US20100047550A1 - Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes - Google Patents

Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes Download PDF

Info

Publication number
US20100047550A1
US20100047550A1 US12/521,875 US52187508A US2010047550A1 US 20100047550 A1 US20100047550 A1 US 20100047550A1 US 52187508 A US52187508 A US 52187508A US 2010047550 A1 US2010047550 A1 US 2010047550A1
Authority
US
United States
Prior art keywords
hybrid material
particles
material according
polyurethane
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/521,875
Other languages
English (en)
Inventor
Frank Prissok
Markus Schuette
Frank Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39358039&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100047550(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAUN, FRANK, SCHUETTE, MARKUS, PRISSOK, FRANK
Publication of US20100047550A1 publication Critical patent/US20100047550A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/0009Producing footwear by injection moulding; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7692Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing at least one isocyanate or isothiocyanate group linked to an aromatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0033Foam properties having integral skins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249972Resin or rubber element

Definitions

  • the present invention relates to a hybrid material comprising a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein and also a process for producing such hybrid materials and the use of these hybrid materials as floor covering, bicycle saddles, upholstery and shoe soles.
  • Polyurethanes are nowadays used in many applications because of their broad property profile. Polyurethanes can be used both in compact form and in foamed form, with a very wide density range from compact with a density of greater than 1.00 g/cm 3 up to about 0.01 g/cm 3 for foamed bodies being possible. Polyurethanes can, for example, be present in the form of thermosets, elastomers, thermoplastic elastomers (TPUs), microcellular elastomers, integral foams, flexible foams, rigid foams or semirigid foams. Further details on this subject may be found in “Kunststoffhandbuch, Volume 7, Polyurethane”, Carl Hanser Verlag, 3rd Edition 1993, Chapters 5 to 8 and 10-12.
  • DE 2007248 describes foaming of crosslinked polystyrene particles together with a polyurethane reaction mixture.
  • DE 2122482 describes foaming of thermoplastic polymers, e.g. vinyl polymers, polyethylene, polypropylene, polyesters, polyethers and methacrylates, comprising blowing agent in polyurethane foams which are preferably polyether-based and predominantly open-celled. These materials are used mainly as upholstery materials.
  • Such known materials are poor adhesion between polyurethane matrix and foamed particles and thus a restricted utility.
  • Such composites are, for example, not suitable for applications in which the composite has to react elastically to recurring stresses.
  • a further disadvantage of known hybrid materials is that recycling of material which is not all of the same type is possible to only a limited extent.
  • the use of materials having a high glass transition temperature, for example polystyrene, as foamed particles comprised in the matrix material leads to the elasticity of the hybrid material being low below this glass transition temperature.
  • WO 2006/015440 discloses hybrid materials comprising a polyurethane matrix and foamed polyurethane particles, for example recycled material, comprised therein. Disadvantages of such composites comprising polyurethane and recycled polyurethane foam is only poor adhesion between the foamed recycled particles and the matrix material. Furthermore, the mechanical properties of such a material are capable of improvement.
  • a further object of the invention is to provide a hybrid material which has very good mechanical properties, e.g. improved elasticity and a higher ultimate tensile strength, compared to an analogous material having the same overall density.
  • a hybrid material according to claim 1 which comprises a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein.
  • the matrix can completely or partly surround the foamed particles.
  • hybrid materials Materials in which a foam is enclosed by a matrix material will be referred to as hybrid materials for the purposes of the present invention.
  • the matrix material can be a compact material or likewise be a foam.
  • polyurethane comprises all known elastic polyisocyanate polyaddition products. These comprise, in particular, massive polyisocyanate polyaddition products, e.g. viscoelastic gels or thermoplastic polyurethanes, and elastic foams based on polyisocyanate polyaddition products, e.g. flexible foams, semirigid foams or integral foams. Furthermore, for the purposes of the invention, elastic polymer blends comprising polyurethanes and further polymers and also foams composed of these polymer blends are encompassed by the term polyurethanes.
  • the matrix is preferably a cured, compact polyurethane binder, an elastic polyurethane foam or a viscoelastic gel.
  • a polyurethane binder is a mixture comprising at least 50% by weight, preferably at least 80% by weight and in particular at least 95% by weight, of a prepolymer having isocyanate groups, hereinafter referred to as isocyanate prepolymer.
  • the viscosity of the polyurethane binder according to the invention is preferably in the range from 500 to 4000 mPa ⁇ s, particularly preferably from 1000 to 3000 mPa ⁇ s, measured at 25° C. in accordance with DIN 53 018.
  • polyurethane foams are foams in accordance with DIN 7726.
  • Flexible polyurethane foams according to the invention have a compressive stress as 10% deformation or compressive strength in accordance with DIN 53 421/DIN EN ISO 604 of 15 kPa and less, preferably from 1 to 14 kPa and in particular from 4 to 14 kPa.
  • Semirigid polyurethane foams according to the invention have a compressive stress at 10% deformation in accordance with DIN 53 421/DIN EN ISO 604 of from >15 to ⁇ 80 kPa.
  • Semirigid polyurethane foams and flexible polyurethane foams according to the invention preferably have a proportion of open cells in accordance with DIN ISO 4590 of greater than 85%, particularly preferably greater than 90%. Further details regarding flexible polyurethane foams and semirigid polyurethane foams according to the invention may be found in “Kunststoffhandbuch, Volume 7, Polyurethane”, Carl Hanser Verlag, 3rd Edition 1993, Chapter 5.
  • elastomeric polyurethane foams are polyurethane foams in accordance with DIN 7726 which after brief deformation by 50% of the thickness in accordance with DIN 53 577 have no remaining deformation above 2% of the initial thickness after 10 minutes.
  • the foam can be a semirigid polyurethane foam or a flexible polyurethane foam.
  • Integral polyurethane foams are polyurethane foams in accordance with DIN 7726 having a surface zone which, due to the shaping process, has a higher density than the core.
  • the overall foam density averaged over the core and the surface zone is preferably above 0.1 g/cm 3 .
  • Integral polyurethane foams can also be semirigid polyurethane foams or flexible polyurethane foams for the purposes of the invention. Further details regarding integral polyurethane foams according to the invention may be found in “Kunststoffhandbuch, Volume 7, Polyurethane”, Carl Hanser Verlag, 3rd Edition 1993, Chapter 7.
  • the density of the matrix materials is preferably from 1.2 to 0.01 g/cm 3 .
  • the matrix material is particularly preferably an elastic foam or an integral foam having a density of from 0.8 to 0.1 g/cm 3 , in particular from 0.6 to 0.3 g/cm 3 , or compact material, for example a cured polyurethane binder.
  • the foamed particles comprise a foamed thermoplastic polyurethane material. These foamed particles preferably have a diameter of from 0.1 mm to 10 cm, preferably from 0.5 mm to 5 cm and particularly preferably from 1 mm to 2 cm, and are preferably spherical or ellipsoidal. In the case of nonspherical, for example ellipsoidal, particles, the diameter is taken to be the longest axis.
  • the foamed particles have a density of preferably from 0.005 to 0.50 g/cm 3 , particularly preferably from 0.01 to 0.3 g/cm 3 and in particular from 0.02 to 0.2 g/cm 3 .
  • the foamed particles preferably have a compact outer skin.
  • reference to a compact skin means that the foam cells in the outer region of the foamed particles are smaller than those in the interior. Particular preference is given to the outer region of the foamed particles having no pores.
  • the foamed particles are preferably based on a thermoplastic polyurethane produced using polytetrahydrofuran.
  • the molecular weight of the polytetrahydrofuran used is preferably from 600 to 2500 g/mol.
  • a polyester polyalcohol having a molecular weight of from 500 to 2500 g/mol, preferably from 600 to 900 g/mol, is used for producing the foamed particles.
  • a hybrid material comprising a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein is preferably produced by mixing (a) polyisocyanates with (b) compounds having hydrogen atoms which are reactive toward isocyanates, (c′) expandable particles of thermoplastic polyurethane which comprise blowing agents in dispersed or dissolved form and, if appropriate, (d) chain extenders and/or crosslinkers, (e) catalysts, (f) blowing agents and (g) further additives and reacting the mixture to form the hybrid material, with the reaction being carried out under conditions which lead to expansion of the expandable particles (c′).
  • the hybrid material of the invention is preferably produced by mixing (a) polyisocyanates with (b) compounds having hydrogen atoms which are reactive toward isocyanates, (c′′) expanded particles of thermoplastic polyurethane and, if appropriate, (d) chain extenders and/or crosslinkers, (e) catalysts, (f) blowing agents and (g) further additives and reacting the mixture to form the hybrid material.
  • the organic and/or modified polyisocyanates (a) used for producing the polyurethane composites of the invention comprise the aliphatic, cycloaliphatic and aromatic bifunctional or polyfunctional isocyanates known from the prior art (constituent a-1) and any mixtures thereof.
  • Examples are diphenylmethane 4,4′-diisocyanate, diphenylmethane 2,4′-diisocyanate, mixtures of monomeric diphenylmethane diisocyanates and homologues of diphenylmethane diisocyanate having more than two rings (polymeric MDI), tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), tolylene 2,4- or 2,6-diisocyanate (TDI) and mixtures of the isocyanates mentioned.
  • polymeric MDI polymeric MDI
  • tetramethylene diisocyanate tetramethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI tolylene 2,4- or 2,6-diisocyanate
  • the 4,4′-MDI which is preferably used can comprise from 0 to 20% by weight of 2,4′ MDI and small amounts of up to about 10% by weight of allophanate- or uretonimine-modified polyisocyanates. It is also possible to use small amounts of polyphenylenepolymethylene polyisocyanate (polymeric MDI). The total amount of these high-functionality polyisocyanates should not exceed 5% by weight of the isocyanate used.
  • the polyisocyanate component (a) is preferably used in the form of polyisocyanate prepolymers.
  • These polyisocyanate prepolymers can be obtained by reacting polyisocyanates (a-1) as described above, for example at temperatures of from 30 to 100° C., preferably about 80° C., with polyols (a-2) to form the prepolymer.
  • Polyols (a-2) are known to those skilled in the art and are described, for example, in “Kunststoffhandbuch, Volume 7, Polyurethane”, Carl Hanser Verlag, 3rd Edition 1993, Chapter 3.1.
  • Prepolymers based on ethers are preferably obtained by reacting polyisocyanates (a-1), particularly preferably 4,4′-MDI, with 2- to 3-functional polyoxypropylene polyols and/or polyoxypropylene-polyoxyethylene polyols. They are usually prepared by the generally known base-catalyzed addition of propylene oxide alone or in admixture with ethylene oxide onto H-functional, in particular OH-functional, starter substances. Starter substances employed are, for example, water, ethylene glycol or propylene glycol and also glycerol or trimethylolpropane. Furthermore, multimetal cyanide compounds, known as DMC catalysts, can also be used as catalysts. For example, polyethers as described below under (b) can be used as component (a-2).
  • the ethylene oxide is preferably used in an amount of 10-50% by weight, based on the total amount of alkylene oxide.
  • the alkylene oxides can be incorporated blockwise or as a random mixture. Particular preference is given to incorporation of an ethylene oxide end block (“EO cap”) in order to increase the content of more reactive primary OH end groups.
  • EO cap ethylene oxide end block
  • the number average molecular weight of the polyols (a-2) is preferably in the range from 1750 to 4500 g/mol.
  • customary chain extenders or crosslinkers are added to the polyols mentioned in the preparation of the isocyanate prepolymers. Such substances are described below under c). Particular preference is given to using dipropylene glycol or tripropylene glycol as chain extenders or crosslinkers.
  • Relatively high molecular weight compounds b) having at least two H atoms which are reactive toward isocyanate groups can be, for example, polyetherols or polyesterols.
  • Polyetherols are prepared by known methods, for example from one or more alkylene oxides having from 2 to 4 carbon atoms in the alkylene radical by anionic polymerization using alkali metal hydroxides or alkali metal alkoxides as catalysts with addition of at least one starter molecule comprising 2 or 3 reactive hydrogen atoms in bound form or by cationic polymerization using Lewis acids such as antimony pentachloride or boron fluoride etherate.
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide and preferably ethylene oxide and 1,2-propylene oxide.
  • multimetal cyanide compounds known as DMC catalysts
  • DMC catalysts can also be used as catalysts.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures. Preference is given to mixtures of 1,2-propylene oxide and ethylene oxide, with the ethylene oxide being used in amounts of from 10 to 50% as ethylene oxide end block (“EO cap”), so that the polyols formed have more than 70% primary OH end groups.
  • EO cap ethylene oxide end block
  • Possible starter molecules are water or 2- and 3-functional alcohols such as ethylene glycol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, 1,4-butanediol, glycerol or trimethylolpropane.
  • the polyether polyols preferably polyoxypropylene-polyoxyethylene polyols, have a functionality of from 2 to 3 and molecular weights of from 1000 to 8000 g/mol, preferably from 2000 to 6000 g/mol.
  • Polyester polyols can be prepared, for example, from organic dicarboxylic acids having from 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having from 4 to 6 carbon atoms, and polyhydric alcohols, preferably diols, having from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms.
  • organic dicarboxylic acids having from 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having from 4 to 6 carbon atoms
  • polyhydric alcohols preferably diols, having from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms.
  • Examples of possible dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids
  • dicarboxylic acid derivatives e.g. dicarboxylic esters of alcohols having from 1 to 4 carbon atoms or dicarboxylic anhydrides.
  • dicarboxylic acid mixtures of succinic, glutaric and adipic acids in weight ratios of, for example, 20-35:35-50:20-32, and in particular adipic acid.
  • dihydric and polyhydric alcohols are: ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, glycerol and trimethylolpropane. Preference is given to using ethanediol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol. It is also possible to use polyester polyols derived from lactones, e.g. ⁇ -caprolactone, or hydroxycarboxylic acids, e.g. ⁇ -hydroxycaproic acid.
  • lactones e.g. ⁇ -caprolactone
  • hydroxycarboxylic acids e.g. ⁇ -hydroxycaproic acid.
  • the organic, e.g. aromatic and preferably aliphatic, polycarboxylic acids and/or derivatives and polyhydric alcohols can be polycondensed in the absence of catalysts or preferably in the presence of esterification catalysts, advantageously in an atmosphere of inert gas, e.g. nitrogen, carbon monoxide, helium, argon, etc., in the melt at temperatures of from 150 to 250° C., preferably from 180 to 220° C., if appropriate under reduced pressure, to the desired acid number which is preferably less than 10, particularly preferably less than 2.
  • inert gas e.g. nitrogen, carbon monoxide, helium, argon, etc.
  • the esterification mixture is polycondensed at the abovementioned temperatures to an acid number of from 80 to 30, preferably from 40 to 30, under atmospheric pressure and subsequently under a pressure of less than 500 mbar, preferably from 50 to 150 mbar.
  • Possible esterification catalysts are, for example, iron, cadmium, cobalt, lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts.
  • the polycondensation can also be carried out in the liquid phase in the presence of diluents and/or entrainers, e.g.
  • the organic polycarboxylic acids and/or derivatives and polyhydric alcohols are advantageously polycondensed in a molar ratio of 1:1-1.8, preferably 1:1.05-1.2.
  • the polyester polyols obtained preferably have a functionality of from 2 to 4, in particular from 2 to 3, and a molecular weight of from 480 to 3000 g/mol, preferably from 1000 to 3000 g/mol.
  • polymer-modified polyols preferably polymer-modified polyesterols or polyetherols, particularly preferably graft polyethers or graft polyesterols, in particular graft polyetherols.
  • polymer polyols which usually have a content of preferably thermoplastic polymers of from 5 to 60% by weight, preferably from 10 to 55% by weight, particularly preferably from 30 to 55% by weight and in particular from 40 to 50% by weight.
  • these polymer polyesterols are described, for example, in WO 05/098763 and EP-A-250 351 and are usually prepared by free-radical polymerization of suitable olefinic monomers, for example styrene, acrylonitrile, (meth)acrylates, (meth)acrylic acid and/or acrylamide, in a polyesterol serving as graft base.
  • suitable olefinic monomers for example styrene, acrylonitrile, (meth)acrylates, (meth)acrylic acid and/or acrylamide
  • the side chains are generally formed by transfer of free radicals from growing polymer chains to polyesterols or polyetherols.
  • the polymer polyol comprises, apart from the graft copolymer, predominantly the homopolymers of the olefins dispersed in unchanged polyesterol or polyetherol.
  • acrylonitrile, styrene, acrylonitrile and styrene, particularly preferably exclusively styrene are used as monomers.
  • the monomers are polymerized, if appropriate in the presence of further monomers, a macromer, a moderator and a free-radical initiator, usually azo or peroxide compounds, in a polyesterol or polyetherol as continuous phase. This process is described, for example, in DE 111 394, U.S. Pat. No. 3,304,273, U.S. Pat. No. 3,383,351, U.S. Pat. No. 3,523,093, DE 1 152 536 and DE 1 152 537.
  • the macromers are incorporated into the copolymer chain. This results in formation of block copolymers which have a polyester or polyether block and a poly-acrylonitrile-styrene block and act as phase compatibilizers at the interface of continuous phase and disperse phase and suppress agglomeration of the polymer polyesterol particles.
  • the proportion of macromers is usually from 1 to 20% by weight, based on the total weight of the monomers used for preparing the polymer polyol.
  • polymer polyol is comprised in the relatively high molecular weight compound b), it is preferably present together with further polyols, for example polyetherols, polyesterols or mixtures of polyetherols and polyesterols.
  • the proportion of polymer polyol is particularly preferably greater than 5% by weight, based on the total weight of the component (b).
  • the polymer polyols can be comprised in an amount of, for example, from 7 to 90% by weight or from 11 to 80% by weight, based on the total weight of the component (b).
  • the polymer polyol is particularly preferably a polymer polyesterol or polymer polyetherol.
  • thermoplastic polyurethane which comprise blowing agent in dispersed or dissolved form
  • foaming agent for example, particles of thermoplastic polyurethane impregnated with blowing agent.
  • particles and their production are described, for example, in WO 94/20568 and WO 2007/082838.
  • the expandable particles (c′) are particularly preferably produced using thermoplastic polyurethanes (also referred to as TPUs) whose melting range in a DSC measurement at a heating rate of 20 K/min commences below 130° C., particularly preferably below 120° C., and have a melt flow rate (MFR) at 190° C. under a weight of 21.6 kg in accordance with DIN EN ISO 1133 of not more than 250 g/10 min, particularly preferably a melt flow rate of less than 200 g/10 min.
  • the thermoplastic polyurethane comprising blowing agent preferably has a mean diameter of from 0.1 to 10 mm.
  • thermoplastic polyurethane is preferably based on a polyalcohol, particularly preferably polyether diol. Particular preference is given here to polytetrahydrofuran.
  • the TPU is particularly preferably based on polytetrahydrofuran having a molecular weight of from 600 g/mol to 2500 g/mol.
  • the polyalcohols can be employed either individually or in admixture with one another.
  • TPU based on polyester alcohol, preferably polyester diol, preferably one based on adipic acid and 1,4-butanediol, having a molecular weight of from 500 to 2500 g/mol, particularly preferably from 600 g/mol to 900 g/mol.
  • thermoplastic polyurethane used according to the invention is prepared, for example, by reacting isocyanates (c1) with compounds which are reactive toward isocyanates and have a molecular weight of from 500 to 10 000 (c2) and, if appropriate, chain extenders having a molecular weight of from 50 to 499 (c3), if appropriate in the presence of catalysts (c4) and/or customary auxiliaries and/or additives (c5).
  • organic isocyanates (c1) it is possible to use generally known aliphatic, cycloaliphatic, araliphatic and/or aromatic isocyanates, preferably diisocyanates, for example trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene and/or octamethylene diisocyanate, 2-methylpentamethylene 1,5-diisocyanate, 2-ethylbutylene 1,4-diisocyanate, pentamethylene 1,5-diisocyanate, butylene 1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), 1,4- and/or 1,3-bis(isocyanatomethyl)cyclohexane (HXDI), cyclohexane 1,4-diisocyanate, 1-methylcyclohexane 2,4- and/or
  • polyesterols polyetherols and/or polycarbonate diols, which are usually referred to collectively as “polyols”, having number average molecular weights of from 500 to 8000 g/mol, preferably from 600 to 6000 g/mol, in particular from 800 to 4000 g/mol, and preferably a mean functionality of from 1.8 to 2.3, preferably from 1.9 to 2.2, in particular 2, and mixtures thereof.
  • the compound (c2) which is reactive toward isocyanates is a polytetrahydrofuran having a number average molecular weight of from 600 to 2500 g/mol.
  • the compound (c2) which is reactive toward isocyanates is a polyester alcohol, preferably polyester diol, preferably one based on adipic acid and 1,4-butanediol, having a number average molecular weight of from 500 to 2500 g/mol, particularly preferably from 600 g/mol to 900 g/mol.
  • chain extenders (c3) it is possible to use generally known aliphatic, araliphatic, aromatic and/or cycloaliphatic compounds having a molecular weight of from 50 to 499, preferably 2-functional compounds, for example diamines and/or alkanediols having from 2 to 10 carbon atoms in the alkylene radical, in particular 1,4-butanediol, 1,6-hexanediol and/or dialkylene, trialkylene, tetraalkylene, pentaalkylene, hexaalkylene, heptaalkylene, octaalkylene, nonaalkylene and/or decaalkylene glycols having from 3 to 8 carbon atoms, preferably corresponding oligopropylene glycols and/or polypropyleneglycols, with mixtures of the chain extenders also being able to be used.
  • 2-functional compounds for example diamines and/or alkanediols having from 2 to
  • catalysts (c4) which, in particular, accelerate the reaction between the NCO groups of the diisocyanates (c1) and the hydroxyl groups of the formative components (c2) and (c3), it is possible to use the tertiary amines which are known and customary in the prior art, e.g. triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N,N′-dimethylpiperazine, 2-(dimethylaminoethoxy)ethanol, diazabicyclo[2.2.2]octane and the like, and also, in particular, organic metal compounds such as titanic esters, iron compounds such as iron(III) acetylacetonate, tin compounds, e.g.
  • the catalysts are usually used in amounts of from 0.0001 to 0.1 part by weight per 100 parts by weight of polyhydroxyl compound (c2).
  • customary auxiliaries and/or additives can also be added to the formative components (c1) to (c3).
  • blowing agents are blowing agents, surface-active substances, fillers, flame retardants, nucleating agents, oxidation stabilizers, lubricants and mold release agents, dyes and pigments, if appropriate further stabilizers in addition to the stabilizer mixtures used according to the invention, e.g. stabilizers against hydrolysis, light, heat or discoloration, inorganic and/or organic fillers, reinforcing materials and plasticizers.
  • chain regulators usually ones having a molecular weight of from 31 to 499 g/mol.
  • Such chain regulators are compounds which have only one functional group which is reactive toward isocyanates, e.g. monofunctional alcohols, monofunctional amines and/or monofunctional polyols.
  • Such chain regulators enable a particular flow behavior to be set in a targeted manner, particularly in the case of TPUs.
  • Chain regulators can generally be used in an amount of from 0 to 5 parts by weight, preferably from 0.1 to 1 part by weight, based on 100 parts by weight of the component (c2) and by definition come under the component (c3).
  • the reaction can be carried out at customary indexes, preferably at an index of from 60 to 120, particularly preferably at an index of from 80 to 110.
  • the index is defined as the ratio of the total isocyanate groups of the component (c1) used in the reaction to the groups which are reactive toward isocyanates, i.e. the active hydrogens, of the components (c2) and (c3).
  • there is one active hydrogen atom i.e. one group which is reactive toward isocyanates, of the components (c2) and (c3) present per isocyanate group of the component (c1).
  • indexes below 100 more isocyanate groups than OH groups are present.
  • the production of the TPUs can be carried out by known methods, either continuously, for example using reaction extruders or the belt process by the one-shot or prepolymer process, or batchwise by the known prepolymer process.
  • the components (c1), (c2) and, if appropriate, (c3), (c4) and/or (c5) to be reacted can be mixed in succession or simultaneously with one another, resulting in the reaction commencing immediately.
  • the formative components (c1), (c2) and, if appropriate, (c3), (c4) and/or (c5) are introduced either individually or as a mixture into the extruder and reacted at, for example, temperatures of from 100 to 280° C., preferably from 140 to 250° C., and the TPU obtained is extruded, cooled and pelletized. It may be advantageous to heat the resulting TPU at from 80 to 120° C., preferably from 100 to 110° C., for a period of from 1 to 24 hours before further processing.
  • the TPU according to the invention is preferably laden with blowing agent in the suspension or extrusion process.
  • the thermoplastic polyurethane is used as pellets and is heated to above the softening temperature together with water, a suspension aid and the blowing agent in a closed reactor.
  • the polymer particles are impregnated with the blowing agent during this procedure.
  • the impregnation temperature is preferably greater than 100° C. and is particularly preferably in the range from 100 to 150° C., in particular from 110 to 145° C.
  • blowing agent diffuses into the polymer pellets.
  • the impregnation time is generally from 0.5 to 10 hours.
  • the hot suspension is subsequently cooled, resulting in the particles solidifying with inclusion of the blowing agent, and the reactor is depressurized.
  • Adhering water is generally removed by drying, e.g. in a flow dryer.
  • adhering suspension aid can be removed before and/or afterwards treating the particles with a suitable reagent.
  • the particles can be treated with an acid such as nitric acid, hydrochloric acid or sulfuric acid in order to remove atom-soluble suspension aids, e.g. metal carbonates or tricalcium phosphate.
  • Suitable TPU pellets are, for example, minipellets having a preferred mean diameter of from 0.2 to 10 mm, in particular from 0.5 to 5 mm. These usually cylindrical or round minipellets are produced by extrusion of the TPU and, if appropriate, further additives, expression from the extruder, if appropriate cooling and pelletization. In the case of cylindrical minipellets, the length is preferably from 0.2 to 10 mm, in particular from 0.5 to 5 mm.
  • blowing agents for the suspension process preference is given to using organic liquids or inorganic gases or mixtures thereof.
  • Halogenated hydrocarbons are possible as organic liquids, but preference is given to saturated, aliphatic hydrocarbons, in particular those having from 3 to 8 carbon atoms, e.g. butane and pentane.
  • Suitable inorganic gases are nitrogen, air, ammonia or carbon dioxide. It is also possible to use mixtures of the blowing agents mentioned.
  • the amount of blowing agent is preferably from 0.1 to 40 parts by weight, in particular from 0.5 to 35 parts by weight and particularly preferably from 1 to 30 parts by weight, based on 100 parts by weight of TPU used.
  • Suitable suspension aids are water-insoluble inorganic stabilizers such as tricalcium phosphate, magnesium pyrophosphate, metal carbonates; also polyvinyl alcohol and surfactants such as sodium dodecylarylsulfonate. They are usually used in amounts of from 0.05 to 10% by weight, based on the thermoplastic polyurethane.
  • thermoplastic polyurethane In the extrusion process, the thermoplastic polyurethane is melted in an extruder and mixed with a blowing agent which is fed into the extruder.
  • the mixture comprising blowing agent is expressed and pelletized under such pressure and temperature conditions that it does not expand.
  • An industrially advantageous method is underwater pelletization in a water bath which has a temperature below 100° C. and is under a pressure of at least 2 bar (absolute). The temperature must not be too low since otherwise the melt solidifies at the die plate and must not be too high since otherwise the melt expands.
  • the higher the boiling point of the blowing agent and the lower the amount of blowing agent the higher can the water temperature be and the lower can the water pressure be.
  • the optimal water bath temperature is from 30 to 60° C. and the optimal water pressure is from 8 to 12 bar (absolute).
  • Other suitable cooling media can also be used instead of water.
  • water ring pelletization Here, the cutting space is encapsulated in such a way that the pelletization apparatus can be operated under superatmospheric pressure. This gives expandable particles of thermoplastic polyurethane which are subsequently separated off from the water and, if appropriate, dried.
  • Possible extruders are all customary screw machines, in particular single-screw and twin-screw extruders (e.g. model ZSK from Werner & Pfleiderer), Ko-Kneters, Kombiplast machines, MPC kneading mixers, FCM mixers, KEX kneading screw extruders and shearing roll extruders, as are described, for example, in Saechtling (editor), Kunststoff-Taschenbuch, 27th Edition, Hanser-Verlag Kunststoff 1998, Chapters 3.2.1 and 3.2.4.
  • the extruder is usually operated at a temperature at which the TPU is present as a melt, for example from 150 to 250° C., in particular from 180 to 210° C.
  • Speed of rotation, length, diameter and design of the extruder screw(s) amounts fed in and extruder throughput are selected in a known manner so that the additives are uniformly distributed in the extruded TPU.
  • blowing agents volatile organic compounds having a boiling point at atmospheric pressure of 1013 mbar of from ⁇ 25 to 150° C., in particular from ⁇ 10 to 125° C.
  • blowing agents are hydrocarbons which are preferably halogen-free, in particular C 4-10 -alkanes, for example the isomers of butane, pentane, hexane, heptane and octane, particularly preferably s-pentane.
  • Further suitable blowing agents are relatively bulky compounds such as alcohols, ketones, esters, ethers and organic carbonates. It is also possible to use mixtures of the blowing agents mentioned.
  • blowing agents are preferably used in an amount of from 0.1 to 40 parts by weight, particularly preferably from 0.5 to 35 parts by weight and in particular from 1 to 30 parts by weight, based on 100 parts by weight of thermoplastic polyurethane used.
  • thermoplastic polyurethane are used in place of expandable particles (c′) of thermoplastic polyurethane in the process of the invention for producing the hybrid material of the invention, these are preferably obtained by expansion of the expandable particles (c′), for example when the impregnated pellets are depressurized at temperatures above the softening temperature of the thermoplastic polyurethane in the suspension process or when the output from the extruder is not cooled in the extrusion process.
  • the hybrid materials according to the invention can be produced with or without concomitant use of (d) chain extenders and/or crosslinkers.
  • chain extenders, crosslinkers or, if appropriate, mixtures thereof can prove to be advantageous for modifying the mechanical properties, e.g. the hardness.
  • Chain extenders and/or crosslinkers are substances having a molecular weight of preferably less than 400 g/mol, particularly preferably from 60 to 400 g/mol, with chain extenders having 2 hydrogen atoms which are reactive toward isocyanates and crosslinkers having 3 hydrogen atoms which are reactive toward isocyanate. These can be used individually or in the form of mixtures.
  • diols and/or triols having molecular weights of less than 400, particularly preferably from 60 to 300 and in particular from 60 to 150.
  • Possible chain extenders/crosslinkers are, for example, aliphatic, cycloaliphatic and/or araliphatic diols having from 2 to 14, preferably from 2 to 10 carbon atoms, e.g.
  • chain extenders, crosslinkers or mixtures thereof are employed, these are advantageously used in amounts of from 1 to 60% by weight, preferably from 1.5 to 50% by weight and in particular from 2 to 40% by weight, based on the weight of the components (b) and (d).
  • catalysts (e) are used for producing the hybrid materials according to the invention, preference is given to using compounds which strongly accelerate the reaction of the hydroxyl-comprising compounds of the component (b) and, if appropriate, (c) with the organic, if appropriate modified polyisocyanates (a).
  • amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine
  • tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, N-cyclohexylmorpholine, N,N,N′,N′-tetramethylethylenediamine, N,N,N′,N′-tetramethylbutanediamine, N,N,N′,N′-tetramethylhexanediamine, pentamethyldiethylenetriamine, bis(dimethylaminoethyl)ether, bis(dimethylaminopropyl)urea, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo[3.3.0]octane and preferably 1,4-diazabicyclo[2.2.2]octane and alkanolamine compounds such as tri
  • organic metal compounds preferably organic tin compounds such as tin(II) salts of organic carboxylic acids, e.g. tin(II) acetate, tin(II) octoate, tin(II) ethylhexanoate and tin(II) laurate, and the dialkyltin(IV) salts of organic carboxylic acids, e.g.
  • dibutyltin diacetate dibutyltin dilaurate, dibutyltin maleate and dioctyltin diacetate
  • bismuth carboxylates such as bismuth(III) neodecanoate, bismuth 2-ethylhexanoate and bismuth octanoate or mixtures of thereof.
  • the organic metal compounds can be used either alone or preferably in combination with strongly basic amines. If the component (b) is an ester, preference is given to using exclusively amine catalysts.
  • blowing agents (f) are present as matrix material in the production of polyurethane foams.
  • these blowing agents comprise water (referred to as constituent (f-1)).
  • constituent (f-1) water (referred to as constituent (f-1)).
  • constituent (f-2) water (referred to as constituent (f-2)
  • constituents (f-3) water (referred to as constituents (f-3)).
  • chemical blowing agents are compounds which form gaseous products by reaction with isocyanate, e.g. formic acid.
  • Physical blowing agents are compounds which are dissolved or emulsified in the starting materials for polyurethane production and vaporize under the conditions of polyurethane formation.
  • hydrocarbons for example, hydrocarbons, halogenated hydrocarbons and other compounds, for example perfluorinated alkanes such as perfluorohexane, chlorofluorocarbons and ethers, esters, ketones and/or acetals, for example (cyclo)aliphatic hydrocarbons having from 4 to 8 carbon atoms, or fluorocarbons such as Solkane® 365 mfc.
  • a mixture of these blowing agents comprising water is used as blowing agent; in particular, water is used as sole blowing agent. If no water is used as blowing agent, preference is given to using exclusively physical blowing agents.
  • the content of (f-1) water is from 0.1 to 2% by weight, preferably from 0.2 to 1.5% by weight, particularly preferably from 0.3 to 1.2% by weight, in particular from 0.4 to 1% by weight, based on the total weight of the components (a) to (g).
  • hollow microspheres comprising physical blowing agent are added as additional blowing agent in the reaction of the components (a), (b) and, if appropriate, (d).
  • the hollow microspheres can also be used in admixture with water (f-1), the abovementioned chemical blowing agents (f-2) and/or physical blowing agents (f-3).
  • the hollow microspheres usually comprise a shell of thermoplastic polymer and have the core filled with a liquid, low-boiling substance based on alkanes.
  • the production of such hollow microspheres is described, for example, in U.S. Pat. No. 3,615,972.
  • the hollow microspheres generally have a diameter of from 5 to 50 ⁇ m. Examples of suitable hollow microspheres are obtainable under the trade name Expancell® from Akzo Nobel.
  • the hollow microspheres are generally added in an amount of from 0.5 to 5%, based on the total weight of the components (b), (d) and (f).
  • Auxiliaries and/or additives (g) may, if appropriate, also be added to the reaction mixture for producing the hybrid materials according to the invention. Mention may be made by way of example of surface-active substances, foam stabilizers, cell regulators, mold release agents, fillers, dyes, pigments, hydrolysis inhibitors, odor-absorbing substances and fungistatic and bacteriostatic substances.
  • Possible surface-active substances are, for example, compounds which serve to aid the homogenization of the starting materials and may also be suitable for regulating the cell structure.
  • emulsifiers such as the sodium salts of castor oil sulfates or fatty acids and also salts of fatty acids with amines, e.g. diethylamine oleate, diethanolamine stearate, diethanolamine ricinoleate, salts of sulfonic acids, e.g.
  • alkali metal or ammonium salts of dodecylbenzene- or dinaphthylmethanedisulfonic acid and ricinoleic acid foam stabilizers such as siloxane-oxalkylene copolymers and other organopolysiloxanes, ethoxylated alkylphenols, oxethylated fatty alcohols, paraffin oils, castor oil or ricinoleic esters, Turkey red oil and peanut oil, and cell regulators such as paraffins, fatty alcohols and dimethylpolysiloxanes.
  • Oligomeric acrylates having polyoxyalkylene and fluoroalkane radicals as side groups are also suitable for improving the emulsifying reaction, the cell structure and/or stabilizing the foam.
  • the surface-active substances are usually employed in amounts of from 0.01 to 5 parts by weight, based on 100 parts by weight of the component (b).
  • suitable mold release agents are: reaction products of fatty acid esters with polyisocyanates, salts of polysiloxanes comprising amino groups and fatty acids, salts of saturated or unsaturated (cyclo)aliphatic carboxylic acids having at least 8 carbon atoms and tertiary amines and also, in particular, internal mold release agents such as carboxylic esters and/or carboxamides prepared by esterification or amidation of a mixture of montanic acid and at least one aliphatic carboxylic acid having at least 10 carbon atoms with at least bifunctional alkanolamines, polyols and/or polyamines having molecular weights of from 60 to 400 (EP-A-153 639), mixtures of organic amines, metal salts of stearic acid and organic monocarboxylic and/or dicarboxylic acids or their anhydrides (DE-A-3 607 447) or mixtures of an imino compound, the metal salt of a carboxylic acid and, if appropriate, a
  • fillers are the customary organic and inorganic fillers, reinforcing materials, weighting agents, agents for improving the abrasion behavior in paints, coatings, etc. known per se.
  • inorganic fillers such as siliceous minerals, for example sheet silicates such as antigorite, bentonite, serpentin, hornblendes, amphibols, chrysotile, talc; metal oxides such as kaolin, aluminum oxides, titanium oxides, zinc oxide and iron oxides, metal salts such as chalk, barite and inorganic pigments such as cadmium sulfide, zinc sulfide and also glass, etc.
  • kaolin China clay
  • organic fillers are: carbon black, melamine, rosin, cyclopentadienyl resins and graft polymers and also cellulose fibers, polyamide fibers, polyacrylonitrile fibers, polyurethane fibers, polyester fibers based on aromatic and/or aliphatic dicarboxylic esters and in particular carbon fibers.
  • the inorganic and organic fillers can be used individually or as mixtures and are advantageously added to the reaction mixture in amounts of from 0.5 to 50% by weight, preferably from 1 to 40% by weight, based on the weight of the components (a) to (c), although the content of mats, nonwovens and woven fabrics of natural and synthetic fibers can reach values up to 80% by weight.
  • the specific starting substances (a) to (g) for producing hybrid materials according to the invention differ quantitatively and qualitatively only slightly when a compact material, a thermoplastic polyurethane, a viscoelastic gel, a flexible foam, a semirigid foam or an integral foam is to be produced as polyurethane according to the invention.
  • no blowing agents are used for producing massive polyurethanes.
  • the elasticity and hardness of the polyurethane according to the invention can, for example, be varied via the functionality and chain length of the relatively high molecular weight compound having at least two reactive hydrogen atoms.
  • Viscoelastic polyurethane gels can further comprise a dispersion medium, for example water or an organic solvent, which leads to the polyurethane swelling to form a polyurethane gel. Such modifications are known to those skilled in the art.
  • the proportion by volume of the foamed particles of thermoplastic polyurethane is preferably 20% by volume or more, particularly preferably 50% by volume or more, more preferably 80% by volume or more and in particular 90% by volume or more, in each case based on the volume of the hybrid system of the invention.
  • the hybrid materials of the invention are integral foams.
  • the polyisocyanates (a) are reactive with the compounds having hydrogen atoms which are reactive toward isocyanates (b), blowing agents (f) and the expandable particles of thermoplastic polyurethane (c′) which comprise blowing agent in dispersed or dissolved form or the expanded particles of thermoplastic polyurethane (c′′) and also, if appropriate, chain extenders and/or crosslinkers (d), catalysts (e) and the further additives (g) in such amounts that the equivalence ratio of NCO groups of the polyisocyanates (a) to the sum of the reactive hydrogen atoms of the components (b) and, if present, (d) and (f) is from 1:0.8 to 1:1.25, preferably from 1:0.9 to 1:1.15.
  • the integral foams are preferably produced by the one-shot process by means of the low-pressure or high-pressure technique in closed, advantageously heated molds.
  • the molds usually comprise metal, e.g. aluminum or steel.
  • the starting components are for this purpose mixed at a temperature of from 15 to 90° C., preferably from 20 to 35° C., and introduced into the closed mold, if appropriate under superatmospheric pressure. Mixing can be carried out mechanically by means of a stirrer or a stirring screw or under high pressure in the countercurrent injection process.
  • the mold temperature is advantageously from 20 to 90° C., preferably from 30 to 60° C.
  • the amount of reaction mixture introduced into the mold is calculated so that the integral foam moldings obtained have a density of from 0.08 to 0.70 g/cm 3 , in particular from 0.12 to 0.60 g/cm 3 .
  • the degrees of compaction for production of the moldings having a compacted surface zone and a cellular core are in the range from 1.1 to 8.5, preferably from 2.1 to 7.0.
  • the process of the invention makes if possible to produce hybrid materials having a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein, with the foamed particles being homogeneously distributed.
  • expandable particles (c′) in the process for producing the hybrid materials of the invention, no specific auxiliaries or apparatuses are required to ensure homogeneous distribution after introduction of the starting substances into the mold.
  • the expandable particles can also easily be used in a process according to the invention since because of their small size they are free-flowing and make no specific demands on the processing procedure.
  • thermoplastic polyurethane If previously expanded particles (c′′) of thermoplastic polyurethane are used for producing integral polyurethane foams or compact moldings, the procedure employed is, because of the high density difference between the reaction mixture of the as yet unreacted matrix material and the expanded particles (c′′) of thermoplastic polyurethane, to fill a closed mold with the expanded particles and subsequently to inject the reaction mixture comprising the other constituents (a), (b) and, if appropriate, (d), (e), (f) and (g). Techniques for homogeneously distributing the expanded particles (c′′), e.g. slow rotation of the mold, may be employed if appropriate, especially in the case of low degrees of fill with the expanded particles (c′′).
  • hybrid materials of the invention display very good adhesion of the matrix material to the expanded particles of thermoplastic polyurethane.
  • a hybrid material according to the invention does not rupture at the interface of matrix material and expanded particles of thermoplastic polyurethane. It is therefore possible to produce hybrid materials which have improved mechanical properties, e.g. tear propagation resistance and elasticity, compared to conventional polyurethane materials having the same density.
  • the tear propagation resistance determined by a method based on ASTM D3574F of a hybrid material according to the invention having a cellular matrix is preferably greater than 2.5 N/mm at an average density of the hybrid material of from 0.4 to 0.5 g/cm 3 , preferably greater than 2.2 N/mm at an average density of the hybrid material of from 0.3 to ⁇ 0.4 g/cm 3 , preferably greater than 2.0 N/mm at an average density of the hybrid material of from 0.2 to ⁇ 0.3 g/cm 3 and preferably greater than 1.0 N/mm at an average density of the hybrid material of from 0.1 to ⁇ 0.2 g/cm 3 .
  • a hybrid material having a matrix of cellular polyurethane preferably has an average density of the hybrid material of from 0.05 to 0.60 g/cm 3 , particularly preferably from 0.01 to 0.50 g/cm 3 and in particular from 0.02 to 0.30 g/cm 3 .
  • the elasticity of hybrid materials according to the invention in the form of integral foams is preferably greater than 40% and particularly preferably greater than 50% in accordance with DIN 53512.
  • the hybrid materials of the invention based on integral foams display high rebound resiliencies at low density.
  • Integral foams based on hybrid materials according to the invention are therefore highly suitable as materials for shoe soles. Light and comfortable soles having good durability properties are obtained in this way. Such materials are particularly suitable as throughsoles for sport shoes.
  • a further advantage of a process according to the invention based on integral foams for producing hybrid materials is that hybrid materials having a low average density, in particular integral foams, can be produced without the disadvantages usual in the production of conventional foams having the same density, e.g. sunken places or regions where the skin is detached, occurring. As a result, fewer rejects are obtained, so that costs can be saved.
  • hybrid materials according to the invention having a cellular matrix are upholstery, for example of furniture, and mattresses.
  • Hybrid materials having a viscoelastic gel matrix display in particular, increased viscoelasticity and improved elastic properties. These materials are thus likewise suitable as upholstery materials, for example for seats, especially saddles such as bicycle saddles or motorcycle saddles.
  • the hybrid materials of the invention are sheet-like materials which can be used as floor coverings. They are produced by mixing the expanded particles (c′′) and polyurethane binder in amount of from 1 to 20 parts by weight, preferably from 3 to 10 parts by weight, of expanded particles (c′′) per 1 part by weight of the polyurethane binder in a manner known per se, if appropriate with addition of the auxiliaries and additives mentioned below, for example in a mechanical mixer. If appropriate, parts of the expanded particles (c′′) can be replaced by other granular polymers, for example rubber.
  • the polyisocyanate prepolymers for producing the sheet-like materials according to the invention can be obtained by reacting above-described polyisocyanates (a), for example at temperatures of from 30 to 100° C., preferably about 80° C., with compounds (b) which are reactive toward isocyanates and, if appropriate, chain extenders and/or crosslinkers (d) to give the prepolymer.
  • Polyisocyanate (a) and compound (b) which is reactive toward isocyanate and, if appropriate, chain extenders and/or crosslinkers (d) are preferably mixed with one another in a ratio of isocyanate groups to groups which are reactive toward isocyanates of from 1.5:1 to 15:1, preferably from 1.8:1 to 8:1.
  • polyisocyanates and the compound having groups which are reactive toward isocyanates and chain extenders and/or crosslinkers are particularly preferably mixed with one another in such a ratio that the NCO content of the prepolymer produced is in the range from 1.0 to 20% by weight, in particular from 2 to 15% by weight, based on the total weight of the isocyanate prepolymer produced.
  • Volatile isocyanates are subsequently preferably separated off, preferably by thin film distillation.
  • the viscosity of the polyisocyanate prepolymers is preferably from 1000 to 3000 mPa ⁇ s at 25° C.
  • Polyisocyanate prepolymers according to the invention which are based on tolylene diisocyanate typically have a viscosity of from 1000 to 1500 mPa ⁇ s
  • polyisocyanate prepolymers according to the invention which are based on diphenylmethane diisocyanate typically have a viscosity of from 2000 to 3000 mPa ⁇ s, in each case at 25° C.
  • the preparation of the prepolymer having isocyanate groups can be carried out stepwise.
  • the compound (b) which is reactive toward isocyanate and, if appropriate, chain extenders and/or crosslinkers (d) are reacted with 2,4-tolylene diisocyanate and/or 2,6-tolylene diisocyanate to an NCO content of 2-5% by weight, based on the prepolymer obtained, in a first step.
  • the prepolymer which has been prepared in this way is admixed with isocyanates of the diphenylmethane diisocyanate series or derivatives thereof, for example diphenylmethane 2,4′-diisocyanate and diphenylmethane 4,4′-diisocyanate and homologues of diphenylmethane diisocyanate having more than two rings (polymeric MDI) and/or modified diphenylmethane diisocyanates which are liquid at room temperature, in particular diphenylmethane diisocyanates modified by carbodiimide, urethane, allophanate, isocyanurate, urea and/or biuret groups, until the NCO content of the prepolymer produced has a value corresponding to the values indicated above.
  • isocyanates of the diphenylmethane diisocyanate series or derivatives thereof for example diphenylmethane 2,4′-diisocyanate and diphenyl
  • additives such as surface-active substances, plasticizers, inorganic fillers such as sand, kaolin, chalk, barium sulfate, silicon dioxide, oxidation inhibitors, dyes and pigments, stabilizers, e.g. against hydrolysis, light, heat or discoloration, inorganic and/or organic fillers, emulsifiers, flame retardants, ageing inhibitors, bonding agents and reinforcing materials are added to the isocyanate prepolymer.
  • plasticizers such as sand, kaolin, chalk, barium sulfate, silicon dioxide, oxidation inhibitors, dyes and pigments, stabilizers, e.g. against hydrolysis, light, heat or discoloration, inorganic and/or organic fillers, emulsifiers, flame retardants, ageing inhibitors, bonding agents and reinforcing materials are added to the isocyanate prepolymer.
  • inorganic fillers such as sand, kaolin, chalk, barium s
  • Curing of the mixture of the polyurethane binder and the expanded particles (c′′) can be effected by addition of further compounds (b) which are reactive toward isocyanate and/or chain extenders or crosslinkers (d), known as the two-component process.
  • curing can be effected exclusively by the action of water, known as the one-component process. Curing is preferably effected exclusively by the action of water, particularly preferably by means of atmospheric moisture. Accelerated curing can be achieved by spraying with water or else by means of steam treatment. If the sheet-like material according to the invention is produced by the one-component process, preference is given to using no chain extenders or crosslinkers (d) for preparing the prepolymer having isocyanate groups. The curing process can be accelerated by introduction of catalysts e) which are customary in polyurethane chemistry.
  • the physical properties of the elastic sheet-like structures produced according to the invention e.g. elasticity, hardness, bulk density and water permeability, can be varied within wide limits by variation of size, shape and nature of the expanded particles (c′′), addition of further granular polymers such as granulated rubber, by means of the binder content, the average NCO functionality of the binder, the content of isocyanate groups in the binder, degree of compaction and curing conditions.
  • the shaping of the sheet-like material according to the invention is usually carried out by pouring, distributing and densifying the mixture of polyurethane binder and granular polymers on the substrates to be coated in each case, e.g. concrete, screed or asphalt, in the desired layer thickness, which in the case of the fields of use mentioned is generally from 2 to 30 mm, by means of machines and tools which are known per se for the production of floor coverings and road surfacing.
  • shaping can also be carried out in molds or presses which may be heated if appropriate, with the sheet-like structures being obtained in the form of plates after curing, and these can then be laid in a manner known per se to produce the coverings mentioned.
  • Water particularly preferably in the form of steam, is preferably added in shaping and curing in heated molds or presses in order to accelerate curing.
  • the sheet-like materials according to the invention have increased durability and strength, which is reflected, in particular, in an increased tensile strength and elongation at break, compared to known sheet-like materials from the prior art.
  • sheet-like materials according to the invention have a low density, as a result of which less material can be used.
  • the compact skin of the expanded particles (c′′) leads to relatively small amounts of binder being required.
  • the emission of vapors which are harmful to health from the sheet-like materials according to the invention can be reduced compared to known sheet-like materials by replacement of rubber in sheet-like materials known from the prior art by expanded particles (c′′).
  • Sheet-like materials according to the invention are therefore particularly suitable as surfacing for playgrounds, athletics tracks, playing fields and sports halls.
  • thermoplastic polyurethane TPU A having a mean particle weight of about 2 mg were produced by reaction with 0.44 mol of 1,4-butanediol and 1.44 mol of 4,4′-MDI.
  • thermoplastic polyurethane TPU B having a mean particle weight of likewise about 2 mg were produced analogously by reaction with 0.97 mol of 1,4-butanediol and 1.97 mol of 4,4′-MDI.
  • thermoplastic polyurethane A TPU A or B (TPU B) were in each case mixed with, in succession, 250 parts of water, 6.7 parts of tricalcium phosphate and 20 parts of n-butane while stirring and heated to the temperature indicated in table 1.
  • the contents of the pressure vessel were then discharged and depressurized through a bottom valve, with the pressure in the vessel being kept constant by injection of further nitrogen or the blowing agent used.
  • the foam particles were freed of adhering residues of the auxiliary by washing with nitric acid and water and air dried at 50° C.
  • An aluminum mold having dimensions of 20 ⁇ 20 ⁇ 4 cm which had been heated to 50° C. was used.
  • the mold was firstly filled to the rim with 160 g of previously expanded TPU beads and subsequently charged with 400 g of reaction mixture as shown in table 2.
  • the matrix formulation of example 1 represents a usual polyurethane mixture for producing integral foams of medium density.
  • the formulation for C1 represents a formulation for low-density systems in which a polymer polyol is added to obtain the mechanical properties.
  • the mold is closed and the molding is removed after 5 minutes.
  • Isocyanate components were isocyanate prepolymers based on MDI and polyetherol mixtures and having an NCO content of 13.9% (Iso 1) or 18% (Iso 2).
  • Polyol 1 is a polyetherol based on propylene oxide/ethylene oxide and having an OH number of 29 mg KOH/g and a functionality, based on the starter, of 2.
  • Polyol 2 is a polyetherol based on propylene oxide/ethylene oxide and having an OH number of 27 mg KOH/g and a functionality, based on the starter, of 3.
  • Polyol 3 is a polymer polyetherol having a solids content of 45% and an OH number of 20 mg KOH/g.
  • the chain extender is a mixture of 1,4-butanediol and ethylene glycol.
  • As amine catalyst use was made of a mixture of tertiary amines in glycols.
  • the cell regulator is a surface-active silicone polymer.
  • Table 2 shows that a hybrid material as per Example 1 has, compared to the foam as per C1, a significantly improved tear propagation resistance and an improved rebound resilience at the same density and the same hardness and is therefore highly suitable for use in shoe soles.
  • An isocyanate prepolymer having an NCO content of 10% by weight was prepared from 36 parts by weight of isocyanate 1, viz. a diphenylmethane diisocyanate having an NCO content of 32.2%, 2 parts by weight of isocyanate 2, viz. a modified diphenylmethane diisocyanate having an NCO content of 29.5%, and 62 parts by weight of a polyetherol based on propylene oxide and having an OH number of 56 mg KOH/g.
  • Example 2 40 g of the isocyanate prepolymer (Prepo) produced and 200 g of expanded TPU beads having an average particle diameter of about 2 mm (ExTPU1) were mixed in a polypropylene bucket, capacity: 2.75 l, by means of a Vollrath stirrer at 700 revolutions per minute for 2 minutes. The mixture was subsequently introduced into a wooden frame having dimensions of 20 ⁇ 20 ⁇ 1.5 cm and compacted to a thickness of about 1.5 cm. The sheet-like materials obtained were stored overnight in a fume hood, removed from the mold after storage for a further 24 hours under standard conditions of temperature and humidity (23° C., 50% rel. atmospheric humidity) and stored for a further 5 days under standard conditions of temperature and humidity (Example 2).
  • Example 3 was carried out in a manner analogous to Example 2, with 60% by weight of the expanded TPU beads being replaced by industrial recycled rubber based on a blend of styrene-butadiene rubber (SBR) and isobutene-isoprene rubber (rubber).
  • SBR styrene-butadiene rubber
  • rubber isobutene-isoprene rubber
  • Example 4 was carried out in a manner analogous to Example 2, with expanded TPU beads having an average particle diameter of about 7 mm (ExTPU2) being used instead of the expanded TPU beads having an average particle diameter of about 2 mm.
  • Example 5 was carried out in a manner analogous to Example 4, with 40% by weight of the expanded TPU beads being replaced by industrial recycled rubber based on a blend of styrene-butadiene rubber (SBR) and isobutene-isoprene rubber.
  • SBR styrene-butadiene rubber
  • Comparative Example 2 was carried out in a manner analogous to Example 2, with the expanded TPU beads being replaced by industrial recycled rubber based on a blend of styrene-butadiene rubber (SBR) and isobutene-isoprene rubber.
  • SBR styrene-butadiene rubber
  • Example 2 Example 3
  • Example 4 Example 5 C2 Ex TPU1 [parts 100 40 by weight]
  • Ex TPU2 [parts 100 60 by weight]
  • Rubber [parts by 60 40 100 weight]
  • Prepo [parts by 20 20 20 20 20 weight]
  • Table 3 shows that a hybrid material as per Examples 2 to 5 has an improved tensile strength and an improved elongation at break at a lower density compared to Comparison 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US12/521,875 2007-01-16 2008-01-09 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes Abandoned US20100047550A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07100613.4 2007-01-16
EP07100613 2007-01-16
PCT/EP2008/050172 WO2008087078A1 (fr) 2007-01-16 2008-01-09 Systèmes hybrides composés d'élastomères thermoplastiques moussés et de polyuréthanes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050172 A-371-Of-International WO2008087078A1 (fr) 2007-01-16 2008-01-09 Systèmes hybrides composés d'élastomères thermoplastiques moussés et de polyuréthanes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/717,070 Division US10501596B2 (en) 2007-01-16 2015-05-20 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes

Publications (1)

Publication Number Publication Date
US20100047550A1 true US20100047550A1 (en) 2010-02-25

Family

ID=39358039

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/521,875 Abandoned US20100047550A1 (en) 2007-01-16 2008-01-09 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US14/717,070 Active 2029-07-19 US10501596B2 (en) 2007-01-16 2015-05-20 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US16/590,643 Abandoned US20200032022A1 (en) 2007-01-16 2019-10-02 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US17/242,581 Abandoned US20210246279A1 (en) 2007-01-16 2021-04-28 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/717,070 Active 2029-07-19 US10501596B2 (en) 2007-01-16 2015-05-20 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US16/590,643 Abandoned US20200032022A1 (en) 2007-01-16 2019-10-02 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US17/242,581 Abandoned US20210246279A1 (en) 2007-01-16 2021-04-28 Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes

Country Status (11)

Country Link
US (4) US20100047550A1 (fr)
EP (1) EP2109637B1 (fr)
CN (1) CN101583656B (fr)
CY (1) CY1120594T1 (fr)
DK (1) DK2109637T3 (fr)
ES (1) ES2692872T3 (fr)
HU (1) HUE040691T2 (fr)
PL (1) PL2109637T3 (fr)
PT (1) PT2109637T (fr)
SI (1) SI2109637T1 (fr)
WO (1) WO2008087078A1 (fr)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217804A1 (en) * 2005-10-27 2008-09-11 Polimeri Eupopa S.P.A. Process for the Cutting of Thermoplastic Polymers Downstream of a Water-Ring Die
US20120065285A1 (en) * 2009-05-26 2012-03-15 Basf Se Water as a propellant for thermoplastics
WO2012065926A1 (fr) * 2010-11-16 2012-05-24 Basf Se Nouvel élément amortisseur dans les semelles de chaussures
US8356373B2 (en) 2009-03-06 2013-01-22 Noel Group Llc Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
CN103183805A (zh) * 2011-12-28 2013-07-03 北京中能江龙科技开发有限公司 一种新型发泡热塑性聚氨酯弹性体材料的制备方法
CN103210010A (zh) * 2010-11-16 2013-07-17 巴斯夫欧洲公司 新的鞋底减震元件
USD688069S1 (en) 2012-09-28 2013-08-20 Noel Group Llc Mattress bed cushion
USD688492S1 (en) 2010-03-03 2013-08-27 Noel Group Llc Mattress bed cushion
USD690536S1 (en) 2012-07-26 2013-10-01 Nomaco Inc. Motion isolation insulator pad
USD691401S1 (en) 2009-03-06 2013-10-15 Noel Group, Llc Mattress bed cushion
USD691400S1 (en) 2012-02-10 2013-10-15 Nomaco Inc. Stackable base for mattress assembly
USD692694S1 (en) 2012-09-28 2013-11-05 Noel Group Llc Mattress bed cushion
USD692693S1 (en) 2012-04-27 2013-11-05 Noel Group Llc Mattress bed cushion
USD692692S1 (en) 2011-04-29 2013-11-05 Noel Group Llc Mattress bed cushion
USD693148S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD693146S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD693145S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD693149S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD693144S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD693147S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD694041S1 (en) 2012-09-28 2013-11-26 Noel Group Llc Mattress bed cushion
USD694552S1 (en) 2012-04-27 2013-12-03 Noel Group Llc Mattress bed cushion
USD694553S1 (en) 2010-03-03 2013-12-03 Noel Group Llc Mattress bed cushion
USD697337S1 (en) 2012-07-03 2014-01-14 Nomaco, Inc. Stackable base for mattress assembly
WO2014011537A1 (fr) 2012-07-10 2014-01-16 Nike International Ltd Procédé de moulage par compression d'une mousse à perles pour produit à faible densité
US8658264B2 (en) 2009-06-25 2014-02-25 Nomaco Inc. Self-adjusting insulation, including insulation particularly suited for pipe or duct
USD701713S1 (en) 2012-11-09 2014-04-01 Noel Group, Llc Mattress bed cushion
EP2716153A1 (fr) * 2012-10-02 2014-04-09 Basf Se Garniture de sol d'écurie à base de mousse à particules de polyuréthane thermoplastique expansé
USD704962S1 (en) 2013-09-09 2014-05-20 Noel Group Llc Mattress bed cushion
USD707467S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
USD707468S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
USD709301S1 (en) 2012-11-09 2014-07-22 Noel Group Llc Mattress bed cushion
WO2014126799A1 (fr) 2013-02-12 2014-08-21 Nike International Ltd. Procédé de moulage par compression de billes de mousse avec génération in situ de vapeur pour obtenir un produit basse densité
WO2014150120A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Article ayant un amortissement controle
WO2014150124A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Procédé de moussage d'élastomères thermoplastiques
WO2014150122A2 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Mousse décorative et procédé associé
WO2014150119A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Élastomères thermoplastiques modifiés pour une meilleure compatibilité avec les fluides supercritiques
WO2014195211A1 (fr) * 2013-06-04 2014-12-11 Basf Se Élastomères de polyuréthane thermoplastique mous et leur procédé de préparation
CN104212403A (zh) * 2014-09-28 2014-12-17 东莞宏石功能材料科技有限公司 一种高硬度的聚氨酯热熔胶及其制备方法
WO2015017090A1 (fr) 2013-08-02 2015-02-05 Nike Innovate C.V. Procédé de production d'article thermoplastique alvéolaire et article thermoplastique alvéolaire
KR20150042242A (ko) * 2012-08-09 2015-04-20 바스프 에스이 조합 발포체
US20150174808A1 (en) * 2012-04-13 2015-06-25 Basf Se Method for producing expanded granules
US20150197610A1 (en) * 2010-02-26 2015-07-16 Peterson Chemical Technology, Inc. Polyurethane Gel Particles, Methods and Use in Flexible Foams
US9157566B2 (en) 2012-05-11 2015-10-13 Nomaco Inc. Insulation systems employing expansion features to insulate elongated containers subject to extreme temperature fluctuations, and related components and methods
EP2974613A1 (fr) 2014-07-15 2016-01-20 Taylor Made Golf Company, INC. Paire de chaussures asymétrique
US20160208111A1 (en) * 2013-09-26 2016-07-21 Ross Technology Corporation Flexible Superhydrophobic and/or Oleophobic Polyurethane Coatings
US20160302517A1 (en) * 2015-04-17 2016-10-20 Wolverine World Wide, Inc. Sole assembly for an article of footwear
US20170044766A1 (en) * 2014-04-30 2017-02-16 Sika Technology Ag 3d fabric for floating floor constructions
US9713356B2 (en) 2013-10-28 2017-07-25 Taylor Made Golf Company, Inc. Golf shoe outsoles
EP3055353B1 (fr) 2013-10-11 2017-08-02 Basf Se Procédé de fabrication de particules d'élastomère thermoplastique expansées
US9743709B2 (en) 2015-06-03 2017-08-29 Taylor Made Golf Company, Inc. Wrap-around wire support for shoe
US9788599B2 (en) 2015-06-03 2017-10-17 Taylor Made Golf Company, Inc. Torsion control bridge for shoe
WO2017216209A1 (fr) 2016-06-15 2017-12-21 Basf Se Dispersion de polyamide dans un polyol et sa préparation
WO2018012415A1 (fr) * 2016-07-15 2018-01-18 松本油脂製薬株式会社 Composition de résine et utilisation correspondante
JP2018083918A (ja) * 2016-11-25 2018-05-31 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
WO2018142467A1 (fr) * 2017-01-31 2018-08-09 株式会社アシックス Élément semelle et chaussure
US10045633B2 (en) 2013-04-26 2018-08-14 Noel Group Llc Cushioning assemblies with thermoplastic elements encapsulated in thermoset providing customizable support and airflow, and related methods
WO2018206657A1 (fr) 2017-05-10 2018-11-15 Basf Se Revêtements de sol préparés à partir de composites comprenant des particules d'élastomère thermoplastique expansé
EP3420838A1 (fr) 2015-06-03 2019-01-02 adidas AG Support avec fil à enrouler pour chaussure
US10240049B2 (en) 2011-02-21 2019-03-26 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
DE202018103390U1 (de) * 2018-06-15 2019-09-17 Puma SE Schuh, insbesondere Sportschuh
EP3132703B1 (fr) 2013-02-13 2019-09-18 adidas AG Élément de rembourrage pour vêtements de sport
WO2019204358A1 (fr) * 2018-04-16 2019-10-24 Columbia Sportswear North America, Inc. Mousse composite pour semelle intermédiaire
US20190390030A1 (en) * 2018-06-26 2019-12-26 O2 Partners, Llc Hybrid polyurethane foam and methods of manufacture
EP3450287B1 (fr) 2017-08-29 2020-05-27 Ergon International GmbH Selle de bicyclette
USD885719S1 (en) 2018-08-29 2020-06-02 Puma SE Shoe
US10674788B2 (en) 2015-09-24 2020-06-09 Nike, Inc. Particulate foam with other cushioning
US20200239620A1 (en) * 2019-01-24 2020-07-30 The University Of Akron Glycerol containing polyurethanes and polyurethane nanocomposites
USD891738S1 (en) 2018-08-29 2020-08-04 Puma SE Shoe
USD891739S1 (en) 2018-08-29 2020-08-04 Puma SE Shoe
JPWO2019073607A1 (ja) * 2017-10-13 2020-08-06 株式会社アシックス 靴底用部材及び靴
US10864676B2 (en) 2017-06-01 2020-12-15 Nike, Inc. Methods of manufacturing articles utilizing foam particles
CN112126112A (zh) * 2020-09-18 2020-12-25 浙江映甫防护科技有限公司 一种低密度高抗冲防护材料的制备方法
US20210017326A1 (en) * 2018-03-13 2021-01-21 Basf Se Thermoplastic polyurethane from recycled raw materials
USD913647S1 (en) 2018-08-29 2021-03-23 Puma SE Shoe
EP3747297A4 (fr) * 2018-01-31 2021-03-31 ASICS Corporation Élément semelle de chaussure et chaussures
US11013292B2 (en) 2018-09-28 2021-05-25 Puma SE Article of footwear having a sole structure
US11020922B2 (en) 2018-07-27 2021-06-01 Adidas Ag Footwear with padding and midsole structures and the method of making the same
US20210163703A1 (en) * 2018-04-20 2021-06-03 Basf Se Foams based on thermoplastic elastomers
US20210189087A1 (en) * 2018-04-20 2021-06-24 Basf Se Foams based on thermoplastic elastomers
US11155009B2 (en) 2018-05-21 2021-10-26 O2 Partners, Llc Biodegradable and industrially compostable injection moulded microcellular flexible foams, and a method of manufacturing the same
US20220118745A1 (en) * 2020-10-19 2022-04-21 Tetro Ltd. Hybrid structure having suspension quality
US11401396B2 (en) 2018-12-06 2022-08-02 Nike, Inc. Methods of manufacturing articles utilizing foam particles
WO2022189447A1 (fr) 2021-03-12 2022-09-15 Basf Se Strobel pour un article chaussant, article chaussant et procédé de fabrication de l'article chaussant
US11465377B2 (en) 2018-05-21 2022-10-11 O2 Partners, Llc Biodegradable, industrially compostable, and recyclable injection molded microcellular flexible foams
US11589638B2 (en) 2017-10-13 2023-02-28 Asics Corporation Outsole and shoe
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics
US11607009B2 (en) 2019-07-25 2023-03-21 Nike, Inc. Article of footwear
US11617413B2 (en) 2019-11-19 2023-04-04 Nike, Inc. Methods of manufacturing articles having foam particles
US11622600B2 (en) 2019-07-25 2023-04-11 Nike, Inc. Article of footwear
USD984813S1 (en) 2021-01-29 2023-05-02 O2 Partners, Llc Textile
US11697721B2 (en) 2018-01-31 2023-07-11 Asics Corporation Method for producing resin molded article and shoe sole member
US11744321B2 (en) 2019-07-25 2023-09-05 Nike, Inc. Cushioning member for article of footwear and method of making
USD1000097S1 (en) 2021-04-22 2023-10-03 O2 Partners, Llc Shoe
US11814566B2 (en) 2020-07-13 2023-11-14 L&P Property Management Company Thermally conductive nanomaterials in flexible foam
US11912843B2 (en) 2020-11-16 2024-02-27 O2 Partners, Llc Recyclable, biodegradable, and industrially compostable extruded foams, and methods of manufacturing the same
US11925234B2 (en) 2018-09-28 2024-03-12 Puma SE Article of footwear having an upper assembly
US11945904B2 (en) 2017-12-20 2024-04-02 Basf Se Flexible polyurethane foams

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027030B (zh) 2008-03-14 2013-11-27 巴斯夫欧洲公司 粗孔聚氨酯弹性体
DE102009015233A1 (de) * 2009-04-01 2010-10-14 Tesa Se Verfahren zur Herstellung eines geschäumten Massesystems
PT2336223E (pt) * 2009-12-08 2012-05-07 Recticel Processo para a preparação de espuma flexível de poliuretano e espuma obtida por este processo
JP5684282B2 (ja) 2009-12-16 2015-03-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリエステルポリオールの製造方法
CN101787107B (zh) * 2010-02-21 2011-11-30 中国人民解放军63975部队 一种吸油性聚氨酯泡沫材料
DE102011108744B4 (de) * 2011-07-28 2014-03-13 Puma SE Verfahren zur Herstellung einer Sohle oder eines Sohlenteils eines Schuhs
DE102012206094B4 (de) 2012-04-13 2019-12-05 Adidas Ag Sohlen für Sportschuhe, Schuhe und Verfahren zur Herstellung einer Schuhsohle
DE102013002519B4 (de) 2013-02-13 2016-08-18 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
DE102013202306B4 (de) 2013-02-13 2014-12-18 Adidas Ag Sohle für einen Schuh
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
US9610746B2 (en) 2013-02-13 2017-04-04 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
DE102013022415B4 (de) 2013-02-13 2024-05-16 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
DE102013108053A1 (de) 2013-07-26 2015-01-29 Kurtz Gmbh Verfahren und Vorrichtung zur Herstellung eines Partikelschaumstoffteils
EP2958727B1 (fr) 2013-02-20 2018-09-05 Kurtz GmbH Procédé et dispositif pour produire une pièce en mousse particulaire
USD740004S1 (en) 2013-04-12 2015-10-06 Adidas Ag Shoe
USD776410S1 (en) 2013-04-12 2017-01-17 Adidas Ag Shoe
CN103709726B (zh) * 2013-12-17 2016-04-20 美瑞新材料股份有限公司 挤出发泡热塑性聚氨酯弹性体珠粒及其制备方法
CN103642200B (zh) * 2013-12-20 2016-01-06 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯珠粒及其制备方法
CN103804890B (zh) * 2014-02-18 2016-01-27 山东美瑞新材料有限公司 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
CN103804889B (zh) * 2014-02-18 2016-01-27 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯粒子及其制备方法和应用
KR102350868B1 (ko) 2014-04-30 2022-01-14 바스프 에스이 폴리우레탄 코팅을 지닌 폴리우레탄 비드 폼
DE102014215897B4 (de) 2014-08-11 2016-12-22 Adidas Ag adistar boost
DE102014216115B4 (de) 2014-08-13 2022-03-31 Adidas Ag Gemeinsam gegossene 3D Elemente
DE102015202013B4 (de) 2015-02-05 2019-05-09 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils, Kunststoffformteil und Schuh
JP6679363B2 (ja) 2015-03-23 2020-04-15 アディダス アーゲー ソールおよびシューズ
DE102015206486B4 (de) 2015-04-10 2023-06-01 Adidas Ag Schuh, insbesondere Sportschuh, und Verfahren zur Herstellung desselben
DE102015206900B4 (de) 2015-04-16 2023-07-27 Adidas Ag Sportschuh
DE102015209795B4 (de) 2015-05-28 2024-03-21 Adidas Ag Ball und Verfahren zu dessen Herstellung
TW201736423A (zh) * 2015-09-11 2017-10-16 三晃股份有限公司 發泡熱塑性聚氨基甲酸酯及其微波成型體
USD783264S1 (en) 2015-09-15 2017-04-11 Adidas Ag Shoe
CN105599209A (zh) * 2015-12-09 2016-05-25 东莞东辉鞋材制品有限公司 一种高回弹性鞋底的制作方法
CN105500585B (zh) * 2015-12-22 2017-10-17 丁荣誉 一种pu爆米花鞋材的生产设备
CN105476172A (zh) * 2015-12-22 2016-04-13 丁荣誉 一种pu爆米花鞋底及一种pu爆米花鞋材的制备工艺
CN105795595B (zh) * 2016-03-28 2018-06-29 东莞市天强鞋材有限公司 高回弹鞋垫及其制造方法
CN105639837A (zh) * 2016-03-29 2016-06-08 丁荣誉 覆膜爆米花聚氨酯鞋材及其生产工艺
CN106579653A (zh) * 2016-04-07 2017-04-26 明卫国 一种tpu弹性体与pu混合体制成的保健按摩鞋垫
CN106009028B (zh) * 2016-05-19 2017-09-29 晋江国盛新材料科技有限公司 一种彩色或双色tpu发泡珠粒粘结成型体的制备方法
DE102016209044B4 (de) 2016-05-24 2019-08-29 Adidas Ag Sohlenform zum Herstellen einer Sohle und Anordnung einer Vielzahl von Sohlenformen
DE102016209045B4 (de) 2016-05-24 2022-05-25 Adidas Ag Verfahren und vorrichtung zum automatischen herstellen von schuhsohlen, sohlen und schuhe
DE102016209046B4 (de) 2016-05-24 2019-08-08 Adidas Ag Verfahren zur herstellung einer schuhsohle, schuhsohle, schuh und vorgefertigte tpu-gegenstände
JP2019516854A (ja) * 2016-05-25 2019-06-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 熱可塑性エラストマーで製造された中空粒子及び多孔質成形体
USD840137S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD840136S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD852475S1 (en) 2016-08-17 2019-07-02 Adidas Ag Shoe
WO2018041621A1 (fr) 2016-08-30 2018-03-08 Rti Sports Gmbh Selle de bicyclette, rembourrage de selle et procédé de fabrication d'une selle de bicyclette ou d'un rembourrage
JP1582717S (fr) 2016-09-02 2017-07-31
CN106497008A (zh) * 2016-10-18 2017-03-15 宁波格林美孚新材料科技有限公司 一种超轻 pu 发泡复合片材及其制备方法
CN106626202A (zh) * 2017-01-16 2017-05-10 美瑞新材料股份有限公司 一种膨胀型热塑性聚氨酯弹性体制品的制备方法
DE102017205830B4 (de) 2017-04-05 2020-09-24 Adidas Ag Verfahren für die Nachbehandlung einer Vielzahl einzelner expandierter Partikel für die Herstellung mindestens eines Teils eines gegossenen Sportartikels, Sportartikel und Sportschuh
USD899061S1 (en) 2017-10-05 2020-10-20 Adidas Ag Shoe
CN111263787A (zh) 2017-10-26 2020-06-09 巴斯夫欧洲公司 使弹性体颗粒泡沫染色的方法
CN110317446A (zh) 2018-03-30 2019-10-11 巴斯夫欧洲公司 含有聚氨酯基体和发泡热塑性弹性体颗粒的非充气轮胎
KR20210005658A (ko) * 2018-04-20 2021-01-14 바스프 에스이 열가소성 엘라스토머를 베이스로 하는 폼
CN109456589A (zh) * 2018-09-03 2019-03-12 美瑞新材料股份有限公司 一种实心轮胎
CN109337343A (zh) * 2018-09-03 2019-02-15 美瑞新材料股份有限公司 一种高载荷缓冲材料及其制备方法
CN110003423B (zh) * 2019-03-20 2022-03-11 浙江华峰新材料有限公司 改性异氰酸酯预聚体、聚氨酯组合料及其制备方法和应用
CN110240795A (zh) * 2019-05-16 2019-09-17 美瑞新材料股份有限公司 一种嵌段聚醚酰胺弹性体发泡颗粒与聚氨酯的复合材料及其制备方法和应用
IT201900012666A1 (it) 2019-07-23 2021-01-23 Materias S R L Perline espanse con gradienti di morfologia e/o densità, e schiume sinterizzate da esse ottenute
CN115175583A (zh) * 2020-02-28 2022-10-11 巴斯夫欧洲公司 用于在eTPU上模内组装外鞋底的TPU
WO2022043428A1 (fr) * 2020-08-28 2022-03-03 Basf Se Granulés expansés faits de polyuréthane thermoplastique
EP4015211A1 (fr) 2020-12-15 2022-06-22 Basf Se Procédé pour générer des tapis de particules à partir de systèmes pu réactifs
US20240209173A1 (en) 2021-04-22 2024-06-27 Basf Se Process for preparing coated shaped bodies and their use
WO2024083787A1 (fr) 2022-10-18 2024-04-25 Basf Se Particules enrobées stables au stockage et leur préparation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304273A (en) * 1963-02-06 1967-02-14 Stamberger Paul Method of preparing polyurethanes from liquid, stable, reactive, filmforming polymer/polyol mixtures formed by polymerizing an ethylenically unsaturated monomer in a polyol
US3383351A (en) * 1961-11-28 1968-05-14 Paul Stamberger Polyurethanes, reactive solutions and methods and their production
US3523093A (en) * 1961-11-28 1970-08-04 Paul Stamberger Method of producing polyurethanes by reacting polyisocyanate with a preformed polymer resulting from polymerization of ethylenically unsaturated monomers
US3878133A (en) * 1972-08-17 1975-04-15 Dow Chemical Co Cushioning and materials therefor
US4436869A (en) * 1981-04-04 1984-03-13 Elastogran Gmbh Production of closed-cell polyurethane moldings having a densified surface zone
US4764537A (en) * 1986-09-19 1988-08-16 Basf Aktiengesellschaft Internal mold release agents, their use for preparing molded articles using polyisocyanate-addition polymerization, and a process for preparing molded articles
US5506275A (en) * 1995-05-15 1996-04-09 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles
JPH08113664A (ja) * 1994-10-18 1996-05-07 Sekisui Plastics Co Ltd 熱可塑性ポリウレタン発泡成形体及びその製造方法
US6605650B1 (en) * 2002-03-11 2003-08-12 Hunter Paine Enterprises, Llc Process of making lightweight, rigid polyurethane foam
US20030181536A1 (en) * 2002-03-11 2003-09-25 Hunter Paine Enterprises, Llc Process of making rigid polyurethane foam
US20040138318A1 (en) * 2003-01-09 2004-07-15 Mcclelland Alan Nigel Robert Foamed thermoplastic polyurethanes

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE111394C (fr)
DE1152536B (de) 1962-03-30 1963-08-08 Bayer Ag Verfahren zur Herstellung Urethangruppen enthaltender Schaumstoffe
DE1152537B (de) 1962-06-02 1963-08-08 Bayer Ag Verfahren zur Herstellung von homogenen, Urethangruppen aufweisenden Kunststoffen
US3503840A (en) * 1968-04-24 1970-03-31 Du Pont Composite cellular cushioning structures
US3594335A (en) 1969-06-12 1971-07-20 Nat Gypsum Co Shaped bodies of bonded rigid polyurethane foam particles
DE2007248A1 (de) 1970-02-18 1971-09-02 Hampe Willy, 6070 Langen Sprührohr Vorrichtung zum Anbringen an einer Einblatt Scheibenwischer Vorrichtung fur Kraftfahrzeuge
DE2021682A1 (de) 1970-05-02 1971-11-25 Berleburger Schaumstoffwerk Auf Unterboeden aufbringbare,aushaertende,eine Unebenheiten derselben ausgleichende,elastische Schicht bildende Masse
US3662043A (en) 1970-05-11 1972-05-09 Dow Chemical Co Process for making a polyurethane foam/expandable thermoplastic particle composite with high frequency electrical heating
ES392800A1 (es) 1970-07-02 1974-05-01 Gen Foam Products Un metodo de fabricar un producto moldeado.
CA999995A (en) 1971-04-02 1976-11-16 Dean W. Criddle Resilient polyurethane surfaces
BE789620A (fr) 1971-11-12 1973-02-01 Steeger Wilhelm Guidage de fuseau pour metiers a tresser
DE2262250A1 (de) 1972-12-20 1974-07-04 Basf Ag Verfahren zur herstellung von kombinierten weichelastischen schaumstoffen
DE2821001A1 (de) 1978-05-12 1979-11-15 Bayer Ag Verfahren zur herstellung von schichtstoffen
AT366565B (de) 1979-11-08 1982-04-26 Schaefer Philipp Formteil aus polyurethan und verfahren zur herstellung desselben
US4451583A (en) 1982-01-26 1984-05-29 Olin Corporation Recycling of flexible polyurethane foam scrap
DE3405875A1 (de) 1984-02-18 1985-08-22 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von zelligen oder kompakten polyurethan-polyharnstoff-formkoerpern mit verbesserten entformungseigenschaften sowie innere formtrennmittel fuer das polyisocyanat-polyadditionsverfahren
DE3607447A1 (de) 1986-03-07 1987-09-10 Basf Ag Verfahren zur herstellung von formkoerpern mit einem zelligen kern und einer verdichteten randzone mit verbesserten entformungseigenschaften
ES8800697A1 (es) 1986-06-10 1987-12-01 Hoocker Sa Procedimiento para la obtencion de dispersiones de polimeros en poliesteres hidroxilados.
DE3835193A1 (de) 1988-10-15 1990-04-19 Basf Ag Verfahren zur herstellung von formkoerpern mit einer verdichteten randzone und einem zelligen kern, vorzugsweise schuhsohlen
US5026726A (en) 1989-12-11 1991-06-25 The University Of New Mexico Gossylic iminolactones and gossylic lactones and their anti-viral activities
GB2244714B (en) 1990-05-31 1993-10-06 Sanyo Chemical Ind Ltd Foamed polyurethane-forming composition,foamed polyurethane and process for making the same
DE4114213A1 (de) 1991-05-01 1992-11-05 Bayer Ag Gelmassen, sowie deren herstellung und verwendung
DE4209711A1 (de) 1992-03-25 1993-09-30 Bayer Ag Expandierbare, treibmittelhaltige Polyurethan-Pulverzubereitungen sowie ihre Verwendung zur Herstellung geschäumter Polyurethan-Formkörper
US5260343A (en) 1993-01-04 1993-11-09 Basf Corporation Low density flexible integral skin polyurethane systems using thermoplastic hydrocarbon microspheres and water as co-blowing agents
DE4307648A1 (de) 1993-03-11 1994-09-15 Basf Ag Schaumstoffe auf Basis thermoplastischer Polyurethane sowie expandierbare, partikelförmige, thermoplastische Polyurethane, insbesondere geeignet zur Herstellung von Schaumstoff-Formkörpern
AU7731594A (en) 1993-09-24 1995-04-10 Urethane Technologies, Inc. Process for forming integral skin micorcellular structures
DE59408842D1 (de) 1993-11-29 1999-11-25 Greiner & Soehne C A Formteil aus Kunststoffschaum sowie Verfahren und Vorrichtung zu dessen Herstellung
US5702729A (en) 1995-12-07 1997-12-30 The Procter & Gamble Company Methods for the prevention and treatment of gastrointestinal disorders caused or mediated by algae or cyanobacteria
DE19618392A1 (de) 1996-05-08 1997-11-13 Basf Ag Verfahren zur Herstellung von elastischen Polyurethan-Formkörpern mit kompakter Oberfläche und zelligem Kern
JP4147637B2 (ja) 1998-09-21 2008-09-10 東ソー株式会社 ポリウレタン製造用の触媒
EP1165674B1 (fr) 1999-01-26 2002-08-07 Huntsman International Llc Polyurethanes thermoplastiques expanses
DE19909978A1 (de) * 1999-03-06 2000-09-07 Bayer Ag Die Verwendung von hydrophilen Polyester-Polyurethan-Schaumstoffen bei der Herstellung von Verbundstoffen für die Fahrzeuginnenausstattung
DE10024097A1 (de) 2000-05-18 2001-11-29 Otto Bock Orthopaedische Ind G Verbundwerkstoff
GB0016116D0 (en) * 2000-06-30 2000-08-23 Crompton J R Plc Beverage infusion packages and materials therefor
WO2002077083A2 (fr) * 2001-03-27 2002-10-03 Huntsman International Llc Polymerisation in-situ d'adhesifs pour mousses collees
US6872270B2 (en) 2001-04-19 2005-03-29 Textile Rubber & Chemical Co. Bubble pack cushioned composite, method of making and article made therefrom
DE602004004561T2 (de) 2003-03-18 2007-11-15 Tosoh Corp. Katalysatorzusammensetzung für die Herstellung von Polyurethanharz und Verfahren zu ihrer Herstellung
DE10340539A1 (de) * 2003-09-01 2005-03-24 Basf Ag Verfahren zur Herstellung von expandierten thermoplastischen Elastomeren
DE10352876A1 (de) 2003-11-10 2005-06-23 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE102004001204A1 (de) 2004-01-06 2005-09-08 Basf Ag Verfahren zur Herstellung von Schuhen
WO2005098763A2 (fr) 2004-04-06 2005-10-20 Giesecke & Devrient Gmbh Dispositif et procede pour traiter des billets de banque
CN101128303A (zh) * 2004-08-12 2008-02-20 太平洋战略咨询有限公司 形成复合材料的方法
DE102004047524A1 (de) 2004-09-28 2006-03-30 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
JP4737967B2 (ja) 2004-10-13 2011-08-03 株式会社イノアックコーポレーション ポリウレタン発泡体及びその製造方法
ITPD20040251A1 (it) 2004-10-14 2005-01-14 A P I Applic Plastiche Indust Particolato elastomerizzato da utilizzarsi come intasamento per manti erbosi sintetici
ITPD20050213A1 (it) 2005-07-12 2007-01-13 A P I Applic Plastiche Indus T Granulo in materia plastica da utilizzarsi come intasamento per manti erbosi sintetici
CN115197462A (zh) 2006-01-18 2022-10-18 巴斯夫欧洲公司 基于热塑性聚氨酯的泡沫
US20090318607A1 (en) 2006-11-15 2009-12-24 Basf Se Layer materials with improved adhesion comprising elastic polyurethane binder and plastics granules

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383351A (en) * 1961-11-28 1968-05-14 Paul Stamberger Polyurethanes, reactive solutions and methods and their production
US3523093A (en) * 1961-11-28 1970-08-04 Paul Stamberger Method of producing polyurethanes by reacting polyisocyanate with a preformed polymer resulting from polymerization of ethylenically unsaturated monomers
US3304273A (en) * 1963-02-06 1967-02-14 Stamberger Paul Method of preparing polyurethanes from liquid, stable, reactive, filmforming polymer/polyol mixtures formed by polymerizing an ethylenically unsaturated monomer in a polyol
US3878133A (en) * 1972-08-17 1975-04-15 Dow Chemical Co Cushioning and materials therefor
US4436869A (en) * 1981-04-04 1984-03-13 Elastogran Gmbh Production of closed-cell polyurethane moldings having a densified surface zone
US4764537A (en) * 1986-09-19 1988-08-16 Basf Aktiengesellschaft Internal mold release agents, their use for preparing molded articles using polyisocyanate-addition polymerization, and a process for preparing molded articles
JPH08113664A (ja) * 1994-10-18 1996-05-07 Sekisui Plastics Co Ltd 熱可塑性ポリウレタン発泡成形体及びその製造方法
US5506275A (en) * 1995-05-15 1996-04-09 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles
US6605650B1 (en) * 2002-03-11 2003-08-12 Hunter Paine Enterprises, Llc Process of making lightweight, rigid polyurethane foam
US20030181536A1 (en) * 2002-03-11 2003-09-25 Hunter Paine Enterprises, Llc Process of making rigid polyurethane foam
US20040138318A1 (en) * 2003-01-09 2004-07-15 Mcclelland Alan Nigel Robert Foamed thermoplastic polyurethanes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Abstract of JP 08-113664. See above for date and inventor. *
Translation of JP 08-113664. See above for date and inventor. *

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217804A1 (en) * 2005-10-27 2008-09-11 Polimeri Eupopa S.P.A. Process for the Cutting of Thermoplastic Polymers Downstream of a Water-Ring Die
USD691401S1 (en) 2009-03-06 2013-10-15 Noel Group, Llc Mattress bed cushion
US8356373B2 (en) 2009-03-06 2013-01-22 Noel Group Llc Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
USD692691S1 (en) 2009-03-06 2013-11-05 Noel Group Llc Mattress bed cushion
USD692690S1 (en) 2009-03-06 2013-11-05 Noel Group Llc Mattress bed cushion
US20120065285A1 (en) * 2009-05-26 2012-03-15 Basf Se Water as a propellant for thermoplastics
US10183426B2 (en) * 2009-05-26 2019-01-22 Basf Se Water as a propellant for thermoplastics
US8658264B2 (en) 2009-06-25 2014-02-25 Nomaco Inc. Self-adjusting insulation, including insulation particularly suited for pipe or duct
US20150197610A1 (en) * 2010-02-26 2015-07-16 Peterson Chemical Technology, Inc. Polyurethane Gel Particles, Methods and Use in Flexible Foams
US10113043B2 (en) * 2010-02-26 2018-10-30 Twin Brook Capital Partners, Llc Polyurethane gel particles, methods and use in flexible foams
US20190169390A1 (en) * 2010-02-26 2019-06-06 Peterson Chemical Technology Llc Polyurethane Gel Particles, Methods and Use in Flexible Foams
US10759919B2 (en) * 2010-02-26 2020-09-01 L&P Property Management Company Polyurethane gel particles, methods and use in flexible foams
USD693145S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD688492S1 (en) 2010-03-03 2013-08-27 Noel Group Llc Mattress bed cushion
USD694553S1 (en) 2010-03-03 2013-12-03 Noel Group Llc Mattress bed cushion
USD693144S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD693148S1 (en) 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
KR101923237B1 (ko) 2010-11-16 2018-11-28 바스프 에스이 신발 밑창에서의 신규한 댐핑 부재
US10165823B2 (en) 2010-11-16 2019-01-01 Basf Se Damping element in shoe soles
CN103210010A (zh) * 2010-11-16 2013-07-17 巴斯夫欧洲公司 新的鞋底减震元件
WO2012065926A1 (fr) * 2010-11-16 2012-05-24 Basf Se Nouvel élément amortisseur dans les semelles de chaussures
US9894957B2 (en) 2010-11-16 2018-02-20 Basf Se Damping element in shoe soles
US10240049B2 (en) 2011-02-21 2019-03-26 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
USD692692S1 (en) 2011-04-29 2013-11-05 Noel Group Llc Mattress bed cushion
CN103183805A (zh) * 2011-12-28 2013-07-03 北京中能江龙科技开发有限公司 一种新型发泡热塑性聚氨酯弹性体材料的制备方法
USD691400S1 (en) 2012-02-10 2013-10-15 Nomaco Inc. Stackable base for mattress assembly
US20150174808A1 (en) * 2012-04-13 2015-06-25 Basf Se Method for producing expanded granules
US10005218B2 (en) * 2012-04-13 2018-06-26 Basf Se Method for producing expanded granules
USD694552S1 (en) 2012-04-27 2013-12-03 Noel Group Llc Mattress bed cushion
USD693146S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD692693S1 (en) 2012-04-27 2013-11-05 Noel Group Llc Mattress bed cushion
USD693147S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD693149S1 (en) 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
US9157566B2 (en) 2012-05-11 2015-10-13 Nomaco Inc. Insulation systems employing expansion features to insulate elongated containers subject to extreme temperature fluctuations, and related components and methods
USD697337S1 (en) 2012-07-03 2014-01-14 Nomaco, Inc. Stackable base for mattress assembly
WO2014011537A1 (fr) 2012-07-10 2014-01-16 Nike International Ltd Procédé de moulage par compression d'une mousse à perles pour produit à faible densité
US9682522B2 (en) 2012-07-10 2017-06-20 Nike, Inc. Low density foamed article made by bead foam compression molding method
US8961844B2 (en) 2012-07-10 2015-02-24 Nike, Inc. Bead foam compression molding method for low density product
USD690536S1 (en) 2012-07-26 2013-10-01 Nomaco Inc. Motion isolation insulator pad
KR102096984B1 (ko) 2012-08-09 2020-04-03 바스프 에스이 조합 발포체
US9714332B2 (en) 2012-08-09 2017-07-25 Basf Se Combination foam
KR20150042242A (ko) * 2012-08-09 2015-04-20 바스프 에스이 조합 발포체
USD688069S1 (en) 2012-09-28 2013-08-20 Noel Group Llc Mattress bed cushion
USD692694S1 (en) 2012-09-28 2013-11-05 Noel Group Llc Mattress bed cushion
USD694041S1 (en) 2012-09-28 2013-11-26 Noel Group Llc Mattress bed cushion
EP2716153A1 (fr) * 2012-10-02 2014-04-09 Basf Se Garniture de sol d'écurie à base de mousse à particules de polyuréthane thermoplastique expansé
WO2014053343A1 (fr) 2012-10-02 2014-04-10 Basf Se Revêtement de sol d'écurie en mousse de polyuréthanne thermoplastique expansée
USD707468S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
USD701713S1 (en) 2012-11-09 2014-04-01 Noel Group, Llc Mattress bed cushion
USD709301S1 (en) 2012-11-09 2014-07-22 Noel Group Llc Mattress bed cushion
USD707467S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
US10442910B2 (en) 2013-02-12 2019-10-15 Nike, Inc. Bead foam compression molding method with in situ steam generation for low density product
US9834656B2 (en) 2013-02-12 2017-12-05 Nike International Ltd. Bead foam compression molding method with in situ steam generation for low density product
US9144956B2 (en) 2013-02-12 2015-09-29 Nike, Inc. Bead foam compression molding method with in situ steam generation for low density product
WO2014126799A1 (fr) 2013-02-12 2014-08-21 Nike International Ltd. Procédé de moulage par compression de billes de mousse avec génération in situ de vapeur pour obtenir un produit basse densité
EP3132703B1 (fr) 2013-02-13 2019-09-18 adidas AG Élément de rembourrage pour vêtements de sport
EP3243865A1 (fr) 2013-03-15 2017-11-15 NIKE Innovate C.V. Procédé de fabrication des mousses décoratives
US10189192B2 (en) 2013-03-15 2019-01-29 Nike, Inc. Decorative foam and method
WO2014150124A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Procédé de moussage d'élastomères thermoplastiques
WO2014150120A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Article ayant un amortissement controle
WO2014150122A2 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Mousse décorative et procédé associé
WO2014150119A1 (fr) 2013-03-15 2014-09-25 Nike International Ltd. Élastomères thermoplastiques modifiés pour une meilleure compatibilité avec les fluides supercritiques
US10045633B2 (en) 2013-04-26 2018-08-14 Noel Group Llc Cushioning assemblies with thermoplastic elements encapsulated in thermoset providing customizable support and airflow, and related methods
WO2014195211A1 (fr) * 2013-06-04 2014-12-11 Basf Se Élastomères de polyuréthane thermoplastique mous et leur procédé de préparation
WO2015017090A1 (fr) 2013-08-02 2015-02-05 Nike Innovate C.V. Procédé de production d'article thermoplastique alvéolaire et article thermoplastique alvéolaire
USD704962S1 (en) 2013-09-09 2014-05-20 Noel Group Llc Mattress bed cushion
US10273368B2 (en) * 2013-09-26 2019-04-30 Ross Technology LLC Flexible superhydrophobic and/or oleophobic polyurethane coatings
US20160208111A1 (en) * 2013-09-26 2016-07-21 Ross Technology Corporation Flexible Superhydrophobic and/or Oleophobic Polyurethane Coatings
EP3055353B1 (fr) 2013-10-11 2017-08-02 Basf Se Procédé de fabrication de particules d'élastomère thermoplastique expansées
US10392488B2 (en) 2013-10-11 2019-08-27 Basf Se Method for producing expanded thermoplastic elastomer particles
US9713356B2 (en) 2013-10-28 2017-07-25 Taylor Made Golf Company, Inc. Golf shoe outsoles
AU2015254624B2 (en) * 2014-04-30 2019-08-08 Sika Technology Ag 3D fabric for floating floor constructions
US10753087B2 (en) * 2014-04-30 2020-08-25 Sika Technology Ag 3D fabric for floating floor constructions
US20170044766A1 (en) * 2014-04-30 2017-02-16 Sika Technology Ag 3d fabric for floating floor constructions
US9713357B2 (en) 2014-07-15 2017-07-25 Taylor Made Golf Company, Inc. Asymmetric shoes
EP2974613A1 (fr) 2014-07-15 2016-01-20 Taylor Made Golf Company, INC. Paire de chaussures asymétrique
CN104212403A (zh) * 2014-09-28 2014-12-17 东莞宏石功能材料科技有限公司 一种高硬度的聚氨酯热熔胶及其制备方法
US20160302517A1 (en) * 2015-04-17 2016-10-20 Wolverine World Wide, Inc. Sole assembly for an article of footwear
US9743709B2 (en) 2015-06-03 2017-08-29 Taylor Made Golf Company, Inc. Wrap-around wire support for shoe
EP3420838A1 (fr) 2015-06-03 2019-01-02 adidas AG Support avec fil à enrouler pour chaussure
US9788599B2 (en) 2015-06-03 2017-10-17 Taylor Made Golf Company, Inc. Torsion control bridge for shoe
US11324281B2 (en) 2015-09-24 2022-05-10 Nike, Inc. Particulate foam stacked casings
US10674788B2 (en) 2015-09-24 2020-06-09 Nike, Inc. Particulate foam with other cushioning
US11317675B2 (en) 2015-09-24 2022-05-03 Nike, Inc. Particulate foam with flexible casing
US11490681B2 (en) 2015-09-24 2022-11-08 Nike, Inc. Particulate foam with other cushioning
US11096444B2 (en) 2015-09-24 2021-08-24 Nike, Inc. Particulate foam with partial restriction
US11229260B2 (en) 2015-09-24 2022-01-25 Nike, Inc. Particulate foam in coated carrier
US11304475B2 (en) 2015-09-24 2022-04-19 Nike, Inc. Particulate foam with partial restriction
WO2017216209A1 (fr) 2016-06-15 2017-12-21 Basf Se Dispersion de polyamide dans un polyol et sa préparation
JP7189768B2 (ja) 2016-07-15 2022-12-14 松本油脂製薬株式会社 樹脂組成物およびその利用
WO2018012415A1 (fr) * 2016-07-15 2018-01-18 松本油脂製薬株式会社 Composition de résine et utilisation correspondante
JPWO2018012415A1 (ja) * 2016-07-15 2019-05-09 松本油脂製薬株式会社 樹脂組成物およびその利用
JP2018083918A (ja) * 2016-11-25 2018-05-31 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
US11246373B2 (en) 2017-01-31 2022-02-15 Asics Corporation Shoe sole member and shoe
WO2018142467A1 (fr) * 2017-01-31 2018-08-09 株式会社アシックス Élément semelle et chaussure
EP3578068A4 (fr) * 2017-01-31 2020-01-15 ASICS Corporation Élément semelle et chaussure
WO2018206657A1 (fr) 2017-05-10 2018-11-15 Basf Se Revêtements de sol préparés à partir de composites comprenant des particules d'élastomère thermoplastique expansé
US11577486B2 (en) 2017-05-10 2023-02-14 Basf Se Floorings prepared from composites comprising expanded thermoplastic elastomer particles
US10974447B2 (en) 2017-06-01 2021-04-13 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US10864676B2 (en) 2017-06-01 2020-12-15 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11884005B2 (en) 2017-06-01 2024-01-30 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11241826B2 (en) 2017-06-01 2022-02-08 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11806924B2 (en) 2017-06-01 2023-11-07 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US10946583B2 (en) 2017-06-01 2021-03-16 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11833747B2 (en) 2017-06-01 2023-12-05 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11090863B2 (en) 2017-06-01 2021-08-17 Nike, Inc. Methods of manufacturing articles utilizing foam particles
EP3450287B1 (fr) 2017-08-29 2020-05-27 Ergon International GmbH Selle de bicyclette
EP3695741A4 (fr) * 2017-10-13 2020-08-19 ASICS Corporation Élément pour semelles de chaussure et chaussure
JPWO2019073607A1 (ja) * 2017-10-13 2020-08-06 株式会社アシックス 靴底用部材及び靴
US11589638B2 (en) 2017-10-13 2023-02-28 Asics Corporation Outsole and shoe
US11445785B2 (en) 2017-10-13 2022-09-20 Asics Corporation Shoe sole member and shoe
US11945904B2 (en) 2017-12-20 2024-04-02 Basf Se Flexible polyurethane foams
US11697721B2 (en) 2018-01-31 2023-07-11 Asics Corporation Method for producing resin molded article and shoe sole member
EP3747297A4 (fr) * 2018-01-31 2021-03-31 ASICS Corporation Élément semelle de chaussure et chaussures
US20210017326A1 (en) * 2018-03-13 2021-01-21 Basf Se Thermoplastic polyurethane from recycled raw materials
US11999816B2 (en) * 2018-03-13 2024-06-04 Basf Se Thermoplastic polyurethane from recycled raw materials
WO2019204358A1 (fr) * 2018-04-16 2019-10-24 Columbia Sportswear North America, Inc. Mousse composite pour semelle intermédiaire
US11857024B2 (en) 2018-04-16 2024-01-02 Columbia Sportswear North America, Inc. Composite foam for midsole
US20210189087A1 (en) * 2018-04-20 2021-06-24 Basf Se Foams based on thermoplastic elastomers
US20210163703A1 (en) * 2018-04-20 2021-06-03 Basf Se Foams based on thermoplastic elastomers
US11833724B2 (en) 2018-05-21 2023-12-05 O2 Partners, Llc Biodegradable and industrially compostable injection molded microcellular flexible foams, and a method of manufacturing the same
US11413799B2 (en) 2018-05-21 2022-08-16 O2 Partners, Llc Biodegradable and industrially compostable injection molded microcellular flexible foams, and a method of manufacturing the same
US11155009B2 (en) 2018-05-21 2021-10-26 O2 Partners, Llc Biodegradable and industrially compostable injection moulded microcellular flexible foams, and a method of manufacturing the same
US11465377B2 (en) 2018-05-21 2022-10-11 O2 Partners, Llc Biodegradable, industrially compostable, and recyclable injection molded microcellular flexible foams
US11718055B2 (en) 2018-05-21 2023-08-08 O2 Partners, Llc Biodegradable, industrially compostable, and recyclable injection molded microcellular flexible foams
US11565448B2 (en) 2018-05-21 2023-01-31 O2 Partners, Llc Biodegradable and industrially compostable injection molded microcellular flexible foams, and a method of manufacturing the same
DE202018103390U1 (de) * 2018-06-15 2019-09-17 Puma SE Schuh, insbesondere Sportschuh
USD941568S1 (en) 2018-06-26 2022-01-25 O2 Partners, Llc Shoe insole
US20190390030A1 (en) * 2018-06-26 2019-12-26 O2 Partners, Llc Hybrid polyurethane foam and methods of manufacture
US11020922B2 (en) 2018-07-27 2021-06-01 Adidas Ag Footwear with padding and midsole structures and the method of making the same
USD885719S1 (en) 2018-08-29 2020-06-02 Puma SE Shoe
USD913647S1 (en) 2018-08-29 2021-03-23 Puma SE Shoe
USD891739S1 (en) 2018-08-29 2020-08-04 Puma SE Shoe
USD891738S1 (en) 2018-08-29 2020-08-04 Puma SE Shoe
US11925234B2 (en) 2018-09-28 2024-03-12 Puma SE Article of footwear having an upper assembly
US11013292B2 (en) 2018-09-28 2021-05-25 Puma SE Article of footwear having a sole structure
US11732102B2 (en) 2018-12-06 2023-08-22 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11981788B2 (en) 2018-12-06 2024-05-14 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11840615B2 (en) 2018-12-06 2023-12-12 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11401396B2 (en) 2018-12-06 2022-08-02 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US20200239620A1 (en) * 2019-01-24 2020-07-30 The University Of Akron Glycerol containing polyurethanes and polyurethane nanocomposites
US10899869B2 (en) * 2019-01-24 2021-01-26 The University Of Akron Glycerol containing polyurethanes and polyurethane nanocomposites
US11622600B2 (en) 2019-07-25 2023-04-11 Nike, Inc. Article of footwear
US11607009B2 (en) 2019-07-25 2023-03-21 Nike, Inc. Article of footwear
US11744321B2 (en) 2019-07-25 2023-09-05 Nike, Inc. Cushioning member for article of footwear and method of making
US11617413B2 (en) 2019-11-19 2023-04-04 Nike, Inc. Methods of manufacturing articles having foam particles
US11814566B2 (en) 2020-07-13 2023-11-14 L&P Property Management Company Thermally conductive nanomaterials in flexible foam
CN112126112A (zh) * 2020-09-18 2020-12-25 浙江映甫防护科技有限公司 一种低密度高抗冲防护材料的制备方法
US20220118745A1 (en) * 2020-10-19 2022-04-21 Tetro Ltd. Hybrid structure having suspension quality
US11981109B2 (en) * 2020-10-19 2024-05-14 Tetro Ltd. Hybrid structure having suspension quality
US11912843B2 (en) 2020-11-16 2024-02-27 O2 Partners, Llc Recyclable, biodegradable, and industrially compostable extruded foams, and methods of manufacturing the same
USD993600S1 (en) 2021-01-29 2023-08-01 O2 Partners, Llc Shoe insole
USD984813S1 (en) 2021-01-29 2023-05-02 O2 Partners, Llc Textile
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics
WO2022189447A1 (fr) 2021-03-12 2022-09-15 Basf Se Strobel pour un article chaussant, article chaussant et procédé de fabrication de l'article chaussant
USD1000821S1 (en) 2021-04-22 2023-10-10 O2 Partners, Llc Shoe
USD1000084S1 (en) 2021-04-22 2023-10-03 O2 Partners, Llc Shoe
USD1000097S1 (en) 2021-04-22 2023-10-03 O2 Partners, Llc Shoe

Also Published As

Publication number Publication date
ES2692872T3 (es) 2018-12-05
US10501596B2 (en) 2019-12-10
US20210246279A1 (en) 2021-08-12
EP2109637A1 (fr) 2009-10-21
PT2109637T (pt) 2018-10-30
EP2109637B1 (fr) 2018-07-25
SI2109637T1 (sl) 2018-09-28
US20200032022A1 (en) 2020-01-30
HUE040691T2 (hu) 2019-03-28
DK2109637T3 (en) 2018-11-12
US20150252163A1 (en) 2015-09-10
CN101583656A (zh) 2009-11-18
WO2008087078A1 (fr) 2008-07-24
CN101583656B (zh) 2012-09-05
PL2109637T3 (pl) 2019-02-28
CY1120594T1 (el) 2019-12-11

Similar Documents

Publication Publication Date Title
US10501596B2 (en) Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
US9714332B2 (en) Combination foam
US10165823B2 (en) Damping element in shoe soles
KR100426299B1 (ko) 압축형또는기포형폴리우레탄엘라스토머의제조방법및이에적합한이소시아네이트초기중합체
JP2000509423A (ja) 目の密な表面と気泡質の核とを有する弾性ポリウレタン成形体の製造法
PL187086B1 (pl) Sposób wytwarzania sztywnej i elastycznej pianki poliuretanowej
US9023910B2 (en) Low-density polyurethane shoe soles or sole parts with high rebound resilience and low compression set
JP2015507513A (ja) 高反発弾性・低圧縮永久ひずみの低密度ポリウレタン製の靴底または靴底部材
US4837245A (en) Process for the preparation of non-cellular or cellular polyurethane elastomers in the presence of a polyester polyol containing therein titanium and/or tin compounds as catalysts
JP2006519918A (ja) 低アミン放出性ポリウレタンフォーム
JP2010511733A (ja) ポリウレタンフォーム物品
KR101554757B1 (ko) 내부 이형제로서 디알킬 시클로헥산디카르복실레이트를 포함하는 인테그랄 폴리우레탄 폼
US20160145372A1 (en) Hydrolysis-resistant polyurethane moulding
KR101007923B1 (ko) 자동차 플로어매트 흡음재용 폴리우레탄 발포체의 제조방법
CA2976607C (fr) Corps moules en polyurethane ayant une flexibilite elevee a froid
CN116390963A (zh) 用于形成强的含聚氨酯-聚脲的水发泡泡沫的反应性配制剂

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF SE,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRISSOK, FRANK;SCHUETTE, MARKUS;BRAUN, FRANK;SIGNING DATES FROM 20090617 TO 20090623;REEL/FRAME:022927/0368

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION