US20170106356A1 - Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas - Google Patents
Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas Download PDFInfo
- Publication number
- US20170106356A1 US20170106356A1 US15/129,497 US201515129497A US2017106356A1 US 20170106356 A1 US20170106356 A1 US 20170106356A1 US 201515129497 A US201515129497 A US 201515129497A US 2017106356 A1 US2017106356 A1 US 2017106356A1
- Authority
- US
- United States
- Prior art keywords
- zeolite
- exhaust gas
- honeycomb structure
- catalyst
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 94
- 238000004140 cleaning Methods 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 85
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 81
- 239000010457 zeolite Substances 0.000 claims abstract description 81
- 239000002245 particle Substances 0.000 claims abstract description 50
- 239000011230 binding agent Substances 0.000 claims abstract description 43
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 29
- 229910052797 bismuth Inorganic materials 0.000 claims description 32
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical group [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 32
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 21
- 239000003365 glass fiber Substances 0.000 claims description 19
- 239000002904 solvent Substances 0.000 claims description 17
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 abstract description 42
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 abstract description 36
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 75
- 239000007789 gas Substances 0.000 description 73
- 239000011521 glass Substances 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 42
- 239000002002 slurry Substances 0.000 description 42
- 238000000034 method Methods 0.000 description 24
- 238000011156 evaluation Methods 0.000 description 23
- 238000002485 combustion reaction Methods 0.000 description 22
- 239000000377 silicon dioxide Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- 239000000758 substrate Substances 0.000 description 18
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- RJIWZDNTCBHXAL-UHFFFAOYSA-N nitroxoline Chemical compound C1=CN=C2C(O)=CC=C([N+]([O-])=O)C2=C1 RJIWZDNTCBHXAL-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 11
- 238000005342 ion exchange Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 239000005357 flat glass Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- -1 inorganic acid salt Chemical class 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 6
- 229910052815 sulfur oxide Inorganic materials 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WALXYTCBNHJWER-UHFFFAOYSA-N 2,4,6-tribromopyridine Chemical compound BrC1=CC(Br)=NC(Br)=C1 WALXYTCBNHJWER-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100029133 DNA damage-induced apoptosis suppressor protein Human genes 0.000 description 1
- 101000918646 Homo sapiens DNA damage-induced apoptosis suppressor protein Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001622 bismuth compounds Chemical class 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- VTZCXKGZGDSBQC-UHFFFAOYSA-J diazanium;zirconium(4+);dicarbonate;dihydroxide Chemical compound [NH4+].[NH4+].[OH-].[OH-].[Zr+4].[O-]C([O-])=O.[O-]C([O-])=O VTZCXKGZGDSBQC-UHFFFAOYSA-J 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/69—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B01J35/023—
-
- B01J35/04—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2835—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2842—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/21—Organic compounds not provided for in groups B01D2251/206 or B01D2251/208
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2096—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/30—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/10—Fibrous material, e.g. mineral or metallic wool
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
Definitions
- the present invention relates to a honeycomb structure, which are used, for example, in a cleaning method for removing a nitrogen oxide (NOx) from a combustion exhaust gas, a catalyst for cleaning an exhaust gas using the same, and a method for producing a catalyst for cleaning an exhaust gas.
- a cleaning method for removing a nitrogen oxide (NOx) from a combustion exhaust gas a catalyst for cleaning an exhaust gas using the same, and a method for producing a catalyst for cleaning an exhaust gas.
- NOx nitrogen oxide
- an exhaust gas discharged from a marine vessel engine has a high sulfur oxide (SOx) concentration and a high nitrogen oxide (NOx) concentration in the exhaust gas due to the use of a C fuel as a fuel, and ammonia (NH 3 ) or the like used as a reducing agent for a denitration reaction is reacted with a sulfur oxide (SOx) to form ammonium sulfate.
- the exhaust gas from the marine vessel engine has a temperature of 300° C. or less, and generally approximately 250° C., and under the condition, ammonium sulfate is generated in the exhaust gas to fail to retain the stable catalyst capability.
- Patent Literature 1 discloses an exhaust gas cleaning method using a catalyst having a denitration capability removing a nitrogen oxide (NOx) even in an exhaust gas containing a sulfur oxide, and describes an exhaust gas cleaning method for reducing and removing a nitrogen oxide NOx in an exhaust gas in such a manner that ⁇ -zeolite having supported thereon iron, cobalt, silver, molybdenum, or tungsten is used as the denitration catalyst, and an oxygen excessive exhaust gas is made in contact therewith in the presence of ethanol and/or isopropyl alcohol as a reducing agent.
- ⁇ -zeolite having supported thereon iron, cobalt, silver, molybdenum, or tungsten is used as the denitration catalyst, and an oxygen excessive exhaust gas is made in contact therewith in the presence of ethanol and/or isopropyl alcohol as a reducing agent.
- Patent Literature 2 describes an exhaust gas cleaning method for reducing and removing a nitrogen oxide NOx in an exhaust gas in such a manner that proton-type ⁇ -zeolite is used as a catalyst, and an oxygen excessive exhaust gas is made in contact therewith in the presence of ethanol and/or isopropyl alcohol as a reducing agent.
- Patent Literature 3 describes an exhaust gas cleaning method using ZSM-5 type zeolite having supported thereon cobalt, which is produced in such a manner that Na-ZSM-5 type zeolite or H-ZSM-5 type zeolite having an SiO 2 /Al 2 O 3 ratio of 27 or more and 100 or less is used as a catalyst support, and the catalyst support is immersed in an aqueous solution of cobalt salt (such as nitrate, acetate, or chloride of cobalt) to perform ion exchange between the Na (or H) present on the catalyst support and Co at an ion exchange rate of from 40 to 100%, as a denitration catalyst, and a liquefied petroleum gas containing propane and butane in the composition thereof as a reducing agent.
- cobalt salt such as nitrate, acetate, or chloride of cobalt
- the exhaust gas cleaning methods by the reduction and removing using the denitration catalyst described in Patent Literatures 1 to 3 have a problem that the reaction temperature of the exhaust gas cleaning is approximately from 300 to 500° C., which is higher than the temperature of the exhaust gas from the marine vessel engine.
- Patent Literature 4 a method for cleaning a combustion exhaust gas that is capable of effectively decreasing a nitrogen oxide from a combustion exhaust gas discharged, for example, from a marine vessel engine, having a high concentration of a nitrogen oxide (NOx) and a sulfur oxide (SOx) present therein, and having a low exhaust gas temperature of 300° C. or less.
- NOx nitrogen oxide
- SOx sulfur oxide
- a substrate for producing a honeycomb structure is produced by performing a step of coating a slurry formed of zeolite, water, and a silica sol on a glass fiber sheet, and then a honeycomb structure is produced by performing a step of corrugating the sodium type zeolite-supported substrate to provide a corrugated glass fiber sheet substrate, a step of processing the substrate to a flat glass fiber sheet to provide a flat glass fiber sheet substrate, and a step of laminating the corrugated glass fiber sheet substrate and the flat glass fiber sheet substrate alternately.
- the zeolite-supported honeycomb structure produced by the aforementioned method is subjected to a step of performing ion exchange with a catalyst metal, so as to produce a honeycomb denitration catalyst.
- Patent Literature 1 JP-A-2004-358454
- Patent Literature 2 JP-A-2004-261754
- Patent Literature 3 JP-A-11-188238
- Patent Literature 4 JP-A-2013-226545
- Patent Literature 4 has a problem that the property of the zeolite that is easily solidified is unclear in the case where the zeolite-containing slurry is coated on the glass fiber sheet, and it is difficult to produce a honeycomb structure that has a sufficiently high strength and is excellent in endurance property.
- An object of the present invention is to solve the problems in the prior art described above, and to provide a honeycomb structure that has a sufficiently high strength and is excellent in endurance property, and a catalyst for cleaning an exhaust gas using the same that is excellent in resistance to a sulfur oxide (SOx).
- SOx sulfur oxide
- the invention of a honeycomb structure of claim 1 is a honeycomb structure consisting of a flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 ⁇ m.
- a particle diameter i.e., a median particle diameter, D50
- the particle diameter of the zeolite herein means a particle diameter corresponding to 50% in the volume-based cumulative particle size distribution (i.e., a median particle diameter, D50) measured by a laser diffraction method.
- the measurement of sample is performed after dispersing in water.
- the particles are dispersed with an ultrasonic homogenizer, and the measurement result is recorded after confirming that the results of the particle diameter distribution is not fluctuated.
- the inorganic fiber sheet is preferably a glass fiber sheet.
- the inorganic binder is preferably formed of zirconia, alumina, silica, silica-alumina, or titania, and the inorganic binder is particularly preferably formed of zirconia or alumina.
- the invention of claim 3 is a catalyst for cleaning an exhaust gas using a honeycomb structure, wherein it is characterized in that it contains a denitration catalyst component that is supported on the zeolite of the aforementioned honeycomb structure.
- the inorganic binder is preferably formed of zirconia or alumina.
- the denitration catalyst component is preferably bismuth.
- the present invention also relates to a method for producing the catalyst for cleaning an exhaust gas having bismuth as the denitration catalyst component described above, wherein it is characterized in that the method comprises a step of supporting bismuth (Bi) on the zeolite, in the step, bismuth (Bi) being dissolved in a solvent, the solvent used being a compound having one or more alkoxy group and one or more hydroxy group per molecule, a compound having two or more hydroxy groups per molecule, or an acid.
- the present invention also relates to a method for producing a catalyst for cleaning an exhaust gas comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, in which the method comprises a step of supporting bismuth (Bi) as a denitration catalyst component on the zeolite, in the step, bismuth (Bi) being dissolved in a solvent, the solvent used being a compound having one or more alkoxy group and one or more hydroxy group per molecule, a compound having two or more hydroxy groups per molecule, or an acid.
- the use of the zeolite having the prescribed particle diameter described above provides a honeycomb structure that has a sufficiently high strength, ensures the use in a state with high endurance property against the external factors, such as vibration, and is excellent in durability.
- the use of the honeycomb structure that has a sufficiently high strength ensures the use in a state with high endurance property against the external factors, such as vibration, and is excellent in durability enhances the durability of a catalyst for cleaning an exhaust gas.
