US3766634A - Method of direct bonding metals to non-metallic substrates - Google Patents
Method of direct bonding metals to non-metallic substrates Download PDFInfo
- Publication number
- US3766634A US3766634A US00245889A US3766634DA US3766634A US 3766634 A US3766634 A US 3766634A US 00245889 A US00245889 A US 00245889A US 3766634D A US3766634D A US 3766634DA US 3766634 A US3766634 A US 3766634A
- Authority
- US
- United States
- Prior art keywords
- metallic
- copper
- eutectic
- metallic member
- reactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/06—Oxidic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/08—Non-oxidic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/341—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/346—Titania or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/403—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/405—Iron metal group, e.g. Co or Ni
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/405—Iron metal group, e.g. Co or Ni
- C04B2237/406—Iron, e.g. steel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/408—Noble metals, e.g. palladium, platina or silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/54—Oxidising the surface before joining
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/60—Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/706—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/708—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/74—Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
Definitions
- ABSTRACT A method for direct bonding of metallic members to non-metallic members at elevated temperatures in a controlled reactive atmosphere without resorting to the use of electroless plating, vacuum deposition or intermediate metals.
- the method comprises placing a metal member such as copper, for example, in contact with a non-metallic substrate, such as alumina, heating the metal member and the substrate to a temperature slightly below the melting of the metal, e.g., between approximately 1,065C. and 1,080C. for copper, the heating being performed in a reactive atmosphere, such as an oxidizing atmosphere, for a sufficient time to create a copper-copper oxide eutectic melt which, upon cooling, bonds the copper to the substrate.
- a reactive atmosphere such as an oxidizing atmosphere
- the present invention relates to improved bonds and methods of bonding together non-metallic members to metal members and non-metallic members to other non-metallic'members.
- This application relates to concurrently filed application Ser. No. 245,890 of common assignee, the entire disclosure of which is incorporated herein by reference thereto.
- Another object of this invention is to provide a bond and a method of bonding non-metallic refractory materials together or to metal members in a simple heating step without the need for intermediate wetting agents.
- Yet another object of this invention is to provide a tenacious bond and a method of forming this bond between a non-metallic refractory material and a metal which is useful in the formation of integrated circuit modules, and to provide high current carrying electrical conductors on insulating members with high thermal conductivity paths to a heat sink and to provide hermetic seals between two non-metallic refractory materials.
- our invention relates to bonds and methods of bonding together non-metallic members to metallic members.
- a bond between metallic and non-metallic members is formed by placing a metallic member in contact with a non-metallic member preferably exhibiting refractory characteristics and elevating the temperatures of the members in a reactive atmosphere of selected gases and at controlled partial pressures for a sufficient time to produce a eutectic composition which exhibits a eutectic melt.
- This eutectic melt forms at a temperature below the melting point of the metallic member and wets the metallic member and the non-metallic refractory member so that upon cooling, a tenacious bond is formed between the metallic and non-metallic members.
- Useful metallic materials include copper, nickel, cobalt and iron, for example.
- Useful reactive gases include oxygen, phosphorusbearing compounds and sulfur-bearing compounds, for example. In general, the amount of reactive gas necessary to produce tenacious bonds is dependent, in part, upon the thickness of the metallic and non-metallic members and the times and temperatures required to form the eutectic melt.
- FIG. 1 illustrates a typical bond between nonmetallic and metallic materials in accord with our invention
- FIG. 2 is a series of schematic illustrations in the process of making a metal to non-metal bond in accord with one embodiment of our invention
- FIG. 3 is a flow diagram illustrating the process steps in accord with the embodiment of FIG. 2;
- FIGS. 4 and 5 illustrate still other bonds made in accord with our invention
- FIG. 6 schematically illustrates a horizontal furnace useful in practising our invention.
- FIG. 7 schematically illustrates a vertical furnace useful in practising our invention.
- FIG. 1 illustrates, by way of example, a typical bond 11 between a non-metallic refractory member 12 and a metallic member 13.
- the bond 11 comprises a eutectic composition formed with the metallic member and a reactive gas in accord with the novel aspects of our invention.
- non-metallic material is intended to include refractory materials such as alumina (A1 0 beryllia (BeO), fused silica or other useful materials, such as titanates and spinnels, for example.
- alumina and beryllia are particularly useful in the practice of our invention since they exhibit a high thermal conductivity which makes them particularly useful for semi-conductor integrated circuit applications or in high power electrical circuits.
- other nonmetallic refractory materials may also be employed, if
- the metallic member 13 may include such materials as copper, iron, nickel, cobalt, chromium and silver, for example. Also, alloys of these materials, such as copper-nickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel, silver-gold, and ternary compositions of iron, nickel and cobalt, are useful in practising our invention. As will become more apparent from the following description, still other metallic materials, such as beryllium-copper, for example, may also be advantageoujsly employed, if desired.
- FIG. 2 illustrates a non-metallic refractory material 12, such as alumina or beryllia, for example, with a metallic member 13 overlying the nonmetallic refractory substrate 12.
- the substrate 12 and the metallic member 13 are placed in a suitable oven or furnace including a reactive atmosphere which at an elevated temperature forms a eutectic composition 11 on the surfaces of the metallic member 13.
- eutectic or eutectic composition means a mixture of atoms of the metallic member and the reactive gas or compound formed between the metal and the reactive gas.
- the eutectic is a mixture of copper and copper oxide.
- the metal is nickel and the reactive gas is phosphorus, the eutectic is a mixture of nickel and nickel phosphide.
- the metallic member is cobalt and the reactive gas is a sulfur-bearing gas,"the eutectic is formed between cobalt and cobalt sulfide.
- Table I is'a representative listing of still other eutectics which are useful in practising our invention. These eutectics are formed by reacting the metallic member to be bonded with a reactive gas c'ontrollably introduced into the'oven or furnace.
- the eutectic composition is believed to form with one of the elemental metals, generally the one with the lower melting point.
- One factor which appears to affect the tenacity and uniformity of the bond is the relationship between the melting point of the metallic member and the eutectic approximately 30 to 50C. of the melting point of the metallic member, for example, the metallic member tends to plastically conform to the shape of the substrate member and thereby produce better bonds than those eutectics which become liquidus at temperatures greater than approximately 50C. below the melting point of the metallic member.
- the uniformity of the bond therefore appears to be related to the creep of the metal which becomes considerable only near the melting point. From Table I, for example, it can be seen that the following eutectic compounds meet this requirement: copper-copper oxide, nickel-nickel oxide, cobalt-cobalt oxide, iron-iron oxide and copper-copper sulfide.
- FIG. 4 illustrates an alternative embodiment of our invention wherein a non-metallic refractory material 12 has two metallic members 13 bonded to opposite surfaces thereof by bonds 1].
- FIG. 5 illustrates still another embodiment of our invention wherein two non-metallic members 12, such as alumina or beryllia, for example, are bonded together by a metallic member 15.
- the eutectic forms in substantially the same manner as described above but for the fact that bonding occurs on both surfaces of the metallic member 15.
- This embodiment of our invention is particularly useful in forming hermetic seals between non-metallic refractory materials, for example, such as those employed in the fabrication of vacuum tubes, such as high frequency type tubes.
- FIG. 6 illustrates a horizontal furnace comprising an elongated quartz tube 22,,for example, having a gas i nlet 23 at one end thereof and a gas'outlet 24 at the other end.
- the quartz tube 22 also includes an opening or port 25 through which materials are placed into and removed from the furnace. The materials are placed on a holder 26 having a push rod-27 extending through one end of the furnace so that the holder and materials placed thereon may be introduced and removed from the furnace.
- the furnace 21 is also provided with suitable heating elements, illustrated in FIG. 6 as electrical wires 28 which surround the quartz tube 22 in the region to be heated.
- the electrical wires 28 may, for example, be
- thermocouple 29 which extends through an opening in the quartz tube so that electrical connections can bemade thereto.
- FIG. 6 also illustrates a substrate 12 such as a nonmetallic refractory material positioned on the holder 26 and a metallic material 13 overlying the substrate 12. These materials are introduced into the quartz tube through the opening 25 which is then sealed by suitable stopper means.
- a substrate 12 such as a nonmetallic refractory material positioned on the holder 26 and a metallic material 13 overlying the substrate 12. These materials are introduced into the quartz tube through the opening 25 which is then sealed by suitable stopper means.
- reactive gas flow or atmosphere means a mixture of an inert gas such as argon, helium or nitrogen, for example, with a controlled minor amount of a reactive gas, such as oxygen, a phosphorus-containing gas such as phosphine, for example, or a sulfur-containing gas such as hydrogen sulfide, for example.
- a reactive gas such as oxygen, a phosphorus-containing gas such as phosphine, for example, or a sulfur-containing gas such as hydrogen sulfide, for example.
- the amount of reactive gas in the total gas flow is dependent, in part, on the materials to be bonded and the thickness of the materials, in a manner more fully described below.
- the partial pressure of the reactive gas must exceed the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature. For example, when bonding copper members to refractory members in a reactive atmosphere including oxygen, the partial pressure of oxygen must be above 1.5 X atmosphere at the eutectic temperature of 1,065C.
- the furnace is then brought to a temperature sufficient to form a eutectic liquidus or melt at the metal-substrate interface.
- a temperature sufficient to form a eutectic liquidus or melt at the metal-substrate interface.
- the temperature of the furnace is brought to between approximately 1,065C. and 1,075C.
- a copper-copper oxide eutectic forms on the copper member 13. This eutectic melt then wets the copper and the alumina to form a tenacious bond therebetween.
- the times necessary to form this eutectic melt range between approximately 10 minutes for 1- mil-thick copper members and approximately 60 minutes for ZSO-mil-thick copper members.
- a more detailed relationship between copper thickness and time at an elevated temperature of between 1,065 and l,075C. is presented below in Table II for a reactive atmosphere including oxygen.
- Alumina 250 25 Mil, 96% 60 Alumina Table ll illustrates the relationship between copper thickness, non-metallic refractory material thickness and firing time in the furnace, i.e., the time at which the metal-non-metal materials remain in the furnace. From this table it is readily apparent that the firing time increases with the metal thickness, although there does not appear to be a linear relationship between the two.
- FIG. 7 illustrates a vertical furnace 31 including a vertically positioned quartz tube 32, for example, with a carbon susceptor 33 positioned on a fused silica pedestal 34.
- the quartz tube 32 is sur rounded with RF. heating coils 35 which are powered by an external R.F. generator, not shown.
- FIG. 7 also illustrates a substrate 36 such as a nonmetallic refractory material resting on the susceptor 33 with a metal member 37 placed thereover.
- inert and oxidizing gases are introduced through inlets 38 and 39, respectively.
- the combined gas flows pass through conduit 40 onto the metallic and non-metallic members and exhaust through an exhaust outlet 41.
- Flow meters 42 and 43 on each inlet monitor and control the rate of flow of the gases into the furnace.
- the operation of the vertical furnace will be described with reference to the formation of a bond between a S-mil-thick copper member and an approximately -mil-thick beryllia member.
- the flow meters 42 and 43 are adjusted so that pure argon is introduced at inlet 38 and argon containing 2 per cent oxygen is introduced at inlet 39.
- the quartz tube is then flushed or purged for approximately 10 minutes with a flow rate of approximately 2 cubic feet per hour of argon and approximately 1 cubic foot per hour of the argon-containing oxygen gas produces a total oxygen content in the combined gases of approximately 0.04 molar per cent.
- the temperature of the susceptor, beryllia and copper members is maintained at room temperature.
- the RF. power is applied until the temperature of the copper member exceeds 1,065C., but is below l,083C. Typically, 2 to 5 minutes are required to produce this temperature which may, for example, be monitored optically.
- Optical monitoring of temperature is well known in the art and as the copper member heats up from room temperature, a red-brown oxidation color typical of copper oxide appears on the surface. Above 600C., the copper surface emits light strongly. At a temperature of 1,065C., a liquid layer is observed around the copper member.
- the liquid layer wets both the beryllia and copper members as evidenced by a drastic color change. Wetting first occurs at the outer edges of the copper member where a black color appears which then moves toward the center of the copper, until the entire copper member appears black to the eye. Under these conditions, the copper member retains its structural integrity and does not break up into separate liquid droplets. When the wetting process is completed over the entire surface area, the R.F. power is removed and the members permitted to cool. Upon removal of the copper and beryllia from the furnace, the copper is strongly bonded to the beryllia and bond strengths in excess of 20,000 pounds per square inch have been observed.
- the shape of the bonded copper member is substantially the same as that of the original unbonded copper. However, there is some evidence of oxidation and precipitation of copper oxide in the bonded member. Also, some recrystallization of the grain structure within the copper member is discernible.
- the tenacious bonds formed in accord with our invention result from the reaction of the metal with the reacting gas during the heating period prior to the formation of the eutectic melt. During this period, a small amount of the reacting gas dissolves into the metal, but most of it reacts with the metal to form a eutectic with the metal over its exposed surfaces. At'the eutectic temperature, 1,065C. for copper-oxide, for example, a liquid phase of or near the eutectic composition forms a skin around the metal. The thickness of this molten skin depends upon the partial pressure of the reacting gas and the length of time at the elevated temperature.
- the eutectic Under conditions permitting the formation of the eutectic, the eutectic appears to wet the metal and the non' metallic refractory material in such a way that upon cooling, a strong bond forms between the two materials.A strong bond has also been observed between pure copper at its melting point of 1,08'3C., in theabsence of a reacting gas (or even in a reducing atmosphere), however,the copper member loses its structural integrity and forms liquid droplets which are bonded to the non-metallic refractory material.
- the partial pressure of the reacting gas if the partial pressure of the reacting gas is too high, all the metal reacts with the reactive gas and forms, for example, an oxide, sulfide, phosphide, etc;, which prevents the formation of the eutectic melt.
- an intermediate reacting gas partial pressure is required so that both the eutectic melt phase and the metallic phase are present simultaneously. Tests have illustrated that extremely strong bonds are achieved when both phases are present. Accordingly, in practising our invention the partial pressure of the reacting gas must be sufficiently great to permitthe formation of a eutectic with the metal butnot so great as to completely convert the metal to the oxide, sulfide, phosphide, etc. during the bonding time.
- Table III illustrates ranges for partial pressures of the reactive gases at which good bonding occurs for other metals and gases. Only those eutectics which exhibit a eutectic temperature within 50C. of the melting point of the metal are listed.
- useful bonds are formed with the aforementioned binary metallic composition such as coppernickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel and beryllium-copper in a reactive atmosphere including oxygen.
- binary metallic compositions such as coppernickel, nickel-cobalt, copper-chromium, coppercobalt, iron-nickel and beryllium-copper
- Ternary compositions of iron, nickel and cobalt also form useful bonds in a reactive atmosphere of oxygen.
- silver-gold compositions bond to non-metallic refractory members in a reactive atmosphere including a sulfur-bearing gas such as hydrogen sulfide, for example.
- metallic members bonded to a non-metallic refractory material may be patterned by photolithographic masking and etching techniques to produce a desired pattern in the metallic member after forming the desired bond.
- This method of forming patterned conductors is preferable in the fabrication of semiconductor integrated circuits, for example, where the size of the conductor if preformed before bonding would pose serious handling problems.
- Microwave tests performed on electrical circuits formed by patterning copper bonded to alumina exhibit Qs comparable to those formed by thin film techniques. For example, Qs in excess of 450 have been observed.
- the total gas flow rate may be varied over wide limits without materially affecting the bond and economic considerations will generally control the acceptable gas flow rate.
- the partial pressure of the reactive gas in the inert gas also can be varied depending in part on the relative sizes of the materials-to be bonded, the gas flow rate, the presence of reactive elements in the flow system, such as carbon susceptors in the case of an oxygen system, the warm-up rate prior to bonding and the presence of residual oxygen or water in the bonding system and bonding time. Therefore, it is intended that the appended claims cover all such changes and modifications as fall within the true spirit and scope of our invention.
- Av method of direct bonding a metallic member to a non-metallic refractory material substrate comprising the steps of:
- said metallic member is selected from the group consisting of copper, nickel, cobalt, iron and chromium and the step of heating in a reactive atmosphere forms said eutectic with the selected metallic member.
- said copper member is in the form of a sheet having a thickness of between approximately 1 and 250 milli-inches and said reactive atmosphere is argon, helium or nitrogen with approximately 0.01 to 0.5 per cent by volume of oxygen.
- non-metallic material is selected from the group of alumina, beryllia and fused silica, titanates and spinnels.
- said reactive atmosphere includes a partial pressure of a reactive gas in excess of the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature.
- said metallic member is selected from the group of alloys consisting of copper-nickel, nickel-cobalt, copper-chromium, copper-cobalt, iron-nickel, silver-gold and berylliumcopper.
- a method of bonding a metallic member to a non-metallic member comprising:
- a metallic member selected from the group consisting of copper, nickel, cobalt, iron and chromium in contact with a non-metallic member; providing a reactive gas atmosphere which at an elevated temperature will react with the metal surface to form a eutectic;
- step of forming a eutectic comprises:
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Products (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Chemical Vapour Deposition (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24588972A | 1972-04-20 | 1972-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3766634A true US3766634A (en) | 1973-10-23 |
Family
ID=22928519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00245889A Expired - Lifetime US3766634A (en) | 1972-04-20 | 1972-04-20 | Method of direct bonding metals to non-metallic substrates |
Country Status (6)
Country | Link |
---|---|
US (1) | US3766634A (fr) |
JP (1) | JPS5713515B2 (fr) |
DE (1) | DE2319854C2 (fr) |
FR (1) | FR2181049B1 (fr) |
GB (1) | GB1394322A (fr) |
IT (1) | IT983841B (fr) |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911553A (en) * | 1974-03-04 | 1975-10-14 | Gen Electric | Method for bonding metal to ceramic |
US3911570A (en) * | 1973-08-21 | 1975-10-14 | Electro Oxide Corp | Electrical connector and method of making |
DE2633869A1 (de) * | 1975-07-30 | 1977-02-17 | Gen Electric | Direkte verbindung von metallen mit keramikmaterialien und metallen |
JPS54157277A (en) * | 1978-06-01 | 1979-12-12 | Nippon Electric Co | Method of printed board for microwave |
JPS5571676A (en) * | 1979-10-15 | 1980-05-29 | Shoei Chemical Ind Co | Preparing plugguse piezoelectric ceramic body |
DE2852979A1 (de) * | 1978-11-22 | 1980-06-04 | Bbc Brown Boveri & Cie | Scheibenrotor fuer eine elektrische maschine |
JPS55104979A (en) * | 1979-02-02 | 1980-08-11 | Kogyo Gijutsuin | Adhesion of ceramic molded body to transition metal |
US4245488A (en) * | 1980-01-04 | 1981-01-20 | General Electric Company | Use of motor power control circuit losses in a clothes washing machine |
US4323483A (en) * | 1979-11-08 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Mixed oxide bonded copper conductor compositions |
US4409278A (en) * | 1981-04-16 | 1983-10-11 | General Electric Company | Blister-free direct bonding of metals to ceramics and metals |
US4413766A (en) * | 1981-04-03 | 1983-11-08 | General Electric Company | Method of forming a conductor pattern including fine conductor runs on a ceramic substrate |
DE3233022A1 (de) * | 1982-09-06 | 1984-03-08 | BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau | Verfahren zum direkten verbinden eines koerpers mit einem keramischen substrat |
JPS59121860A (ja) * | 1982-12-28 | 1984-07-14 | Toshiba Corp | 半導体用基板 |
EP0115000A2 (fr) * | 1983-01-03 | 1984-08-08 | General Electric Company | Empaquetage pour puce de puissance |
JPS59150453A (ja) * | 1982-12-23 | 1984-08-28 | Toshiba Corp | 半導体モジユ−ル用基板の製造方法 |
DE3421989A1 (de) * | 1983-06-09 | 1984-12-13 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
DE3421988A1 (de) * | 1983-06-09 | 1984-12-13 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
US4494688A (en) * | 1981-03-16 | 1985-01-22 | Matsushita Electric Industrial Co., Ltd. | Method of connecting metal leads with electrodes of semiconductor device and metal lead therefore |
US4500029A (en) * | 1982-06-11 | 1985-02-19 | General Electric Company | Electrical assembly including a conductor pattern bonded to a non-metallic substrate and method of fabricating such assembly |
US4505418A (en) * | 1980-09-25 | 1985-03-19 | Brown, Boveri & Cie Ag | Method of direct bonding copper foils to oxide-ceramic substrates |
JPS60107845A (ja) * | 1983-11-17 | 1985-06-13 | Toshiba Corp | 半導体用回路基板 |
US4563383A (en) * | 1984-03-30 | 1986-01-07 | General Electric Company | Direct bond copper ceramic substrate for electronic applications |
US4582240A (en) * | 1984-02-08 | 1986-04-15 | Gould Inc. | Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components |
US4591401A (en) * | 1983-07-08 | 1986-05-27 | Brown, Boveri & Cie Aktiengesellschaft | Process for the direct bonding of metal to ceramics |
DE3543613A1 (de) * | 1984-12-07 | 1986-07-03 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
DE3543615A1 (de) * | 1984-12-10 | 1986-07-03 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum herstellen eines stromlos abgeschiedenen metallbelages auf einer keramischen unterlage |
US4602731A (en) * | 1984-12-24 | 1986-07-29 | Borg-Warner Corporation | Direct liquid phase bonding of ceramics to metals |
US4603474A (en) * | 1983-06-03 | 1986-08-05 | Bbc Brown, Boveri & Company Limited | Collector for an electric machine and method for its production |
US4607189A (en) * | 1983-02-25 | 1986-08-19 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Cathode ray tube with glass-to-metal seal using silver chloride cement |
US4631099A (en) * | 1985-01-04 | 1986-12-23 | Agency Of Industrial Science & Technology | Method for adhesion of oxide type ceramics with copper or alloy thereof |
EP0273227A2 (fr) * | 1986-12-22 | 1988-07-06 | Kalman F. Zsamboky | Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique |
US4788765A (en) * | 1987-11-13 | 1988-12-06 | Gentron Corporation | Method of making circuit assembly with hardened direct bond lead frame |
US4807796A (en) * | 1986-11-14 | 1989-02-28 | U.S. Philips Corporation | Method of soldering aluminum-oxide ceramic components |
US4831723A (en) * | 1988-04-12 | 1989-05-23 | Kaufman Lance R | Direct bond circuit assembly with crimped lead frame |
US4845395A (en) * | 1987-05-04 | 1989-07-04 | Alsthom | Ceramic core commutator for a rotary electric machine |
US4860164A (en) * | 1988-09-01 | 1989-08-22 | Kaufman Lance R | Heat sink apparatus with electrically insulative intermediate conduit portion for coolant flow |
EP0335679A2 (fr) * | 1988-03-30 | 1989-10-04 | Kabushiki Kaisha Toshiba | Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production |
US4879633A (en) * | 1988-04-12 | 1989-11-07 | Kaufman Lance R | Direct bond circuit assembly with ground plane |
US4902854A (en) * | 1988-04-12 | 1990-02-20 | Kaufman Lance R | Hermetic direct bond circuit assembly |
US4924292A (en) * | 1988-04-12 | 1990-05-08 | Kaufman Lance R | Direct bond circuit assembly with crimped lead frame |
US4990720A (en) * | 1988-04-12 | 1991-02-05 | Kaufman Lance R | Circuit assembly and method with direct bonded terminal pin |
US4996116A (en) * | 1989-12-21 | 1991-02-26 | General Electric Company | Enhanced direct bond structure |
US5027255A (en) * | 1988-10-22 | 1991-06-25 | Westinghouse Electric Co. | High performance, high current miniaturized low voltage power supply |
US5032691A (en) * | 1988-04-12 | 1991-07-16 | Kaufman Lance R | Electric circuit assembly with voltage isolation |
DE4117004A1 (de) * | 1990-05-25 | 1991-11-28 | Toshiba Kawasaki Kk | Verfahren zur herstellung einer schaltungsplatte |
US5070602A (en) * | 1988-04-12 | 1991-12-10 | Lance R. Kaufman | Method of making a circuit assembly |
US5100740A (en) * | 1989-09-25 | 1992-03-31 | General Electric Company | Direct bonded symmetric-metallic-laminate/substrate structures |
DE4103294A1 (de) * | 1991-02-04 | 1992-08-13 | Akyuerek Altan | Verfahren zum herstellen von elektrisch leitenden durchkontaktierungen in keramiksubstraten |
US5159413A (en) * | 1990-04-20 | 1992-10-27 | Eaton Corporation | Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate |
US5208502A (en) * | 1991-02-28 | 1993-05-04 | Hitachi, Ltd. | Sliding current collector made of ceramics |
US5241216A (en) * | 1989-12-21 | 1993-08-31 | General Electric Company | Ceramic-to-conducting-lead hermetic seal |
US5273203A (en) * | 1989-12-21 | 1993-12-28 | General Electric Company | Ceramic-to-conducting-lead hermetic seal |
DE4222973A1 (de) * | 1992-07-13 | 1994-01-20 | Asea Brown Boveri | Bidirektionaler Halbleiterschalter |
US5418002A (en) * | 1990-12-24 | 1995-05-23 | Harris Corporation | Direct bonding of copper to aluminum nitride substrates |
US5490627A (en) * | 1994-06-30 | 1996-02-13 | Hughes Aircraft Company | Direct bonding of copper composites to ceramics |
EP0702511A2 (fr) | 1992-07-17 | 1996-03-20 | Vlt Corporation | Boîtier de composants électroniques |
EP0712266A2 (fr) | 1994-11-10 | 1996-05-15 | Vlt Corporation | Boîtier de composants électroniques |
US5583317A (en) * | 1994-01-14 | 1996-12-10 | Brush Wellman Inc. | Multilayer laminate heat sink assembly |
US5586714A (en) * | 1994-10-06 | 1996-12-24 | Board Of Regents Of The University Of Nebraska | Method of bonding metal to a non-metal substrate |
US5653379A (en) * | 1989-12-18 | 1997-08-05 | Texas Instruments Incorporated | Clad metal substrate |
US5777259A (en) * | 1994-01-14 | 1998-07-07 | Brush Wellman Inc. | Heat exchanger assembly and method for making the same |
WO1998032312A1 (fr) * | 1997-01-17 | 1998-07-23 | California Institute Of Technology | Technique a micro-ondes pour braser des materiaux |
DE19715540A1 (de) * | 1997-04-15 | 1998-10-22 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates |
US6022426A (en) * | 1995-05-31 | 2000-02-08 | Brush Wellman Inc. | Multilayer laminate process |
US6079276A (en) * | 1995-02-28 | 2000-06-27 | Rosemount Inc. | Sintered pressure sensor for a pressure transmitter |
US6484585B1 (en) | 1995-02-28 | 2002-11-26 | Rosemount Inc. | Pressure sensor for a pressure transmitter |
US6505516B1 (en) | 2000-01-06 | 2003-01-14 | Rosemount Inc. | Capacitive pressure sensing with moving dielectric |
US6508129B1 (en) | 2000-01-06 | 2003-01-21 | Rosemount Inc. | Pressure sensor capsule with improved isolation |
US6516671B2 (en) | 2000-01-06 | 2003-02-11 | Rosemount Inc. | Grain growth of electrical interconnection for microelectromechanical systems (MEMS) |
US6520020B1 (en) | 2000-01-06 | 2003-02-18 | Rosemount Inc. | Method and apparatus for a direct bonded isolated pressure sensor |
US20030038364A1 (en) * | 2001-08-15 | 2003-02-27 | Eldridge Jerome M. | Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor |
EP1298109A2 (fr) * | 2001-10-01 | 2003-04-02 | Dowa Mining Co., Ltd. | Corps liée en metal ceramique et son procédé de fabrication |
WO2003031372A2 (fr) * | 2001-10-01 | 2003-04-17 | Schulz-Harder Juergen | Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede |
US6559533B1 (en) | 1999-09-17 | 2003-05-06 | Kabushiki Kaisha Toshiba | High-frequency package and the method for manufacturing the same |
US6561038B2 (en) | 2000-01-06 | 2003-05-13 | Rosemount Inc. | Sensor with fluid isolation barrier |
US20030146499A1 (en) * | 2001-12-18 | 2003-08-07 | Yasuo Kondo | Composite material including copper and cuprous oxide and application thereof |
EP1371621A1 (fr) * | 2002-06-14 | 2003-12-17 | Dowa Mining Co., Ltd. | Corps liée en métal/céramique et son procédé de fabrication |
US20040060968A1 (en) * | 2002-09-26 | 2004-04-01 | Takayuki Takahashi | Metal/ceramic bonding article and method for producing same |
US6848316B2 (en) | 2002-05-08 | 2005-02-01 | Rosemount Inc. | Pressure sensor assembly |
US6909185B1 (en) | 1998-12-07 | 2005-06-21 | Hitachi, Ltd. | Composite material including copper and cuprous oxide and application thereof |
US20070231590A1 (en) * | 2006-03-31 | 2007-10-04 | Stellar Industries Corp. | Method of Bonding Metals to Ceramics |
DE102009007625A1 (de) * | 2008-11-14 | 2010-05-20 | Osram Opto Semiconductors Gmbh | Verbundsubstrat für einen Halbleiterchip |
US7754976B2 (en) | 2002-04-15 | 2010-07-13 | Hamilton Sundstrand Corporation | Compact circuit carrier package |
WO2011098071A1 (fr) | 2010-02-12 | 2011-08-18 | Curamik Electronics Gmbh | Procédé de fabrication de matériaux composites métal-céramique, notamment de substrats composites métal-céramique et matériau composite métal-céramique, notamment substrat composite métal-céramique fabriqué selon ce procédé |
US8448842B1 (en) | 2011-12-22 | 2013-05-28 | Vaclong Vacuum Technology Co., Ltd. | Advanced copper bonding (ACB) with ceramic substrate technology |
US10586756B2 (en) | 2016-10-04 | 2020-03-10 | Infineon Technologies Ag | Chip carrier configured for delamination-free encapsulation and stable sintering |
US10759714B2 (en) | 2016-09-30 | 2020-09-01 | Infineon Technologies Ag | Method for producing a metal-ceramic substrate |
US10964635B2 (en) | 2018-05-22 | 2021-03-30 | Schweizer Electronic Ag | Power electronic metal-ceramic module and printed circuit board module with integrated power electronic metal-ceramic module and process for their making |
US11076483B2 (en) | 2019-11-26 | 2021-07-27 | Industrial Technology Research Institute | Direct bonded copper ceramic substrate |
KR20220027843A (ko) | 2019-07-08 | 2022-03-08 | 가부시키가이샤 월드메탈 | 접합기재와 금속층의 접합체 |
US20220155222A1 (en) * | 2019-03-18 | 2022-05-19 | Jiangsu University Of Science And Technology | Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry |
US12059739B2 (en) | 2021-06-29 | 2024-08-13 | Heraeus Deutschland GmbH & Co. KG | Method for producing a metal-ceramic substrate |
Families Citing this family (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58102532A (ja) * | 1981-12-15 | 1983-06-18 | Toshiba Corp | 半導体装置 |
DE3204167A1 (de) * | 1982-02-06 | 1983-08-11 | Brown, Boveri & Cie Ag, 6800 Mannheim | Verfahren zum direkten verbinden von metallstuecken mit oxidkeramiksubstraten |
DE3223948A1 (de) * | 1982-06-26 | 1983-12-29 | Tigra Verschleiß- und Werkzeugtechnik GmbH, 7240 Horb | Verfahren zum verloeten keramischer und metallischer werkstoffe untereinander |
DE3376829D1 (en) * | 1982-06-29 | 1988-07-07 | Toshiba Kk | Method for directly bonding ceramic and metal members and laminated body of the same |
DE3241926A1 (de) * | 1982-11-12 | 1984-05-17 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Verbindung eines keramischen rotationsbauteils mit einem metallischen rotationsbauteil fuer stroemungsmaschinen, insbesondere gasturbinentriebwerke |
JPS59190279A (ja) * | 1983-04-13 | 1984-10-29 | 株式会社東芝 | セラミツクス構造体及びその製造方法 |
DE3633907A1 (de) * | 1986-08-02 | 1988-02-04 | Altan Akyuerek | Verfahren zum haftfesten verbinden eines kupferkoerpers mit einem substrat |
FR2623046B1 (fr) * | 1987-11-10 | 1990-03-23 | Telemecanique Electrique | Procede de liaison d'une feuille de cuivre a un substrat en materiau electriquement isolant |
DE3930858C2 (de) * | 1988-09-20 | 2002-01-03 | Peter H Maier | Modulaufbau |
DE3930859C2 (de) * | 1988-09-20 | 1997-04-30 | Schulz Harder Juergen | Verfahren zum Verlöten wenigstens zweier Elemente |
DE3931551C2 (de) * | 1989-09-22 | 1993-11-18 | Schulz Harder Juergen | Verfahren zum Herstellen eines Substrates |
DE4318061C2 (de) * | 1993-06-01 | 1998-06-10 | Schulz Harder Juergen | Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE4319848C2 (de) * | 1993-06-03 | 1995-12-21 | Schulz Harder Juergen | Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE19749987B4 (de) * | 1997-07-11 | 2008-09-25 | Curamik Electronics Gmbh | Gehäuse für Halbleiterbauelemente, insbesondere für Leistungshalbleiterbauelemente |
DE19729677B4 (de) * | 1997-07-11 | 2006-05-18 | Curamik Electronics Gmbh | Gehäuse für Halbleiterbauelemente, insbesondere für Leistungshalbleiterbauelemente |
DE19753149C2 (de) * | 1997-11-12 | 1999-09-30 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines Keramik-Metall-Substrates |
DE19927046B4 (de) * | 1999-06-14 | 2007-01-25 | Electrovac Ag | Keramik-Metall-Substrat als Mehrfachsubstrat |
DE19930207C2 (de) * | 1999-06-22 | 2001-12-06 | Schulz Harder Juergen | Verfahren zum Herstellen von Substraten mit strukturierten Metallisierungen sowie Halte- und Fixierelement zur Verwendung bei diesem Verfahren |
DE19945794C2 (de) * | 1999-09-15 | 2002-12-19 | Curamik Electronics Gmbh | Verfahren zum Herstellen einer Metall-Keramik-Leiterplatte mit DurchKontaktierungen |
DE10047525B4 (de) * | 2000-09-22 | 2005-06-30 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines Formkörpers unter Verwendung eines Ausgangsmaterials, welches Siliziumcarbid in Pulver- oder Partikelform sowie Kupfer enthält und so hergestellte Formkörper |
EP1227353B1 (fr) | 2001-01-16 | 2005-05-04 | Curamik Electronics GmbH | Miroir à laser et procédé pour sa fabrication |
DE10212495B4 (de) | 2002-03-21 | 2004-02-26 | Schulz-Harder, Jürgen, Dr.-Ing. | Verfahren zum Herstellen eines Metall-Keramik-Substrats, vorzugsweise eines Kupfer-Keramik-Substrats |
DE10227658B4 (de) * | 2002-06-20 | 2012-03-08 | Curamik Electronics Gmbh | Metall-Keramik-Substrat für elektrische Schaltkreise -oder Module, Verfahren zum Herstellen eines solchen Substrates sowie Modul mit einem solchen Substrat |
DE10229711B4 (de) * | 2002-07-02 | 2009-09-03 | Curamik Electronics Gmbh | Halbleitermodul mit Mikrokühler |
DE10229712B4 (de) * | 2002-07-02 | 2009-06-25 | Jenoptik Laserdiode Gmbh | Halbleitermodul |
DE10261402A1 (de) | 2002-12-30 | 2004-07-15 | Schulz-Harder, Jürgen, Dr.-Ing. | Wärmesenke in Form einer Heat-Pipe sowie Verfahren zum Herstellen einer solchen Wärmesenke |
DE10320838B4 (de) * | 2003-05-08 | 2014-11-06 | Rogers Germany Gmbh | Faserverstärktes Metall-Keramik/Glas-Verbundmaterial als Substrat für elektrische Anwendungen, Verfahren zum Herstellen eines derartigen Verbundmaterials sowie Verwendung dieses Verbundmaterials |
DE10327360B4 (de) * | 2003-06-16 | 2012-05-24 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines Keramik-Metall-Substrates |
DE102004012232B4 (de) * | 2004-02-20 | 2006-11-16 | Electrovac Ag | Verfahren zum Herstellen von Plattenstapeln, insbesondere zum Herstellen von aus wenigstens einem Plattenstapel bestehenden Kühlern |
JP2005343768A (ja) | 2004-06-07 | 2005-12-15 | Toyota Central Res & Dev Lab Inc | 金属/セラミック接合体及びその製造方法 |
DE102004033933B4 (de) * | 2004-07-08 | 2009-11-05 | Electrovac Ag | Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102005042554B4 (de) | 2005-08-10 | 2008-04-30 | Curamik Electronics Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
DE102007008027A1 (de) | 2007-02-13 | 2008-08-21 | Curamik Electronics Gmbh | Diodenlaseranordnung sowie Verfahren zum Herstellen einer solchen Anordnung |
EP1959528B1 (fr) | 2007-02-13 | 2017-04-12 | Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH | Système de laser à diodes ainsi que procédé de fabrication d'un tel système |
DE102007030389B4 (de) | 2007-03-30 | 2015-08-13 | Rogers Germany Gmbh | Moduleinheit mit einer Wärmesenke |
DE102009041574A1 (de) | 2008-10-29 | 2010-05-12 | Electrovac Ag | Verbundmaterial, Verfahren zum Herstellen eines Verbundmaterials sowie Kleber oder Bondmaterial |
DE102009015520A1 (de) | 2009-04-02 | 2010-10-07 | Electrovac Ag | Metall-Keramik-Substrat |
DE102009022877B4 (de) | 2009-04-29 | 2014-12-24 | Rogers Germany Gmbh | Gekühlte elektrische Baueinheit |
WO2010136017A1 (fr) | 2009-05-27 | 2010-12-02 | Electrovac Ag | Unité modulaire électrique refroidie |
DE102009033029A1 (de) | 2009-07-02 | 2011-01-05 | Electrovac Ag | Elektronische Vorrichtung |
DE102010018668B4 (de) | 2010-04-07 | 2012-11-15 | Curamik Electronics Gmbh | Verpackungseinheit für Metall-Keramik-Substrate |
DE202010009472U1 (de) | 2010-04-07 | 2011-02-10 | Electrovac Ag | Verpackung für Metall-Keramik-Substrate |
DE102010024520B4 (de) | 2010-06-21 | 2017-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Erhöhung der thermo-mechanischen Beständigkeit eines Metall-Keramik-Substrats |
DE102010025311B4 (de) | 2010-06-28 | 2014-08-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Aufbringen einer metallischen Schicht auf ein keramisches Substrat, Verwendung des Verfahrens und Materialverbund |
DE102010025313A1 (de) | 2010-06-28 | 2011-12-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Herstellen einer strukturierten, elektrisch leitfähigen Schicht auf einem Keramikträger |
DE102010049499B4 (de) | 2010-10-27 | 2014-04-10 | Curamik Electronics Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines solchen Substrates |
JP6044635B2 (ja) | 2011-07-29 | 2016-12-14 | ロジャース ジャーマニー ゲーエムベーハー | 基板用包装ならびにそのような包装を備える包装ユニット |
DE102012110382B4 (de) | 2011-12-21 | 2021-02-18 | Rogers Germany Gmbh | Substrat sowie Verfahren zum Herstellen eines Substrates |
DE102012101057A1 (de) | 2011-12-27 | 2013-06-27 | Curamik Electronics Gmbh | Verfahren zur Herstellung von DCB-Substraten |
DE102012102090A1 (de) | 2012-01-31 | 2013-08-01 | Curamik Electronics Gmbh | Thermoelektrisches Generatormodul, Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102012102611B4 (de) | 2012-02-15 | 2017-07-27 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102012102787B4 (de) | 2012-03-30 | 2015-04-16 | Rogers Germany Gmbh | Verfahren zum Herstellen von Metall-Keramik-Substraten |
WO2013143534A1 (fr) | 2012-03-30 | 2013-10-03 | Curamik Electronics Gmbh | Four tunnel |
DE102013102797A1 (de) | 2012-03-30 | 2013-10-02 | Curamik Electronics Gmbh | Tunnelofen |
DE102012103786B4 (de) | 2012-04-30 | 2017-05-18 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102012104903B4 (de) | 2012-05-10 | 2023-07-13 | Rogers Germany Gmbh | Verfahren zum Herstellen von Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Metall-Keramik-Substrat |
DE102012107399B4 (de) | 2012-07-10 | 2014-09-11 | Rogers Germany Gmbh | Verfahren zum Herstellen von Metall-Keramik-Substraten sowie Metall-Keramik-Substrat |
DE102012106244B4 (de) | 2012-07-11 | 2020-02-20 | Rogers Germany Gmbh | Metall-Keramik-Substrat |
DE102012107570B4 (de) | 2012-08-17 | 2017-08-03 | Rogers Germany Gmbh | Verfahren zur Herstellung von Hohlkörpern, insbesondere von Kühlern, Hohlkörper sowie Kühler enthaltende elektrische oder elektronische Baugruppen |
DE102012110322B4 (de) | 2012-10-29 | 2014-09-11 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013102540B4 (de) | 2013-02-22 | 2019-07-04 | Rogers Germany Gmbh | Metall-Keramik-Substrat, Modulanordnung sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013102637B4 (de) | 2013-03-14 | 2017-08-31 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines derartigen Metall-Keramik-Substrates und Anordnung von derartigen Metall-Keramik-Substraten |
DE102013104739B4 (de) | 2013-03-14 | 2022-10-27 | Rogers Germany Gmbh | Metall-Keramik-Substrate sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013104055B4 (de) | 2013-04-22 | 2023-08-31 | Rogers Germany Gmbh | Basissubstrat, Metall-Keramik-Substrat hergestellt aus einem Basissubstrat sowie Verfahren zum Herstellen eines Basissubstrates |
DE102013105528B4 (de) | 2013-05-29 | 2021-09-02 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013108610A1 (de) | 2013-08-06 | 2015-02-12 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013013842B4 (de) | 2013-08-20 | 2015-10-15 | Rogers Germany Gmbh | Verfahren zum Herstellen von Metall-Keramik-Substraten sowie Metall-Keramik-Substrat |
DE102013113736B4 (de) | 2013-12-10 | 2019-11-14 | Rogers Germany Gmbh | Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102013113734B4 (de) | 2013-12-10 | 2018-03-08 | Rogers Germany Gmbh | Verfahren zum Herstellen eines Metall-Keramik-Substrates |
DE102014106694B3 (de) * | 2014-05-13 | 2015-04-02 | Rogers Germany Gmbh | Verfahren zur Metallisierung zumindest eines plattenförmigen Keramiksubstrates sowie Metall-Keramik-Substrat |
DE102014215377B4 (de) | 2014-08-05 | 2019-11-07 | Heraeus Deutschland GmbH & Co. KG | Verfahren zum Herstellen von doppelseitig metallisierten Keramik-Substraten |
DE102014224588B4 (de) | 2014-12-02 | 2019-08-01 | Heraeus Deutschland GmbH & Co. KG | Verfahren zum Herstellen eines plattenförmigen metallisierten Keramik-Substrats, Träger zum Herstellen des Substrats und Verwendung des Trägers |
DE102014119386B4 (de) | 2014-12-22 | 2019-04-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Herstellen eines Metall-Keramik-Substrates und zugehöriges Metall-Keramik-Substrat |
DE102015102657B4 (de) | 2015-02-25 | 2018-07-19 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Kupfer-Keramik-Verbundsubstrats |
CN107041061A (zh) | 2015-12-22 | 2017-08-11 | 德国贺利氏公司 | 通过厚膜浆料增强的直接覆铜基板 |
EP3210951B9 (fr) | 2016-02-26 | 2021-05-19 | Heraeus Deutschland GmbH & Co. KG | Composite en ceramique/cuivre |
EP3210956B1 (fr) | 2016-02-26 | 2018-04-11 | Heraeus Deutschland GmbH & Co. KG | Composite en ceramique/cuivre |
DE102016203058B3 (de) | 2016-02-26 | 2017-05-18 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund und Modul |
DE202016008307U1 (de) | 2016-02-26 | 2017-07-10 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
DE202016008370U1 (de) | 2016-02-26 | 2017-09-11 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
DE202016008287U1 (de) | 2016-02-26 | 2017-06-21 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
EP3210957B1 (fr) | 2016-02-26 | 2019-01-02 | Heraeus Deutschland GmbH & Co. KG | Composite en ceramique/cuivre |
DE202016008286U1 (de) | 2016-02-26 | 2017-06-21 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
DE202016008371U1 (de) | 2016-02-26 | 2017-09-11 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
DE102016203030A1 (de) | 2016-02-26 | 2017-08-31 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
CN108698935B (zh) | 2016-02-26 | 2021-05-25 | 贺利氏德国有限两合公司 | 铜-陶瓷复合物 |
DE102016203112B4 (de) | 2016-02-26 | 2019-08-29 | Heraeus Deutschland GmbH & Co. KG | Kupfer-Keramik-Verbund |
EP3326986B1 (fr) | 2016-11-28 | 2020-11-25 | Infineon Technologies AG | Procédé de fabrication d'un substrat en céramique-métal |
DE102016125348B4 (de) | 2016-12-22 | 2020-06-25 | Rogers Germany Gmbh | Trägersubstrat für elektrische Bauteile und Verfahren zur Herstellung eines Trägersubstrats |
DE102017114891A1 (de) | 2017-07-04 | 2019-01-10 | Rogers Germany Gmbh | Verfahren zur Herstellung einer Durchkontaktierung in einer aus einer Keramik gefertigten Trägerschicht und Trägerschicht mit Durchkontaktierung |
DE102017121015A1 (de) | 2017-09-12 | 2019-03-14 | Rogers Germany Gmbh | Adapterelement zum Anbinden eines Bauelements wie einer Laserdiode an einen Kühlkörper, ein System aus einer Laserdiode, einem Kühlkörper und einem Adapterelement und Verfahren zur Herstellung eines Adapterelements |
DE102017128308B4 (de) | 2017-11-29 | 2020-04-23 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats |
DE102017128316B4 (de) | 2017-11-29 | 2019-12-05 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat |
DE102018101198A1 (de) | 2018-01-19 | 2019-07-25 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines gehäusedeckels für ein laserbauelement und gehäusedeckel für ein laserbauelement sowie laserbauelement |
DE102018104532B4 (de) | 2018-02-28 | 2023-06-29 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
DE102018104521B4 (de) | 2018-02-28 | 2022-11-17 | Rogers Germany Gmbh | Metall-Keramik-Substrate |
DE102018123681A1 (de) | 2018-09-26 | 2020-03-26 | Rogers Germany Gmbh | Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats |
DE102019110106A1 (de) | 2019-04-17 | 2020-10-22 | Rogers Germany Gmbh | Verfahren zur Herstellung einer Verbundkeramik und Verbundkeramik hergestellt mit einem solchen Verfahren |
DE102019113308A1 (de) | 2019-05-20 | 2020-11-26 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik- Substrat, hergestellt mit einem solchen Verfahren |
DE102019113714B4 (de) | 2019-05-23 | 2024-08-14 | Rogers Germany Gmbh | Adapterelement zum Anbinden eines Elektronikbauteils an ein Kühlkörperelement, System mit einem solchen Adapterelement und Verfahren zum Herstellen eines solchen Adapterelements |
DE102019125124A1 (de) | 2019-09-18 | 2021-03-18 | Rogers Germany Gmbh | Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren |
DE102019134004A1 (de) | 2019-12-11 | 2021-06-17 | Rogers Germany Gmbh | Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren |
DE102019135146B4 (de) | 2019-12-19 | 2022-11-24 | Rogers Germany Gmbh | Metall-Keramik-Substrat |
DE102019135099A1 (de) | 2019-12-19 | 2021-06-24 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
DE102019135097A1 (de) | 2019-12-19 | 2021-06-24 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
DE102020106521A1 (de) | 2020-03-10 | 2021-09-16 | Rogers Germany Gmbh | Elektronikmodul und Verfahren zur Herstellung eines Elektronikmoduls |
DE102020119209A1 (de) | 2020-07-21 | 2022-01-27 | Rogers Germany Gmbh | Leistungsmodul und Verfahren zur Herstellung eines Leistungsmoduls |
DE102020119208A1 (de) | 2020-07-21 | 2022-01-27 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
DE102021100463A1 (de) | 2021-01-13 | 2022-07-14 | Rogers Germany Gmbh | Verfahren zum Herstellen eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
EP4032870A1 (fr) | 2021-01-22 | 2022-07-27 | Heraeus Deutschland GmbH & Co. KG | Procédé de structuration de substrats métal-céramique et substrat structuré métal-céramique |
DE102021105109A1 (de) | 2021-03-03 | 2022-09-08 | Rogers Germany Gmbh | Verfahren zum Bearbeiten eines Metall-Keramik-Substrats und Metall-Keramik-Substrat |
DE102021105520B4 (de) | 2021-03-08 | 2022-10-27 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
DE102021107690A1 (de) | 2021-03-26 | 2022-09-29 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
DE102021107872A1 (de) | 2021-03-29 | 2022-09-29 | Rogers Germany Gmbh | Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats |
EP4112586A1 (fr) | 2021-06-29 | 2023-01-04 | Heraeus Deutschland GmbH & Co. KG | Procédé de fabrication d'un substrat métal-céramique en utilisant un four continu |
DE102021125557A1 (de) | 2021-10-01 | 2023-04-06 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
DE102021126529A1 (de) | 2021-10-13 | 2023-04-13 | Rogers Germany Gmbh | Verfahren zur Herstellung von Metall-Keramik-Substraten und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
EP4186880A1 (fr) | 2021-11-26 | 2023-05-31 | Heraeus Deutschland GmbH & Co. KG | Substrat métal-céramique, son procédé de fabrication et module |
EP4311818A1 (fr) | 2022-07-29 | 2024-01-31 | Heraeus Electronics GmbH & Co. KG | Substrat métallique céramique pourvu de zone de contact |
EP4311819A1 (fr) | 2022-07-29 | 2024-01-31 | Heraeus Electronics GmbH & Co. KG | Substrat métallique céramique pourvu de zone de contact |
EP4332267A1 (fr) | 2022-09-05 | 2024-03-06 | Heraeus Electronics GmbH & Co. KG | Procédé de fabrication d'un substrat métal-céramique et substrat métal-céramique |
DE102022129493A1 (de) | 2022-11-08 | 2024-05-08 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung von Metall-Keramik-Substraten |
DE102023102557A1 (de) | 2023-02-02 | 2024-08-08 | Rogers Germany Gmbh | Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren |
EP4421056A1 (fr) | 2023-02-23 | 2024-08-28 | Heraeus Electronics GmbH & Co. KG | Substrat métal-céramique avec surface supérieure frittable |
DE102023104436A1 (de) | 2023-02-23 | 2024-08-29 | Heraeus Deutschland GmbH & Co. KG | Metall-Keramik-Substrat mit sinterbarer Oberseite |
EP4421055A1 (fr) | 2023-02-23 | 2024-08-28 | Heraeus Electronics GmbH & Co. KG | Substrat en cuivre-céramique avec une face supérieure frittable |
EP4421054A1 (fr) | 2023-02-23 | 2024-08-28 | Heraeus Electronics GmbH & Co. KG | Substrat en cuivre-céramique avec une face supérieure frittable |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB784931A (fr) * | ||||
US2482178A (en) * | 1944-02-29 | 1949-09-20 | Western Electric Co | Composite structure for forming a seal with glass |
US2564738A (en) * | 1947-02-25 | 1951-08-21 | Foerderung Forschung Gmbh | Method of forming a vacuum-tight bond between ceramics and metals |
GB761045A (en) * | 1952-08-29 | 1956-11-07 | Lodge Plugs Ltd | Improvements in or relating to the bonding of ceramics with copper |
US3010188A (en) * | 1953-05-12 | 1961-11-28 | Philips Corp | Method of securing ceramic articles to one another or to metal articles |
US3030704A (en) * | 1957-08-16 | 1962-04-24 | Gen Electric | Method of making non-rectifying contacts to silicon carbide |
US3128545A (en) * | 1959-09-30 | 1964-04-14 | Hughes Aircraft Co | Bonding oxidized materials |
US3438118A (en) * | 1965-06-10 | 1969-04-15 | Philips Corp | Method of forming ceramic-to-metal seal |
US3517432A (en) * | 1968-05-02 | 1970-06-30 | Atomic Energy Commission | Diffusion bonding of ceramics |
US3531853A (en) * | 1966-11-30 | 1970-10-06 | Philips Corp | Method of making a ceramic-to-metal seal |
US3676292A (en) * | 1970-10-07 | 1972-07-11 | Olin Corp | Composites of glass-ceramic-to-metal,seals and method of making same |
US3717926A (en) * | 1970-01-29 | 1973-02-27 | G Kravetsky | Method of joining graphite articles |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE759209A (fr) * | 1969-11-25 | 1971-04-30 | Western Electric Co | Procede de soudage de verre a un metal |
-
1972
- 1972-04-20 US US00245889A patent/US3766634A/en not_active Expired - Lifetime
-
1973
- 1973-04-13 IT IT22982/73A patent/IT983841B/it active
- 1973-04-19 DE DE2319854A patent/DE2319854C2/de not_active Expired
- 1973-04-19 FR FR7314471A patent/FR2181049B1/fr not_active Expired
- 1973-04-20 JP JP4423773A patent/JPS5713515B2/ja not_active Expired
- 1973-04-24 GB GB1925873A patent/GB1394322A/en not_active Expired
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB784931A (fr) * | ||||
US2482178A (en) * | 1944-02-29 | 1949-09-20 | Western Electric Co | Composite structure for forming a seal with glass |
US2564738A (en) * | 1947-02-25 | 1951-08-21 | Foerderung Forschung Gmbh | Method of forming a vacuum-tight bond between ceramics and metals |
GB761045A (en) * | 1952-08-29 | 1956-11-07 | Lodge Plugs Ltd | Improvements in or relating to the bonding of ceramics with copper |
US3010188A (en) * | 1953-05-12 | 1961-11-28 | Philips Corp | Method of securing ceramic articles to one another or to metal articles |
US3030704A (en) * | 1957-08-16 | 1962-04-24 | Gen Electric | Method of making non-rectifying contacts to silicon carbide |
US3128545A (en) * | 1959-09-30 | 1964-04-14 | Hughes Aircraft Co | Bonding oxidized materials |
US3438118A (en) * | 1965-06-10 | 1969-04-15 | Philips Corp | Method of forming ceramic-to-metal seal |
US3531853A (en) * | 1966-11-30 | 1970-10-06 | Philips Corp | Method of making a ceramic-to-metal seal |
US3517432A (en) * | 1968-05-02 | 1970-06-30 | Atomic Energy Commission | Diffusion bonding of ceramics |
US3717926A (en) * | 1970-01-29 | 1973-02-27 | G Kravetsky | Method of joining graphite articles |
US3676292A (en) * | 1970-10-07 | 1972-07-11 | Olin Corp | Composites of glass-ceramic-to-metal,seals and method of making same |
Cited By (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911570A (en) * | 1973-08-21 | 1975-10-14 | Electro Oxide Corp | Electrical connector and method of making |
JPS50132022A (fr) * | 1974-03-04 | 1975-10-18 | ||
US3911553A (en) * | 1974-03-04 | 1975-10-14 | Gen Electric | Method for bonding metal to ceramic |
JPS6028785B2 (ja) * | 1974-03-04 | 1985-07-06 | ゼネラル・エレクトリツク・カンパニイ | 金属をセラミツクに結着する方法 |
JPS604154B2 (ja) * | 1975-07-30 | 1985-02-01 | ゼネラル・エレクトリツク・カンパニイ | セラミツクからなる基体に銅部材を結合する方法 |
DE2633869A1 (de) * | 1975-07-30 | 1977-02-17 | Gen Electric | Direkte verbindung von metallen mit keramikmaterialien und metallen |
FR2319600A1 (fr) * | 1975-07-30 | 1977-02-25 | Gen Electric | Procede de liaison directe de metaux a des ceramiques ainsi qu'a des metaux |
JPS5237914A (en) * | 1975-07-30 | 1977-03-24 | Gen Electric | Method of directly combining metal to ceramics and metal |
US4129243A (en) * | 1975-07-30 | 1978-12-12 | General Electric Company | Double side cooled, pressure mounted semiconductor package and process for the manufacture thereof |
JPS54157277A (en) * | 1978-06-01 | 1979-12-12 | Nippon Electric Co | Method of printed board for microwave |
DE2852979A1 (de) * | 1978-11-22 | 1980-06-04 | Bbc Brown Boveri & Cie | Scheibenrotor fuer eine elektrische maschine |
JPS55104979A (en) * | 1979-02-02 | 1980-08-11 | Kogyo Gijutsuin | Adhesion of ceramic molded body to transition metal |
JPH0134954B2 (fr) * | 1979-02-02 | 1989-07-21 | Kogyo Gijutsuin | |
JPS5571676A (en) * | 1979-10-15 | 1980-05-29 | Shoei Chemical Ind Co | Preparing plugguse piezoelectric ceramic body |
JPS599510B2 (ja) * | 1979-10-15 | 1984-03-02 | 昭栄化学工業株式会社 | 点火栓用セラミツク圧電体の製造方法 |
US4323483A (en) * | 1979-11-08 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Mixed oxide bonded copper conductor compositions |
US4245488A (en) * | 1980-01-04 | 1981-01-20 | General Electric Company | Use of motor power control circuit losses in a clothes washing machine |
US4505418A (en) * | 1980-09-25 | 1985-03-19 | Brown, Boveri & Cie Ag | Method of direct bonding copper foils to oxide-ceramic substrates |
US4494688A (en) * | 1981-03-16 | 1985-01-22 | Matsushita Electric Industrial Co., Ltd. | Method of connecting metal leads with electrodes of semiconductor device and metal lead therefore |
US4413766A (en) * | 1981-04-03 | 1983-11-08 | General Electric Company | Method of forming a conductor pattern including fine conductor runs on a ceramic substrate |
US4409278A (en) * | 1981-04-16 | 1983-10-11 | General Electric Company | Blister-free direct bonding of metals to ceramics and metals |
US4500029A (en) * | 1982-06-11 | 1985-02-19 | General Electric Company | Electrical assembly including a conductor pattern bonded to a non-metallic substrate and method of fabricating such assembly |
DE3233022A1 (de) * | 1982-09-06 | 1984-03-08 | BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau | Verfahren zum direkten verbinden eines koerpers mit einem keramischen substrat |
JPS59150453A (ja) * | 1982-12-23 | 1984-08-28 | Toshiba Corp | 半導体モジユ−ル用基板の製造方法 |
JPS59121860A (ja) * | 1982-12-28 | 1984-07-14 | Toshiba Corp | 半導体用基板 |
EP0115000A3 (en) * | 1983-01-03 | 1986-11-26 | General Electric Company | Power chip package |
US4538170A (en) * | 1983-01-03 | 1985-08-27 | General Electric Company | Power chip package |
EP0115000A2 (fr) * | 1983-01-03 | 1984-08-08 | General Electric Company | Empaquetage pour puce de puissance |
US4607189A (en) * | 1983-02-25 | 1986-08-19 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Cathode ray tube with glass-to-metal seal using silver chloride cement |
US4603474A (en) * | 1983-06-03 | 1986-08-05 | Bbc Brown, Boveri & Company Limited | Collector for an electric machine and method for its production |
US4574094A (en) * | 1983-06-09 | 1986-03-04 | Kollmorgen Technologies Corporation | Metallization of ceramics |
DE3421989A1 (de) * | 1983-06-09 | 1984-12-13 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
DE3421988A1 (de) * | 1983-06-09 | 1984-12-13 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
US4604299A (en) * | 1983-06-09 | 1986-08-05 | Kollmorgen Technologies Corporation | Metallization of ceramics |
US4591401A (en) * | 1983-07-08 | 1986-05-27 | Brown, Boveri & Cie Aktiengesellschaft | Process for the direct bonding of metal to ceramics |
JPH0454378B2 (fr) * | 1983-11-17 | 1992-08-31 | Tokyo Shibaura Electric Co | |
JPS60107845A (ja) * | 1983-11-17 | 1985-06-13 | Toshiba Corp | 半導体用回路基板 |
US4582240A (en) * | 1984-02-08 | 1986-04-15 | Gould Inc. | Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components |
US4563383A (en) * | 1984-03-30 | 1986-01-07 | General Electric Company | Direct bond copper ceramic substrate for electronic applications |
DE3543613A1 (de) * | 1984-12-07 | 1986-07-03 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum metallisieren von keramischen oberflaechen |
DE3543615A1 (de) * | 1984-12-10 | 1986-07-03 | Kollmorgen Technologies Corp., Dallas, Tex. | Verfahren zum herstellen eines stromlos abgeschiedenen metallbelages auf einer keramischen unterlage |
US4602731A (en) * | 1984-12-24 | 1986-07-29 | Borg-Warner Corporation | Direct liquid phase bonding of ceramics to metals |
US4631099A (en) * | 1985-01-04 | 1986-12-23 | Agency Of Industrial Science & Technology | Method for adhesion of oxide type ceramics with copper or alloy thereof |
US4807796A (en) * | 1986-11-14 | 1989-02-28 | U.S. Philips Corporation | Method of soldering aluminum-oxide ceramic components |
EP0273227A2 (fr) * | 1986-12-22 | 1988-07-06 | Kalman F. Zsamboky | Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique |
EP0273227A3 (fr) * | 1986-12-22 | 1989-01-25 | Kalman F. Zsamboky | Procédé d'amélioration de la force de liaison entre une couche de métal et un substrat non métallique |
US4845395A (en) * | 1987-05-04 | 1989-07-04 | Alsthom | Ceramic core commutator for a rotary electric machine |
US4788765A (en) * | 1987-11-13 | 1988-12-06 | Gentron Corporation | Method of making circuit assembly with hardened direct bond lead frame |
EP0335679B1 (fr) * | 1988-03-30 | 1995-12-13 | Kabushiki Kaisha Toshiba | Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production |
EP0335679A2 (fr) * | 1988-03-30 | 1989-10-04 | Kabushiki Kaisha Toshiba | Substrat composite soudé en céramique-métal, circuit imprimé construit avec celui-ci et procédé pour leur production |
US4924292A (en) * | 1988-04-12 | 1990-05-08 | Kaufman Lance R | Direct bond circuit assembly with crimped lead frame |
US4902854A (en) * | 1988-04-12 | 1990-02-20 | Kaufman Lance R | Hermetic direct bond circuit assembly |
US4879633A (en) * | 1988-04-12 | 1989-11-07 | Kaufman Lance R | Direct bond circuit assembly with ground plane |
US4990720A (en) * | 1988-04-12 | 1991-02-05 | Kaufman Lance R | Circuit assembly and method with direct bonded terminal pin |
US4831723A (en) * | 1988-04-12 | 1989-05-23 | Kaufman Lance R | Direct bond circuit assembly with crimped lead frame |
US5032691A (en) * | 1988-04-12 | 1991-07-16 | Kaufman Lance R | Electric circuit assembly with voltage isolation |
US5070602A (en) * | 1988-04-12 | 1991-12-10 | Lance R. Kaufman | Method of making a circuit assembly |
US4860164A (en) * | 1988-09-01 | 1989-08-22 | Kaufman Lance R | Heat sink apparatus with electrically insulative intermediate conduit portion for coolant flow |
US5027255A (en) * | 1988-10-22 | 1991-06-25 | Westinghouse Electric Co. | High performance, high current miniaturized low voltage power supply |
US5100740A (en) * | 1989-09-25 | 1992-03-31 | General Electric Company | Direct bonded symmetric-metallic-laminate/substrate structures |
US5653379A (en) * | 1989-12-18 | 1997-08-05 | Texas Instruments Incorporated | Clad metal substrate |
US5273203A (en) * | 1989-12-21 | 1993-12-28 | General Electric Company | Ceramic-to-conducting-lead hermetic seal |
US4996116A (en) * | 1989-12-21 | 1991-02-26 | General Electric Company | Enhanced direct bond structure |
US5241216A (en) * | 1989-12-21 | 1993-08-31 | General Electric Company | Ceramic-to-conducting-lead hermetic seal |
US5159413A (en) * | 1990-04-20 | 1992-10-27 | Eaton Corporation | Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate |
US5164359A (en) * | 1990-04-20 | 1992-11-17 | Eaton Corporation | Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate |
US5356831A (en) * | 1990-04-20 | 1994-10-18 | Eaton Corporation | Method of making a monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate |
US5280850A (en) * | 1990-05-25 | 1994-01-25 | Kabushiki Kaisha Toshiba | Method of manufacturing circuit board |
DE4117004A1 (de) * | 1990-05-25 | 1991-11-28 | Toshiba Kawasaki Kk | Verfahren zur herstellung einer schaltungsplatte |
US5176309A (en) * | 1990-05-25 | 1993-01-05 | Kabushiki Kaisha Toshiba | Method of manufacturing circuit board |
DE4117004B4 (de) * | 1990-05-25 | 2005-08-11 | Kabushiki Kaisha Toshiba, Kawasaki | Verfahren zur Herstellung einer Schaltungsplatte |
US5418002A (en) * | 1990-12-24 | 1995-05-23 | Harris Corporation | Direct bonding of copper to aluminum nitride substrates |
DE4103294A1 (de) * | 1991-02-04 | 1992-08-13 | Akyuerek Altan | Verfahren zum herstellen von elektrisch leitenden durchkontaktierungen in keramiksubstraten |
DE4103294C2 (de) * | 1991-02-04 | 2000-12-28 | Altan Akyuerek | Verfahren zum Herstellen von keramischen Leiterplatten mit Durchkontaktierungen |
US5208502A (en) * | 1991-02-28 | 1993-05-04 | Hitachi, Ltd. | Sliding current collector made of ceramics |
US5311043A (en) * | 1992-07-13 | 1994-05-10 | Asea Brown Boveri Ltd. | Bidirectional semiconductor switch with hybrid construction |
DE4222973A1 (de) * | 1992-07-13 | 1994-01-20 | Asea Brown Boveri | Bidirektionaler Halbleiterschalter |
EP0702511A2 (fr) | 1992-07-17 | 1996-03-20 | Vlt Corporation | Boîtier de composants électroniques |
EP0702509A2 (fr) | 1992-07-17 | 1996-03-20 | Vlt Corporation | Boîtier de composants électroniques |
US5686190A (en) * | 1994-01-14 | 1997-11-11 | Brush Wellman Inc. | Multilayer laminate product and process |
US5583317A (en) * | 1994-01-14 | 1996-12-10 | Brush Wellman Inc. | Multilayer laminate heat sink assembly |
US5777259A (en) * | 1994-01-14 | 1998-07-07 | Brush Wellman Inc. | Heat exchanger assembly and method for making the same |
US5490627A (en) * | 1994-06-30 | 1996-02-13 | Hughes Aircraft Company | Direct bonding of copper composites to ceramics |
US5601932A (en) * | 1994-06-30 | 1997-02-11 | Hughes Aircraft Company | Copper composites directly bonded to ceramics |
US5586714A (en) * | 1994-10-06 | 1996-12-24 | Board Of Regents Of The University Of Nebraska | Method of bonding metal to a non-metal substrate |
EP0712266A2 (fr) | 1994-11-10 | 1996-05-15 | Vlt Corporation | Boîtier de composants électroniques |
US6484585B1 (en) | 1995-02-28 | 2002-11-26 | Rosemount Inc. | Pressure sensor for a pressure transmitter |
US6079276A (en) * | 1995-02-28 | 2000-06-27 | Rosemount Inc. | Sintered pressure sensor for a pressure transmitter |
US6082199A (en) * | 1995-02-28 | 2000-07-04 | Rosemount Inc. | Pressure sensor cavity etched with hot POCL3 gas |
US6089097A (en) * | 1995-02-28 | 2000-07-18 | Rosemount Inc. | Elongated pressure sensor for a pressure transmitter |
US6022426A (en) * | 1995-05-31 | 2000-02-08 | Brush Wellman Inc. | Multilayer laminate process |
WO1998032312A1 (fr) * | 1997-01-17 | 1998-07-23 | California Institute Of Technology | Technique a micro-ondes pour braser des materiaux |
US6054693A (en) * | 1997-01-17 | 2000-04-25 | California Institute Of Technology | Microwave technique for brazing materials |
DE19715540C2 (de) * | 1997-04-15 | 2002-02-07 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates |
US6345437B1 (en) | 1997-04-15 | 2002-02-12 | Curamik Electronics Gmbh | Process for the manufacturing of an arched metal ceramic substratum |
DE19715540A1 (de) * | 1997-04-15 | 1998-10-22 | Curamik Electronics Gmbh | Verfahren zum Herstellen eines gewölbten Metall-Keramik-Substrates |
US6909185B1 (en) | 1998-12-07 | 2005-06-21 | Hitachi, Ltd. | Composite material including copper and cuprous oxide and application thereof |
US6559533B1 (en) | 1999-09-17 | 2003-05-06 | Kabushiki Kaisha Toshiba | High-frequency package and the method for manufacturing the same |
US6561038B2 (en) | 2000-01-06 | 2003-05-13 | Rosemount Inc. | Sensor with fluid isolation barrier |
US6520020B1 (en) | 2000-01-06 | 2003-02-18 | Rosemount Inc. | Method and apparatus for a direct bonded isolated pressure sensor |
US6505516B1 (en) | 2000-01-06 | 2003-01-14 | Rosemount Inc. | Capacitive pressure sensing with moving dielectric |
US6508129B1 (en) | 2000-01-06 | 2003-01-21 | Rosemount Inc. | Pressure sensor capsule with improved isolation |
US6516671B2 (en) | 2000-01-06 | 2003-02-11 | Rosemount Inc. | Grain growth of electrical interconnection for microelectromechanical systems (MEMS) |
US20030038364A1 (en) * | 2001-08-15 | 2003-02-27 | Eldridge Jerome M. | Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor |
US20030209702A1 (en) * | 2001-08-15 | 2003-11-13 | Eldridge Jerome M. | Internal hydrogen sources for heat conductive packaging of low dielectric constant semiconductor chips, and method of providing hydrogen therefor |
US6888232B2 (en) * | 2001-08-15 | 2005-05-03 | Micron Technology | Semiconductor package having a heat-activated source of releasable hydrogen |
US6953706B2 (en) * | 2001-08-15 | 2005-10-11 | Micron Technology, Inc. | Method of providing a semiconductor package having an internal heat-activated hydrogen source |
EP1298109A3 (fr) * | 2001-10-01 | 2004-01-28 | Dowa Mining Co., Ltd. | Corps liée en metal ceramique et son procédé de fabrication |
US6935554B2 (en) * | 2001-10-01 | 2005-08-30 | Dowa Mining, Co. Ltd. | Metal/ceramic bonding article and method for producing same |
WO2003031372A2 (fr) * | 2001-10-01 | 2003-04-17 | Schulz-Harder Juergen | Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede |
US20040026482A1 (en) * | 2001-10-01 | 2004-02-12 | Jurgen Schulz-Harder | Process for the manufacture of metal-ceramic compound material in particular metal-ceramic substrates and metal-ceramic compound material especially metal-ceramic substrate manufactured according to this process |
CN100347134C (zh) * | 2001-10-01 | 2007-11-07 | 伊莱楚维克股份公司 | 制备金属-陶瓷复合材料,特别是金属-陶瓷衬底的方法以及根据这个方法制备的陶瓷复合材料,特别是金属-陶瓷衬底 |
US7036711B2 (en) | 2001-10-01 | 2006-05-02 | Jurgen Schulz-Harder | Process for the manufacture of metal-ceramic compound material in particular metal-ceramic substrates and metal-ceramic compound material especially metal-ceramic substrate manufactured according to this process |
WO2003031372A3 (fr) * | 2001-10-01 | 2003-08-28 | Juergen Schulz-Harder | Procede de production de materiaux composites metal-ceramique, notamment de substrats metal-ceramique, et materiau composite metal-ceramique, notamment substrat metal-ceramique produit grace a ce procede |
US20030062399A1 (en) * | 2001-10-01 | 2003-04-03 | Masami Kimura | Metal/ceramic bonding article and method for producing same |
EP1298109A2 (fr) * | 2001-10-01 | 2003-04-02 | Dowa Mining Co., Ltd. | Corps liée en metal ceramique et son procédé de fabrication |
US20030146499A1 (en) * | 2001-12-18 | 2003-08-07 | Yasuo Kondo | Composite material including copper and cuprous oxide and application thereof |
US7754976B2 (en) | 2002-04-15 | 2010-07-13 | Hamilton Sundstrand Corporation | Compact circuit carrier package |
US6848316B2 (en) | 2002-05-08 | 2005-02-01 | Rosemount Inc. | Pressure sensor assembly |
US20030232205A1 (en) * | 2002-06-14 | 2003-12-18 | Nobuyoshi Tsukaguchi | Metal/ceramic bonding article and method for producing same |
US6780520B2 (en) | 2002-06-14 | 2004-08-24 | Dowa Mining Co., Ltd. | Metal/ceramic bonding article and method for producing same |
EP1371621A1 (fr) * | 2002-06-14 | 2003-12-17 | Dowa Mining Co., Ltd. | Corps liée en métal/céramique et son procédé de fabrication |
US6858151B2 (en) * | 2002-06-14 | 2005-02-22 | Dowa Mining Co., Ltd. | Metal/ceramic bonding article and method for producing same |
US7159757B2 (en) * | 2002-09-26 | 2007-01-09 | Dowa Mining Co., Ltd. | Metal/ceramic bonding article and method for producing same |
US20040060968A1 (en) * | 2002-09-26 | 2004-04-01 | Takayuki Takahashi | Metal/ceramic bonding article and method for producing same |
US20070231590A1 (en) * | 2006-03-31 | 2007-10-04 | Stellar Industries Corp. | Method of Bonding Metals to Ceramics |
DE102009007625A1 (de) * | 2008-11-14 | 2010-05-20 | Osram Opto Semiconductors Gmbh | Verbundsubstrat für einen Halbleiterchip |
US20110233784A1 (en) * | 2008-11-14 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Composite substrate for a semiconductor chip |
US8598705B2 (en) | 2008-11-14 | 2013-12-03 | Osram Opto Semiconductors Gmbh | Composite substrate for a semiconductor chip |
DE102010007919B4 (de) | 2010-02-12 | 2022-03-03 | Rogers Germany Gmbh | Verfahren zum Herstellen von Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Metall-Keramik-Substrat |
WO2011098071A1 (fr) | 2010-02-12 | 2011-08-18 | Curamik Electronics Gmbh | Procédé de fabrication de matériaux composites métal-céramique, notamment de substrats composites métal-céramique et matériau composite métal-céramique, notamment substrat composite métal-céramique fabriqué selon ce procédé |
DE102010007919A1 (de) | 2010-02-12 | 2011-08-18 | curamik electronics GmbH, 92676 | Verfahren zum Herstellen von Metall-Keramik-Verbundmaterialien, insbesondere Metall-Keramik-Substraten sowie nach diesem Verfahren hergestelltes Keramik-Verbundmaterial, insbesondere Metall-Keramik-Substrat |
US8448842B1 (en) | 2011-12-22 | 2013-05-28 | Vaclong Vacuum Technology Co., Ltd. | Advanced copper bonding (ACB) with ceramic substrate technology |
US10759714B2 (en) | 2016-09-30 | 2020-09-01 | Infineon Technologies Ag | Method for producing a metal-ceramic substrate |
US10586756B2 (en) | 2016-10-04 | 2020-03-10 | Infineon Technologies Ag | Chip carrier configured for delamination-free encapsulation and stable sintering |
US10964635B2 (en) | 2018-05-22 | 2021-03-30 | Schweizer Electronic Ag | Power electronic metal-ceramic module and printed circuit board module with integrated power electronic metal-ceramic module and process for their making |
US20220155222A1 (en) * | 2019-03-18 | 2022-05-19 | Jiangsu University Of Science And Technology | Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry |
US11965826B2 (en) * | 2019-03-18 | 2024-04-23 | Jiangsu University Of Science And Technology | Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry |
KR20220027843A (ko) | 2019-07-08 | 2022-03-08 | 가부시키가이샤 월드메탈 | 접합기재와 금속층의 접합체 |
US11889635B2 (en) | 2019-07-08 | 2024-01-30 | World Metal Co., Ltd | Joined body of joining base material and metal layer |
US11076483B2 (en) | 2019-11-26 | 2021-07-27 | Industrial Technology Research Institute | Direct bonded copper ceramic substrate |
US12059739B2 (en) | 2021-06-29 | 2024-08-13 | Heraeus Deutschland GmbH & Co. KG | Method for producing a metal-ceramic substrate |
Also Published As
Publication number | Publication date |
---|---|
DE2319854A1 (de) | 1973-10-25 |
GB1394322A (en) | 1975-05-14 |
FR2181049A1 (fr) | 1973-11-30 |
IT983841B (it) | 1974-11-11 |
DE2319854C2 (de) | 1983-12-29 |
FR2181049B1 (fr) | 1980-04-11 |
JPS4917381A (fr) | 1974-02-15 |
JPS5713515B2 (fr) | 1982-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3766634A (en) | Method of direct bonding metals to non-metallic substrates | |
US3993411A (en) | Bonds between metal and a non-metallic substrate | |
US3994430A (en) | Direct bonding of metals to ceramics and metals | |
US3744120A (en) | Direct bonding of metals with a metal-gas eutectic | |
GB1559590A (en) | Bonding of metals to ceramics and metals | |
US3854892A (en) | Direct bonding of metals with a metal-gas eutectic | |
US5965193A (en) | Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material | |
US4505418A (en) | Method of direct bonding copper foils to oxide-ceramic substrates | |
Burgess et al. | The Direct Bonding of Metals to Ceramics by the Gas‐Metal Eutectic Method | |
EP0676800B1 (fr) | Procédé de fabrication de matériau ou de composant avec une liaison métal-céramique et son utilisation pour un substrat de circuit électronique | |
Burgess et al. | The direct bonding of metals to ceramics and application in electronics | |
US3091028A (en) | Method and alloy for bonding to nonmetallic refractory members | |
US3793705A (en) | Process for brazing a magnetic ceramic member to a metal member | |
US2820534A (en) | Hermetic ceramic-metal seal and method of making the same | |
US3736649A (en) | Method of making ceramic-to-metal seal | |
US5653379A (en) | Clad metal substrate | |
GB2059323A (en) | Bonding metals to non-metallic substrates | |
JP4124497B2 (ja) | 金属−セラミックス複合基板及びその製造法 | |
US3700420A (en) | Ceramic-to-metal seal | |
US4950503A (en) | Process for the coating of a molybdenum base | |
JPH0255695A (ja) | Cu―Zr―ハンダ箔 | |
Ning et al. | Interface of aluminum/ceramic power substrates manufactured by casting-bonding process | |
US3178271A (en) | High temperature ohmic joint for silicon semiconductor devices and method of forming same | |
JPH0477702B2 (fr) | ||
JPH107480A (ja) | 金属−セラミックス複合基板及びその製造法 |