US3766634A - Method of direct bonding metals to non-metallic substrates - Google Patents

Method of direct bonding metals to non-metallic substrates Download PDF

Info

Publication number
US3766634A
US3766634A US00245889A US3766634DA US3766634A US 3766634 A US3766634 A US 3766634A US 00245889 A US00245889 A US 00245889A US 3766634D A US3766634D A US 3766634DA US 3766634 A US3766634 A US 3766634A
Authority
US
United States
Prior art keywords
metallic
copper
eutectic
metallic member
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00245889A
Other languages
English (en)
Inventor
G Babcock
W Bryant
C Neugebauer
J Burgess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3766634A publication Critical patent/US3766634A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate

Definitions

  • ABSTRACT A method for direct bonding of metallic members to non-metallic members at elevated temperatures in a controlled reactive atmosphere without resorting to the use of electroless plating, vacuum deposition or intermediate metals.
  • the method comprises placing a metal member such as copper, for example, in contact with a non-metallic substrate, such as alumina, heating the metal member and the substrate to a temperature slightly below the melting of the metal, e.g., between approximately 1,065C. and 1,080C. for copper, the heating being performed in a reactive atmosphere, such as an oxidizing atmosphere, for a sufficient time to create a copper-copper oxide eutectic melt which, upon cooling, bonds the copper to the substrate.
  • a reactive atmosphere such as an oxidizing atmosphere
  • the present invention relates to improved bonds and methods of bonding together non-metallic members to metal members and non-metallic members to other non-metallic'members.
  • This application relates to concurrently filed application Ser. No. 245,890 of common assignee, the entire disclosure of which is incorporated herein by reference thereto.
  • Another object of this invention is to provide a bond and a method of bonding non-metallic refractory materials together or to metal members in a simple heating step without the need for intermediate wetting agents.
  • Yet another object of this invention is to provide a tenacious bond and a method of forming this bond between a non-metallic refractory material and a metal which is useful in the formation of integrated circuit modules, and to provide high current carrying electrical conductors on insulating members with high thermal conductivity paths to a heat sink and to provide hermetic seals between two non-metallic refractory materials.
  • our invention relates to bonds and methods of bonding together non-metallic members to metallic members.
  • a bond between metallic and non-metallic members is formed by placing a metallic member in contact with a non-metallic member preferably exhibiting refractory characteristics and elevating the temperatures of the members in a reactive atmosphere of selected gases and at controlled partial pressures for a sufficient time to produce a eutectic composition which exhibits a eutectic melt.
  • This eutectic melt forms at a temperature below the melting point of the metallic member and wets the metallic member and the non-metallic refractory member so that upon cooling, a tenacious bond is formed between the metallic and non-metallic members.
  • Useful metallic materials include copper, nickel, cobalt and iron, for example.
  • Useful reactive gases include oxygen, phosphorusbearing compounds and sulfur-bearing compounds, for example. In general, the amount of reactive gas necessary to produce tenacious bonds is dependent, in part, upon the thickness of the metallic and non-metallic members and the times and temperatures required to form the eutectic melt.
  • FIG. 1 illustrates a typical bond between nonmetallic and metallic materials in accord with our invention
  • FIG. 2 is a series of schematic illustrations in the process of making a metal to non-metal bond in accord with one embodiment of our invention
  • FIG. 3 is a flow diagram illustrating the process steps in accord with the embodiment of FIG. 2;
  • FIGS. 4 and 5 illustrate still other bonds made in accord with our invention
  • FIG. 6 schematically illustrates a horizontal furnace useful in practising our invention.
  • FIG. 7 schematically illustrates a vertical furnace useful in practising our invention.
  • FIG. 1 illustrates, by way of example, a typical bond 11 between a non-metallic refractory member 12 and a metallic member 13.
  • the bond 11 comprises a eutectic composition formed with the metallic member and a reactive gas in accord with the novel aspects of our invention.
  • non-metallic material is intended to include refractory materials such as alumina (A1 0 beryllia (BeO), fused silica or other useful materials, such as titanates and spinnels, for example.
  • alumina and beryllia are particularly useful in the practice of our invention since they exhibit a high thermal conductivity which makes them particularly useful for semi-conductor integrated circuit applications or in high power electrical circuits.
  • other nonmetallic refractory materials may also be employed, if
  • the metallic member 13 may include such materials as copper, iron, nickel, cobalt, chromium and silver, for example. Also, alloys of these materials, such as copper-nickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel, silver-gold, and ternary compositions of iron, nickel and cobalt, are useful in practising our invention. As will become more apparent from the following description, still other metallic materials, such as beryllium-copper, for example, may also be advantageoujsly employed, if desired.
  • FIG. 2 illustrates a non-metallic refractory material 12, such as alumina or beryllia, for example, with a metallic member 13 overlying the nonmetallic refractory substrate 12.
  • the substrate 12 and the metallic member 13 are placed in a suitable oven or furnace including a reactive atmosphere which at an elevated temperature forms a eutectic composition 11 on the surfaces of the metallic member 13.
  • eutectic or eutectic composition means a mixture of atoms of the metallic member and the reactive gas or compound formed between the metal and the reactive gas.
  • the eutectic is a mixture of copper and copper oxide.
  • the metal is nickel and the reactive gas is phosphorus, the eutectic is a mixture of nickel and nickel phosphide.
  • the metallic member is cobalt and the reactive gas is a sulfur-bearing gas,"the eutectic is formed between cobalt and cobalt sulfide.
  • Table I is'a representative listing of still other eutectics which are useful in practising our invention. These eutectics are formed by reacting the metallic member to be bonded with a reactive gas c'ontrollably introduced into the'oven or furnace.
  • the eutectic composition is believed to form with one of the elemental metals, generally the one with the lower melting point.
  • One factor which appears to affect the tenacity and uniformity of the bond is the relationship between the melting point of the metallic member and the eutectic approximately 30 to 50C. of the melting point of the metallic member, for example, the metallic member tends to plastically conform to the shape of the substrate member and thereby produce better bonds than those eutectics which become liquidus at temperatures greater than approximately 50C. below the melting point of the metallic member.
  • the uniformity of the bond therefore appears to be related to the creep of the metal which becomes considerable only near the melting point. From Table I, for example, it can be seen that the following eutectic compounds meet this requirement: copper-copper oxide, nickel-nickel oxide, cobalt-cobalt oxide, iron-iron oxide and copper-copper sulfide.
  • FIG. 4 illustrates an alternative embodiment of our invention wherein a non-metallic refractory material 12 has two metallic members 13 bonded to opposite surfaces thereof by bonds 1].
  • FIG. 5 illustrates still another embodiment of our invention wherein two non-metallic members 12, such as alumina or beryllia, for example, are bonded together by a metallic member 15.
  • the eutectic forms in substantially the same manner as described above but for the fact that bonding occurs on both surfaces of the metallic member 15.
  • This embodiment of our invention is particularly useful in forming hermetic seals between non-metallic refractory materials, for example, such as those employed in the fabrication of vacuum tubes, such as high frequency type tubes.
  • FIG. 6 illustrates a horizontal furnace comprising an elongated quartz tube 22,,for example, having a gas i nlet 23 at one end thereof and a gas'outlet 24 at the other end.
  • the quartz tube 22 also includes an opening or port 25 through which materials are placed into and removed from the furnace. The materials are placed on a holder 26 having a push rod-27 extending through one end of the furnace so that the holder and materials placed thereon may be introduced and removed from the furnace.
  • the furnace 21 is also provided with suitable heating elements, illustrated in FIG. 6 as electrical wires 28 which surround the quartz tube 22 in the region to be heated.
  • the electrical wires 28 may, for example, be
  • thermocouple 29 which extends through an opening in the quartz tube so that electrical connections can bemade thereto.
  • FIG. 6 also illustrates a substrate 12 such as a nonmetallic refractory material positioned on the holder 26 and a metallic material 13 overlying the substrate 12. These materials are introduced into the quartz tube through the opening 25 which is then sealed by suitable stopper means.
  • a substrate 12 such as a nonmetallic refractory material positioned on the holder 26 and a metallic material 13 overlying the substrate 12. These materials are introduced into the quartz tube through the opening 25 which is then sealed by suitable stopper means.
  • reactive gas flow or atmosphere means a mixture of an inert gas such as argon, helium or nitrogen, for example, with a controlled minor amount of a reactive gas, such as oxygen, a phosphorus-containing gas such as phosphine, for example, or a sulfur-containing gas such as hydrogen sulfide, for example.
  • a reactive gas such as oxygen, a phosphorus-containing gas such as phosphine, for example, or a sulfur-containing gas such as hydrogen sulfide, for example.
  • the amount of reactive gas in the total gas flow is dependent, in part, on the materials to be bonded and the thickness of the materials, in a manner more fully described below.
  • the partial pressure of the reactive gas must exceed the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature. For example, when bonding copper members to refractory members in a reactive atmosphere including oxygen, the partial pressure of oxygen must be above 1.5 X atmosphere at the eutectic temperature of 1,065C.
  • the furnace is then brought to a temperature sufficient to form a eutectic liquidus or melt at the metal-substrate interface.
  • a temperature sufficient to form a eutectic liquidus or melt at the metal-substrate interface.
  • the temperature of the furnace is brought to between approximately 1,065C. and 1,075C.
  • a copper-copper oxide eutectic forms on the copper member 13. This eutectic melt then wets the copper and the alumina to form a tenacious bond therebetween.
  • the times necessary to form this eutectic melt range between approximately 10 minutes for 1- mil-thick copper members and approximately 60 minutes for ZSO-mil-thick copper members.
  • a more detailed relationship between copper thickness and time at an elevated temperature of between 1,065 and l,075C. is presented below in Table II for a reactive atmosphere including oxygen.
  • Alumina 250 25 Mil, 96% 60 Alumina Table ll illustrates the relationship between copper thickness, non-metallic refractory material thickness and firing time in the furnace, i.e., the time at which the metal-non-metal materials remain in the furnace. From this table it is readily apparent that the firing time increases with the metal thickness, although there does not appear to be a linear relationship between the two.
  • FIG. 7 illustrates a vertical furnace 31 including a vertically positioned quartz tube 32, for example, with a carbon susceptor 33 positioned on a fused silica pedestal 34.
  • the quartz tube 32 is sur rounded with RF. heating coils 35 which are powered by an external R.F. generator, not shown.
  • FIG. 7 also illustrates a substrate 36 such as a nonmetallic refractory material resting on the susceptor 33 with a metal member 37 placed thereover.
  • inert and oxidizing gases are introduced through inlets 38 and 39, respectively.
  • the combined gas flows pass through conduit 40 onto the metallic and non-metallic members and exhaust through an exhaust outlet 41.
  • Flow meters 42 and 43 on each inlet monitor and control the rate of flow of the gases into the furnace.
  • the operation of the vertical furnace will be described with reference to the formation of a bond between a S-mil-thick copper member and an approximately -mil-thick beryllia member.
  • the flow meters 42 and 43 are adjusted so that pure argon is introduced at inlet 38 and argon containing 2 per cent oxygen is introduced at inlet 39.
  • the quartz tube is then flushed or purged for approximately 10 minutes with a flow rate of approximately 2 cubic feet per hour of argon and approximately 1 cubic foot per hour of the argon-containing oxygen gas produces a total oxygen content in the combined gases of approximately 0.04 molar per cent.
  • the temperature of the susceptor, beryllia and copper members is maintained at room temperature.
  • the RF. power is applied until the temperature of the copper member exceeds 1,065C., but is below l,083C. Typically, 2 to 5 minutes are required to produce this temperature which may, for example, be monitored optically.
  • Optical monitoring of temperature is well known in the art and as the copper member heats up from room temperature, a red-brown oxidation color typical of copper oxide appears on the surface. Above 600C., the copper surface emits light strongly. At a temperature of 1,065C., a liquid layer is observed around the copper member.
  • the liquid layer wets both the beryllia and copper members as evidenced by a drastic color change. Wetting first occurs at the outer edges of the copper member where a black color appears which then moves toward the center of the copper, until the entire copper member appears black to the eye. Under these conditions, the copper member retains its structural integrity and does not break up into separate liquid droplets. When the wetting process is completed over the entire surface area, the R.F. power is removed and the members permitted to cool. Upon removal of the copper and beryllia from the furnace, the copper is strongly bonded to the beryllia and bond strengths in excess of 20,000 pounds per square inch have been observed.
  • the shape of the bonded copper member is substantially the same as that of the original unbonded copper. However, there is some evidence of oxidation and precipitation of copper oxide in the bonded member. Also, some recrystallization of the grain structure within the copper member is discernible.
  • the tenacious bonds formed in accord with our invention result from the reaction of the metal with the reacting gas during the heating period prior to the formation of the eutectic melt. During this period, a small amount of the reacting gas dissolves into the metal, but most of it reacts with the metal to form a eutectic with the metal over its exposed surfaces. At'the eutectic temperature, 1,065C. for copper-oxide, for example, a liquid phase of or near the eutectic composition forms a skin around the metal. The thickness of this molten skin depends upon the partial pressure of the reacting gas and the length of time at the elevated temperature.
  • the eutectic Under conditions permitting the formation of the eutectic, the eutectic appears to wet the metal and the non' metallic refractory material in such a way that upon cooling, a strong bond forms between the two materials.A strong bond has also been observed between pure copper at its melting point of 1,08'3C., in theabsence of a reacting gas (or even in a reducing atmosphere), however,the copper member loses its structural integrity and forms liquid droplets which are bonded to the non-metallic refractory material.
  • the partial pressure of the reacting gas if the partial pressure of the reacting gas is too high, all the metal reacts with the reactive gas and forms, for example, an oxide, sulfide, phosphide, etc;, which prevents the formation of the eutectic melt.
  • an intermediate reacting gas partial pressure is required so that both the eutectic melt phase and the metallic phase are present simultaneously. Tests have illustrated that extremely strong bonds are achieved when both phases are present. Accordingly, in practising our invention the partial pressure of the reacting gas must be sufficiently great to permitthe formation of a eutectic with the metal butnot so great as to completely convert the metal to the oxide, sulfide, phosphide, etc. during the bonding time.
  • Table III illustrates ranges for partial pressures of the reactive gases at which good bonding occurs for other metals and gases. Only those eutectics which exhibit a eutectic temperature within 50C. of the melting point of the metal are listed.
  • useful bonds are formed with the aforementioned binary metallic composition such as coppernickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel and beryllium-copper in a reactive atmosphere including oxygen.
  • binary metallic compositions such as coppernickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel and beryllium-copper
  • Ternary compositions of iron, nickel and cobalt also form useful bonds in a reactive atmosphere of oxygen.
  • silver-gold compositions bond to non-metallic refractory members in a reactive atmosphere including a sulfur-bearing gas such as hydrogen sulfide, for example.
  • metallic members bonded to a non-metallic refractory material may be patterned by photolithographic masking and etching techniques to produce a desired pattern in the metallic member after forming the desired bond.
  • This method of forming patterned conductors is preferable in the fabrication of semiconductor integrated circuits, for example, where the size of the conductor if preformed before bonding would pose serious handling problems.
  • Microwave tests performed on electrical circuits formed by patterning copper bonded to alumina exhibit Qs comparable to those formed by thin film techniques. For example, Qs in excess of 450 have been observed.
  • the total gas flow rate may be varied over wide limits without materially affecting the bond and economic considerations will generally control the acceptable gas flow rate.
  • the partial pressure of the reactive gas in the inert gas also can be varied depending in part on the relative sizes of the materials-to be bonded, the gas flow rate, the presence of reactive elements in the flow system, such as carbon susceptors in the case of an oxygen system, the warm-up rate prior to bonding and the presence of residual oxygen or water in the bonding system and bonding time. Therefore, it is intended that the appended claims cover all such changes and modifications as fall within the true spirit and scope of our invention.
  • Av method of direct bonding a metallic member to a non-metallic refractory material substrate comprising the steps of:
  • said metallic member is selected from the group consisting of copper, nickel, cobalt, iron and chromium and the step of heating in a reactive atmosphere forms said eutectic with the selected metallic member.
  • said copper member is in the form of a sheet having a thickness of between approximately 1 and 250 milli-inches and said reactive atmosphere is argon, helium or nitrogen with approximately 0.01 to 0.5 per cent by volume of oxygen.
  • non-metallic material is selected from the group of alumina, beryllia and fused silica, titanates and spinnels.
  • said reactive atmosphere includes a partial pressure of a reactive gas in excess of the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature.
  • said metallic member is selected from the group of alloys consisting of copper-nickel, nickel-cobalt, copper-chromium, copper-cobalt, iron-nickel, silver-gold and berylliumcopper.
  • a method of bonding a metallic member to a non-metallic member comprising:
  • a metallic member selected from the group consisting of copper, nickel, cobalt, iron and chromium in contact with a non-metallic member; providing a reactive gas atmosphere which at an elevated temperature will react with the metal surface to form a eutectic;
  • step of forming a eutectic comprises:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Products (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
US00245889A 1972-04-20 1972-04-20 Method of direct bonding metals to non-metallic substrates Expired - Lifetime US3766634A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24588972A 1972-04-20 1972-04-20

Publications (1)

Publication Number Publication Date
US3766634A true US3766634A (en) 1973-10-23

Family

ID=22928519

Family Applications (1)

Application Number Title Priority Date Filing Date
US00245889A Expired - Lifetime US3766634A (en) 1972-04-20 1972-04-20 Method of direct bonding metals to non-metallic substrates

Country Status (6)

Country Link
US (1) US3766634A (fr)
JP (1) JPS5713515B2 (fr)
DE (1) DE2319854C2 (fr)
FR (1) FR2181049B1 (fr)
GB (1) GB1394322A (fr)
IT (1) IT983841B (fr)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911553A (en) * 1974-03-04 1975-10-14 Gen Electric Method for bonding metal to ceramic
US3911570A (en) * 1973-08-21 1975-10-14 Electro Oxide Corp Electrical connector and method of making
DE2633869A1 (de) * 1975-07-30 1977-02-17 Gen Electric Direkte verbindung von metallen mit keramikmaterialien und metallen
JPS54157277A (en) * 1978-06-01 1979-12-12 Nippon Electric Co Method of printed board for microwave
JPS5571676A (en) * 1979-10-15 1980-05-29 Shoei Chemical Ind Co Preparing plugguse piezoelectric ceramic body
DE2852979A1 (de) * 1978-11-22 1980-06-04 Bbc Brown Boveri & Cie Scheibenrotor fuer eine elektrische maschine
JPS55104979A (en) * 1979-02-02 1980-08-11 Kogyo Gijutsuin Adhesion of ceramic molded body to transition metal
US4245488A (en) * 1980-01-04 1981-01-20 General Electric Company Use of motor power control circuit losses in a clothes washing machine
US4323483A (en) * 1979-11-08 1982-04-06 E. I. Du Pont De Nemours And Company Mixed oxide bonded copper conductor compositions
US4409278A (en) * 1981-04-16 1983-10-11 General Electric Company Blister-free direct bonding of metals to ceramics and metals
US4413766A (en) * 1981-04-03 1983-11-08 General Electric Company Method of forming a conductor pattern including fine conductor runs on a ceramic substrate
DE3233022A1 (de) * 1982-09-06 1984-03-08 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Verfahren zum direkten verbinden eines koerpers mit einem keramischen substrat
JPS59121860A (ja) * 1982-12-28 1984-07-14 Toshiba Corp 半導体用基板
EP0115000A2 (fr) * 1983-01-03 1984-08-08 General Electric Company Empaquetage pour puce de puissance
JPS59150453A (ja) * 1982-12-23 1984-08-28 Toshiba Corp 半導体モジユ−ル用基板の製造方法
DE3421989A1 (de) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
DE3421988A1 (de) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
US4494688A (en) * 1981-03-16 1985-01-22 Matsushita Electric Industrial Co., Ltd. Method of connecting metal leads with electrodes of semiconductor device and metal lead therefore
US4500029A (en) * 1982-06-11 1985-02-19 General Electric Company Electrical assembly including a conductor pattern bonded to a non-metallic substrate and method of fabricating such assembly
US4505418A (en) * 1980-09-25 1985-03-19 Brown, Boveri & Cie Ag Method of direct bonding copper foils to oxide-ceramic substrates
JPS60107845A (ja) * 1983-11-17 1985-06-13 Toshiba Corp 半導体用回路基板
US4563383A (en) * 1984-03-30 1986-01-07 General Electric Company Direct bond copper ceramic substrate for electronic applications
US4582240A (en) * 1984-02-08 1986-04-15 Gould Inc. Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components
US4591401A (en) * 1983-07-08 1986-05-27 Brown, Boveri & Cie Aktiengesellschaft Process for the direct bonding of metal to ceramics
DE3543613A1 (de) * 1984-12-07 1986-07-03 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
DE3543615A1 (de) * 1984-12-10 1986-07-03 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum herstellen eines stromlos abgeschiedenen metallbelages auf einer keramischen unterlage
US4602731A (en) * 1984-12-24 1986-07-29 Borg-Warner Corporation Direct liquid phase bonding of ceramics to metals
US4603474A (en) * 1983-06-03 1986-08-05 Bbc Brown, Boveri & Company Limited Collector for an electric machine and method for its production
US4607189A (en) * 1983-02-25 1986-08-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Cathode ray tube with glass-to-metal seal using silver chloride cement
US4631099A (en) * 1985-01-04 1986-12-23 Agency Of Industrial Science & Technology Method for adhesion of oxide type ceramics with copper or alloy thereof
EP0273227A2 (fr) * 1986-12-22 1988-07-06 Kalman F. Zsamboky Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique
US4788765A (en) * 1987-11-13 1988-12-06 Gentron Corporation Method of making circuit assembly with hardened direct bond lead frame
US4807796A (en) * 1986-11-14 1989-02-28 U.S. Philips Corporation Method of soldering aluminum-oxide ceramic components
US4831723A (en) * 1988-04-12 1989-05-23 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US4845395A (en) * 1987-05-04 1989-07-04 Alsthom Ceramic core commutator for a rotary electric machine
US4860164A (en) * 1988-09-01 1989-08-22 Kaufman Lance R Heat sink apparatus with electrically insulative intermediate conduit portion for coolant flow
EP0335679A2 (fr) * 1988-03-30 1989-10-04 Kabushiki Kaisha Toshiba Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production
US4879633A (en) * 1988-04-12 1989-11-07 Kaufman Lance R Direct bond circuit assembly with ground plane
US4902854A (en) * 1988-04-12 1990-02-20 Kaufman Lance R Hermetic direct bond circuit assembly
US4924292A (en) * 1988-04-12 1990-05-08 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US4990720A (en) * 1988-04-12 1991-02-05 Kaufman Lance R Circuit assembly and method with direct bonded terminal pin
US4996116A (en) * 1989-12-21 1991-02-26 General Electric Company Enhanced direct bond structure
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
US5032691A (en) * 1988-04-12 1991-07-16 Kaufman Lance R Electric circuit assembly with voltage isolation
DE4117004A1 (de) * 1990-05-25 1991-11-28 Toshiba Kawasaki Kk Verfahren zur herstellung einer schaltungsplatte
US5070602A (en) * 1988-04-12 1991-12-10 Lance R. Kaufman Method of making a circuit assembly
US5100740A (en) * 1989-09-25 1992-03-31 General Electric Company Direct bonded symmetric-metallic-laminate/substrate structures
DE4103294A1 (de) * 1991-02-04 1992-08-13 Akyuerek Altan Verfahren zum herstellen von elektrisch leitenden durchkontaktierungen in keramiksubstraten
US5159413A (en) * 1990-04-20 1992-10-27 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5208502A (en) * 1991-02-28 1993-05-04 Hitachi, Ltd. Sliding current collector made of ceramics
US5241216A (en) * 1989-12-21 1993-08-31 General Electric Company Ceramic-to-conducting-lead hermetic seal
US5273203A (en) * 1989-12-21 1993-12-28 General Electric Company Ceramic-to-conducting-lead hermetic seal
DE4222973A1 (de) * 1992-07-13 1994-01-20 Asea Brown Boveri Bidirektionaler Halbleiterschalter
US5418002A (en) * 1990-12-24 1995-05-23 Harris Corporation Direct bonding of copper to aluminum nitride substrates
US5490627A (en) * 1994-06-30 1996-02-13 Hughes Aircraft Company Direct bonding of copper composites to ceramics
EP0702511A2 (fr) 1992-07-17 1996-03-20 Vlt Corporation Boîtier de composants électroniques
EP0712266A2 (fr) 1994-11-10 1996-05-15 Vlt Corporation Boîtier de composants électroniques
US5583317A (en) * 1994-01-14 1996-12-10 Brush Wellman Inc. Multilayer laminate heat sink assembly
US5586714A (en) * 1994-10-06 1996-12-24 Board Of Regents Of The University Of Nebraska Method of bonding metal to a non-metal substrate
US5653379A (en) * 1989-12-18 1997-08-05 Texas Instruments Incorporated Clad metal substrate
US5777259A (en) * 1994-01-14 1998-07-07 Brush Wellman Inc. Heat exchanger assembly and method for making the same
WO1998032312A1 (fr) * 1997-01-17 1998-07-23 California Institute Of Technology Technique a micro-ondes pour braser des materiaux
DE19715540A1 (de) * 1997-04-15 1998-10-22 Curamik Electronics Gmbh Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
US6079276A (en) * 1995-02-28 2000-06-27 Rosemount Inc. Sintered pressure sensor for a pressure transmitter
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US6505516B1 (en) 2000-01-06 2003-01-14 Rosemount Inc. Capacitive pressure sensing with moving dielectric
US6508129B1 (en) 2000-01-06 2003-01-21 Rosemount Inc. Pressure sensor capsule with improved isolation
US6516671B2 (en) 2000-01-06 2003-02-11 Rosemount Inc. Grain growth of electrical interconnection for microelectromechanical systems (MEMS)
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US20030038364A1 (en) * 2001-08-15 2003-02-27 Eldridge Jerome M. Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor
EP1298109A2 (fr) * 2001-10-01 2003-04-02 Dowa Mining Co., Ltd. Corps liée en metal ceramique et son procédé de fabrication
WO2003031372A2 (fr) * 2001-10-01 2003-04-17 Schulz-Harder Juergen Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede
US6559533B1 (en) 1999-09-17 2003-05-06 Kabushiki Kaisha Toshiba High-frequency package and the method for manufacturing the same
US6561038B2 (en) 2000-01-06 2003-05-13 Rosemount Inc. Sensor with fluid isolation barrier
US20030146499A1 (en) * 2001-12-18 2003-08-07 Yasuo Kondo Composite material including copper and cuprous oxide and application thereof
EP1371621A1 (fr) * 2002-06-14 2003-12-17 Dowa Mining Co., Ltd. Corps liée en métal/céramique et son procédé de fabrication
US20040060968A1 (en) * 2002-09-26 2004-04-01 Takayuki Takahashi Metal/ceramic bonding article and method for producing same
US6848316B2 (en) 2002-05-08 2005-02-01 Rosemount Inc. Pressure sensor assembly
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
US20070231590A1 (en) * 2006-03-31 2007-10-04 Stellar Industries Corp. Method of Bonding Metals to Ceramics
DE102009007625A1 (de) * 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Verbundsubstrat für einen Halbleiterchip
US7754976B2 (en) 2002-04-15 2010-07-13 Hamilton Sundstrand Corporation Compact circuit carrier package
WO2011098071A1 (fr) 2010-02-12 2011-08-18 Curamik Electronics Gmbh Procédé de fabrication de matériaux composites métal-céramique, notamment de substrats composites métal-céramique et matériau composite métal-céramique, notamment substrat composite métal-céramique fabriqué selon ce procédé
US8448842B1 (en) 2011-12-22 2013-05-28 Vaclong Vacuum Technology Co., Ltd. Advanced copper bonding (ACB) with ceramic substrate technology
US10586756B2 (en) 2016-10-04 2020-03-10 Infineon Technologies Ag Chip carrier configured for delamination-free encapsulation and stable sintering
US10759714B2 (en) 2016-09-30 2020-09-01 Infineon Technologies Ag Method for producing a metal-ceramic substrate
US10964635B2 (en) 2018-05-22 2021-03-30 Schweizer Electronic Ag Power electronic metal-ceramic module and printed circuit board module with integrated power electronic metal-ceramic module and process for their making
US11076483B2 (en) 2019-11-26 2021-07-27 Industrial Technology Research Institute Direct bonded copper ceramic substrate
KR20220027843A (ko) 2019-07-08 2022-03-08 가부시키가이샤 월드메탈 접합기재와 금속층의 접합체
US20220155222A1 (en) * 2019-03-18 2022-05-19 Jiangsu University Of Science And Technology Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry
US12059739B2 (en) 2021-06-29 2024-08-13 Heraeus Deutschland GmbH & Co. KG Method for producing a metal-ceramic substrate

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102532A (ja) * 1981-12-15 1983-06-18 Toshiba Corp 半導体装置
DE3204167A1 (de) * 1982-02-06 1983-08-11 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum direkten verbinden von metallstuecken mit oxidkeramiksubstraten
DE3223948A1 (de) * 1982-06-26 1983-12-29 Tigra Verschleiß- und Werkzeugtechnik GmbH, 7240 Horb Verfahren zum verloeten keramischer und metallischer werkstoffe untereinander
DE3376829D1 (en) * 1982-06-29 1988-07-07 Toshiba Kk Method for directly bonding ceramic and metal members and laminated body of the same
DE3241926A1 (de) * 1982-11-12 1984-05-17 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verbindung eines keramischen rotationsbauteils mit einem metallischen rotationsbauteil fuer stroemungsmaschinen, insbesondere gasturbinentriebwerke
JPS59190279A (ja) * 1983-04-13 1984-10-29 株式会社東芝 セラミツクス構造体及びその製造方法
DE3633907A1 (de) * 1986-08-02 1988-02-04 Altan Akyuerek Verfahren zum haftfesten verbinden eines kupferkoerpers mit einem substrat
FR2623046B1 (fr) * 1987-11-10 1990-03-23 Telemecanique Electrique Procede de liaison d'une feuille de cuivre a un substrat en materiau electriquement isolant
DE3930858C2 (de) * 1988-09-20 2002-01-03 Peter H Maier Modulaufbau
DE3930859C2 (de) * 1988-09-20 1997-04-30 Schulz Harder Juergen Verfahren zum Verlöten wenigstens zweier Elemente
DE3931551C2 (de) * 1989-09-22 1993-11-18 Schulz Harder Juergen Verfahren zum Herstellen eines Substrates
DE4318061C2 (de) * 1993-06-01 1998-06-10 Schulz Harder Juergen Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE4319848C2 (de) * 1993-06-03 1995-12-21 Schulz Harder Juergen Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE19749987B4 (de) * 1997-07-11 2008-09-25 Curamik Electronics Gmbh Gehäuse für Halbleiterbauelemente, insbesondere für Leistungshalbleiterbauelemente
DE19729677B4 (de) * 1997-07-11 2006-05-18 Curamik Electronics Gmbh Gehäuse für Halbleiterbauelemente, insbesondere für Leistungshalbleiterbauelemente
DE19753149C2 (de) * 1997-11-12 1999-09-30 Curamik Electronics Gmbh Verfahren zum Herstellen eines Keramik-Metall-Substrates
DE19927046B4 (de) * 1999-06-14 2007-01-25 Electrovac Ag Keramik-Metall-Substrat als Mehrfachsubstrat
DE19930207C2 (de) * 1999-06-22 2001-12-06 Schulz Harder Juergen Verfahren zum Herstellen von Substraten mit strukturierten Metallisierungen sowie Halte- und Fixierelement zur Verwendung bei diesem Verfahren
DE19945794C2 (de) * 1999-09-15 2002-12-19 Curamik Electronics Gmbh Verfahren zum Herstellen einer Metall-Keramik-Leiterplatte mit DurchKontaktierungen
DE10047525B4 (de) * 2000-09-22 2005-06-30 Curamik Electronics Gmbh Verfahren zum Herstellen eines Formkörpers unter Verwendung eines Ausgangsmaterials, welches Siliziumcarbid in Pulver- oder Partikelform sowie Kupfer enthält und so hergestellte Formkörper
EP1227353B1 (fr) 2001-01-16 2005-05-04 Curamik Electronics GmbH Miroir à laser et procédé pour sa fabrication
DE10212495B4 (de) 2002-03-21 2004-02-26 Schulz-Harder, Jürgen, Dr.-Ing. Verfahren zum Herstellen eines Metall-Keramik-Substrats, vorzugsweise eines Kupfer-Keramik-Substrats
DE10227658B4 (de) * 2002-06-20 2012-03-08 Curamik Electronics Gmbh Metall-Keramik-Substrat für elektrische Schaltkreise -oder Module, Verfahren zum Herstellen eines solchen Substrates sowie Modul mit einem solchen Substrat
DE10229711B4 (de) * 2002-07-02 2009-09-03 Curamik Electronics Gmbh Halbleitermodul mit Mikrokühler
DE10229712B4 (de) * 2002-07-02 2009-06-25 Jenoptik Laserdiode Gmbh Halbleitermodul
DE10261402A1 (de) 2002-12-30 2004-07-15 Schulz-Harder, Jürgen, Dr.-Ing. Wärmesenke in Form einer Heat-Pipe sowie Verfahren zum Herstellen einer solchen Wärmesenke
DE10320838B4 (de) * 2003-05-08 2014-11-06 Rogers Germany Gmbh Faserverstärktes Metall-Keramik/Glas-Verbundmaterial als Substrat für elektrische Anwendungen, Verfahren zum Herstellen eines derartigen Verbundmaterials sowie Verwendung dieses Verbundmaterials
DE10327360B4 (de) * 2003-06-16 2012-05-24 Curamik Electronics Gmbh Verfahren zum Herstellen eines Keramik-Metall-Substrates
DE102004012232B4 (de) * 2004-02-20 2006-11-16 Electrovac Ag Verfahren zum Herstellen von Plattenstapeln, insbesondere zum Herstellen von aus wenigstens einem Plattenstapel bestehenden Kühlern
JP2005343768A (ja) 2004-06-07 2005-12-15 Toyota Central Res & Dev Lab Inc 金属/セラミック接合体及びその製造方法
DE102004033933B4 (de) * 2004-07-08 2009-11-05 Electrovac Ag Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102005042554B4 (de) 2005-08-10 2008-04-30 Curamik Electronics Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
DE102007008027A1 (de) 2007-02-13 2008-08-21 Curamik Electronics Gmbh Diodenlaseranordnung sowie Verfahren zum Herstellen einer solchen Anordnung
EP1959528B1 (fr) 2007-02-13 2017-04-12 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Système de laser à diodes ainsi que procédé de fabrication d'un tel système
DE102007030389B4 (de) 2007-03-30 2015-08-13 Rogers Germany Gmbh Moduleinheit mit einer Wärmesenke
DE102009041574A1 (de) 2008-10-29 2010-05-12 Electrovac Ag Verbundmaterial, Verfahren zum Herstellen eines Verbundmaterials sowie Kleber oder Bondmaterial
DE102009015520A1 (de) 2009-04-02 2010-10-07 Electrovac Ag Metall-Keramik-Substrat
DE102009022877B4 (de) 2009-04-29 2014-12-24 Rogers Germany Gmbh Gekühlte elektrische Baueinheit
WO2010136017A1 (fr) 2009-05-27 2010-12-02 Electrovac Ag Unité modulaire électrique refroidie
DE102009033029A1 (de) 2009-07-02 2011-01-05 Electrovac Ag Elektronische Vorrichtung
DE102010018668B4 (de) 2010-04-07 2012-11-15 Curamik Electronics Gmbh Verpackungseinheit für Metall-Keramik-Substrate
DE202010009472U1 (de) 2010-04-07 2011-02-10 Electrovac Ag Verpackung für Metall-Keramik-Substrate
DE102010024520B4 (de) 2010-06-21 2017-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erhöhung der thermo-mechanischen Beständigkeit eines Metall-Keramik-Substrats
DE102010025311B4 (de) 2010-06-28 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Aufbringen einer metallischen Schicht auf ein keramisches Substrat, Verwendung des Verfahrens und Materialverbund
DE102010025313A1 (de) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer strukturierten, elektrisch leitfähigen Schicht auf einem Keramikträger
DE102010049499B4 (de) 2010-10-27 2014-04-10 Curamik Electronics Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines solchen Substrates
JP6044635B2 (ja) 2011-07-29 2016-12-14 ロジャース ジャーマニー ゲーエムベーハー 基板用包装ならびにそのような包装を備える包装ユニット
DE102012110382B4 (de) 2011-12-21 2021-02-18 Rogers Germany Gmbh Substrat sowie Verfahren zum Herstellen eines Substrates
DE102012101057A1 (de) 2011-12-27 2013-06-27 Curamik Electronics Gmbh Verfahren zur Herstellung von DCB-Substraten
DE102012102090A1 (de) 2012-01-31 2013-08-01 Curamik Electronics Gmbh Thermoelektrisches Generatormodul, Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102012102611B4 (de) 2012-02-15 2017-07-27 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102012102787B4 (de) 2012-03-30 2015-04-16 Rogers Germany Gmbh Verfahren zum Herstellen von Metall-Keramik-Substraten
WO2013143534A1 (fr) 2012-03-30 2013-10-03 Curamik Electronics Gmbh Four tunnel
DE102013102797A1 (de) 2012-03-30 2013-10-02 Curamik Electronics Gmbh Tunnelofen
DE102012103786B4 (de) 2012-04-30 2017-05-18 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102012104903B4 (de) 2012-05-10 2023-07-13 Rogers Germany Gmbh Verfahren zum Herstellen von Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Metall-Keramik-Substrat
DE102012107399B4 (de) 2012-07-10 2014-09-11 Rogers Germany Gmbh Verfahren zum Herstellen von Metall-Keramik-Substraten sowie Metall-Keramik-Substrat
DE102012106244B4 (de) 2012-07-11 2020-02-20 Rogers Germany Gmbh Metall-Keramik-Substrat
DE102012107570B4 (de) 2012-08-17 2017-08-03 Rogers Germany Gmbh Verfahren zur Herstellung von Hohlkörpern, insbesondere von Kühlern, Hohlkörper sowie Kühler enthaltende elektrische oder elektronische Baugruppen
DE102012110322B4 (de) 2012-10-29 2014-09-11 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013102540B4 (de) 2013-02-22 2019-07-04 Rogers Germany Gmbh Metall-Keramik-Substrat, Modulanordnung sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013102637B4 (de) 2013-03-14 2017-08-31 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines derartigen Metall-Keramik-Substrates und Anordnung von derartigen Metall-Keramik-Substraten
DE102013104739B4 (de) 2013-03-14 2022-10-27 Rogers Germany Gmbh Metall-Keramik-Substrate sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013104055B4 (de) 2013-04-22 2023-08-31 Rogers Germany Gmbh Basissubstrat, Metall-Keramik-Substrat hergestellt aus einem Basissubstrat sowie Verfahren zum Herstellen eines Basissubstrates
DE102013105528B4 (de) 2013-05-29 2021-09-02 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013108610A1 (de) 2013-08-06 2015-02-12 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013013842B4 (de) 2013-08-20 2015-10-15 Rogers Germany Gmbh Verfahren zum Herstellen von Metall-Keramik-Substraten sowie Metall-Keramik-Substrat
DE102013113736B4 (de) 2013-12-10 2019-11-14 Rogers Germany Gmbh Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102013113734B4 (de) 2013-12-10 2018-03-08 Rogers Germany Gmbh Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE102014106694B3 (de) * 2014-05-13 2015-04-02 Rogers Germany Gmbh Verfahren zur Metallisierung zumindest eines plattenförmigen Keramiksubstrates sowie Metall-Keramik-Substrat
DE102014215377B4 (de) 2014-08-05 2019-11-07 Heraeus Deutschland GmbH & Co. KG Verfahren zum Herstellen von doppelseitig metallisierten Keramik-Substraten
DE102014224588B4 (de) 2014-12-02 2019-08-01 Heraeus Deutschland GmbH & Co. KG Verfahren zum Herstellen eines plattenförmigen metallisierten Keramik-Substrats, Träger zum Herstellen des Substrats und Verwendung des Trägers
DE102014119386B4 (de) 2014-12-22 2019-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Metall-Keramik-Substrates und zugehöriges Metall-Keramik-Substrat
DE102015102657B4 (de) 2015-02-25 2018-07-19 Rogers Germany Gmbh Verfahren zur Herstellung eines Kupfer-Keramik-Verbundsubstrats
CN107041061A (zh) 2015-12-22 2017-08-11 德国贺利氏公司 通过厚膜浆料增强的直接覆铜基板
EP3210951B9 (fr) 2016-02-26 2021-05-19 Heraeus Deutschland GmbH & Co. KG Composite en ceramique/cuivre
EP3210956B1 (fr) 2016-02-26 2018-04-11 Heraeus Deutschland GmbH & Co. KG Composite en ceramique/cuivre
DE102016203058B3 (de) 2016-02-26 2017-05-18 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund und Modul
DE202016008307U1 (de) 2016-02-26 2017-07-10 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE202016008370U1 (de) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE202016008287U1 (de) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
EP3210957B1 (fr) 2016-02-26 2019-01-02 Heraeus Deutschland GmbH & Co. KG Composite en ceramique/cuivre
DE202016008286U1 (de) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE202016008371U1 (de) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE102016203030A1 (de) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
CN108698935B (zh) 2016-02-26 2021-05-25 贺利氏德国有限两合公司 铜-陶瓷复合物
DE102016203112B4 (de) 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
EP3326986B1 (fr) 2016-11-28 2020-11-25 Infineon Technologies AG Procédé de fabrication d'un substrat en céramique-métal
DE102016125348B4 (de) 2016-12-22 2020-06-25 Rogers Germany Gmbh Trägersubstrat für elektrische Bauteile und Verfahren zur Herstellung eines Trägersubstrats
DE102017114891A1 (de) 2017-07-04 2019-01-10 Rogers Germany Gmbh Verfahren zur Herstellung einer Durchkontaktierung in einer aus einer Keramik gefertigten Trägerschicht und Trägerschicht mit Durchkontaktierung
DE102017121015A1 (de) 2017-09-12 2019-03-14 Rogers Germany Gmbh Adapterelement zum Anbinden eines Bauelements wie einer Laserdiode an einen Kühlkörper, ein System aus einer Laserdiode, einem Kühlkörper und einem Adapterelement und Verfahren zur Herstellung eines Adapterelements
DE102017128308B4 (de) 2017-11-29 2020-04-23 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats
DE102017128316B4 (de) 2017-11-29 2019-12-05 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
DE102018101198A1 (de) 2018-01-19 2019-07-25 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines gehäusedeckels für ein laserbauelement und gehäusedeckel für ein laserbauelement sowie laserbauelement
DE102018104532B4 (de) 2018-02-28 2023-06-29 Rogers Germany Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
DE102018104521B4 (de) 2018-02-28 2022-11-17 Rogers Germany Gmbh Metall-Keramik-Substrate
DE102018123681A1 (de) 2018-09-26 2020-03-26 Rogers Germany Gmbh Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats
DE102019110106A1 (de) 2019-04-17 2020-10-22 Rogers Germany Gmbh Verfahren zur Herstellung einer Verbundkeramik und Verbundkeramik hergestellt mit einem solchen Verfahren
DE102019113308A1 (de) 2019-05-20 2020-11-26 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik- Substrat, hergestellt mit einem solchen Verfahren
DE102019113714B4 (de) 2019-05-23 2024-08-14 Rogers Germany Gmbh Adapterelement zum Anbinden eines Elektronikbauteils an ein Kühlkörperelement, System mit einem solchen Adapterelement und Verfahren zum Herstellen eines solchen Adapterelements
DE102019125124A1 (de) 2019-09-18 2021-03-18 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren
DE102019134004A1 (de) 2019-12-11 2021-06-17 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren
DE102019135146B4 (de) 2019-12-19 2022-11-24 Rogers Germany Gmbh Metall-Keramik-Substrat
DE102019135099A1 (de) 2019-12-19 2021-06-24 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren
DE102019135097A1 (de) 2019-12-19 2021-06-24 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren
DE102020106521A1 (de) 2020-03-10 2021-09-16 Rogers Germany Gmbh Elektronikmodul und Verfahren zur Herstellung eines Elektronikmoduls
DE102020119209A1 (de) 2020-07-21 2022-01-27 Rogers Germany Gmbh Leistungsmodul und Verfahren zur Herstellung eines Leistungsmoduls
DE102020119208A1 (de) 2020-07-21 2022-01-27 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren
DE102021100463A1 (de) 2021-01-13 2022-07-14 Rogers Germany Gmbh Verfahren zum Herstellen eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren
EP4032870A1 (fr) 2021-01-22 2022-07-27 Heraeus Deutschland GmbH & Co. KG Procédé de structuration de substrats métal-céramique et substrat structuré métal-céramique
DE102021105109A1 (de) 2021-03-03 2022-09-08 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
DE102021105520B4 (de) 2021-03-08 2022-10-27 Rogers Germany Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
DE102021107690A1 (de) 2021-03-26 2022-09-29 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren
DE102021107872A1 (de) 2021-03-29 2022-09-29 Rogers Germany Gmbh Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats
EP4112586A1 (fr) 2021-06-29 2023-01-04 Heraeus Deutschland GmbH & Co. KG Procédé de fabrication d'un substrat métal-céramique en utilisant un four continu
DE102021125557A1 (de) 2021-10-01 2023-04-06 Rogers Germany Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
DE102021126529A1 (de) 2021-10-13 2023-04-13 Rogers Germany Gmbh Verfahren zur Herstellung von Metall-Keramik-Substraten und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren
EP4186880A1 (fr) 2021-11-26 2023-05-31 Heraeus Deutschland GmbH & Co. KG Substrat métal-céramique, son procédé de fabrication et module
EP4311818A1 (fr) 2022-07-29 2024-01-31 Heraeus Electronics GmbH & Co. KG Substrat métallique céramique pourvu de zone de contact
EP4311819A1 (fr) 2022-07-29 2024-01-31 Heraeus Electronics GmbH & Co. KG Substrat métallique céramique pourvu de zone de contact
EP4332267A1 (fr) 2022-09-05 2024-03-06 Heraeus Electronics GmbH & Co. KG Procédé de fabrication d'un substrat métal-céramique et substrat métal-céramique
DE102022129493A1 (de) 2022-11-08 2024-05-08 Rogers Germany Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung von Metall-Keramik-Substraten
DE102023102557A1 (de) 2023-02-02 2024-08-08 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren
EP4421056A1 (fr) 2023-02-23 2024-08-28 Heraeus Electronics GmbH & Co. KG Substrat métal-céramique avec surface supérieure frittable
DE102023104436A1 (de) 2023-02-23 2024-08-29 Heraeus Deutschland GmbH & Co. KG Metall-Keramik-Substrat mit sinterbarer Oberseite
EP4421055A1 (fr) 2023-02-23 2024-08-28 Heraeus Electronics GmbH & Co. KG Substrat en cuivre-céramique avec une face supérieure frittable
EP4421054A1 (fr) 2023-02-23 2024-08-28 Heraeus Electronics GmbH & Co. KG Substrat en cuivre-céramique avec une face supérieure frittable

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB784931A (fr) *
US2482178A (en) * 1944-02-29 1949-09-20 Western Electric Co Composite structure for forming a seal with glass
US2564738A (en) * 1947-02-25 1951-08-21 Foerderung Forschung Gmbh Method of forming a vacuum-tight bond between ceramics and metals
GB761045A (en) * 1952-08-29 1956-11-07 Lodge Plugs Ltd Improvements in or relating to the bonding of ceramics with copper
US3010188A (en) * 1953-05-12 1961-11-28 Philips Corp Method of securing ceramic articles to one another or to metal articles
US3030704A (en) * 1957-08-16 1962-04-24 Gen Electric Method of making non-rectifying contacts to silicon carbide
US3128545A (en) * 1959-09-30 1964-04-14 Hughes Aircraft Co Bonding oxidized materials
US3438118A (en) * 1965-06-10 1969-04-15 Philips Corp Method of forming ceramic-to-metal seal
US3517432A (en) * 1968-05-02 1970-06-30 Atomic Energy Commission Diffusion bonding of ceramics
US3531853A (en) * 1966-11-30 1970-10-06 Philips Corp Method of making a ceramic-to-metal seal
US3676292A (en) * 1970-10-07 1972-07-11 Olin Corp Composites of glass-ceramic-to-metal,seals and method of making same
US3717926A (en) * 1970-01-29 1973-02-27 G Kravetsky Method of joining graphite articles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759209A (fr) * 1969-11-25 1971-04-30 Western Electric Co Procede de soudage de verre a un metal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB784931A (fr) *
US2482178A (en) * 1944-02-29 1949-09-20 Western Electric Co Composite structure for forming a seal with glass
US2564738A (en) * 1947-02-25 1951-08-21 Foerderung Forschung Gmbh Method of forming a vacuum-tight bond between ceramics and metals
GB761045A (en) * 1952-08-29 1956-11-07 Lodge Plugs Ltd Improvements in or relating to the bonding of ceramics with copper
US3010188A (en) * 1953-05-12 1961-11-28 Philips Corp Method of securing ceramic articles to one another or to metal articles
US3030704A (en) * 1957-08-16 1962-04-24 Gen Electric Method of making non-rectifying contacts to silicon carbide
US3128545A (en) * 1959-09-30 1964-04-14 Hughes Aircraft Co Bonding oxidized materials
US3438118A (en) * 1965-06-10 1969-04-15 Philips Corp Method of forming ceramic-to-metal seal
US3531853A (en) * 1966-11-30 1970-10-06 Philips Corp Method of making a ceramic-to-metal seal
US3517432A (en) * 1968-05-02 1970-06-30 Atomic Energy Commission Diffusion bonding of ceramics
US3717926A (en) * 1970-01-29 1973-02-27 G Kravetsky Method of joining graphite articles
US3676292A (en) * 1970-10-07 1972-07-11 Olin Corp Composites of glass-ceramic-to-metal,seals and method of making same

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911570A (en) * 1973-08-21 1975-10-14 Electro Oxide Corp Electrical connector and method of making
JPS50132022A (fr) * 1974-03-04 1975-10-18
US3911553A (en) * 1974-03-04 1975-10-14 Gen Electric Method for bonding metal to ceramic
JPS6028785B2 (ja) * 1974-03-04 1985-07-06 ゼネラル・エレクトリツク・カンパニイ 金属をセラミツクに結着する方法
JPS604154B2 (ja) * 1975-07-30 1985-02-01 ゼネラル・エレクトリツク・カンパニイ セラミツクからなる基体に銅部材を結合する方法
DE2633869A1 (de) * 1975-07-30 1977-02-17 Gen Electric Direkte verbindung von metallen mit keramikmaterialien und metallen
FR2319600A1 (fr) * 1975-07-30 1977-02-25 Gen Electric Procede de liaison directe de metaux a des ceramiques ainsi qu'a des metaux
JPS5237914A (en) * 1975-07-30 1977-03-24 Gen Electric Method of directly combining metal to ceramics and metal
US4129243A (en) * 1975-07-30 1978-12-12 General Electric Company Double side cooled, pressure mounted semiconductor package and process for the manufacture thereof
JPS54157277A (en) * 1978-06-01 1979-12-12 Nippon Electric Co Method of printed board for microwave
DE2852979A1 (de) * 1978-11-22 1980-06-04 Bbc Brown Boveri & Cie Scheibenrotor fuer eine elektrische maschine
JPS55104979A (en) * 1979-02-02 1980-08-11 Kogyo Gijutsuin Adhesion of ceramic molded body to transition metal
JPH0134954B2 (fr) * 1979-02-02 1989-07-21 Kogyo Gijutsuin
JPS5571676A (en) * 1979-10-15 1980-05-29 Shoei Chemical Ind Co Preparing plugguse piezoelectric ceramic body
JPS599510B2 (ja) * 1979-10-15 1984-03-02 昭栄化学工業株式会社 点火栓用セラミツク圧電体の製造方法
US4323483A (en) * 1979-11-08 1982-04-06 E. I. Du Pont De Nemours And Company Mixed oxide bonded copper conductor compositions
US4245488A (en) * 1980-01-04 1981-01-20 General Electric Company Use of motor power control circuit losses in a clothes washing machine
US4505418A (en) * 1980-09-25 1985-03-19 Brown, Boveri & Cie Ag Method of direct bonding copper foils to oxide-ceramic substrates
US4494688A (en) * 1981-03-16 1985-01-22 Matsushita Electric Industrial Co., Ltd. Method of connecting metal leads with electrodes of semiconductor device and metal lead therefore
US4413766A (en) * 1981-04-03 1983-11-08 General Electric Company Method of forming a conductor pattern including fine conductor runs on a ceramic substrate
US4409278A (en) * 1981-04-16 1983-10-11 General Electric Company Blister-free direct bonding of metals to ceramics and metals
US4500029A (en) * 1982-06-11 1985-02-19 General Electric Company Electrical assembly including a conductor pattern bonded to a non-metallic substrate and method of fabricating such assembly
DE3233022A1 (de) * 1982-09-06 1984-03-08 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Verfahren zum direkten verbinden eines koerpers mit einem keramischen substrat
JPS59150453A (ja) * 1982-12-23 1984-08-28 Toshiba Corp 半導体モジユ−ル用基板の製造方法
JPS59121860A (ja) * 1982-12-28 1984-07-14 Toshiba Corp 半導体用基板
EP0115000A3 (en) * 1983-01-03 1986-11-26 General Electric Company Power chip package
US4538170A (en) * 1983-01-03 1985-08-27 General Electric Company Power chip package
EP0115000A2 (fr) * 1983-01-03 1984-08-08 General Electric Company Empaquetage pour puce de puissance
US4607189A (en) * 1983-02-25 1986-08-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Cathode ray tube with glass-to-metal seal using silver chloride cement
US4603474A (en) * 1983-06-03 1986-08-05 Bbc Brown, Boveri & Company Limited Collector for an electric machine and method for its production
US4574094A (en) * 1983-06-09 1986-03-04 Kollmorgen Technologies Corporation Metallization of ceramics
DE3421989A1 (de) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
DE3421988A1 (de) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
US4604299A (en) * 1983-06-09 1986-08-05 Kollmorgen Technologies Corporation Metallization of ceramics
US4591401A (en) * 1983-07-08 1986-05-27 Brown, Boveri & Cie Aktiengesellschaft Process for the direct bonding of metal to ceramics
JPH0454378B2 (fr) * 1983-11-17 1992-08-31 Tokyo Shibaura Electric Co
JPS60107845A (ja) * 1983-11-17 1985-06-13 Toshiba Corp 半導体用回路基板
US4582240A (en) * 1984-02-08 1986-04-15 Gould Inc. Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components
US4563383A (en) * 1984-03-30 1986-01-07 General Electric Company Direct bond copper ceramic substrate for electronic applications
DE3543613A1 (de) * 1984-12-07 1986-07-03 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum metallisieren von keramischen oberflaechen
DE3543615A1 (de) * 1984-12-10 1986-07-03 Kollmorgen Technologies Corp., Dallas, Tex. Verfahren zum herstellen eines stromlos abgeschiedenen metallbelages auf einer keramischen unterlage
US4602731A (en) * 1984-12-24 1986-07-29 Borg-Warner Corporation Direct liquid phase bonding of ceramics to metals
US4631099A (en) * 1985-01-04 1986-12-23 Agency Of Industrial Science & Technology Method for adhesion of oxide type ceramics with copper or alloy thereof
US4807796A (en) * 1986-11-14 1989-02-28 U.S. Philips Corporation Method of soldering aluminum-oxide ceramic components
EP0273227A2 (fr) * 1986-12-22 1988-07-06 Kalman F. Zsamboky Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique
EP0273227A3 (fr) * 1986-12-22 1989-01-25 Kalman F. Zsamboky Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique
US4845395A (en) * 1987-05-04 1989-07-04 Alsthom Ceramic core commutator for a rotary electric machine
US4788765A (en) * 1987-11-13 1988-12-06 Gentron Corporation Method of making circuit assembly with hardened direct bond lead frame
EP0335679B1 (fr) * 1988-03-30 1995-12-13 Kabushiki Kaisha Toshiba Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production
EP0335679A2 (fr) * 1988-03-30 1989-10-04 Kabushiki Kaisha Toshiba Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production
US4924292A (en) * 1988-04-12 1990-05-08 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US4902854A (en) * 1988-04-12 1990-02-20 Kaufman Lance R Hermetic direct bond circuit assembly
US4879633A (en) * 1988-04-12 1989-11-07 Kaufman Lance R Direct bond circuit assembly with ground plane
US4990720A (en) * 1988-04-12 1991-02-05 Kaufman Lance R Circuit assembly and method with direct bonded terminal pin
US4831723A (en) * 1988-04-12 1989-05-23 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US5032691A (en) * 1988-04-12 1991-07-16 Kaufman Lance R Electric circuit assembly with voltage isolation
US5070602A (en) * 1988-04-12 1991-12-10 Lance R. Kaufman Method of making a circuit assembly
US4860164A (en) * 1988-09-01 1989-08-22 Kaufman Lance R Heat sink apparatus with electrically insulative intermediate conduit portion for coolant flow
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
US5100740A (en) * 1989-09-25 1992-03-31 General Electric Company Direct bonded symmetric-metallic-laminate/substrate structures
US5653379A (en) * 1989-12-18 1997-08-05 Texas Instruments Incorporated Clad metal substrate
US5273203A (en) * 1989-12-21 1993-12-28 General Electric Company Ceramic-to-conducting-lead hermetic seal
US4996116A (en) * 1989-12-21 1991-02-26 General Electric Company Enhanced direct bond structure
US5241216A (en) * 1989-12-21 1993-08-31 General Electric Company Ceramic-to-conducting-lead hermetic seal
US5159413A (en) * 1990-04-20 1992-10-27 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5164359A (en) * 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5356831A (en) * 1990-04-20 1994-10-18 Eaton Corporation Method of making a monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5280850A (en) * 1990-05-25 1994-01-25 Kabushiki Kaisha Toshiba Method of manufacturing circuit board
DE4117004A1 (de) * 1990-05-25 1991-11-28 Toshiba Kawasaki Kk Verfahren zur herstellung einer schaltungsplatte
US5176309A (en) * 1990-05-25 1993-01-05 Kabushiki Kaisha Toshiba Method of manufacturing circuit board
DE4117004B4 (de) * 1990-05-25 2005-08-11 Kabushiki Kaisha Toshiba, Kawasaki Verfahren zur Herstellung einer Schaltungsplatte
US5418002A (en) * 1990-12-24 1995-05-23 Harris Corporation Direct bonding of copper to aluminum nitride substrates
DE4103294A1 (de) * 1991-02-04 1992-08-13 Akyuerek Altan Verfahren zum herstellen von elektrisch leitenden durchkontaktierungen in keramiksubstraten
DE4103294C2 (de) * 1991-02-04 2000-12-28 Altan Akyuerek Verfahren zum Herstellen von keramischen Leiterplatten mit Durchkontaktierungen
US5208502A (en) * 1991-02-28 1993-05-04 Hitachi, Ltd. Sliding current collector made of ceramics
US5311043A (en) * 1992-07-13 1994-05-10 Asea Brown Boveri Ltd. Bidirectional semiconductor switch with hybrid construction
DE4222973A1 (de) * 1992-07-13 1994-01-20 Asea Brown Boveri Bidirektionaler Halbleiterschalter
EP0702511A2 (fr) 1992-07-17 1996-03-20 Vlt Corporation Boîtier de composants électroniques
EP0702509A2 (fr) 1992-07-17 1996-03-20 Vlt Corporation Boîtier de composants électroniques
US5686190A (en) * 1994-01-14 1997-11-11 Brush Wellman Inc. Multilayer laminate product and process
US5583317A (en) * 1994-01-14 1996-12-10 Brush Wellman Inc. Multilayer laminate heat sink assembly
US5777259A (en) * 1994-01-14 1998-07-07 Brush Wellman Inc. Heat exchanger assembly and method for making the same
US5490627A (en) * 1994-06-30 1996-02-13 Hughes Aircraft Company Direct bonding of copper composites to ceramics
US5601932A (en) * 1994-06-30 1997-02-11 Hughes Aircraft Company Copper composites directly bonded to ceramics
US5586714A (en) * 1994-10-06 1996-12-24 Board Of Regents Of The University Of Nebraska Method of bonding metal to a non-metal substrate
EP0712266A2 (fr) 1994-11-10 1996-05-15 Vlt Corporation Boîtier de composants électroniques
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US6079276A (en) * 1995-02-28 2000-06-27 Rosemount Inc. Sintered pressure sensor for a pressure transmitter
US6082199A (en) * 1995-02-28 2000-07-04 Rosemount Inc. Pressure sensor cavity etched with hot POCL3 gas
US6089097A (en) * 1995-02-28 2000-07-18 Rosemount Inc. Elongated pressure sensor for a pressure transmitter
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
WO1998032312A1 (fr) * 1997-01-17 1998-07-23 California Institute Of Technology Technique a micro-ondes pour braser des materiaux
US6054693A (en) * 1997-01-17 2000-04-25 California Institute Of Technology Microwave technique for brazing materials
DE19715540C2 (de) * 1997-04-15 2002-02-07 Curamik Electronics Gmbh Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates
US6345437B1 (en) 1997-04-15 2002-02-12 Curamik Electronics Gmbh Process for the manufacturing of an arched metal ceramic substratum
DE19715540A1 (de) * 1997-04-15 1998-10-22 Curamik Electronics Gmbh Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
US6559533B1 (en) 1999-09-17 2003-05-06 Kabushiki Kaisha Toshiba High-frequency package and the method for manufacturing the same
US6561038B2 (en) 2000-01-06 2003-05-13 Rosemount Inc. Sensor with fluid isolation barrier
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US6505516B1 (en) 2000-01-06 2003-01-14 Rosemount Inc. Capacitive pressure sensing with moving dielectric
US6508129B1 (en) 2000-01-06 2003-01-21 Rosemount Inc. Pressure sensor capsule with improved isolation
US6516671B2 (en) 2000-01-06 2003-02-11 Rosemount Inc. Grain growth of electrical interconnection for microelectromechanical systems (MEMS)
US20030038364A1 (en) * 2001-08-15 2003-02-27 Eldridge Jerome M. Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor
US20030209702A1 (en) * 2001-08-15 2003-11-13 Eldridge Jerome M. Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor
US6888232B2 (en) * 2001-08-15 2005-05-03 Micron Technology Semiconductor package having a heat-activated source of releasable hydrogen
US6953706B2 (en) * 2001-08-15 2005-10-11 Micron Technology, Inc. Method of providing a semiconductor package having an internal heat-activated hydrogen source
EP1298109A3 (fr) * 2001-10-01 2004-01-28 Dowa Mining Co., Ltd. Corps liée en metal ceramique et son procédé de fabrication
US6935554B2 (en) * 2001-10-01 2005-08-30 Dowa Mining, Co. Ltd. Metal/ceramic bonding article and method for producing same
WO2003031372A2 (fr) * 2001-10-01 2003-04-17 Schulz-Harder Juergen Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede
US20040026482A1 (en) * 2001-10-01 2004-02-12 Jurgen Schulz-Harder Process for the manufacture of metal-ceramic compound material in particular metal-ceramic substrates and metal-ceramic compound material especially metal-ceramic substrate manufactured according to this process
CN100347134C (zh) * 2001-10-01 2007-11-07 伊莱楚维克股份公司 制备金属-陶瓷复合材料,特别是金属-陶瓷衬底的方法以及根据这个方法制备的陶瓷复合材料,特别是金属-陶瓷衬底
US7036711B2 (en) 2001-10-01 2006-05-02 Jurgen Schulz-Harder Process for the manufacture of metal-ceramic compound material in particular metal-ceramic substrates and metal-ceramic compound material especially metal-ceramic substrate manufactured according to this process
WO2003031372A3 (fr) * 2001-10-01 2003-08-28 Juergen Schulz-Harder Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede
US20030062399A1 (en) * 2001-10-01 2003-04-03 Masami Kimura Metal/ceramic bonding article and method for producing same
EP1298109A2 (fr) * 2001-10-01 2003-04-02 Dowa Mining Co., Ltd. Corps liée en metal ceramique et son procédé de fabrication
US20030146499A1 (en) * 2001-12-18 2003-08-07 Yasuo Kondo Composite material including copper and cuprous oxide and application thereof
US7754976B2 (en) 2002-04-15 2010-07-13 Hamilton Sundstrand Corporation Compact circuit carrier package
US6848316B2 (en) 2002-05-08 2005-02-01 Rosemount Inc. Pressure sensor assembly
US20030232205A1 (en) * 2002-06-14 2003-12-18 Nobuyoshi Tsukaguchi Metal/ceramic bonding article and method for producing same
US6780520B2 (en) 2002-06-14 2004-08-24 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
EP1371621A1 (fr) * 2002-06-14 2003-12-17 Dowa Mining Co., Ltd. Corps liée en métal/céramique et son procédé de fabrication
US6858151B2 (en) * 2002-06-14 2005-02-22 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
US7159757B2 (en) * 2002-09-26 2007-01-09 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
US20040060968A1 (en) * 2002-09-26 2004-04-01 Takayuki Takahashi Metal/ceramic bonding article and method for producing same
US20070231590A1 (en) * 2006-03-31 2007-10-04 Stellar Industries Corp. Method of Bonding Metals to Ceramics
DE102009007625A1 (de) * 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Verbundsubstrat für einen Halbleiterchip
US20110233784A1 (en) * 2008-11-14 2011-09-29 Osram Opto Semiconductors Gmbh Composite substrate for a semiconductor chip
US8598705B2 (en) 2008-11-14 2013-12-03 Osram Opto Semiconductors Gmbh Composite substrate for a semiconductor chip
DE102010007919B4 (de) 2010-02-12 2022-03-03 Rogers Germany Gmbh Verfahren zum Herstellen von Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Metall-Keramik-Substrat
WO2011098071A1 (fr) 2010-02-12 2011-08-18 Curamik Electronics Gmbh Procédé de fabrication de matériaux composites métal-céramique, notamment de substrats composites métal-céramique et matériau composite métal-céramique, notamment substrat composite métal-céramique fabriqué selon ce procédé
DE102010007919A1 (de) 2010-02-12 2011-08-18 curamik electronics GmbH, 92676 Verfahren zum Herstellen von Metall-Keramik-Verbundmaterialien, insbesondere Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Keramik-Verbundmaterial, insbesondere Metall-Keramik-Substrat
US8448842B1 (en) 2011-12-22 2013-05-28 Vaclong Vacuum Technology Co., Ltd. Advanced copper bonding (ACB) with ceramic substrate technology
US10759714B2 (en) 2016-09-30 2020-09-01 Infineon Technologies Ag Method for producing a metal-ceramic substrate
US10586756B2 (en) 2016-10-04 2020-03-10 Infineon Technologies Ag Chip carrier configured for delamination-free encapsulation and stable sintering
US10964635B2 (en) 2018-05-22 2021-03-30 Schweizer Electronic Ag Power electronic metal-ceramic module and printed circuit board module with integrated power electronic metal-ceramic module and process for their making
US20220155222A1 (en) * 2019-03-18 2022-05-19 Jiangsu University Of Science And Technology Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry
US11965826B2 (en) * 2019-03-18 2024-04-23 Jiangsu University Of Science And Technology Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry
KR20220027843A (ko) 2019-07-08 2022-03-08 가부시키가이샤 월드메탈 접합기재와 금속층의 접합체
US11889635B2 (en) 2019-07-08 2024-01-30 World Metal Co., Ltd Joined body of joining base material and metal layer
US11076483B2 (en) 2019-11-26 2021-07-27 Industrial Technology Research Institute Direct bonded copper ceramic substrate
US12059739B2 (en) 2021-06-29 2024-08-13 Heraeus Deutschland GmbH & Co. KG Method for producing a metal-ceramic substrate

Also Published As

Publication number Publication date
DE2319854A1 (de) 1973-10-25
GB1394322A (en) 1975-05-14
FR2181049A1 (fr) 1973-11-30
IT983841B (it) 1974-11-11
DE2319854C2 (de) 1983-12-29
FR2181049B1 (fr) 1980-04-11
JPS4917381A (fr) 1974-02-15
JPS5713515B2 (fr) 1982-03-17

Similar Documents

Publication Publication Date Title
US3766634A (en) Method of direct bonding metals to non-metallic substrates
US3993411A (en) Bonds between metal and a non-metallic substrate
US3994430A (en) Direct bonding of metals to ceramics and metals
US3744120A (en) Direct bonding of metals with a metal-gas eutectic
GB1559590A (en) Bonding of metals to ceramics and metals
US3854892A (en) Direct bonding of metals with a metal-gas eutectic
US5965193A (en) Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material
US4505418A (en) Method of direct bonding copper foils to oxide-ceramic substrates
Burgess et al. The Direct Bonding of Metals to Ceramics by the Gas‐Metal Eutectic Method
EP0676800B1 (fr) Procédé de fabrication de matériau ou de composant avec une liaison métal-céramique et son utilisation pour un substrat de circuit électronique
Burgess et al. The direct bonding of metals to ceramics and application in electronics
US3091028A (en) Method and alloy for bonding to nonmetallic refractory members
US3793705A (en) Process for brazing a magnetic ceramic member to a metal member
US2820534A (en) Hermetic ceramic-metal seal and method of making the same
US3736649A (en) Method of making ceramic-to-metal seal
US5653379A (en) Clad metal substrate
GB2059323A (en) Bonding metals to non-metallic substrates
JP4124497B2 (ja) 金属−セラミックス複合基板及びその製造法
US3700420A (en) Ceramic-to-metal seal
US4950503A (en) Process for the coating of a molybdenum base
JPH0255695A (ja) Cu―Zr―ハンダ箔
Ning et al. Interface of aluminum/ceramic power substrates manufactured by casting-bonding process
US3178271A (en) High temperature ohmic joint for silicon semiconductor devices and method of forming same
JPH0477702B2 (fr)
JPH107480A (ja) 金属−セラミックス複合基板及びその製造法