnSe, CdS, CdSe, GaP, GaAs, CdTe, HgS, PbS, PbSe, InPなどの 結晶育成に好適である。
本発明の方法によれば次のよう な効果が発揮され、 工業的に極めて有利な方法という こ とができ る。
(1) 高融点で高い蒸気圧を持つ物質を完全に容器内に 密封したまま結晶化させる こ とができる。
(2) 高価なるつぼを繰り返し使用する こ とができ、 さ らに真空炉あるいは不活性ガス炉といつ た比較的安 価で一般的な炉を用いて結晶成長させる こ とが可能 なので経済的にきわめて有利である。
図面の簡単な説明
第 1 図は、 本発明に使用するるつぼの 1 つの態様を 示す長手方向断面図である。
第 2 図は、 第 1 図とは別の態様についての長手方向 断面図である。
第 3図は比較例に用いた従来技術によるタングステ ンるつぼについての長手方向断面図である。
発明を解決するための最良の形態
本発明の方法においては蓋付きの外筒と蓋付きの内 筒によ り構成される二重構造のるつぼを使用する。 外 一 筒を用いる材料は 150 (TC以上の融点を有し、 耐蝕性に 優れた金属および合金から選ばれる。 これらの材料の 代表的なものと しては W , Ta, Os, Mo, Ir, Ru, Rh, Ptなどの金属およびこれらを基材とする合金があげら れる 。 中で も Wは融点が高く かつ高温で蒸気圧が低 く 、 融液を汚染する恐れが少ないので最も望ま しい材 料の一つである。
外筒は一端を封じた管状と し、 開放側には同一の材 料からなる蓋をかぶせるよ う に しておく 。 ..外筒の断面 形状は特に限定はないが、 伝熱の関係から同心円状で ある こ とが望ま しい。
内筒は、 上記の外筒に用いた金属ま たは合金からな る材料、 黒鉛等の炭素材料、 石英、 カーボン コー ト し た石英, ァ ゾレミ ナ, BN, Ά N , BeO, CaF2 , MgO, SiC, SiO, Ce02 , Th02 , Zr02 , Z r S i 04などの高融点の セラ ミ 、ソ クス材料から選ばれ、 内蓋は内筒と 同一材料 で作られるのが好ま しい。
これらの材料のなかで黒鉛ま たは BNは、 結晶原料の 融液に濡れにく く 、 固化した結晶が外れやすいので特 に好ま しい。 内筒の外形は外筒の内側形状にはま り込 むよ う に し、 内側は目 ^とする結晶の形状に合わせ、 任意の形状とする こ とができ るが、 結晶の取出しを容 易にする ため内筒の内側は底に向かって細く なる よ う なテーパー構造とす ^のが好都合である。 内筒は外筒ほど強度を要求されないので比較的強度 の弱い材料も使用でき、 また肉厚も薄くてよい。
本発明による結晶の成育方法を本発明で使用するる つぼの実施態様の一例である第 1 図に示するつぼを用 いた例について詳細に説明する。 るつぼの外筒、 内筒 の材質と しては、 -結晶原料の融液と反応しない.ものを— 前記の材料の中から適宜選択して使用する。:前述の如 く外筒材質と して W、 内筒材質と して黒鉛または B Nの う ちの一つが最も汎用性がある。
各部材は予め洗浄、 空焼き等の手段によ.り充分洗浄 しておく こ とが望ま しい。
先ず、 結晶原料を内筒 3 に装入する。 結晶の原料は 粉末のまま使用してもよいがプレスあるいは焼結など によってかさ密度を大き く した状態で使用するのが望 ま しい。 次いで原料を充塡した内筒を外筒 1 内に装入 し、 内筒と同一の材質の内蓋 4をしたのち、 外筒と同 —材料の外蓋 2 をして真空中あるいは不活性ガス雰囲 気中常圧または加圧下に外筒と外蓋を溶接部 5 におい て溶接密封する。 真空封入する場合るつぼを真空装置 にいれ、 例えば水冷の冷却ブロ クでるつぼの上部以 外のすべてを冷却する よう な方法によ り 、 溶接部以外 は冷却できるよう にして溶接時の熱による原料の蒸発 を完全に押えるよ う にしながら、 電子ビームあるいは レーザ一ビーム等の手段によって外蓋と外筒本体とを 一 一 溶接する 。 電子ビーム溶接は通常真空中で行う が、 レーザービーム等を使用すれば不活性ガス雰囲気での 溶接も可能なので、 不活性ガス雰囲気下での結晶成長 が望ま しい場合には、 るつぼ中を不活性ガスで置換す る こ と も可能である。
金属外筒によって封入された原料は不活性ガス炉ま たは真空炉を用いて、 従来知られている方法、 例えば ブリ ッ ジマン法などによって結晶化される。
結晶成長操作後のるつぼは冷却され、 上部を切断し 内筒を取り 出す。 外筒の上部の長さを充分に長く して おけば、 外筒は繰り返し使用する こ とが可能である。 再使用の繰り返しによ り外筒が短く なっ た場合には溶 接して継足する こ と も可能である。 内筒は黒鉛あるい は B Nなどの材質を使用し生成した結晶がはずれやすい よ う に、 内側形状を底に行く に し たがつ て細 く なる テーパー状に しておけばほとんどの場合結晶は容易に はずすこ と ができ るのでそのま ま再使用が可能であ る。 内筒から結晶がはずれない場合は内筒を破壊して 結晶を取り 出す。 すなわち内筒を使捨てにする こ と に なるが、 るつぼ全体を破壊する場合に比較しはるかに 経済的である。 またこのよ う な場合予め内筒外周に切 り込みを入れておき、 結晶のと り はずしを容易にする こ と もでき、る 。
また、 第 2 図に示すよ う に内筒 3 の先端部'を細管状 とする こ とによ り 、 初期結晶折出部の精密な温度制御 が可能にな り 、 結晶成長がよ り 円滑になる。 この場 合、 結晶の先端部がはずれにく く なり 、 結晶取出し時 に折れて細管内に残り易く なるが、 細管内に結晶を残 し たま ま次回の操作を行う と結晶の成長方向が安定 し、 よ り良好な品質の結晶を得る こ とができる。 _ 実施:例: 1
外筒をタ ングステ ン 、 内筒を熱分解黒鉛で構成し た第 1 図 示す構造のるつぼを使用 し、 ZnSe (融点 I 520°C ) の単結晶育成を行っ た。 先ず、 るつぼの各部 材を真空中約 170 (TCで空焼し清浄化し た。 約 15g の ZnSe (メルク社製) 原料粉末をラバープレスにて 15Kg /cm3で圧縮成型し、 これを内筒に装入、 内蓋をした後 外筒に装入し、 外蓋をのせて電子ビーム溶接装置に入 れ約 10_5Torrの圧力下で溶接密封した。 この時溶接部 以外は銅製の水冷ブロ ッ クで冷却し、 内容物が蒸発し ないよ う にした。 これを真空炉式のブリ ジマン式結 晶育成装置に装置し最高温度部を 1580°Cに設定し、 2 mm/hr のるつぼ降下速度で結晶育成を行つ た。 冷却 後、 るつぼ上部をダイ ヤモン ドカ ッ ターで切断し内筒 を取出した。 出来上がっ た結晶は熱分解黒鉛製の内筒 から容易にはずすこ とができた。 結晶は黄色透明であ り 、 黒鉛と ZnSeが反応している形跡は認められなかつ た。 ICP 分光分析によ り 、 結晶中のタ ングステンの分 一 一 析を行っ たがタ ングステンは検出されなかっ た。
実施例 2
外筒をタングステン、 内筒をパイ ロ リ ティ ヅ ク BNと し、 結晶育成装置の最高温度を 1290°Cと し、 原料と し て GaAsの粉末を使用 した以外は実施例 1 と 同様に操作 し GaAs (融点 1237 °C ) の結晶育成を行っ た。 出来上 がつ た結晶はパイ 口 リ ティ ク BNの内筒から容易には ずすこ とができた。 得られた結晶は青味を帯びた金属 色であ り 、 BNと GaAsが反応している形跡は認められな かっ た。 I CP 分光分析によ り 、 結晶中のタ ングステン の分析を行っ たがタ ングステンは検出されなかっ た。 実施例 3
外筒をモ リ ブデン、 内筒をパイ ロ リ ティ ッ ク BNで構 成した第 2 図に示す構造のるつぼを使用 し、 ZnSeの単 結晶育成を行っ た。 先ず、 るつぼの各部材を真空中約 1700 °Cで空焼し清浄化した。 約 15g の ZnSe (レアメ タ リ ッ ク社製) 結晶片 (大きさ 1 mm X 1 mm) を内筒に装 入 し、 その他は実施例 1 と 同様の方法で結晶育成を 行っ た。 出来上がっ た結晶はパイ ロ リ ティ ッ ク BNの内 筒から容易にはずすこ とができ たが、 底部先端の細管 には結晶が残留した α
続いて、 底部先端の細管に結晶を残したま ま約 1 &g の原料微結晶を内筒に補給した。 1 目の結晶育成に 用いたモ リ ブデン外筒の上部を加工して 170 (TCで空焼 き後、 内筒を装入し、 1 回目と同様の結晶育成操作を 行っ たと ころ 1 回目 と同じ成長方位の結晶かつ単結晶 の領域が大きい良質の結晶が得られた。
比較例
第 3図に示すタングステン製のるつぼを用いるほか は実施例 1 と全く 同一の条件.で Zn S eの単結晶育成を 行っ た。 出来上つ た結晶はるつぼからはずれず、 これ をはずすためには、 るつぼをダイ ヤモン ドカ ッ ターで いくつかに切断分割する必要があつ た _。 またこの時ダ ィ ァモン ドカ ッ ターの刃を濡らす水や、 タングステン の切り粉が結晶に付着した。

Claims

請 求 の 範 囲
融液か らの固化によ っ て単結晶を得る方法におい て、 高融点金属および合金から選ばれる材料からなる 外筒と、 高融点金属および合金、 高融点セラ ミ ッ クス 材料ならびに黒鉛等の炭素材料から選ばれる一種以上 の材料からなる内筒で構成される二重構造のるつぼを 使用 し、 原料を内筒内に装入して外筒外蓋を密封封入 したのち、 加熱溶融して結晶成長をおこなわ しめる こ とを特徴とする融液からの単結晶育成方法。
PCT/JP1988/000572 1987-06-15 1988-06-14 Method for growing single crystal from molten liquid WO1988010329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19883876225 DE3876225T2 (de) 1987-06-15 1988-06-14 Verfahren zum zuechten von einkristallen aus geschmolzener fluessigkeit.
US07/947,968 US5312506A (en) 1987-06-15 1992-09-21 Method for growing single crystals from melt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62/146939 1987-06-15
JP62146939A JP2656038B2 (ja) 1987-06-15 1987-06-15 融液からの単結晶育成方法

Publications (1)

Publication Number Publication Date
WO1988010329A1 true WO1988010329A1 (en) 1988-12-29

Family

ID=15418990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000572 WO1988010329A1 (en) 1987-06-15 1988-06-14 Method for growing single crystal from molten liquid

Country Status (4)

Country Link
EP (1) EP0321576B1 (ja)
JP (1) JP2656038B2 (ja)
DE (1) DE3876225T2 (ja)
WO (1) WO1988010329A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160687A (ja) * 1988-12-14 1990-06-20 Mitsui Mining Co Ltd 単結晶製造方法
GB9412629D0 (en) * 1994-06-23 1994-08-10 Secr Defence Improvements in crystal growth
US5679151A (en) * 1995-03-16 1997-10-21 Kabushiki Kaisha Kobe Seiko Sho Method for growing single crystal
CN104313681A (zh) * 2014-11-07 2015-01-28 中国工程物理研究院化工材料研究所 一种用于多元化合物晶体生长的设备及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104100A (ja) * 1981-12-14 1983-06-21 Seiko Instr & Electronics Ltd SmCo↓5単結晶の育成法
JPS58148071U (ja) * 1982-03-31 1983-10-05 東北金属工業株式会社 単結晶製造るつぼ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138514B (de) 1956-06-13 1962-10-25 Siemens Ag Tiegel zum Schmelzen hochreiner Halbleiterstoffe
US3033659A (en) * 1959-04-21 1962-05-08 Gen Electric Preparation of phosphor crystals
DE2635501C2 (de) * 1976-08-06 1986-01-09 Kraftwerk Union AG, 4330 Mülheim Brennstabwechselwerkzeug
JPS58181800A (ja) * 1982-04-13 1983-10-24 Matsushita Electric Ind Co Ltd ルツボ
JPS60180988A (ja) * 1984-02-29 1985-09-14 Rigaku Denki Kogyo Kk ブリツジマン・ストツクバ−ガ−法単結晶成長用るつぼ
JPS61281095A (ja) * 1985-06-06 1986-12-11 Nippon Mining Co Ltd 結晶成長用アンプル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104100A (ja) * 1981-12-14 1983-06-21 Seiko Instr & Electronics Ltd SmCo↓5単結晶の育成法
JPS58148071U (ja) * 1982-03-31 1983-10-05 東北金属工業株式会社 単結晶製造るつぼ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0321576A4 *

Also Published As

Publication number Publication date
JPS63310786A (ja) 1988-12-19
DE3876225T2 (de) 1993-06-17
DE3876225D1 (de) 1993-01-07
EP0321576A4 (en) 1989-10-12
EP0321576A1 (en) 1989-06-28
EP0321576B1 (en) 1992-11-25
JP2656038B2 (ja) 1997-09-24

Similar Documents

Publication Publication Date Title
US5885071A (en) Quartz glass crucible for pulling single crystal
US5167759A (en) Production process of single crystals
US5312506A (en) Method for growing single crystals from melt
WO1988010329A1 (en) Method for growing single crystal from molten liquid
JPH107491A (ja) 高純度銅単結晶及びその製造方法並びにその製造装置
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPS5930794A (ja) 単結晶引上用溶融ルツボ装置
JP2723249B2 (ja) 結晶育成方法および結晶育成用るつぼ
JPH1095699A (ja) ニホウ化ジルコニウム単結晶の育成法
JP2769300B2 (ja) 結晶引上げ装置
JPS58151391A (ja) 半導体結晶製造用アンプル
JP2690420B2 (ja) 単結晶の製造装置
JP4384774B2 (ja) GaAs結晶の製造用原料
CN101466878A (zh) 第iii族氮化物单晶及其生长方法
JPS63225595A (ja) 半導体結晶成長用アンプル
JPH0840795A (ja) 酸化物単結晶製造用るつぼ
JPH01126289A (ja) 化合物半導体単結晶体の製造方法
JPH0355434B2 (ja)
Sato et al. Solution growth combined with solvent evaporation: A novel technique in solution growth
JP2839456B2 (ja) 化合物単結晶製造装置
JPH09286691A (ja) 石英ガラスるつぼの製造方法
JPH0248490A (ja) 高解離圧化合物半導体処理装置
JPH05286798A (ja) Iii −v族化合物半導体単結晶ブロック材の製造方法
JPH02208288A (ja) 3―5族化合物半導体単結晶の製造方法
JPH0524962A (ja) 化合物半導体単結晶の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988905239

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988905239

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988905239

Country of ref document: EP