- the increase of the amount of bismuth in the form of ion in the solvent increases the amount thereof that is ion-exchanged in the zeolite, and thereby bismuth is uniformly supported on the zeolite.
- a compound formed by bonding to SOx is prevented from being formed, and thereby the SOx durability is enhanced.
- FIG. 1 is a flow chart showing one example of a denitration rate measuring instrument used in the catalyst capability test in the example of the present invention.
- the honeycomb structure according to the present invention consists of a flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 ⁇ m, and preferably from 3.0 to 7.0 ⁇ m.
- a particle diameter i.e., a median particle diameter, D50
- the particle diameter of the zeolite herein means a particle diameter corresponding to 50% in the volume-based cumulative particle size distribution (i.e., a median particle diameter, D50) measured by a laser diffraction method.
- zeolite particles having a particle diameter (D50) of from 0.5 to 10.0 ⁇ m are used for ensuring the strength of the honeycomb structure.
- D50 particle diameter
- the contacts between the zeolite particles and the inorganic binders are decreased to make difficult the form retention.
- Zeolite particles having a small particle diameter that is less than the range described above are not practical due to the complexity in industrial production.
- the use of the zeolite particles having a particle diameter within the range described above increases the contacts to the inorganic binders, so as to ensure the strength suitable for the form retention.
- the flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and the zeolite, and the corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and the zeolite are alternately combined with each other, so as to produce a honeycomb structure.
- the prescribed particle diameter (i.e., the median particle diameter, D50) of the zeolite commercially available zeolite may be used after pulverizing.
- the honeycomb structure means an integrated structure consisting of plural through holes (cells) partitioned with a partitioning wall, through which an exhaust gas is capable of passing, and the partitioning wall, and the cross sectional shape of the through holes described above (i.e., the cross sectional shape of the cells) is not particularly limited, examples of which include a circular shape, a circular arc shape, a square shape, a rectangular shape, and a hexagonal shape.
- the inorganic fiber sheet is preferably a glass fiber sheet or a ceramic fiber sheet.
- the inorganic binder is preferably formed of zirconia, alumina, silica, silica-alumina, or titania, and the inorganic binder is particularly preferably formed of zirconia or alumina.
- Another denitration catalyst according to the present invention may be a catalyst for cleaning an exhaust gas (denitration catalyst) formed of small pieces of the substrate of the honeycomb structure (i.e., those formed only of the flat substrate or the corrugated substrate) or those in a pellet form.
- the small pieces of the substrate of the honeycomb structure have a corrugated form having one or more repeating concave grooves, they have small values for each of the width dimension per one of the concave groove (denoted by A), the repetition number in the width direction (denoted by n), the height dimension (denoted by B), and the depth dimension (denoted by C).
- the width dimension (A) is 2.0 mm or more, preferably 3.0 mm or more, and more preferably 4.0 mm or more.
- the width dimension (A) is preferably 100 mm or less, more preferably 50 mm or less, further preferably 25 mm or less, and still further preferably 10 mm or less.
- the height dimension (B) is 1.0 mm or more, preferably 2.0 mm or more, and more preferably 3.0 mm or more.
- the height dimension (B) is preferably 50 mm or less, more preferably 25 mm or less, and further preferably 10 mm or less.
- the repetition number in the width direction (n) is from 1 to 100, preferably from 1 to 10, more preferably from 1 to 5, and further preferably from 2 to 4.
- the depth dimension (C) is 3.0 mm or more, preferably 4.0 mm or more, and more preferably 5.0 mm or more.
- the depth dimension (C) is preferably 200 mm or less, more preferably 100 mm or less, further preferably 50.0 mm or less, still further preferably 20.0 mm or less, still further preferably 15.0 mm or less, and still further preferably 10.0 mm or less.
- the zeolite having the particular particle diameter described above, a solvent, and the inorganic binder are mixed to prepare a slurry.
- the slurry is coated on glass fiber paper as the inorganic fiber sheet.
- the zeolite is preferably MFI zeolite or FER zeolite, and the zeolite used may also be MOR zeolite, BEA zeolite, or the like.
- the inorganic binder used may be silica, titania, alumina, silica-alumina, zirconia, or the like.
- a silica sol used may be an acidic type containing approximately 20% by weight of silica (while neutral and basic types may also be used).
- the weight ratio of the zeolite, water, and silica sol as the inorganic binder may be controlled, for example, to 100/75/46.
- any known coating method may be used for coating, and examples thereof include a so-called dipping method, a brush coating method, a spray coating method, and a drop coating method.
- the slurry-coated glass fiber sheet is then shaped with a corrugating mold and a pressing jig, the corrugated slurry-coated glass fiber sheet thus shaped is dried under condition of from 100 to 200° C. for from 1 to 2 hours and released from the mold, and separately the flat slurry-coated glass fiber sheet having not been shaped is dried under condition of from 100 to 200° C. for from 1 to 2 hours.
- the inorganic binder such as a silica sol
- added to the slurry functions as a binder between the glass fiber sheet and the zeolite, so as to enable retention of the corrugated form after shaping the glass fiber sheet.
- the corrugated slurry-coated glass fiber sheet and the flat slurry-coated glass fiber sheet are calcined under condition of from 300 to 550° C. for from 1 to 4 hours.
- the corrugated glass fiber sheet substrate and the flat glass fiber sheet substrate thus obtained are then laminated alternately to provide the honeycomb structure.
- the honeycomb structure according to the present invention consists of a flat glass fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated glass fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 ⁇ m.
- the use of the zeolite having the particular particle diameter described above can provide a honeycomb structure that has a sufficiently high strength, ensures the use in a state with high endurance property against the external factors, such as vibration, and is excellent in durability.
- the catalyst for cleaning an exhaust gas according to the present invention is characterized in that it contains a denitration catalyst component that is supported on the zeolite of the aforementioned honeycomb structure.
- the inorganic binder is preferably zirconia or alumina.
- the catalyst for cleaning an exhaust gas preferably contains, as the denitration catalyst component, a metallic element consisting of bismuth (Bi) on the zeolite.
- the precursor compound of the metallic element to be supported may be an inorganic acid salt (such as nitrate and chloride) or an organic acid salt (such as acetate).
- Any supporting method for the catalyst metal may be used as far as the denitration capability is exhibited, and examples thereof include an ion exchange method and an impregnation supporting method.
- the ion exchange method include such a method that zeolite is suspended in an aqueous solution containing a precursor compound of bismuth (Bi), and the zeolite having the catalyst metal bonded thereto through ion exchange is taken out from the aqueous solution, dried, and then calcined.
- the precursor compound of the metallic element to be supported may be an inorganic acid salt (such as nitrate and chloride), an organic acid salt (such as acetate), or an oxide.
- Any supporting method for the catalyst metal may be used as far as the denitration capability is exhibited, and examples thereof include an ion exchange method and an impregnation supporting method. Examples of the ion exchange method include such a method that zeolite having the catalyst metal bonded thereto through ion exchange is taken out from the solvent, dried, and then calcined.
- Examples of the solvent for dissolving the aforementioned precursor compound of bismuth include a compound having one or more alkoxy group and one or more hydroxy group per molecule, and a compound having two or more hydroxy groups per molecule, and an acid.
- the compound having one or more alkoxy group and one or more hydroxy group per molecule used is preferably 2-methoxyethanol.
- the compound having two or more hydroxy groups per molecule used is preferably ethylene glycol.
- the acid used is preferably nitric acid or acetic acid.
- a compound having one or more alkoxy group and one or more hydroxy group per molecule, a compound having two or more hydroxy groups per molecule, such as a diol compound, or an acid is used as the solvent, and thus it has such a feature that bismuth is present in the form of ion in the catalyst slurry. According to the present invention, bismuth is uniformly supported on the zeolite.
- the use of the zeolite having the particular particle diameter described above can provide the catalyst for cleaning an exhaust gas using the honeycomb structure that has a sufficiently high strength, ensures the use in a state with high endurance property against the external factors, such as vibration, and is excellent in durability.
- a nitrogen oxide can be effectively decreased from a combustion exhaust gas having a high concentration of a nitrogen oxide (NOx) and a sulfur oxide (SOx) present therein, and having a low exhaust gas temperature of 300° C. or less, discharged, for example, from a marine vessel engine, i.e., a large marine vessel diesel engine, a large scale boiler for a factory, an electric power plant, a community central heating and air-conditioning plant, and the like.
- a marine vessel engine i.e., a large marine vessel diesel engine, a large scale boiler for a factory, an electric power plant, a community central heating and air-conditioning plant, and the like.
- the step of supporting may be performed as a separate step after producing the honeycomb structure from glass paper
- the step of supporting may be performed in the course of from the glass paper to the honeycomb structure, or may be performed simultaneously with the preparation of the substrate of the honeycomb structure by mixing the aforementioned bismuth solution with the slurry formed of the zeolite, the solvent, and the inorganic binder.
- the reducing agent is not particularly limited as far as it has a reducing power at the temperature where the combustion exhaust gas is reduced, and methanol or ethanol, as an alcohol having a small number of carbon, is preferably used.
- FER zeolite having a particle diameter (D50) of 7.0 ⁇ m (CP914C, a trade name, produced by Zeolyst International) was used, and 25 g of the zeolite, 18.75 g of ion exchanged water, and 11.5 g of an aqueous solution of a silica sol (solid concentration: 22.0% by weight) as an inorganic binder were mixed to provide a slurry. 18 g of the slurry was coated on glass paper of 100 mm ⁇ 150 mm to provide flat slurry-coated glass paper, and then the flat slurry-coated glass paper was dried at 110° C. for 1 hour.
- the particle diameter of the zeolite herein is a particle diameter corresponding to 50% in the volume-based cumulative particle size distribution (i.e., a median particle diameter, D50) measured by a laser diffraction method, and the particle diameter (D50) of the zeolite was measured with a laser diffraction and scattering particle size analyzer (Microtrac MT3300EXII, a trade name, produced by Nikkiso Co., Ltd.).
- a honeycomb structure according to the present invention was produced in the same manner as in Example 1 described above provided that the difference from Example 1 described above was that FER zeolite having a particle diameter (D50) of 3.0 ⁇ m was used.
- a honeycomb structure according to the present invention was produced in the same manner as in Example 1 described above provided that the difference from Example 1 described above was that MFI zeolite having a particle diameter (D50) of 6.0 ⁇ m was used.
- Example 1 For comparison, a honeycomb structure was produced in the same manner as in Example 1 described above provided that the difference from Example 1 described above was that FER zeolite having a particle diameter (D50) of 36.0 ⁇ m was used.
- Example 1 For comparison, a honeycomb structure was produced in the same manner as in Example 1 described above provided that the difference from Example 1 described above was that FER zeolite having a particle diameter (D50) of 14.0 ⁇ m was used.
- honeycomb structures obtained in Examples 1 to 3 according to the present invention and Comparative Examples 1 and 2 were evaluated by visually observing for the strength of the honeycomb structures, and the results obtained are shown in Table 1 below.
- the evaluation standard is as follows.
- the silica sol-zeolite-supported glass paper can be corrugated, and in the production of the honeycomb structure by combining alternately the corrugated silica sol-zeolite-supported glass paper and the flat silica sol-zeolite-supported glass paper, the corrugated form of the corrugated silica sol-zeolite-supported glass paper is not broken to retain the strength.
- the silica sol-zeolite-supported glass paper can be corrugated, but in the production of the honeycomb structure by combining alternately the corrugated silica sol-zeolite-supported glass paper and the flat silica sol-zeolite-supported glass paper, the corrugated form of the corrugated silica sol-zeolite-supported glass paper cannot be retained to break the honeycomb structure.
- the silica sol-zeolite-supported glass paper cannot be corrugated, and no honeycomb structure can be produced.
- honeycomb structures of Examples 1 to 3 according to the present invention a honeycomb structure that has a sufficiently high strength, ensures the use in a state with high endurance property against the external factors, such as vibration, and is excellent in durability can be obtained by using zeolite having the particular particle diameter.
- a denitration catalyst for cleaning an exhaust gas using a honeycomb structure according to the present invention was produced in the following manner.
- FER zeolite having a particle diameter (D50) of 7.0 ⁇ m (CP914C, a trade name, produced by Zeolyst International) was used, and 20 g of the zeolite, 9.2 g of a zirconia sol (Zircosol 20A, a trade name, produced by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) as an inorganic binder, 2.65 g of bismuth nitrate (Bismuth(III) Nitrate Pentahydrate, a trade name, produced by Kishida Chemical Co., Ltd.), and 20 g of ion exchanged water were mixed and agitated at room temperature for 1 hour to provide a slurry having a solid concentration of 46.8% by weight.
- the slurry was coated on glass paper of 100 mm ⁇ 150 mm to provide flat slurry-coated glass paper, and then the flat slurry-coated glass paper was dried at 110° C. for 1 hour.
- the slurry described above was coated on glass paper of 100 mm ⁇ 230 mm, the slurry-coated glass paper was shaped with a corrugating mold and a pressing jig, the corrugated slurry-coated glass paper thus shaped is dried at 110° C. for 1 hour, and released from the mold. Thereafter, the flat slurry-coated glass paper and the corrugated slurry-coated glass paper were calcined at a temperature of 500° C.
- a denitration catalyst for cleaning a combustion exhaust gas using a honeycomb structure according to the present invention was produced in the same manner as in Example 4 described above provided that the difference from Example 4 described above was that an aqueous solution containing an alumina sol (Aluminasol 520, a trade name, produced by Nissan Chemical Industries, Ltd.) as the inorganic binder was used instead of the zirconia sol (Zircosol 20A) as the inorganic binder.
- an aqueous solution containing an alumina sol Alluminasol 520, a trade name, produced by Nissan Chemical Industries, Ltd.
- a denitration catalyst for cleaning a combustion exhaust gas using a honeycomb structure according to the present invention was produced in the same manner as in Example 4 described above provided that the difference from Example 4 described above was that an aqueous solution containing a silica sol (Silicadol 20A, a trade name, produced by Nippon Chemical Industrial Co., Ltd.) as the inorganic binder was used instead of the zirconia sol (Zircosol 20A) as the inorganic binder.
- a silica sol Silicadol 20A, a trade name, produced by Nippon Chemical Industrial Co., Ltd.
- a denitration catalyst for cleaning a combustion exhaust gas using a honeycomb structure according to the present invention was produced in the same manner as in Example 4 described above provided that the difference from Example 4 described above was that an aqueous solution containing a titania sol (Titaniasol S-300A, a trade name, produced by Millennium Inorganic Chemicals, Inc.) as the inorganic binder was used instead of the zirconia sol (Zircosol 20A) as the inorganic binder.
- a titania sol Tianiasol S-300A, a trade name, produced by Millennium Inorganic Chemicals, Inc.
- honeycomb structures obtained in Examples 4 and 5 according to the present invention and Reference Examples 1 and 2 were evaluated by visually observing for the strength of the honeycomb structures based on the aforementioned evaluation standard, and the results obtained are shown in Table 4 below.
- FIG. 1 shows a flow chart of a capability evaluation test instrument for a denitration catalyst.
- the denitration catalyst for cleaning a combustion exhaust gas using the honeycomb structure was charged in a denitration reactor formed of a stainless steel reaction tube, and subjected to a capability evaluation test for an exhaust gas having an NO concentration of 1,000 ppm under the test condition shown in Table 2 below using methanol as a reducing agent in a concentration of 1,800 ppm.
- the gas at the outlet port of the denitration reactor was measured for the concentration of nitrogen oxide (NOx) at the outlet port with an NOx meter.
- the denitration rate as the NOx removal capability of the catalyst was calculated from the measured value with the NOx meter according to the following expression (1).
- Denitration rate (%) (NOxin ⁇ NOxout)/NOxin ⁇ 100 (1)
- a durability test was performed in such a manner that the denitration catalysts for cleaning a combustion exhaust gas using the honeycomb structures obtained in Examples 4 and 5 according to the present invention and Reference Examples 1 and 2 were exposed to a gas containing sulfur oxides (SO 2 and SO 3 ) for 6 hours under the condition shown in Table 3 below.
- the sulfur oxides (SO 2 and SO 3 ) were sent to the evaporator with a metering pump, and then fed to the reaction tube after gasification in the evaporator.
- the capability evaluation test corresponding to the cleaning method of a combustion exhaust gas was performed in the same manner as above by using the denitration catalysts after exposing to sulfur oxides (SO 2 and SO 3 ).
- the results of the evaluation test of the denitration catalyst capability thus obtained are shown in Table 4 below.
- a nitrogen oxide can be effectively decreased from a combustion exhaust gas having a high concentration of a nitrogen oxide (NOx) and a sulfur oxide (SOx) present therein, and having a low exhaust gas temperature of 300° C. or less, discharged, for example, from a marine vessel engine, i.e., a large marine vessel diesel engine, a large scale boiler for a factory, an electric power plant, a community central heating and air-conditioning plant, and the like.
- a marine vessel engine i.e., a large marine vessel diesel engine, a large scale boiler for a factory, an electric power plant, a community central heating and air-conditioning plant, and the like.
- Bismuth nitrate (Bismuth(III) Nitrate Pentahydrate, a trade name, produced by Kishida Chemical Co., Ltd.) was dissolved in ethylene glycol (Ethylene Glycol, a trade name, produced by Kishida Chemical Co., Ltd.), to which FER zeolite having a particle diameter (D50) of 7.0 ⁇ m (CP914C, a trade name, produced by Zeolyst International) was added to provide a slurry. The slurry was agitated at 60° C.
- zirconia sol (Zircosol AC-20, a trade name, produced by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) as an inorganic binder was added thereto.
- 18 g of the catalyst slurry was coated on glass fiber paper cut into 100 mm ⁇ 150 mm to provide flat slurry-coated glass paper, and then the flat slurry-coated glass paper was dried at 110° C. for 1 hour.
- a denitration catalyst for cleaning a combustion exhaust gas using a honeycomb structure according to the present invention was produced in the same manner as in Example 6 provided that the difference from Example 6 described above was that ion exchanged water was used instead of ethylene glycol.
- Example 6 The supported amounts of bismuth on the both surfaces of the flat glass fiber sheets of the honeycomb structures obtained in Example 6 according to the present invention and Reference Example 3 were measured with a fluorescent X-ray analyzer, and the results obtained are shown in Table 5 below.
- the denitration catalysts for cleaning a combustion exhaust gas using the honeycomb structures of Example 6 according to the present invention and Reference Example 3 they were subjected to a denitration capability evaluation test under the condition shown in Table 6, and then tested for the durability to a sulfur oxide (SOx) for 250 hours under the condition shown in Table 7. Thereafter, the denitration catalysts after exposing to sulfur oxides (SO 2 and SO 3 ) were again subjected to a denitration capability evaluation test under the condition shown in Table 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-065986 | 2014-03-27 | ||
JP2014065986 | 2014-03-27 | ||
PCT/JP2015/059606 WO2015147257A1 (ja) | 2014-03-27 | 2015-03-27 | ハニカム構造体、およびこれを用いた排ガス浄化用触媒、並びに排ガス浄化用触媒の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059606 A-371-Of-International WO2015147257A1 (ja) | 2014-03-27 | 2015-03-27 | ハニカム構造体、およびこれを用いた排ガス浄化用触媒、並びに排ガス浄化用触媒の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/054,146 Division US10946366B2 (en) | 2014-03-27 | 2018-08-03 | Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170106356A1 true US20170106356A1 (en) | 2017-04-20 |
Family
ID=54195761
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/129,497 Abandoned US20170106356A1 (en) | 2014-03-27 | 2015-03-27 | Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas |
US16/054,146 Active 2035-06-09 US10946366B2 (en) | 2014-03-27 | 2018-08-03 | Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/054,146 Active 2035-06-09 US10946366B2 (en) | 2014-03-27 | 2018-08-03 | Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas |
Country Status (7)
Country | Link |
---|---|
US (2) | US20170106356A1 (de) |
EP (2) | EP3542900A1 (de) |
JP (1) | JP6663842B2 (de) |
KR (1) | KR102375936B1 (de) |
CN (1) | CN106132540B (de) |
DK (1) | DK3124115T3 (de) |
WO (1) | WO2015147257A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3689441A1 (de) * | 2019-02-01 | 2020-08-05 | Casale Sa | Verfahren zur entfernung von stickoxiden aus einem gas |
CN112138727A (zh) * | 2020-09-24 | 2020-12-29 | 江西博鑫精陶环保科技有限公司 | 一种无机纤维蜂窝载体及其制备方法 |
RU2809651C2 (ru) * | 2019-02-01 | 2023-12-14 | Касале Са | Способ удаления оксидов азота из газа |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6574591B2 (ja) * | 2015-03-31 | 2019-09-11 | 日立造船株式会社 | 触媒処理装置およびその製造方法 |
JP2018192376A (ja) * | 2015-10-02 | 2018-12-06 | 日立造船株式会社 | 排ガス浄化用触媒およびその製造方法 |
JP6886776B2 (ja) * | 2016-03-31 | 2021-06-16 | 日立造船株式会社 | 排ガス浄化触媒 |
KR101952314B1 (ko) * | 2017-03-29 | 2019-02-27 | 주식회사 나노 | 적층형 육각형상 선택적촉매환원 촉매 카트리지 제조방법 및 이를 이용한 촉매 담체 |
WO2020138298A1 (ja) * | 2018-12-27 | 2020-07-02 | ユミコア日本触媒株式会社 | 排気ガス浄化用触媒及び排気ガス浄化方法 |
WO2020149313A1 (ja) * | 2019-01-15 | 2020-07-23 | 日立造船株式会社 | 排ガス浄化用触媒 |
WO2020149315A1 (ja) | 2019-01-15 | 2020-07-23 | 日立造船株式会社 | 排ガス浄化用触媒および排ガス浄化用触媒の製造方法 |
CN110508318A (zh) * | 2019-10-22 | 2019-11-29 | 山东国瓷功能材料股份有限公司 | 一种复合脱硝催化剂及其制备方法和应用 |
JP7557663B2 (ja) * | 2019-12-13 | 2024-09-30 | ▲海▼▲軍▼ ▲陳▼ | 脱硝触媒および該触媒を用いた脱硝方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4170629A (en) * | 1975-09-15 | 1979-10-09 | Betz Erwin C | Method of converting hydrocarbon waste gas streams using a non-uniform crimped metal ribbon packed catalyst bed |
JP2854321B2 (ja) * | 1989-05-22 | 1999-02-03 | バブコツク日立株式会社 | 窒素酸化物除去用板状触媒の製造方法 |
US5055029A (en) * | 1990-01-22 | 1991-10-08 | Mobil Oil Corporation | Reducing NOx emissions from a circulating fluid bed combustor |
JP2925122B2 (ja) * | 1990-12-17 | 1999-07-28 | 株式会社西部技研 | ハニカム状セラミツクス触媒担体の製造法 |
DE4200995C2 (de) * | 1991-01-21 | 2002-02-14 | Seibu Giken Fukuoka Kk | Verfahren zur Herstellung eines wabenförmigen Gasadsorptionselements oder eines wabenförmigen Katalysatorträgers |
JPH07124475A (ja) * | 1993-11-05 | 1995-05-16 | Idemitsu Kosan Co Ltd | 排気ガス浄化用触媒 |
JPH0811251A (ja) * | 1994-06-30 | 1996-01-16 | Nippon Muki Co Ltd | ハニカムエレメント及びその製造方法 |
JP2981714B2 (ja) * | 1995-03-29 | 1999-11-22 | ニチアス株式会社 | 脱臭フィルター |
JPH11188238A (ja) | 1997-12-26 | 1999-07-13 | Meidensha Corp | 脱硝方法 |
JPH11290693A (ja) * | 1998-04-10 | 1999-10-26 | Daikin Ind Ltd | 空気浄化触媒、該空気浄化触媒の製造方法、該空気浄化触媒を用いた触媒構造体及び該触媒構造体を備えた空気調和機 |
JP2005516877A (ja) * | 2001-07-06 | 2005-06-09 | スリーエム イノベイティブ プロパティズ カンパニー | 排気系用無機繊維サブストレートおよびその製造方法 |
US20030165638A1 (en) * | 2001-07-06 | 2003-09-04 | Louks John W. | Inorganic fiber substrates for exhaust systems and methods of making same |
JP2004261754A (ja) | 2003-03-04 | 2004-09-24 | Sumitomo Metal Mining Co Ltd | 排ガス浄化触媒及び浄化方法 |
JP2004358454A (ja) | 2003-04-11 | 2004-12-24 | Sumitomo Metal Mining Co Ltd | 排ガス浄化触媒及び浄化方法 |
JP2006239917A (ja) * | 2005-03-01 | 2006-09-14 | Matsushita Electric Ind Co Ltd | ハニカム構造体とその製造法 |
JP4948393B2 (ja) * | 2005-03-02 | 2012-06-06 | イビデン株式会社 | 無機繊維集合体、無機繊維集合体の製造方法、ハニカム構造体及びハニカム構造体の製造方法 |
EP1879833A4 (de) * | 2005-05-02 | 2009-09-30 | Symyx Technologies Inc | Metall mit hoher oberfläche, metalloxidmaterialien und herstellungsverfahren dafür |
JP5921252B2 (ja) * | 2012-02-22 | 2016-05-24 | 日立造船株式会社 | 排ガス脱硝装置における触媒担持ハニカム構造体の端部処理方法 |
JP6051084B2 (ja) * | 2012-03-30 | 2016-12-21 | 日立造船株式会社 | 燃焼排ガスの浄化方法、および脱硝触媒 |
EP3103550B1 (de) * | 2014-02-07 | 2024-10-23 | Hitachi Zosen Corporation | Verfahren zur reinigung von verbrennungsabgasen |
-
2015
- 2015-03-27 DK DK15768958.9T patent/DK3124115T3/da active
- 2015-03-27 CN CN201580016803.9A patent/CN106132540B/zh active Active
- 2015-03-27 EP EP19170422.0A patent/EP3542900A1/de not_active Withdrawn
- 2015-03-27 EP EP15768958.9A patent/EP3124115B1/de active Active
- 2015-03-27 JP JP2016510550A patent/JP6663842B2/ja active Active
- 2015-03-27 WO PCT/JP2015/059606 patent/WO2015147257A1/ja active Application Filing
- 2015-03-27 KR KR1020167024464A patent/KR102375936B1/ko active IP Right Grant
- 2015-03-27 US US15/129,497 patent/US20170106356A1/en not_active Abandoned
-
2018
- 2018-08-03 US US16/054,146 patent/US10946366B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3689441A1 (de) * | 2019-02-01 | 2020-08-05 | Casale Sa | Verfahren zur entfernung von stickoxiden aus einem gas |
WO2020156801A1 (en) * | 2019-02-01 | 2020-08-06 | Casale Sa | Process for removing nitrogen oxides from a gas |
RU2809651C2 (ru) * | 2019-02-01 | 2023-12-14 | Касале Са | Способ удаления оксидов азота из газа |
CN112138727A (zh) * | 2020-09-24 | 2020-12-29 | 江西博鑫精陶环保科技有限公司 | 一种无机纤维蜂窝载体及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2015147257A1 (ja) | 2015-10-01 |
EP3124115A4 (de) | 2017-10-25 |
EP3542900A1 (de) | 2019-09-25 |
KR102375936B1 (ko) | 2022-03-16 |
EP3124115B1 (de) | 2019-05-15 |
DK3124115T3 (da) | 2019-08-05 |
JP6663842B2 (ja) | 2020-03-13 |
CN106132540A (zh) | 2016-11-16 |
KR20160140610A (ko) | 2016-12-07 |
EP3124115A1 (de) | 2017-02-01 |
JPWO2015147257A1 (ja) | 2017-04-13 |
US10946366B2 (en) | 2021-03-16 |
US20180345258A1 (en) | 2018-12-06 |
CN106132540B (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10946366B2 (en) | Honeycomb structure and catalyst for cleaning exhaust gas using same, and method for producing catalyst for cleaning exhaust gas | |
KR102126248B1 (ko) | 선택적 암모니아 산화를 위한 이금속 촉매 | |
EP3103550B1 (de) | Verfahren zur reinigung von verbrennungsabgasen | |
KR20120025444A (ko) | 린번 엔진용 촉매 | |
JP2018503511A (ja) | ナノサイズの機能性結合剤 | |
KR102306141B1 (ko) | 탈질촉매 및 그 제조방법 | |
US11701615B2 (en) | Exhaust gas purifying catalyst | |
US20200298217A1 (en) | Process for preparing iron(iii)-exchanged zeolite composition | |
DE112018005223T5 (de) | Zeolith mit seltenerd-substituiertem gerüst und verfahren zu dessen herstellung, und nox absorber, selektiver katalytischer reduktionskatalysator und automobiler abgaskatalysator damit | |
JP2015196116A (ja) | Scr用触媒及び排ガス浄化触媒システム | |
WO2013146729A1 (ja) | 燃焼排ガスの浄化方法、および脱硝触媒 | |
WO2017057736A1 (ja) | 排ガス浄化用触媒およびその製造方法 | |
US10112183B2 (en) | Catalyst for purifying combustion exhaust gas, and method for purifying combustion exhaust gas | |
JP2016150280A (ja) | ハニカム触媒の製造方法 | |
CN114929367B (zh) | 耐久性铜scr催化剂 | |
WO2023047892A1 (ja) | 排ガス浄化触媒装置 | |
JP2016016339A (ja) | ハニカム型脱硝触媒 | |
JP2016150279A (ja) | ハニカム触媒 | |
JP2022105849A (ja) | アンモニア分解触媒及びこれを用いた排ガス処理方法 | |
CN116547058A (zh) | Al-P复合氧化物和使用其的废气净化用催化剂 | |
WO2020085169A1 (ja) | Cu-P共担持ゼオライト、並びに、これを用いた選択的還元触媒及び排ガス用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI ZOSEN CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIKAZUDANI, SUSUMU;SHONO, EMI;SHIMIZU, KANA;REEL/FRAME:040033/0135 Effective date: 20161005 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |