US20100279404A1 - Method of nuclear reprogramming - Google Patents

Method of nuclear reprogramming Download PDF

Info

Publication number
US20100279404A1
US20100279404A1 US12/733,118 US73311809A US2010279404A1 US 20100279404 A1 US20100279404 A1 US 20100279404A1 US 73311809 A US73311809 A US 73311809A US 2010279404 A1 US2010279404 A1 US 2010279404A1
Authority
US
United States
Prior art keywords
family gene
gene
kinds
genes
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/733,118
Other languages
English (en)
Inventor
Shinya Yamanaka
Keisuke Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to US12/733,118 priority Critical patent/US20100279404A1/en
Assigned to KYOTO UNIVERSITY reassignment KYOTO UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKITA, KEISUKE, YAMANAKA, SHINYA
Publication of US20100279404A1 publication Critical patent/US20100279404A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32073Corona discharge
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1361Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from dental pulp or dental follicle stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/038Insulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06375Arrangement of electrodes

Definitions

  • the present invention relates to a method of reprogramming a somatic cell and producing an induced pluripotent stem cell.
  • embryonic stem cells are capable of being cultured for a long time while maintaining their potential for differentiating into all types of cells found in a living organism.
  • human ES cells are expected to serve for cell transplantation therapies for many diseases, including Parkinson's disease, juvenile diabetes, and leukemia.
  • ES cell transplantation poses the problem of causing rejections as with organ transplantation.
  • not a few people oppose the use of ES cells established with the destruction of a human embryo, from an ethical viewpoint.
  • iPS cells induced pluripotent stem cells
  • ES-like cells embryonic stem cell-like cells
  • iPS cells induced pluripotent stem cells
  • the established cells will be useful as ideal pluripotent cells that do not pose the problems of rejections and ethical issues.
  • iPS cells can be produced from mouse and human differentiated cells, arousing great attention (International Patent Application Publication No. WO2007/69666; Cell, 126, pp. 663-676, 2006; Cell, 131, pp. 861-872, 2007; Science, 318, pp. 1917-1920, 2007; Nature, 451, pp. 141-146, 2008).
  • All these methods comprise the step of introducing a plurality of particular nuclear reprogramming factors (e.g., in Cell, 126, pp. 1-14, 2006, 4 factors are used: Oct3/4, Sox2, Klf4, and c-Myc) into a somatic cell to achieve reprogramming, which step involves the use of a retrovirus or a lentivirus for the purpose of introducing the genes that encode the nuclear reprogramming factors into a somatic cell efficiently.
  • a retrovirus or a lentivirus for the purpose of introducing the genes that encode the nuclear reprogramming factors into a somatic cell efficiently.
  • the present inventors extensively investigated to solve the problems described above, and found that an iPS cell can be produced by introducing genes that encode reprogramming factors into a somatic cell by means of a non-viral expression vector such as a plasmid vector, and that a safe iPS cell can be obtained from a somatic cell by the method.
  • the present invention has been developed on the basis of these findings.
  • the present invention provides a method of producing an induced pluripotent stem cell, comprising the step of introducing at least one kind of non-viral expression vector incorporating at least one gene that encodes a reprogramming factor into a somatic cell.
  • the present invention provides the above-described method wherein the vectors are non-viral expression vectors autonomously replicable outside a chromosome; and the above-described method wherein the vector is a plasmid vector.
  • the present invention provides the above-described method wherein the gene that encodes a reprogramming factor is one of genes selected by a method of screening for nuclear reprogramming factors described in WO 2005/80598 or a combination of a plurality of such genes; and the above-described method wherein the gene that encodes a reprogramming factor is one or more kinds of genes selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and the Nanog gene, preferably a combination of two kinds of genes, more preferably a combination of three kinds of genes, particularly preferably a combination of four or more kinds of genes.
  • More preferable combinations are (a) a combination of two kinds of genes consisting of an Oct family gene and a Sox family gene; (b) a combination of three kinds of genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene; (c) a combination of four kinds of genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a Myc family gene; (d) a combination of four kinds of genes consisting of an Oct family gene, a Sox family gene, a Lin family gene, and the Nanog gene; (e) a combination of six kinds of genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and the Nanog gene;and the like. Furthermore, it is also preferable to include the TERT gene and/or the SV40 Large T antigen gene in the combination. As the case may be, it is preferable to exclude Klf family genes.
  • Particularly preferred combinations thereof are a combination of two kinds of genes consisting of Oct3/4 and Sox2; a combination of three kinds of genes consisting of Oct3/4, Klf4, and Sox2; a combination of four kinds of genes consisting of Oct3/4, Klf4, Sox2, and c-Myc; a combination of four kinds of genes consisting of Oct3/4, Sox2, Lin28, and Nanog; and a combination of six kinds of genes consisting of Oct3/4, Klf4, Sox2, c-Myc, Lin28, and Nanog. It is also preferable to include the TERT gene and/or the SV40 Large T antigen gene in these combinations. As the case may be, it is preferable to exclude Klf4.
  • the present invention provides the above-described method wherein the number of kinds of non-viral expression vectors introduced into a somatic cell is 1, 2, 3, or 4; the above-described method wherein the genes that encode reprogramming factors are a combination of three kinds of genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene, and these genes are incorporated in one kind of non-viral expression vector; the above-described method wherein the genes that encode nuclear reprogramming factors are a combination of four kinds of genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a Myc family gene, and the Oct family gene, the Klf family gene, and the Sox family gene are incorporated in one kind of non-viral expression vector; the above-described method wherein the Oct family gene, the Klf family gene, and the Sox family gene are incorporated in one kind of non-viral expression vector in this order in the orientation from the 5′ to 3′ end;
  • the present invention provides the above-described method wherein two or more kinds of the above-described non-viral expression vectors are concurrently introduced into a somatic cell; the above-described method wherein the genes that encode reprogramming factors are a combination of four kinds of genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a Myc family gene, and a first non-viral expression vector incorporating three or less kinds of genes selected from among the four kinds of genes, and a second non-viral expression vector incorporating the remaining gene(s) out of the four kinds of genes are concurrently introduced into a somatic cell; the above-described method wherein the three or less kinds of genes are an Oct family gene, a Klf family gene, and a Sox family gene, and the remaining gene is a Myc family gene; the above-described method wherein the three or less kinds of genes are Oct3/4, Klf4, and Sox2, and the remaining gene is c-Myc; and the above
  • the present invention provides the above-described method wherein a first non-viral expression vector harboring Oct3/4, Klf4, and Sox2, and a second non-viral expression vector harboring c-Myc are introduced into a somatic cell; the above-described method wherein a first non-viral expression vector harboring Oct3/4, Klf4, and Sox2 in this order in the orientation from the 5′ to 3′ end, and a second non-viral expression vector harboring c-Myc are introduced into a somatic cell; the above-described method wherein Oct3/4, Klf4, and Sox2 are ligated in this order in the orientation from the 5′ to 3′ end with an intervening sequence enabling polycistronic expression and inserted into the first non-viral expression vector; the above-described method wherein the first non-viral expression vector and the second non-viral expression vector are concurrently introduced into a somatic cell; and the above-described method wherein the introduction is repeatedly performed twice or more.
  • the present invention provides the above-described method wherein the somatic cell is a somatic cell of a mammal, including a human, preferably a human or mouse somatic cell, particularly preferably a human somatic cell; the above-described method wherein the somatic cell is a fetal human cell or a somatic cell derived from an adult human; and the above-described method wherein the somatic cell is a somatic cell collected from a patient.
  • the present invention provides an induced pluripotent stem cell that can be obtained by the above-described method.
  • the present invention also provides an induced pluripotent stem cell wherein all or some of the at least one non-viral expression vector introduced is substantially not integrated in the chromosome.
  • the somatic cell is a somatic cell of a mammal, including a human, preferably a human or mouse somatic cell, particularly preferably a human somatic cell; the above-described induced pluripotent stem cell wherein the somatic cell is a fetal human cell or a somatic cell derived from an adult human; and the above-described induced pluripotent stem cell wherein the somatic cell is a somatic cell collected from a patient.
  • a non-viral expression vector preferably a plasmid vector, for use in the above-described method of producing an induced pluripotent stem cell, incorporating at least one gene that encodes a reprogramming factor, is also provided by the present invention.
  • a somatic cell induced and differentiated from the above-described induced pluripotent stem cell is also provided by the present invention.
  • the present invention also provides a stem cell therapy comprising the step of transplanting to a patient a somatic cell obtained by differentiation induction of an induced pluripotent stem cell obtained by the above-described method using a somatic cell separated from the patient.
  • the present invention further provides a method of evaluating the physiological activities and toxicities of compounds, drugs, poisonous substances and the like using various cells obtained by differentiation induction of an induced pluripotent stem cell obtained by the above-described method.
  • the induced pluripotent stem cell provided by the present invention is advantageous in that tumorigenesis and other problems do not arise in the somatic cells and tissues obtained by differentiating the induced pluripotent stem cell.
  • all or some of the at least one non-viral expression vector introduced is episomally present, substantially not integrated in the chromosome.
  • the method of the present invention makes it possible to prepare a highly safe induced pluripotent stem cell from, for example, a patient's somatic cell, and the cells obtained by differentiating this cell (e.g., myocardial cells, insulin-producing cells, or nerve cells and the like) can be safely used for stem cell transplantation therapies for a broad range of diseases, including heart failure, insulin-dependent diabetes, Parkinson's disease and spinal injury.
  • a highly safe induced pluripotent stem cell from, for example, a patient's somatic cell
  • the cells obtained by differentiating this cell e.g., myocardial cells, insulin-producing cells, or nerve cells and the like
  • stem cell transplantation therapies for a broad range of diseases, including heart failure, insulin-dependent diabetes, Parkinson's disease and spinal injury.
  • FIG. 1 shows a time course protocol for transfecting a somatic cell (MEF) with Oct3/4, Klf4, Sox2, and c-Myc using plasmids according to the method of the present invention, results of seven independent tests (left photographs, 432A-1 to 432A-7: cell density 1 ⁇ 10 6 cells/100 mm dish) and results of another test (right photographs, 432B-1: cell density 2 ⁇ 10 5 cells/100 mm dish). The lowermost panels in the center show control results (no transfection).
  • the Phase columns show phase-contrast images, and the GFP columns show GFP-positive colonies.
  • FIG. 2 shows an expression plasmid for iPS cell production.
  • Three kinds of cDNAs that encode Oct3/4, Klf4, and Sox2 were ligated in this order with sequence encoding the 2A peptide as intervening sequence, and inserted into the pCX plasmid (pCX-2A-mOKS).
  • pCX-2A-mOKS pCX-2A-mOKS
  • a cDNA of c-Myc was inserted into pCX (pCX-c-Myc).
  • the bald lines show the amplification regions used in the PCR analysis for detecting plasmid integration in the genome ( FIG. 6 ).
  • FIG. 3 shows the time schedules for iPS cell induction using plasmids.
  • the solid arrows indicate the time points of transfection of the respective plasmids.
  • FIG. 4 shows the morphology of non-virus mediated iPS cells established.
  • FIG. 5 shows results of PCR analysis for the genetic expression of ES cell markers, obtained using total RNAs isolated from ES cells, IFS cells induced using retroviruses (clone 20D-17: Nature, 448, pp. 313-317, 2007), iPS cells induced using plasmids (clones 440A-3, 4, 7, 8, 10 and 11; clone 432A-1), and MEF cells.
  • FIG. 6 shows the detection of plasmid integration by PCR.
  • Genomic DNAs were extracted from a C57BL/6 mouse, iPS cell induced using retroviruses (clone 20D-17), iPS cells induced with plasmids (clone 432A-1; clones 440A-1 to 11) and MEF cells, and analyzed by PCR using the primers shown in FIGS. 2 , 13 and 14 .
  • the bands derived from endogenous genes are indicated by the outlined arrowheads
  • the bands derived from integrated plasmids are indicated by the solid arrowheads.
  • the lower band indicates wild-type alleles
  • the upper band indicates knocked-in alleles.
  • FIG. 7 shows results of teratoma formation.
  • FIG. 8 shows chimeric mice derived from iPS cells without integration (clones 440A-3 and -8).
  • FIG. 9 shows the detection of integration of plasmids by PCR.
  • Genomic DNAs were extracted from an ICR mouse, iPS cell (clone 432A-1), and chimeric mice derived from iPS cells induced using plasmids (clone 432A-1; clones 440A-3, 8), and the O-1, K and M regions shown in FIG. 2 were amplified by PCR.
  • the bands derived from endogenous genes are indicated by the outlined arrowheads, and the bands derived from integrated plasmids are indicated by the solid arrowheads.
  • the presence of the Nanog reporter and Fbx15 reporter was also detected by PCR.
  • FIG. 10 shows the probes used in Southern blot analysis and the positions of the restriction endonuclease recognition sites.
  • E indicates EcoRI
  • B indicates BamHI.
  • FIG. 11 shows results of Southern blot analysis.
  • Genomic DNAs (6 ⁇ g) were extracted from RF8 ES cells and iPS cells (clones 440A-3, 4, 7, 8, 10, and 11; clone 432A-1), and cleaved with BamHI and EcoRI.
  • the outlined arrowheads indicate the bands derived from endogenous genes, and the solid arrowhead indicates the band derived from the Oct3/4 pseudogene (estimated size 2049 bp) on chromosome 3.
  • the arrows indicate the bands derived from transgenes.
  • FIG. 12 shows results of SSLP analysis.
  • genomic DNAs each 50 ng
  • RF8 ES cell iPS cells without integration
  • MEF cells MEF cells
  • FIGS. 13 and 14 show the primers used for PCR in Examples 1 to 3.
  • FIG. 15 shows a time course protocol for transfecting human dental pulp stem cells with Oct3/4, Klf4, Sox2, c-Myc, Lin28, Nanog and the SV40 Large T antigen using plasmids according to the method of the present invention, and 16 independent iPS cell colonies.
  • FIGS. 16 and 17 show photographs of iPS cells established from fetal HDF (5 clones: 203A-1 to 203A-5, of which 203A-4 was picked up as a negative control) on day 31 after transfection ( FIG. 16 ) and in the 2nd subculture ( FIG. 17 ).
  • FIG. 18 shows the results of genomic-PCR analysis of 5 iPS cell clones (203A-1 to 203A-5).
  • FIGS. 19 and 20 show photographs of iPS cells established from human dental pulp stem cells (5 clones: 217A-1 to -4 and -6) on day 35 after transfection ( FIG. 19 ) and in the 2nd subculture ( FIG. 20 ).
  • FIG. 21 shows the results of genomic-PCR analysis of 5 iPS cell clones (217A-1 to -4 and -6).
  • FIGS. 22 and 23 show photographs of IFS cells established from young female HDF (2 clones: 279A-1 and -2) on day 35 after the first electroporation ( FIG. 22 ) and clone 279A-2 after passage culture ( FIG. 23 ; the right panel is a closeup picture of the boxed area in the left panel).
  • FIG. 24 shows the results of genomic-PCR analysis of iPS cell clone 279A-2 demonstrating the integration of the transgenes.
  • FIG. 25 shows photographs of iPS cells (8 clones: 497A-1 to A-8) after the selection (colonies were selected on day 25 after transfection).
  • the upper panels show phase-contrast images, and the lower panels show GFP-positive colonies.
  • FIG. 26 shows the results of genomic-PCR analysis of 5 iPS cell clones (497A-1 to A-5). In 497A-2 and 497A-5, no exogenous gene was not integrated into the genome.
  • the method of the present invention is intended to produce an induced pluripotent stem cell, comprising the step of introducing at least one kind of non-viral expression vector incorporating at least one gene that encodes a reprogramming factor into a somatic cell.
  • the non-viral expression vector is preferably an expression vector autonomously replicable outside a chromosome, more preferably a plasmid expression vector.
  • a nuclear reprogramming factor screening method described in WO 2005/80598 can be utilized. All disclosures therein are incorporated herein by reference. Those skilled in the art are able to screen for nuclear reprogramming factors, and to utilize them for the method of the present invention, by referring to the aforementioned publication. It is also possible to identify nuclear reprogramming factors using a method modified or altered from the above-described screening method.
  • genes that encode reprogramming factors are disclosed in WO2007/69666. All disclosures therein are incorporated herein by reference. Those skilled in the art are able to choose genes that can suitably be used in the method of the present invention as appropriate by referring to the aforementioned publication. Other examples of combinations of genes that encode reprogramming factors are given in Science, 318, pp. 1917-1920, 2007, WO2008/118820 and the like.
  • genes that encode reprogramming factors include one or more kind of genes selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and the Nanog gene, preferably a combination of two kinds of genes, more preferably of three kinds of genes, and particularly preferably of four kinds of genes.
  • Oct family genes examples include Klf family genes, Sox family genes, and Myc family genes.
  • Lin family genes those skilled in the art are likewise able to extract a family gene.
  • Lin28 and Lin28B may be included.
  • More preferable combinations include, but are not limited to,
  • genes are present in common in mammals, including humans. Genes derived from optionally chosen mammals (e.g., humans, mice, rats, bovines, sheep, horses, monkeys) can be used in the present invention.
  • mutant genes whose translation products have several (e.g., 1 to 10, preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2) amino acids substituted, inserted, and/or deleted, and possess a function similar to that of the wild type gene product, can also be utilized.
  • mutant genes whose translation products have several (e.g., 1 to 10, preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2) amino acids substituted, inserted, and/or deleted, and possess a function similar to that of the wild type gene product, can also be utilized.
  • c-Myc genes the wild type, a gene encoding stable type mutant (T58A) and the like may be used. The same applies to other gene products.
  • a gene that encodes a factor that induces cell immortalization may further be combined.
  • the TERT gene and one or more kind of genes selected from the group consisting of the following genes: SV40 Large T antigen, HPV16 E6, HPV16 E7, and Bmil, can be used singly, or in combination as appropriate.
  • the Klf family gene may be excluded from the aforementioned combinations.
  • one or more kind of genes selected from the group consisting of Fbx15, ERas, ECAT15-2, Tcl1, and ⁇ -catenin may be combined, and/or one or more kind of genes selected from the group consisting of ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fth117, Sa114, Rex1, UTF1, Stella, Stat3, and Grb2 may also be combined. These combinations are specifically described in WO2007/69666.
  • the gene(s) can be excluded from the genes to be introduced.
  • the remaining one or more genes can be introduced using a non-viral expression vector according to the method of the present invention.
  • the remaining one or more genes can be introduced using a non-viral expression vector according to the method of the present invention.
  • the remaining one or more genes can be introduced using a non-viral expression vector according to the method of the present invention.
  • a gene that encodes a factor that induces cell immortalization may further be combined.
  • genes selected from the group consisting of the TERT gene, and the following genes: HPV16 E6, HPV16 E7, and Bmil can be used singly, or in combination as appropriate.
  • L-Myc can be used in place of c-Myc.
  • genes are not limited thereto.
  • the scope of the present invention includes a method wherein one or more genes selected from among the above-described genes are introduced into a somatic cell using a non-viral expression vector, and the remaining gene or gene product is introduced into the somatic cell by another means.
  • a viral vector such as retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector.
  • genes that encode reprogramming factors for example, a combination of four kinds of genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a Myc family gene can be used.
  • a combination of three kinds of genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene, or a combination of two kinds of genes selected from among the aforementioned three kinds of genes can also be used.
  • the above-described four kinds, three kinds, or two kinds of genes be concurrently introduced into a somatic cell.
  • one kind of non-viral expression vector incorporating all these genes may be used.
  • several kinds of non-viral expression vectors may be used in combination as appropriate, so as to cover all the combinations of these genes.
  • non-viral expression vectors may be combined as appropriate, so as to cover all the combinations of these genes.
  • These non-viral expression vectors are preferably concurrently introduced into a somatic cell.
  • An example of a preferable method is a method wherein one non-viral expression vector harboring an Oct family gene, a Klf family gene, and a Sox family gene, and one non-viral expression vector harboring a Myc family gene are introduced into a somatic cell concurrently or at different times; in this method, it is preferable that the two kinds of non-viral expression vectors be concurrently introduced into the somatic cell.
  • a combination of four kinds of genes consisting of an Oct3/4, Klf4, Sox2, and c-Myc, or an optionally chosen combination of three kinds or two kinds selected from among these four kinds of genes, preferably the combination or three kinds or two kinds of genes, wherein said combination does not contain c-Myc, can be used.
  • This preferred embodiment is hereinafter described specifically, to which the scope of the present invention is never limited.
  • the method of (f1) or (g1) can be preferably used when the somatic cell is derived from mouse.
  • a viral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • retroviral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • L-Myc in (a1) to (f2) above, L-Myc can be used in place of c-Myc.
  • the method of (b2) or (d2) can be preferably used when the somatic cell is derived from mouse.
  • a viral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • retroviral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • a viral vector can also be used in place of the non-viral vector.
  • the method of (b3) can be preferably used when the somatic cell is derived from mouse.
  • a viral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • retroviral vector e.g., retroviral vector, lentiviral vector, adenoviral vector, adeno-associated viral vector, Sendai viral vector or the like
  • the first, second and third non-viral expression vectors can be concurrently introduced into a somatic cell.
  • a gene encoding a factor that induces cell immortalization such as TERT, SV40 large T antigen, HPV16 E6, HPV16 E7 or Bmil, is further combined with the two, three, four or six genes mentioned above, it can be preferably incorporated into another non-viral expression vector.
  • a plurality of genes e.g., Oct family gene, Klf family gene, and Sox family gene
  • these genes can preferably be inserted into the non-viral expression vector with an intervening sequence enabling polycistronic expression.
  • an intervening sequence enabling polycistronic expression it is possible to more efficiently express a plurality of genes incorporated in one kind of non-viral expression vector.
  • Useful sequences enabling polycistronic expression include, for example, the 2A sequence of foot-and-mouth disease virus (SEQ ID NO:61, sometimes referred to as FMDV 2A-self-processing sequence) (PLoS ONE 3, e2532, 2008; Stem Cells 25, 1707, 2007), IRES sequence and the like, preferably the 2A sequence.
  • the present invention also provides a use of the 2A sequence for preparing a non-viral expression vector for iPS cell induction, harboring two or more kinds of reprogramming factors.
  • the number of repeats of the manipulation to introduce a non-viral expression vector into a somatic cell is not particularly limited, as far as the effect of the present invention of reprogramming a somatic cell to produce an induced pluripotent stem cell can be accomplished, the transfection can be performed once or more optionally chosen times (e.g., once to 10 times, once to 5 times or the like).
  • the transfection can be performed once or more optionally chosen times (e.g., once to 10 times, once to 5 times or the like), preferably the transfection can be repeatedly performed twice or more (e.g., 3 times or 4 times).
  • the time interval is exemplified by, but not limited to, 12 hours to 1 week, preferably 12 hours to 4 days, for example, 1 day to 3 days.
  • iPS cell induced pluripotent stem cell
  • iPS cell refers to a cell possessing properties similar to that of ES cells, more specifically including undifferentiated cells reprogrammed from somatic cells possessing pluripotency and proliferating (self-renewal) capability. It should be noted, however, that this term must not be construed as limiting in any sense, and must be construed in the broadest sense.
  • a method of preparing an induced pluripotent stem cell by means of hypothetical nuclear reprogramming factors is described in WO2005/80598 (in this publication, the term ES-like cell is used), and a method of isolating an induced pluripotent stem cell is also described specifically.
  • WO2007/69666 discloses specific examples of reprogramming factors and methods of somatic cell reprogramming using the same. Therefore, it is desirable that in embodying the present invention, those skilled in the art refer to these publications.
  • a regulatory sequence required for transcription e.g., promoter, enhancer, and/or terminator and the like
  • promoter, enhancer, and/or terminator and the like is preferably operably linked to the gene in the non-viral expression vector.
  • a DNA sequence exhibiting transcription activity in somatic cells can be used, and the promoter can be chosen as appropriate according to animal species and kind of somatic cell.
  • useful promoters that can be expressed in mammalian cells include a promoter of the IE (immediate early) gene of cytomegalovirus (human CMV), initial promoter of SV40, promoter of retrovirus, metallothionein promoter, heat shock promoter, SRa promoter and the like.
  • An enhancer of the IE gene of human CMV may be used along with a promoter.
  • a useful promoter is the CAG promoter (comprising cytomegalovirus enhancer, chicken ⁇ -actin promoter and ⁇ -globin gene polyA signal site).
  • the non-viral expression vector may incorporate a DNA sequence that allows the autonomous replication of the expression vector in a mammalian somatic cell.
  • An example of the DNA sequence is the SV40 replication origin.
  • the non-viral expression vector is preferably an expression vector autonomously replicable outside the chromosome, and the non-viral expression vector is preferably one that is not integrated in the chromosome. More preferable examples include plasmid vectors. Examples of the plasmid vector include, but are not limited to, Escherichia coli -derived plasmids (ColE-series plasmids such as pBR322, pUC18, pUC19, pUC118, pUC119, and pBluescript, and the like), Actinomyces -derived plasmids (pIJ486 and the like), Bacillus subtilis -derived plasmids (e.g., pUB110, pSH19 and others), yeast-derived plasmids (YEp13, YEp 24, Ycp50 and the like) and the like, as well as artificial plasmid vectors and the like.
  • non-viral expression vectors examples include, but are not limited to, pCMV6-XL3 (OriGene Technologies Inc.), EGFP-C1 (Clontech), pGBT-9 (Clontech), pcDNAI (FUNAKOSHI), pcDM8 (FUNAKOSHI), pAGE107 (Cytotechnology, 3,133, 1990), pCDM8 (Nature, 329, 840, 1987), pcDNAI/AmP (Invitrogen), pREP4 (Invitrogen), pAGE103 (J. Blochem., 101, 1307, 1987), pAGE210 and the like.
  • the non-viral expression vector may incorporate a selectable marker as required.
  • selectable marker include genes that are deficient in the host cell, such as the dihydrofolate reductase (DHFR) gene or the Schizosaccaromyces pombe TPI gene, and genes for resistance to drugs such as ampicillin, kanamycin, tetracycline, chloramphenicol, neomycin, or hygromycin.
  • DHFR dihydrofolate reductase
  • Schizosaccaromyces pombe TPI genes for resistance to drugs such as ampicillin, kanamycin, tetracycline, chloramphenicol, neomycin, or hygromycin.
  • the non-viral expression vector can preferably contain a sequence enabling the excicion of transgenes, such as loxP sequence (Chang et al., STEM CELLS Published Online: 12 Feb. 2009 (doi: 10.1002/stem.39)), piggyback transposon (Kaji et al., Nature advance online publication 1 Mar.
  • a method of ligating a gene that encodes a reprogramming factor, a promoter, an enhancer, and/or a terminator and the like, used in the present invention, in an appropriate order to construct a non-viral expression vector capable of expressing the reprogramming factor in the somatic cell, is obvious to those skilled in the art.
  • the genes may be incorporated in one non-viral expression vector.
  • two or more kinds of non-viral expression vectors incorporating different genes may be used.
  • one non-viral expression vector incorporating two or more kinds of genes and a non-viral expression vector incorporating one or more kind genes different therefrom can be combined as appropriate.
  • Any method of expression vector introduction into an animal cell available to those skilled in the art can be used to introduce a non-viral expression vector into a somatic cell.
  • useful methods include the use of a transfection reagent such as the FuGENE 6 transfection reagent (Roche), the use of a microporator, the electroporation method, the calcium phosphate method, the lipofection method, the DEAE-dextran-mediated transfection method, the transfection method, the microinjection method, the cationic lipid-mediated transfection method, and the like. Nucleofection can also be used to introduce a gene. These methods may be used in combination.
  • the expression vector may be introduced into the somatic cell being cultured on feeder cells, and may be introduced only into the somatic cell.
  • the feeder cells used may be those for cultivation of embryonic stem cells; for example, primary culture fibroblasts from a 14- to 15-day mouse embryo, STO (fibroblast-derived cell line) and the like, treated with a chemical agent such as mitomycin C or exposed to radiation, and the like can be used.
  • culturing a somatic cell incorporating a non-viral expression vector under appropriate conditions it is possible to allow nuclear reprogramming to progress autonomically, and to produce an induced pluripotent stem cell from the somatic cell.
  • the step of culturing a somatic cell incorporating a non-viral expression vector to obtain an induced pluripotent stem cell can be performed in the same manner as a conventional method using a retrovirus; for example, this can be achieved as described in publications such as Cell, 126, pp. 1-14, 2006; Cell, 131, pp. 1-12, 2007; and Science, 318, pp. 1917-1920, 2007.
  • the cell culture density after expression vector introduction be set at a level lower than that for ordinary animal cell culture. For example, it is preferable to continue the cultivation at a cell density of 10,000 to 100,000 cells, preferably about 50,000 cells per cell culture dish. Any medium can be used for the cultivation, chosen as appropriate by those skilled in the art; for example, in producing a human induced pluripotent stem cell, it is sometimes preferable to use a medium suitable of human ES cell culture. Regarding the choice of medium and culturing conditions, the aforementioned publications serve for references.
  • the resulting induced pluripotent stem cells can be identified using various markers characteristic of undifferentiated cells; means for this identification are also described in the aforementioned publications specifically and in detail.
  • Various media allowing the maintenance of undifferentiated state and pluripotency of ES cells or media not allowing the maintenance of these properties are known in the art; by using appropriate media in combination, an induced pluripotent stem cell can be isolated efficiently.
  • the differentiation potential and proliferation potential of the isolated induced pluripotent stem cells are easily confirmable for those skilled in the art by utilizing a method of identification in common use for ES cells.
  • a colony of induced pluripotent stem cells is obtained; it is possible to identify the presence of an induced pluripotent stem cell on the basis of the shape of the colony.
  • mouse induced pluripotent stem cells form raised colonies
  • human induced pluripotent stem cells form flat colonies
  • the shapes of these colonies are extremely similar to those of mouse ES cell and human ES cell colonies, respectively; therefore, it is possible for those skilled in the art to identify the resulting induced pluripotent stem cell on the basis of the shape of the colony.
  • somatic cell having a gene incorporating a marker gene such as GFP downstream of a promoter of gene specifically expressing in ES cells, it is possible to identify an induced pluripotent stem cell if the cell becomes positive for the marker (GFP).
  • GFP marker
  • Somatic cells to be reprogrammed by the method of the present invention refers to any cells except totipotent and pluripotent cells such as early embryos and ES cells, and the choice thereof is not limited.
  • somatic cells in the fetal stage neonatal somatic cells and mature somatic cells may be used.
  • somatic cells derived from mammals, including humans are used; more preferably human- or mouse-derived somatic cells are used.
  • tissue stem cells such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells
  • tissue progenitor cells or (3) io differentiated cells such as lymphocytes, epithelial cells, muscle cells, fibroblasts (dermal cells and the like), hair cells, liver cells, and gastromucosal cells
  • somatic stem cells separated from a patient to be treated or from another person sharing the same type of HLA as that of the patient; for example, somatic cells involved in disease and somatic cells involved in disease treatment and the like can be used.
  • iPS cell establishment efficiency improvers include, but are not limited to, histone deacetylase (HDAC) inhibitors [e.g., valproic acid (VPA) (Nat.
  • HDAC histone deacetylase
  • VPA valproic acid
  • low-molecular inhibitors such as trichostatin A, sodium butyrate, MC 1293, and M344, nucleic acid-based expression inhibitors such as siRNA and shRNA against HDAC (e.g., HDAC1 siRNA Smartpool® (Millipore), HuSH 29 mer shRNA Constructs against HDAC1 (OriGene) and the like), and the like], G9a histone methyltransferase inhibitors [e.g., low-molecular inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525-528 (2008)), nucleic acid-based expression inhibitors such as siRNA and shRNA against G9a (e.g., G9a siRNA (human) (Santa Cruz Biotechnology) and the like) and the like], L-channel calcium agonist (e.g., Bayk8644) (Cell Stem Cell, 3, 568-574 (2008)), UTF1 (Cell Stem Cell, 3,
  • the nucleic acid-based expression inhibitors may be in the form of expression vectors harboring a DNA that encodes siRNA or shRNA.
  • the DNA that encodes siRNA or shRNA may be inserted into a non-viral expression vector of the present invention, together with reprogramming factors.
  • the induced pluripotent stem cell produced by the method of the present invention is not subject to limitations concerning the use thereof, and can be used for all types of studies and investigations with the use of ES cells and for the treatment of diseases using ES cells, in place of ES cells.
  • desired differentiated cells e.g., nerve cells, myocardial cells, blood cells and the like
  • stem cell therapy by autologous cell transplantation can be accomplished.
  • the use of an induced pluripotent stem cell of the present invention is not limited to the above-described particular embodiment.
  • the present invention also provides a non-viral expression vector for use in the above-described method of producing an induced pluripotent stem cell, i.e., a non-viral expression vector (preferably a plasmid vector) incorporating at least one gene that encodes a reprogramming factor.
  • a non-viral expression vector preferably a plasmid vector
  • the structure of the vector is as described in detail in the section of a method of producing an induced pluripotent stem cell of the present invention.
  • An example is a non-viral expression vector incorporating an Oct family gene, a Kif family gene, and a Sox family gene, preferably incorporated in this order in the orientation from the 5′ to 3′ end.
  • a more preferable example is a non-viral expression vector incorporating these genes with an intervening sequence enabling polycistronic expression, particularly preferably a non-viral expression vector wherein OCT3/4, Klf4 and Sox 2 are incorporated with an intervening sequence enabling polycistronic expression, preferably FMDV 2A-self-processing sequence, in this order in the orientation from the 5′ to 3′ end.
  • the present invention provides an induced pluripotent stem cell wherein transgenes are not integrated into the genome. Since such iPS cell reduces a risk causing tumorigenesis in tissues or organs differentiated therefrom. and/or disturbance (e.g., disruption or activation) of an endogenous gene, it can preferably be used for regenerative medicine such as cell transplantation therapy.
  • the present invention provides an induced pluripotent stem cell wherein transgenes are integrated into the genome in the form of plasmid.
  • iPS cell can reduce a risk causing tumorigenesis in tissues or organs differentiated therefrom as compared to an iPS cell induced by retroviral infection.
  • transgenes can be excised from the genome as necessary using a Cre/loxP system (Chang et al., 2009 (supra)) or a piggyback transposon vector and piggyback transposon (Kaji et al., 2009 (supra); Woltjen et al., 2009 (supra)) or tetracycline dependent gene induction.
  • a Cre recombinase or transposase for the excision can be introduced into and expressed in the iPS cell using a plasmid vector or adenoviral vector.
  • Tet-repressor protein or mutated Tet-repressor protein is concomitantly expressed.
  • mice having a Nanog reporter were used as an experimental system (Okita et al. Nature, Vol. 448, pp. 313-317, 2007). These mice were prepared by incorporating EGFP and a puromycin resistance gene into the Nanog gene locus of a BAC (bacterial artificial chromosome) purchased from BACPAC Resources. The mouse Nanog gene is expressed specifically in pluripotent cells such as ES cells and early embryos. Mouse iPS cells positive for this reporter have been shown to possess a differentiation potential nearly equivalent to that of ES cells. These Nanog reporter mice were mated with Fbx15 reporter mice (Tokuzawa et al. Mol Cell Biol, Vol. 23, 2699-2708 (2003)), whereby mutant mice having both the Nanog reporter and the Fbx15 reporter were generated.
  • Fbx15 reporter mice Yamazawa et al. Mol Cell Biol, Vol. 23, 2699-2708 (2003)
  • the plasmid used for reprogramming was prepared by treating pCX-EGFP (a plasmid supplied by Dr. Masaru Okabe at Osaka University: FEBS Letters, 407, 313-319, 1997) with EcoRI, and inserting a construct wherein the coding regions of Oct3/4, Sox2, and Klf4 (all mouse-derived genes) are ligated via the 2A sequence of foot-and-mouth disease virus in the order of Oct3/4, Klf4, and Sox2, in place of EGFP (pCX-2A-mOKS; FIG. 2 ).
  • pCX-2A-mOKS a plasmid with the coding region of c-Myc inserted thereinto was prepared (pCX-c-Myc; FIG. 2 ).
  • oligonucleotides comprising the 2A sequence of foot-and-mouth disease virus (SEQ ID NO:61), upstream restriction endonuclease sites (XbaI and BglII), and downstream restriction endonuclease sites (BspHI, Mfel and PstI), were annealed and inserted into pBluescript II KS ( ⁇ ) vector digested with the XbaI and PstI (pBS-2A).
  • a mouse cDNA that encodes Oct3/4 or Klf4 was amplified by PCR, the translation termination codon was replaced with a BamHI site, and each cDNA was cloned into pCR2.1. Subsequently, the cDNAs of Oct3/4 and Klf4 were ligated with pBS-2A using an appropriate restriction endonuclease to yield pBS-Oct3/4-2A and pBS-Klf4-2A.
  • Klf4-2A was inserted into pBS-Oct3/4-2A in frame using an appropriate restriction endonuclease, whereby pBS-Oct3/4-2A-Klf4-2A was produced.
  • the resulting Oct3/4-2A-Klf4-2A construct was ligated with a cDNA of Sox2 having a translation termination codon in frame, using an appropriate restriction endonuclease.
  • MEF Fibroblasts
  • the culture medium was replaced with a fresh supply (DMEM/10% FCS) and an expression vector (pCX-2A-mOKS) was introduced as described above; the day after, the culture medium was replaced with an ES cell culture medium (DMEM (Nacalai Tesque) supplemented with 15% fetal calf serum, 2 mM L-glutamine (Invitrogen), 100 ⁇ M non-essential amino acids (Invitrogen), 100 ⁇ M 2-mercaptoethanol (Invitrogen), 50 U/mL penicillin (Invitrogen) and 50 mg/mL streptomycin (Invitrogen)), and an expression vector (pCX-c-Myc) was introduced using the FuGene6 transfection reagent as described above.
  • DMEM Necalai Tesque
  • the medium was replaced with an ES cell culture medium.
  • the MEF culture medium was removed, and the cells were washed by the addition of PBS 2 mL.
  • PBS 0.25% Trypsin/1 mM EDTA (Invitrogen) was added, and the reaction was carried out at 37° C. for about 5 minutes.
  • an ES cell culture medium was added, the cells were suspended, and 1 ⁇ 10 6 (Exp432A) or 2 ⁇ 10 5 (Exp432B) cells were sown onto a 100 mm dish with feeder cells sown thereto previously.
  • the feeder cells used were SNL cells that had been treated with mitomycin C to terminate their cell division.
  • iPS cells obtained as described in Example 2 were subcutaneously transplanted to nude mice. All clones tested (440A-3, -4, -8 and -10) produced tumors, which included a broad range of cell types, including cells derived from all the three germ layers ( FIG. 7 ). Furthermore, iPS cells without integration were injected into ICR mouse blastocysts. Judging from the coat colors, adult chimeras were obtained from all clones injected (440A-3, -4, -6, -8, -9 and -10) ( FIG. 8 ). In these chimeric mice, PCR analysis did not detect the integration of any of the transgenes ( FIG. 9 ).
  • Human dental pulp stem cells (clone name; DP31, PCT/JP2008/068320, J. Dent. Res., 87(7):676-681 (2008)) were used as an experimental system.
  • the DP31 was allowed to express the mouse ecotropic virus receptor Slc7a1 gene using a lentivirus as described in Cell, 131, 861-872 (2007). These cells were cultured using the MSCGM bullet kit (Lonza).
  • the plasmids used for reprogramming were prepared from pCX-EGFP (supplied by Dr. Masaru Okabe at Osaka University, FEBS Letters, 407, 313-319, 1997) in the same manner as Example 1. Specifically, the pCX-EGFP was treated with EcoRI, and a construct with the coding regions of SOX2 and KLF4 ligated via the 2A sequence of foot-and-mouth disease virus therein was inserted in place of EGFP, whereby the plasmid pCX-hSK was prepared.
  • a plasmid with c-Myc, Lin28, and Nanog ligated via the 2A sequence pCX-hMLN
  • a plasmid with the OCT3/4 coding region inserted therein pCX-hOCT3/4
  • a plasmid with the SV40 Large T antigen inserted therein pCX-SV40LT
  • the DP31 cultured in a 100 mm dish was washed with PBS, 0.25% Trypsin/1 mM EDTA (Invitrogen) was added, and the reaction was carried out at 37° C. for about 5 minutes. After cells rose, MSCGM was added, the cells were suspended, and 6 ⁇ 10 5 cells were recovered in a 15 mL tube. The cells were centrifuged at 800 rpm for 5 minutes; after the supernatant was removed, and the expression plasmids were introduced using the Human Dermal Fibroblast Nucleofector Kit (Amaxa).
  • the amounts of plasmids used were 0.5 ⁇ g for pCX-hOCT3/4, 1.0 ⁇ g for pCX-hSK, 1.5 ⁇ g for pCX-hMLN, and 0.5 ⁇ g for pCX-SV40LT.
  • the cells were sown to a 6-well plate.
  • the cells were again washed with PBS, 0.25% Trypsin/1 mM EDTA (Invitrogen) was added, and the reaction was carried out at 37° C. for about 5 minutes. After cells rose, MSCGM was added, the cells were suspended, and 1 ⁇ 10 6 cells were sown onto a 100 mm dish with feeder cells sown thereto previously.
  • the feeder cells used were SNL cells that had been treated with mitomycin C to terminate their cell division. Thereafter, until a colony began to be observed, the medium was replaced with a fresh supply every two days.
  • the medium used was prepared by mixing equal volumes of a primate ES cell culture medium (ReproCELL) supplemented with MSCGM and bFGF (4 ng/mL), respectively. Colonization began around day 19, confirming the establishment of human iPS cell ( FIG. 15 ).
  • fetal human HDF (Cell applications, INC) was transfected with the same seven kinds of genes as described above. After the transfection, the cells were cultured using a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). MSTO cells served as feeder cells. Photographs of cells on day 31 after transfection (5 clones: 203A-1 to 203A-5, of which 203A-4 was picked up as a negative control) are shown in FIG. 16 , and photographs of cells in the 2nd subculture are shown in FIG. 17 . The 203A-1 to 203A-3 and 203A-5 clones exhibited a typical ES cell-like morphology, confirming the establishment of human iPS cells.
  • Dental pulp stem cells DP31 used in Example 4, were transfected with six kinds of genes, excluding the SV40 Large T antigen (pCX-hSK, pCX-hMLN, pCX-hOCT3/4), in the same manner as Example 4. Photographs of cells on day 35 after the transfection (5 clones: 217A-1 to -4 and -6) are shown in FIG. 19 . Photographs of cells in the 2nd subculture are shown in FIG. 20 . All clones exhibited a typical ES cell-like morphology, confirming the establishment of human iPS cells.
  • HDF cell line derived from a 6-year-old Japanese female (HDF-120; JCRB) was allowed to express the Slc7a1 gene.
  • the resulting cells (HDF-120-Slc) were transfected with the aforementioned six kinds of genes and an shRNA against p53 (shRNA2: SEQ ID NO:62) (vectors introduced: pCX-hOCT3/4, pCX-hSK, pCX-hMLN-shp53).
  • Each of pCX-hOCT3/4 (0.5 ⁇ g), pCX-hSK (1.0 ⁇ g), and pCX-hMLN-shp53 (1.5 ⁇ g) was electrically introduced into 6.0 ⁇ 10 5 cells of HDF-120-Slc using Microporator (100 ⁇ L tip, 1600 V, 10 ms, 3 times). Ten days later, each vector was once again electrically introduced under the same conditions, and the cells were sown onto MSTO (100 mm dish). These cells were cultured using DMEM/10% FCS until day 10, thereafter using a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO).
  • ReproCELL a primate ES cell culture medium supplemented with 4 ng/ml recombinant human bFGF
  • Photographs of cells on day 35 after the first electroporation are shown in FIG. 22 .
  • Photographs of cells after passage culture are shown in FIG. 23 .
  • a typical ES cell-like morphology was exhibited, confirming the establishment of human iPS cells.
  • Genomic-PCR analysis demonstrated the integration of the transgenes (lane 279A-2 in FIG. 24 ).
  • Expression vectors separately incorporating the four kinds of genes Oct3/4, Klf4, Sox2 and c-Myc were introduced into MEF cells derived from a Nanog reporter mouse (Okita et al. Nature, Vol. 448, pp. 313-317, 2007) per the protocol in Example 2.
  • Nanog reporter MEF cells were sown onto a gelatin-coated 6-well plate (1.3 ⁇ 10 5 cells/well), and transfected with each of pCX-Oct4 (0.37 ⁇ g), pCX-Sox2 (0.36 ⁇ g), pCX-Klf4 (0.39 ⁇ g), and pCX-c-Myc (0.38 ⁇ g) using FuGene6 on days 1, 3, 5, and 7.
  • 1 ⁇ 10 6 cells (1.0) or 0.2 ⁇ 10 6 cells (0.2) were sown onto MSTO-PH or gelatin (100-mm dish), and colonies were selected on day 25. Photographs of cells after the selection are shown in FIG. 25 .
  • mice iPS cell clones established (497A-1 to A-5) were subjected to genomic-PCR analysis. The results are shown in FIG. 26 . Both 497A-2 and 497A-5 were shown to be iPS cells without integration of any of the exogenous genes.
  • a highly safe induced pluripotent stem cell from, for example, a patient's somatic cell.
  • the cells obtained by differentiating the induced pluripotent stem cell e.g., myocardial cells, insulin-producing cells, nerve cells and the like
  • myocardial cells, insulin-producing cells, nerve cells and the like can be safely used for stem cell transplantation therapy for a broad range of diseases, including heart failure, insulin-dependent diabetes, Parkinson's disease and spinal injury.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Transplantation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Plasma & Fusion (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US12/733,118 2008-05-02 2009-05-01 Method of nuclear reprogramming Abandoned US20100279404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/733,118 US20100279404A1 (en) 2008-05-02 2009-05-01 Method of nuclear reprogramming

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US7150808P 2008-05-02 2008-05-02
US13624608P 2008-08-21 2008-08-21
US13661508P 2008-09-19 2008-09-19
US19336308P 2008-11-21 2008-11-21
US12/733,118 US20100279404A1 (en) 2008-05-02 2009-05-01 Method of nuclear reprogramming
PCT/JP2009/058873 WO2009133971A1 (en) 2008-05-02 2009-05-01 Method of nuclear reprogramming

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058873 A-371-Of-International WO2009133971A1 (en) 2008-05-02 2009-05-01 Method of nuclear reprogramming

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/572,593 Division US9499797B2 (en) 2008-05-02 2012-08-10 Method of making induced pluripotent stem cells

Publications (1)

Publication Number Publication Date
US20100279404A1 true US20100279404A1 (en) 2010-11-04

Family

ID=41255176

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/733,118 Abandoned US20100279404A1 (en) 2008-05-02 2009-05-01 Method of nuclear reprogramming
US13/572,593 Active US9499797B2 (en) 2008-05-02 2012-08-10 Method of making induced pluripotent stem cells
US14/502,374 Abandoned US20150072417A1 (en) 2008-05-02 2014-09-30 Method of nuclear reprogramming
US16/702,391 Abandoned US20200172875A1 (en) 2008-05-02 2019-12-03 Method of nuclear reprogramming
US18/146,644 Pending US20230282445A1 (en) 2008-05-02 2022-12-27 Method of nuclear reprogramming

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/572,593 Active US9499797B2 (en) 2008-05-02 2012-08-10 Method of making induced pluripotent stem cells
US14/502,374 Abandoned US20150072417A1 (en) 2008-05-02 2014-09-30 Method of nuclear reprogramming
US16/702,391 Abandoned US20200172875A1 (en) 2008-05-02 2019-12-03 Method of nuclear reprogramming
US18/146,644 Pending US20230282445A1 (en) 2008-05-02 2022-12-27 Method of nuclear reprogramming

Country Status (9)

Country Link
US (5) US20100279404A1 (es)
EP (1) EP2268809B1 (es)
JP (1) JP5346925B2 (es)
KR (1) KR101661940B1 (es)
CN (1) CN101855350B (es)
CA (1) CA2695522C (es)
ES (1) ES2722198T3 (es)
SG (1) SG10201400329YA (es)
WO (1) WO2009133971A1 (es)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304646A1 (en) * 2007-06-15 2009-12-10 Kazuhiro Sakurada Multipotent/Pluripotent Cells and Methods
US20100041054A1 (en) * 2008-08-12 2010-02-18 Amanda Mack Methods for the production of ips cells
US20100167404A1 (en) * 2005-08-03 2010-07-01 Advanced Cell Technology, Inc. Methods of Reprogramming Animal Somatic Cells
US20110039338A1 (en) * 2008-07-30 2011-02-17 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
US8058065B2 (en) 2005-12-13 2011-11-15 Kyoto University Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
WO2012158561A1 (en) 2011-05-13 2012-11-22 The United States Of America As Represented By The Secretary, Dept. Of Health And Human Services Use of zscan4 and zscan4-dependent genes for direct reprogramming of somatic cells
US20130295064A1 (en) * 2010-10-14 2013-11-07 University Of Central Florida Research Foundation, Inc. Cardiac induced pluripotent stem cells and methods of use in repair and regeneration of myocardium
US8716465B2 (en) 2010-04-16 2014-05-06 Children's Medical Center Corporation Kit for making induced pluripotent stem cells using modified RNAs
US20150004703A1 (en) * 2008-10-06 2015-01-01 One Boston Medical Center Place Single lentiviral vector system for induced pluripotent (ips) stem cells derivation
WO2015066488A2 (en) 2013-11-01 2015-05-07 New England Biolabs, Inc. Method for producing induced pluripotent stem cells
US20150337334A1 (en) * 2008-07-16 2015-11-26 Dnavec Corporation Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US9228204B2 (en) 2011-02-14 2016-01-05 University Of Utah Research Foundation Constructs for making induced pluripotent stem cells
US9328332B2 (en) 2008-06-04 2016-05-03 Cellular Dynamics International, Inc. Methods for the production of IPS cells using non-viral approach
US20160145642A1 (en) * 2013-07-12 2016-05-26 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells from normal human mammary epithelial cells
US9499786B2 (en) 2007-03-23 2016-11-22 Wisconsin Alumni Research Foundation Enriched population of human pluripotent cells with Oct-4 and Sox2 integrated into their genome
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
US10745671B2 (en) 2016-06-16 2020-08-18 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
US10865383B2 (en) 2011-07-12 2020-12-15 Lineage Cell Therapeutics, Inc. Methods and formulations for orthopedic cell therapy
US11572545B2 (en) 2016-06-16 2023-02-07 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
EP2626416A3 (en) 2007-04-07 2013-12-18 The Whitehead Institute for Biomedical Research Reprogramming of somatic cells
US9497943B2 (en) * 2008-06-13 2016-11-22 Whitehead Institute For Biomedical Research Nucleic acid constructs encoding reprogramming factors linked by self-cleaving peptides
AU2015202237B2 (en) * 2008-06-13 2017-09-28 Whitehead Institute For Biomedical Research Programming and reprogramming of cells
JP5557288B2 (ja) * 2008-09-12 2014-07-23 株式会社chromocenter 細胞のリプログラミングに用いられる複数遺伝子の発現制御システム
ES2959327T3 (es) * 2008-10-24 2024-02-23 Wisconsin Alumni Res Found Células madre pluripotentes obtenidas mediante reprogramación no vírica
CA2755870C (en) * 2009-03-20 2019-04-09 Angioblast Systems, Inc. Production of reprogrammed pluripotent cells
EP2545163A4 (en) * 2010-03-10 2013-11-06 Univ Kyoto METHOD FOR SELECTION OF INDUCED PLURIPOTENTAL STEM CELLS
JP5909482B2 (ja) * 2010-03-31 2016-04-26 ザ スクリプス リサーチ インスティテュート 細胞の再プログラム
US8048675B1 (en) 2010-05-12 2011-11-01 Ipierian, Inc. Integration-free human induced pluripotent stem cells from blood
EP2612911B1 (en) * 2010-08-30 2018-01-17 ID Pharma Co., Ltd. Composition for inducing pluripotent stem cell, and use thereof
WO2012074117A1 (ja) 2010-12-03 2012-06-07 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
WO2014186766A1 (en) * 2013-05-17 2014-11-20 The Broad Institute, Inc. Reprogrammed cells and methods of production and use thereof
JP6617231B2 (ja) * 2013-08-28 2019-12-11 国立大学法人岐阜大学 人工多能性幹細胞の作製方法
CN108601801A (zh) 2015-10-05 2018-09-28 欧瑞3恩公司 基于鉴别和改善肝功能障碍来诊断和治疗帕金森病
CN109689089A (zh) 2016-05-25 2019-04-26 国家医疗保健研究所 治疗癌症的方法和组合物
DK3644728T3 (da) * 2017-06-28 2022-10-31 Sci Group As Frysning af biologisk materiale
US11679148B2 (en) 2017-11-24 2023-06-20 Institut National De La Santé Et De La Recherche Médicale (Inserm) Methods and compositions for treating cancers
EP3833383A1 (en) 2018-08-06 2021-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers
EP4314246A1 (en) 2021-04-01 2024-02-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Liver organoid manufacturing methods, liver organoids obtained with the same, and uses thereof
CN113462638B (zh) * 2021-06-30 2022-10-25 呈诺再生医学科技(珠海横琴新区)有限公司 一种高效无遗传修饰的iPSC诱导、产业化单克隆挑取平台及应用
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650764A (en) * 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
US4861719A (en) * 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
US4937190A (en) * 1987-10-15 1990-06-26 Wisconsin Alumni Research Foundation Translation enhancer
US5225348A (en) * 1989-03-14 1993-07-06 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
US5266491A (en) * 1989-03-14 1993-11-30 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
US5268290A (en) * 1988-07-26 1993-12-07 Kyowa Hakko Kogyo Co., Ltd. Process for producing neuraminidase
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5324645A (en) * 1989-12-14 1994-06-28 Ajinomoto Co., Inc. Highly retrovirus-producing DNA construct and cell line
US5449614A (en) * 1988-09-01 1995-09-12 Whitehead Institue For Biomedical Research Recombinant retroviruses with amphotropic and ecotropic host ranges
US5519134A (en) * 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5525735A (en) * 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) * 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
US5591624A (en) * 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
US5637456A (en) * 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
US5652122A (en) * 1989-12-21 1997-07-29 Frankel; Alan Nucleic acids encoding and methods of making tat-derived transport polypeptides
US5707618A (en) * 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
US5744320A (en) * 1995-06-07 1998-04-28 Promega Corporation Quenching reagents and assays for enzyme-mediated luminescence
US5817491A (en) * 1990-09-21 1998-10-06 The Regents Of The University Of California VSV G pseusdotyped retroviral vectors
US5817492A (en) * 1994-09-19 1998-10-06 Sumitomo Pharmaceuticals Company, Ltd. Recombinant DNA viral vector for transfecting animal cells
US5830725A (en) * 1995-04-28 1998-11-03 The Board Of Trustees For The Leland Stanford Junior University Rapid, stable high-titre production of recombing retrovirus
US5834256A (en) * 1993-06-11 1998-11-10 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
US5910434A (en) * 1995-12-15 1999-06-08 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
US6013517A (en) * 1994-05-09 2000-01-11 Chiron Corporation Crossless retroviral vectors
US6017735A (en) * 1997-01-23 2000-01-25 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6025192A (en) * 1996-09-20 2000-02-15 Cold Spring Harbor Laboratory Modified retroviral vectors
US6140111A (en) * 1987-12-11 2000-10-31 Whitehead Institute For Biomedical Research Retroviral gene therapy vectors and therapeutic methods based thereon
US6146874A (en) * 1998-05-27 2000-11-14 University Of Florida Method of preparing recombinant adeno-associated virus compositions
US6153745A (en) * 1995-09-22 2000-11-28 Amersham Pharmacia Biotech Uk Limited Relating to mutagenesis of nucleic acids
US6153432A (en) * 1999-01-29 2000-11-28 Zen-Bio, Inc Methods for the differentiation of human preadipocytes into adipocytes
US6203975B1 (en) * 1994-10-28 2001-03-20 The Trustees Of The University Of Pennsylvania Adenovirus and method of use thereof
US6255071B1 (en) * 1996-09-20 2001-07-03 Cold Spring Harbor Laboratory Mammalian viral vectors and their uses
US6312948B1 (en) * 1993-06-30 2001-11-06 Odile Cohen-Haguenauer Retroviral vector for the transfer and expression of genes for therapeutic purposes in eukaryotic cells
US6312949B1 (en) * 1999-03-26 2001-11-06 The Salk Institute For Biological Studies Regulation of tyrosine hydroxylase expression
US6365352B1 (en) * 1997-08-22 2002-04-02 Yale University Process to study changes in gene expression in granulocytic cells
US6395546B1 (en) * 2000-02-01 2002-05-28 Neurogeneration, Inc. Generation of dopaminergic neurons from human nervous system stem cells
US20020090722A1 (en) * 2000-06-15 2002-07-11 Tanja Dominko Pluripotent mammalian cells
US20020123146A1 (en) * 1996-07-16 2002-09-05 Universite Pierre Et Marie Curie Highly productive packaging lines
US6451595B1 (en) * 1998-06-26 2002-09-17 Viromed Limited High efficiency retroviral vectors that contain none of viral coding sequences
US20020174013A1 (en) * 1998-04-17 2002-11-21 Viztec Inc., A Florida Corporation Chip card advertising method and system
US6485959B1 (en) * 1998-10-07 2002-11-26 Cedars Sinai Medical Center Cell preconditioning and cryopresevation medium
US20030003574A1 (en) * 2000-01-24 2003-01-02 Jean Toma Multipotent stem cells from peripheral tissues and uses thereof
US6521455B2 (en) * 1995-07-28 2003-02-18 Marie Curie Cancer Care Nucleic acid molecule encoding a transport protein
US6521453B1 (en) * 1999-01-19 2003-02-18 Maxygen, Inc. Oligonucloetide mediated nucleic acid recombination
US6605275B1 (en) * 1987-11-12 2003-08-12 Pharmastem Therapeutics, Inc. Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
US20030161817A1 (en) * 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20040048297A1 (en) * 2002-07-30 2004-03-11 Gene Logic, Inc. Nucleic acid detection assay control genes
US20040137460A1 (en) * 2001-05-31 2004-07-15 Shinya Yamanaka Genes with es cell-specific expression
US6773920B1 (en) * 1999-03-31 2004-08-10 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides
US6841535B2 (en) * 2000-07-31 2005-01-11 Active Motif Peptide-mediated transfection agents and methods of use
US20050019801A1 (en) * 2003-06-04 2005-01-27 Curis, Inc. Stem cell-based methods for identifying and characterizing agents
US20050026133A1 (en) * 2002-01-31 2005-02-03 Asahi Techno Glass Corporation Cryopreservation medium for primate embryo stem cells and cryopreservation method
US6875578B2 (en) * 1997-02-27 2005-04-05 Cellomics, Inc. System for cell-based screening
US20050079606A1 (en) * 2001-09-20 2005-04-14 Kyowa Hakko Kogyo Co., Ltd. Pluripotent stem cells originating in skeletal muscle intestinal tissue
US6881825B1 (en) * 1999-09-01 2005-04-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Identication of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, DNA and virues
US6910434B2 (en) * 2000-08-31 2005-06-28 Edwin Lundgren Control device for steering kite on a boat
US6995009B1 (en) * 1999-06-01 2006-02-07 Chugai Seiyaku Kabushiki Kaisha Packaging cell
US20060030041A1 (en) * 1999-08-05 2006-02-09 Regents Of The University Of Minnesota Multipotent adult stem cells and methods for isolation
US7029913B2 (en) * 1995-01-20 2006-04-18 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US7030292B2 (en) * 2001-01-02 2006-04-18 Stemron, Inc. Method for producing a population of homozygous stem cells having a pre-selected immunotype and/or genotype, cells suitable for transplant derived therefrom, and materials and methods using same
US20060084172A1 (en) * 2001-12-10 2006-04-20 Julius-Maximilians-Unversitat Wurzburg Method for producing stem cells with increased developmental potential
US20060088599A1 (en) * 2004-08-02 2006-04-27 Prasad Paras N Amino functionalized ORMOSIL nanoparticles as delivery vehicles
US20060095319A1 (en) * 2004-10-29 2006-05-04 Cardwell Carlzo B Marketing and compensation method
US7070994B2 (en) * 1988-03-21 2006-07-04 Oxford Biomedica (Uk) Ltd. Packaging cells
US20070033061A1 (en) * 2005-04-05 2007-02-08 Achaogen, Inc. Business methods for commercializing antimicrobial and cytotoxic compounds
US20070053884A1 (en) * 2003-05-16 2007-03-08 Kyowa Hakko Kogyo Co., Ltd Novel adult tissue-derived stem cell and use thereof
US20070202592A1 (en) * 2004-07-08 2007-08-30 Yasuo Kitagawa Pluripotent Cells Distributed Ubiquitously In Animal Tissue, Which Proliferate Selectively In Lower-Serum Culture
US20070254884A1 (en) * 2003-11-10 2007-11-01 Shuibing Chen Compositions and Methods for Inducing Cell Dedifferentiation
US20070269790A1 (en) * 2003-12-01 2007-11-22 Technion Research & Development Methods of Generating Stem Cells and Embryonic Bodies Carrying Disease-Causing Mutations and Methods of Using same for Studying Genetic Disorders
US20080085555A1 (en) * 2005-02-28 2008-04-10 Takayuki Asahara Method For In Vitro Amplification Of Adult Stem Cells
US20080132803A1 (en) * 2006-11-30 2008-06-05 Hyman Friedlander Method and system for doing business by mining the placental-chord complex
US20080171358A1 (en) * 2004-06-01 2008-07-17 Jacques Perrault Expression System
US20080171385A1 (en) * 2007-01-17 2008-07-17 Veit Bergendahl Culture of stem cells
US20080206865A1 (en) * 2001-10-03 2008-08-28 Su-Chun Zhang Method of in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
US7439064B2 (en) * 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US20090191171A1 (en) * 2008-01-18 2009-07-30 Yupo Ma Reprogramming of Differentiated Progenitor or Somatic Cells Using Homologous Recombination
US20100003757A1 (en) * 2008-06-04 2010-01-07 Amanda Mack Methods for the production of ips cells using non-viral approach
US20100021437A1 (en) * 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
US20100062534A1 (en) * 2008-09-09 2010-03-11 The General Hospital Corporation Inducible lentiviral vectors for reprogramming somatic cells
US20100075421A1 (en) * 2007-12-10 2010-03-25 Kyoto University Efficient method for nuclear reprogramming
US20100093090A1 (en) * 2008-04-03 2010-04-15 Peking University Method and kit for efficient reprogramming of somatic cells
US20100105100A1 (en) * 2007-06-15 2010-04-29 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20100144031A1 (en) * 2003-11-26 2010-06-10 Rudolf Jaenisch Methods for reprogramming somatic cells
US20100184051A1 (en) * 2007-05-30 2010-07-22 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
US20100184227A1 (en) * 2008-10-24 2010-07-22 James Thomson Pluripotent stem cells obtained by non-viral reprogramming
US20100233804A1 (en) * 2008-03-17 2010-09-16 The Scripps Research Institute Generation of pluripotent stem cells using recombinant proteins

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928287B2 (ja) 1988-09-29 1999-08-03 協和醗酵工業株式会社 新規ポリペプチド
US5534423A (en) 1993-10-08 1996-07-09 Regents Of The University Of Michigan Methods of increasing rates of infection by directing motion of vectors
EA003636B1 (ru) * 1997-04-16 2003-08-28 Амген Инк. Остеопротегеринсвязующие белки и рецепторы
US6835567B1 (en) 1998-04-14 2004-12-28 Signal Pharmaceuticals, Inc. PNS cell lines and methods of use therefor
GB9809178D0 (en) 1998-04-29 1998-07-01 Univ Edinburgh Nuclear reprogramming of somatic cells
FR2779445B1 (fr) 1998-06-08 2000-08-11 Univ Nantes Kit d'encapsidation
IL142094A0 (en) 1998-09-29 2002-03-10 Gamida Cell Ltd Methods of controlling proliferation and differentiation of stem and progenitor cells
CA2346152A1 (en) 1998-10-16 2000-04-27 Novartis Ag Promotion of self-renewal and improved gene transduction of hematopoietic stem cells by histone deacetylase inhibitors
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
CA2349415A1 (en) * 1998-11-09 2000-05-18 Monash University Embryonic stem cells
AU7611500A (en) 1999-09-24 2001-04-24 Abt Holding Company Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
GB2379447B (en) 2000-05-17 2004-12-29 Geron Corp Neural progenitor cell populations
DE10031179A1 (de) 2000-06-27 2002-01-31 Amaxa Gmbh Verfahren zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
JP2002065261A (ja) 2000-08-30 2002-03-05 Mitsubishi Kasei Institute Of Life Sciences 生殖細胞の取得方法
CA2430653A1 (en) 2000-11-27 2002-08-08 Yissum Research Development Company Of The Hebrew University In Jerusalem Transfection of human embryonic stem cells
US20080268054A1 (en) 2000-12-04 2008-10-30 Eugene Bell Dermal derived human stem cells and compositions and methods thereof
JP2003009854A (ja) 2001-04-09 2003-01-14 Kyowa Hakko Kogyo Co Ltd エンブリオイドボディ形成方法及びその用途
MXPA03009622A (es) 2001-04-23 2005-03-07 Amaxa Gmbh Solucion amortiguadora para electroporacion y metodo que comprende el uso de la misma.
DE10119901A1 (de) 2001-04-23 2002-10-24 Amaxa Gmbh Schaltungsanordnung zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
WO2003018780A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
JP2004248505A (ja) 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
WO2003027277A1 (fr) 2001-09-21 2003-04-03 Japan Science And Technology Corporation Procede de criblage de facteur de reprogrammation, facteur de reprogrammation crible au moyen de ce procede, procede d'utilisation du facteur de reprogrammation, procede de differenciation de cellules fusionnees non differenciees et procede de construction de cellules, de tissus et d'organes
EP1495447A1 (en) 2002-03-26 2005-01-12 KIM, So-Woon System and method for 3-dimension simulation of glasses
US7422736B2 (en) 2002-07-26 2008-09-09 Food Industry Research And Development Institute Somatic pluripotent cells
JP3736517B2 (ja) 2002-11-13 2006-01-18 学校法人近畿大学 体細胞核初期化因子
AU2003901099A0 (en) 2003-03-11 2003-03-27 Es Cell International Pte Ltd. Methods of inducing differentiation of stem cells
WO2004099372A2 (en) * 2003-05-01 2004-11-18 University Of Florida Anti-scarring ribozymes and methods
US9567591B2 (en) 2003-05-15 2017-02-14 Mello Biotechnology, Inc. Generation of human embryonic stem-like cells using intronic RNA
CA2526120A1 (en) * 2003-06-03 2005-02-24 Cell Genesys, Inc. Compositions and methods for enhanced expression of recombinant polypeptides from a single vector using a peptide cleavage site
WO2005033297A1 (en) 2003-09-19 2005-04-14 The Rockefeller University Compositions, methods and kits relating to reprogramming adult differentiated cells and production of embryonic stem cell-like cells
JP2005095027A (ja) 2003-09-22 2005-04-14 Reprocell Inc 細胞の未分化状態マーカープロモーターおよびその利用
JPWO2005035741A1 (ja) 2003-10-09 2006-12-21 協和醗酵工業株式会社 ゲノムが改変された細胞
JP4340736B2 (ja) * 2004-01-15 2009-10-07 国立大学法人福井大学 レポーター遺伝子を組み込んだベクター
WO2005080598A1 (ja) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2005090557A1 (ja) * 2004-03-23 2005-09-29 Daiichi Asubio Pharma Co., Ltd. 多能性幹細胞の増殖方法
WO2006084229A2 (en) 2004-07-15 2006-08-10 Primegen Biotech, Llc Use of nuclear material to therapeutically reprogram differentiated cells
US7803920B2 (en) 2004-09-29 2010-09-28 Shinya Yamanaka ECAT16 gene expressed specifically in ES cells and utilization of the same
WO2006083331A2 (en) 2004-10-08 2006-08-10 Intronn, Inc Use of rna trans-splicing for antibody gene transfer and antibody polypeptide production
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
WO2007026255A2 (en) 2005-06-22 2007-03-08 Universitetet I Oslo Dedifferentiated cells and methods of making and using dedifferentiated cells
FR2888636B1 (fr) * 2005-07-13 2007-09-28 Airbus France Sas Dispositif d'aide a une approche avec guidage vertical pour aeronef
MX2008000985A (es) * 2005-07-21 2008-04-07 Abbott Lab Expresion de gen multiple que incluye construcciones y metodos sorf (cuadro de lectura abierta simple) con poliproteinas, pro-proteinas y proteolisis.
EP1984487B1 (en) 2005-08-03 2022-10-12 Astellas Institute for Regenerative Medicine Improved methods of reprogramming animal somatic cells
TW200730623A (en) 2005-11-11 2007-08-16 Univ Edinburgh Reprogramming and genetic modification of cells
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
AU2006325975B2 (en) 2005-12-13 2011-12-08 Kyoto University Nuclear reprogramming factor
JP2009528050A (ja) 2006-02-27 2009-08-06 イムジェン カンパニー リミテッド Bmi−1を用いた星状細胞の神経幹細胞への脱分化
WO2008038148A2 (en) 2006-05-11 2008-04-03 Andrew Craig Boquest Stem cells and methods of making and using stem cells
US20090028835A1 (en) 2006-09-08 2009-01-29 Michigan State University Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008105566A1 (en) 2007-02-27 2008-09-04 Korea Stem Cell Bank System for providing stem cell services using internet and method thereof
EP2132225A4 (en) 2007-02-27 2010-06-09 Procell Therapeutics Inc COMBINED USE OF NANOG AND OCT4 PERMEABLE TO CELLS TO INCREASE SELF-RENEWAL AND DELETE DIFFERENTIATION OF STEM CELLS
KR101516833B1 (ko) * 2007-03-23 2015-05-07 위스콘신 얼럼나이 리서어치 화운데이션 체세포 재프로그래밍
EP2626416A3 (en) 2007-04-07 2013-12-18 The Whitehead Institute for Biomedical Research Reprogramming of somatic cells
EP3128015A3 (en) 2007-05-29 2017-05-03 Christopher B. Reid A method for providing a desired cell population capable of further differentiation in vivo
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
WO2009032456A2 (en) 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
EP2190976A4 (en) 2007-08-10 2010-10-20 Univ Dayton METHOD FOR PRODUCING PLURIPOTENTAL STEM CELL LENGTH CELLS
EP3078738B1 (en) 2007-08-31 2020-05-20 Whitehead Institute for Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
US9005966B2 (en) 2007-11-19 2015-04-14 The Regents Of The University Of California Generation of pluripotent cells from fibroblasts
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
KR101481164B1 (ko) 2008-01-30 2015-01-09 주식회사 미래셀바이오 체세포 유래 다능성 줄기세포의 제조 방법
US20110014164A1 (en) 2008-02-15 2011-01-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
EP2268796A1 (en) 2008-03-17 2011-01-05 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Vectors and methods for generating vector-free induced pluripotent stem (ips) cells using site-specific recombination
CN101250502A (zh) 2008-04-01 2008-08-27 中国科学院上海生命科学研究院 一种诱导的多潜能干细胞的制备方法
KR101661940B1 (ko) 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 핵 초기화 방법
EP2128245A1 (en) 2008-05-27 2009-12-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Generation of induced pluripotent stem (iPS) cells
AU2008360135A1 (en) 2008-07-31 2010-02-04 Gifu University Efficient method for establishing induced pluripotent stem cells
US8298825B1 (en) * 2008-08-25 2012-10-30 The General Hospital Corporation TGF-beta receptor inhibitors to enhance direct reprogramming

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650764A (en) * 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
US4861719A (en) * 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
US4937190A (en) * 1987-10-15 1990-06-26 Wisconsin Alumni Research Foundation Translation enhancer
US6605275B1 (en) * 1987-11-12 2003-08-12 Pharmastem Therapeutics, Inc. Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
US6140111A (en) * 1987-12-11 2000-10-31 Whitehead Institute For Biomedical Research Retroviral gene therapy vectors and therapeutic methods based thereon
US5591624A (en) * 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
US7070994B2 (en) * 1988-03-21 2006-07-04 Oxford Biomedica (Uk) Ltd. Packaging cells
US5716832A (en) * 1988-03-21 1998-02-10 Chiron Viagene, Inc. Packaging cells
US5268290A (en) * 1988-07-26 1993-12-07 Kyowa Hakko Kogyo Co., Ltd. Process for producing neuraminidase
US5449614A (en) * 1988-09-01 1995-09-12 Whitehead Institue For Biomedical Research Recombinant retroviruses with amphotropic and ecotropic host ranges
US5955331A (en) * 1988-09-01 1999-09-21 Whitehead Institute For Biomedical Research Recombinant retroviruses with amphotropic and ecotropic host ranges
US5225348A (en) * 1989-03-14 1993-07-06 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
US5266491A (en) * 1989-03-14 1993-11-30 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
US5324645A (en) * 1989-12-14 1994-06-28 Ajinomoto Co., Inc. Highly retrovirus-producing DNA construct and cell line
US5652122A (en) * 1989-12-21 1997-07-29 Frankel; Alan Nucleic acids encoding and methods of making tat-derived transport polypeptides
US5674980A (en) * 1989-12-21 1997-10-07 Biogen Inc Fusion protein comprising tat-derived transport moiety
US5817491A (en) * 1990-09-21 1998-10-06 The Regents Of The University Of California VSV G pseusdotyped retroviral vectors
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5834256A (en) * 1993-06-11 1998-11-10 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
US5858740A (en) * 1993-06-11 1999-01-12 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
US6312948B1 (en) * 1993-06-30 2001-11-06 Odile Cohen-Haguenauer Retroviral vector for the transfer and expression of genes for therapeutic purposes in eukaryotic cells
US5519134A (en) * 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US6333195B1 (en) * 1994-05-09 2001-12-25 Chiron Corporation Crossless retroviral vectors
US6013517A (en) * 1994-05-09 2000-01-11 Chiron Corporation Crossless retroviral vectors
US5525735A (en) * 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) * 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
US5817492A (en) * 1994-09-19 1998-10-06 Sumitomo Pharmaceuticals Company, Ltd. Recombinant DNA viral vector for transfecting animal cells
US6203975B1 (en) * 1994-10-28 2001-03-20 The Trustees Of The University Of Pennsylvania Adenovirus and method of use thereof
US7029913B2 (en) * 1995-01-20 2006-04-18 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5637456A (en) * 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
US5707618A (en) * 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
US5830725A (en) * 1995-04-28 1998-11-03 The Board Of Trustees For The Leland Stanford Junior University Rapid, stable high-titre production of recombing retrovirus
US5744320A (en) * 1995-06-07 1998-04-28 Promega Corporation Quenching reagents and assays for enzyme-mediated luminescence
US6521455B2 (en) * 1995-07-28 2003-02-18 Marie Curie Cancer Care Nucleic acid molecule encoding a transport protein
US6153745A (en) * 1995-09-22 2000-11-28 Amersham Pharmacia Biotech Uk Limited Relating to mutagenesis of nucleic acids
US5910434A (en) * 1995-12-15 1999-06-08 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
US6017761A (en) * 1995-12-15 2000-01-25 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
US6872528B2 (en) * 1996-07-16 2005-03-29 Universite Pierre Et Marie Curie Highly productive packaging lines
US20020123146A1 (en) * 1996-07-16 2002-09-05 Universite Pierre Et Marie Curie Highly productive packaging lines
US6025192A (en) * 1996-09-20 2000-02-15 Cold Spring Harbor Laboratory Modified retroviral vectors
US6255071B1 (en) * 1996-09-20 2001-07-03 Cold Spring Harbor Laboratory Mammalian viral vectors and their uses
US6251398B1 (en) * 1997-01-23 2001-06-26 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6017735A (en) * 1997-01-23 2000-01-25 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6875578B2 (en) * 1997-02-27 2005-04-05 Cellomics, Inc. System for cell-based screening
US6365352B1 (en) * 1997-08-22 2002-04-02 Yale University Process to study changes in gene expression in granulocytic cells
US20020174013A1 (en) * 1998-04-17 2002-11-21 Viztec Inc., A Florida Corporation Chip card advertising method and system
US6146874A (en) * 1998-05-27 2000-11-14 University Of Florida Method of preparing recombinant adeno-associated virus compositions
US6451595B1 (en) * 1998-06-26 2002-09-17 Viromed Limited High efficiency retroviral vectors that contain none of viral coding sequences
US6485959B1 (en) * 1998-10-07 2002-11-26 Cedars Sinai Medical Center Cell preconditioning and cryopresevation medium
US6521453B1 (en) * 1999-01-19 2003-02-18 Maxygen, Inc. Oligonucloetide mediated nucleic acid recombination
US6153432A (en) * 1999-01-29 2000-11-28 Zen-Bio, Inc Methods for the differentiation of human preadipocytes into adipocytes
US6312949B1 (en) * 1999-03-26 2001-11-06 The Salk Institute For Biological Studies Regulation of tyrosine hydroxylase expression
US6773920B1 (en) * 1999-03-31 2004-08-10 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides
US6995009B1 (en) * 1999-06-01 2006-02-07 Chugai Seiyaku Kabushiki Kaisha Packaging cell
US20060030041A1 (en) * 1999-08-05 2006-02-09 Regents Of The University Of Minnesota Multipotent adult stem cells and methods for isolation
US6881825B1 (en) * 1999-09-01 2005-04-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Identication of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, DNA and virues
US20030003574A1 (en) * 2000-01-24 2003-01-02 Jean Toma Multipotent stem cells from peripheral tissues and uses thereof
US6395546B1 (en) * 2000-02-01 2002-05-28 Neurogeneration, Inc. Generation of dopaminergic neurons from human nervous system stem cells
US7439064B2 (en) * 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US20020090722A1 (en) * 2000-06-15 2002-07-11 Tanja Dominko Pluripotent mammalian cells
US6841535B2 (en) * 2000-07-31 2005-01-11 Active Motif Peptide-mediated transfection agents and methods of use
US6910434B2 (en) * 2000-08-31 2005-06-28 Edwin Lundgren Control device for steering kite on a boat
US7030292B2 (en) * 2001-01-02 2006-04-18 Stemron, Inc. Method for producing a population of homozygous stem cells having a pre-selected immunotype and/or genotype, cells suitable for transplant derived therefrom, and materials and methods using same
US20030161817A1 (en) * 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20040137460A1 (en) * 2001-05-31 2004-07-15 Shinya Yamanaka Genes with es cell-specific expression
US20050079606A1 (en) * 2001-09-20 2005-04-14 Kyowa Hakko Kogyo Co., Ltd. Pluripotent stem cells originating in skeletal muscle intestinal tissue
US20080206865A1 (en) * 2001-10-03 2008-08-28 Su-Chun Zhang Method of in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
US20060084172A1 (en) * 2001-12-10 2006-04-20 Julius-Maximilians-Unversitat Wurzburg Method for producing stem cells with increased developmental potential
US20050026133A1 (en) * 2002-01-31 2005-02-03 Asahi Techno Glass Corporation Cryopreservation medium for primate embryo stem cells and cryopreservation method
US20040048297A1 (en) * 2002-07-30 2004-03-11 Gene Logic, Inc. Nucleic acid detection assay control genes
US20070053884A1 (en) * 2003-05-16 2007-03-08 Kyowa Hakko Kogyo Co., Ltd Novel adult tissue-derived stem cell and use thereof
US20050019801A1 (en) * 2003-06-04 2005-01-27 Curis, Inc. Stem cell-based methods for identifying and characterizing agents
US20070254884A1 (en) * 2003-11-10 2007-11-01 Shuibing Chen Compositions and Methods for Inducing Cell Dedifferentiation
US20100144031A1 (en) * 2003-11-26 2010-06-10 Rudolf Jaenisch Methods for reprogramming somatic cells
US20100221827A1 (en) * 2003-11-26 2010-09-02 Rudolf Jaenisch Methods for reprogramming somatic cells
US20070269790A1 (en) * 2003-12-01 2007-11-22 Technion Research & Development Methods of Generating Stem Cells and Embryonic Bodies Carrying Disease-Causing Mutations and Methods of Using same for Studying Genetic Disorders
US20080171358A1 (en) * 2004-06-01 2008-07-17 Jacques Perrault Expression System
US20070202592A1 (en) * 2004-07-08 2007-08-30 Yasuo Kitagawa Pluripotent Cells Distributed Ubiquitously In Animal Tissue, Which Proliferate Selectively In Lower-Serum Culture
US20060088599A1 (en) * 2004-08-02 2006-04-27 Prasad Paras N Amino functionalized ORMOSIL nanoparticles as delivery vehicles
US20060095319A1 (en) * 2004-10-29 2006-05-04 Cardwell Carlzo B Marketing and compensation method
US20080085555A1 (en) * 2005-02-28 2008-04-10 Takayuki Asahara Method For In Vitro Amplification Of Adult Stem Cells
US20070033061A1 (en) * 2005-04-05 2007-02-08 Achaogen, Inc. Business methods for commercializing antimicrobial and cytotoxic compounds
US20080132803A1 (en) * 2006-11-30 2008-06-05 Hyman Friedlander Method and system for doing business by mining the placental-chord complex
US20080171385A1 (en) * 2007-01-17 2008-07-17 Veit Bergendahl Culture of stem cells
US20100184051A1 (en) * 2007-05-30 2010-07-22 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
US20110039332A1 (en) * 2007-06-15 2011-02-17 Kazuhiro Sakurada Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US20100105100A1 (en) * 2007-06-15 2010-04-29 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20100120069A1 (en) * 2007-06-15 2010-05-13 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20100267135A1 (en) * 2007-06-15 2010-10-21 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20100240090A1 (en) * 2007-06-15 2010-09-23 Izumi Bio, Inc. Methods and platforms for drug discovery
US20100075421A1 (en) * 2007-12-10 2010-03-25 Kyoto University Efficient method for nuclear reprogramming
US20090191171A1 (en) * 2008-01-18 2009-07-30 Yupo Ma Reprogramming of Differentiated Progenitor or Somatic Cells Using Homologous Recombination
US20100233804A1 (en) * 2008-03-17 2010-09-16 The Scripps Research Institute Generation of pluripotent stem cells using recombinant proteins
US20100093090A1 (en) * 2008-04-03 2010-04-15 Peking University Method and kit for efficient reprogramming of somatic cells
US20100021437A1 (en) * 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
US20100003757A1 (en) * 2008-06-04 2010-01-07 Amanda Mack Methods for the production of ips cells using non-viral approach
US20100062534A1 (en) * 2008-09-09 2010-03-11 The General Hospital Corporation Inducible lentiviral vectors for reprogramming somatic cells
US20100184227A1 (en) * 2008-10-24 2010-07-22 James Thomson Pluripotent stem cells obtained by non-viral reprogramming

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Garry A. Luke, 2012, Translating 2A Research into Practice, Innovations in Biotechnology, Dr. Eddy C. Agbo (Ed.), ISBN: 978-953-51-0096-6, InTech, Available from: http://www.intechopen.com/books/innovations-in-biotechnology/translating-2a-research-into-practice *
Niwa et al., 2002, Molecular and Cellular Biology, 22: 1526-1536 *
Rybkin et al., 2003, Journal of Biological Chemistry, 278: 15927-15934 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501723B2 (en) 2005-08-03 2019-12-10 Astellas Institute For Regenerative Medicine Methods of reprogramming animal somatic cells
US20100167404A1 (en) * 2005-08-03 2010-07-01 Advanced Cell Technology, Inc. Methods of Reprogramming Animal Somatic Cells
US20110143441A1 (en) * 2005-08-03 2011-06-16 West Michael D Methods of Reprogramming Animal Somatic Cells
US8058065B2 (en) 2005-12-13 2011-11-15 Kyoto University Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
US11898162B2 (en) 2007-03-23 2024-02-13 Wisconsin Alumni Research Foundation Reprogramming somatic cells into pluripotent cells using a vector encoding Oct4 and Sox2
US9499786B2 (en) 2007-03-23 2016-11-22 Wisconsin Alumni Research Foundation Enriched population of human pluripotent cells with Oct-4 and Sox2 integrated into their genome
US10106772B2 (en) 2007-03-23 2018-10-23 Wisconsin Alumni Research Foundation Somatic cell reprogramming
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US8211697B2 (en) 2007-06-15 2012-07-03 Kyoto University Induced pluripotent stem cells produced using reprogramming factors and a rho kinase inhibitor or a histone deacetylase inhibitor
US8257941B2 (en) 2007-06-15 2012-09-04 Kyoto University Methods and platforms for drug discovery using induced pluripotent stem cells
US20100105100A1 (en) * 2007-06-15 2010-04-29 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20090304646A1 (en) * 2007-06-15 2009-12-10 Kazuhiro Sakurada Multipotent/Pluripotent Cells and Methods
US9714433B2 (en) 2007-06-15 2017-07-25 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
US9644184B2 (en) 2008-06-04 2017-05-09 Cellular Dynamics International, Inc. Methods for the production of IPS cells using Epstein-Barr (EBV)-based reprogramming vectors
US9328332B2 (en) 2008-06-04 2016-05-03 Cellular Dynamics International, Inc. Methods for the production of IPS cells using non-viral approach
US20150337334A1 (en) * 2008-07-16 2015-11-26 Dnavec Corporation Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US9695445B2 (en) * 2008-07-16 2017-07-04 Id Pharma Co., Ltd. Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US11136594B2 (en) 2008-07-16 2021-10-05 Id Pharma Co., Ltd. Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US20110039338A1 (en) * 2008-07-30 2011-02-17 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US9528092B2 (en) 2008-07-30 2016-12-27 Kyoto University Methods of efficiently establishing induced pluripotent stem cells under hypoxic conditions
US9175268B2 (en) 2008-08-12 2015-11-03 Cellular Dynamics International, Inc. Methods for the production of iPS cells
US20100041054A1 (en) * 2008-08-12 2010-02-18 Amanda Mack Methods for the production of ips cells
US20150004703A1 (en) * 2008-10-06 2015-01-01 One Boston Medical Center Place Single lentiviral vector system for induced pluripotent (ips) stem cells derivation
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
US11186829B2 (en) 2010-04-16 2021-11-30 Children's Medical Center Corporation Isolated mammalian somatic cells containing modified RNA encoding OCT4, SOX2, and KLF4
US8716465B2 (en) 2010-04-16 2014-05-06 Children's Medical Center Corporation Kit for making induced pluripotent stem cells using modified RNAs
US9803177B2 (en) 2010-04-16 2017-10-31 Children's Medical Center Corporation Induced pluripotent stem cells with synthetic modified RNAs
US8802438B2 (en) 2010-04-16 2014-08-12 Children's Medical Center Corporation Compositions, kits, and methods for making induced pluripotent stem cells using synthetic modified RNAs
US10344265B2 (en) 2010-04-16 2019-07-09 Children's Medical Center Corporation Sustained polypeptide expression from synthetic, modified RNAs and uses thereof
US8883506B2 (en) 2010-04-16 2014-11-11 Children's Medical Center Corporation Kits comprising linear DNAs for sustained polypeptide expression using synthetic, modified RNAs
US20130295064A1 (en) * 2010-10-14 2013-11-07 University Of Central Florida Research Foundation, Inc. Cardiac induced pluripotent stem cells and methods of use in repair and regeneration of myocardium
US9228204B2 (en) 2011-02-14 2016-01-05 University Of Utah Research Foundation Constructs for making induced pluripotent stem cells
WO2012158561A1 (en) 2011-05-13 2012-11-22 The United States Of America As Represented By The Secretary, Dept. Of Health And Human Services Use of zscan4 and zscan4-dependent genes for direct reprogramming of somatic cells
US10865383B2 (en) 2011-07-12 2020-12-15 Lineage Cell Therapeutics, Inc. Methods and formulations for orthopedic cell therapy
US10738323B2 (en) * 2013-07-12 2020-08-11 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells from normal human mammary epithelial cells
US20160145642A1 (en) * 2013-07-12 2016-05-26 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells from normal human mammary epithelial cells
WO2015066488A2 (en) 2013-11-01 2015-05-07 New England Biolabs, Inc. Method for producing induced pluripotent stem cells
US10745671B2 (en) 2016-06-16 2020-08-18 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
US11572545B2 (en) 2016-06-16 2023-02-07 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
US11970714B2 (en) 2016-06-16 2024-04-30 Cedars-Sinai Medical Center Method for reprogramming blood to induced pluripotent stem cells

Also Published As

Publication number Publication date
US20200172875A1 (en) 2020-06-04
US20150072417A1 (en) 2015-03-12
US20230282445A1 (en) 2023-09-07
JP5346925B2 (ja) 2013-11-20
EP2268809A4 (en) 2013-02-27
WO2009133971A1 (en) 2009-11-05
KR20110015500A (ko) 2011-02-16
SG10201400329YA (en) 2014-05-29
EP2268809B1 (en) 2019-02-06
CA2695522A1 (en) 2009-11-05
JP2011519546A (ja) 2011-07-14
EP2268809A1 (en) 2011-01-05
CA2695522C (en) 2019-01-15
US20130065311A1 (en) 2013-03-14
ES2722198T3 (es) 2019-08-08
CN101855350A (zh) 2010-10-06
CN101855350B (zh) 2014-12-31
US9499797B2 (en) 2016-11-22
KR101661940B1 (ko) 2016-10-04

Similar Documents

Publication Publication Date Title
US20230282445A1 (en) Method of nuclear reprogramming
EP2307539B1 (en) Method of efficiently establishing induced pluripotent stem cells
JP5827220B2 (ja) 人工多能性幹細胞の樹立効率改善方法
JP5098028B2 (ja) 核初期化因子
KR101857302B1 (ko) 유도된 다능성 줄기 세포의 효율적 확립 방법
CA2874259C (en) Highly efficient method for establishing induced pluripotent stem cell
JP5626619B2 (ja) 効率的な核初期化方法
US20170037376A1 (en) Method for preparing induced pluripotent stem cell, composition used in method, and uses thereof
US9637732B2 (en) Method of efficiently establishing induced pluripotent stem cells
US20130065814A1 (en) Inductive production of pluripotent stem cells using synthetic transcription factors
JP2013505701A (ja) 効率的な人工多能性幹細胞の樹立方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOTO UNIVERSITY, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMANAKA, SHINYA;OKITA, KEISUKE;REEL/FRAME:024093/0127

Effective date: 20100218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION