WO1985005315A1 - Process for producing polyamide film - Google Patents

Process for producing polyamide film Download PDF

Info

Publication number
WO1985005315A1
WO1985005315A1 PCT/JP1985/000116 JP8500116W WO8505315A1 WO 1985005315 A1 WO1985005315 A1 WO 1985005315A1 JP 8500116 W JP8500116 W JP 8500116W WO 8505315 A1 WO8505315 A1 WO 8505315A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyamide
weight
resin
melt
Prior art date
Application number
PCT/JP1985/000116
Other languages
English (en)
French (fr)
Inventor
Akito Hamano
Katsuaki Kuze
Kunio Takeuchi
Maki Matsuo
Hajime Suzuki
Osamu Makimura
Eiichi Nagayasu
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59104066A external-priority patent/JPS60247540A/ja
Priority claimed from JP59109981A external-priority patent/JPS60253524A/ja
Priority claimed from JP59112445A external-priority patent/JPS60255413A/ja
Priority claimed from JP15342084A external-priority patent/JPS6131225A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO1985005315A1 publication Critical patent/WO1985005315A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets

Definitions

  • the present invention relates to a method for efficiently producing a polyimide-based film having excellent thickness uniformity.
  • Polyamide films are widely used in various packaging fields that can take advantage of their properties such as toughness, impact resistance, pinhole resistance, and oxygen barrier properties.
  • properties such as toughness, impact resistance, pinhole resistance, and oxygen barrier properties.
  • demand for polyamide-based films has been increasing along with the growth of retort foods, and the supply of high-quality and efficient films is desired.
  • a method for producing a polyamide-based film there are usually a melt extrusion method using an inflation method or a T-die method.
  • the molten film extruded from the die is cast on a rotary cooling roll.
  • air is blown with an air knife to adhere the film to the cooling rotating roll.
  • the air knife method a method in which electric charges are deposited on a molten film from a high voltage electrode and electrostatically adhered (hereinafter referred to as an electrostatic adhesion method), and the like.
  • an electrostatic adhesion method a method in which electric charges are deposited on a molten film from a high voltage electrode and electrostatically adhered
  • an electrostatic adhesion method a method in which electric charges are deposited on a molten film from a high voltage electrode and electrostatically adhered
  • the electrostatic adhesion method means that, for example, a wire-like electrode is inserted between a die and a cooling port to apply an electrostatic charge to the film-like material, and the film-like material and the cooling roll are electrostatically adhered to each other.
  • a method for improving the uniformity and transparency of a film to be formed is disclosed in, for example, Japanese Patent Publication No. 37-6142. According to this method, the melt-extruded film material is strongly adhered to the cooling roll due to static electricity and rapidly cooled, so that a thermoplastic resin film can be efficiently produced.
  • An object of the present invention is to provide a technique capable of overcoming the drawbacks of the conventional technique and efficiently producing a polyamide resin sheet at high speed without impairing the uniformity and transparency.
  • the present invention contains a metal compound and has a melting specific resistance at 260 ° C. 1.5 How X 1 0 5 melt-extruded the Boriami de ⁇ is Omega zeta following film Fushimi, electrostatically brought into close contact with the rotating cooling roll the melt extrusion film, to produce a made of Polyamide films by rapid cooling solidification,
  • the present invention also relates to a method for producing a stretched polyamide film by further stretching the film in at least one direction for at least 1.1 times. According to the present invention, a polyamide film having excellent thickness uniformity and transparency can be efficiently produced.
  • the present invention by incorporating an appropriate amount of the metal compound relative made of Polyamide resin, it is possible to a melt specific resistance at 2 6 0 ° C to 1 0 5 Omega hereinafter 1 .5 X, An unstretched polyimide film and a stretched film having excellent uniformity in electrostatic adhesion and excellent thickness uniformity can be efficiently produced.
  • melt specific resistance at 2 6 0 ° C of polyamide-de-based resin containing no metal compound is usually nylon 6, nylon 6 6, 1 x 1 0 5 QciK ⁇ 5 x 1 0 5 ⁇ in Helsingborg meta-xylylene azide Pami de CM, nylon 12 has a size of 5 ⁇ 10 5 to 10 ⁇ 10 5 ⁇ , which is disclosed in Japanese Patent Application Laid-Open No. Sho 56-105930. That 6. 0 X 1 0 5 ⁇ Ru contained in the thermoplastic synthetic resin having the following melt specific resistance. However, used as a starting material thereof present invention, and made of Polyamide resin and Hi ⁇ containing no metal compound, melting ratio that put into 2 6 (TC containing a metal compound resistance 1. The following 5 X 1 0 5 Omega polyamic It was found that the resin significantly improved the electrostatic adhesion.
  • polyamide resin used in the present invention examples include homopolymers and copolymers of nylon 6, nylon 66, nylon 12, and polymethaxylylene adipamide.
  • a polyimide resin having a thermoplastic film forming property can also be used. If that does not contain a metal compound, melt specific resistance at 2 6 0 ° C of these ports Riami de resin is a larger value than in normal 1 X 1 0 5 ⁇ .
  • a mixture of these polyamide resins can also be used.
  • a small amount of other organic or inorganic substances such as a lubricant, an antioxidant, an antistatic agent, and a coloring agent may be added to these resins.
  • Examples of the metal compound used in the present invention include alkali metals, alkaline earth metals, aluminum group elements, halides of transition metals, and oxygen oxidation of zeolite. Compounds, phosphorus oxyacid compounds, hydroxides, organic carboxylates, organic sulfonates, etc.
  • a metal base-containing compound capable of forming an amide such as 5-sodium sulfoisophthalic acid may be added to directly bind the metal base to the polyamide chain.
  • the present invention contains a metal compound in the polyamide, and 260.
  • the melting specific resistance at C is 1.5 xl 0 5 Q c
  • the following compounds may be used, and are not limited to the above-mentioned metal compounds.
  • a metal having a small ionization potential such as an alkali metal or an alkaline earth metal, it is also possible to use the metal alone.
  • metal compounds are contained in an amount of 0.0005 to 10% by weight (0.0003 to 3% by weight, preferably 0.0003 to 0.5% by weight of the metal) based on the polyamide resin. by, it is possible to make the melt specific resistance at 2 6 0 hands below 1 .5 x 1 0 5 ⁇ . If the metal compound content is 0.0 0 0 5 wt% or less improves the electrostatic adhesion When the content of the metal compound is 10% by weight or more, the physical properties of the film are unfavorably deteriorated, but the present invention is not limited to the range of the content of the metal compound itself. Absent.
  • the method of adding the metal compound may be any of a method of adding to the starting monomer before polymerization, a method of adding during the progress of polymerization, a method of adding during the extraction step, and a method of adding when drying the pellet. It doesn't matter. It is effective if a metal compound is contained in the finally melt-extruded polyamide resin, and the present invention is limited to these addition methods. is not.
  • a method of electrostatically bringing the film into close contact with the rotary cooling roll a method of applying a charge by performing corona discharge in a streamer-yurona state (Japanese Patent Application Laid-Open No. 55-17559) is particularly useful. It is valid.
  • the present invention is not limited to this method alone, and is applied to a device that brings a normal high-voltage charged electrode close to a molten film to apply electric charge, an application to an electrostatic adhesion device using an air knife, and rotation. It is also possible to apply it to a device in which a cooling roll is coated with a dielectric material and charges of the opposite sign to the high-voltage charging electrode are drawn out by a rotating cooling roll.
  • the take-up speed of the unstretched film in the present invention is not particularly limited. If the take-up speed is increased, air is wound between the rotating cooling roll and the molten film, and a uniform unstretched film cannot be obtained. Containing no traditional metal compound, melting specific resistance of 2 6 0 hand is 1. 5 X 1 0 5
  • the maximum taking-up speed is usually 10 to 20 minutes, whereas in the present invention, even if the taking-up speed is higher than this taking-up speed, the rotating cooling roll is used. Entrapment of air between the molten films is prevented, and an unstretched film having a uniform thickness can be obtained.
  • the unstretched polyamide is suitable for packaging foods and the like as it is. However, if the unstretched polyamide film is further stretched in at least one direction by 1.1 or more, and preferably in two orthogonal directions by 2.0 to 5.0 times, a biaxially stretched film is obtained. It has improved transparency and oxygen barrier properties, and is suitable for various packaging films.
  • a step of extracting monomers and oligomers is required in the raw material production process.
  • the metal compound is added to the raw material for polymerization and polymerization is performed, the metal compound is partially eluted in the extraction step, and the electrostatic adhesion may be reduced. In this case, it is better to add a metal compound after polymerization.
  • the method of adding the metal compound is to add the metal compound directly to the polyamide resin in a tumble dryer. Method, a method of adding another polyamide tree containing a metal compound, and a method of adding an ethylene ionomer resin.
  • the metal compound may be unevenly distributed and stable electrostatic adhesion may not be obtained.Therefore, it is more uniform to add another polyamide resin or an ethylene ionomer resin containing the metal compound. Melt specific resistance is obtained, which is more preferable.
  • the metal base is chemically bonded to the polyamide resin, because good electrostatic adhesion is maintained throughout the extraction step.
  • a polyamide resin having an aromatic residue has a better electrostatic adhesion than a polyamide resin of a spir group.
  • nylon 6 and nylon 66 are the most advantageous and widely used.
  • Copolymerization of aromatic diamine, dicarboxylic acid, or aminocarboxylic acid with nylon & nylon 66 is preferable because electrostatic adhesion is improved.
  • the lower the melt viscosity of the polyamide resin the better the electrostatic adhesion.
  • the melt viscosity at 270 ° C. is preferably from 250 to 400 voids in view of the mechanical strength of the product and the operability of film formation. More preferably, it is preferably at least 400 voids and not more than 180 voids. Is not particularly limited to this range.
  • Poriami de resin was below the melting specific resistance 1.5 X 1 0 5 ⁇ metal compound according to the invention by a child addition, compared with Boriami de resin containing no metal compound, The electrostatic adhesion is remarkably improved, and even if the take-up speed of the rotary cooling roll is increased, air is not trapped between the roll and the film, and a film having excellent thickness uniformity and transparency can be obtained.
  • the melting specific resistance of the resin in the present invention is obtained by inserting a stainless steel electrode into the molten resin kept at 260 ° C., applying a DC voltage of 100 V, and flowing the current value after 1 second to 5 seconds.
  • the specific resistance ( ⁇ , S is the electrode area (cw 2 )
  • L is the distance between the electrodes (CiH)
  • V is the voltage (V)
  • I is the current (A).
  • 0.1 2 L was 1.5 GM.
  • the relative viscosity of the resin was measured by dissolving the resin in 96.3% concentrated sulfuric acid at a concentration of 1.0 / 100 and using an Ostwald degree meter in a constant temperature bath at 20 ° C.
  • the melt viscosity was measured using a Koka type flow tester, and the orifice, orifice length, and load were selected at a temperature of 270 so that the shear rate was 100 to 200 sec- 1. It is. As the measurement sample, the resin immediately before the measurement of the maximum take-off speed was used. At this time, the following equation was used to calculate the melt viscosity.
  • Casting tests were conducted by adding magnesium bromide and zinc chloride to the contents shown in the table in the same manner as in Example 1, and the resin and rotary cooling were performed up to the maximum take-up speed shown in Table 1, respectively. It was possible to prevent air from being trapped between the rolls.
  • Example 1 A nylon 12 pellet having a relative viscosity of 2.1 alone, and a pellet obtained by adding 0.4% by weight of sodium stearate as a metal compound to the pellet and mixing and drying the same were used in Example 1, respectively. Similarly, a casting test was performed, and it was possible to prevent the entrainment of air between the resin and the rotating cooling roll up to the maximum take-up speed shown in Table 1, respectively. Table 1
  • nylon 6 6 2.6 To 600 parts by weight of a nylon salt obtained from adipic acid and hexamethylene diamine, add 400 parts by weight of water and 3 parts by weight of sodium stearate, and perform polycondensation to melt at 260 ° C. resistivity 0. 1 4 X 1 0 5 ⁇ , relative viscosity was obtained nylon 6 6 2.6. Next, a polydynamic brush having a relative viscosity of 2.6 containing 0.4% by weight of silicon dioxide having an average particle size of 3 to 2% as a lubricant. 6 parts by weight of the nylon 66 containing sodium stearate described above were added to 100 parts by weight of the mid pellet, and the pellets were dried and mixed in a rotary vacuum dryer. When the maximum take-off speed was determined, air entrapment between the rotating cooling roll and the molten film could be prevented up to 55 / min. The melt specific resistance of the resin was filed at 0. 5 4 X 1 0 5 ⁇ .
  • the maximum take-off speed was determined using the pellets dried and mixed in the oven.At 37 ffi / min, air was trapped between the rotating cooling roll and the molten film, causing vertical streaks and uneven thickness. Opaque spots occurred. Melt specific resistance of the resin 2. 0 X 1 0 5 ⁇ Death (
  • the pellets were subjected to a residual lactam extraction treatment with ripened water.
  • the maximum take-up speed was determined using the pellets dried and mixed in the machine. As a result, it was possible to prevent the entrainment of air between the rotating cooling roll and the molten film up to 62 6 / min.
  • the melting specific resistance of this resin was 6.1 ⁇ 10 4 ⁇ .
  • the maximum take-off speed was determined in exactly the same manner as in Example 1 except that the melt viscosity of 900 and 250 Nylon nylon 6 was used instead of the melt viscosity of 140 Nylon 6 pellets. Up to 65 / min and 53 / min, air entrapment between the rotating chill roll and the molten film was prevented.
  • the melting specific resistance of the resin was 5.5 x 10 * ⁇ and 5.9 x 10 ⁇
  • Examples 1 to 3, 6 to 8, 10 to 16 and Comparative Example 1 An unstretched film having a uniform thickness without air being caught between the resin obtained in Example 1 and the rotary cooling roll, Unstretched films with vertical streaks with air entrapped between the cooling rotating rolls were stretched 3.5 times in the longitudinal direction between rolls of different peripheral speeds that had been ripened at 70 ° C. The film was stretched in the same direction as the original, and was further fixed at 200 ° C to obtain a biaxially stretched nylon 6 film. Although a film was obtained, the unstretched film containing air was broken in a tenter, and it was extremely difficult to obtain a biaxially stretched film.
  • the thickness of the unstretched film was 150 to 200, and the thickness of the film after biaxial stretching was 12 to 16; ⁇ .
  • Type of object (% by weight) (min) ( ⁇ ⁇ 0 ⁇ ⁇ 3 ⁇ 4)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
ポリアミ ド系フィルムの製造法
発明の分野
本発明は厚み均一性の優れたポリァミ ド系フィルムを高能率的に製造 する方法に関するものである。
発明の背景
ポリアミ ド系フィルムは、 それの持つ強靱性、 耐衝撃性、 耐ピンホー ル性、 酸素遮断性などの特性を活用できる各種包装の分野で広く使用さ れている。 近年、 レトルト食品の伸ぴとともにポリアミ ド系フィルムの 需要も高まっており、 高品質でかつ安 ffiなフィルムの供袷が望まれてい る。
ポリアミ ド系フィルムの製造方法としては、 通常インフレーション法 や Tダイ法による溶融押出し法がある。
Tダイ法により、 ポリアミ ド系フィルムを得る際、 ダイより押出され た溶融フィルムは、 回転冷却ロールにキャストされる。 この時フィルム を冷却回転ロールへ密着させるために、 エアーナイフで空気を吹きつけ る方法(以下エアーナイフ法と呼ぶ)、 高圧電極より溶融フィルムに電荷 を折出させ、 静電気的に密着させる方法(以下静電密着法と呼ぶ)などが 行なわれている。 しかし、 これらのエアーナイフ法ゃ静電密着法による キャスティングにおいても、 引き取り速度が速くなると回転により発生 した随伴流のために回転冷却口一ルとフィルムの間に空気が卷き込まれ て垮一なフィルムが得られなくなる。
静電密着法とは、 ダイと冷却口 ルとの間に例えばワイヤ状の電極を 揷入してフィルム状物に静電荷を付与し、 該フィルム状物と冷却ロール とを静電気的に密着させることにより、 成形されるフィルムの均厚性や 透明性を改良する方法で、 例えば特公昭 3 7 - 6 1 4 2号公報に開示さ れている。 この方法によれば、 溶融押出しされたフィルム状物が静電気 により冷却ロールに強く密着して急冷されるので、 能率よく熱可塑性樹 脂フィルムを製造することができる。
更に、 ポリアミ ド樹脂の場合、 ストリーマコロナ放電状態のコロナ放 電を行ない、 溶融フィルムに電荷を折出させ、 静電気的に回転冷却ロー ルに密着させることを特徵とするポリアミ ド系熱可塑性重合体フイルム の冷却方法が開示 れている(特開昭 5 5 - 1 7 5 5 9号公報)。 この方 法は溶融比抵抗が 6 . 0 X 1 0 6 Ω 以下の合成樹脂に対して有効である ことも公知である。 (特開昭 5 6 - 1 0 5 9 3 0号公報)
しかしながら、 この方法においても、 生産能率を高めようとして冷却 ロールの回転速度を速めると密着力が不十分となり、 シートと回転冷却 ロールとの間に部分的に空気が巻き込まれる。 このような部分では冷却 ロールとシートとの間の熟 ί云達が悪くなり、 密着完全部と密着不完全部 の間に冷却むらができる為、 製品シートの均厚性や透明性が著しく悪く なり、 商品としての価値が損なわれる。 しかも該シートを引き続いて 1 軸または 2軸方向に延伸する場合には、 延伸工程でシートが破断してし まい製膜そのものができなくなる可能性も生じる。
本発明は、 このような従来技術の欠点を克服し均厚性及び透明性を損 なうことなくポリアミ ド樹脂シートを高速で能率良く製造することので きる技術を提供しようとするものである。
発明の概要
本発明は、 金属化合物を含有し、 かつ 2 6 0 °Cにおける溶融比抵抗が 1.5 X 1 05Ω ζ以下であるボリアミ ド榭 をフィルム伏に溶融押出し し、 該溶融押出しフィルムを回転冷却ロールに静電気的に密着させ、 急 冷固化させることによりポリアミ ドフィルムを製造する方法、 ならびに、 該フィルムを、 更に少なくとも 1方向に 1 . 1 ίき以上延伸することによ り延伸ポリアミ ドフィルムを製造する方法に関するものである。 本発明 によって、 厚み均一性および透明性の優れたポリアミ ド系フィルムを能 率的に製造することができる。
本発明によれば、 ポリアミ ド系樹脂に対して適量の金属化合物を含有 させることにより、 2 6 0 °Cにおける溶融比抵抗を 1 .5 X 1 05 Ω 以 下にすることが可能となり、 静電密着性が著しく改善され、 厚み均一性 の優れたポリァミ ド未延伸フィルムおよび延伸フィルムを能率的に製造 し得る。
金属化合物を含有しないポリアミ ド系樹脂の 2 6 0 °Cにおける溶融比 抵抗は、 通常ナイロン 6、 ナイロン 6 6、 ボリメタキシリレンアジパミ ドで 1 x 1 05QciK〜 5 x 1 05 Ω CM, ナイロン 1 2で 5 x 1 05〜 1 0 X 1 05Ω であり、 特開昭 5 6 - 1 0 5 9 3 0号公報で開示されてい る 6 . 0 X 1 0 5 Ω 以下の溶融比抵抗を持つ熱可塑性合成樹脂に含まれ る。 しかし、 これら本発明の出発原料として用いる、 金属化合物を含有 しないポリアミ ド樹脂と比较し、 金属化合物を含有した 2 6 (TCにおけ る溶融比抵抗が 1 . 5 X 1 0 5 Ω 以下のポリアミ ド榭脂は著しく静電密 着性が向上することがわかった。
発明の詳説
本発明に用いるポリァミ ド系樹脂とは、 ナイロン 6、 ナイロン 6 6、 ナイロン 1 2、 ポリメタキシリ レンアジパミ ドの単独重合体、 共重合体 などが挙げられる。 この他に熱可塑性のフィルム形成性を有するポリァ ミ ド樹脂も使用可能である。 金属化合物を含有しない場合、 これらのポ リァミ ド樹脂の 2 6 0 °Cにおける溶融比抵抗は、 通常 1 X 1 0 5 Ω よ り大きな値である。 これらのポリアミ ド樹脂同士を混合したものも使用 可能である。 またこれらの榭脂には少量の他の樹脂、 滑剤、 酸化防止剤、 静電防止剤、 着色剤等の有機または無機の物質が添加されていても良い。 本発明に甩いる金属化合物としては、 アルカリ金属、 アルカリ土類金 属、 アルミニウム族元素、 遷移金属のハロゲン化物、 ィォゥの酸素酸化 合物、 リンの酸素酸化合物、 水酸化物、 有機カルボン酸塩、 有機スルホ ン酸塩などがあり、 具体的には、 塩化ナトリウム、 塩化リチウム、 塩化 カリウム、 塩化マグネシウム、 塩化カルシウム、 塩化アルミニウム、 塩 化亜鉛、 塩化鋦、 塩化コバルト、 臭化ナトリウム、 臭化リチウム、 臭化 マグネシゥム、 沃化カリゥム、 沃化ナトリウム、 硫酸ナトリウム、 硫酸 マグネシゥム、 硫酸亜鉛、 リン酸ナトリゥム、 リン酸カリゥム、 亜リン 酸ナトリウム、 次亜リ ン酸ナトリウム、—次亜リ ン酸カリウム、 水酸化ナ トリウム、 水酸化リチウム、 ステアリ ン酸ナトリウム、 ステアリ ン酸力 リウム、 ステアリ ン酸マグネシウム、 ステアリ ン酸カルシウム、 ステア リ ン酸アルミ二ゥム、 ステアリ ン酸亜鉛、 ォレイン酸カリゥム、 酢酸ナ トリウム、 酢酸カリウム、 安息香酸ナトリウム、 ラウリルスルホン酸ナ トリウム、 ベンゼンスルホン酸ナトリウム、 エチレン系アイオノマーな どが挙げられる。 この他、 5—ナトリウムスルホイソフタル酸の如き、 金属塩基を含有したアミ ド锆合形成可能な化合物を添加してポリアミ ド 鎖に直接金属塩基を結合させてもよい。 本発明はポリアミ ド中に金属化 合物を含有し、 かつ 2 6 0。Cにおける溶融比抵抗が 1 . 5 x l 0 5 Q c 以下のものを用いればよく、 上記金属化合物に限定されるものではない ( また、 アルカリ金属、 アルカリ土類金属などのイオン化ポテンシャルの 小さい金属の場合は、 単体のままで用いることも可能である。 これらの 金属化合物をポリアミ ド榭脂に対して 0.0 0 0 5重量%〜 1 0重量% (金属の量として 0.0 0 0 3〜3重量%、 好ましくは 0.0 0 0 3〜 0.5重量%)含有させることによって、 2 6 0てにおける溶融比抵抗を 1 .5 x 1 05Ω 以下にすることが可能である。 金属化合物含有量が 0.0 0 0 5重量%以下の場合は静電密着性の改善効果も少ない。 金属 化合物含有量が 1 0重量%以上の場合は、 フィルムの物性が低下して好 ましくない。 しかし、 本発明はこれらの金属化合物含有量の範囲自体に 束縛されるものではない。
金属化合物を含有させる方法としては、 重合前に原料モノマーへ添加 する方法、 あるいは重合の進行する途中で添加する方法、 抽出工程で添 加する方法、 ペレツ トを乾燥する時に添加する方法のいずれでもかまわ ない。 最終的に溶融押出しされたポリアミ ド樹脂中に金属化合物が含有 されていれば有効であり、 本発明はこれらの添加方法に束縛されるもの ではない。
本発明において、 フィルムを静電気的に回転冷却ロールに密着させる 方法としては、 特にストリーマユロナ状態のコロナ放電を行ない電荷を 付与する方法 (特開昭 5 5 - 1 7 5 5 9号公報)が有効である。 しかし、 本発明はこの方法のみに束縛されるものではなく、 通常の高圧荷電電極 を溶融フィルムに近付け電荷を付与する装置への適用やエアーナイフを 併用した静電密着装置への適用、 および回転冷却ロールを誘電体で被覆 し、 高圧荷電電極と逆の符号の電荷を回転冷却ロールに折出させる装置 への適用なども可能である。 金属化合物を含有し、 かつ 2 6 0 °Cにおけ る溶融比抵抗が 1 . 5 X 1 0 5 Ω 以下であるポリァミ ド樹脂の場合、 金 属化合物を含有しないポリアミ ド榭謄に比べ、 これらの装置における回 転冷却ロールへの溶融樹脂の静電気的密着性が向上する。
本発明における未延伸フィルムの引き取り速度は特に限定されるもの ではない。 引き取り速度を速くすると回転冷却ロールと溶融フィルムと の間に空 が卷き込まれ、 均一な未延伸フィルムが得られなくなる。 従 来の金属化合物を含有しない、 2 6 0ての溶融比抵抗が 1 . 5 X 1 0 5 Ω より大きいポリアミ ド樹脂を静電密着法によって回転冷却ロールに 引き取る場合、 最高引き取り速度が通常 1 0〜2 0 分であるのに対し て、 本発明ではこの引き取り速度以上においても回転冷却ロールと溶融 フィルム間への空気の巻き込みが防止され、 厚みの均一な未延伸フィル ムが得られる。 該未延伸ポリアミ ドはこのままでも食品などの包装に好 適である。 しかし該未延伸ポリアミ ドフィルムを更に少なくとも 1方向 に 1 . 1倥以上、 好ましくは、 直交する 2方向へ各々、 2 . 0〜 5 . 0 倍延伸した 2軸延伸フィルムにすると、 更に機械的強度や透明性、 酸素 遮断性が向上し、 各種包装フィルムとして好適である。
本発明におけるポリアミ ド系樹脂として、 ナイロン 6のようなラクタ ムおよぴァミノカルボン酸を原料とするポリァミ ド系樹脂を使用した場 合、 原料製造工程でモノマーおよびオリゴマーの抽出工程が必要となる。 この場合、 金属化合物を重合原料に添加し重合を行うと抽出工程におい て金属化合物が一部溶出し、 静電密着性が低下することがある。 この場 合、 重合後に金属化合物を添加する方が良い。 添加する方法としては、 回転式乾燥機内などでポリァミ ド系樹脂に直接金属化合物を添加する方 法、 金属化合物を含有した別のポリアミ ド樹 を添加する方法、 ェチレ ン系アイオノマー樹脂を添加する方法が考えられる。 直接、 金属化合物 を添加すると金属化合物が偏在し安定した静電密着性が得られない場合 があるので、 金属化合物を含有した別のポリアミ ド樹脂やエチレン系ァ ィオノマー樹脂を添加する方が均一な溶融比抵抗が得られ、 より好まし い。 この他、 金属塩基をポリアミ ド樹脂の主縝に化学結合すると、 抽出 工程を通しても良好な静電密着性が維持されるので好ましい。
ポリアミ ド系樹脂のなかでも、 芳香族残基を有するポリアミ ド系樹脂 の方が瞎防族系のポリアミ ド樹脂より静電密着性が良好である。 しかる に、 経済的には、 ナイロン 6やナイロン 6 6が最も有利で、 広く利用さ れる。 ナイロン &ゃナイロン 6 6に芳香族のジァミ ン、 ジカルボン酸、 ァミノカルボン酸を共重合すると、 静電密着性が向上するので好ましい。 また、 使用する.ポリアミ ド樹脂の溶融粘度は低い方が静電密着性が向 上する。 しかし溶融粘度は製品の機械的強度や製膜の操業性から、 2 7 0 °Cにおいて 2 5 0ボイズ以上 4 0 0 0ボイズ以下が好ましい。 更に好 ましくは、 4 0 0ボイズ以上 1 8 0 0ボイズ以下が好ましいが、 本発明 は特にこの範囲に限定されるものではない。
実施例からも明らかなように、 本発明による金属化合物を添加するこ とによって溶融比抵抗 1.5 X 1 05Ω 以下にしたポリァミ ド系樹脂は, 金属化合物を含有しないボリアミ ド系樹脂に比べ、 著しく静電密着性が 向上し、 回転冷却ロールの引き取り速度をたかめてもロールとフィルム 間へ空気の巻き込みが起こらず、 厚み均一性と透明性の優れたフィルム が得られる。
またこのフィルムを使用することによって 1轴および 2軸延伸された 厚み均一性と透明性の優れた延伸フィルムを得ることが可能である。 以下に本発明を実施例を示すことによって更に詳細に説明する。
尚、 本発明における樹脂の溶融比抵抗は、 260 °Cに保った溶融樹脂 中にステンレス製電極を揷入し 1 00Vの直流電圧を加えて、 そのとき 流れる 1秒から 5秒後の電流値より、 比抵抗 p =(S/L)x(V/I )の式 から算出した値である。 ここで は比抵抗(Ω 、 Sは電極面積(cw2)、 Lは電極間距離(CiH)、 Vは電圧(V)、 Iは電流(A)を表わす。 本例での 測定における Sは 0.1 2 Lは 1.5 GMであつた。 また、.実施例中 の樹脂の相対粘度は樹脂を 9 6.3 %濃硫酸に 1.0^/1 0 0 の濃度で 溶解し、 2 0°Cの恒温槽中でォストワルド拈度計を用いて測定した値で あ σ
溶融粘度は、 高化式フローテスターを用い、 剪断速度が 1 0 0〜2 0 0 sec— 1になるようにオリフィス怪、 オリフィス長、 荷童を選ぴ 2 7 0 ての温度で測定した値である。 測定サンプルは、 最高引き取り速 測定 直前の樹脂を用いた。 この時、 溶融粘度を求める計算式は次式を用いた。
Figure imgf000014_0001
ここで、 7? [ボイズ]は溶融粘度、 a[CE]はオリフィス径、 2[csz]はオリ フィス長、 P [dyne/ 2]は荷重、 Q | /sec]は樹脂の流出量を表わす。 実施例中の最高引き取り速度は、 直径 9 O M のスクリューを持つ押 出機を用いて Tダイより 2 6 0〜2 8 0 °Cで、 樹脂をフィルム状に押出 し、 1 0〜2 0てで回転冷却ロールキャストし、 高圧荷電電極より溶融 フィルムに電荷を与え、 回転冷却ロールへの密着を行なった後、 回転冷 却ロールの引き取り速度を徐々に上げていき、 回転冷却ロールと溶融フィ ルム間への空気の巻き込みを防止し得る最高引き取り速度を示した。 実施例 1
滑剤として平均粒径 3 ^ の二酸化珪素を 0 . 4重量%含有する相対粘 度 2 . 6のナイ口ン 6ペレツ トに、 回転式真空乾燥器中でリン酸三ナト リウムの 1 2水塩をナイ口ン 6に対して 0 . 0 5重量%含有するように 添加して混合乾燥した後、 9 0霞 のスク リ ュー押出し機で Tダイより 2 6 0てで樹脂をフィルム状に押出し、 2 0 °Cの回転冷却ロールにキヤ ストした。 この時、 最高引き取り速度が 6 0 /分まで樹脂と回転冷却口 ール間に空気の巻き込みが起こらず厚み斑の少ない透明な未延伸フィル ムが得られた。 この樹脂の 2 5 0。Cにおける溶融比抵抗は、 5 . 7 x 1 0 4 Ω であった。
実施例 2および 3
実施例 1 と同様の方法で臭化マグネシウム、 塩化亜鉛を表中の含有量 となるように添加して、 キャスティ ングテストを行なったところ、 各々 第 1表中の最高引き取り速度まで樹脂と回転冷却ロール間への空気の巻 き込みを防止できた。
比铰例 1 実施例 1〜3と同じ平均粒径 3 zzの二酸化珪素を 0 . 4重量%含有し た相対粘度 2 . 6のナイロン 6を金属化合物を添加しないで、 回耘式真 空乾燥器中で乾燥した後、 実施例 1 と同様のキャスティングテストを行 なったところ、 引き取り速度が 3 5 ¾分のところで、 樹脂と回転冷却口 一ル藺に空気が巻き込まれ、 縦筋が発生して、 厚み斑と不透明箇所が生 じた。 この樹脂の溶融比抵抗は 1 . 8 X 1 0 5 Q c2zであった。
実施例 4
メタキシリレンジァミ ン 4 4 0重量部、 ァジピン酸 4 7 0重量部に対 して、 リ ン酸三ナトリウムの 1 2水塩を 1重量部おょぴ水 4 5 0重量部 を加え、 重縮合を行なって得た相対粘度 2 . 1のポリメタキシリレンァ ジパミ ドを実施例 1と同様に Tダイより 2 6 0 °Cで押出し、 キャスティ ングテストを行なったところ、 引き取り速度が 6 5 /分以上でも樹脂と 回転冷却ロール間に空気の巻き込みが発生せず、 厚み均一性と透明性の 良好な未延伸フィルムが得られた。 この樹脂の溶融比抵抗は、 3 . 9 X 1 0 Q GMであつた。
比铰例 2 実施例 5と同様にポリメタキシリレンアジパミ ドを重縮合で得る際、 リン酸三ナトリウムの 1 2水塩を加えずに、 金属化合物を含有しない相 対粘度 2 . 1のポリメタキシリ レンアジパミ ドを得た。 この樹脂を実施 例 1 と同様に Tダイより 2 6 0 °Cで押出し、 キャスティ ングテストを行 なったところ引き取り速度が 4 0 分のところで樹脂と回転冷却ロール 間に空気が巻き込まれ、 フィルムに縦筋状の斑が発生した。 この樹脂の 溶融比抵抗は 1 . 6 X 1 0 5 Ω であった。
実施例 5及び比铰例 3
相対粘度 2 . 1のナイロン 1 2ペレツ ト単独、 及び該ペレツ トに金属 化合物としてステアリ ン酸ナトリウムを 0 . 4重量%含有するように添 加して混合乾燥したものとを各々実施例 1 と同様にキャスティ ングテス トを行なったところ、 各々第 1表中の最高引き取り速度まで樹脂と回転 冷却ロール間への空気の巻き込みを防止できた。 第 1表
Figure imgf000018_0001
実施例 6
メタキシリレンジァミン 4 4 0重量部、 ァジピン酸 4 7 0重量部に対 して、 リン酸三ナトリゥムの 1 2水塩を 5重量部および水 4 5 0重量部 を加え、 重縮合を行なって、 2 6 0 °Cにおける溶融比抵抗が 0 .2 3 X 1 05QCM, 相対粘度が 2 . 1のポリメタキシリレンアジパミ ドを得た。 次いで、 滑剤として平均粒径 3 の二酸化珪素を 0 .4重量%含有する 相対粘度 2 . 6のポリ力プラミ ドのペレツ ト 1 0 0重量部に対して、 上 記のリン酸三ナトリゥムを含有したポリメタキシリレン力プラミ ドのぺ レツ トを 1 0重量部加え、 回転式真空乾燥器中で乾燥および混合したぺ レツ トを用いて最高引き取り速度を求めたところ、 5 5 分まで回転冷 却ロールと溶融フィルム間への空気の巻き込みを防止できた。 この樹脂 の溶融比抵抗 5 .5 x 1 0 であつた。
実施例 7
(金属化合物を含有するポリアミ ド樹脂の合成)
アジピン酸とへキサメチレンジアミ ンから得たナイロン塩 6 0 0重量 部に対して水 4 0 0重量部とステアリン酸ナトリゥム 3重量部加えて、 重縮合を行ない、 2 6 0 °Cにおける溶融比抵抗が 0. 1 4 X 1 05Ω 、 相対粘度が 2.6のナイロン 6 6を得た。 次いで、 滑剤として平均粒径 3〃2Ζの二酸化珪素を 0.4重量%含有する相対粘度 2.6のポリ力ブラ ミ ドのペレツ ト 1 0 0重量部に対して上記のステアリン酸ナトリゥムを 含有したナイロン 6 6のペレツ トを 6重量部加えて、 回転式真空乾燥器 中で乾燥および混合したペレツ トを用いて、 最高引き取り速度を求めた ところ、 5 5 /分まで回転冷却ロールと溶融フィルム間への空気の巻き 込みを防止できた。 この樹脂の溶融比抵抗は 0 . 5 4 X 1 0 5 Ω であつ た。
比较例 4
メタキシリレンジァミ ン 4 4ひ重量部、 アジピン酸 4 7 0重量部に対 して、 水 4 5 0重量部加え、 重縮合を行なって、 2 6 0 °Cにおける溶融 比抵抗が 2 . 2 X 1 0 5 Ω ο¾, 相対粘度が 2 . 1のポリメタキシリレンァ ジパミ ドを得た。 これを滑剤として平均粒怪 3 の二酸化珪素を 0 . 4 重量%含有する相対粘度 2 . 6のポリ力プラミ ドのペレツ ト 1 0 0重量 部に対して 1 0重量部加え、 回転式真空乾燥器中で乾燥および混合した ペレツ トを用いて最高引き取り速度を求めたところ 3 7 ffi/分のところで 回転冷却ロールと溶融フィルム間に空気が卷き込まれ、 縦筋が発生して 厚み斑と不透明箇所が生じた。 この樹脂の溶融比抵抗は 2 . 0 X 1 0 5 Ω であつた (
第 2表
Figure imgf000021_0001
実施例 8
滑剤として平均粒径 3 の二酸化珪素を 0 . 4重量%含有する相対粘 度 2 . 6のポリ力プラミ ドのペレツ ト 1 0 0重量部に対して、 アイオノ マー樹脂 [三井ポリケミカル(社)製、 商品名「ハイミ ラン 1 6 0 5」]を 1 . 5重量部加え、 回転式真空乾燥機中で乾燥および混合したペレ':; ト を用いて最高引き取り速度を求めたところ、 5 9/ /分まで回転冷却口一 ルと溶融フィルム間への空気の卷き込みを防止できた。 この樹脂の溶融 比抵抗は 5. 5 X 1 04Ω であつた。
実施例 9
相対粘度 2.1のナイロン 1 2ペレッ ト 1 0 0重量部に対して、 アイ オノマー樹脂 [三井ポリケミカル(社)製、 商品名「ハイミ ラン 1 60 1」] を 3重量部加え、 回転式真空乾燥機中で乾燥および混合したペレツ トを 用いて最高引き取り速度を求めたところ 4 5 /分まで回転冷却ロールと 溶融フィルム間への空気の巻き込みを防止できた。 この樹脂の溶融比抵 抗は 1 .2 X 1 Q 5QG であった。
実施例 1 0
ィプシロン力プロラクタム 1 0 0重量部に対して、 スルホイソフタル 酸ナトリゥムとへキサメチレンジアミ ンのナイロン塩 2 5重量%水溶液 を 0.5重量部加えて、 開環重合を行ない、 ナイロン 6のペレツ トを得― た。 熟水による残存ラクタムの抽出を行なった後、 抽出分 1.0重量% 以下、 2 6 0 °Cにおける溶融比抵抗 5.4 x 1 04Ω^、 相対粘度 2.6 のナイロン 6のペレツ トを得た。 回転式真空乾燥機中で乾燥および混合 したペレツ トを用いて最高引き取り速度を求めたところ 5 '7 /分まで回 転冷却ロールと溶融フィルム間への空気の巻き込みを防止できた。
実施例 1 1
ィプシロン力プロラクタム 1 0 0重量部、 スルホイソフタル酸ナトリ ゥムのへキサメチレンジアミ ン塩の 2 5重量%水溶液を 5重量部加えて、 開環重合を行ない、 ナイロン 6のペレッ トを得た。 熟水による残存ラク タムの抽出を行なった後、 抽出分 1 .0重量%以下、 2 6 0 °Cにおける 溶融比抵抗が 0. 1 6 x 1 05QciK、 相対粘度 2.6のナイロン 6ペレツ トを得た。
該ペレッ トを 2 6 0てにおける溶融比抵抗が 1 .9 X 1 0 5ΩΜ、 相対 粘度 2.6のナイロン 6ペレッ ト 1 0 0重量部に対して 5童量部加え、 回転式真空乾燥機中で乾燥および混合したペレツ トを用いて最高引き取 り速度を求めたところ 5 7¾分まで回転冷却ロールと溶融フィルム間へ の空気の巻き込みを防止できた。 この樹脂の溶融比抵抗は 5.3 X 1 04 Ω cmであつた。 実施例 1 2
ィプシロン力プロラクタム 1 0 0重量部に対して、 メタキシリレンジ ァミン 0.9重量部、 アジピン酸 7.4重量部を 1 4.3重量部の熟水に 溶解したナイロン塩水溶液を加え、 1 8 0-240 °Cで加圧重縮合した 後、 更に 24 0〜2 7 0 °Cで常圧重縮合を行ない相対粘度 2.6の共重 合ポリアミ ド系樹脂ペレツ 卜を得た。
該ペレツ トを熱水による残存ラクタム抽出処理を行なった後、 該ペレツ ト 1 0 0重量部に対してリン酸三ナトリウ A · 1 2水塩 0.0 5重量部 を加え回耘式真空乾燥機中で乾燥およぴ混合したペレッ トを用いて最高 引き取り逮度を求めたところ、 5 9 /分のところで回転冷却ロールと溶 融フイルム間への空気の巻き込みを防止できた。 この榭脂の溶融比抵抗 は 5.9 X 1 0 +Ωο;κであつた。
実施例 1 3
ィプシロン力プロラクタム 1 0 0重量部に対して、 メタキシリレンジ ァミン 1 3.8重量部、 アジピン酸 1 4.8重量部を 2 8.6重量部の熱 水に溶解したナイロン塩水溶液を加え、 1 80〜24 0てで加圧重縮合 した後、 更に 2 4 0〜 2 7 0 °Cで常圧重縮合を行ない、 相対粘度 2 . 6 の共重合ポリアミ ド樹脂ペレツ トを得た。
該ペレツ トを熟水による残存ラクタム抽出処理を行なった後、 該ペレツ ト 1 0 0重量部に対してリン酸三ナトリウム , 1 2水塩 0 . 0 5重量部 を加えて、 回転式真空乾燥機中で乾燥および混合したペレツ トを用いて 最高引き取り速度を求めたところ 6 2 ;¾/分まで回転冷却ロールと溶融フィ ルム間への空気の巻き込みを防止できた。 この樹脂の溶融比抵抗は 6.1 X 1 04Ω であつた。
実施例 1 4
溶融粘度 1 4 0 0ボイズのナイロン 6ペレ ':/ トにリン酸三ナトリウム • 1 2水塩を 1重量%加え、 回転式真空乾燥機中で乾燥および混合した ペレ'ソ トを 2軸押出し機より押し出し、 ペレ':; トにした。 該ペレツ トを 更に溶融粘度 1 4 0 0ボイズのナイロン 6ペレッ ト 1 0 0重量'部に対し て、 5重量部加え、 回転式真空乾燥機中で乾燥および混合したペレッ ト を用いて最高引き取り速度を求めたところ、 6 0 /.分まで回転冷却ロー ルと溶融フィルム間への空気の巻き込みを防止できた。 この樹脂の溶融 比抵抗は 5.7 X 1 04Ω であつた。
実施例 1 5および実施例 1 6
溶融粘度 1 4 0 0ボイズのナイロン 6ペレツ トの代わりに溶融粘度 9 0 0ボイズおよび 2 5 0 0ボイズのナイロン 6を用いた以外は実施例 1 と全く同様にして最高引き取り速度を求めたところ 6 5 /分および 5 3 /分まで回転冷却ロールと溶融フィルム間への空気の巻き込みを防止で きた。 樹脂の溶融比抵抗は 5.5 x 1 0 *Ω および 5.9 X 1 0 ζΙοπで つた
実施例 1 Ί
実施例 1〜3、 6〜8、 1 0〜 1 6および比铰例 1で得られた樹脂と 回転冷却ロールとの間に空気を巻き込まなかった厚みの均一な未延伸フィ ルムと、 樹脂と冷却回転ロール間に空気を巻き込んだ縦筋のある未延伸 フィルム各々を 7 0てに加熟された周速の異なるロール間で縦方向に 3.5倍延伸した後、 1 ひ 0てのテンターで 3.7倍模方向に延伸し、 更 に 2 0 0 °Cで熟固定して 2軸延伸ナイロン 6フィルムを得る操作を行なつ たところ、 空気を巻き込まなかつた未延伸フィルムからは 2軸延伸フィ ルムが得られたが、 空気を巻き込んだ未延伸フィルムはテンター中で破 断し 2軸延伸フィルムを得ることが極めて困難であった。 尚、 この時の 未延伸フィルムの厚みは、 1 5 0〜 2 0 0 であり、 2軸延伸後のフィ ルムの厚みは 1 2〜 1 6 ;κであった。 第 3表 - 金属塩基を含有するポリァミ ド樹脂の最高引き取り速度と溶融比抵抗 樹脂(A)の原料- (A) /(B) 最高引取溶融比 スルホイソフタルィプシロン (B)は り速度 抵抗 酸ナトリウムとへ力ブロ ナイロン
キサメチレンジァラクタム 6を使用
ミ ンのナイ口ン塩
25重量%水溶液
(重量部) (重量比) ( 分) (X 105Ωοζ¾) 実施例 10 0.5 100 100/0 57 0.54 実施例 11 5 100 10/100 57 0.53
第 4表 各種芳香環を共重合したポリアミ ド樹脂の最高引き取り速度と溶融比 抵抗 ポリアミ ド樹脂 金属化合物 最高引取溶融比 単鼍体の 組成 金属化合添加物 り速度 抵抗
物の種類 (重量%) ( 分) (χ ΐ0 Ω ο¾)
S -力プロ 100 リン酸三
ラクタム ナトリ ウ
実施伊 U2メタキシリ 0. 9 ム · 12 0.05 59 0.59
レンジアミ 水塩
ァジピン酸 7.4
e -力プロ 100 リ ン酸三
ラクタム ナ ト リ ウ
実施例 13メタキシリ 13.8 ム · 12 0.05 62 0. 61
レンジアミ 水塩
アジピン酸 14.8

Claims

請求の範囲
1. 金属化合物を含有し、 かつ 2 6 0てにおける溶融比抵抗が 1 . 5 X 1 0 5 Ω (^以下であるポリアミ ド樹脂をフィルム状に溶融押出しし、 該 溶融押出しフィルムを回転冷却ロールに静電気的に密着させ、 急冷固化 させながら引き取ることを特徵とするポリアミ ド系フィルムの製造法。
2. 特許請求の範囲第 1項におけるポリアミ ド樹脂が、 主たる繰り返 し単位が力ブラミ ドであるポリアミ ド樹脂 1 0 0重量部に対して、 金属 化合物を含有し、 かつ 2 6 0 °Cにおける溶融比抵抗がし 0 X 1 0 5 Q CE 以下のポリアミ ド樹脂を 0 . 0 1〜3 0重量部配合した組成物であるこ とを特徵とするポリアミ ド系フィルムの製造法。
3. 特許請求の範囲第 1項におけるポリアミ ド榭脂が、 芳香族ァミノ カルボン酸残基、 芳香族ジカルボン酸残基または/および芳香族ジァミ ン残基が 2重量%以上 2 0重量%以下かつ脂肪族アミノカルボン酸残基、 脂肪族ジカルボン酸残基または/および脂肪族ジアミ ン残基が 8 0重量 %以上 9 8重量%以下より成るポリアミ ド系樹脂で、 かつ金属化合物を 含有し、 2 6 0てにおける溶融比抵抗が 1 . 5 X 1 0 5 Ω 以下であるポ リアミ ド系樹脂であることを特徵とするポリアミ ド系フィルムの製造法。
4. 特許請求の範囲第 1項におけるポリアミ ド樹脂が主鎖に金属塩基 を含有するポリアミ ド系樹脂 (A) 1〜 1 0 0重量部と 2 6 0 °Cにおける 溶融比抵抗が 1.5 X 1 05Ω 以上であるポリアミ ド系榭脂(Β) 9 9〜 0重量部とを含有した組成物であることを特徵とするポリアミ ド系フィ ルムの製造法。
5. 特許請求の範囲第 1項におけるポリアミ ド樹脂が、 ポリアミ ド樹 脂に 0. 1〜 1 0重量%のエチレン系アイオノマー樹脂を配合した組成 物であることを特徵とするボリァミ ド系フィルムの製造法。
6. 特許請求の範囲第 1項におけるポリアミ ド樹脂が金属化合物を含 有し、 かつ 2 6 0 °Cにおける溶融比抵抗が 1.5 X 1 05Ω 以下であり, 2 7 0 における溶融粘度が 2 5 0〜 1 8 0 0ボイズのポリアミ ド系樹 脂であることを特徵とするポリアミ ド系フィルムの製造法。
7. 特許請求の範囲第 1項,第 2項.第 3項,第 4項.第 5項,第 6項にお けるフィルムを更に少なくとも 1方向に 1 . 1倍以上延俾するポリアミ ド系フィルムの製造法。
PCT/JP1985/000116 1984-05-22 1985-03-08 Process for producing polyamide film WO1985005315A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP59/104066 1984-05-22
JP59104066A JPS60247540A (ja) 1984-05-22 1984-05-22 ポリアミド系フイルムの製造方法
JP59109981A JPS60253524A (ja) 1984-05-30 1984-05-30 ポリアミド系フイルムの製造法
JP59/109981 1984-05-30
JP59112445A JPS60255413A (ja) 1984-05-31 1984-05-31 ポリアミド系フイルムの製造方法
JP59/112445 1984-05-31
JP15342084A JPS6131225A (ja) 1984-07-24 1984-07-24 ポリアミド樹脂シ−ト又はフイルムの製造方法
JP59/153420 1984-07-24

Publications (1)

Publication Number Publication Date
WO1985005315A1 true WO1985005315A1 (en) 1985-12-05

Family

ID=27469178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000116 WO1985005315A1 (en) 1984-05-22 1985-03-08 Process for producing polyamide film

Country Status (4)

Country Link
US (1) US5000889A (ja)
EP (1) EP0182910B1 (ja)
KR (1) KR920002398B1 (ja)
WO (1) WO1985005315A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002581A (ko) * 1999-06-16 2001-01-15 홍순달 나일론 플랫사의 제조방법
US6984708B2 (en) * 2002-10-04 2006-01-10 Invista North America S.A.R.L. Spandex of a particular composition and process for making same
JP4206837B2 (ja) * 2003-06-18 2009-01-14 三菱瓦斯化学株式会社 回分式加熱装置
US7902287B2 (en) * 2008-01-21 2011-03-08 Basf Aktiengesellschaft Polyamide resin composition and method of preparing
US20130320596A1 (en) * 2012-05-29 2013-12-05 A.J. Plastic Public Company Limited Molten plastic film pinning apparatus and method for polyamide or polylactic acid film manufacturing process
ES2702794T3 (es) * 2012-07-30 2019-03-05 Kyoto Mat Co Ltd Revestimiento y acero revestido

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS376142B1 (ja) * 1961-05-01 1962-06-27

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL137488C (ja) * 1966-09-16
US3898200A (en) * 1972-09-06 1975-08-05 Allied Chem Cationic dyeable polyamide of improved physical properties
US4111625A (en) * 1974-08-07 1978-09-05 Imperial Chemical Industries Limited Polymeric film production
JPS5849169B2 (ja) * 1976-09-29 1983-11-02 旭化成株式会社 金属粉充填熱可塑性樹脂フイルムまたはシ−トおよびその製造法
JPS5517559A (en) * 1978-07-25 1980-02-07 Toyobo Co Ltd Method of cooling polyamide polymer sheet
JPS5923270B2 (ja) * 1978-08-02 1984-05-31 東洋紡績株式会社 ポリアミド系重合体延伸フイルムの製造法
US4268464A (en) * 1979-08-16 1981-05-19 Toyo Boseki Kabushiki Kaisha Electrostatic pinning of extruded polyamide film
DE3114390A1 (de) * 1981-04-09 1982-11-04 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polyamidfolien
JPS6058830A (ja) * 1983-09-12 1985-04-05 Toyobo Co Ltd ポリアミドフイルムの製造法
JPS6061225A (ja) * 1983-09-13 1985-04-09 Toyobo Co Ltd ポリカプラミド系フイルムの製法
JPS59229314A (ja) * 1984-05-16 1984-12-22 Diafoil Co Ltd ポリエステルフイルム
JPH076142A (ja) * 1993-04-20 1995-01-10 Mitsubishi Electric Corp マルチエージェント協調システム及びその方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS376142B1 (ja) * 1961-05-01 1962-06-27

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBUNSHI GAKKAI-HEN, "Plastic Kako no Kiso" 25 March 1982 (25. 03. 82) KOGYO CHOSAKAI p 317-319 *
See also references of EP0182910A4 *

Also Published As

Publication number Publication date
KR920002398B1 (ko) 1992-03-23
EP0182910A1 (en) 1986-06-04
KR850008499A (ko) 1985-12-18
US5000889A (en) 1991-03-19
EP0182910A4 (en) 1988-09-28
EP0182910B1 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
EP0475720B1 (en) Polyamide resin composition and film therefrom
JP5716318B2 (ja) 回収ポリエステル樹脂の再生方法、およびリサイクルポリエステル樹脂を用いた成形品
WO1985005315A1 (en) Process for producing polyamide film
JPH0411373B2 (ja)
JPH05492A (ja) ポリアミド系積層二軸延伸フイルム
JPS634772B2 (ja)
JPH0570575B2 (ja)
JPS5839656B2 (ja) ポリエステルフイルムの製造法
JPH0146303B2 (ja)
JPS6227129A (ja) ポリカプラミド系フイルムの製造法
US2374126A (en) Composition of matter
JPH0149104B2 (ja)
JPS62104730A (ja) ポリカプラミド系フイルムの製造法
JPH0573575B2 (ja)
JPS6324812B2 (ja)
JPS6227128A (ja) ポリカプラミド系フィルムの製造法
EP1385906A1 (de) Polyamid-formmassen zur herstellung transparenter folien
JP3946478B2 (ja) ポリアミドフィルム
JP2917401B2 (ja) 耐熱水性の優れた二軸延伸ポリアミドフィルム
JPS5852821B2 (ja) ナイロン系延伸フイルム及びその製造法
JP4434433B2 (ja) バリアシュリンクフィルム
KR970006756B1 (ko) 필름제조용 폴리아미드 수지 조성물
JPH0853617A (ja) ポリアミド樹脂組成物及び二軸延伸フィルム
JPH0527532B2 (ja)
JPH0940862A (ja) フィルム用ポリアミド樹脂組成物およびフィルム

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): FR GB

WWE Wipo information: entry into national phase

Ref document number: 1985901550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985901550

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985901550

Country of ref document: EP