US20060016333A1 - Air conditioner device with removable driver electrodes - Google Patents

Air conditioner device with removable driver electrodes Download PDF

Info

Publication number
US20060016333A1
US20060016333A1 US11/003,894 US389404A US2006016333A1 US 20060016333 A1 US20060016333 A1 US 20060016333A1 US 389404 A US389404 A US 389404A US 2006016333 A1 US2006016333 A1 US 2006016333A1
Authority
US
United States
Prior art keywords
electrode
driver
housing
electrodes
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/003,894
Other languages
English (en)
Inventor
Charles Taylor
Andrew Parker
Igor Botvinnik
Shek Lau
Gregory Snyder
John Reeves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharper Image Corp
Original Assignee
Sharper Image Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharper Image Corp filed Critical Sharper Image Corp
Priority to US11/003,894 priority Critical patent/US20060016333A1/en
Assigned to SHARPER IMAGE CORPORATION reassignment SHARPER IMAGE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARKER, ANDREW J., SNYDER, GREGORY S., TAYLOR, CHARLES E., REEVES, JOHN PAUL, LAU, SHEK FAI, BOTVINNIK, IGOR Y.
Priority to PCT/US2005/043815 priority patent/WO2006060741A2/en
Publication of US20060016333A1 publication Critical patent/US20060016333A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/22Constructional details of the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention is related generally to a device for conditioning air.
  • HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
  • System 10 includes an array of first (“emitter”) electrodes or conductive surfaces 20 that are preferably spaced-apart symmetrically from an array of second (“collector”) electrodes or conductive surfaces 30 .
  • the positive terminal of a generator such as, for example, pulse generator 40 which outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the first array 20 , and the negative pulse generator terminal is coupled to the second array 30 in this example.
  • a generator such as, for example, pulse generator 40 which outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the first array 20
  • the negative pulse generator terminal is coupled to the second array 30 in this example.
  • second electrodes 30 are preferably symmetrical and elongated in cross-section.
  • the elongated trailing edges on the second electrodes 30 are symmetrically and elongated in cross-section.
  • the elongated trailing edges on the second electrodes 30 provide increased area upon which particulate matter 60 entrained in the airflow can attach. While the electrostatic techniques disclosed by the '801 patent are advantageous over conventional electric fan-filter units, further increased air conditioning efficiency would be advantageous.
  • One method of increasing air conditioning efficiency is to position driver electrodes between the collector electrodes whereby the driver electrodes aid in driving the particulates toward the collector electrodes.
  • FIG. 1A illustrates a plan, cross sectional view, of the electro-kinetic air conditioner system according to the prior art.
  • FIG. 1B illustrates a plan cross sectional view of the electro-kinetic air conditioner system according to the prior art.
  • FIG. 2A illustrates a perspective view of the device in accordance with one embodiment of the present invention.
  • FIG. 2B illustrates a perspective view of the device in FIG. 2A with the removable collector electrode in accordance with one embodiment of the present invention.
  • FIG. 3A illustrates an electrical block diagram of the high voltage power source of one embodiment of the present invention.
  • FIG. 3B illustrates an electrical block diagram of the high voltage power source in accordance with one embodiment of the present invention.
  • FIG. 4 illustrates a perspective view of the electrode assembly according to one embodiment of the present invention.
  • FIG. 5 illustrates a plan view of the electrode assembly according to one embodiment of the present invention.
  • FIG. 6 illustrates a perspective view of the air conditioner system according to one embodiment of the present invention.
  • FIG. 7A illustrates an exploded view of the air conditioner system in accordance with one embodiment of the present invention.
  • FIG. 7B illustrates a perspective cutaway view of the air conditioner system in accordance with one embodiment of the present invention.
  • FIG. 8A illustrates a perspective view of the front exhaust grill with the driver electrodes coupled thereto in accordance with one embodiment of the present invention.
  • FIG. 8B illustrates a detailed view of the embodiment shown in FIG. 8A in accordance with one embodiment of the present invention.
  • FIG. 9A illustrates a perspective view of the air conditioner system with an electrode assembly positioned therein.
  • FIG. 9B illustrates a perspective view of the air conditioner system with an electrode assembly partially removed in accordance with one embodiment of the present invention.
  • FIG. 10A illustrates a perspective view of an electrode assembly in accordance with one embodiment of the present invention.
  • FIG. 10B illustrates an exploded view of an electrode assembly in accordance with one embodiment of the present invention.
  • Embodiments of the present invention are directed to method and apparatus for moving air preferably using an air conditioning system therein, with or without a fan, whereby the system preferably includes at least one emitter electrode, at least one collector electrode, at least one driver electrode disposed adjacent to the collector electrode, and at least one trailing electrode positioned downstream of the collector electrode.
  • the collector electrode and the driver electrode are removable from the device.
  • the driver electrodes are removable from the device and/or the collector electrode. The ability to remove the collector electrode as well as the driver electrode allows for easy cleaning of the electrodes.
  • the present device includes a removable exhaust grill upon which the driver electrode and trailing electrode are coupled to. The removable grill allows the user to easily clean the driver electrode without having to remove the collector electrode.
  • One aspect of the present invention is directed to an air-conditioning device which comprises a housing that has an inlet and an outlet.
  • the present invention includes an ion generator that is located in the housing and is configured to at least create ions in a flow of air.
  • the invention includes a driver electrode that is located proximal to the outlet, wherein the driver electrode is removable from the housing.
  • Another aspect of the present invention is directed to an air-conditioning device which comprises a housing with a removable grill.
  • the present invention includes an ion generator which is located in the housing; and a driver electrode that is located adjacent to a collector electrode of the ion generator, wherein the driver electrode is coupled to the removable grill.
  • Another aspect of the present invention is directed to an air-conditioning device which comprises a housing which has an upper portion with a removable grill.
  • the present invention includes an emitter electrode located in the housing as well as a collector electrode located in the housing, wherein the collector electrode is removable through the upper portion of the housing.
  • the present invention includes a high voltage source that is operatively connected to at least one of the emitter electrode and the collector electrode.
  • the present invention includes a driver electrode that is preferably coupled to the removable grill, wherein the driver electrode is removable from the housing.
  • Another aspect of the present invention is directed to an air-conditioning device which comprises a housing, an emitter electrode that is located in the housing, and a collector electrode located in the housing, wherein the collector electrode is removable from the housing.
  • the present invention includes a high voltage source that is adapted to provide a voltage differential between the emitter electrode and the collector electrode.
  • the present invention includes a driver electrode that is preferably removable from the housing with the collector electrode, wherein the driver electrode is removable from the collector electrode when the collector electrode is removed from the housing.
  • an air-conditioning device which comprises a housing having an inlet grill and an outlet grill.
  • the present invention includes at least one emitter electrode positioned within the housing proximal to the inlet grill.
  • the present invention includes at least two collector electrodes, each having a leading portion and a trailing portion, wherein the collector electrodes are positioned proximal to the outlet grill.
  • the present invention includes a high voltage source that is adapted to provide a voltage differential between the at least one emitter electrode and the collector electrodes.
  • the present invention includes at least one removable driver electrode that is positioned between the at least two second electrodes proximal to the trailing portions.
  • Another aspect of the present invention is directed to a method of providing an air-conditioning device which comprises providing a housing; positioning an emitter electrode in the housing; and positioning a collector electrode downstream of the emitter electrode.
  • the present method includes coupling a high voltage source that is adapted to provide a voltage differential between the emitter electrode and the collector electrode and positioning a removable driver electrode adjacent to the collector electrode in the housing.
  • the electrode assembly is positioned within an elongated housing of an air-conditioning device, wherein the housing has an upper portion and a grill that is configured to be selectively removable from a side of the housing.
  • the electrode assembly includes an emitter electrode which is spaced from the collector electrodes.
  • the electrode assembly includes a driver electrode positioned between the collector electrodes, wherein the emitter electrode and the collector electrodes are electrically coupled to a high voltage source.
  • the method comprises lifting the electrode assembly from the housing through the upper portion, wherein the collector electrodes are at least partially exposed.
  • the method further comprises removing the driver electrode from the lifted electrodes assembly.
  • the method further alternatively comprises removing the grill from the side of the housing, wherein the driver electrode is at least partially exposed and is capable of being removably secured to an interior surface of the grill.
  • Another aspect of the present invention is directed to a method of removing an electrode assembly which includes collector and driver electrodes for cleaning.
  • the electrode assembly is positioned within a housing of an air-conditioning device, wherein the housing has an upper portion.
  • the method comprising the step of lifting the electrode assembly from the housing through the upper portion, wherein the collector electrodes and the driver electrodes are accessible.
  • Another aspect of the present invention is directed to a method of removing an electrode assembly which includes collector and driver electrodes for cleaning.
  • the electrode assembly is positioned within a housing of an air-conditioning device, wherein the housing has an upper portion.
  • the method comprises the step of lifting the electrode assembly from the housing through the upper portion.
  • the method also includes the step of removing the driver electrode from the lifted electrode assembly.
  • Another aspect of the present invention is directed to a method of cleaning a driver electrode that is positioned within an elongated housing of an air-conditioning device which has a grill that is removable from a side of the housing.
  • the method comprises removing the grill from the side of the housing, wherein the driver electrode is at least partially exposed.
  • FIGS. 2A and 2B illustrate one embodiment of the air conditioner system 100 whose housing 102 includes rear-located intake vents with vent grills or louvers 104 , front-located exhaust vents with vent grills or louvers 106 , and a base pedestal 108 .
  • the system 100 includes at least one emitter electrode 232 and at least one collector electrode 242 , which is preferably removable as discussed below.
  • the front and rear grills 104 , 106 preferably include several fins, whereby each fin is a thin ridge spaced-apart from the next fin so that each fin creates minimal resistance as air flows through the housing 102 .
  • the fins are arranged vertically and are directed along the elongated vertical upstanding housing 102 of the unit 100 ( FIG. 6 ).
  • the fins are perpendicular to the electrodes 232 , 242 and are configured horizontally.
  • the inlet and outlet fins are aligned to give the unit a “see through” appearance.
  • a user can “see through” the unit 100 from the inlet to the outlet or vice versa.
  • the user will see no moving parts within the housing, but just a quiet unit that cleans the air passing therethrough.
  • Other orientations of fins and electrodes are contemplated in other embodiments, such as a configuration in which the user is unable to see through the unit 100 , whereby the unit 100 contains a germicidal lamp 290 ( FIG. 3A ) therein.
  • the unit 100 is energized by activating switch S 1 on the top surface of the housing 102 , whereby high voltage or high potential output by the voltage generator 170 produces ions at the emitter electrode 232 which are attracted to the collector electrodes 242 .
  • the ions move from an “IN” to an “OUT” direction from the emitter electrodes 232 to the collector electrodes 242 and are carried along with air molecules.
  • the device 100 electro-kinetically produces an outflow of ionized air.
  • the device 100 is an electro-static precipitator, whereby the device 100 produces ions in an airflow created by a fan or other device.
  • the “IN” notation in FIG. 2A denotes the intake of ambient air with particulate matter 60 through the inlet vents.
  • the “OUT” notation in FIG. 2A denotes the outflow of cleaned air through the outlet vent substantially devoid of the particulate matter 60 .
  • appropriate amounts of ozone (O 3 ) are beneficially produced.
  • a metal shield (not shown) is disposed within the housing 102 , or portions of the interior of the housing 102 are alternatively coated with a metallic paint to reduce such radiation.
  • FIG. 3A illustrates an electrical circuit diagram for the system 100 , according to one embodiment of the present invention.
  • the system 100 has an electrical power cord that plugs into a common electrical wall socket that provides a nominal 110 VAC.
  • An electromagnetic interference (EMI) filter 110 is placed across the incoming nominal 110 VAC line to reduce and/or eliminate high frequencies generated by the various circuits within the system 100 , such as the electronic ballast 112 .
  • the electronic ballast 112 is electrically connected to a germicidal lamp 290 (e.g. an ultraviolet lamp) to regulate, or control, the flow of current through the lamp 290 .
  • a switch 218 is used to turn the lamp 290 on or off.
  • the EMI Filter 110 is well known in the art and does not require a further description.
  • the system 100 does not include the germicidal lamp 290 , whereby the circuit diagram shown in FIG. 3A would not include the electronic ballast 112 , the germicidal lamp 290 , nor the switch 218 used to operate the germicidal lamp 290 .
  • the EMI filter 110 is coupled to a DC power supply 114 .
  • the DC power supply 114 is coupled to the first HVS 170 as well as the second high voltage power source 172 .
  • the high voltage power source can also be referred to as a pulse generator.
  • the DC power supply 114 is also coupled to the micro-controller unit (MCU) 130 .
  • the MCU 130 can be, for example, a Motorola 68HC908 series micro-controller, available from Motorola. Alternatively, any other type of MCU is contemplated.
  • the MCU 130 can receive a signal from the switch S 1 as well as a boost signal from the boost button 216 .
  • the MCU 130 also includes an indicator light 219 which specifies when the electrode assembly is ready to be cleaned.
  • the DC Power Supply 114 is designed to receive the incoming nominal 110 VAC and to output a first DC voltage (e.g., 160 VDC) to the first HVS 170 .
  • the DC Power Supply 114 voltage (e.g., 160 VDC) is also stepped down to a second DC voltage (e.g., 12 VDC) for powering the micro-controller unit (MCU) 130 , the HVS 172 , and other internal logic of the system 100 .
  • the voltage is stepped down through a resistor network, transformer or other component.
  • the MCU 130 monitors the stepped down voltage (e.g., about 12 VDC), which is referred to as the AC voltage sense signal 132 in FIG. 3A , to determine if the AC line voltage is above or below the nominal 110 VAC, and to sense changes in the AC line voltage. For example, if a nominal 110 VAC increases by 10% to 121 VAC, then the stepped down DC voltage will also increase by 10%. The MCU 130 can sense this increase and then reduce the pulse width, duty cycle and/or frequency of the low voltage pulses to maintain the output power (provided to the HVS 170 ) to be the same as when the line voltage is at 110 VAC.
  • the stepped down voltage e.g., about 12 VDC
  • FIG. 3B illustrates a schematic block diagram of the high voltage power supply in accordance with one embodiment of the present invention.
  • the first and second HVSs 170 , 172 include the same or similar components as that shown in FIG. 3B .
  • the first and second HVSs 170 , 172 are alternatively comprised of different components from each other as well as those shown in FIG. 3B .
  • the HVSs 170 , 172 include an electronic switch 126 , a step-up transformer 116 and a voltage multiplier 118 .
  • the primary side of the step-up transformer 116 receives the DC voltage from the DC power supply 114 .
  • the DC voltage received from the DC power supply 114 is approximately 160 Vdc.
  • the DC voltage received from the DC power supply 114 is approximately 12 Vdc.
  • An electronic switch 126 receives low voltage pulses 120 (of perhaps 20-25 KHz frequency) from the MCU 130 . Such a switch is shown as an insulated gate bipolar transistor (IGBT) 126 .
  • IGBT insulated gate bipolar transistor
  • the IGBT 126 couples the low voltage pulses 120 from the MCU 130 to the input winding of the step-up transformer 116 .
  • the secondary winding of the transformer 116 is coupled to the voltage multiplier 118 , which outputs the high voltage pulses to the electrode(s).
  • the electrode(s) are the emitter and collector electrode sets 230 and 240 .
  • the electrode(s) are the trailing electrodes 222 .
  • the IGBT 126 operates as an electronic on/off switch. Such a transistor is well known in the art and does not require a further description.
  • the first and second HVSs 170 , 172 When driven, the first and second HVSs 170 , 172 receive the low input DC voltage from the DC power supply 114 and the low voltage pulses from the MCU 130 and generate high voltage pulses of preferably at least 5 KV peak-to-peak with a repetition rate of about 20 to 25 KHz.
  • the voltage multiplier 118 in the first HVS 170 outputs between 5 to 9 KV to the first set of electrodes 230 and between ⁇ 6 to ⁇ 18 KV to the second set of electrodes 240 .
  • the emitter electrodes 232 receive approximately 5 to 6 KV whereas the collector electrodes 242 receive approximately ⁇ 9 to ⁇ 10 KV.
  • the voltage multiplier 118 in the second HVS 172 outputs approximately ⁇ 12 KV to the trailing electrodes 222 .
  • the driver electrodes 246 are preferably connected to ground. It is within the scope of the present invention for the voltage multiplier 118 to produce greater or smaller voltages.
  • the high voltage pulses preferably have a duty cycle of about 10%-15%, but may have other duty cycles, including a 100% duty cycle.
  • the low voltage pulse signal 120 has a fixed pulse width, frequency and duty cycle for the LOW setting, another fixed pulse width, frequency and duty cycle for the MEDIUM setting, and a further fixed pulse width, frequency and duty cycle for the HIGH setting.
  • the “high” airflow signal can have a pulse width of 5 microseconds and a period of 40 microseconds (i.e., a 12.5% duty cycle), and the “low” airflow signal can have a pulse width of 4 microseconds and a period of 40 microseconds (i.e., a 10% duty cycle).
  • the voltage difference between the first set 230 and the second set 240 is proportional to the actual airflow output rate of the system 100 .
  • the greater voltage differential is created between the first and second set electrodes 230 , 240 by the “high” airflow signal
  • the lesser voltage differential is created between the first and second set electrodes 230 , 240 by the “low” airflow signal.
  • the airflow signal causes the voltage multiplier 118 to provide between 5 and 9 KV to the first set electrodes 230 and between ⁇ 9 and ⁇ 10 KV to the second set electrodes 240 .
  • the cyclical drive when the airflow is “On” is preferably modulated between the “high” and “low” airflow signals (e.g. 2 seconds “high” and 10 seconds “low”), as stated above.
  • the control dial S 1 is set to LOW, the signal from the MCU 130 will cyclically drive the first HVS 170 (i.e. airflow is “On”) for a predetermined amount of time (e.g., 20 seconds), and then drop to a zero or a lower voltage for a longer time period (e.g., 80 seconds).
  • the cyclical drive when the airflow is “On” is preferably modulated between the “high” and “low” airflow signals (e.g.
  • Cyclically driving airflow through the system 100 for a period of time, followed by little or no airflow for another period of time allows the overall airflow rate through the system 100 to be slower than when the dial S 1 is set to HIGH.
  • cyclical driving reduces the amount of ozone emitted by the system since little or no ions are produced during the period in which lesser or no airflow is being output by the system.
  • the duration in which little or no airflow is driven through the system 100 provides the air already inside the system a longer dwell time, thereby increasing particle collection efficiency.
  • the long dwell time allows air to be exposed to a germicidal lamp, if present.
  • the second HVS 172 approximately 12 volts DC is applied to the second HVS 172 from the DC Power Supply 114 .
  • the second HVS 172 provides a negative charge (e.g. ⁇ 12 KV) to one or more trailing electrodes 222 in one embodiment.
  • a negative charge e.g. ⁇ 12 KV
  • the second HVS 172 provides a voltage in the range of, and including, ⁇ 10 KV to ⁇ 60 KV in other embodiments. In one embodiment, other voltages produced by the second HVS 172 are contemplated.
  • the system 100 will operate in a first boost setting when the boost button 216 is pressed once.
  • the MCU 130 drives the first HVS 170 as if the control dial S 1 was set to the HIGH setting for a predetermined amount of time (e.g., 6 minutes), even if the control dial S 1 is set to LOW or MEDIUM (in effect overriding the setting specified by the dial S 1 ).
  • the predetermined time period may be longer or shorter than 6 minutes.
  • the predetermined period can also preferably be 20 minutes if a higher cleaning setting for a longer period of time is desired.
  • the low voltage signal modulates between the “high” airflow signal and the “low” airflow signal for predetermined amount of times and voltages, as stated above, when operating in the first boost setting. In another embodiment, the low voltage signal does not modulate between the “high” and “low” airflow signals.
  • the MCU 130 will also operate the second HVS 172 to operate the trailing electrode 222 to generate ions, preferably negative, into the airflow.
  • the trailing electrode 222 will preferably repeatedly emit ions for one second and then terminate for five seconds for the entire predetermined boost time period. The increased amounts of ozone from the boost level will further reduce odors in the entering airflow as well as increase the particle capture rate of the system 100 .
  • the system 100 will return to the airflow rate previously selected by the control dial S 1 . It should be noted that the on/off cycle at which the trailing electrodes 222 operate are not limited to the cycles and periods described above.
  • the system 100 operates in the second setting, which is an increased ion generation or “feel good” mode.
  • the MCU 130 drives the first HVS 170 as if the control dial S 1 was set to the LOW setting, even if the control dial S 1 is set to HIGH or MEDIUM (in effect overriding the setting specified by the dial S 1 ).
  • the airflow is not continuous, but “On” and then at a lesser or zero airflow for a predetermined amount of time (e.g. 6 minutes).
  • the MCU 130 will operate the second HVS 172 to operate the trailing electrode 222 to generate negative ions into the airflow.
  • the trailing electrode 222 will repeatedly emit ions for one second and then terminate for five seconds for the predetermined amount of time. It should be noted that the on/off cycle at which the trailing electrodes 222 operate are not limited to the cycles and periods described above.
  • the present system 100 operates in an automatic boost mode upon the system 100 being initially plugged into the wall and/or initially being turned on after being off for a predetermined amount of time.
  • the MCU 130 automatically drives the first HVS 170 as if the control dial S 1 was set to the HIGH setting for a predetermined amount of time, as discussed above, even if the control dial S 1 is set to LOW or MEDIUM, thereby causing the system 100 to run at a maximum airflow rate for the amount of time.
  • the MCU 130 automatically operates the second HVS 172 to operate the trailing electrode 222 at a maximum ion emitting rate to generate ions, preferably negative, into the airflow for the same amount of time.
  • This configuration allows the system 100 to effectively clean stale, pungent, and/or polluted air in a room which the system 100 has not been continuously operating in. This feature improves the air quality at a faster rate while emitting negative “feel good” ions to quickly eliminate any odor in the room.
  • the system 100 automatically adjusts the airflow rate and ion emitting rate to the third setting (i.e. normal operating mode). For example, in this initial plug-in or initial turn-on mode, the system can operate in the high setting for 20 minutes to enhance the removal of particulates and to more rapidly clean the air as well as deodorize the room.
  • the system 100 will include an indicator light which informs the user what mode the system 100 is operating in when the boost button 216 is depressed.
  • the indicator light is the same as the cleaning indicator light 219 discussed above.
  • the indicator light is a separate light from the indicator light 219 .
  • the indicator light will emit a blue light when the system 100 operates in the first setting.
  • the indicator light will emit a green light when the system 100 operates in the second setting.
  • the indicator light will not emit a light when the system 100 is operating in the third setting.
  • the MCU 130 provides various timing and maintenance features in one embodiment.
  • the MCU 130 can provide a cleaning reminder feature (e.g., a 2 week timing feature) that provides a reminder to clean the system 100 (e.g., by causing indicator light 219 to turn on amber, and/or by triggering an audible alarm that produces a buzzing or beeping noise).
  • the MCU 130 can also provide arc sensing, suppression and indicator features, as well as the ability to shut down the first HVS 170 in the case of continued arcing. Details regarding arc sensing, suppression and indicator features are described in U.S. patent application Ser. No. 10/625,401 which is incorporated by reference above.
  • FIG. 4 illustrates a perspective view of one embodiment of the electrode assembly 220 in accordance with the present invention.
  • the electrode assembly 220 comprises a first set 230 of at least one emitter electrode 232 , and further comprises a second set 240 of at least one collector electrode 242 .
  • the number N 1 of emitter electrodes 232 in the first set 230 differ by one relative to the number N 2 of collector electrodes 242 in the second set 240 .
  • the system includes a greater number of collector electrodes 242 than emitter electrodes 232 .
  • additional emitter electrodes 232 are alternatively positioned at the outer ends of set 230 such that N 1 >N 2 , e.g., five emitter electrodes 232 compared to four collector electrodes 242 .
  • additional emitter electrodes 232 are alternatively positioned at the outer ends of set 230 such that N 1 >N 2 , e.g., five emitter electrodes 232 compared to four collector electrodes 242 .
  • single electrodes or single conductive surfaces are substituted.
  • the material(s) of the electrodes 232 and 242 should conduct electricity and be resistant to the corrosive effects from the application of high voltage, but yet be strong and durable enough to be cleaned periodically.
  • the emitter electrodes 232 are fabricated from tungsten. Tungsten is sufficiently robust in order to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that promotes efficient ionization.
  • the collector electrodes 242 preferably have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, the collector electrodes 242 are fabricated from stainless steel and/or brass, among other appropriate materials. The polished surface of electrodes 232 also promotes ease of electrode cleaning.
  • electrodes 232 and 242 allow the electrodes 232 , 242 to be light weight, easy to fabricate, and lend themselves to mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and appropriate amounts of ozone.
  • the electrode assembly 220 is electrically connected to the high voltage source unit, such as a high voltage pulse generator 170 .
  • the high voltage source unit such as a high voltage pulse generator 170
  • the positive output terminal of the high voltage source 170 is coupled to the emitter electrodes 232
  • the negative output terminal of high voltage source 170 is coupled to the collector electrodes 242 as shown in FIG. 4 .
  • This coupling polarity has been found to work well and minimizes unwanted audible electrode vibration or hum.
  • generation of positive ions is conducive to a relatively silent airflow, from a health standpoint it is desired that the output airflow be richer in negative ions than positive ions.
  • one port (preferably the negative port) of the high voltage pulse generator 170 can in fact be the ambient air.
  • the collector electrodes 242 need not be connected to the high voltage pulse generator 170 using a wire. Nonetheless, there will be an “effective connection” between the collector electrodes 242 and one output port of the high voltage pulse generator 170 , in this instance, via ambient air.
  • the negative output terminal of unit 170 is connected to the emitter electrodes 232 and the positive output terminal is connected to the collector electrodes 242 .
  • Molecules as well as particulates in the air thus become ionized with the charge emitted by the emitter electrodes 232 as they pass by the electrodes 232 .
  • the opposite polarity of the collector electrodes 242 causes the ionized particles 60 to be attracted and thereby move toward the collector electrodes 242 . Therefore, the collector electrodes 242 collect the ionized particulates 60 in the air, thereby allowing the device 100 to output cleaner, fresher air.
  • each insulated driver electrode 246 includes an underlying electrically conductive electrode 253 that is covered by a dielectric material 254 .
  • the electrically conductive electrode 253 is located on a printed circuit board (PCB) covered by one or more additional layers of insulated material 254 .
  • PCB printed circuit board
  • Exemplary insulated PCBs are generally commercially available and may be found from a variety of sources, including for example Electronic Service and Design Corp, of Harrisburg, Pa.
  • the dielectric material 254 could be heat shrink tubing wherein during manufacture, heat shrink tubing is placed over the conductive electrodes 253 and then heated, which causes the tubing to shrink to the shape of the conductive electrodes 253 .
  • An exemplary heat shrinkable tubing is type FP-301 flexible polyolefin tubing available from 3M of St. Paul, Minn.
  • the trailing electrodes 222 are configured to be wire shaped and extend substantially along the length of the electrode assembly 220 .
  • the wire shaped trailing electrodes 222 are advantageous, because negative ions are produced along the entire length of the electrode 222 . This production of negative ions along the entire length of the electrode 222 allows more ions to be freely dissipated in the air as the air flows past the electrode assembly 220 .
  • the trailing electrode 222 is a triangular shape with pointed ends, instead of a wire.
  • the exhaust grill 402 B and intake grill 402 C preferably include fins which run longitudinally or vertically along the length of the upstanding housing 402 A as shown in FIGS. 6 and 7 A.
  • the fins are configured in any other direction and are not limited to the vertical direction.
  • the grill 402 B includes the set of trailing electrodes 222 which are disposed downstream of the driver electrodes 246 and near the inner surface of the exhaust grill 402 B.
  • An illustration of the trailing electrodes 222 is shown in FIG. 8B . It should be noted that the trailing electrodes 222 are present in FIG. 8A , although not shown for clarity purposes.
  • the driver electrodes 246 are removable from the exhaust grill 402 B, the user is able to access to the trailing electrodes 222 for cleaning purposes.
  • the trailing electrodes 222 are preferably secured to the interior of the exhaust grill 402 B by a number of coils 418 , as shown in FIGS. 8A and 8B . As shown in FIGS. 8A and 8B , the coils 418 and the trailing electrodes 222 are preferably coupled to an attaching member of 426 .
  • the attaching member 426 is secured to the inner surface of the exhaust grill 402 B, whereby the attaching member 426 and electrodes 222 remain with the grill 402 B when the grill 402 B is removed from the housing 402 A.
  • the user is able to remove the driver electrodes 246 from the clips 416 by simply pulling on the driver electrodes 246 .
  • the driver electrodes 246 are disengaged from the clips 416 by any other appropriate known method or mechanism.
  • the driver electrodes 246 are secured to the exhaust grill 402 B and can be cleaned as secured to the exhaust grill 402 B.
  • the user is also able to clean the trailing electrodes 222 ( FIG. 8B ) once the driver electrodes 246 are disengaged from the clips 416 .
  • the electrode assembly 420 within the housing 402 A is exposed.
  • the user is able to clean the emitter 232 and the collector electrodes 242 while the electrodes are positioned within the housing 402 A.
  • the user is able to vertically lift the handle 406 and pull the collector electrodes 240 of the electrode assembly 420 telescopically out through the upper portion of the housing 402 A without having to remove the exhaust grill 402 B. The user is thereby able to completely remove the collector electrodes 240 of the electrode assembly 420 from the housing portion 402 A and have complete access to the collector electrodes 242 .
  • the electrode assembly 420 includes a mechanism which includes a flexible member and a slot for capturing and cleaning the emitter electrode 232 whenever the electrode assembly 420 is inserted and/or removed. More detail regarding the mechanism is provided in U.S. Pat. No. 6,709,484 which was incorporated by reference above.
  • the collector electrode assembly 540 is removable from the unit 500 by lifting the handle 506 in a vertical direction and pulling the collector electrode assembly 540 telescopically out of the housing 502 A.
  • the driver electrodes 246 are then removable from the collector electrode assembly 540 after the collector electrode assembly 540 has been removed from the unit 500 , as will be discussed below.
  • the driver electrodes 246 are removable telescopically out of the housing 502 A independently of the collector electrode assembly 540 .
  • the driver electrodes 246 can thus be removed from the housing 502 A while the collector electrode assembly 540 remains in the housing 502 A in one embodiment.
  • the driver electrodes 246 can be removed from the housing 502 A after the collector electrode assembly 520 has been removed.
  • FIG. 10A illustrates a perspective view of the collector electrode assembly 540 in accordance with the present invention.
  • the collector electrode assembly 540 comprises the set of collector electrodes 242 and the set of driver electrodes 246 positioned adjacent to the collector electrodes 242 .
  • the collector electrodes 242 are coupled to a top mount 504 A and a bottom mount 504 B, whereby the mounts 504 A, 504 B preferably arrange the collector electrodes 242 in a fixed, parallel configuration.
  • the liftable handle 506 is coupled to the top mount 504 A.
  • the top and bottom mounts 504 A, 504 B are designed to allow the collector electrodes 242 to be inserted and removed from the device 500 .
  • the top and/or the bottom mounts 504 A, 504 B include one or more contact terminals which electrically connect the collector electrodes 242 to the high voltage source 170 when the collector electrodes 242 are inserted in the housing 502 A. It is preferred that the contact terminals come out of contact with the corresponding terminals within the housing 502 A when the collector electrodes 242 are removed from the housing 502 A.
  • collector and driver electrodes 242 , 246 are preferably symmetrical about the vertical axis, which is designated as the axis parallel to the electrodes 242 , 246 in one embodiment.
  • the collector and driver electrodes 242 , 246 are symmetrical about the horizontal axis, which is designated as the axis perpendicular and across the electrodes 242 , 246 . It is apparent to one skilled in the art that the electrode assembly is alternatively non-symmetrical with respect to the vertical and/or the horizontal axis.
  • a set of driver electrodes 246 are positioned between a top driver mount 516 A and a bottom driver mount 516 B. Although two driver electrodes 246 are shown between the top driver mount 516 A and a bottom driver mount 516 B, any number of driver electrodes 246 , including only one driver electrode, is contemplated.
  • the top driver mount 516 A and bottom driver mount 516 B are configured to allow the driver electrodes 246 to be removable from the collector electrodes 242 , as discussed below.
  • the top and bottom driver mounts 516 A and 516 B preferably include a set of contact terminals which deliver voltage from the high voltage pulse generator 170 ( FIGS.
  • the top and/or bottom driver mounts 516 A, 516 B include contact terminals which come into contact with the contact terminals of the mount(s) 504 when the driver electrodes 246 are coupled to the collector electrodes 242 .
  • the collector electrode assembly 540 includes a release mechanism 518 located in the top mount 504 A in one embodiment.
  • the release mechanism 518 when depressed, releases the locking mechanism which secures the top and bottom driver mounts 516 A, 516 B to the top and bottom mounts 504 A, 504 B. Any appropriate type of locking mechanism is contemplated and is well known in the art.
  • the release mechanism 518 unfastens the top driver mount 516 A from the collector electrode assembly 540 , allowing the top driver mount 516 A to pivot out and release the bottom driver mount 516 B from a protrusion that the bottom driver mount 516 B is fitted over and held in place by.
  • the driver electrodes 246 are removable as shown in FIG. 10B .
  • the bottom driver mount 516 B includes protrusions 517 that can retain the driver electrodes in the bottom mount 504 B of the collector electrode array 540 .
  • the driver electrodes 246 are removed from the collector electrode assembly 540 by being slid in a direction perpendicular to the elongated length of the collector electrode assembly 540 as shown in FIG. 10B . It is apparent that the release mechanism 518 is alternatively located elsewhere in the collector electrode assembly 540 . As shown in FIG. 10B , the driver electrodes 246 are removable by lifting or pulling the driver electrodes 246 from the collector electrodes 242 upon activating the release mechanism 518 .
  • top and/or bottom driver mounts 516 A, 516 B are lifted from the top and bottom mounts 504 A, 504 B, respectively.
  • the removed driver electrodes 246 are then able to be easily cleaned.
  • the removal of the driver electrodes 246 increases the amount of space between the collector electrodes 242 , thereby allowing the user to easily clean the collector electrodes 242 .
  • the user aligns the bottom driver mount 516 B with the bottom mount 504 B. Once aligned, the user pivots the top driver mount 516 A toward the top mount 504 A until the locking mechanism engages the corresponding feature(s) in the top and/or bottom mounts.
  • the driver electrodes 246 are then secured to the rest of the collector electrode assembly 540 , whereby the electrode assembly 520 is then able to be inserted back into the housing 502 A as one piece.
  • the driver electrodes 246 are secured to the top and bottom mounts 504 A, 504 B by aligning the top and bottom driver mounts 516 A, 516 B with the top and bottom mounts 504 A, 504 B and laterally inserting the top and bottom driver mounts 516 A, 516 B into the receptacles of the top and bottom mounts 504 A, 504 B until the locking mechanism engages the corresponding feature(s) in the top and/or bottom mounts 504 A, 504 B
  • the driver electrodes 246 are preferably symmetrical about the vertical and/or horizontal axis.
  • the top and bottom driver mounts 516 A, 516 B are configured such that the driver electrodes 246 are able to be reversibly coupled to the top and bottom mounts 504 A, 504 B.
  • the bottom driver mount 516 B would couple to the top mount 504 A
  • the top driver mount 516 A would couple to the bottom mount 504 B.
  • This feature allows the driver electrodes 246 to properly operate irrespective of whether the driver electrodes 246 are right-side-up or upside down.
  • less than all of the driver electrodes 246 are removable from the mounts 504 A, 504 B, whereby one or more of the driver electrodes 246 are independently removable from one another.
  • the driver electrodes 246 removable from the collector electrodes 242 without first removing the entire collector electrode assembly 540 from the housing 502 A.
  • the user can remove the exhaust grill 402 B ( FIG. 8A ) and depress the release mechanism 518 , whereby the driver electrodes 246 are pulled out through the front of the housing 502 A.
  • the user is then able to clean the collector electrodes 242 still positioned with the housing 502 A.
  • the user is also alternatively able to then lift the collector electrodes 242 out of the housing 502 A by lifting the handle 506 as discussed above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)
US11/003,894 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes Abandoned US20060016333A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/003,894 US20060016333A1 (en) 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes
PCT/US2005/043815 WO2006060741A2 (en) 2004-12-03 2005-12-02 Air conditioner device with individually removable driver electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59068804P 2004-07-23 2004-07-23
US11/003,894 US20060016333A1 (en) 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes

Publications (1)

Publication Number Publication Date
US20060016333A1 true US20060016333A1 (en) 2006-01-26

Family

ID=35786765

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/003,894 Abandoned US20060016333A1 (en) 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes
US11/003,516 Abandoned US20060018809A1 (en) 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes
US11/007,395 Expired - Fee Related US7897118B2 (en) 2004-07-23 2004-12-08 Air conditioner device with removable driver electrodes
US11/007,556 Expired - Fee Related US7291207B2 (en) 2004-07-23 2004-12-08 Air treatment apparatus with attachable grill

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/003,516 Abandoned US20060018809A1 (en) 2004-07-23 2004-12-03 Air conditioner device with removable driver electrodes
US11/007,395 Expired - Fee Related US7897118B2 (en) 2004-07-23 2004-12-08 Air conditioner device with removable driver electrodes
US11/007,556 Expired - Fee Related US7291207B2 (en) 2004-07-23 2004-12-08 Air treatment apparatus with attachable grill

Country Status (6)

Country Link
US (4) US20060016333A1 (ja)
JP (1) JP2008507364A (ja)
CN (1) CN100525897C (ja)
HK (1) HK1113764A1 (ja)
MX (1) MX2007000902A (ja)
WO (1) WO2006012596A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180027A1 (en) * 2005-02-14 2006-08-17 Mcdonnell Joseph A Ionic air conditioning system
US20070157813A1 (en) * 2006-01-09 2007-07-12 Sylmark Holdings Limited Safety lid for air conditioning device and method of use
US20080216660A1 (en) * 2005-07-05 2008-09-11 Frank Mendel Electrostatic Precipitator with Replaceable Collecting Electrode
US8861167B2 (en) 2011-05-12 2014-10-14 Global Plasma Solutions, Llc Bipolar ionization device
EP2908064A1 (en) * 2014-02-18 2015-08-19 Blue Air AB Air purifier device with ionizing means
US9636617B2 (en) 2014-02-18 2017-05-02 Blueair Ab Air purifier device with fan duct
US9919252B2 (en) 2014-02-18 2018-03-20 Blueair Ab Air purifier device with coupling mechanism
EP3760316A1 (en) * 2019-07-05 2021-01-06 Daitech SA System for the purification of the particulate present in fumes and in exhaust gases in combustion processes

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350417B1 (en) * 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US20060016333A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
US7390352B2 (en) * 2006-03-17 2008-06-24 Sylmark Holdings Limited Air purifier with front-load electrodes
US20080063559A1 (en) * 2006-09-13 2008-03-13 Joseph Alexander Fan forced electric unit that incorporates a low power cold plasma generator and method of making same
US8885317B2 (en) 2011-02-08 2014-11-11 Illinois Tool Works Inc. Micropulse bipolar corona ionizer and method
US8009405B2 (en) 2007-03-17 2011-08-30 Ion Systems, Inc. Low maintenance AC gas flow driven static neutralizer and method
US8773837B2 (en) * 2007-03-17 2014-07-08 Illinois Tool Works Inc. Multi pulse linear ionizer
US7909918B2 (en) * 2007-08-15 2011-03-22 Trane International, Inc. Air filtration system
US9380689B2 (en) 2008-06-18 2016-06-28 Illinois Tool Works Inc. Silicon based charge neutralization systems
KR101119078B1 (ko) * 2009-04-14 2012-03-20 (주)선재하이테크 부유물 포집장치
GB2473245A (en) 2009-09-07 2011-03-09 Steritrox Ltd An ozone generator
US8807204B2 (en) * 2010-08-31 2014-08-19 International Business Machines Corporation Electrohydrodynamic airflow across a heat sink using a non-planar ion emitter array
WO2012090550A1 (ja) * 2010-12-28 2012-07-05 株式会社コガネイ イオン発生装置
US9918374B2 (en) 2012-02-06 2018-03-13 Illinois Tool Works Inc. Control system of a balanced micro-pulsed ionizer blower
USD743017S1 (en) 2012-02-06 2015-11-10 Illinois Tool Works Inc. Linear ionizing bar
JP6567828B2 (ja) * 2012-02-06 2019-08-28 イリノイ トゥール ワークス インコーポレイティド マルチパルス線形イオナイザー
US9125284B2 (en) 2012-02-06 2015-09-01 Illinois Tool Works Inc. Automatically balanced micro-pulsed ionizing blower
CN104185737B (zh) * 2012-04-09 2016-08-24 夏普株式会社 送风机
JP2014041754A (ja) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp 放電装置及び空気調和機
JP5868289B2 (ja) * 2012-08-22 2016-02-24 三菱電機株式会社 放電装置及び空気調和機
US9808547B2 (en) 2013-04-18 2017-11-07 Dm Tec, Llc Sanitizer
US10126154B2 (en) * 2013-11-08 2018-11-13 Schlumberger Technology Corporation Spectral analysis with spectrum deconvolution
CN103623931A (zh) * 2013-12-06 2014-03-12 朝阳双凌环保设备有限公司 调质器正电荷电极装置及其应用
KR102200401B1 (ko) * 2014-01-14 2021-01-08 엘지전자 주식회사 공기조화장치
US9950086B2 (en) 2014-03-12 2018-04-24 Dm Tec, Llc Fixture sanitizer
US9700643B2 (en) 2014-05-16 2017-07-11 Michael E. Robert Sanitizer with an ion generator
TWI572831B (zh) 2014-12-04 2017-03-01 財團法人工業技術研究院 靜電式氣體清淨機
US10124083B2 (en) 2015-06-18 2018-11-13 Dm Tec, Llc Sanitizer with an ion generator and ion electrode assembly
EP3193417A1 (en) 2016-01-12 2017-07-19 Naturion Pte. Ltd. Ion generator device
WO2017143255A1 (en) * 2016-02-19 2017-08-24 Washington University Systems and methods for gas cleaning using electrostatic precipitation and photoionization
CN108393194A (zh) * 2017-02-08 2018-08-14 海普电器股份有限公司 分离式空气净化装置
CN106733181B (zh) * 2017-02-28 2019-03-15 广东美的环境电器制造有限公司 一种电净化组件及空气净化器
CN107289553A (zh) * 2017-07-31 2017-10-24 重庆松池科技有限公司 一种基于腐植酸盐的负离子发生器及空气净化器
US11103881B2 (en) * 2018-08-02 2021-08-31 Faurecia Interior Systems, Inc. Air vent
USD945590S1 (en) 2019-05-23 2022-03-08 E2 Limited Tower fan
USD937401S1 (en) 2020-05-11 2021-11-30 E2 Limited Tower fan
WO2022051413A1 (en) * 2020-09-01 2022-03-10 Randolph Lucian Pathogen transfer prevention and mitigation apparatuses

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791338A (en) * 1927-04-12 1931-02-03 Research Corp Electrical precipitator
US2590447A (en) * 1950-06-30 1952-03-25 Jr Simon R Nord Electrical comb
US2978066A (en) * 1959-05-07 1961-04-04 Honeywell Regulator Co Gas cleaning apparatus
US3018394A (en) * 1957-07-03 1962-01-23 Whitehall Rand Inc Electrokinetic transducer
US3026964A (en) * 1959-05-06 1962-03-27 Gaylord W Penney Industrial precipitator with temperature-controlled electrodes
US3374941A (en) * 1964-06-30 1968-03-26 American Standard Inc Air blower
US3638058A (en) * 1970-06-08 1972-01-25 Robert S Fritzius Ion wind generator
US3806763A (en) * 1971-04-08 1974-04-23 S Masuda Electrified particles generating apparatus
US3945813A (en) * 1971-04-05 1976-03-23 Koichi Iinoya Dust collector
US4007024A (en) * 1975-06-09 1977-02-08 Air Control Industries, Inc. Portable electrostatic air cleaner
US4070163A (en) * 1974-08-29 1978-01-24 Maxwell Laboratories, Inc. Method and apparatus for electrostatic precipitating particles from a gaseous effluent
US4074983A (en) * 1973-02-02 1978-02-21 United States Filter Corporation Wet electrostatic precipitators
US4138233A (en) * 1976-06-21 1979-02-06 Senichi Masuda Pulse-charging type electric dust collecting apparatus
US4147522A (en) * 1976-04-23 1979-04-03 American Precision Industries Inc. Electrostatic dust collector
US4185971A (en) * 1977-07-14 1980-01-29 Koyo Iron Works & Construction Co., Ltd. Electrostatic precipitator
US4189308A (en) * 1978-10-31 1980-02-19 Research-Cottrell, Inc. High voltage wetted parallel plate collecting electrode arrangement for an electrostatic precipitator
US4244710A (en) * 1977-05-12 1981-01-13 Burger Manfred R Air purification electrostatic charcoal filter and method
US4244712A (en) * 1979-03-05 1981-01-13 Tongret Stewart R Cleansing system using treated recirculating air
US4251234A (en) * 1979-09-21 1981-02-17 Union Carbide Corporation High intensity ionization-electrostatic precipitation system for particle removal
US4253852A (en) * 1979-11-08 1981-03-03 Tau Systems Air purifier and ionizer
US4259093A (en) * 1976-04-09 1981-03-31 Elfi Elektrofilter Ab Electrostatic precipitator for air cleaning
US4259452A (en) * 1978-05-15 1981-03-31 Bridgestone Tire Company Limited Method of producing flexible reticulated polyether polyurethane foams
US4259707A (en) * 1979-01-12 1981-03-31 Penney Gaylord W System for charging particles entrained in a gas stream
US4315188A (en) * 1980-02-19 1982-02-09 Ball Corporation Wire electrode assemblage having arc suppression means and extended fatigue life
US4318718A (en) * 1979-07-19 1982-03-09 Ichikawa Woolen Textile Co., Ltd. Discharge wire cleaning device for an electric dust collector
US4369776A (en) * 1979-04-11 1983-01-25 Roberts Wallace A Dermatological ionizing vaporizer
US4375364A (en) * 1980-08-21 1983-03-01 Research-Cottrell, Inc. Rigid discharge electrode for electrical precipitators
US4435190A (en) * 1981-03-14 1984-03-06 Office National D'etudes Et De Recherches Aerospatiales Method for separating particles in suspension in a gas
US4496375A (en) * 1981-07-13 1985-01-29 Vantine Allan D Le An electrostatic air cleaning device having ionization apparatus which causes the air to flow therethrough
US4502002A (en) * 1982-09-02 1985-02-26 Mitsubishi Jukogyo Kabushiki Kaisha Electrostatically operated dust collector
US4505724A (en) * 1982-04-24 1985-03-19 Metallgesellschaft Aktiengesellschaft Wet-process dust-collecting apparatus especially for converter exhaust gases
US4569684A (en) * 1981-07-31 1986-02-11 Ibbott Jack Kenneth Electrostatic air cleaner
US4636981A (en) * 1982-07-19 1987-01-13 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor memory device having a voltage push-up circuit
US4643745A (en) * 1983-12-20 1987-02-17 Nippon Soken, Inc. Air cleaner using ionic wind
US4643744A (en) * 1984-02-13 1987-02-17 Triactor Holdings Limited Apparatus for ionizing air
US4647836A (en) * 1984-03-02 1987-03-03 Olsen Randall B Pyroelectric energy converter and method
US4650648A (en) * 1984-10-25 1987-03-17 Bbc Brown, Boveri & Company, Limited Ozone generator with a ceramic-based dielectric
US4725289A (en) * 1986-11-28 1988-02-16 Quintilian B Frank High conversion electrostatic precipitator
US4726814A (en) * 1985-07-01 1988-02-23 Jacob Weitman Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow
US4726812A (en) * 1986-03-26 1988-02-23 Bbc Brown, Boveri Ag Method for electrostatically charging up solid or liquid particles suspended in a gas stream by means of ions
US4730303A (en) * 1985-06-24 1988-03-08 Nec Corporation Digital switching system with host and remote duplicated transmission controllers
US4808200A (en) * 1986-11-24 1989-02-28 Siemens Aktiengesellschaft Electrostatic precipitator power supply
US4811159A (en) * 1988-03-01 1989-03-07 Associated Mills Inc. Ionizer
US4892713A (en) * 1988-06-01 1990-01-09 Newman James J Ozone generator
USD315598S (en) * 1989-02-15 1991-03-19 Hitachi, Ltd. Electric fan
US5100440A (en) * 1990-01-17 1992-03-31 Elex Ag Emission electrode in an electrostatic dust separator
US5180404A (en) * 1988-12-08 1993-01-19 Astra-Vent Ab Corona discharge arrangements for the removal of harmful substances generated by the corona discharge
USD332655S (en) * 1991-10-04 1993-01-19 Patton Electric Company, Inc. Portable electric fan
US5183480A (en) * 1991-10-28 1993-02-02 Mobil Oil Corporation Apparatus and method for collecting particulates by electrostatic precipitation
US5196171A (en) * 1991-03-11 1993-03-23 In-Vironmental Integrity, Inc. Electrostatic vapor/aerosol/air ion generator
US5198003A (en) * 1991-07-02 1993-03-30 Carrier Corporation Spiral wound electrostatic air cleaner and method of assembling
US5282891A (en) * 1992-05-01 1994-02-01 Ada Technologies, Inc. Hot-side, single-stage electrostatic precipitator having reduced back corona discharge
US5290343A (en) * 1991-07-19 1994-03-01 Kabushiki Kaisha Toshiba Electrostatic precipitator machine for charging dust particles contained in air and capturing dust particles with coulomb force
US5296019A (en) * 1990-06-19 1994-03-22 Neg-Ions (North America) Inc. Dust precipitation from air by negative ionization
US5378978A (en) * 1993-04-02 1995-01-03 Belco Technologies Corp. System for controlling an electrostatic precipitator using digital signal processing
US5386839A (en) * 1992-12-24 1995-02-07 Chen; Hong Y. Comb
US5395430A (en) * 1993-02-11 1995-03-07 Wet Electrostatic Technology, Inc. Electrostatic precipitator assembly
US5401301A (en) * 1991-07-17 1995-03-28 Metallgesellschaft Aktiengesellschaft Device for the transport of materials and electrostatic precipitation
US5401302A (en) * 1991-12-19 1995-03-28 Metallgesellschaft Aktiegesellschaft Electrostatic separator comprising honeycomb collecting electrodes
US5484472A (en) * 1995-02-06 1996-01-16 Weinberg; Stanley Miniature air purifier
US5484473A (en) * 1993-07-28 1996-01-16 Bontempi; Luigi Two-stage electrostatic filter with extruded modular components particularly for air recirculation units
US5492678A (en) * 1993-07-23 1996-02-20 Hokushin Industries, Inc. Gas-cleaning equipment and its use
US5501844A (en) * 1994-06-01 1996-03-26 Oxidyn, Incorporated Air treating apparatus and method therefor
US5591334A (en) * 1993-10-19 1997-01-07 Geochto Ltd. Apparatus for generating negative ions
US5591253A (en) * 1995-03-07 1997-01-07 Electric Power Research Institute, Inc. Electrostatically enhanced separator (EES)
US5591412A (en) * 1995-04-26 1997-01-07 Alanco Environmental Resources Corp. Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream
US5593476A (en) * 1994-06-09 1997-01-14 Coppom Technologies Method and apparatus for use in electronically enhanced air filtration
USD377523S (en) * 1995-08-15 1997-01-21 Duracraft Corp. Air cleaner
US5601636A (en) * 1995-05-30 1997-02-11 Appliance Development Corp. Wall mounted air cleaner assembly
US5603752A (en) * 1994-06-07 1997-02-18 Filtration Japan Co., Ltd. Electrostatic precipitator
US5603893A (en) * 1995-08-08 1997-02-18 University Of Southern California Pollution treatment cells energized by short pulses
US5614002A (en) * 1995-10-24 1997-03-25 Chen; Tze L. High voltage dust collecting panel
USD389567S (en) * 1996-05-14 1998-01-20 Calor S.A. Combined fan and cover therefor
US5879435A (en) * 1997-01-06 1999-03-09 Carrier Corporation Electronic air cleaner with germicidal lamp
US6042637A (en) * 1996-08-14 2000-03-28 Weinberg; Stanley Corona discharge device for destruction of airborne microbes and chemical toxins
US6176977B1 (en) * 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6182671B1 (en) * 1998-09-29 2001-02-06 Sharper Image Corporation Ion emitting grooming brush
US6182461B1 (en) * 1999-07-16 2001-02-06 Carrier Corporation Photocatalytic oxidation enhanced evaporator coil surface for fly-by control
US6193852B1 (en) * 1997-05-28 2001-02-27 The Boc Group, Inc. Ozone generator and method of producing ozone
US6203600B1 (en) * 1996-06-04 2001-03-20 Eurus Airtech Ab Device for air cleaning
US6348103B1 (en) * 1998-05-19 2002-02-19 Firma Ing. Walter Hengst Gmbh & Co. Kg Method for cleaning electrofilters and electrofilters with a cleaning device
US6350417B1 (en) * 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US6362604B1 (en) * 1998-09-28 2002-03-26 Alpha-Omega Power Technologies, L.L.C. Electrostatic precipitator slow pulse generating circuit
US6504308B1 (en) * 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
US20030005824A1 (en) * 2000-03-03 2003-01-09 Ryou Katou Dust collecting apparatus and air-conditioning apparatus
US6508982B1 (en) * 1998-04-27 2003-01-21 Kabushiki Kaisha Seisui Air-cleaning apparatus and air-cleaning method
US20040033176A1 (en) * 2002-02-12 2004-02-19 Lee Jim L. Method and apparatus for increasing performance of ion wind devices
US20040052700A1 (en) * 2001-03-27 2004-03-18 Kotlyar Gennady Mikhailovich Device for air cleaning from dust and aerosols
US20050000793A1 (en) * 1998-11-05 2005-01-06 Sharper Image Corporation Air conditioner device with trailing electrode
US6855190B1 (en) * 2004-04-12 2005-02-15 Sylmark Holdings Limited Cleaning mechanism for ion emitting air conditioning device
US6863869B2 (en) * 1998-11-05 2005-03-08 Sharper Image Corporation Electro-kinetic air transporter-conditioner with a multiple pin-ring configuration
US20050051420A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
US20050051028A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US6984987B2 (en) * 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features

Family Cites Families (396)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US653421A (en) 1899-08-22 1900-07-10 William Lorey Filter.
US895729A (en) 1907-07-09 1908-08-11 Int Precipitation Co Art of separating suspended particles from gaseous bodies.
US995958A (en) 1911-02-10 1911-06-20 Louis Goldberg Ozonator.
US1869335A (en) 1926-12-13 1932-07-26 Day Leonard Electric precipitator
US1882949A (en) 1930-11-15 1932-10-18 Int Precipitation Co Electrical precipitation apparatus
US2129783A (en) 1935-10-15 1938-09-13 Westinghouse Electric & Mfg Co Electrical precipitator for atmospheric dust
US2161438A (en) * 1937-04-06 1939-06-06 American Radiator & Standard Air conditioning apparatus
US2327588A (en) 1940-06-01 1943-08-24 Games Slayter Apparatus for conversion of energy
US2247409A (en) 1940-10-09 1941-07-01 John M Roper Ultraviolet instrument lamp
US2359057A (en) 1941-10-13 1944-09-26 Skinner George Donald Heating and ventilating system
GB643363A (en) 1946-10-30 1950-09-20 Westinghouse Electric Int Co Improvements in or relating to electrostatic dust precipitation
US2509548A (en) 1948-05-27 1950-05-30 Research Corp Energizing electrical precipitator
US3022430A (en) * 1957-07-03 1962-02-20 Whitehall Rand Inc Electrokinetic generator
US2949550A (en) 1957-07-03 1960-08-16 Whitehall Rand Inc Electrokinetic apparatus
BE693403A (ja) 1967-01-31 1967-07-03
US3412530A (en) 1967-02-06 1968-11-26 George H. Cardiff Electrostatic air filter structure
US3518462A (en) 1967-08-21 1970-06-30 Guidance Technology Inc Fluid flow control system
US3581470A (en) 1969-12-30 1971-06-01 Emerson Electric Co Electronic air cleaning cell
US3744216A (en) 1970-08-07 1973-07-10 Environmental Technology Air purifier
US3711216A (en) * 1971-06-25 1973-01-16 Standard Tool & Mfg Co Tool bit adjusting device
US4056372A (en) 1971-12-29 1977-11-01 Nafco Giken, Ltd. Electrostatic precipitator
DE2206057A1 (de) 1972-02-09 1973-08-16 Dortmunder Brueckenbau C H Juc Elektrofilter fuer rauchgase
DE2340716A1 (de) 1972-11-02 1975-02-20 8601 Steinfeld Einrichtung zur elektronischen staubabscheidung
JPS4989962A (ja) 1972-12-30 1974-08-28
US3958961A (en) 1973-02-02 1976-05-25 United States Filter Corporation Wet electrostatic precipitators
US3892927A (en) 1973-09-04 1975-07-01 Theodore Lindenberg Full range electrostatic loudspeaker for audio frequencies
JPS524790B2 (ja) 1974-05-08 1977-02-07
US4218225A (en) 1974-05-20 1980-08-19 Apparatebau Rothemuhle Brandt & Kritzler Electrostatic precipitators
US4362632A (en) 1974-08-02 1982-12-07 Lfe Corporation Gas discharge apparatus
CA1070622A (en) 1974-08-19 1980-01-29 James J. Schwab Process and apparatus for electrostatic cleaning of gases
US3984215A (en) 1975-01-08 1976-10-05 Hudson Pulp & Paper Corporation Electrostatic precipitator and method
JPS5190077U (ja) 1975-01-17 1976-07-19
US4282014A (en) 1975-01-31 1981-08-04 Siemens Aktiengesellschaft Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator
US4052177A (en) 1975-03-03 1977-10-04 Nea-Lindberg A/S Electrostatic precipitator arrangements
DE2514956B1 (de) 1975-04-05 1976-01-15 Appbau Rothemuehle Brandt & Kr Rauchgas-elektroabscheider
JPS5245884U (ja) 1975-07-09 1977-03-31
US4126434A (en) 1975-09-13 1978-11-21 Hara Keiichi Electrostatic dust precipitators
US4092134A (en) 1976-06-03 1978-05-30 Nipponkai Heavy Industries Co., Ltd. Electric dust precipitator and scraper
FR2360199A1 (fr) 1976-07-27 1978-02-24 Pellin Henri Ionisateur negatif
DE2641114C3 (de) 1976-09-13 1981-05-14 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Herstellung eines Kunststoff-Elektrofilters in Wabenform
JPS5399939A (en) 1977-02-10 1978-08-31 Konishiroku Photo Ind Co Ltd Silver halide color photographic material
JPS53115978A (en) 1977-03-21 1978-10-09 Shiyunji Matsumoto Electrostatic filter
US4104042A (en) 1977-04-29 1978-08-01 American Air Filter Company, Inc. Multi-storied electrostatic precipitator
US4119415A (en) 1977-06-22 1978-10-10 Nissan Motor Company, Ltd. Electrostatic dust precipitator
US4293319A (en) 1977-09-28 1981-10-06 The United States Of America As Represented By The Secretary Of Agriculture Electrostatic precipitator apparatus using liquid collection electrodes
JPS5451468A (en) 1977-09-30 1979-04-23 Denki Kagaku Kogyo Kk Method of producing thermionic emission cathode
US4349359A (en) 1978-03-30 1982-09-14 Maxwell Laboratories, Inc. Electrostatic precipitator apparatus having an improved ion generating means
US4289504A (en) 1978-06-12 1981-09-15 Ball Corporation Modular gas cleaner and method
US4227894A (en) 1978-10-10 1980-10-14 Proynoff John D Ion generator or electrostatic environmental conditioner
US4209306A (en) 1978-11-13 1980-06-24 Research-Cottrell Pulsed electrostatic precipitator
US4231766A (en) 1978-12-11 1980-11-04 United Air Specialists, Inc. Two stage electrostatic precipitator with electric field induced airflow
US4232355A (en) 1979-01-08 1980-11-04 Santek, Inc. Ionization voltage source
US4264343A (en) * 1979-05-18 1981-04-28 Monsanto Company Electrostatic particle collecting apparatus
US4225323A (en) 1979-05-31 1980-09-30 General Electric Company Ionization effected removal of alkali composition from a hot gas
US4308036A (en) 1979-08-23 1981-12-29 Efb Inc. Filter apparatus and method for collecting fly ash and fine dust
US4284420A (en) 1979-08-27 1981-08-18 Borysiak Ralph A Electrostatic air cleaner with scraper cleaning of collector plates
US4351648A (en) 1979-09-24 1982-09-28 United Air Specialists, Inc. Electrostatic precipitator having dual polarity ionizing cell
US4338560A (en) 1979-10-12 1982-07-06 The United States Of America As Represented By The Secretary Of The Navy Albedd radiation power converter
US4266948A (en) 1980-01-04 1981-05-12 Envirotech Corporation Fiber-rejecting corona discharge electrode and a filtering system employing the discharge electrode
CA1154694A (en) * 1980-03-06 1983-10-04 Tsuneo Uchiya Electrostatic particle precipitator
CH646507A5 (de) 1980-03-13 1984-11-30 Elcar Zuerich Ag Raumluft-ionisator.
GB2075759B (en) 1980-03-27 1984-10-03 Masuda Senichi Particle charging apparatus
US4544382A (en) 1980-05-19 1985-10-01 Office National D'etudes Et De Recherches Aerospatiales (Onera) Apparatus for separating particles in suspension in a gas
DE3019991A1 (de) * 1980-05-24 1981-12-03 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur entfernung von festen bestandteilen aus dem abgas von brennkraftmaschinen insbesondere von russbestandteilen
JPS571454A (en) 1980-06-05 1982-01-06 Senichi Masuda Electrostatic type ultrahigh capacity filter
DE3027172A1 (de) 1980-07-17 1982-02-18 Siemens AG, 1000 Berlin und 8000 München Verfahren zum betrieb eines elektrofilters
US4363072A (en) 1980-07-22 1982-12-07 Zeco, Incorporated Ion emitter-indicator
DE3033796A1 (de) 1980-09-09 1982-04-22 Bayer Ag, 5090 Leverkusen Elektrochemischer sensor zum nachweis reduzierender gase, insbesondere von kohlenmonoxid, hydrazin und wasserstoff in luft
US4691829A (en) 1980-11-03 1987-09-08 Coulter Corporation Method of and apparatus for detecting change in the breakoff point in a droplet generation system
DE3169116D1 (en) 1980-12-17 1985-03-28 Smidth & Co As F L Method of controlling operation of an electrostatic precipitator
US4386395A (en) 1980-12-19 1983-05-31 Webster Electric Company, Inc. Power supply for electrostatic apparatus
US4477268A (en) 1981-03-26 1984-10-16 Kalt Charles G Multi-layered electrostatic particle collector electrodes
US4354861A (en) 1981-03-26 1982-10-19 Kalt Charles G Particle collector and method of manufacturing same
SE425945B (sv) * 1981-04-03 1982-11-29 Flaekt Ab Anordning vid ett stoftfilter
US4597780A (en) 1981-06-04 1986-07-01 Santek, Inc. Electro-inertial precipitator unit
JPS5811050A (ja) 1981-07-11 1983-01-21 Niito Shiyuujin Kiko Kk 電気集塵装置
GB2110119B (en) * 1981-10-12 1986-03-19 Senichi Masuda High efficiency electrostatic filter device
DK146770C (da) * 1981-11-13 1984-06-04 Brueel & Kjaer As Kapacitiv transducer
US4406671A (en) 1981-11-16 1983-09-27 Kelsey-Hayes Company Assembly and method for electrically degassing particulate material
US4391614A (en) 1981-11-16 1983-07-05 Kelsey-Hayes Company Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber
DE3151534A1 (de) 1981-12-28 1983-07-07 Basf Ag, 6700 Ludwigshafen Mit aminoreduktonen als antioxidantien stabilisierte organische materialien
US4405342A (en) 1982-02-23 1983-09-20 Werner Bergman Electric filter with movable belt electrode
US4692174A (en) 1982-02-26 1987-09-08 Gelfand Peter C Ionizer assembly having a bell-mouth outlet
DE3208895C2 (de) 1982-03-12 1986-05-15 Rudolf 3501 Schauenburg Gesslauer Schaltungsanordnung zum impulsförmigen Betreiben von einem oder mehreren Hochfrequenz-Ozonisatoren
US4477263A (en) 1982-06-28 1984-10-16 Shaver John D Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas
US4588423A (en) 1982-06-30 1986-05-13 Donaldson Company, Inc. Electrostatic separator
US4534776A (en) 1982-08-16 1985-08-13 At&T Bell Laboratories Air cleaner
US4516991A (en) 1982-12-30 1985-05-14 Nihon Electric Co. Ltd. Air cleaning apparatus
US4514780A (en) * 1983-01-07 1985-04-30 Wm. Neundorfer & Co., Inc. Discharge electrode assembly for electrostatic precipitators
US4481017A (en) 1983-01-14 1984-11-06 Ets, Inc. Electrical precipitation apparatus and method
DE3301772A1 (de) 1983-01-20 1984-07-26 Walther & Cie AG, 5000 Köln Verfahren und vorrichtung zur automatischen spannungsregelung eines elektrostatischen filters
US4736127A (en) 1983-04-08 1988-04-05 Sarcos, Inc. Electric field machine
DE3320299A1 (de) 1983-06-04 1984-12-06 Drägerwerk AG, 2400 Lübeck Elektrostatisches schwebstoffilter
US4587475A (en) 1983-07-25 1986-05-06 Foster Wheeler Energy Corporation Modulated power supply for an electrostatic precipitator
US4536698A (en) 1983-08-25 1985-08-20 Vsesojuzny Nauchno-Issledovatelsky I Proektny Institut Po Ochikh Tke Tekhnologichesky Gazov, Stochnykh Vod I Ispolzovaniju Vtorichnykh Energoresursov Predpriyaty Chernoi Metallurgii Vnipichermetenergoochist Ka Method and apparatus for supplying voltage to high-ohmic dust electrostatic precipitator
FR2558019B1 (fr) 1983-09-29 1989-06-02 Dominique Bacot Generateur de haute tension pour depoussiereur electrostatique, ou analogue, et depoussiereur electrostatique equipe d'un tel generateur
US4521229A (en) 1983-11-01 1985-06-04 Combustion Engineering, Inc. Tubular discharge electrode for electrostatic precipitator
US4689056A (en) 1983-11-23 1987-08-25 Nippon Soken, Inc. Air cleaner using ionic wind
JPS60122062A (ja) * 1983-12-05 1985-06-29 Nippon Soken Inc 空気清浄器
NL8400141A (nl) 1984-01-17 1985-08-16 Philips Nv Haarbehandelingsmiddel.
US4686370A (en) 1984-02-13 1987-08-11 Biomed-Electronic Gmbh & Co. Medizinischer Geratebau Kg Ionizing chamber for gaseous oxygen
JPS60172362A (ja) 1984-02-18 1985-09-05 Senichi Masuda 静電式濾過集塵装置
DE3416093A1 (de) 1984-04-30 1985-10-31 J. Wagner AG, Altstätten Elektronischer hochspannungserzeuger fuer elektrostatische spruehgeraete
US4600411A (en) 1984-04-06 1986-07-15 Lucidyne, Inc. Pulsed power supply for an electrostatic precipitator
US4657738A (en) 1984-04-30 1987-04-14 Westinghouse Electric Corp. Stack gas emissions control system
JPS60235702A (ja) 1984-05-09 1985-11-22 Senichi Masuda オゾンガスの製造方法と、その方法を実施するためのオゾナイザ
DE3520924A1 (de) 1984-06-12 1985-12-12 Toyoda Gosei Co., Ltd., Haruhi, Aichi Plasmaverfahrensanlage
DE3422989C2 (de) * 1984-06-22 1986-10-09 Messer Griesheim Gmbh, 6000 Frankfurt Vorrichtung zur Erzeugung von Ozon
JPS618149A (ja) 1984-06-22 1986-01-14 Midori Anzen Kk 静電式濾過集塵装置
JPS6150656A (ja) 1984-08-14 1986-03-12 Corona Giken Kogyo Kk 電気集塵装置
US4597781A (en) 1984-11-21 1986-07-01 Donald Spector Compact air purifier unit
GB8430803D0 (en) 1984-12-06 1985-01-16 Bergman I Electrochemical cell
GB8431294D0 (en) 1984-12-12 1985-01-23 Smidth & Co As F L Controlling intermittant voltage supply
US4590042A (en) 1984-12-24 1986-05-20 Tegal Corporation Plasma reactor having slotted manifold
US4623365A (en) 1985-01-09 1986-11-18 The United States Of America As Represented By The Department Of Energy Recirculating electric air filter
US4604174A (en) 1985-04-30 1986-08-05 Dorr-Oliver Incorporated High flow electrofiltration
EP0345828B1 (en) 1985-05-30 1993-09-29 Research Development Corporation of Japan Electrostatic dust collector
US4967119A (en) 1985-06-06 1990-10-30 Astra-Vent Ab Air transporting arrangement
JPS627378A (ja) 1985-06-11 1987-01-14 Nippon Fuijitetsuku Kiki Kk 静電高電圧発生装置
DE3522569A1 (de) 1985-06-24 1987-01-02 Metallgesellschaft Ag Stromversorgung fuer ein elektrofilter
EP0208822B1 (en) 1985-07-15 1989-10-04 Kraftelektronik AB An electrostatic dust precipitator
DE3526021A1 (de) 1985-07-20 1987-01-29 Hv Hofmann Und Voelkel Ohg Tragbarer ionenerzeuger und verwendung
FR2585899A1 (fr) 1985-07-31 1987-02-06 Centre Nat Rech Scient Dispositif de transport de charges electrostatiques, en particulier pour generateur electrostatique a tres haute tension.
DE3532978C1 (de) 1985-09-16 1986-12-04 Dr. Engelter & Nitsch Wirtschaftsberatung, 6000 Frankfurt Elektrodenanordnung fuer Koronaentladungen
US4772297A (en) 1985-09-20 1988-09-20 Kyowa Seiko Co., Ltd. Air cleaner
US4853005A (en) 1985-10-09 1989-08-01 American Filtrona Corporation Electrically stimulated filter method and apparatus
USRE33927E (en) 1985-11-08 1992-05-19 Kankyo Company Limited Air cleaner
SE453783B (sv) 1985-12-20 1988-02-29 Astra Vent Ab Anordning for transport av luft med utnyttjande av en elektrisk jonvind
JPH0636876B2 (ja) * 1986-01-14 1994-05-18 株式会社日本自動車部品総合研究所 イオン風式空気清浄器
US4670026A (en) 1986-02-18 1987-06-02 Desert Technology, Inc. Method and apparatus for electrostatic extraction of droplets from gaseous medium
US4789801A (en) 1986-03-06 1988-12-06 Zenion Industries, Inc. Electrokinetic transducing methods and apparatus and systems comprising or utilizing the same
US4693869A (en) 1986-03-20 1987-09-15 Pfaff Ernest H Electrode arrangement for creating corona
SE462703B (sv) 1986-04-21 1990-08-20 Astra Vent Ab Anordning foer alstring av en elektrisk koronaurladdning i luft
US4662903A (en) 1986-06-02 1987-05-05 Denki Kogyo Company Limited Electrostatic dust collector
US4666474A (en) 1986-08-11 1987-05-19 Amax Inc. Electrostatic precipitators
US4743275A (en) 1986-08-25 1988-05-10 Flanagan G Patrick Electron field generator
SE455170B (sv) 1986-10-30 1988-06-27 Astra Vent Ab Kondensatoravskiljare for elektrofilter
US4781736A (en) 1986-11-20 1988-11-01 United Air Specialists, Inc. Electrostatically enhanced HEPA filter
US4966666A (en) 1986-11-24 1990-10-30 Waltonen Laboratories Fluid energizing method and apparatus
US4760302A (en) 1986-12-11 1988-07-26 Sarcos, Inc. Electric field machine
BR8707919A (pt) 1986-12-19 1989-10-31 Astra Vent Ab Sistema de tratamento de ar
JPH07121265B2 (ja) 1986-12-26 1995-12-25 京セラ株式会社 頚椎用人工椎間板
SE456204B (sv) 1987-02-05 1988-09-12 Astra Vent Ab Anordning for transport av luft med utnyttjande av elektrisk jonvind
US4749390A (en) 1987-02-26 1988-06-07 Air Purification Products, International Four-sided air filter
US4786844A (en) 1987-03-30 1988-11-22 Rpc Industries Wire ion plasma gun
SE458077B (sv) 1987-07-03 1989-02-20 Astra Vent Ab Anordning foer transport och ev samtidig rening av luft
US4765802A (en) 1987-07-15 1988-08-23 Wheelabrator Air Pollution Control Inc. Electrostatic precipitator plate spacer and method of installing same
CN87210843U (zh) 1987-07-27 1988-07-06 王世强 可消除臭氧的空气负离子发生器
US5003774A (en) 1987-10-09 1991-04-02 Kerr-Mcgee Chemical Corporation Apparatus for soot removal from exhaust gas
JPH0741153Y2 (ja) 1987-10-26 1995-09-20 東京応化工業株式会社 試料処理用電極
US5061462A (en) 1987-11-12 1991-10-29 Nagatoshi Suzuki Apparatus for producing a streamer corona
US4940894A (en) 1987-12-10 1990-07-10 Enercon Industries Corporation Electrode for a corona discharge apparatus
DE3807940C1 (ja) 1988-03-10 1989-05-18 Hofmann & Voelkel Gmbh, 8580 Bayreuth, De
SE460816B (sv) 1988-03-10 1989-11-20 Astra Vent Ab Anordning foer transport av luft
CA1319624C (en) 1988-03-11 1993-06-29 William E. Pick Pleated charged media air filter
US4940470A (en) 1988-03-23 1990-07-10 American Filtrona Corporation Single field ionizing electrically stimulated filter
US4954320A (en) 1988-04-22 1990-09-04 The United States Of America As Represented By The Secretary Of The Army Reactive bed plasma air purification
US4822381A (en) 1988-05-09 1989-04-18 Government Of The United States As Represented By Administrator Environmental Protection Agency Electroprecipitator with suppression of rapping reentrainment
SE463077B (sv) 1988-06-03 1990-10-08 Boliden Contech Ab Emissionselektrod
CH677400A5 (ja) 1988-06-07 1991-05-15 Max Zellweger
JP2656080B2 (ja) 1988-08-01 1997-09-24 松下電器産業株式会社 静電集塵装置
US5012093A (en) 1988-08-29 1991-04-30 Minolta Camera Co., Ltd. Cleaning device for wire electrode of corona discharger
US4976752A (en) 1988-09-26 1990-12-11 Astra Vent Ab Arrangement for generating an electric corona discharge in air
DE3900552A1 (de) 1989-01-11 1990-07-12 Goslar Bleiwerk Elektrofilter aus kunststoff und/oder metall, insbesondere aus blei
US4869736A (en) 1989-02-02 1989-09-26 Combustion Engineering, Inc. Collecting electrode panel assembly with coupling means
US5199257A (en) 1989-02-10 1993-04-06 Centro Sviluppo Materiali S.P.A. Device for removal of particulates from exhaust and flue gases
SE463353B (sv) 1989-03-28 1990-11-12 Flaekt Ab Saett att reglera stroempulsmatning till en elektrostatisk stoftavskiljare
KR910002599Y1 (ko) 1989-06-15 1991-04-22 삼성전자 주식회사 공기청정기 이온회선의 전열발생 구조
US4929139A (en) 1989-07-26 1990-05-29 The Perkin-Elmer Corporation Passive electrostatic vacuum particle collector
US5010869A (en) 1989-08-11 1991-04-30 Zenion Industries, Inc. Air ionization system for internal combustion engines
EP0415486B1 (de) 1989-08-31 1994-03-16 METALLGESELLSCHAFT Aktiengesellschaft Verfahren und Vorrichtung zur elektrostatischen Reinigung staub- und schadstoffhaltiger Abgase in mehrfeldrigen Abscheidern
KR910007011Y1 (ko) 1989-09-30 1991-09-20 삼성전자 주식회사 공기청정기의 다단집진장치
FR2655570B1 (fr) 1989-12-12 1992-06-19 Commissariat Energie Atomique Filtre electrostatique pourvu d'un systeme de decolmatage.
US5158580A (en) 1989-12-15 1992-10-27 Electric Power Research Institute Compact hybrid particulate collector (COHPAC)
IL92933A0 (en) 1989-12-29 1990-09-17 Alexander Gurvitz Receiving electrode of electrostatic plate-type precipitator
US5571483A (en) 1990-01-26 1996-11-05 Exolon-Esk Company System of converting environmentally pollutant waste gases to a useful product
US5118942A (en) 1990-02-05 1992-06-02 Hamade Thomas A Electrostatic charging apparatus and method
US5077468A (en) 1990-02-05 1991-12-31 Hamade Thomas A Electrostatic charging apparatus and method
US5012094A (en) 1990-02-05 1991-04-30 Hamade Thomas A Electrostatic charging apparatus and method
US5376168A (en) 1990-02-20 1994-12-27 The L. D. Kichler Co. Electrostatic particle filtration
US5405434A (en) 1990-02-20 1995-04-11 The Scott Fetzer Company Electrostatic particle filtration
USD326514S (en) 1990-02-27 1992-05-26 U.S. Natural Resources, Inc. Electronic air cleaner
US5154733A (en) 1990-03-06 1992-10-13 Ebara Research Co., Ltd. Photoelectron emitting member and method of electrically charging fine particles with photoelectrons
GB2242931B (en) 1990-03-19 1993-09-22 Hitachi Ltd Blower
CA2079788C (en) 1990-04-04 2001-12-11 Isaak Kantor Hair grooming device
US5147429A (en) 1990-04-09 1992-09-15 James Bartholomew Mobile airborne air cleaning station
KR920004208B1 (ko) * 1990-06-12 1992-05-30 삼성전자주식회사 공기 청정기용 전기 집진장치
GB9013621D0 (en) 1990-06-19 1990-08-08 Neg Ions Limited Dust extraction from air by negative ionization
US5034033A (en) 1990-07-13 1991-07-23 U.S. Natural Resources, Inc. Modular electronic air cleaning device
US5637198A (en) 1990-07-19 1997-06-10 Thermo Power Corporation Volatile organic compound and chlorinated volatile organic compound reduction methods and high efficiency apparatus
US5055963A (en) 1990-08-15 1991-10-08 Ion Systems, Inc. Self-balancing bipolar air ionizer
US5066313A (en) 1990-09-20 1991-11-19 Southern Environmental, Inc. Wire electrode replacement for electrostatic precipitators
US5059219A (en) 1990-09-26 1991-10-22 The United States Goverment As Represented By The Administrator Of The Environmental Protection Agency Electroprecipitator with alternating charging and short collector sections
SE9003156L (sv) 1990-10-03 1992-04-04 Astra Vent Ab Anordning foer alstring av en luftstroemning och rening av densamma
DE4139474A1 (de) 1990-11-30 1992-06-04 Toshiba Kawasaki Kk Elektro-staubabscheideanlage
JP3019961B2 (ja) * 1991-01-31 2000-03-15 東芝キヤリア株式会社 電気集塵機
US5234555A (en) 1991-02-05 1993-08-10 Ibbott Jack Kenneth Method and apparatus for ionizing fluids utilizing a capacitive effect
US5516493A (en) 1991-02-21 1996-05-14 Bell; Maxwell G. Method and apparatus for producing ozone by corona discharge
US5141715A (en) 1991-04-09 1992-08-25 University Of Alaska Electrical device for conversion of molecular weights using dynodes
USD329284S (en) 1991-04-15 1992-09-08 Patton Electric Company, Inc. Portable electric fan
US5316741A (en) 1991-05-30 1994-05-31 Zontec Inc. Ozone generator
CN2111112U (zh) 1991-06-28 1992-07-29 段沫石 用紫外线杀菌的空气净化器
JP3211032B2 (ja) 1991-08-02 2001-09-25 株式会社エルデック 電気集塵装置
JP2564715B2 (ja) 1991-08-08 1996-12-18 住友精密工業株式会社 プレート型オゾン発生機
FR2680474B1 (fr) 1991-08-21 1995-09-08 Ecoprocess Sarl Reacteur electrostatique a contacts gaz liquide solide a contre courant gaz liquide et a etages multiples pour l'epuration d'un gaz et des liquides de transfert.
US5407639A (en) 1991-10-14 1995-04-18 Toto, Ltd. Method of manufacturing a corona discharge device
US5540761A (en) 1991-12-11 1996-07-30 Yamamoto; Yujiro Filter for particulate materials in gaseous fluids
US5647890A (en) 1991-12-11 1997-07-15 Yamamoto; Yujiro Filter apparatus with induced voltage electrode and method
US5210678A (en) 1991-12-16 1993-05-11 Industrial Technology Research Institute Chain-type discharge wire for use in an electrostatic precipitator
KR940001414B1 (ko) 1991-12-31 1994-02-23 삼성전자 주식회사 전기집진기
DE4200343C2 (de) 1992-01-09 1993-11-11 Metallgesellschaft Ag Elektrostatischer Abscheider
US5217511A (en) 1992-01-24 1993-06-08 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration
SE469466B (sv) 1992-02-20 1993-07-12 Tl Vent Ab Tvaastegs elektrofilter
FR2690509A1 (fr) 1992-04-22 1993-10-29 Electricite De France Appareil de chauffage par convection.
US5549874A (en) 1992-04-23 1996-08-27 Ebara Corporation Discharge reactor
US5254155A (en) 1992-04-27 1993-10-19 Mensi Fred E Wet electrostatic ionizing element and cooperating honeycomb passage ways
US5308586A (en) 1992-05-01 1994-05-03 General Atomics Electrostatic separator using a bead bed
CN2153231Y (zh) 1992-05-12 1994-01-19 沈阳市仁义有限公司 水果蔬菜电子化学综合保鲜机
US5302190A (en) 1992-06-08 1994-04-12 Trion, Inc. Electrostatic air cleaner with negative polarity power and method of using same
US5417936A (en) 1992-06-08 1995-05-23 Nippon Ozone Co., Ltd. Plate-type ozone generator
US5250267A (en) 1992-06-24 1993-10-05 The Babcock & Wilcox Company Particulate collection device with integral wet scrubber
TW259779B (ja) 1992-07-03 1995-10-11 Ehara Seisakusho Kk
US5330559A (en) 1992-08-11 1994-07-19 United Air Specialists, Inc. Method and apparatus for electrostatically cleaning particulates from air
US5474599A (en) 1992-08-11 1995-12-12 United Air Specialists, Inc. Apparatus for electrostatically cleaning particulates from air
US5403383A (en) 1992-08-26 1995-04-04 Jaisinghani; Rajan Safe ionizing field electrically enhanced filter and process for safely ionizing a field of an electrically enhanced filter
US6264888B1 (en) 1992-10-09 2001-07-24 National Jewish Center For Immunology And Respiratory Medicine Ultraviolet germicidal apparatus and method
CA2146976A1 (en) 1992-10-14 1994-04-28 Oswald Raymond Graham Kitchenman Ozone generation apparatus and method
JP2904328B2 (ja) 1992-11-24 1999-06-14 三菱電機株式会社 微生物繁殖防止装置
CN2138764Y (zh) 1992-12-19 1993-07-21 许泉源 滤毒除尘杀菌空气净化器
CA2150538C (en) 1992-12-23 2003-12-30 George B. Davis Portable room air purifier
US5545379A (en) 1993-02-05 1996-08-13 Teledyne Industries, Inc. Corona discharge system with insulated wire
US5545380A (en) 1993-02-05 1996-08-13 Teledyne Industries, Inc. Corona discharge system with conduit structure
JP3038522B2 (ja) 1993-03-15 2000-05-08 ユーシンエンジニアリング株式会社 空気清浄脱臭環境浄化機
US5587131A (en) 1993-03-25 1996-12-24 Ozontech Ltd. System for an efficient manufacture of ozone
US5503809A (en) 1993-04-19 1996-04-02 John T. Towles Compact ozone generator
US5665147A (en) 1993-04-27 1997-09-09 Bha Group, Inc. Collector plate for electrostatic precipitator
US5529613A (en) 1993-05-18 1996-06-25 Amron Ltd. Air ionization device
US5419953A (en) 1993-05-20 1995-05-30 Chapman; Rick L. Multilayer composite air filtration media
US5532798A (en) 1993-05-26 1996-07-02 Minolta Camera Kabushiki Kaisha Charging device having a plate electrode and a cleaning device for cleaning edges of the plate electrode
US5437843A (en) 1993-07-08 1995-08-01 Kuan; Yu-Hung Ozonizer
US5315838A (en) 1993-08-16 1994-05-31 Whirlpool Corporation Air conditioner filter monitor
US5433772A (en) 1993-10-15 1995-07-18 Sikora; David Electrostatic air filter for mobile equipment
CA2136265C (en) 1993-11-22 1999-07-27 Masami Shimizu Apparatus for generating and condensing ozone
SE504098C2 (sv) 1993-11-24 1996-11-11 Tl Vent Ab Avskiljare för ett elektrofilter
US5407469A (en) 1993-12-20 1995-04-18 Sunova Company Improved air ionizing apparatus
US5503808A (en) 1993-12-27 1996-04-02 Ozact, Inc. Portable integrated ozone generator
DE4400517C2 (de) 1994-01-07 1996-11-07 Sorbios Verfahrenstech Vorrichtung zur Erzeugung von Ozon
SE9400110L (sv) 1994-01-17 1995-07-18 Tl Vent Ab Luftreningsapparat
ES2074029B1 (es) 1994-01-20 1996-03-16 Serra Jaime Tona Dispositivo para ozonizar peque¦as zonas o superficies con fines terapeuticos.
US5514345A (en) 1994-03-11 1996-05-07 Ozact, Inc. Method and apparatus for disinfecting an enclosed space
JP2637693B2 (ja) 1994-04-05 1997-08-06 三星電子株式会社 冷蔵庫の多機能付加装置
US5518531A (en) 1994-05-05 1996-05-21 Joannu; Constantinos J. Ion injector for air handling systems
US5582632A (en) 1994-05-11 1996-12-10 Kimberly-Clark Corporation Corona-assisted electrostatic filtration apparatus and method
US5554344A (en) 1994-05-11 1996-09-10 Duarte; Fernando C. Gas ionization device
SE9402641L (sv) 1994-08-05 1996-02-06 Strainer Lpb Ab Anordning för transport av luft med utnyttjande av en elektrisk jonvind.
JP3431731B2 (ja) 1994-08-16 2003-07-28 株式会社荏原製作所 電子線照射排ガス処理装置
US5549795A (en) 1994-08-25 1996-08-27 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
US5637279A (en) 1994-08-31 1997-06-10 Applied Science & Technology, Inc. Ozone and other reactive gas generator cell and system
JP3352842B2 (ja) 1994-09-06 2002-12-03 科学技術振興事業団 ガスクラスターイオンビームによる薄膜形成方法
US5542967A (en) 1994-10-06 1996-08-06 Ponizovsky; Lazar Z. High voltage electrical apparatus for removing ecologically noxious substances from gases
US5535089A (en) 1994-10-17 1996-07-09 Jing Mei Industrial Holdings, Ltd. Ionizer
US5508008A (en) 1994-10-27 1996-04-16 Wasser; Robert E. Apparatus for producing ozone with local and remote application
US6309514B1 (en) 1994-11-07 2001-10-30 Ti Properties, Inc. Process for breaking chemical bonds
US5630990A (en) 1994-11-07 1997-05-20 T I Properties, Inc. Ozone generator with releasable connector and grounded current collector
US5437713A (en) 1994-12-01 1995-08-01 Chang; Chin-Chu Removal device for electrostatic precipitators
US5529760A (en) 1994-12-13 1996-06-25 Burris; William A. Ozone generator
JP3015268B2 (ja) 1994-12-27 2000-03-06 オーニット株式会社 低温プラズマ発生体
US5472456A (en) 1995-01-06 1995-12-05 Larsky; Edvin G. Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair
US5573577A (en) 1995-01-17 1996-11-12 Joannou; Constantinos J. Ionizing and polarizing electronic air filter
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
US5762691A (en) 1995-03-21 1998-06-09 Sikorsky Aircraft Corporation Aerodynamic-electrostatic particulate collection system
US5578280A (en) 1995-04-28 1996-11-26 Americal Environmental Technologies, Inc. Ozone generator with a generally spherical corona chamber
WO1996035513A1 (de) 1995-05-08 1996-11-14 Rudolf Gutmann Luftreinigungsgerät
US5573730A (en) 1995-05-09 1996-11-12 Gillum; Theodore J. Method and apparatus for treating airborne residues
US5578112A (en) 1995-06-01 1996-11-26 999520 Ontario Limited Modular and low power ionizer
USD375546S (en) 1995-06-29 1996-11-12 Myoung Woull Electronics Co., Ltd. Air purifier
US5667563A (en) 1995-07-13 1997-09-16 Silva, Jr.; John C. Air ionization system
US5630866A (en) 1995-07-28 1997-05-20 Gregg; Lloyd M. Static electricity exhaust treatment device
US5525310A (en) 1995-08-02 1996-06-11 Decker; R. Scott Continuous corona discharge ozone generation device
SE516209C2 (sv) 1995-09-08 2001-12-03 Andrzej Loreth Kondensatoravskiljare för rening av luft
US5779769A (en) 1995-10-24 1998-07-14 Jiang; Pengming Integrated multi-function lamp for providing light and purification of indoor air
US5648049A (en) 1995-11-29 1997-07-15 Alanco Environmental Resources Corp. Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream
US5641342A (en) 1995-12-26 1997-06-24 Carrier Corporation Interlock between cells of an electronic air cleaner
US5669963A (en) 1995-12-26 1997-09-23 Carrier Corporation Electronic air cleaner
US5641461A (en) 1996-01-26 1997-06-24 Ferone; Daniel A. Ozone generating apparatus and cell therefor
US5656063A (en) 1996-01-29 1997-08-12 Airlux Electrical Co., Ltd. Air cleaner with separate ozone and ionizer outputs and method of purifying air
US5681434A (en) 1996-03-07 1997-10-28 Eastlund; Bernard John Method and apparatus for ionizing all the elements in a complex substance such as radioactive waste and separating some of the elements from the other elements
JPH09290176A (ja) * 1996-04-25 1997-11-11 Matsushita Seiko Co Ltd 空気清浄機
US5678237A (en) 1996-06-24 1997-10-14 Associated Universities, Inc. In-situ vitrification of waste materials
IL118741A0 (en) 1996-06-26 1996-10-16 Ozontech Ltd Ozone application for disinfection purification and deodorization
US5693928A (en) 1996-06-27 1997-12-02 International Business Machines Corporation Method for producing a diffusion barrier and polymeric article having a diffusion barrier
JP3407241B2 (ja) 1996-07-02 2003-05-19 富士電機株式会社 オゾン製造設備の運転方法
US5702507A (en) * 1996-09-17 1997-12-30 Yih Change Enterprise Co., Ltd. Automatic air cleaner
US5667756A (en) 1996-12-18 1997-09-16 Lin-Chang International Co., Ltd. Structure of ozonizer
US6149717A (en) 1997-01-06 2000-11-21 Carrier Corporation Electronic air cleaner with germicidal lamp
WO1998039100A1 (en) 1997-03-05 1998-09-11 Eurus Airtech Ab Device for air cleaning
US5893977A (en) 1997-05-12 1999-04-13 Hercules Products Water ionizer having vibration sensor to sense flow in electrode housing
SE511329C2 (sv) 1997-08-06 1999-09-13 Eurus Airtech Ab Anordning för rening av luft
US6063168A (en) 1997-08-11 2000-05-16 Southern Company Services Electrostatic precipitator
US5997619A (en) 1997-09-04 1999-12-07 Nq Environmental, Inc. Air purification system
US5911957A (en) 1997-10-23 1999-06-15 Khatchatrian; Robert G. Ozone generator
US5902552A (en) * 1998-01-09 1999-05-11 Brickley; James Lawrence Ultraviolet air sterilization device
US6270733B1 (en) 1998-04-09 2001-08-07 Raymond M. Rodden Ozone generator
SE9802177D0 (sv) 1998-06-18 1998-06-18 Kraftelektronik Ab Metod och anordning för alstring av spänningspulser till en elektrostatisk stoftavskiljare
US6126722A (en) 1998-07-28 2000-10-03 The United States Of America As Represented By The Secretary Of Agriculture Electrostatic reduction system for reducing airborne dust and microorganisms
WO2000008453A1 (fr) 1998-08-06 2000-02-17 Hitachi, Ltd. Chargeuse d'echantillons, source d'ions et analyseur de masse avec lesquels on utilise la chargeuse
DE19837727A1 (de) 1998-08-20 2000-02-24 Baltic Metalltechnik Gmbh Luftreinigungsgerät
US6911186B2 (en) 1998-11-05 2005-06-28 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability
US20020122752A1 (en) 1998-11-05 2002-09-05 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with interstitial electrode
US20020146356A1 (en) 1998-11-05 2002-10-10 Sinaiko Robert J. Dual input and outlet electrostatic air transporter-conditioner
US20020122751A1 (en) 1998-11-05 2002-09-05 Sinaiko Robert J. Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter
US6958134B2 (en) 1998-11-05 2005-10-25 Sharper Image Corporation Electro-kinetic air transporter-conditioner devices with an upstream focus electrode
US7220295B2 (en) 2003-05-14 2007-05-22 Sharper Image Corporation Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices
US6544485B1 (en) 2001-01-29 2003-04-08 Sharper Image Corporation Electro-kinetic device with enhanced anti-microorganism capability
US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US20020155041A1 (en) * 1998-11-05 2002-10-24 Mckinney Edward C. Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes
US6632407B1 (en) 1998-11-05 2003-10-14 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US20020150520A1 (en) 1998-11-05 2002-10-17 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode
US6974560B2 (en) 1998-11-05 2005-12-13 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability
US20020127156A1 (en) 1998-11-05 2002-09-12 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with enhanced collector electrode
US6585935B1 (en) 1998-11-20 2003-07-01 Sharper Image Corporation Electro-kinetic ion emitting footwear sanitizer
US6163098A (en) 1999-01-14 2000-12-19 Sharper Image Corporation Electro-kinetic air refreshener-conditioner with optional night light
US6228149B1 (en) 1999-01-20 2001-05-08 Patterson Technique, Inc. Method and apparatus for moving, filtering and ionizing air
US6126727A (en) 1999-01-28 2000-10-03 Lo; Ching-Hsiang Electrode panel-drawing device of a static ion discharger
US6312507B1 (en) 1999-02-12 2001-11-06 Sharper Image Corporation Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box
US6086657A (en) 1999-02-16 2000-07-11 Freije; Joseph P. Exhaust emissions filtering system
DE19907774A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
JP2000236914A (ja) 1999-02-24 2000-09-05 Kyoritsu Denki Sangyo Kk 靴の消臭装置
US6451389B1 (en) 1999-04-17 2002-09-17 Advanced Energy Industries, Inc. Method for deposition of diamond like carbon
US6302944B1 (en) 1999-04-23 2001-10-16 Stuart Alfred Hoenig Apparatus for extracting water vapor from air
US6808606B2 (en) 1999-05-03 2004-10-26 Guardian Industries Corp. Method of manufacturing window using ion beam milling of glass substrate(s)
US6512333B2 (en) 1999-05-20 2003-01-28 Lee Chen RF-powered plasma accelerator/homogenizer
FR2794295B1 (fr) 1999-05-31 2001-09-07 Joel Mercier Dispositif generateur d'ions
JP2001056395A (ja) 1999-06-11 2001-02-27 Ramuda:Kk マイナスイオン放射方法及びその装置
US6613277B1 (en) 1999-06-18 2003-09-02 Gerald C. Monagan Air purifier
JP4156141B2 (ja) * 1999-08-31 2008-09-24 松下エコシステムズ株式会社 電気集塵フイルター
US6464754B1 (en) 1999-10-07 2002-10-15 Kairos, L.L.C. Self-cleaning air purification system and process
US6471753B1 (en) 1999-10-26 2002-10-29 Ace Lab., Inc. Device for collecting dust using highly charged hyperfine liquid droplets
US6372097B1 (en) 1999-11-12 2002-04-16 Chen Laboratories Method and apparatus for efficient surface generation of pure O3
US6149815A (en) 1999-11-23 2000-11-21 Sauter; Andrew D. Precise electrokinetic delivery of minute volumes of liquid(s)
US6379427B1 (en) 1999-12-06 2002-04-30 Harold E. Siess Method for protecting exposed surfaces
DE19962665B4 (de) 1999-12-23 2008-08-21 Siemens Ag Stromversorgung für Elektrofilter
WO2001047803A1 (en) 1999-12-24 2001-07-05 Lee Jim L Method and apparatus to reduce ozone production in ion wind devices
US6897617B2 (en) 1999-12-24 2005-05-24 Zenion Industries, Inc. Method and apparatus to reduce ozone production in ion wind device
US6803585B2 (en) 2000-01-03 2004-10-12 Yuri Glukhoy Electron-cyclotron resonance type ion beam source for ion implanter
JP3716700B2 (ja) 2000-02-25 2005-11-16 日新電機株式会社 イオン源およびその運転方法
US6212883B1 (en) 2000-03-03 2001-04-10 Moon-Ki Cho Method and apparatus for treating exhaust gas from vehicles
DE10020382A1 (de) 2000-04-26 2001-10-31 Ceos Gmbh Strahlerzeugungssystem für Elektronen oder Ionenstrahlen hoher Monochromasie oder hoher Stromdichte
USD449679S1 (en) 2000-05-01 2001-10-23 Hamilton Beach/Proctor-Silex, Inc. Air cleaner filter
USD449097S1 (en) 2000-05-01 2001-10-09 Hamilton Beach/Proctor-Silex, Inc. Air cleaner
US6328791B1 (en) 2000-05-03 2001-12-11 Hamilton Beach/Proctor-Silex, Inc. Air filtration device
US6315821B1 (en) 2000-05-03 2001-11-13 Hamilton Beach/Proctor-Silex, Inc. Air filtration device including filter change indicator
US6585803B1 (en) 2000-05-11 2003-07-01 University Of Southern California Electrically enhanced electrostatic precipitator with grounded stainless steel collector electrode and method of using same
US6809312B1 (en) 2000-05-12 2004-10-26 Bruker Daltonics, Inc. Ionization source chamber and ion beam delivery system for mass spectrometry
US6777686B2 (en) 2000-05-17 2004-08-17 Varian Semiconductor Equipment Associates, Inc. Control system for indirectly heated cathode ion source
US6768110B2 (en) 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
DE10033642C1 (de) 2000-07-11 2001-08-09 Hengst Walter Gmbh & Co Kg Elektroabscheider
US6583544B1 (en) 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
US6491743B1 (en) 2000-09-11 2002-12-10 Constantinos J. Joannou Electronic cartridge filter
AU2001287461A1 (en) 2000-09-11 2002-03-22 Constantinos J. Joannou Electrostatically polarized air filter
US6494940B1 (en) 2000-09-29 2002-12-17 Hamilton Beach/Proctor-Silex, Inc. Air purifier
DE10050188C1 (de) 2000-10-09 2002-01-24 Siemens Ag Verfahren zum Betrieb eines Elektrofilters
US6576046B2 (en) 2000-10-19 2003-06-10 Fedders Corporation Modular electrostatic precipitator system
AU2002232395A1 (en) 2000-11-03 2002-05-15 Tokyo Electron Limited Hall effect ion source at high current density
AUPR160500A0 (en) 2000-11-21 2000-12-14 Indigo Technologies Group Pty Ltd Electrostatic filter
US6805916B2 (en) 2001-01-17 2004-10-19 Research Foundation Of The City University Of New York Method for making films utilizing a pulsed laser for ion injection and deposition
ATE358878T1 (de) 2001-02-05 2007-04-15 Schwerionenforsch Gmbh Vorrichtung zur erzeugung und zum auswählen von ionen die in einer schwerionen-krebstherapie- anlage verwendt werden
EP1361927A1 (de) 2001-02-23 2003-11-19 Elex Ag Elektrostatischer staubabscheider mit integrierten filterschläuchen
US6806468B2 (en) 2001-03-01 2004-10-19 Science & Engineering Services, Inc. Capillary ion delivery device and method for mass spectroscopy
US6497754B2 (en) 2001-04-04 2002-12-24 Constantinos J. Joannou Self ionizing pleated air filter system
US6761796B2 (en) 2001-04-06 2004-07-13 Axcelis Technologies, Inc. Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing
US20020152890A1 (en) 2001-04-24 2002-10-24 Leiser Randal D. Electrically enhanced air filter with coated ground electrode
JP3869680B2 (ja) 2001-05-29 2007-01-17 株式会社 Sen−Shi・アクセリス カンパニー イオン注入装置
KR100412354B1 (ko) 2001-05-30 2003-12-31 삼성전자주식회사 이온주입장치
SE519290C2 (sv) 2001-07-16 2003-02-11 Ragne Svadil Luftrenare
JP3438054B2 (ja) 2001-08-07 2003-08-18 シャープ株式会社 イオン発生素子
US6768120B2 (en) 2001-08-31 2004-07-27 The Regents Of The University Of California Focused electron and ion beam systems
JP3242637B1 (ja) 2001-11-26 2001-12-25 日本ぱちんこ部品株式会社 イオン発生装置
GB0128913D0 (en) 2001-12-03 2002-01-23 Applied Materials Inc Improvements in ion sources for ion implantation apparatus
JP3900917B2 (ja) 2001-12-10 2007-04-04 日新イオン機器株式会社 イオン注入装置
GB2386247B (en) 2002-01-11 2005-09-07 Applied Materials Inc Ion beam generator
US6777699B1 (en) 2002-03-25 2004-08-17 George H. Miley Methods, apparatus, and systems involving ion beam generation
US6749667B2 (en) 2002-06-20 2004-06-15 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US6806035B1 (en) 2002-06-25 2004-10-19 Western Digital (Fremont), Inc. Wafer serialization manufacturing process for read/write heads using photolithography and selective reactive ion etching
JP3791783B2 (ja) 2002-07-02 2006-06-28 キヤノンアネルバ株式会社 イオン付着質量分析装置、イオン化装置、およびイオン化方法
US6806163B2 (en) 2002-07-05 2004-10-19 Taiwan Semiconductor Manufacturing Co., Ltd Ion implant method for topographic feature corner rounding
US6815690B2 (en) 2002-07-23 2004-11-09 Guardian Industries Corp. Ion beam source with coated electrode(s)
US6899745B2 (en) 2002-10-08 2005-05-31 Kaz, Inc. Electrostatic air cleaner
JP2004150362A (ja) * 2002-10-31 2004-05-27 Honda Motor Co Ltd 車両用検出装置
US20040136863A1 (en) 2003-01-14 2004-07-15 Honeywell International Inc. Filtering system including panel with photocatalytic agent
US6785912B1 (en) 2003-01-24 2004-09-07 Burt V. Julio Ion toilet seat
US20040166037A1 (en) 2003-02-25 2004-08-26 Youdell Harry F. Air filtration and treatment apparatus
US6812647B2 (en) 2003-04-03 2004-11-02 Wayne D. Cornelius Plasma generator useful for ion beam generation
US20060016333A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
US7311762B2 (en) * 2004-07-23 2007-12-25 Sharper Image Corporation Air conditioner device with a removable driver electrode
US20060018804A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Enhanced germicidal lamp

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791338A (en) * 1927-04-12 1931-02-03 Research Corp Electrical precipitator
US2590447A (en) * 1950-06-30 1952-03-25 Jr Simon R Nord Electrical comb
US3018394A (en) * 1957-07-03 1962-01-23 Whitehall Rand Inc Electrokinetic transducer
US3026964A (en) * 1959-05-06 1962-03-27 Gaylord W Penney Industrial precipitator with temperature-controlled electrodes
US2978066A (en) * 1959-05-07 1961-04-04 Honeywell Regulator Co Gas cleaning apparatus
US3374941A (en) * 1964-06-30 1968-03-26 American Standard Inc Air blower
US3638058A (en) * 1970-06-08 1972-01-25 Robert S Fritzius Ion wind generator
US3945813A (en) * 1971-04-05 1976-03-23 Koichi Iinoya Dust collector
US3806763A (en) * 1971-04-08 1974-04-23 S Masuda Electrified particles generating apparatus
US4074983A (en) * 1973-02-02 1978-02-21 United States Filter Corporation Wet electrostatic precipitators
US4070163A (en) * 1974-08-29 1978-01-24 Maxwell Laboratories, Inc. Method and apparatus for electrostatic precipitating particles from a gaseous effluent
US4007024A (en) * 1975-06-09 1977-02-08 Air Control Industries, Inc. Portable electrostatic air cleaner
US4259093A (en) * 1976-04-09 1981-03-31 Elfi Elektrofilter Ab Electrostatic precipitator for air cleaning
US4147522A (en) * 1976-04-23 1979-04-03 American Precision Industries Inc. Electrostatic dust collector
US4138233A (en) * 1976-06-21 1979-02-06 Senichi Masuda Pulse-charging type electric dust collecting apparatus
US4244710A (en) * 1977-05-12 1981-01-13 Burger Manfred R Air purification electrostatic charcoal filter and method
US4185971A (en) * 1977-07-14 1980-01-29 Koyo Iron Works & Construction Co., Ltd. Electrostatic precipitator
US4259452A (en) * 1978-05-15 1981-03-31 Bridgestone Tire Company Limited Method of producing flexible reticulated polyether polyurethane foams
US4189308A (en) * 1978-10-31 1980-02-19 Research-Cottrell, Inc. High voltage wetted parallel plate collecting electrode arrangement for an electrostatic precipitator
US4259707A (en) * 1979-01-12 1981-03-31 Penney Gaylord W System for charging particles entrained in a gas stream
US4244712A (en) * 1979-03-05 1981-01-13 Tongret Stewart R Cleansing system using treated recirculating air
US4369776A (en) * 1979-04-11 1983-01-25 Roberts Wallace A Dermatological ionizing vaporizer
US4318718A (en) * 1979-07-19 1982-03-09 Ichikawa Woolen Textile Co., Ltd. Discharge wire cleaning device for an electric dust collector
US4251234A (en) * 1979-09-21 1981-02-17 Union Carbide Corporation High intensity ionization-electrostatic precipitation system for particle removal
US4253852A (en) * 1979-11-08 1981-03-03 Tau Systems Air purifier and ionizer
US4315188A (en) * 1980-02-19 1982-02-09 Ball Corporation Wire electrode assemblage having arc suppression means and extended fatigue life
US4375364A (en) * 1980-08-21 1983-03-01 Research-Cottrell, Inc. Rigid discharge electrode for electrical precipitators
US4435190A (en) * 1981-03-14 1984-03-06 Office National D'etudes Et De Recherches Aerospatiales Method for separating particles in suspension in a gas
US4496375A (en) * 1981-07-13 1985-01-29 Vantine Allan D Le An electrostatic air cleaning device having ionization apparatus which causes the air to flow therethrough
US4569684A (en) * 1981-07-31 1986-02-11 Ibbott Jack Kenneth Electrostatic air cleaner
US4505724A (en) * 1982-04-24 1985-03-19 Metallgesellschaft Aktiengesellschaft Wet-process dust-collecting apparatus especially for converter exhaust gases
US4636981A (en) * 1982-07-19 1987-01-13 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor memory device having a voltage push-up circuit
US4502002A (en) * 1982-09-02 1985-02-26 Mitsubishi Jukogyo Kabushiki Kaisha Electrostatically operated dust collector
US4643745A (en) * 1983-12-20 1987-02-17 Nippon Soken, Inc. Air cleaner using ionic wind
US4643744A (en) * 1984-02-13 1987-02-17 Triactor Holdings Limited Apparatus for ionizing air
US4647836A (en) * 1984-03-02 1987-03-03 Olsen Randall B Pyroelectric energy converter and method
US4650648A (en) * 1984-10-25 1987-03-17 Bbc Brown, Boveri & Company, Limited Ozone generator with a ceramic-based dielectric
US4730303A (en) * 1985-06-24 1988-03-08 Nec Corporation Digital switching system with host and remote duplicated transmission controllers
US4726814A (en) * 1985-07-01 1988-02-23 Jacob Weitman Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow
US4726812A (en) * 1986-03-26 1988-02-23 Bbc Brown, Boveri Ag Method for electrostatically charging up solid or liquid particles suspended in a gas stream by means of ions
US4808200A (en) * 1986-11-24 1989-02-28 Siemens Aktiengesellschaft Electrostatic precipitator power supply
US4725289A (en) * 1986-11-28 1988-02-16 Quintilian B Frank High conversion electrostatic precipitator
US4811159A (en) * 1988-03-01 1989-03-07 Associated Mills Inc. Ionizer
US4892713A (en) * 1988-06-01 1990-01-09 Newman James J Ozone generator
US5180404A (en) * 1988-12-08 1993-01-19 Astra-Vent Ab Corona discharge arrangements for the removal of harmful substances generated by the corona discharge
USD315598S (en) * 1989-02-15 1991-03-19 Hitachi, Ltd. Electric fan
US5100440A (en) * 1990-01-17 1992-03-31 Elex Ag Emission electrode in an electrostatic dust separator
US5296019A (en) * 1990-06-19 1994-03-22 Neg-Ions (North America) Inc. Dust precipitation from air by negative ionization
US5196171A (en) * 1991-03-11 1993-03-23 In-Vironmental Integrity, Inc. Electrostatic vapor/aerosol/air ion generator
US5198003A (en) * 1991-07-02 1993-03-30 Carrier Corporation Spiral wound electrostatic air cleaner and method of assembling
US5401301A (en) * 1991-07-17 1995-03-28 Metallgesellschaft Aktiengesellschaft Device for the transport of materials and electrostatic precipitation
US5290343A (en) * 1991-07-19 1994-03-01 Kabushiki Kaisha Toshiba Electrostatic precipitator machine for charging dust particles contained in air and capturing dust particles with coulomb force
USD332655S (en) * 1991-10-04 1993-01-19 Patton Electric Company, Inc. Portable electric fan
US5183480A (en) * 1991-10-28 1993-02-02 Mobil Oil Corporation Apparatus and method for collecting particulates by electrostatic precipitation
US5401302A (en) * 1991-12-19 1995-03-28 Metallgesellschaft Aktiegesellschaft Electrostatic separator comprising honeycomb collecting electrodes
US5282891A (en) * 1992-05-01 1994-02-01 Ada Technologies, Inc. Hot-side, single-stage electrostatic precipitator having reduced back corona discharge
US5386839A (en) * 1992-12-24 1995-02-07 Chen; Hong Y. Comb
US5395430A (en) * 1993-02-11 1995-03-07 Wet Electrostatic Technology, Inc. Electrostatic precipitator assembly
US5378978A (en) * 1993-04-02 1995-01-03 Belco Technologies Corp. System for controlling an electrostatic precipitator using digital signal processing
US5492678A (en) * 1993-07-23 1996-02-20 Hokushin Industries, Inc. Gas-cleaning equipment and its use
US5484473A (en) * 1993-07-28 1996-01-16 Bontempi; Luigi Two-stage electrostatic filter with extruded modular components particularly for air recirculation units
US5591334A (en) * 1993-10-19 1997-01-07 Geochto Ltd. Apparatus for generating negative ions
US5501844A (en) * 1994-06-01 1996-03-26 Oxidyn, Incorporated Air treating apparatus and method therefor
US5603752A (en) * 1994-06-07 1997-02-18 Filtration Japan Co., Ltd. Electrostatic precipitator
US5593476A (en) * 1994-06-09 1997-01-14 Coppom Technologies Method and apparatus for use in electronically enhanced air filtration
US5484472A (en) * 1995-02-06 1996-01-16 Weinberg; Stanley Miniature air purifier
US5484472C1 (en) * 1995-02-06 2001-02-20 Wein Products Inc Miniature air purifier
US5591253A (en) * 1995-03-07 1997-01-07 Electric Power Research Institute, Inc. Electrostatically enhanced separator (EES)
US5591412A (en) * 1995-04-26 1997-01-07 Alanco Environmental Resources Corp. Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream
US5601636A (en) * 1995-05-30 1997-02-11 Appliance Development Corp. Wall mounted air cleaner assembly
US5603893A (en) * 1995-08-08 1997-02-18 University Of Southern California Pollution treatment cells energized by short pulses
USD377523S (en) * 1995-08-15 1997-01-21 Duracraft Corp. Air cleaner
US5614002A (en) * 1995-10-24 1997-03-25 Chen; Tze L. High voltage dust collecting panel
USD389567S (en) * 1996-05-14 1998-01-20 Calor S.A. Combined fan and cover therefor
US6203600B1 (en) * 1996-06-04 2001-03-20 Eurus Airtech Ab Device for air cleaning
US6042637A (en) * 1996-08-14 2000-03-28 Weinberg; Stanley Corona discharge device for destruction of airborne microbes and chemical toxins
US6019815A (en) * 1997-01-06 2000-02-01 Carrier Corporation Method for preventing microbial growth in an electronic air cleaner
US5879435A (en) * 1997-01-06 1999-03-09 Carrier Corporation Electronic air cleaner with germicidal lamp
US6193852B1 (en) * 1997-05-28 2001-02-27 The Boc Group, Inc. Ozone generator and method of producing ozone
US6508982B1 (en) * 1998-04-27 2003-01-21 Kabushiki Kaisha Seisui Air-cleaning apparatus and air-cleaning method
US6348103B1 (en) * 1998-05-19 2002-02-19 Firma Ing. Walter Hengst Gmbh & Co. Kg Method for cleaning electrofilters and electrofilters with a cleaning device
US6362604B1 (en) * 1998-09-28 2002-03-26 Alpha-Omega Power Technologies, L.L.C. Electrostatic precipitator slow pulse generating circuit
US6182671B1 (en) * 1998-09-29 2001-02-06 Sharper Image Corporation Ion emitting grooming brush
US6672315B2 (en) * 1998-09-29 2004-01-06 Sharper Image Corporation Ion emitting grooming brush
US6504308B1 (en) * 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
US6709484B2 (en) * 1998-11-05 2004-03-23 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter conditioner devices
US6863869B2 (en) * 1998-11-05 2005-03-08 Sharper Image Corporation Electro-kinetic air transporter-conditioner with a multiple pin-ring configuration
US6350417B1 (en) * 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US20050000793A1 (en) * 1998-11-05 2005-01-06 Sharper Image Corporation Air conditioner device with trailing electrode
US6713026B2 (en) * 1998-11-05 2004-03-30 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6176977B1 (en) * 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6182461B1 (en) * 1999-07-16 2001-02-06 Carrier Corporation Photocatalytic oxidation enhanced evaporator coil surface for fly-by control
US20030005824A1 (en) * 2000-03-03 2003-01-09 Ryou Katou Dust collecting apparatus and air-conditioning apparatus
US20040052700A1 (en) * 2001-03-27 2004-03-18 Kotlyar Gennady Mikhailovich Device for air cleaning from dust and aerosols
US20040033176A1 (en) * 2002-02-12 2004-02-19 Lee Jim L. Method and apparatus for increasing performance of ion wind devices
US6984987B2 (en) * 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features
US20050051420A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
US20050051028A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US6855190B1 (en) * 2004-04-12 2005-02-15 Sylmark Holdings Limited Cleaning mechanism for ion emitting air conditioning device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180027A1 (en) * 2005-02-14 2006-08-17 Mcdonnell Joseph A Ionic air conditioning system
US7368002B2 (en) * 2005-02-14 2008-05-06 Mcdonnell Joseph A Ionic air conditioning system
US20080216660A1 (en) * 2005-07-05 2008-09-11 Frank Mendel Electrostatic Precipitator with Replaceable Collecting Electrode
US20070157813A1 (en) * 2006-01-09 2007-07-12 Sylmark Holdings Limited Safety lid for air conditioning device and method of use
US7479175B2 (en) * 2006-01-09 2009-01-20 Sylmark Holdings Limited Safety lid for air conditioning device and method of use
US8861167B2 (en) 2011-05-12 2014-10-14 Global Plasma Solutions, Llc Bipolar ionization device
EP2908064A1 (en) * 2014-02-18 2015-08-19 Blue Air AB Air purifier device with ionizing means
US9636617B2 (en) 2014-02-18 2017-05-02 Blueair Ab Air purifier device with fan duct
US9694369B2 (en) 2014-02-18 2017-07-04 Blueair Ab Air purifier device with ionizing means
US9919252B2 (en) 2014-02-18 2018-03-20 Blueair Ab Air purifier device with coupling mechanism
EP3760316A1 (en) * 2019-07-05 2021-01-06 Daitech SA System for the purification of the particulate present in fumes and in exhaust gases in combustion processes
WO2021005463A1 (en) * 2019-07-05 2021-01-14 Daitech Sa System for the purification of the particulate present in fumes and in exhaust gases in combustion processes

Also Published As

Publication number Publication date
CN101052464A (zh) 2007-10-10
WO2006012596A2 (en) 2006-02-02
WO2006012596A3 (en) 2006-04-27
MX2007000902A (es) 2007-10-10
US7291207B2 (en) 2007-11-06
US20060018076A1 (en) 2006-01-26
US7897118B2 (en) 2011-03-01
JP2008507364A (ja) 2008-03-13
US20060018811A1 (en) 2006-01-26
US20060018809A1 (en) 2006-01-26
HK1113764A1 (en) 2008-10-17
CN100525897C (zh) 2009-08-12

Similar Documents

Publication Publication Date Title
US7897118B2 (en) Air conditioner device with removable driver electrodes
US7311762B2 (en) Air conditioner device with a removable driver electrode
US7285155B2 (en) Air conditioner device with enhanced ion output production features
US7892501B2 (en) Air sanitizer
US20060018807A1 (en) Air conditioner device with enhanced germicidal lamp
WO2006012617A2 (en) Air conditioner device with variable voltage controlled trailing electrodes
US7771671B2 (en) Air conditioner device with partially insulated collector electrode
US6163098A (en) Electro-kinetic air refreshener-conditioner with optional night light
USRE41812E1 (en) Electro-kinetic air transporter-conditioner
US7517505B2 (en) Electro-kinetic air transporter and conditioner devices with 3/2 configuration having driver electrodes
US20050082160A1 (en) Electro-kinetic air transporter and conditioner devices with a mesh collector electrode
US7371354B2 (en) Treatment apparatus operable to adjust output based on variations in incoming voltage
US7318856B2 (en) Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path
US20070148061A1 (en) Electro-kinetic air transporter and/or air conditioner with devices with features for cleaning emitter electrodes
US20060018810A1 (en) Air conditioner device with 3/2 configuration and individually removable driver electrodes
US20050199125A1 (en) Air transporter and/or conditioner device with features for cleaning emitter electrodes
US20060018808A1 (en) Air conditioner device with individually removable driver electrodes
WO2006060741A2 (en) Air conditioner device with individually removable driver electrodes
US20050095182A1 (en) Electro-kinetic air transporter-conditioner devices with electrically conductive foam emitter electrode
WO2006060689A2 (en) An enhanced germicidal lamp

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARPER IMAGE CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAYLOR, CHARLES E.;PARKER, ANDREW J.;BOTVINNIK, IGOR Y.;AND OTHERS;REEL/FRAME:016361/0414;SIGNING DATES FROM 20050217 TO 20050223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION