US20040104192A1 - Telescopic boom for a vehicle crane - Google Patents
Telescopic boom for a vehicle crane Download PDFInfo
- Publication number
- US20040104192A1 US20040104192A1 US10/473,330 US47333003A US2004104192A1 US 20040104192 A1 US20040104192 A1 US 20040104192A1 US 47333003 A US47333003 A US 47333003A US 2004104192 A1 US2004104192 A1 US 2004104192A1
- Authority
- US
- United States
- Prior art keywords
- telescopic
- locking
- telescopic boom
- angled
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010276 construction Methods 0.000 claims abstract description 7
- 239000000969 carrier Substances 0.000 claims description 8
- 230000004323 axial length Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 description 3
- 238000004904 shortening Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/038—Making the capacitor or connections thereto the capacitor being in a trench in the substrate
- H10B12/0383—Making the capacitor or connections thereto the capacitor being in a trench in the substrate wherein the transistor is vertical
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/038—Making the capacitor or connections thereto the capacitor being in a trench in the substrate
- H10B12/0385—Making a connection between the transistor and the capacitor, e.g. buried strap
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
- H10B12/053—Making the transistor the transistor being at least partially in a trench in the substrate
Definitions
- the invention relates to a telescopic boom for a vehicle crane having the features of the preamble of patent claim 1 .
- a vehicle crane with a generic telescopic boom is disclosed by EP 0 970 914 A2.
- the vehicle crane disclosed there has a lower carriage provided with a road chassis and an upper carriage arranged thereon such that it can rotate about a vertical axis.
- the upper carriage is provided with a telescopic boom which has a base housing which, at its lower end, has a horizontal rotary joint to be fixed to the upper carriage.
- a further rotary joint is arranged approximately in the central region of the base housing, on its underside. This rotary joint is used to attach a hydraulic tilting cylinder which, in turn, is rotatably mounted on the upper carriage and is used to the erect the telescopic boom and to hold the inclination respectively desired during working use.
- telescopic stages Arranged in the base housing are a large number of telescopic stages which are guided in one another and in the base housing (outermost telescopic stage). All the telescopic stages can be moved out from their retracted position into a telescoped position by means of a telecopier which can be coupled directly in each case to the telescopic stage to be moved and which is preferably constructed as a hydraulic cylinder-piston system.
- the telescopic stages can be locked mechanically with respect to one another in the telescoped position in order that they cannot slide back under the action of the load to be lifted or the inherent weight when inclined.
- One of the telescopic stages of this telescopic boom comprises two portions in its axial length which can be pivoted in relation to each other by means of a hinge, so that the result is angling within this telescopic stage.
- the two portions can be locked to each other with regard to their longitudinal axes in a coaxial alignment and in at least one position angled in relation to each other.
- This locking device is constructed as a hydraulic cylinder-piston unit and is arranged on the outside of the telescopic stage that can be angled, in such a way that the cylinder is pivotably mounted in a bearing block connected on the outside to a portion of the telescopic stage that can be angled, while the piston rod of the cylinder-piston unit is attached by means of a rotary joint to a holding arm which is firmly connected on the outside to the other portion of the telescopic stage that can be angled.
- the two portions are connected to each other by a hinge likewise located on the outside.
- the angled point of the telescopic stage that can be angled is arranged approximately in the upper fifth of this telescopic stage. Because of the arrangement of the hinge and the locking device, the telescopic stage that can be angled can be retracted into the next largest telescopic stage only as far as the angled point. Since the permissible transport length of the boom in the telescoped-in state is limited, the telescopic stages surrounding the telescopic stage that can be angled, and the base housing, are designed to be shorter than in the case of a comparable vehicle crane without a telescopic stage that can be angled. The maximum extendable length of the telescopic boom is thus reduced.
- the present invention avoids the disadvantage of shortening the rear telescopic stages with respect to the telescopic stage that can be unwound and of the base housing in such a way that the hinge and the locking device of the telescopic stage that can be angled are arranged in such a way that they lie within the inner contour of the next largest telescopic stage.
- This makes it possible to retract the telescopic stage that can be angled completely into the next largest telescopic stage by means of the telescoping device.
- the next largest and all the further larger telescopic stages can thus maintain the full length as in the case of a conventional telescopic boom.
- the hinge and the locking device are expediently arranged in such a way that they do not project beyond the outer contour predefined by the respective hollow profile of the telescopic stages, that is to say they are arranged in the interior of the hollow profile.
- the innermost telescopic stage is preferably configured as a telescopic stage that can be angled.
- a telescopic stage lying further out to be angled that is to say for example the second last or third last telescopic stage.
- the telescopic stage that can be angled it is preferable for the telescopic stage that can be angled to be arranged in the upper third of the fully extended length of the telescopic boom.
- the hinge may project slightly beyond the outer contour of the hollow profile of the telescopic stage that can be angled, since there is regularly a certain minimum distance between two telescopic stages which are guided into each other, it is recommended to arrange the hinge to be located completely on the inside on the underside of the telescopic stage that can be angled.
- it has least one, in particular a pair, of joint pins which in each case interact with a joint lug and a joint fork, the joint lug being connected to one portion and the joint fork to the other portion of the jointed stage that can be angled.
- the locking device is likewise expediently arranged to be located completely on the inside on the upper side of the telescopic stage that can be angled, so that the outer contour of the hollow profile of the telescopic stage that can be angled projects only a little, if possible not at all.
- the locking device of the telescopic boom according to the invention can be formed by one or else a plurality of hydraulic cylinder-piston systems or else, for example, by one or more threaded spindle drives, which are each case arranged on the inner side of the two portions of the telescopic stage that can be angled. In this way, stepless adjustment of the angle between the two portions may be made possible. As a rule, however this is not even required. For this reason, within the context of the present invention, preference is given to a solution in which the locking device is formed as a pin locking system, which is constituted by a simple and therefore particularly cost-effective solution which is less susceptible to faults.
- At least one locking pin in particular a pair of locking pins, is provided in the locking device, which pins, given a coaxial alignment of the longitudinal axes of the portions of the telescopic stage that can be angled, being capable in each case of being inserted into mutually coaxial drilled holes in a locking fork which is connected to one portion, and a locking lug which is connected to the other portion, in order to achieve a locking of this coaxial alignment, and capable of being withdrawn from the drilled holes, canceling the locking.
- the diameter of the coaxial drilled holes corresponds to the diameter of the locking pins.
- the locking device preferably has a retaining lug which, by means of retaining pins, is in each case connected to a retaining fork, the retaining forks in turn in each case being firmly connected on the inside to one of the two portions of the telescopic stage that can be angled.
- the retaining lug is expediently provided with a slot along its longitudinal axis, the diameter (width) of which hole corresponds to the diameter of the retaining pins, so that the latter can slide relatively through the slot.
- the axial length of this slot is designed such that the two retaining pins bear on the respective semi-cylindrical inner surfaces in the two end regions of the slot in the angled position of the two portions, so that a stop position is provided.
- the two retaining pins can slide unimpeded within the slot, so that the extension is possible without removal of the retaining pins.
- the invention provides for the locking pins in each case to be fixed to a pin carrier, which can be moved parallel to the axes of the drilled holes in the locking fork and the locking lug.
- the pin carriers can preferably be moved by means of a threaded spindle drive.
- the drive for the movement of the pin carriers can be of a hydraulic, pneumatic, electric-motor or else electromagnetic type.
- a drive of a threaded spindle drive for the pin carriers by means of a hand crank is preferred.
- a hand crank In order to require as little overall space as possible with regard to not exceeding the outer contour of the hollow profile of the telescopic stage that can be angled, such a hand crank can be configured to be removable.
- the hand crank preferably has a drive shaft which can be displaced axially in a corresponding hollow shaft belonging to the threaded spindle drive and is firmly guided in the latter so as to rotate with it.
- this hand crank can be pulled out of the interior of the hollow profile of the telescopic stage through an appropriate opening in the side wall of the latter and brought into the working position.
- this hand crank be equipped with a handle that can be folded in.
- FIG. 1 shows a telescopic boom according to the invention in a completely telescoped-in position and in a position with the innermost telescopic stage, which can be angled, telescoped out,
- FIG. 2 shows a bending point in a coaxial alignment of the portions of the telescopic stage that can be angled
- FIG. 3 shows a plan view of the bending point
- FIG. 4 shows the bending point with the portions of the telescopic stage angled
- FIG. 5 shows an axial cross-section according to the line A-A in FIG. 2,
- FIG. 6 shows an axial cross-section according to the line C-C in FIG. 4,
- FIG. 7 shows a section according to the line B-B in FIG. 5.
- FIG. 1 shows a telescopic boom according to the invention in axial longitudinal section in two positions.
- all the telescopic stages 4 - 10 which can be telescoped out of a base housing 1 of the telescopic boom are completely retracted into the base housing 1 .
- This position corresponds to the transport position of the telescopic boom.
- FIG. 1 shows a telescopic boom according to the invention in axial longitudinal section in two positions.
- all the telescopic stages 4 - 10 which can be telescoped out of a base housing 1 of the telescopic boom are completely retracted into the base housing 1 .
- This position corresponds to the transport position of the telescopic boom.
- FIG. 1 shows a telescopic boom according to the invention in axial longitudinal section in two positions.
- the base housing is provided with a rotary joint 2 , with which the telescopic boom according to the invention can be fixed to the upper construction of a vehicle crane such that it can be pivoted about a horizontal axis of rotation.
- a further rotary joint 2 On the longitudinal side of the base housing 1 , which is to be viewed as the underside in the working position, there is arranged a further rotary joint 2 , which likewise has a horizontal axis of rotation and is used to connect a hydraulic tipping cylinder, with which the telescopic boom reaches the inclination required for the task respectively to be dealt with and maintains it under load.
- FIGS. 2 to 7 reveal in detail the construction and functioning of the bending point 32 of the telescopic boom according to the invention.
- the bending point is illustrated as a side view in a telescopable position, in which the two portions 4 a , 4 b of the telescopic stage 4 that can be angled are aligned in a coaxial position in relation to each other and are fixed with respect to each other in this position.
- a hinge which, as revealed in particular by FIG.
- the joint pins 13 a , 13 b has two joint pins 13 a , 13 b and two joint lugs 14 a , 14 b and two joint forks 15 a , 15 b .
- the joint lugs 14 a , 14 b are in each case inserted into the interspace formed by the mutually parallel sheet metal parts of the joint forks 15 a , 15 b and in each case the two are provided with coaxial drilled holes whose diameter corresponds to the diameter of the respective joint pin 13 a , 13 b .
- the joint pins are inserted into these drilled holes and fixed axially, so that a rotary joint is produced as a hinge which is always present.
- each case comprise a locking fork 18 a , 18 b , a locking lug 17 a , 17 b inserted into these locking forks 18 a , 18 b , the locking forks 18 a , 18 b and the locking lugs 17 a , 17 b being provided with coaxial drilled holes, and in each case a locking pin 16 a , 16 b which can be inserted into these drilled holes and whose outer diameter corresponds to the hole diameter.
- the locking pins 16 a , 16 b are shown in the locking position.
- the innermost telescopic stage 4 behaves like a conventional single-part telescopic stage, that is to say can be telescoped in and out.
- the locking pins 16 a , 16 b are in each case fixed by means of a screw connection to the front of the upper end of a pin carrier 23 a , 23 b which, at its lower end, has a threaded hole running parallel with the longitudinal axis of the locking pin 16 a , 16 b (FIG. 5).
- the two pin carriers 23 a , 23 b are arranged in parallel with each other in such a way that the two threaded holes are aligned coaxially.
- An adjusting shaft 24 which has two threaded sections 25 a , 25 b , corresponding to the threaded holes is guided through the threaded holes.
- the two threaded sections 25 a , 25 b , and also the two threaded holes, have pitches opposed to each other.
- the two pin carriers 23 a , 23 b are moved either toward each other or away from each other, depending on the direction of rotation.
- the locking pins 16 a , 16 b can be moved out of the drilled holes in the locking lugs 17 a , 17 b and locking forks 18 a , 18 b or moved into said drilled holes as required.
- the pin carriers 23 a , 23 b cannot corotate with the adjusting shaft 24 , they are guided in slots 27 a , 27 b (FIG. 5 and FIG. 7) such that they are fixed against rotation but are longitudinally displaceable.
- the adjusting shaft 24 is mounted within the portion 4 a of the telescopic stage 4 such that it can rotate but is axially undisplaceable.
- the adjusting shaft 24 is configured as a hollow shaft and provided with a slot 30 , which extends parallel to the longitudinal axis of the adjusting shaft 24 .
- the drive shaft 28 of the hand crank 26 can be inserted into the hollow shaft part of the adjusting shaft 24 .
- the drive shaft 28 has a driver pin 29 which protrudes radially and projects through the slot 30 .
- the driver pin 29 forms a stop for the withdrawal of the drive shaft 28 out of the hollow shaft part of the adjusting shaft 24 .
- this driver pin 30 effects a rotationally fixed connection between the drive shaft 28 and the adjusting shaft 24 .
- FIG. 5 reveals a wall opening which correspond the extent of the hand crank 26 . Since the hollow shaft part 24 has a length corresponding to the axial length of the drive shaft 28 , in this way the hand crank 26 can be pushed completely into the hollow profile, as emerges from FIG. 6.
- the handle of the hand crank 26 can advantageously be folded in, so that, when it is folded, no disruptive parts project beyond the outer contour of the hollow profile.
- the locking lug 17 a , 17 b is in each case pivoted out of the associated locking fork 18 a , 18 b in the angled position of the two portions 4 a , 4 b .
- an appropriate retaining device is provided in the upper part of the hollow profile of the telescopic stage 4 and prevents the angle between the two portions 4 a , 4 b being able to change beyond a predefined value under the action of the load to be lifted or the inherent weight of the angled portion 4 a .
- This retaining device is arranged in the center between the two locking forks 18 a , 18 b and has two retaining forks 21 a , 21 b , which in each case are fixed to one of the two portions 4 a , 4 b .
- a retaining lug 20 Positioned between the retaining forks 21 a , 21 b is a retaining lug 20 , which is provided with a slot 22 which extends in the direction of the longitudinal axis of the retaining lug 20 .
- the two retaining forks 21 a , 21 b are in each case provided with through holes into which in each case a retaining pin 19 a , 19 b is inserted such that it is axially undisplaceable.
- the diameter and the width of the slot 22 correspond to the diameter of the retaining pins 19 a , 19 b , so that the retaining lug 20 , whose slot 22 has a length which is substantially greater than the axial spacing of the two retaining pins 19 a , 19 b (FIG. 3), is held by the retaining pins 19 a , 19 b such that it can slide. Therefore, as illustrated in FIG. 4, the two portions 4 a , 4 b can be pivoted towards each other about the common axis of the joint pins 13 a , 13 b and are only bounded in this pivoting movement when reaching the end stop position of the two retaining pins 19 a , 19 b in the slot 22 .
- FIGS. 2 and 3 further reveal the arrangement of a sensor 31 , with which it is possible to monitor whether the hand crank 26 has been pushed in properly and does not impede the action of telescoping in the telescopic stage 4 .
- the configuration according to the invention provides a telescopic boom all telescopic stages of which can be extended by means of a common telescoping device and whose length, including the length of the base housing, does not have to accept any type of shortening as compared with a conventional telescopic boom, since the bending point of the telescopable telescopic stage can be retracted completely into the telescopic stage in each case surrounding the telescopic stage that can be bent.
- the constructional precautions required for this purpose can be of a purely mechanical type and are therefore comparatively cost-effective and in any case extremely secure in operation.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Jib Cranes (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10139827A DE10139827A1 (de) | 2001-08-14 | 2001-08-14 | Speicherzelle mit Grabenkondensator und vertikalem Auswahltransistor und einem zwischen diesen geformten ringförmigen Kontaktierungsbereich |
DE10139827.1 | 2001-08-14 | ||
PCT/DE2002/000559 WO2002076874A1 (de) | 2001-03-28 | 2002-02-13 | Teleskopausleger für einen fahrzeugkran |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040104192A1 true US20040104192A1 (en) | 2004-06-03 |
Family
ID=7695362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/473,330 Abandoned US20040104192A1 (en) | 2001-08-14 | 2002-02-13 | Telescopic boom for a vehicle crane |
US10/486,758 Expired - Fee Related US7268381B2 (en) | 2001-08-14 | 2002-07-12 | Memory cell with trench capacitor and vertical select transistor and an annular contact-making region formed between them |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/486,758 Expired - Fee Related US7268381B2 (en) | 2001-08-14 | 2002-07-12 | Memory cell with trench capacitor and vertical select transistor and an annular contact-making region formed between them |
Country Status (7)
Country | Link |
---|---|
US (2) | US20040104192A1 (zh) |
EP (1) | EP1417707A2 (zh) |
JP (1) | JP4050230B2 (zh) |
KR (1) | KR100613927B1 (zh) |
DE (1) | DE10139827A1 (zh) |
TW (1) | TWI223439B (zh) |
WO (1) | WO2003017331A2 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050017491A1 (en) * | 2003-07-24 | 2005-01-27 | Mein Gary W. | Extendable arm for a motor vehicle |
US20090314547A1 (en) * | 2008-06-13 | 2009-12-24 | Erwin Emil Stoetzer | Construction apparatus with extendable mast and method for operating such a construction apparatus |
US20110147331A1 (en) * | 2008-08-29 | 2011-06-23 | Tadano Co., Ltd. | Jib stowing device for jib crane vehicle |
US20140231374A1 (en) * | 2013-02-21 | 2014-08-21 | Bronson E. Foust | Pin puller for crane connections |
DE202017101042U1 (de) | 2017-02-24 | 2017-03-24 | Manitowoc Crane Group France Sas | Verbolzungseinheit |
US10589966B2 (en) | 2017-03-02 | 2020-03-17 | Manitowoc Crane Companies, Llc | Jib coupling system for jib stowage |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100532509B1 (ko) * | 2004-03-26 | 2005-11-30 | 삼성전자주식회사 | SiGe를 이용한 트렌치 커패시터 및 그 형성방법 |
US7547945B2 (en) * | 2004-09-01 | 2009-06-16 | Micron Technology, Inc. | Transistor devices, transistor structures and semiconductor constructions |
US7384849B2 (en) | 2005-03-25 | 2008-06-10 | Micron Technology, Inc. | Methods of forming recessed access devices associated with semiconductor constructions |
US7282401B2 (en) | 2005-07-08 | 2007-10-16 | Micron Technology, Inc. | Method and apparatus for a self-aligned recessed access device (RAD) transistor gate |
US7867851B2 (en) | 2005-08-30 | 2011-01-11 | Micron Technology, Inc. | Methods of forming field effect transistors on substrates |
US7700441B2 (en) | 2006-02-02 | 2010-04-20 | Micron Technology, Inc. | Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates |
US7602001B2 (en) | 2006-07-17 | 2009-10-13 | Micron Technology, Inc. | Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells |
US7772632B2 (en) | 2006-08-21 | 2010-08-10 | Micron Technology, Inc. | Memory arrays and methods of fabricating memory arrays |
US7589995B2 (en) | 2006-09-07 | 2009-09-15 | Micron Technology, Inc. | One-transistor memory cell with bias gate |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
US8072345B2 (en) * | 2008-02-14 | 2011-12-06 | Darren Gallo | Electronic flare system and apparatus |
US8187938B2 (en) * | 2009-04-13 | 2012-05-29 | Hynix Semiconductor Inc. | Non-volatile memory device and method for fabricating the same |
KR102154075B1 (ko) * | 2013-10-21 | 2020-09-09 | 삼성전자주식회사 | 반도체 소자의 검사 방법 및 반도체 검사 시스템 |
WO2018208717A1 (en) | 2017-05-08 | 2018-11-15 | Micron Technology, Inc. | Memory arrays |
US10825815B2 (en) | 2017-05-08 | 2020-11-03 | Micron Technology, Inc. | Memory arrays |
US11043499B2 (en) | 2017-07-27 | 2021-06-22 | Micron Technology, Inc. | Memory arrays comprising memory cells |
US10181472B1 (en) * | 2017-10-26 | 2019-01-15 | Nanya Technology Corporation | Memory cell with vertical transistor |
CN108167002A (zh) * | 2018-01-31 | 2018-06-15 | 湖南五新隧道智能装备股份有限公司 | 一种用于拱架施工作业的伸缩臂组 |
CN110246841B (zh) * | 2018-03-08 | 2021-03-23 | 联华电子股份有限公司 | 半导体元件及其制作方法 |
US10950618B2 (en) | 2018-11-29 | 2021-03-16 | Micron Technology, Inc. | Memory arrays |
US11665881B2 (en) | 2021-07-30 | 2023-05-30 | Nanya Technology Corporation | Memory device with vertical field effect transistor and method for preparing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1746109A (en) * | 1929-03-21 | 1930-02-04 | Edwards Lowi | Lifeboat-handling mechanism |
US3460691A (en) * | 1966-02-26 | 1969-08-12 | Ernst Wieger | Telescopic dredge |
USRE27763E (en) * | 1968-12-30 | 1973-09-18 | Telescopic jib with a telescopic inclinable end member for cranes | |
US3840128A (en) * | 1973-07-09 | 1974-10-08 | N Swoboda | Racking arm for pipe sections, drill collars, riser pipe, and the like used in well drilling operations |
US3842985A (en) * | 1972-12-15 | 1974-10-22 | Harnischfeger Corp | Means for extending and retracting crane boom section |
US3863407A (en) * | 1971-02-13 | 1975-02-04 | Gottwald Kg Leo | Telescopic crane jib |
US5743149A (en) * | 1996-02-26 | 1998-04-28 | Skyjack Equipment Inc. | Articulated telescopic boom having slide-through knuckle |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641694A (en) * | 1994-12-22 | 1997-06-24 | International Business Machines Corporation | Method of fabricating vertical epitaxial SOI transistor |
CN1213182A (zh) | 1997-09-30 | 1999-04-07 | 西门子公司 | 用于动态随机存取存储器的存储单元 |
US6383864B2 (en) * | 1997-09-30 | 2002-05-07 | Siemens Aktiengesellschaft | Memory cell for dynamic random access memory (DRAM) |
US6137128A (en) * | 1998-06-09 | 2000-10-24 | International Business Machines Corporation | Self-isolated and self-aligned 4F-square vertical fet-trench dram cells |
DE19844997A1 (de) * | 1998-09-30 | 2000-04-13 | Siemens Ag | Vertikaler Feldeffekttransistor mit innenliegendem Gate und Herstellverfahren |
US6144054A (en) * | 1998-12-04 | 2000-11-07 | International Business Machines Corporation | DRAM cell having an annular signal transfer region |
DE19942012A1 (de) | 1999-03-02 | 2000-09-28 | Muesing Anton Gmbh Co Kg | Verfahren und Vorrichtung zur Beseitigung von Treibselgut aus dem Bereich eines Deiches |
US6262448B1 (en) * | 1999-04-30 | 2001-07-17 | Infineon Technologies North America Corp. | Memory cell having trench capacitor and vertical, dual-gated transistor |
US6320215B1 (en) * | 1999-07-22 | 2001-11-20 | International Business Machines Corporation | Crystal-axis-aligned vertical side wall device |
US6153902A (en) | 1999-08-16 | 2000-11-28 | International Business Machines Corporation | Vertical DRAM cell with wordline self-aligned to storage trench |
DE19944012B4 (de) * | 1999-09-14 | 2007-07-19 | Infineon Technologies Ag | Grabenkondensator mit Kondensatorelektroden und entsprechendes Herstellungsverfahren |
DE19946719A1 (de) | 1999-09-29 | 2001-04-19 | Infineon Technologies Ag | Grabenkondensator und Verfahren zu seiner Herstellung |
-
2001
- 2001-08-14 DE DE10139827A patent/DE10139827A1/de not_active Ceased
-
2002
- 2002-02-13 US US10/473,330 patent/US20040104192A1/en not_active Abandoned
- 2002-07-12 US US10/486,758 patent/US7268381B2/en not_active Expired - Fee Related
- 2002-07-12 WO PCT/DE2002/002559 patent/WO2003017331A2/de not_active Application Discontinuation
- 2002-07-12 KR KR1020047002145A patent/KR100613927B1/ko not_active IP Right Cessation
- 2002-07-12 EP EP02762218A patent/EP1417707A2/de not_active Withdrawn
- 2002-07-12 JP JP2003522141A patent/JP4050230B2/ja not_active Expired - Fee Related
- 2002-07-23 TW TW091116370A patent/TWI223439B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1746109A (en) * | 1929-03-21 | 1930-02-04 | Edwards Lowi | Lifeboat-handling mechanism |
US3460691A (en) * | 1966-02-26 | 1969-08-12 | Ernst Wieger | Telescopic dredge |
USRE27763E (en) * | 1968-12-30 | 1973-09-18 | Telescopic jib with a telescopic inclinable end member for cranes | |
US3863407A (en) * | 1971-02-13 | 1975-02-04 | Gottwald Kg Leo | Telescopic crane jib |
US3842985A (en) * | 1972-12-15 | 1974-10-22 | Harnischfeger Corp | Means for extending and retracting crane boom section |
US3840128A (en) * | 1973-07-09 | 1974-10-08 | N Swoboda | Racking arm for pipe sections, drill collars, riser pipe, and the like used in well drilling operations |
US5743149A (en) * | 1996-02-26 | 1998-04-28 | Skyjack Equipment Inc. | Articulated telescopic boom having slide-through knuckle |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050017491A1 (en) * | 2003-07-24 | 2005-01-27 | Mein Gary W. | Extendable arm for a motor vehicle |
US7309080B2 (en) * | 2003-07-24 | 2007-12-18 | Mein Gary W | Extendable arm for a motor vehicle |
US20090314547A1 (en) * | 2008-06-13 | 2009-12-24 | Erwin Emil Stoetzer | Construction apparatus with extendable mast and method for operating such a construction apparatus |
US8397833B2 (en) * | 2008-06-13 | 2013-03-19 | Bauer Maschinen Gmbh | Construction apparatus with extendable mast and method for operating such a construction apparatus |
US20110147331A1 (en) * | 2008-08-29 | 2011-06-23 | Tadano Co., Ltd. | Jib stowing device for jib crane vehicle |
US8522988B2 (en) * | 2008-08-29 | 2013-09-03 | Tadano Co., Ltd. | Jib stowing device for jib crane vehicle |
US20140231374A1 (en) * | 2013-02-21 | 2014-08-21 | Bronson E. Foust | Pin puller for crane connections |
US9815674B2 (en) * | 2013-02-21 | 2017-11-14 | Manitowoc Crane Companies, Llc | Pin puller for crane connections |
DE202017101042U1 (de) | 2017-02-24 | 2017-03-24 | Manitowoc Crane Group France Sas | Verbolzungseinheit |
US10717632B2 (en) | 2017-02-24 | 2020-07-21 | Manitowoc Crane Group France Sas | Bolting device |
US10589966B2 (en) | 2017-03-02 | 2020-03-17 | Manitowoc Crane Companies, Llc | Jib coupling system for jib stowage |
Also Published As
Publication number | Publication date |
---|---|
DE10139827A1 (de) | 2003-03-13 |
KR100613927B1 (ko) | 2006-08-21 |
EP1417707A2 (de) | 2004-05-12 |
KR20040030962A (ko) | 2004-04-09 |
WO2003017331A2 (de) | 2003-02-27 |
US20040232466A1 (en) | 2004-11-25 |
JP4050230B2 (ja) | 2008-02-20 |
WO2003017331A3 (de) | 2003-10-09 |
US7268381B2 (en) | 2007-09-11 |
JP2004538660A (ja) | 2004-12-24 |
TWI223439B (en) | 2004-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040104192A1 (en) | Telescopic boom for a vehicle crane | |
US5425433A (en) | Elevating apparatus | |
WO2007041535A1 (en) | Mobile lift device | |
JP6482613B2 (ja) | 回動式操縦ボックス付き高所作業車用車体及び高所作業車 | |
WO2006028579A1 (en) | Vertical outrigger leg | |
KR970002210B1 (ko) | 정렬 장치를 구비한 크레인 붐 | |
EP0849212A1 (en) | Device and method for arresting sections of a telescopic jib | |
JP4116632B2 (ja) | 建設機械用サイドミラー支持装置 | |
CN201264641Y (zh) | 用于车辆的可调节的转向柱组件 | |
US7357263B2 (en) | Articulating jib | |
CN111137795B (zh) | 负载装卸工具的保持装置及包括此保持装置的液压起重机 | |
AU552680B2 (en) | Multiple offset boom extension | |
CN101374755B (zh) | 剪式千斤顶 | |
EP4002967B1 (en) | Slide rail assembly | |
JP3272721B2 (ja) | 関節式ブームを備えた駆動機械 | |
EP1982948A2 (en) | Sliding pad for a jib | |
EP0680923B1 (en) | Work machine | |
JP2004521046A (ja) | 移動式クレーン用伸縮ジブ | |
JPH07251903A (ja) | 昇降装置 | |
US20020070061A1 (en) | Work machine arrangement | |
KR19990067820A (ko) | 휠돌리 | |
AU2007204080B2 (en) | Extendible truss boom | |
CN108791533A (zh) | 用于车辆驾驶室的撑杆及车辆 | |
EP1600080B1 (en) | Extensible table top | |
EP3524564B1 (en) | A crane for moving loads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TEREX-DEMAG GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOWASSER, WALTER;CONRAD, KLAUS;FRIES, OLIVER;AND OTHERS;REEL/FRAME:014968/0435;SIGNING DATES FROM 20030826 TO 20030923 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |