US20020050758A1 - Rotating electric machine for high voltage - Google Patents
Rotating electric machine for high voltage Download PDFInfo
- Publication number
- US20020050758A1 US20020050758A1 US09/194,578 US19457899A US2002050758A1 US 20020050758 A1 US20020050758 A1 US 20020050758A1 US 19457899 A US19457899 A US 19457899A US 2002050758 A1 US2002050758 A1 US 2002050758A1
- Authority
- US
- United States
- Prior art keywords
- machine according
- rotating electric
- rotor
- electric machine
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/288—Shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/323—Insulation between winding turns, between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/025—Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/04—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
- H02K11/049—Rectifiers associated with stationary parts, e.g. stator cores
- H02K11/05—Rectifiers associated with casings, enclosures or brackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/12—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
- H02K3/14—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/40—Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/48—Fastening of windings on the stator or rotor structure in slots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
- H01F2027/2833—Wires using coaxial cable as wire
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F2027/329—Insulation with semiconducting layer, e.g. to reduce corona effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F2029/143—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
- H02K1/165—Shape, form or location of the slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2203/00—Specific aspects not provided for in the other groups of this subclass relating to the windings
- H02K2203/15—Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/15—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a power generation system, e.g. prime-mover dynamo, generator system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/17—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an electric power conversion, regulation, or protection system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/19—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/19—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
- Y10S174/20—Stator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/19—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
- Y10S174/22—Winding per se
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/24—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/14—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
- Y10S174/24—High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
- Y10S174/25—Transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/26—High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/26—High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
- Y10S174/27—High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system including a semiconductive layer
- Y10S174/28—Plural semiconductive layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S174/00—Electricity: conductors and insulators
- Y10S174/13—High voltage cable, e.g. above 10kv, corona prevention
- Y10S174/29—High voltage cable, e.g. above 10kv, corona prevention having a semiconductive layer
Definitions
- the present invention relates to a rotating electric machine in accordance with the introductory part of claim 1 and a rotating electric machine in accordance with the introductory part of claim 9 .
- the rotating electric machines which are referred to in this context comprise synchronous machines which are substantially used as generators for connection to distribution and transmission networks, commonly referred to below as power networks. Synchronous machines are also used as motors and for phase compensation and voltage control, in that case as mechanically idling machines.
- the technical field also comprises asynchronous machines, double-fed machines, alternating current machines, asynchronous converter cascades, external pole machines and synchronous flux machines.
- the magnetic circuit referred to in this context comprises a magnetic core of laminated, non-oriented or oriented, sheet or other material, for example amorphous or powder-based, or any other arrangement for the purpose of allowing an alternating magnetic flux, a winding, a cooling system, etc., and which may be arranged in the stator of the machine, in the rotor or in both.
- stator slots In order to explain and describe the machine, a brief description of a rotating electric machine will first be given, exemplified on the basis of a synchronous machine. The first part of the description substantially relates to the magnetic circuit of such a machine and how it is composed according to conventional technique. Since the magnetic circuit referred to in most cases is arranged in the stator, the magnetic circuit below will normally be described as a stator with a laminated core, the winding of which will be referred to as a stator winding, and the slots in the laminated core for the winding will be referred to as stator slots or simply slots.
- Synchronous machines are normally of three-phase design and the invention substantially relates to such machines.
- Synchronous machines are designed with salient poles.
- cylindrical rotors are used for two- or four-pole turbogenerators and for double-fed machines. The latter have an A.C. winding in the rotor.
- coil span is meant the distance in arc measure between two coil sides belonging to the same coil, either in relation to the relevant pole pitch or in the number of intermediate slot pitches.
- cording for example fractional pitch
- the type of winding substantially describes how the coils in the slots, i.e. the coil sides, are connected together outside the stator, i.e. at the coil ends.
- a typical coil side is formed from so-called Roebel bars, wherein certain bars have been made hollow for a coolant.
- a Roebel bar comprises a plurality of rectangular, parallel-connected copper conductors, which are transposed 360 degrees along the slot. Ringland bars with transpositions of 540 degrees and other transpositions also occur. The transposition is necessary to avoid circulating currents. Between each strand there is a thin insulation, for example epoxy/glass fibre.
- the main insulation between the slots and the conductors is made, for example, of epoxy/glass fibre/mica and has at its outermost end a thin semiconducting ground-potential layer which is used to equalize the electric field.
- a semiconducting ground-potential layer which is used to equalize the electric field.
- an electric field control in the form of so-called corona protection varnish intended to convert a radial field into an axial field, which means that the insulation on the coil ends occurs at a high potential relative to ground.
- the field control is a problem which sometimes gives rise to corona in the coil-end region, which may be destructive.
- the above-mentioned US patent relates to the stator part of a synchronous machine which comprises a magnetic core of laminated sheet with trapezoidal slots for the stator winding.
- the slots are tapered since the need for insulation of the stator winding is less towards the interior of the rotor where that part of the winding which is located nearest the neutral point is disposed.
- the stator part comprises a dielectric oil-separating cylinder or ring nearest the inner surface of the core which may increase the magnetization requirement relative to a machine without this ring.
- the stator winding is made of oil-immersed cables with the same diameter for each coil layer. The layers are separated from each other by means of spacers in the slots and secured by wedges.
- the winding comprises two so-called half-windings connected in series.
- One of the two half-windings is disposed, centred, inside an insulation sleeve.
- the conductors of the stator winding are cooled by surrounding oil.
- the disadvantages with such a large quantity of oil in the system are the risk of leakage and the considerable amount of cleaning work which may result from a fault condition.
- Those parts of the insulation sleeve which are located outside the slots have a cylindrical part and a conical termination reinforced with current-carrying layers, the purpose of which is to control the electric field strength in the region where the cable enters the end winding.
- the oil-cooled stator winding comprises a conventional high-voltage cable with the same dimension for all the layers.
- the cable is placed in stator slots formed as circular, radially disposed openings corresponding to the cross-section area of the cable and with the necessary space for fixation and for coolant.
- the different radially disposed layers of the winding are surrounded by and fixed in insulated tubes. Insulating spacers fix the tubes in the stator slot. Because of the oil cooling, an internal dielectric ring is also needed here for sealing the coolant against the internal air gap.
- the design shown shows no tapering of the insulation or of the stator slots.
- the design exhibits a very narrow radial waist between the different stator slots, which means a large slot leakage flux which significantly influences the magnetization requirement of the machine.
- stator ends shall connect as closely as possible with the casing of the coil sides. It is most desirable to have a stator tooth with a maximum width at each level, since the width of the tooth significantly influences the losses and the magnetization requirement of the machine. This is especially important for machines for higher voltage since the number of conductors per slot there becomes large.
- the object of the present invention is to solve the above mentioned problems and to provide a rotating electric machine which permits direct connection to all types of high-voltage power networks. This object is achieved by providing the machine defined in the introductory part of claim 1 with the advantageous features of the characterizing part of said claim.
- the winding comprises at least one current-carrying conductor and the machine is further characterized in that a first layer having semiconducting properties is provided around said conductor, that a solid insulating layer is provided around said first layer, and that a second layer having semiconducting properties is provided around said insulating layer.
- a very important advantage of the present invention, as defined in claim 1 is that the use of the described insulated conductor for the winding makes it possible to obtain a rotating electric machine with a considerably higher voltage than machines according to the state of the art.
- a rotating electric machine as defined in claim 1 has the advantage that it is possible to have at least one winding system of conductors suitable for direct connection to distribution or transmission networks. Consequently, the voltage level in question is 36 kV-800 kV, and preferably 72,5 kV-800 kV.
- a machine according to the invention may have a number of features which significantly distinguishes it from the state of the art both as regards conventional mechanical engineering and the mechanical engineering which has been published during the last few years. Some features will follow below.
- the winding is manufactured from one or more insulated conductors with an inner and an outer semiconducting layer, preferably an extruded cable of some sort.
- Some typical examples of such conductors are a cable of crosslinked polyethylene (XLPE) or a cable with ethylene propylene (EP) rubber insulation, which, however, for this purpose and according to the invention, has an improved design both as regards the strands of the conductor and as regards the outer layer.
- an insulated conductor with an outer semiconducting layer has the advantage that it permits the outer layer of the winding, in its full length, to be maintained at ground potential. Consequently, the claimed invention may have the feature that the outer semiconducting layer is connected to ground potential. As an alternative, the outer layer may be cut off, at suitable locations along the length of the conductor, and each cut-off part length may be directly connected to ground potential.
- At least two, and preferably all three, of the layers have substantially equal thermal expansion coefficients.
- each of the three layers is solidly connected to the adjacent layer along substantially the whole connecting surface. This has the advantage that the layers are fixed and unable to move in relation to each other and serves to ensure that no play occurs between the layers. It is very important that no air is allowed to enter in-between the layers since that would lead to disturbances in the electric field.
- the object may be achieved by providing the machine defined in the introductory part of claim 9 with the advantageous features of the characterizing part of said claim.
- the winding is formed of a cable comprising at least one current-carrying conductor and the machine is further characterized in that each conductor comprises a number of strands, that an inner semiconducting layer is provided around each conductor, that an insulating layer of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer is provided around said insulating layer.
- the cable according to claim 9 may be provided with any one of the features of claims 2 - 8 regarding the winding.
- cables with a circular cross section are used.
- cables with a different cross section may be used.
- an insulated conductor or cable according to the invention has the additional advantage that it permits the laminated core, both with respect to slots and teeth, to be designed in a new and optimal way.
- the winding may be designed with tapered insulation to utilize the laminated core in the best way.
- the shape of the slots may advantageously be adapted to the cross section of the cable of the winding in such a way that the slots are formed as a number of cylindrical openings, extending axially and radially outside one another, with a substantially circular cross section, and with an open waist extending between the layers of the stator winding.
- the shape of the slots may also be adapted to the tapered insulation of the winding.
- the substantially circular cross section may, counting from the ridge portion of the laminated core, be designed with a continuously decreasing radius, or, as an alternative, with a discontinuously decreasing radius.
- a particular advantage with the tapered insulation is that a reasonably constant tooth width can be obtained, independently of the radial extension.
- the winding is preferably designed as a multi-layer concentric cable winding to reduce the number of coil-end crossings.
- the machine according to the invention may be characterized in that the cable also comprises a metal shield and a sheath.
- the rotor of the rotating electric machine according to the present invention may be designed in a number of different ways, known per se.
- the rotor may be a rotor comprising salient poles and including a number of different features related to that configuration.
- it may be designed with or without a damper winding, with or without an armature spider.
- the rotor may be a turbo type rotor and include a number of different features related to that particular configuration. For example, it may be designed with or without grooves for a cooling medium, with or without ventilation ducts.
- the rotor may be configured as a cylindric rotor and, naturally, include a number of different features related to such a configuration.
- it may be designed with or without a damper winding, with or without an armature spider, with or without a shaft, with or without bearings.
- the winding may be made of copper strips, it may be a single-phase or three-phase winding, it may be a diamond winding, a bar winding, a flat winding or a squirrel cage winding, etc.
- the rotor may further be designed for horizontal or vertical mounting, it may be provided with slip rings, it may be provided with a brushless exciter etc.
- the rotor may also be made of different materials. Other configurations and features are also possible.
- a rotating electric machine according to the invention results in a considerable number of important advantages in relation to corresponding prior art machines.
- ground potential may be consistently provided along the whole winding, which implies that the coil-end region can be made compact and that bracing means at the coil-end region can be applied at practically ground potential.
- Still another important advantage is that oil-based insulation and cooling systems will disappear. This means that no sealing problems will arise and that the dielectric ring previously mentioned is not needed.
- Another important feature is that all forced ventilation can be made at ground potential.
- a considerable space and weight saving from the installation point of view is obtained with a rotating electric machine according to the invention, since it replaces a previous installation design with both a machine and a step-up transformer.
- FIG. 1 is a detailed perspective view of an insulated conductor or cable according to the present invention
- FIG. 2 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to one embodiment of the invention
- FIG. 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention.
- FIG. 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention.
- FIG. 1 A preferred embodiment of the improved cable or insulated conductor is shown in FIG. 1.
- the insulated conductor or cable 1 is represented in the figure as comprising a current-carrying conductor 2 which comprises a number of strands 18 .
- the strands are transposed both uninsulated and insulated strands. Transposed, insulated strands are also possible.
- the cable used as a winding in the preferred embodiment has no metal shield and no external sheath.
- the external semiconducting layer has such a high resistivity that the induced voltage does not provoke any appreciable losses.
- this is cut off, preferably in the coil end, i.e. in the transitions from the sheet stack to the end windings. Each cut-off part is then connected to ground, whereby the external semiconductor will be maintained at, or near, ground potential for the whole cable length.
- the conductor area is comprised in the approximate interval of 80-3000 mm 2 and the outer diameter is in the approximate interval of 20-250 mm.
- the design of the magnetic circuit as regards the slots and the teeth, respectively, are of decisive importance.
- the slots should connect as closely as possible to the casing of the coil sides. It is also desirable that the teeth at each radial level are as wide as possible. This is important to minimize the losses, the magnetization requirement, etc., of the machine.
- FIG. 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, namely an embodiment including a turbo type rotor 37 , only partly shown.
- the different parts of the stator and the stator winding are essentially the same as in FIG. 2 and have accordingly been given the same reference numerals.
- the rotor includes a body and a shaft 32 forged from solid steel. It is provided with milled slots 35 for the rotor winding 36 .
- the represented turbo rotor is also provided with poles 30 .
- FIG. 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention, namely an embodiment including a cylindric rotor 47 , only partly shown.
- the 30 illustrated rotor is a laminated rotor with a regular field winding.
- the rotor includes a shaft 42 and a rotor rim 41 provided with slots 45 for the rotor winding 46 .
- the rotor is also provided with poles 40 .
- the cable which is used as a winding may be a conventional power cable, like the one described above.
- the grounding of the external semiconducting shield then takes place by stripping the cable of the metal shield and the sheath at suitable locations.
- a winding is preferably used which may be described as a multilayer, concentric cable winding. Such a winding implies that the number of crossings at the coil ends has been minimized by placing all the coils within the same group radially outside one another. This also permits a simpler method for the manufacture and the threading of the stator winding in the different slots.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Windings For Motors And Generators (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Emergency Protection Circuit Devices (AREA)
- Manufacture Of Motors, Generators (AREA)
- Control Of Eletrric Generators (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Coils Of Transformers For General Uses (AREA)
- Synchronous Machinery (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Coils Or Transformers For Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The present invention relates to a rotating electric high voltage machine comprising a stator (8), a rotor (7; 37; 47) and at least one winding. The machine is characterized in that said winding comprises at least one current-carrying conductor (2), that a first layer (3) having semiconducting properties is provided around said conductor, that a solid insulating layer (4) provided around said first layer, and that a second layer (5) having semiconducting properties is provided around said insulating layer. Alternatively, the rotating electric machine according to the invention is provided with a magnetic circuit for high voltage comprising a magnetic core and a winding, and is characterized in that said winding is formed of a cable (1; 11) comprising at least one current-carrying conductor (2), that each conductor comprises a number of strands (18), that an inner semiconducting layer (3) is provided around each conductor, that an insulating layer (4) of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer (5) is provided around said insulating layer.
Description
- The present invention relates to a rotating electric machine in accordance with the introductory part of
claim 1 and a rotating electric machine in accordance with the introductory part ofclaim 9. - The rotating electric machines which are referred to in this context comprise synchronous machines which are substantially used as generators for connection to distribution and transmission networks, commonly referred to below as power networks. Synchronous machines are also used as motors and for phase compensation and voltage control, in that case as mechanically idling machines. The technical field also comprises asynchronous machines, double-fed machines, alternating current machines, asynchronous converter cascades, external pole machines and synchronous flux machines.
- The magnetic circuit referred to in this context comprises a magnetic core of laminated, non-oriented or oriented, sheet or other material, for example amorphous or powder-based, or any other arrangement for the purpose of allowing an alternating magnetic flux, a winding, a cooling system, etc., and which may be arranged in the stator of the machine, in the rotor or in both.
- In order to explain and describe the machine, a brief description of a rotating electric machine will first be given, exemplified on the basis of a synchronous machine. The first part of the description substantially relates to the magnetic circuit of such a machine and how it is composed according to conventional technique. Since the magnetic circuit referred to in most cases is arranged in the stator, the magnetic circuit below will normally be described as a stator with a laminated core, the winding of which will be referred to as a stator winding, and the slots in the laminated core for the winding will be referred to as stator slots or simply slots.
- Most synchronous machines have a field winding in the rotor, where the main flux is generated by direct current, and an A.C. winding in the stator. Synchronous machines are normally of three-phase design and the invention substantially relates to such machines. Sometimes, synchronous machines are designed with salient poles. However, cylindrical rotors are used for two- or four-pole turbogenerators and for double-fed machines. The latter have an A.C. winding in the rotor.
- The stator body for large synchronous machines are often made of sheet steel with a welded construction. The laminated core is normally made from lacquered 0.35 or 0.5 mm electrical steel sheet. For radial ventilation and cooling, the laminated core, at least for medium-large and large machines, is divided into stacks with radial and axial ventilation channels. For larger machines, the sheet is punched into segments which are attached to the stator body by means of wedges/dovetails. The laminated core is retained by pressure fingers and pressure plates. The stator winding is disposed in slots in the laminated core where the slots normally have a cross section in the form of a rectangle or a trapezoid.
- Polyphase A.C. windings are designed either as single-layer or two-layer windings. In the case of single-layer windings, there is only one coil side per slot, and in the case of two-layer windings there are two coil sides per slot. By coil side is meant one or more conductors brought together in height and/or width and provided with a common coil insulation, i.e. an insulation intended to withstand the rated (test) voltage towards ground. Two-layer windings are usually designed as diamond windings, whereas the single-layer windings which are relevant in this connection may be designed as a diamond winding or as a concentric winding. In the case of a diamond winding, only one coil span (or possibly two coil spans) occurs, whereas flat windings are designed as concentric windings, i.e. with a greatly varying coil span. By coil span is meant the distance in arc measure between two coil sides belonging to the same coil, either in relation to the relevant pole pitch or in the number of intermediate slot pitches. Usually, different variants of cording are used, for example fractional pitch, to give the winding the desired properties.
- The type of winding substantially describes how the coils in the slots, i.e. the coil sides, are connected together outside the stator, i.e. at the coil ends. A typical coil side is formed from so-called Roebel bars, wherein certain bars have been made hollow for a coolant. A Roebel bar comprises a plurality of rectangular, parallel-connected copper conductors, which are transposed 360 degrees along the slot. Ringland bars with transpositions of 540 degrees and other transpositions also occur. The transposition is necessary to avoid circulating currents. Between each strand there is a thin insulation, for example epoxy/glass fibre. The main insulation between the slots and the conductors is made, for example, of epoxy/glass fibre/mica and has at its outermost end a thin semiconducting ground-potential layer which is used to equalize the electric field. Outside the sheet stack of the stator, on the other hand, there is no external semiconducting ground-potential layer, but an electric field control in the form of so-called corona protection varnish intended to convert a radial field into an axial field, which means that the insulation on the coil ends occurs at a high potential relative to ground. The field control is a problem which sometimes gives rise to corona in the coil-end region, which may be destructive.
- Normally, all large machines are designed with a two-layer winding and equally large coils. Each coil is placed with one side in one of the layers and the other side in the other layer. This means that all the coils cross each other in the coil end. If more than two layers are used, these crossings render the winding work difficult and deteriorate the coil end.
- What is mentioned above can be said to be part of conventional technique relating to current rotating electric machines.
- During the last decades, there have been increasing demands for rotating electric machines with higher voltages than what has previously been possible to design. The maximum voltage level which, according to the state of the art, has been possible to achieve for synchronous machines with a good yield in the coil production is around 25-30 kV. It is also commonly known that the connection of a synchronous machine/generator to a power network must take place via a Δ/Y-connected so-called step-up transformer, since the voltage of the power network normally lies at a higher level than the voltage of the rotating electric machine. Thus, this transformer, and the synchronous machine, constitute integral parts of an installation. The transformer constitutes an extra cost and also has the disadvantage that the total efficiency of the system is reduced. If it were possible to manufacture machines with considerably higher voltages, the step-up transformer could thus be omitted.
- Attempts to develop the generator with higher voltages have, however, been in progress for a long time. This is obvious, for instance from “Electrical World”, Oct. 15, 1932, pages 524-525. This describes how a generator designed by Parson 1929 was arranged for 33 kV. It also describes a generator in Langerbrugge, Belgium, which produced a voltage of 36 kV. Although the article also speculates on the possibility of increasing voltage levels still further, the development was curtailed by the concepts upon which these generators were based. This was primarily because of the shortcomings of the insulation system where varnish-impregnated layers of mica oil and paper were used in several separate layers.
- Certain attempts at new approach as regards the design of synchronous machines are described, inter alia, in an article entitled “Water-and-oil-cooled Turbogenerator TVM-300” in J. Elektrotechnika, No. 1, 1970, pp. 6-8, in U.S. Pat. No. 4,429,244 “Stator of Generator” and in Russian patent document CCCP Patent 955369.
- The water- and oil-cooled synchronous machine described in J. Elektrotechnika is intended for voltages up to 20 kV. The article describes a new insulation system consisting of oil/paper insulation, which makes it possible to immerse the stator completely in oil. The oil can then be used as a coolant while at the same time using it as insulation. To prevent oil in the stator from leaking out towards the rotor, a dielectric oil-separating ring is provided at the internal surface of the core. The stator winding is made from conductors with an oval hollow shape provided with oil and paper insulation. The coil sides with their insulation are secured to the slots, made with rectangular cross section, by means of wedges. As coolant, oil is used both in the hollow conductors and in holes in the stator walls. Such cooling systems, however, entail a large number of connections for both oil and electricity at the coil ends. The thick insulation also entails an increased radius of curvature of the conductors, which in turn results in an increased size of the winding overhang.
- The above-mentioned US patent relates to the stator part of a synchronous machine which comprises a magnetic core of laminated sheet with trapezoidal slots for the stator winding. The slots are tapered since the need for insulation of the stator winding is less towards the interior of the rotor where that part of the winding which is located nearest the neutral point is disposed. In addition, the stator part comprises a dielectric oil-separating cylinder or ring nearest the inner surface of the core which may increase the magnetization requirement relative to a machine without this ring. The stator winding is made of oil-immersed cables with the same diameter for each coil layer. The layers are separated from each other by means of spacers in the slots and secured by wedges. What is special for the winding is that it comprises two so-called half-windings connected in series. One of the two half-windings is disposed, centred, inside an insulation sleeve. The conductors of the stator winding are cooled by surrounding oil. The disadvantages with such a large quantity of oil in the system are the risk of leakage and the considerable amount of cleaning work which may result from a fault condition. Those parts of the insulation sleeve which are located outside the slots have a cylindrical part and a conical termination reinforced with current-carrying layers, the purpose of which is to control the electric field strength in the region where the cable enters the end winding.
- From CCCP 955369 it is clear, in another attempt to raise the rated voltage of the synchronous machine, that the oil-cooled stator winding comprises a conventional high-voltage cable with the same dimension for all the layers. The cable is placed in stator slots formed as circular, radially disposed openings corresponding to the cross-section area of the cable and with the necessary space for fixation and for coolant. The different radially disposed layers of the winding are surrounded by and fixed in insulated tubes. Insulating spacers fix the tubes in the stator slot. Because of the oil cooling, an internal dielectric ring is also needed here for sealing the coolant against the internal air gap. The design shown shows no tapering of the insulation or of the stator slots.
- The design exhibits a very narrow radial waist between the different stator slots, which means a large slot leakage flux which significantly influences the magnetization requirement of the machine.
- In machine designs according to the documents described above, the electromagnetic material in the stator is not optimally utilized. From a magnetic point of view, the stator ends shall connect as closely as possible with the casing of the coil sides. It is most desirable to have a stator tooth with a maximum width at each level, since the width of the tooth significantly influences the losses and the magnetization requirement of the machine. This is especially important for machines for higher voltage since the number of conductors per slot there becomes large.
- With reference to a report from the Electric Power Research Institute, EPRI, EL-3391 from April 1984, an account is given of generator concepts for achieving higher voltage in an electric generator with the object of being able to connect such a generator to a power network without intermediate transformers. Such a solution is assessed in the report as offering good gains in efficiency and considerable financial advantages. The main reason that it was deemed possible in 1984 to start developing generators for direct connection to power networks was that a supra-conducting rotor had been developed at that time. The considerable excitation capacity of the supra-conducting field enables the use of airgap-winding with sufficient thickness to withstand the electrical stresses.
- By combining the concept deemed most promising according to the project, that of designing a magnetic circuit with winding, known as “monolith cylinder armature”, a concept in which two cylinders of conductors are enclosed in three cylinders of insulation and the whole structure is attached to an iron core without teeth, it was assessed that a rotating electric machine for high voltage could be directly connected to a power network. The solution entailed the main insulation having to be made sufficiently thick to withstand network-to-network and network-to-earth potentials. Obvious drawbacks with the proposed solution, besides its demand for a supra-conducting rotor, are that it also requires extremely thick insulation, which increases the machine size. The coil ends must be insulated and cooled with oil or freons in order to control the large electric fields at the ends. The whole machine must be hermetically enclosed in order to prevent the liquid dielectric medium from absorbing moisture from the atmosphere.
- The object of the present invention is to solve the above mentioned problems and to provide a rotating electric machine which permits direct connection to all types of high-voltage power networks. This object is achieved by providing the machine defined in the introductory part of
claim 1 with the advantageous features of the characterizing part of said claim. - Accordingly, the winding comprises at least one current-carrying conductor and the machine is further characterized in that a first layer having semiconducting properties is provided around said conductor, that a solid insulating layer is provided around said first layer, and that a second layer having semiconducting properties is provided around said insulating layer.
- A very important advantage of the present invention, as defined in
claim 1, is that the use of the described insulated conductor for the winding makes it possible to obtain a rotating electric machine with a considerably higher voltage than machines according to the state of the art. In fact, a rotating electric machine as defined inclaim 1 has the advantage that it is possible to have at least one winding system of conductors suitable for direct connection to distribution or transmission networks. Consequently, the voltage level in question is 36 kV-800 kV, and preferably 72,5 kV-800 kV. - This also entails the further important advantage that the Δ/Y-connected step-up transformer mentioned above can be omitted. Consequently, the solution according to the present invention represents major savings both in economic terms and regarding space requirement and weight for generator plants and other installations comprising rotating electric machines.
- In order to cope with the problems which arise in the case of direct connection of rotating electric machines to all types of high-voltage power networks, a machine according to the invention may have a number of features which significantly distinguishes it from the state of the art both as regards conventional mechanical engineering and the mechanical engineering which has been published during the last few years. Some features will follow below.
- As mentioned, the winding is manufactured from one or more insulated conductors with an inner and an outer semiconducting layer, preferably an extruded cable of some sort. Some typical examples of such conductors are a cable of crosslinked polyethylene (XLPE) or a cable with ethylene propylene (EP) rubber insulation, which, however, for this purpose and according to the invention, has an improved design both as regards the strands of the conductor and as regards the outer layer.
- The use of an insulated conductor with an outer semiconducting layer has the advantage that it permits the outer layer of the winding, in its full length, to be maintained at ground potential. Consequently, the claimed invention may have the feature that the outer semiconducting layer is connected to ground potential. As an alternative, the outer layer may be cut off, at suitable locations along the length of the conductor, and each cut-off part length may be directly connected to ground potential.
- A considerable advantage with having the outer layer connected to ground potential is that the electric field will be near zero in the coil-end region outside the outer semiconductor and that the electric field need not be controlled. This implies that no field concentrations can be obtained within the sheet, in the coil-end region, or in the transition therebetween.
- As another advantageous feature at least two, and preferably all three, of the layers have substantially equal thermal expansion coefficients. Through this is achieved that thermal movement is prevented and the occurrence of cracks, fissures or other defects in the winding due to thermal movement is avoided.
- According to another characterizing feature each of the three layers is solidly connected to the adjacent layer along substantially the whole connecting surface. This has the advantage that the layers are fixed and unable to move in relation to each other and serves to ensure that no play occurs between the layers. It is very important that no air is allowed to enter in-between the layers since that would lead to disturbances in the electric field.
- As yet another advantageous feature the present invention is characterized in that the current-carrying conductor comprises a number of strands, only a minority of said strands being uninsulated from each other. The uninsulated strand or strands in the outer layer of the conductor defines the potential on the inner semiconducting layer and thereby ensures a uniform electric field within the insulation. By using uninsulated strands instead of insulated strands a less expensive insulated conductor for a winding is obtained. Theoretically, every second strand may be uninsulated, but for practical reasons the number of uninsulated strands is less than the insulated strands.
- As an alternative, the object may be achieved by providing the machine defined in the introductory part of
claim 9 with the advantageous features of the characterizing part of said claim. Accordingly, the winding is formed of a cable comprising at least one current-carrying conductor and the machine is further characterized in that each conductor comprises a number of strands, that an inner semiconducting layer is provided around each conductor, that an insulating layer of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer is provided around said insulating layer. - Naturally, the cable according to
claim 9 may be provided with any one of the features of claims 2-8 regarding the winding. - Preferably, cables with a circular cross section are used. However, in order to obtain, among other things, better packing density, cables with a different cross section may be used.
- The use of an insulated conductor or cable according to the invention has the additional advantage that it permits the laminated core, both with respect to slots and teeth, to be designed in a new and optimal way.
- As a further advantageous feature, the winding may be designed with tapered insulation to utilize the laminated core in the best way.
- To continue, the shape of the slots may advantageously be adapted to the cross section of the cable of the winding in such a way that the slots are formed as a number of cylindrical openings, extending axially and radially outside one another, with a substantially circular cross section, and with an open waist extending between the layers of the stator winding. The shape of the slots may also be adapted to the tapered insulation of the winding. As an additional feature, the substantially circular cross section may, counting from the ridge portion of the laminated core, be designed with a continuously decreasing radius, or, as an alternative, with a discontinuously decreasing radius.
- A particular advantage with the tapered insulation is that a reasonably constant tooth width can be obtained, independently of the radial extension.
- Furthermore, the winding is preferably designed as a multi-layer concentric cable winding to reduce the number of coil-end crossings.
- As a further feature, the machine according to the invention may be characterized in that the cable also comprises a metal shield and a sheath.
- The rotor of the rotating electric machine according to the present invention may be designed in a number of different ways, known per se. In brief it may be mentioned that the rotor may be a rotor comprising salient poles and including a number of different features related to that configuration. For example, it may be designed with or without a damper winding, with or without an armature spider.
- Alternatively, the rotor may be a turbo type rotor and include a number of different features related to that particular configuration. For example, it may be designed with or without grooves for a cooling medium, with or without ventilation ducts.
- As yet an alternative, the rotor may be configured as a cylindric rotor and, naturally, include a number of different features related to such a configuration. For example, it may be designed with or without a damper winding, with or without an armature spider, with or without a shaft, with or without bearings. In general, as applicable, the winding may be made of copper strips, it may be a single-phase or three-phase winding, it may be a diamond winding, a bar winding, a flat winding or a squirrel cage winding, etc.
- The rotor may further be designed for horizontal or vertical mounting, it may be provided with slip rings, it may be provided with a brushless exciter etc. The rotor may also be made of different materials. Other configurations and features are also possible.
- Further features and advantages will be apparent from the remaining dependent claims.
- As a summary, thus, a rotating electric machine according to the invention results in a considerable number of important advantages in relation to corresponding prior art machines. First of all, it can be connected directly to a power network at all types of high voltage. Another important advantage is that ground potential may be consistently provided along the whole winding, which implies that the coil-end region can be made compact and that bracing means at the coil-end region can be applied at practically ground potential. Still another important advantage is that oil-based insulation and cooling systems will disappear. This means that no sealing problems will arise and that the dielectric ring previously mentioned is not needed. Another important feature is that all forced ventilation can be made at ground potential. In addition, a considerable space and weight saving from the installation point of view is obtained with a rotating electric machine according to the invention, since it replaces a previous installation design with both a machine and a step-up transformer.
- FIG. 1 is a detailed perspective view of an insulated conductor or cable according to the present invention,
- FIG. 2 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to one embodiment of the invention,
- FIG. 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, and
- FIG. 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention.
- An important condition for being able to manufacture a rotating electric machine in accordance with the disclosure of the invention is to use, for the winding, an insulated conductor or a conductor cable with an electrical insulation with a semiconducting layer both at the conductor and at the casing. Such cables are available as standard cables for other power engineering fields of use. As described under the summary of the invention, however, an improved embodiment of such a standard cable is preferably used as a stator winding.
- In order to describe an embodiment, initially a short description of a standard cable will be made. The internal current-carrying conductor comprises a number of uninsulated strands. Around the strands there is a semiconducting inner layer. Around this semiconducting inner layer, there is an insulating layer of extruded insulation. An example of such an extruded insulation is XLPE or, alternatively, so-called EP rubber. This insulating layer is surrounded by an external semiconducting layer which, in turn, is surrounded by a metal shield and a sheath. Such a cable will be referred to below as a power cable.
- A preferred embodiment of the improved cable or insulated conductor is shown in FIG. 1. The insulated conductor or
cable 1 is represented in the figure as comprising a current-carryingconductor 2 which comprises a number ofstrands 18. The strands are transposed both uninsulated and insulated strands. Transposed, insulated strands are also possible. Around the conductor there is an innersemiconducting layer 3 which, in turn, is surrounded by an extrudedinsulation layer 4. This layer is surrounded by an external semiconducting layer orlayer 5. The cable used as a winding in the preferred embodiment has no metal shield and no external sheath. In order to avoid induced currents and losses, the external semiconducting layer has such a high resistivity that the induced voltage does not provoke any appreciable losses. As an alternative to avoid induced currents and losses associated therewith in the outer semiconductor, this is cut off, preferably in the coil end, i.e. in the transitions from the sheet stack to the end windings. Each cut-off part is then connected to ground, whereby the external semiconductor will be maintained at, or near, ground potential for the whole cable length. This means that, around the extruded insulated winding at the coil ends, the contactable surfaces, and the surfaces which are dirty after some time of use, only have negligible potentials to ground, and that they also cause negligible electric fields. - As regards the geometric dimensions of the insulated conductor or cable the conductor area is comprised in the approximate interval of 80-3000 mm2 and the outer diameter is in the approximate interval of 20-250 mm.
- To optimize a rotating electric machine, the design of the magnetic circuit as regards the slots and the teeth, respectively, are of decisive importance. As mentioned above, the slots should connect as closely as possible to the casing of the coil sides. It is also desirable that the teeth at each radial level are as wide as possible. This is important to minimize the losses, the magnetization requirement, etc., of the machine.
- With access to the above described insulated conductor or cable for the winding, there are great possibilities of being able to optimize the laminated core from the above mentioned points of view. In the following, a magnetic circuit in the stator of the rotating electric machine is referred to. FIG. 2 shows an axial end view of a sector/
pole pitch 6 of a magnetic circuit according to one embodiment of the invention, namely an embodiment including arotor 7 withsalient poles 20. In a conventional manner, the stator is composed of a laminated core of electric sheets successively composed of sector-shaped sheets. From a rear portion of thestator core 8, located at the radially outermost end, a number ofteeth 9 extend radially inwards towards the rotor. Between the teeth there are a corresponding number ofslots 10. The slots have a cross section tapering towards the rotor, since the need for cable insulation decreases for each winding layer in the direction towards the air gap. As is clear from the figure, the slot substantially consists of acircular cross section 12 around each layer of the winding withnarrower waist portions 13 between the layers. With a certain justification, such a slot cross section may be referred to as a “bicycle chain slot”. However, it need not be symmetric. In a high-voltage machine, a relatively large number of layers will be needed and, if a continuous tapering of the cable insulation and the stator slot, respectively, is desired, a large number of cable dimensions are required. However, it will neither be practical nor economic to use more than a certain number of cable dimensions. Therefore, as shown in the embodiment of FIG. 2,cables 11 with three different dimensions of the cable insulation are used, arranged in three correspondingly dimensionedsections rotor 7 represented in FIG. 2, which is only partly shown, is as mentioned a rotor withsalient poles 20. It comprises a rotor rim 21, apole body 23 with apole plate 24 and a field winding 26. The illustrated pole is also provided with a damper winding 27. - FIG. 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, namely an embodiment including a
turbo type rotor 37, only partly shown. The different parts of the stator and the stator winding are essentially the same as in FIG. 2 and have accordingly been given the same reference numerals. The rotor includes a body and ashaft 32 forged from solid steel. It is provided with milledslots 35 for the rotor winding 36. The represented turbo rotor is also provided withpoles 30. - FIG. 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention, namely an embodiment including a
cylindric rotor 47, only partly shown. The 30 illustrated rotor is a laminated rotor with a regular field winding. The rotor includes ashaft 42 and arotor rim 41 provided withslots 45 for the rotor winding 46. The rotor is also provided withpoles 40. - As an alternative, the cable which is used as a winding may be a conventional power cable, like the one described above. The grounding of the external semiconducting shield then takes place by stripping the cable of the metal shield and the sheath at suitable locations.
- It should be noted that the scope of the invention accommodates a large number of alternative embodiments of a modified cycle chain slot, depending on the available insulated conductor or cable dimensions as far as insulation and the external semiconductor layer etc. are concerned.
- As winding, a winding is preferably used which may be described as a multilayer, concentric cable winding. Such a winding implies that the number of crossings at the coil ends has been minimized by placing all the coils within the same group radially outside one another. This also permits a simpler method for the manufacture and the threading of the stator winding in the different slots.
Claims (55)
1. A rotating electric high voltage machine comprising a stator (8), a rotor (7;37;47) and at least one winding, characterized in that said winding comprises at least one current-carrying conductor (2), that a first layer (3) having semiconducting properties is provided around said conductor, that a solid insulating layer (4) is provided around said first layer, and that a second layer (5) having semiconducting properties is provided around said insulating layer.
2. A rotating machine according to claim 1 , characterized in that the potential of said first layer is substantially equal to the potential of the conductor.
3. A rotating machine according to claim 1 or 2, characterized in that said second layer is arranged to constitute a substantially equipotential surface surrounding said conductor.
4. A rotating machine according to claim 3 , characterized in that said second layer is connected to a predetermined potential.
5. A rotating machine according to claim 4 , characterized in that said predetermined potential is ground potential.
6. A rotating machine according to any one of the preceding claims, characterized in that at least two adjacent layers have substantially equal thermal expansion coefficients.
7. A rotating machine according to any one of the preceding claims, characterized in that said current-carrying conductor (2) comprises a number of strands (18), only a minority of said strands being uninsulated from each other.
8. A rotating machine according to any one of the preceding claims, characterized in that each of said three layers (3,4,5) is solidly connected to the adjacent layer along substantially the whole connecting surface.
9. A rotating electric machine having a magnetic circuit for high voltage comprising a magnetic core and a winding, characterized in that said winding is formed of a cable (1;11) comprising at least one current-carrying conductor (2), that each conductor comprises a number of strands (18), that an inner semiconducting layer (3) is provided around each conductor, that an insulating layer (4) of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer (5) is provided around said insulating layer.
10. A rotating electric machine according to claim 9 , characterized in that it comprises a stator (8) and a rotor (7;37;47).
11. A rotating electric machine according to claim 10 , characterized in that the stator comprises a laminated core (8) provided with winding slots (10) and that said winding is arranged in said slots.
12. A rotating electric machine according to any one of the preceding claims, characterized in that said cable also comprises a metal shield and a sheath.
13. A rotating electric machine according to any one of claims 1-8, 10-12, characterized in that the rotor (7) comprises salient poles (20).
14. A rotating electric machine according to claim 13 , characterized in that the rotor includes strip coils.
15. A rotating electric machine according to claim 13 , characterized in that the rotor includes wire coils.
16. A rotating electric machine according to claim 13 , characterized in that the rotor is provided with a damper winding (27).
17. A rotating electric machine according to claim 13 , characterized in that the poles are laminated poles.
18. A rotating electric machine according to claim 13 , characterized in that the poles are solid poles.
19. A rotating electric machine according to claim 13 , characterized in that the poles are mounted on the rotor by means of bolts.
20. A rotating electric machine according to claim 13 , characterized in that the poles which are mounted on the rotor by means of a dovetail arrangement.
21. A rotating electric machine according to claim 13 , characterized in that the rotor includes a rotor rim made of thin steel sheet.
22. A rotating electric machine according to claim 13 , characterized in that the rotor includes a rotor rim made of thick steel plate.
23. A rotating electric machine according to claim 13 , characterized in that the rotor includes a rotor rim made of solid steel.
24. A rotating electric machine according to claim 13 , characterized in that the rotor includes an armature spider, and that the poles and said armature spider are made in one piece and with pole shoes bolted to the poles.
25. A rotating electric machine according to claim 13 , characterized in that the rotor is provided with an armature spider, a shaft and bearings.
26. A rotating electric machine according to claim 13 , characterized in that the rotor is provided with a shaft and that the poles are provided directly on said shaft.
27. A rotating electric machine according to any one of claims 1-8, 10-12, characterized in that the rotor is a turbo type rotor (37).
28. A rotating electric machine according to claim 27 , characterized in that the rotor includes a shaft (32) and a body and that said shaft and said body are forged.
29. A rotating electric machine according to claim 27 , characterized in that the rotor includes a body and that said body is provided with winding slots (35).
30. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with a winding made of copper strips.
31. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with a winding and that said rotor is designed with a direct ventilation of said winding.
32. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with a winding and that said rotor is designed with an indirect ventilation of said winding.
33. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with grooves for a cooling medium.
34. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with ventilation ducts.
35. A rotating electric machine according to claim 27 , characterized in that the rotor is provided with bearings.
36. A rotating electric machine according to any one of claims 1-8, 10-12, characterized in that the rotor is a cylindric rotor (47).
37. A rotating electric machine according to claim 36 , characterized in that the rotor is made of laminated steel sheet compressed by means of steel rings.
38. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a three-phase winding.
39. A rotating electric machine according to claim 38 , characterized in that the winding is a diamond winding.
40. A rotating electric machine according to claim 38 , characterized in that the winding is a bar winding.
41. A rotating electric machine according to claim 38 , characterized in that the winding is a flat winding.
42. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a single-phase winding.
43. A rotating electric machine according to claim 42 , characterized in that the winding is a flat winding.
44. A rotating electric machine according to claim 42 , characterized in that the winding is a diamond winding.
45. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a damper winding.
46. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a squirrel cage winding made of aluminium.
47. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a squirrel cage winding made of copper.
48. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a squirrel cage winding made of brass.
49. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with an armature spider.
50. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with a shaft (42).
51. A rotating electric machine according to claim 36 , characterized in that the rotor is provided with bearings.
52. A rotating electric machine according to any one of claims 1-8, 10-51, characterized in that the rotor is designed for horizontal mounting.
53. A rotating electric machine according to any one of claims 1-8, 10-51, characterized in that the rotor is designed for vertical mounting.
54. A rotating electric machine according to any one of claims 1-8, 10-53, characterized in that the rotor is provided with slip rings.
55. A rotating electric machine according to any one of claims 1-8, 10-53, characterized in that the rotor is provided with a brushless exciter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9602079-7 | 1996-05-29 | ||
SE9602079A SE9602079D0 (en) | 1996-05-29 | 1996-05-29 | Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020050758A1 true US20020050758A1 (en) | 2002-05-02 |
Family
ID=20402760
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/952,995 Expired - Fee Related US6919664B2 (en) | 1996-05-29 | 1997-05-27 | High voltage plants with electric motors |
US08/973,018 Expired - Fee Related US6894416B1 (en) | 1996-05-29 | 1997-05-27 | Hydro-generator plant |
US08/973,017 Expired - Fee Related US6831388B1 (en) | 1996-05-29 | 1997-05-27 | Synchronous compensator plant |
US08/952,996 Expired - Fee Related US6936947B1 (en) | 1996-05-29 | 1997-05-27 | Turbo generator plant with a high voltage electric generator |
US09/194,578 Abandoned US20020050758A1 (en) | 1996-05-29 | 1997-05-27 | Rotating electric machine for high voltage |
US08/973,306 Expired - Fee Related US6906447B2 (en) | 1996-05-29 | 1997-05-27 | Rotating asynchronous converter and a generator device |
US08/973,307 Abandoned US20010019494A1 (en) | 1996-05-29 | 1997-05-27 | Dc transformer/reactor |
US08/973,019 Abandoned US20020047438A1 (en) | 1996-05-29 | 1997-05-27 | Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same |
US10/603,802 Expired - Lifetime US6798107B2 (en) | 1996-05-29 | 2003-06-26 | Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same |
US11/050,858 Expired - Fee Related US7088027B2 (en) | 1996-05-29 | 2005-02-07 | Rotating asynchronous converter and a generator device |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/952,995 Expired - Fee Related US6919664B2 (en) | 1996-05-29 | 1997-05-27 | High voltage plants with electric motors |
US08/973,018 Expired - Fee Related US6894416B1 (en) | 1996-05-29 | 1997-05-27 | Hydro-generator plant |
US08/973,017 Expired - Fee Related US6831388B1 (en) | 1996-05-29 | 1997-05-27 | Synchronous compensator plant |
US08/952,996 Expired - Fee Related US6936947B1 (en) | 1996-05-29 | 1997-05-27 | Turbo generator plant with a high voltage electric generator |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/973,306 Expired - Fee Related US6906447B2 (en) | 1996-05-29 | 1997-05-27 | Rotating asynchronous converter and a generator device |
US08/973,307 Abandoned US20010019494A1 (en) | 1996-05-29 | 1997-05-27 | Dc transformer/reactor |
US08/973,019 Abandoned US20020047438A1 (en) | 1996-05-29 | 1997-05-27 | Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same |
US10/603,802 Expired - Lifetime US6798107B2 (en) | 1996-05-29 | 2003-06-26 | Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same |
US11/050,858 Expired - Fee Related US7088027B2 (en) | 1996-05-29 | 2005-02-07 | Rotating asynchronous converter and a generator device |
Country Status (32)
Country | Link |
---|---|
US (10) | US6919664B2 (en) |
EP (7) | EP0901700B1 (en) |
JP (5) | JP3970934B2 (en) |
KR (3) | KR20000016096A (en) |
CN (9) | CN101242125B (en) |
AP (1) | AP907A (en) |
AR (7) | AR007333A1 (en) |
AT (6) | ATE254350T1 (en) |
AU (8) | AU720311B2 (en) |
BG (1) | BG63444B1 (en) |
BR (6) | BR9709399A (en) |
CA (7) | CA2255770A1 (en) |
CO (8) | CO4600758A1 (en) |
CZ (3) | CZ386098A3 (en) |
DE (7) | DE19781791T1 (en) |
EA (6) | EA001440B1 (en) |
EE (1) | EE03361B1 (en) |
ID (3) | ID19456A (en) |
IL (1) | IL126943A (en) |
IS (3) | IS1818B (en) |
NO (4) | NO985524D0 (en) |
NZ (1) | NZ333601A (en) |
PE (5) | PE73998A1 (en) |
PL (5) | PL330215A1 (en) |
SE (1) | SE9602079D0 (en) |
TR (2) | TR199802472T2 (en) |
TW (8) | TW355802B (en) |
UA (2) | UA42867C2 (en) |
UY (1) | UY24794A1 (en) |
WO (8) | WO1997045925A1 (en) |
YU (2) | YU54598A (en) |
ZA (20) | ZA974718B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100315606A1 (en) * | 2005-10-20 | 2010-12-16 | Seiko Epson Corporation | Image display apparatus |
KR20170032021A (en) * | 2015-09-14 | 2017-03-22 | 엘지이노텍 주식회사 | Integrated cable and motor assembly including the same |
US20220271594A1 (en) * | 2019-11-11 | 2022-08-25 | Denso Corporation | Rotating electric machine |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9602079D0 (en) * | 1996-05-29 | 1996-05-29 | Asea Brown Boveri | Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same |
BR9709467A (en) * | 1996-05-29 | 2000-01-11 | Asea Brown Boveri | Insulated conductor for high voltage cables |
US7259491B2 (en) * | 1997-05-27 | 2007-08-21 | Abb Ab | Rotating asynchronous converter |
GB2331861A (en) * | 1997-11-28 | 1999-06-02 | Asea Brown Boveri | Traction motor winding having a conductor with semi-conductor insulation layers |
GB2331860A (en) * | 1997-11-28 | 1999-06-02 | Asea Brown Boveri | High voltage rotating electric machine |
GB2331858A (en) * | 1997-11-28 | 1999-06-02 | Asea Brown Boveri | A wind power plant |
GB2339975A (en) * | 1998-07-27 | 2000-02-09 | Asea Brown Boveri | Rotating electric machine stator |
SE9802910L (en) * | 1998-08-28 | 2000-02-29 | Abb Ab | generator device |
DE19860412A1 (en) * | 1998-12-28 | 2000-06-29 | Abb Research Ltd | Manufacturing of motor coils involves winding oval coils, applying internal discharge protective impregnated tape, spreading coils, and applying insulation and outer discharge protection |
SE514818C2 (en) * | 1999-04-30 | 2001-04-30 | Abb Ab | Constant frequency machine with varying / variable speed and procedure for such machine |
SE9901938L (en) * | 1999-05-27 | 2000-10-16 | Abb Ab | Device for generating single-phase AC voltage |
SE9903540D0 (en) * | 1999-10-01 | 1999-10-01 | Abb Ab | Procedure, plant and apparatus in connection with transmission of electrical power |
DK199901436A (en) * | 1999-10-07 | 2001-04-08 | Vestas Wind System As | Wind turbine |
US6278217B1 (en) | 1999-12-09 | 2001-08-21 | General Electric Company | High voltage generator stator with radially inserted cable windings and assembly method |
SE9904753L (en) * | 1999-12-23 | 2001-06-24 | Abb Ab | Use of HVDC insulated conductors in magnetic flow carriers |
SE516002C2 (en) * | 2000-03-01 | 2001-11-05 | Abb Ab | Rotary electric machine and method of making a stator winding |
AU2001260221A1 (en) | 2000-04-03 | 2001-10-15 | Abb Ab | A multiphase induction device |
SE520332C2 (en) | 2001-02-09 | 2003-06-24 | Abb Ab | Procedure for mounting stator winding |
SE0101727D0 (en) * | 2001-05-15 | 2001-05-15 | Abb Ab | Electric power generation system |
US6670721B2 (en) | 2001-07-10 | 2003-12-30 | Abb Ab | System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities |
DE10153644C2 (en) * | 2001-10-31 | 2003-11-20 | Aloys Wobben | Wind turbine with contactless energy transfer to the rotor |
SE525387C2 (en) | 2002-01-10 | 2005-02-08 | Swedish Vertical Wind Ab | Vertical axle wind turbine and its use |
DE10247905A1 (en) * | 2002-10-14 | 2004-05-06 | Alstom (Switzerland) Ltd. | Method for starting up a shaft train and device for carrying out the method |
SE524541C2 (en) * | 2002-11-18 | 2004-08-24 | Uppsala Power Man Consultants | Power storage systems and vehicles fitted with such |
SE523478C2 (en) * | 2003-04-14 | 2004-04-20 | Swedish Seabased Energy Ab | Wave energy machine, includes linear electric generator with electromagnetic damping devices |
KR100568181B1 (en) | 2003-10-17 | 2006-04-05 | 삼성전자주식회사 | Display apparatus |
DE10361731A1 (en) * | 2003-12-29 | 2005-09-15 | Voith Siemens Hydro Power Generation Gmbh & Co. Kg | Machine component with an electrical winding of an electrical machine |
DE102004003119A1 (en) * | 2004-01-21 | 2005-08-11 | BSH Bosch und Siemens Hausgeräte GmbH | Device for heating food by means of inductive coupling and device for transmitting energy |
US7282923B2 (en) * | 2005-09-20 | 2007-10-16 | General Electric Company | Systems and methods for triggering a partial discharge acquisition |
US7572133B2 (en) | 2005-11-14 | 2009-08-11 | Cooper Technologies Company | Separable loadbreak connector and system |
KR100757439B1 (en) * | 2005-12-30 | 2007-09-11 | 엘지전자 주식회사 | Self-magnetizing motor and his magnetization method |
ATE555536T1 (en) * | 2006-01-24 | 2012-05-15 | Alstom Technology Ltd | CONNECTION ARRANGEMENT FOR THE STATOR WINDING OF A TURBO MACHINE WITH 2 OR MORE PARALLEL CIRCLES |
FI122626B (en) * | 2006-03-31 | 2012-04-30 | Laennen Tutkimus Western Res Inc Oy | Chemical pulp bleaching process |
WO2007117696A2 (en) * | 2006-04-07 | 2007-10-18 | Waukesha Electric Systems, Incorporated | System and method for monitoring displacement within energized tap changer compartments |
EP1878913B1 (en) * | 2006-07-14 | 2013-03-13 | OpenHydro Group Limited | Bi-directional tidal flow hydroelectric turbine |
EP1914872A1 (en) * | 2006-10-17 | 2008-04-23 | Siemens Aktiengesellschaft | Wind farm |
US8159229B2 (en) | 2006-10-18 | 2012-04-17 | Abb Technology Ltd. | Load compensation in distance protection of a three-phase power transmission line |
US7854620B2 (en) | 2007-02-20 | 2010-12-21 | Cooper Technologies Company | Shield housing for a separable connector |
US7950939B2 (en) | 2007-02-22 | 2011-05-31 | Cooper Technologies Company | Medium voltage separable insulated energized break connector |
US7666012B2 (en) | 2007-03-20 | 2010-02-23 | Cooper Technologies Company | Separable loadbreak connector for making or breaking an energized connection in a power distribution network |
WO2008130353A1 (en) * | 2007-04-23 | 2008-10-30 | Cooper Technologies Company | Method of making and repairing a modular push-on busbar system |
US20100207394A1 (en) * | 2007-05-29 | 2010-08-19 | Kwong-Keung Leung | Device and method for utilizing water flow kinetic energy continuously |
US7661979B2 (en) | 2007-06-01 | 2010-02-16 | Cooper Technologies Company | Jacket sleeve with grippable tabs for a cable connector |
US7863868B2 (en) * | 2007-06-05 | 2011-01-04 | Honeywell International Inc. | Generator with quadrature AC excitation |
US7514806B2 (en) * | 2007-06-05 | 2009-04-07 | Honeywell International Inc. | Engine start system with quadrature AC excitation |
EP2025944B1 (en) | 2007-08-09 | 2017-08-09 | Askoll Holding S.r.l. | Mono-phase syncronous electric motorfor household appliances |
PL2026062T3 (en) | 2007-08-17 | 2015-05-29 | Omicron Electronics Gmbh | Method and device for determining the humidity content in the insulator of a transformer |
US7695291B2 (en) | 2007-10-31 | 2010-04-13 | Cooper Technologies Company | Fully insulated fuse test and ground device |
ATE480035T1 (en) * | 2007-12-12 | 2010-09-15 | Openhydro Group Ltd | GENERATOR COMPONENT FOR A HYDROELECTRIC TURBINE |
US7905735B2 (en) | 2008-02-25 | 2011-03-15 | Cooper Technologies Company | Push-then-pull operation of a separable connector system |
US7950940B2 (en) | 2008-02-25 | 2011-05-31 | Cooper Technologies Company | Separable connector with reduced surface contact |
US8056226B2 (en) * | 2008-02-25 | 2011-11-15 | Cooper Technologies Company | Method of manufacturing a dual interface separable insulated connector with overmolded faraday cage |
US7670162B2 (en) | 2008-02-25 | 2010-03-02 | Cooper Technologies Company | Separable connector with interface undercut |
US8109776B2 (en) | 2008-02-27 | 2012-02-07 | Cooper Technologies Company | Two-material separable insulated connector |
US7811113B2 (en) | 2008-03-12 | 2010-10-12 | Cooper Technologies Company | Electrical connector with fault closure lockout |
US7958631B2 (en) | 2008-04-11 | 2011-06-14 | Cooper Technologies Company | Method of using an extender for a separable insulated connector |
US7878849B2 (en) | 2008-04-11 | 2011-02-01 | Cooper Technologies Company | Extender for a separable insulated connector |
EP2112370B1 (en) * | 2008-04-22 | 2016-08-31 | OpenHydro Group Limited | A hydro-electric turbine having a magnetic bearing |
PT104078A (en) * | 2008-05-28 | 2009-11-30 | Envez Lda | ELECTROMAGNETIC ROTOR |
DK2294684T3 (en) * | 2008-06-09 | 2013-12-02 | Abb Technology Ag | PLANT FOR ELECTRICAL ENERGY TRANSFER |
US20100148616A1 (en) * | 2008-12-15 | 2010-06-17 | Tai-Her Yang | Asynchronous AC induction electrical machines in cross-interlockingly series connection |
US20100148617A1 (en) * | 2008-12-15 | 2010-06-17 | Tai-Her Yang | Asynchronous AC induction electrical machines in cross-interlockingly parallel connection |
EP2209175B1 (en) * | 2008-12-19 | 2010-09-15 | OpenHydro IP Limited | A method of installing a hydroelectric turbine generator |
EP2241749B1 (en) | 2009-04-17 | 2012-03-07 | OpenHydro IP Limited | An enhanced method of controlling the output of a hydroelectric turbine generator |
US8395296B2 (en) * | 2009-09-16 | 2013-03-12 | Siemens Energy, Inc. | Tape structure with conductive outer side and electrically insulating inner side |
EP2302204A1 (en) * | 2009-09-29 | 2011-03-30 | OpenHydro IP Limited | A hydroelectric turbine system |
EP2302755B1 (en) | 2009-09-29 | 2012-11-28 | OpenHydro IP Limited | An electrical power conversion system and method |
EP2302766B1 (en) | 2009-09-29 | 2013-03-13 | OpenHydro IP Limited | A hydroelectric turbine with coil cooling |
FR2962251B1 (en) * | 2010-06-30 | 2013-11-15 | Cybernetix | NON-CONTACT ELECTRONIC CONNECTION DEVICE FOR TRANSMITTING ELECTRICAL POWER |
WO2012017302A1 (en) * | 2010-08-04 | 2012-02-09 | Stellenbosch University | Split permanent magnet machine |
DE102010041198A1 (en) * | 2010-09-22 | 2012-03-22 | Siemens Aktiengesellschaft | Method for producing an electrical insulation material, electrical insulation material and electrical machine |
US9472990B2 (en) | 2010-10-19 | 2016-10-18 | Baker Hughes Incorporated | Systems and methods for insulating Y-points of three phase electric motors |
DE102010062060A1 (en) * | 2010-11-26 | 2012-05-31 | Airbus Operations Gmbh | Three-phase asynchronous machine and method for operating a three-phase asynchronous machine in an aircraft or spacecraft |
ITCO20110020A1 (en) | 2011-05-25 | 2012-11-26 | Nuovo Pignone Spa | METHODS AND SYSTEMS FOR LOW VOLTAGE DUCTS FREE OF OIL |
US9590159B2 (en) * | 2011-07-25 | 2017-03-07 | The Boeing Company | Thermoelectric power generation from power feeder |
GB2493711B (en) | 2011-08-12 | 2018-04-25 | Openhydro Ip Ltd | Method and system for controlling hydroelectric turbines |
US9051923B2 (en) * | 2011-10-03 | 2015-06-09 | Chang Kuo | Dual energy solar thermal power plant |
EP2587638A1 (en) | 2011-10-26 | 2013-05-01 | Siemens Aktiengesellschaft | Corona protection for an electric machine |
JP5942393B2 (en) * | 2011-11-18 | 2016-06-29 | 株式会社日立製作所 | Rotating electrical machine system or wind power generation system. |
NO336604B1 (en) * | 2011-11-22 | 2015-10-05 | Aker Subsea As | System and method for operating underwater loads with electric power provided through an underwater HVDC outfitting cable |
US8901790B2 (en) | 2012-01-03 | 2014-12-02 | General Electric Company | Cooling of stator core flange |
US10254732B2 (en) | 2012-11-16 | 2019-04-09 | U.S. Well Services, Inc. | Monitoring and control of proppant storage from a datavan |
US11959371B2 (en) | 2012-11-16 | 2024-04-16 | Us Well Services, Llc | Suction and discharge lines for a dual hydraulic fracturing unit |
US9745840B2 (en) | 2012-11-16 | 2017-08-29 | Us Well Services Llc | Electric powered pump down |
US9970278B2 (en) | 2012-11-16 | 2018-05-15 | U.S. Well Services, LLC | System for centralized monitoring and control of electric powered hydraulic fracturing fleet |
US11476781B2 (en) | 2012-11-16 | 2022-10-18 | U.S. Well Services, LLC | Wireline power supply during electric powered fracturing operations |
US11449018B2 (en) | 2012-11-16 | 2022-09-20 | U.S. Well Services, LLC | System and method for parallel power and blackout protection for electric powered hydraulic fracturing |
US10232332B2 (en) | 2012-11-16 | 2019-03-19 | U.S. Well Services, Inc. | Independent control of auger and hopper assembly in electric blender system |
US9893500B2 (en) | 2012-11-16 | 2018-02-13 | U.S. Well Services, LLC | Switchgear load sharing for oil field equipment |
US9650879B2 (en) | 2012-11-16 | 2017-05-16 | Us Well Services Llc | Torsional coupling for electric hydraulic fracturing fluid pumps |
US10407990B2 (en) | 2012-11-16 | 2019-09-10 | U.S. Well Services, LLC | Slide out pump stand for hydraulic fracturing equipment |
US10119381B2 (en) | 2012-11-16 | 2018-11-06 | U.S. Well Services, LLC | System for reducing vibrations in a pressure pumping fleet |
US9410410B2 (en) | 2012-11-16 | 2016-08-09 | Us Well Services Llc | System for pumping hydraulic fracturing fluid using electric pumps |
US9995218B2 (en) | 2012-11-16 | 2018-06-12 | U.S. Well Services, LLC | Turbine chilling for oil field power generation |
US10020711B2 (en) | 2012-11-16 | 2018-07-10 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
US10036238B2 (en) | 2012-11-16 | 2018-07-31 | U.S. Well Services, LLC | Cable management of electric powered hydraulic fracturing pump unit |
DE102013001717A1 (en) * | 2013-02-01 | 2014-08-07 | Voith Patent Gmbh | Hydroelectric power station |
US9657645B2 (en) * | 2013-02-25 | 2017-05-23 | Pratt & Whitney Canada Corp. | Engine architecture using electric machine |
CN104442052A (en) * | 2013-09-18 | 2015-03-25 | 白纱科技印刷股份有限公司 | Gold blocking, dull polish simulation and ice flower printing stripe same line operation printing method and prints thereof |
CN104670045B (en) * | 2013-12-03 | 2017-02-15 | 中车大连电力牵引研发中心有限公司 | Vehicle hauling system |
FR3023996A1 (en) * | 2014-07-16 | 2016-01-22 | Muses | MULTI-SECTOR STATOR ASSEMBLY FOR EXTERIOR ROTOR ENGINE. |
JP2017524232A (en) | 2014-08-07 | 2017-08-24 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | Electroceramic coating of wires for use in bundled transmission cables |
US10903766B2 (en) * | 2014-12-16 | 2021-01-26 | Coalmont Electrical Development Corporation | Multi-polar DC machine |
CN104682430B (en) * | 2015-02-16 | 2016-08-17 | 东北大学 | A kind of energy router apparatus being applied to energy the Internet |
US10014751B2 (en) | 2015-05-19 | 2018-07-03 | General Electric Company | Electrical machine cooling structure |
RU2596807C1 (en) * | 2015-07-06 | 2016-09-10 | Общество с ограниченной ответственностью "Смартер" | Vehicle electric power supply system |
US12078110B2 (en) | 2015-11-20 | 2024-09-03 | Us Well Services, Llc | System for gas compression on electric hydraulic fracturing fleets |
DE102016207425A1 (en) * | 2016-04-29 | 2017-11-02 | Siemens Aktiengesellschaft | Arrangement of single-phase transformers |
RU2642488C1 (en) * | 2016-08-04 | 2018-01-25 | Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" | Excitation system of asynchronized electric machine |
DE102016123067A1 (en) * | 2016-11-30 | 2018-05-30 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rod winding arrangement of a stator or a rotor of an electrical machine |
CA2987665C (en) | 2016-12-02 | 2021-10-19 | U.S. Well Services, LLC | Constant voltage power distribution system for use with an electric hydraulic fracturing system |
WO2019071086A1 (en) | 2017-10-05 | 2019-04-11 | U.S. Well Services, LLC | Instrumented fracturing slurry flow system and method |
US10408031B2 (en) | 2017-10-13 | 2019-09-10 | U.S. Well Services, LLC | Automated fracturing system and method |
AR114805A1 (en) | 2017-10-25 | 2020-10-21 | U S Well Services Llc | INTELLIGENT FRACTURING METHOD AND SYSTEM |
CN108128214A (en) * | 2017-11-13 | 2018-06-08 | 中铁二院工程集团有限责任公司 | A kind of method for reducing AT power supply mode single-core cable sheath induced voltages |
US10644630B2 (en) | 2017-11-28 | 2020-05-05 | General Electric Company | Turbomachine with an electric machine assembly and method for operation |
WO2019113153A1 (en) | 2017-12-05 | 2019-06-13 | U.S. Well Services, Inc. | High horsepower pumping configuration for an electric hydraulic fracturing system |
CA3084596A1 (en) | 2017-12-05 | 2019-06-13 | U.S. Well Services, LLC | Multi-plunger pumps and associated drive systems |
CN111656637B (en) * | 2018-01-30 | 2021-07-16 | Abb电网瑞士股份公司 | Neutral device, converter station and direct current power transmission system |
CA3090408A1 (en) | 2018-02-05 | 2019-08-08 | U.S. Well Services, LLC | Microgrid electrical load management |
US10693338B2 (en) | 2018-03-23 | 2020-06-23 | General Electric Company | System and method for suppressing surface discharges on conductive windings of an electric machine |
AR115054A1 (en) | 2018-04-16 | 2020-11-25 | U S Well Services Inc | HYBRID HYDRAULIC FRACTURING FLEET |
TWI651917B (en) * | 2018-05-09 | 2019-02-21 | 高力熱處理工業股份有限公司 | A method for manufacturing a motor rotor and a motor rotor |
US11211801B2 (en) | 2018-06-15 | 2021-12-28 | U.S. Well Services, LLC | Integrated mobile power unit for hydraulic fracturing |
CN110648825B (en) | 2018-06-27 | 2022-05-13 | 台达电子工业股份有限公司 | Transformer |
US10648270B2 (en) | 2018-09-14 | 2020-05-12 | U.S. Well Services, LLC | Riser assist for wellsites |
US11208878B2 (en) * | 2018-10-09 | 2021-12-28 | U.S. Well Services, LLC | Modular switchgear system and power distribution for electric oilfield equipment |
KR102310629B1 (en) * | 2019-01-24 | 2021-10-07 | 전북대학교산학협력단 | A field excitation system and method for a wound rotor synchronous generator |
US11578577B2 (en) | 2019-03-20 | 2023-02-14 | U.S. Well Services, LLC | Oversized switchgear trailer for electric hydraulic fracturing |
CN109742652B (en) * | 2019-03-22 | 2024-03-12 | 天津市天发重型水电设备制造有限公司 | Improved structure of main outgoing line of through-flow hydropower station generator |
CN110224560A (en) * | 2019-04-28 | 2019-09-10 | 深圳市吉胜华力科技有限公司 | A kind of Double-stator double-rotor permanent-magnet generator |
WO2020231483A1 (en) | 2019-05-13 | 2020-11-19 | U.S. Well Services, LLC | Encoderless vector control for vfd in hydraulic fracturing applications |
WO2021022048A1 (en) | 2019-08-01 | 2021-02-04 | U.S. Well Services, LLC | High capacity power storage system for electric hydraulic fracturing |
CN110842474B (en) * | 2019-11-13 | 2020-12-01 | 北京石油化工学院 | Machining and assembling method for right-angle spherical magnetic pole |
CN110749810A (en) * | 2019-12-05 | 2020-02-04 | 国网山东省电力公司电力科学研究院 | Insulation fault prediction method and system for phase modulator |
US11009162B1 (en) | 2019-12-27 | 2021-05-18 | U.S. Well Services, LLC | System and method for integrated flow supply line |
US11791684B2 (en) * | 2020-07-02 | 2023-10-17 | Ge Aviation Systems Llc | Method and system for electrically insulating portions of an electric machine |
CN112652470B (en) * | 2020-12-07 | 2022-11-15 | 阳光电源股份有限公司 | Transformer |
RU204718U1 (en) * | 2021-04-05 | 2021-06-08 | Евгений Борисович Колесников | SINGLE-PHASE VOLTAGE TO THREE-PHASE VOLTAGE CONVERTER |
CN114268175B (en) * | 2021-12-27 | 2023-03-28 | 西安交通大学 | Ultrahigh-voltage multiphase permanent magnet wind driven generator and power generation system |
US11862388B2 (en) * | 2022-01-14 | 2024-01-02 | Counterfog Corporation | Intrinsically safe electromagnetic devices |
CN114614644B (en) * | 2022-03-24 | 2024-05-24 | 西安交通大学 | Rotary frequency tripling electric energy conversion device and working method thereof |
CN115751900A (en) * | 2022-12-07 | 2023-03-07 | 广东电网有限责任公司东莞供电局 | Transformer quick drying device and application |
Family Cites Families (554)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE426793C (en) | 1926-03-18 | Bbc Brown Boveri & Cie | Device for the magnetic closure of open slots in electrical machines | |
US878165A (en) * | 1908-02-04 | Westinghouse Electric & Mfg Co | Dynamo-electric machine. | |
DE425551C (en) | 1926-02-20 | Bbc Brown Boveri & Cie | Device for the magnetic closure of open slots in electrical machines | |
DE406371C (en) | 1924-11-21 | Bergmann Elek Citaets Werke Ak | Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with fields of different number of poles, which are expediently combined on an inductor, and induced windings assigned to these fields, possibly combined into a common winding | |
DE134022C (en) * | ||||
DE568508C (en) | 1933-01-20 | Bbc Brown Boveri & Cie | AC high-voltage generator with at least two electrically separate windings | |
DE386561C (en) | 1923-12-13 | Bergmann Elek Citaets Werke Ak | Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies | |
DE572030C (en) | 1933-03-09 | Bbc Brown Boveri & Cie | Cooling device for the winding heads of high-voltage machines | |
US1304451A (en) | 1919-05-20 | Locke h | ||
DE523047C (en) | 1931-04-18 | Brown Boveir & Cie Ag | Process for the production of slot wedges with iron sheets layered transversely to the longitudinal direction of the wedge for electrical machines | |
DE336418C (en) | 1921-05-02 | Stanislaus Berger | Support for electrical lines to be led on walls | |
DE435608C (en) | 1926-10-18 | Bbc Brown Boveri & Cie | Divided conductor for electrical machines | |
US681800A (en) | 1901-06-18 | 1901-09-03 | Oskar Lasche | Stationary armature and inductor. |
US847008A (en) | 1904-06-10 | 1907-03-12 | Isidor Kitsee | Converter. |
DE372390C (en) | 1915-12-09 | 1923-03-27 | Bergmann Elek Citaets Werke Ak | Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with the same or different number of phases |
GB123906A (en) | 1918-05-31 | 1919-03-13 | Brush Electrical Eng | Improvements in or pertaining to Windings in Electrical Apparatus. |
US1418856A (en) | 1919-05-02 | 1922-06-06 | Allischalmers Mfg Company | Dynamo-electric machine |
DE443011C (en) | 1919-07-19 | 1927-04-13 | Bbc Brown Boveri & Cie | Installation on high-voltage windings in electrical machines |
US1481585A (en) | 1919-09-16 | 1924-01-22 | Electrical Improvements Ltd | Electric reactive winding |
DE387973C (en) | 1921-06-04 | 1924-01-09 | Hellmuth Beyer | Arrangement of the coils to reduce the leakage in transformers with a disc-like winding structure |
DE482506C (en) | 1921-07-09 | 1929-09-14 | Bbc Brown Boveri & Cie | Device for short-circuit-proof fastening of involute-shaped stator winding heads of air-cooled electrical machines |
US1673673A (en) * | 1922-05-31 | 1928-06-12 | Gen Electric | Electrical converter |
DE460124C (en) | 1922-10-10 | 1928-05-22 | Bbc Brown Boveri & Cie | Laminated magnetic wedge to close the winding grooves of electrical machines |
US1756672A (en) | 1922-10-12 | 1930-04-29 | Allis Louis Co | Dynamo-electric machine |
DE433749C (en) | 1923-11-25 | 1926-09-07 | Bbc Brown Boveri & Cie | Coil winding of alternating current machines, which carry very strong currents, with ring-shaped connecting conductors |
US1508456A (en) | 1924-01-04 | 1924-09-16 | Perfection Mfg Co | Ground clamp |
DE432169C (en) | 1924-01-15 | 1926-07-26 | Bbc Brown Boveri & Cie | Device for the magnetic closure of open slots in electrical machines |
DE441717C (en) | 1924-03-02 | 1927-03-11 | Bbc Brown Boveri & Cie | Divided conductor for electrical machines |
DE435609C (en) | 1924-03-02 | 1926-10-18 | Bbc Brown Boveri & Cie | Divided conductor for electrical machines |
GB268271A (en) | 1926-06-12 | 1927-03-31 | Pirelli & C | Improvements in or relating to joints for high tension electric cables |
DE468827C (en) * | 1926-08-07 | 1928-11-23 | Friedrich Pfaffenberger | Inhaler |
DE501181C (en) | 1927-02-19 | 1930-07-03 | Felten & Guilleaume Carlswerk | Process for the manufacture of cables for electrical overhead lines |
GB292999A (en) | 1927-06-29 | 1929-04-11 | Siemens Ag | Arrangement of core segments in the casings of dynamo electric machines, rotary transformers and the like |
GB293861A (en) | 1927-07-15 | 1928-11-08 | Westinghouse Electric & Mfg Co | Improvements in or relating to radio coupling devices and conductors therefor |
US1728915A (en) | 1928-05-05 | 1929-09-24 | Earl P Blankenship | Line saver and restrainer for drilling cables |
US1781308A (en) | 1928-05-30 | 1930-11-11 | Ericsson Telefon Ab L M | High-frequency differential transformer |
US1762775A (en) | 1928-09-19 | 1930-06-10 | Bell Telephone Labor Inc | Inductance device |
GB319313A (en) | 1928-09-20 | 1929-07-18 | Siemens Ag | The regulation of the electric potential of long lines |
DE629301C (en) | 1929-02-28 | 1936-04-27 | Hartstoff Metall Akt Ges Hamet | Iron core for electrical machines |
US1747507A (en) | 1929-05-10 | 1930-02-18 | Westinghouse Electric & Mfg Co | Reactor structure |
US1742985A (en) | 1929-05-20 | 1930-01-07 | Gen Electric | Transformer |
DE584639C (en) | 1929-12-28 | 1933-09-27 | Aeg | Corona protection for windings in electrical machines |
US1861182A (en) | 1930-01-31 | 1932-05-31 | Okonite Co | Electric conductor |
US1891716A (en) * | 1930-04-04 | 1932-12-20 | Westinghouse Electric & Mfg Co | Winding for dynamo electric machines |
US1904885A (en) | 1930-06-13 | 1933-04-18 | Western Electric Co | Capstan |
US1974406A (en) | 1930-12-13 | 1934-09-25 | Herbert F Apple | Dynamo electric machine core slot lining |
DE604972C (en) | 1931-02-27 | 1934-10-12 | Otis Aufzugswerke Ges M B H | Door drive for elevators |
US1894084A (en) * | 1931-04-01 | 1933-01-10 | Gen Electric | System of distribution |
DE586121C (en) | 1932-05-01 | 1933-10-18 | Felix Kleiss Dipl Ing | Process for the implementation of wires and tapes through baths |
US2006170A (en) | 1933-05-11 | 1935-06-25 | Gen Electric | Winding for the stationary members of alternating current dynamo-electric machines |
DE719009C (en) | 1935-05-30 | 1942-03-26 | Aeg | Equipment for the operation of electrical rail feeders |
GB468827A (en) * | 1936-02-12 | 1937-07-13 | Siemens Ag | Improvements in or relating to stators for alternating current machines |
FR805544A (en) | 1936-04-29 | 1936-11-21 | Travail Electr Des Metaux Soc | Method and device for adjusting voltages in a static transformer |
DE673545C (en) | 1936-07-30 | 1939-03-24 | Siemens Schuckertwerke Akt Ges | Multiphase scatter transformer made up of single-phase transformers |
NL54036C (en) | 1937-09-15 | |||
FR847899A (en) | 1937-12-23 | 1939-10-18 | Lignes Telegraph Telephon | Transformer |
FR841351A (en) | 1938-01-19 | 1939-05-17 | Manufacturing process of laminated or divided magnetic circuits | |
US2217430A (en) | 1938-02-26 | 1940-10-08 | Westinghouse Electric & Mfg Co | Water-cooled stator for dynamoelectric machines |
US2206856A (en) | 1938-05-31 | 1940-07-02 | William E Shearer | Transformer |
US2305153A (en) | 1938-11-26 | 1942-12-15 | Fries Eduard | Adjustable transformer with high reactance |
DE719119C (en) * | 1939-04-09 | 1942-03-30 | Leonhard Jacobi | Wide-span sawn roof made of reinforced concrete |
FR864380A (en) | 1939-12-01 | 1941-04-25 | Entpr Chemin | Improvements to steam winches for piling piling and the like |
GB540456A (en) | 1940-04-17 | 1941-10-17 | Austin Walters & Son Ltd | Improvements in or relating to self-regulating electric transformers |
US2241832A (en) | 1940-05-07 | 1941-05-13 | Hugo W Wahlquist | Method and apparatus for reducing harmonics in power systems |
US2256897A (en) | 1940-07-24 | 1941-09-23 | Cons Edison Co New York Inc | Insulating joint for electric cable sheaths and method of making same |
US2295415A (en) | 1940-08-02 | 1942-09-08 | Westinghouse Electric & Mfg Co | Air-cooled, air-insulated transformer |
US2251291A (en) | 1940-08-10 | 1941-08-05 | Western Electric Co | Strand handling apparatus |
GB589071A (en) | 1942-03-27 | 1947-06-11 | Gen Electric Co Ltd | Improvements in protective shields in high-voltage apparatus |
US2415652A (en) | 1942-06-03 | 1947-02-11 | Kerite Company | High-voltage cable |
US2462651A (en) | 1944-06-12 | 1949-02-22 | Gen Electric | Electric induction apparatus |
DE975999C (en) | 1944-09-16 | 1963-01-10 | Siemens Ag | Method and device for the operation of single-phase railway contact lines that are fed from at least two feed points |
US2424443A (en) | 1944-12-06 | 1947-07-22 | Gen Electric | Dynamoelectric machine |
US2459322A (en) | 1945-03-16 | 1949-01-18 | Allis Chalmers Mfg Co | Stationary induction apparatus |
US2409893A (en) | 1945-04-30 | 1946-10-22 | Westinghouse Electric Corp | Semiconducting composition |
US2436306A (en) | 1945-06-16 | 1948-02-17 | Westinghouse Electric Corp | Corona elimination in generator end windings |
FR916959A (en) | 1945-07-03 | 1946-12-20 | Improvements to transformers for electrical welding and similar applications | |
US2446999A (en) | 1945-11-07 | 1948-08-17 | Gen Electric | Magnetic core |
US2498238A (en) | 1947-04-30 | 1950-02-21 | Westinghouse Electric Corp | Resistance compositions and products thereof |
BE486144A (en) | 1947-12-04 | |||
CH266037A (en) | 1948-02-13 | 1950-01-15 | Sip Karel | Collapsible ladder. |
US2650350A (en) | 1948-11-04 | 1953-08-25 | Gen Electric | Angular modulating system |
DE875227C (en) | 1948-12-31 | 1953-04-30 | Siemens Ag | Rotary field machine with concentrated windings and pronounced poles with pole pieces |
DE846583C (en) | 1949-02-18 | 1952-08-14 | Siemens Ag | Iron core for electrical devices, especially transformers, chokes or the like. |
US2721905A (en) | 1949-03-04 | 1955-10-25 | Webster Electric Co Inc | Transducer |
FR1011924A (en) | 1949-04-23 | 1952-07-01 | Improvements to rotating electrical machines | |
GB685416A (en) | 1950-04-08 | 1953-01-07 | Westinghouse Electric Int Co | Improvements in or relating to stationary electrical induction apparatus |
DE1638176U (en) | 1952-02-12 | 1952-05-15 | Bosch & Speidel | CUFF FOR BLOOD PRESSURE MEASUREMENT. |
GB702892A (en) * | 1952-02-14 | 1954-01-27 | Asea Ab | Electric railway system |
GB715226A (en) | 1952-04-07 | 1954-09-08 | Dowty Equipment Ltd | Improvements relating to electro-magnetic coils |
US2749456A (en) | 1952-06-23 | 1956-06-05 | Us Electrical Motors Inc | Waterproof stator construction for submersible dynamo-electric machine |
GB723457A (en) | 1952-07-07 | 1955-02-09 | Standard Telephones Cables Ltd | Joint for an electric cable |
BE534972A (en) | 1953-03-23 | |||
GB739962A (en) | 1953-03-23 | 1955-11-02 | Standard Telephones Cables Ltd | Improvements in coaxial conductor electric cables |
US2780771A (en) | 1953-04-21 | 1957-02-05 | Vickers Inc | Magnetic amplifier |
NL99252C (en) | 1954-03-11 | |||
GB827600A (en) | 1954-12-13 | 1960-02-10 | Shiro Sasaki | Electric transformers and the like |
US2962679A (en) | 1955-07-25 | 1960-11-29 | Gen Electric | Coaxial core inductive structures |
GB805721A (en) | 1955-10-29 | 1958-12-10 | Comp Generale Electricite | Improvements in or relating to three-phase magnetic circuits |
US2846599A (en) | 1956-01-23 | 1958-08-05 | Wetomore Hodges | Electric motor components and the like and method for making the same |
GB853021A (en) * | 1956-06-19 | 1960-11-02 | English Electric Co Ltd | Improvements in and relating to transformer on-load tap changing means |
US2947957A (en) | 1957-04-22 | 1960-08-02 | Zenith Radio Corp | Transformers |
US2885581A (en) | 1957-04-29 | 1959-05-05 | Gen Electric | Arrangement for preventing displacement of stator end turns |
CA635218A (en) | 1958-01-02 | 1962-01-23 | W. Smith John | Reinforced end turns in dynamoelectric machines |
US2943242A (en) | 1958-02-05 | 1960-06-28 | Pure Oil Co | Anti-static grounding device |
US2975309A (en) | 1958-07-18 | 1961-03-14 | Komplex Nagyberendezesek Expor | Oil-cooled stators for turboalternators |
GB854728A (en) | 1958-09-29 | 1960-11-23 | British Thomson Houston Co Ltd | Improvements relating to electrical transformers |
GB870583A (en) | 1958-12-01 | 1961-06-14 | Okonite Co | Method of making electric cables |
FR1238795A (en) | 1959-07-06 | 1960-08-19 | Fournitures Pour L Electrolyse | Improvements to electrical transformers |
DE1807391U (en) | 1959-08-29 | 1960-03-03 | Heinrich Ungruhe | BASE RING FOR FITING STRAP. |
CH395369A (en) | 1959-09-18 | 1965-07-15 | Asea Ab | Corona shield on an induction coil provided with insulation in a vacuum furnace and method for producing a corona shield |
US3014139A (en) * | 1959-10-27 | 1961-12-19 | Gen Electric | Direct-cooled cable winding for electro magnetic device |
US3157806A (en) | 1959-11-05 | 1964-11-17 | Bbc Brown Boveri & Cie | Synchronous machine with salient poles |
US3158770A (en) | 1960-12-14 | 1964-11-24 | Gen Electric | Armature bar vibration damping arrangement |
DE1263065B (en) * | 1961-02-16 | 1968-03-14 | Licentia Gmbh | Drive for locomotives or railcars fed from a single-phase AC network with three-phase short-circuit rotor motors as traction motors |
US3098893A (en) | 1961-03-30 | 1963-07-23 | Gen Electric | Low electrical resistance composition and cable made therefrom |
US3130335A (en) | 1961-04-17 | 1964-04-21 | Epoxylite Corp | Dynamo-electric machine |
US3197723A (en) | 1961-04-26 | 1965-07-27 | Ite Circuit Breaker Ltd | Cascaded coaxial cable transformer |
GB992249A (en) | 1961-08-23 | 1965-05-19 | Urho Leander Wertanen | Electrical impedance devices |
GB1024583A (en) | 1961-10-26 | 1966-03-30 | Ass Elect Ind | Improvements in and relating to electric transformers |
US3143269A (en) | 1961-11-29 | 1964-08-04 | Crompton & Knowles Corp | Tractor-type stock feed |
CH391071A (en) | 1962-03-01 | 1965-04-30 | Bbc Brown Boveri & Cie | Laminated stator bodies for electrical machines, in particular turbo generators |
GB965741A (en) | 1962-03-02 | 1964-08-06 | Core Mfg Company | Transformer core |
GB1032194A (en) * | 1962-04-03 | 1966-06-08 | Asea Ab | Equipment for regulating the power transmitted between interconnected alternating current networks |
SE305899B (en) | 1962-06-15 | 1968-11-11 | O Andersson | |
NL297703A (en) | 1962-09-25 | |||
DE1465719A1 (en) | 1963-03-15 | 1969-05-22 | Ibm | Transformer cables with multiple coaxial conductors and their method of manufacture |
US3268766A (en) | 1964-02-04 | 1966-08-23 | Du Pont | Apparatus for removal of electric charges from dielectric film surfaces |
US3372283A (en) | 1965-02-15 | 1968-03-05 | Ampex | Attenuation control device |
SE318939B (en) | 1965-03-17 | 1969-12-22 | Asea Ab | |
US3304599A (en) | 1965-03-30 | 1967-02-21 | Teletype Corp | Method of manufacturing an electromagnet having a u-shaped core |
US3333044A (en) | 1965-04-23 | 1967-07-25 | William A Toto | Passageway structure for liquid coolant at gun and transformer ends of welding cable having novel internal surface bearing for alternate polarity strands |
DE1488353A1 (en) | 1965-07-15 | 1969-06-26 | Siemens Ag | Permanent magnet excited electrical machine |
CA812934A (en) | 1965-07-19 | 1969-05-13 | Cuny Robert | Rotary transformer for coupling multi-phase systems having a small frequency difference |
GB1135242A (en) | 1965-09-13 | 1968-12-04 | Ass Elect Ind | Improvements in or relating to packing means for conductors in stator slots of dynamo-electric machines |
US3365657A (en) | 1966-03-04 | 1968-01-23 | Nasa Usa | Power supply |
GB1117433A (en) | 1966-06-07 | 1968-06-19 | English Electric Co Ltd | Improvements in alternating current generators |
GB1103098A (en) | 1966-06-24 | 1968-02-14 | Phelps Dodge Copper Prod | Improvements in or relating to shielded electric cable |
GB1103099A (en) | 1966-06-24 | 1968-02-14 | Phelps Dodge Copper Prod | Improvements in or relating to shielded electric cable |
US3444407A (en) | 1966-07-20 | 1969-05-13 | Gen Electric | Rigid conductor bars in dynamoelectric machine slots |
US3484690A (en) | 1966-08-23 | 1969-12-16 | Herman Wald | Three current winding single stator network meter for 3-wire 120/208 volt service |
US3418530A (en) | 1966-09-07 | 1968-12-24 | Army Usa | Electronic crowbar |
US3354331A (en) | 1966-09-26 | 1967-11-21 | Gen Electric | High voltage grading for dynamoelectric machine |
GB1147049A (en) | 1966-09-28 | 1969-04-02 | Parsons C A & Co Ltd | Improvements in and relating to transformer windings |
US3392779A (en) | 1966-10-03 | 1968-07-16 | Certain Teed Prod Corp | Glass fiber cooling means |
US3437858A (en) | 1966-11-17 | 1969-04-08 | Glastic Corp | Slot wedge for electric motors or generators |
AT272436B (en) | 1967-04-10 | 1969-07-10 | Peter Dipl Ing Dr Techn Klaudy | Method of overload protection using superconductors |
US3487455A (en) * | 1967-04-18 | 1969-12-30 | Asea Ab | Insulated high voltage conductor with potential gradient equalization means |
GB1174659A (en) | 1967-04-21 | 1969-12-17 | Elektromat Veb | Mechanism for Inserting Coils into Grooves of the Stators of Electric Machines |
SU469196A1 (en) | 1967-10-30 | 1975-04-30 | Engine-generator installation for power supply of passenger cars | |
FR1555807A (en) | 1967-12-11 | 1969-01-31 | ||
GB1226451A (en) | 1968-03-15 | 1971-03-31 | ||
CH479975A (en) | 1968-08-19 | 1969-10-15 | Oerlikon Maschf | Head bandage for an electrical machine |
GB1268770A (en) | 1968-11-21 | 1972-03-29 | Kenneth Grundy | Electrical connector |
US3651402A (en) | 1969-01-27 | 1972-03-21 | Honeywell Inc | Supervisory apparatus |
US3813764A (en) | 1969-06-09 | 1974-06-04 | Res Inst Iron Steel | Method of producing laminated pancake type superconductive magnets |
US3651244A (en) | 1969-10-15 | 1972-03-21 | Gen Cable Corp | Power cable with corrugated or smooth longitudinally folded metallic shielding tape |
SE326758B (en) | 1969-10-29 | 1970-08-03 | Asea Ab | |
US3614692A (en) | 1970-06-02 | 1971-10-19 | Magnetech Ind Inc | Variable induction device |
US3666876A (en) | 1970-07-17 | 1972-05-30 | Exxon Research Engineering Co | Novel compositions with controlled electrical properties |
FR2108171A1 (en) | 1970-09-29 | 1972-05-19 | Sumitomo Electric Industries | Insulated electric cable - incorporating an insulating layer and an easily strippable semiconductor layer |
DE2050312A1 (en) | 1970-10-13 | 1972-04-20 | Siemens Ag | Multiple choke with damping of symmetrical interference currents |
US3631519A (en) | 1970-12-21 | 1971-12-28 | Gen Electric | Stress graded cable termination |
US3675056A (en) | 1971-01-04 | 1972-07-04 | Gen Electric | Hermetically sealed dynamoelectric machine |
US3644662A (en) | 1971-01-11 | 1972-02-22 | Gen Electric | Stress cascade-graded cable termination |
US3660721A (en) | 1971-02-01 | 1972-05-02 | Gen Electric | Protective equipment for an alternating current power distribution system |
GB1395152A (en) | 1971-02-01 | 1975-05-21 | Int Research & Dev Co Ltd | Altering current dynamo-electric machine windings |
DE2111086A1 (en) | 1971-03-09 | 1972-09-14 | Siemens Ag | Stand sheet metal cutting of electrical machines |
US3749811A (en) | 1971-03-10 | 1973-07-31 | Siemens Ag | Superconducting cable |
US3684906A (en) | 1971-03-26 | 1972-08-15 | Gen Electric | Castable rotor having radially venting laminations |
US3684821A (en) | 1971-03-30 | 1972-08-15 | Sumitomo Electric Industries | High voltage insulated electric cable having outer semiconductive layer |
US3716719A (en) | 1971-06-07 | 1973-02-13 | Aerco Corp | Modulated output transformers |
JPS4831403A (en) | 1971-08-27 | 1973-04-25 | ||
US3746954A (en) | 1971-09-17 | 1973-07-17 | Sqare D Co | Adjustable voltage thyristor-controlled hoist control for a dc motor |
US3727085A (en) | 1971-09-30 | 1973-04-10 | Gen Dynamics Corp | Electric motor with facility for liquid cooling |
DE2155371C2 (en) | 1971-11-08 | 1982-06-24 | Appt, geb. Kirschmann, Emma, 7000 Stuttgart | Device for shaping the winding heads of electrical machines |
US3740600A (en) | 1971-12-12 | 1973-06-19 | Gen Electric | Self-supporting coil brace |
US3743867A (en) | 1971-12-20 | 1973-07-03 | Massachusetts Inst Technology | High voltage oil insulated and cooled armature windings |
DE2164078A1 (en) | 1971-12-23 | 1973-06-28 | Siemens Ag | DRIVE ARRANGEMENT WITH A LINEAR MOTOR DESIGNED IN THE TYPE OF A SYNCHRONOUS MACHINE |
BE793731A (en) | 1972-01-05 | 1973-05-02 | English Electric Co Ltd | ELECTROGENERATORS |
US3699238A (en) | 1972-02-29 | 1972-10-17 | Anaconda Wire & Cable Co | Flexible power cable |
SU425268A1 (en) | 1972-02-29 | 1974-04-25 | желого электромашиностроени при Лысьвенском турбогенераторном | ELECTRIC MACHINE STATOR |
FR2175579B1 (en) | 1972-03-14 | 1974-08-02 | Thomson Brandt | |
US3758699A (en) | 1972-03-15 | 1973-09-11 | G & W Electric Speciality Co | Apparatus and method for dynamically cooling a cable termination |
US3716652A (en) | 1972-04-18 | 1973-02-13 | G & W Electric Speciality Co | System for dynamically cooling a high voltage cable termination |
US3748555A (en) | 1972-05-01 | 1973-07-24 | Westinghouse Electric Corp | Protective circuit for brushless synchronous motors |
US3787607A (en) | 1972-05-31 | 1974-01-22 | Teleprompter Corp | Coaxial cable splice |
US3968388A (en) | 1972-06-14 | 1976-07-06 | Kraftwerk Union Aktiengesellschaft | Electric machines, particularly turbogenerators, having liquid cooled rotors |
US3801843A (en) | 1972-06-16 | 1974-04-02 | Gen Electric | Rotating electrical machine having rotor and stator cooled by means of heat pipes |
CH547028A (en) | 1972-06-16 | 1974-03-15 | Bbc Brown Boveri & Cie | GLIME PROTECTION FILM, THE PROCESS FOR ITS MANUFACTURING AND THEIR USE IN HIGH VOLTAGE WINDINGS. |
US3792399A (en) | 1972-08-28 | 1974-02-12 | Nasa | Banded transformer cores |
US3778891A (en) | 1972-10-30 | 1973-12-18 | Westinghouse Electric Corp | Method of securing dynamoelectric machine coils by slot wedge and filler locking means |
US3887860A (en) * | 1972-11-15 | 1975-06-03 | Eaton Corp | Fuseless inverter |
US3932791A (en) | 1973-01-22 | 1976-01-13 | Oswald Joseph V | Multi-range, high-speed A.C. over-current protection means including a static switch |
US3995785A (en) | 1973-02-12 | 1976-12-07 | Essex International, Inc. | Apparatus and method for forming dynamoelectric machine field windings by pushing |
CA1028440A (en) | 1973-02-26 | 1978-03-21 | Uop Inc. | Polymer compositions with treated filler |
FR2222738B1 (en) | 1973-03-20 | 1976-05-21 | Unelec | |
SE371348B (en) | 1973-03-22 | 1974-11-11 | Asea Ab | |
US3781739A (en) | 1973-03-28 | 1973-12-25 | Westinghouse Electric Corp | Interleaved winding for electrical inductive apparatus |
CH549467A (en) | 1973-03-29 | 1974-05-31 | Micafil Ag | PROCESS FOR MANUFACTURING A COMPRESSED LAYERING MATERIAL. |
US3881647A (en) | 1973-04-30 | 1975-05-06 | Lebus International Inc | Anti-slack line handling device |
CH560448A5 (en) | 1973-07-06 | 1975-03-27 | Bbc Brown Boveri & Cie | |
US4084307A (en) | 1973-07-11 | 1978-04-18 | Allmanna Svenska Elektriska Aktiebolaget | Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer |
US3828115A (en) | 1973-07-27 | 1974-08-06 | Kerite Co | High voltage cable having high sic insulation layer between low sic insulation layers and terminal construction thereof |
US4039922A (en) * | 1973-09-10 | 1977-08-02 | The Garrett Corporation | Method of converting phase and frequency using a dynamo-electric machine |
DE2351340A1 (en) | 1973-10-12 | 1975-04-24 | Siemens Ag | TAPE REEL FOR TRANSFORMERS |
GB1433158A (en) | 1973-11-19 | 1976-04-22 | Pirelli General Cable Works | Electric cable installations |
US3947278A (en) | 1973-12-19 | 1976-03-30 | Universal Oil Products Company | Duplex resistor inks |
US3912957A (en) | 1973-12-27 | 1975-10-14 | Gen Electric | Dynamoelectric machine stator assembly with multi-barrel connection insulator |
DE2400698A1 (en) | 1974-01-08 | 1975-07-10 | Krim Samhalov Izmail | Self-excited machine with two separate stator windings - windings star-connected with second capacitively closed for excitation |
US4109098A (en) * | 1974-01-31 | 1978-08-22 | Telefonaktiebolaget L M Ericsson | High voltage cable |
SE384420B (en) | 1974-01-31 | 1976-05-03 | Ericsson Telefon Ab L M | ELECTRICAL CABLE WITH SYNTHETIC INSULATION AND AN OUTER SEMICONDUCTIVE LAYER |
CA1016586A (en) | 1974-02-18 | 1977-08-30 | Hubert G. Panter | Grounding of outer winding insulation to cores in dynamoelectric machines |
US4039740A (en) | 1974-06-19 | 1977-08-02 | The Furukawa Electric Co., Ltd. | Cryogenic power cable |
DE2430792C3 (en) | 1974-06-24 | 1980-04-10 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Power cable with plastic insulation and outer conductive layer |
DE2541670C2 (en) | 1974-09-19 | 1986-09-04 | Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka | Electrical coil encapsulated in synthetic resin |
GB1479904A (en) | 1974-10-15 | 1977-07-13 | Ass Elect Ind | Alternating current power transmission systems |
US3902000A (en) | 1974-11-12 | 1975-08-26 | Us Energy | Termination for superconducting power transmission systems |
US3943392A (en) | 1974-11-27 | 1976-03-09 | Allis-Chalmers Corporation | Combination slot liner and retainer for dynamoelectric machine conductor bars |
CH579844A5 (en) * | 1974-12-04 | 1976-09-15 | Bbc Brown Boveri & Cie | |
US3965408A (en) | 1974-12-16 | 1976-06-22 | International Business Machines Corporation | Controlled ferroresonant transformer regulated power supply |
DE2600206C2 (en) | 1975-01-06 | 1986-01-09 | The Reluxtrol Co., Seattle, Wash. | Device for non-destructive material testing using the eddy current method |
US3975646A (en) * | 1975-01-13 | 1976-08-17 | Westinghouse Electric Corporation | Asynchronous tie |
US4091138A (en) | 1975-02-12 | 1978-05-23 | Sumitomo Bakelite Company Limited | Insulating film, sheet, or plate material with metallic coating and method for manufacturing same |
AT338915B (en) | 1975-02-18 | 1977-09-26 | Dukshtau Alexandr Antonovich | STAND FOR ELECTRIC MACHINERY |
JPS51113110A (en) | 1975-03-28 | 1976-10-06 | Mitsubishi Electric Corp | Drive system for inductor type synchronous motor |
US4008409A (en) | 1975-04-09 | 1977-02-15 | General Electric Company | Dynamoelectric machine core and coil assembly |
US3971543A (en) | 1975-04-17 | 1976-07-27 | Shanahan William F | Tool and kit for electrical fishing |
US4132914A (en) | 1975-04-22 | 1979-01-02 | Khutoretsky Garri M | Six-phase winding of electric machine stator |
DE2520511C3 (en) | 1975-05-07 | 1978-11-30 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Device for supporting the rotor winding of a salient pole rotor of a four-pole or higher-pole electrical machine |
ZA753046B (en) | 1975-05-12 | 1976-09-29 | Gec South Africa Pty | Transformer cooling |
SE7605754L (en) | 1975-05-22 | 1976-11-23 | Reynolds Metals Co | ELECTRICAL CABLE |
US4031310A (en) | 1975-06-13 | 1977-06-21 | General Cable Corporation | Shrinkable electrical cable core for cryogenic cable |
US3993860A (en) | 1975-08-18 | 1976-11-23 | Samuel Moore And Company | Electrical cable adapted for use on a tractor trailer |
US4091139A (en) * | 1975-09-17 | 1978-05-23 | Westinghouse Electric Corp. | Semiconductor binding tape and an electrical member wrapped therewith |
US4258280A (en) | 1975-11-07 | 1981-03-24 | Bbc Brown Boveri & Company Limited | Supporting structure for slow speed large diameter electrical machines |
US4085347A (en) | 1976-01-16 | 1978-04-18 | White-Westinghouse Corporation | Laminated stator core |
AT340523B (en) | 1976-04-27 | 1977-12-27 | Hitzinger & Co Dipl Ing | BRUSHLESS SYNC GENERATOR |
HU175494B (en) | 1976-04-29 | 1980-08-28 | Magyar Kabel Muevek | Shielded power-current cable |
US4047138A (en) | 1976-05-19 | 1977-09-06 | General Electric Company | Power inductor and transformer with low acoustic noise air gap |
DE2622309C3 (en) | 1976-05-19 | 1979-05-03 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Protective device for a brushless synchronous machine |
JPS5325886A (en) | 1976-08-21 | 1978-03-10 | Sumitomo Electric Ind Ltd | Brid ged polyolefine insulating hightension cable having outer semiconductor layers which can be treated off easily |
US4064419A (en) | 1976-10-08 | 1977-12-20 | Westinghouse Electric Corporation | Synchronous motor KVAR regulation system |
US4103075A (en) | 1976-10-28 | 1978-07-25 | Airco, Inc. | Composite monolithic low-loss superconductor for power transmission line |
US4041431A (en) | 1976-11-22 | 1977-08-09 | Ralph Ogden | Input line voltage compensating transformer power regulator |
SU625290A1 (en) | 1976-11-30 | 1978-09-25 | Специальное Конструкторское Бюро "Энергохиммаш" | Electric motor |
US4099227A (en) | 1976-12-01 | 1978-07-04 | Square D Company | Sensor circuit |
DE2656389C3 (en) | 1976-12-13 | 1979-11-29 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Synchronous linear motor |
FR2376542A1 (en) | 1976-12-30 | 1978-07-28 | Aroshidze Jury | Spring mounted stator core of electrical machine - is attached to stator frame at points of maximum stiffness to form rigid structure |
US4200817A (en) | 1977-01-20 | 1980-04-29 | Bbc Brown Boveri & Company Limited | Δ-Connected, two-layer, three-phase winding for an electrical machine |
IT1113513B (en) | 1977-03-16 | 1986-01-20 | Pirelli | IMPROVEMENT CONCERNING THE CABLES FOR ENERGY |
JPS53120117A (en) | 1977-03-30 | 1978-10-20 | Hitachi Ltd | Excitation control system for generator |
US4179729A (en) * | 1977-04-15 | 1979-12-18 | The Charles Stark Draper Laboratory, Inc. | Rotary electric machine and power conversion system using same |
US4149101A (en) | 1977-05-12 | 1979-04-10 | Lesokhin Albert Z | Arrangement for locking slot wedges retaining electric windings |
DE2721905C2 (en) | 1977-05-14 | 1986-02-20 | Thyssen Industrie Ag, 4300 Essen | Method of manufacturing a three-phase alternating current winding for a linear motor |
US4134036A (en) | 1977-06-03 | 1979-01-09 | Cooper Industries, Inc. | Motor mounting device |
US4152615A (en) | 1977-06-14 | 1979-05-01 | Westinghouse Electric Corp. | End iron axial flux damper system |
DE2729067A1 (en) | 1977-06-28 | 1979-01-11 | Kabel Metallwerke Ghh | MEDIUM OR HIGH VOLTAGE ELECTRIC CABLE |
US4177418A (en) | 1977-08-04 | 1979-12-04 | International Business Machines Corporation | Flux controlled shunt regulated transformer |
US4164672A (en) | 1977-08-18 | 1979-08-14 | Electric Power Research Institute, Inc. | Cooling and insulating system for extra high voltage electrical machine with a spiral winding |
US4184186A (en) | 1977-09-06 | 1980-01-15 | General Electric Company | Current limiting device for an electric power system |
DE2741362C2 (en) * | 1977-09-12 | 1979-08-16 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Electric synchronous motor in turbo design |
US4160193A (en) | 1977-11-17 | 1979-07-03 | Richmond Abraham W | Metal vapor electric discharge lamp system |
PL123224B1 (en) | 1977-11-30 | 1982-09-30 | Inst Spawalnictwa | Welding transformer of dropping external characteristic |
US4134146A (en) * | 1978-02-09 | 1979-01-09 | General Electric Company | Surge arrester gap assembly |
US4177397A (en) | 1978-03-17 | 1979-12-04 | Amp Incorporated | Electrical connections for windings of motor stators |
SU792302A1 (en) | 1978-04-04 | 1980-12-30 | Предприятие П/Я В-8833 | Transformer |
US4228391A (en) * | 1978-04-14 | 1980-10-14 | The United States Of America As Represented By The United States Department Of Energy | Induction machine |
US4164772A (en) | 1978-04-17 | 1979-08-14 | Electric Power Research Institute, Inc. | AC fault current limiting circuit |
DE2824951A1 (en) | 1978-06-07 | 1979-12-20 | Kabel Metallwerke Ghh | METHOD OF MANUFACTURING A STATOR FOR A LINEAR MOTOR |
CH629344A5 (en) | 1978-06-08 | 1982-04-15 | Bbc Brown Boveri & Cie | DEVICE FOR SUPPORTING THE FIELD DEVELOPMENT OF A POLE WHEEL WITH EXCELLENT POLES. |
US4321426A (en) | 1978-06-09 | 1982-03-23 | General Electric Company | Bonded transposed transformer winding cable strands having improved short circuit withstand |
US4208597A (en) | 1978-06-22 | 1980-06-17 | Westinghouse Electric Corp. | Stator core cooling for dynamoelectric machines |
SU694939A1 (en) | 1978-06-22 | 1982-01-07 | Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука | Generator stator |
DE2925934A1 (en) | 1978-07-06 | 1980-01-24 | Vilanova Luis Montplet | MAGNETIC DEVICE, IN PARTICULAR FOR DETECTING FAULTS OF UNDERGROUND ELECTRIC CABLES |
US4200818A (en) | 1978-08-01 | 1980-04-29 | Westinghouse Electric Corp. | Resin impregnated aromatic polyamide covered glass based slot wedge for large dynamoelectric machines |
DE2835386A1 (en) | 1978-08-12 | 1980-02-21 | Kabel Metallwerke Ghh | Three=phase AC winding for linear motor - is made by preforming cables which are wound on drum, fastened on supports and then placed in slots |
DE2836229C2 (en) | 1978-08-17 | 1983-12-15 | Siemens AG, 1000 Berlin und 8000 München | Stator winding of an electrical machine |
CA1095601A (en) | 1978-08-28 | 1981-02-10 | Alfred M. Hase | Regulating transformer with magnetic shunt |
DE2839517C2 (en) | 1978-09-11 | 1986-05-07 | Thyssen Industrie Ag, 4300 Essen | Process for the production of a prefabricated winding for linear motors |
JPS6028226B2 (en) | 1978-09-20 | 1985-07-03 | 株式会社日立製作所 | salient pole rotor |
JPS6044764B2 (en) | 1978-11-09 | 1985-10-05 | 株式会社フジクラ | Cable conductor manufacturing method |
US4207482A (en) | 1978-11-14 | 1980-06-10 | Westinghouse Electric Corp. | Multilayered high voltage grading system for electrical conductors |
US4238339A (en) | 1978-11-27 | 1980-12-09 | Fridman Vladimir M | Arrangement for supporting stator end windings of an electric machine |
JPS5579676A (en) | 1978-12-13 | 1980-06-16 | Toshiba Corp | Harmonic filter for electric power |
DE2854520A1 (en) | 1978-12-16 | 1980-06-26 | Bbc Brown Boveri & Cie | ELECTRIC COIL |
CH651975A5 (en) | 1979-01-10 | 1985-10-15 | Bbc Brown Boveri & Cie | PROTECTIVE DEVICE ON A TURBO GROUP AGAINST SUBSYNCHRONOUS RESONANCES. |
US4317001A (en) | 1979-02-23 | 1982-02-23 | Pirelli Cable Corp. | Irradiation cross-linked polymeric insulated electric cable |
US4262209A (en) * | 1979-02-26 | 1981-04-14 | Berner Charles A | Supplemental electrical power generating system |
US4281264A (en) | 1979-02-26 | 1981-07-28 | General Electric Company | Mounting of armature conductors in air-gap armatures |
SE416693B (en) | 1979-03-08 | 1981-01-26 | Elmekano I Lulea Ab | DEVICE FOR PHASE COMPENSATION AND MAGNETIZATION OF AN ASYNCHRONIC MACHINE FOR OPERATING AS GENERATOR |
SU873370A1 (en) | 1979-03-11 | 1981-10-15 | Предприятие П/Я М-5113 | Synchronous machine excitation system |
FR2452167A1 (en) | 1979-03-20 | 1980-10-17 | Aerospatiale | PROCESS FOR THE PRODUCTION OF A MAGNETIC FRAME WITH DIVIDED STRUCTURE AND REINFORCEMENT THUS OBTAINED |
GB2100998B (en) | 1979-03-22 | 1984-02-01 | Oriental Metal Meg Co Ltd | Process and apparatus for the distillation of water |
CH641599A5 (en) | 1979-03-27 | 1984-02-29 | Streiff Mathias Ag | METHOD AND DEVICE FOR LAYING AND FASTENING HEAVY ELECTRIC CABLES IN A CABLE CHANNEL. |
US4363612A (en) | 1979-03-29 | 1982-12-14 | Ulrich Walchhutter | Flywheel and screw press for producing ceramic articles |
DE2913697C2 (en) | 1979-04-05 | 1986-05-22 | kabelmetal electro GmbH, 3000 Hannover | Prefabricated winding for a linear motor |
DE2917717A1 (en) | 1979-05-02 | 1980-11-27 | Kraftwerk Union Ag | Turbogenerator stator cooling segments - have parallel channels extending from to distributor to zone of stator teeth |
DE2920478C2 (en) | 1979-05-21 | 1986-06-26 | kabelmetal electro GmbH, 3000 Hannover | Prefabricated three-phase alternating current winding for a linear motor |
DE2920477A1 (en) | 1979-05-21 | 1980-12-04 | Kabel Metallwerke Ghh | Prefabricated three-phase alternating current winding for a linear motor |
DE2921114A1 (en) | 1979-05-25 | 1980-12-04 | Bosch Gmbh Robert | WINDING PROCESS FOR AN ELECTRIC GENERATOR AND THREE-PHASE GENERATOR PRODUCED AFTER THIS |
US4357542A (en) | 1979-07-12 | 1982-11-02 | Westinghouse Electric Corp. | Wind turbine generator system |
US4255684A (en) | 1979-08-03 | 1981-03-10 | Mischler William R | Laminated motor stator structure with molded composite pole pieces |
US4292558A (en) | 1979-08-15 | 1981-09-29 | Westinghouse Electric Corp. | Support structure for dynamoelectric machine stators spiral pancake winding |
US4355255A (en) * | 1979-08-28 | 1982-10-19 | The Singer Company | Brushless direct current motor and control therefor |
DE2939004A1 (en) | 1979-09-26 | 1981-04-09 | Siemens AG, 1000 Berlin und 8000 München | Synchronous linear motor for rail vehicle drive - has field winding divided into switched sections with inter-looped current lines |
FR2467502A1 (en) | 1979-10-11 | 1981-04-17 | Ducellier & Cie | Electric starter motor rotor winding for vehicle - has minimal depth slots with offset conductors to minimise flux distortion |
US4320645A (en) | 1979-10-11 | 1982-03-23 | Card-O-Matic Pty. Limited | Apparatus for fabricating electrical equipment |
JPS5675411U (en) | 1979-11-15 | 1981-06-19 | ||
SU961048A1 (en) * | 1979-12-06 | 1982-09-23 | Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука | Generator stator |
DE3002945A1 (en) | 1980-01-29 | 1981-07-30 | Anton Piller Kg, 3360 Osterode | TRANSFORMER SYSTEM |
EP0033847B1 (en) | 1980-02-11 | 1985-05-02 | Siemens Aktiengesellschaft | Turbine set with a generator providing a constant-frequency mains supply |
DE3006382C2 (en) | 1980-02-21 | 1985-10-31 | Thyssen Industrie Ag, 4300 Essen | Three-phase alternating current winding for a linear motor |
DE3008212C2 (en) | 1980-03-04 | 1985-06-27 | Robert Bosch Gmbh, 7000 Stuttgart | Process for the production of stator windings for three-phase alternators |
DE3008818A1 (en) | 1980-03-05 | 1981-09-10 | Siemens AG, 1000 Berlin und 8000 München | Jointing sleeve for HT cables - with plastic cylinder over metal tube and insulating tape wraps |
US4411710A (en) | 1980-04-03 | 1983-10-25 | The Fujikawa Cable Works, Limited | Method for manufacturing a stranded conductor constituted of insulated strands |
FR2481531A1 (en) | 1980-04-23 | 1981-10-30 | Cables De Lyon Geoffroy Delore | SPLICING METHOD AND SPLICE FOR COAXIAL CABLE WITH MASSIVE INSULATION |
DE3016990A1 (en) | 1980-05-02 | 1981-11-12 | Kraftwerk Union AG, 4330 Mülheim | DEVICE FOR FIXING WINDING RODS IN SLOTS OF ELECTRICAL MACHINES, IN PARTICULAR TURBOGENERATORS |
CA1140198A (en) | 1980-05-23 | 1983-01-25 | National Research Council Of Canada | Laser triggered high voltage rail gap switch |
US4594630A (en) | 1980-06-02 | 1986-06-10 | Electric Power Research Institute, Inc. | Emission controlled current limiter for use in electric power transmission and distribution |
DE3031866A1 (en) | 1980-08-23 | 1982-04-01 | Brown, Boveri & Cie Ag, 6800 Mannheim | LADDER BAR FOR ELECTRICAL MACHINE |
US4384944A (en) | 1980-09-18 | 1983-05-24 | Pirelli Cable Corporation | Carbon filled irradiation cross-linked polymeric insulation for electric cable |
US4330726A (en) | 1980-12-04 | 1982-05-18 | General Electric Company | Air-gap winding stator construction for dynamoelectric machine |
GB2101418B (en) | 1980-12-18 | 1985-01-30 | Vp Izyskatelskij Ini Gidroproe | Joint for connecting two multilayer cables of stator winding of high-voltage generator |
US4365506A (en) * | 1980-12-22 | 1982-12-28 | Trw Inc. | Remotely operated downhole test disconnect switching apparatus |
US4404486A (en) | 1980-12-24 | 1983-09-13 | General Electric Company | Star connected air gap polyphase armature having limited voltage gradients at phase boundaries |
AT378287B (en) | 1981-01-30 | 1985-07-10 | Elin Union Ag | HIGH VOLTAGE WINDING FOR ELECTRICAL MACHINES |
US4361723A (en) | 1981-03-16 | 1982-11-30 | Harvey Hubbell Incorporated | Insulated high voltage cables |
SU955369A1 (en) * | 1981-03-26 | 1982-08-30 | Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука | Electric machine stator |
US4368418A (en) * | 1981-04-21 | 1983-01-11 | Power Technologies, Inc. | Apparatus for controlling high voltage by absorption of capacitive vars |
US4401920A (en) | 1981-05-11 | 1983-08-30 | Canadian Patents & Development Limited | Laser triggered high voltage rail gap switch |
GB2099635B (en) | 1981-05-29 | 1985-07-03 | Harmer & Simmons Ltd | Ransformers for battery charging systems |
US4367425A (en) | 1981-06-01 | 1983-01-04 | Westinghouse Electric Corp. | Impregnated high voltage spacers for use with resin filled hose bracing systems |
US4365178A (en) | 1981-06-08 | 1982-12-21 | General Electric Co. | Laminated rotor for a dynamoelectric machine with coolant passageways therein |
SE426895B (en) | 1981-07-06 | 1983-02-14 | Asea Ab | PROTECTOR FOR A SERIES CONDENSOR IN A HIGH VOLTAGE NETWORK |
US4449768A (en) | 1981-07-23 | 1984-05-22 | Preformed Line Products Company | Shield connector |
GB2106306B (en) | 1981-07-28 | 1985-07-31 | Pirelli General Plc | Improvements in electric cables and installations |
DE3129928A1 (en) * | 1981-07-29 | 1983-02-24 | Anton Piller GmbH & Co KG, 3360 Osterode | ROTATING TRANSFORMER |
US4470884A (en) | 1981-08-07 | 1984-09-11 | National Ano-Wire, Inc. | High speed aluminum wire anodizing machine and process |
CA1164851A (en) | 1981-08-17 | 1984-04-03 | Ali Pan | Reeling of cable |
US4368399A (en) | 1981-08-17 | 1983-01-11 | Westinghouse Electric Corp. | Rotor end turn winding and support structure |
US4387316A (en) | 1981-09-30 | 1983-06-07 | General Electric Company | Dynamoelectric machine stator wedges and method |
US4475075A (en) | 1981-10-14 | 1984-10-02 | Munn Robert B | Electric power generator and system |
US4520287A (en) | 1981-10-27 | 1985-05-28 | Emerson Electric Co. | Stator for a multiple-pole dynamoelectric machine and method of fabricating same |
DK474682A (en) | 1981-10-27 | 1983-04-28 | Raychem Sa Nv | STUFF CUFF AND ITS APPLICATION |
US4426771A (en) | 1981-10-27 | 1984-01-24 | Emerson Electric Co. | Method of fabricating a stator for a multiple-pole dynamoelectric machine |
US4431960A (en) | 1981-11-06 | 1984-02-14 | Fdx Patents Holding Company, N.V. | Current amplifying apparatus |
US4437464A (en) | 1981-11-09 | 1984-03-20 | C.R. Bard, Inc. | Electrosurgical generator safety apparatus |
US4469267A (en) | 1982-01-15 | 1984-09-04 | Western Gear Corporation | Draw-off and hold-back cable tension machine |
SU1019553A1 (en) | 1982-02-23 | 1983-05-23 | Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского | Electric machine stator |
CA1222788A (en) | 1982-05-14 | 1987-06-09 | Roderick S. Taylor | Uv radiation triggered rail-gap switch |
US4425521A (en) | 1982-06-03 | 1984-01-10 | General Electric Company | Magnetic slot wedge with low average permeability and high mechanical strength |
US4546210A (en) | 1982-06-07 | 1985-10-08 | Hitachi, Ltd. | Litz wire |
US4443725A (en) | 1982-06-14 | 1984-04-17 | General Electric Company | Dynamoelectric machine stator wedge |
JPS5928852A (en) | 1982-08-06 | 1984-02-15 | Hitachi Ltd | Salient-pole type rotary electric machine |
DE3229480A1 (en) | 1982-08-06 | 1984-02-09 | Transformatoren Union Ag, 7000 Stuttgart | DRY TRANSFORMER WITH WINDINGS POOLED IN CAST RESIN |
US4481438A (en) | 1982-09-13 | 1984-11-06 | Electric Power Research Institute, Inc. | High voltage electrical generator and windings for use therein |
JPS5956825A (en) | 1982-09-21 | 1984-04-02 | 三菱電機株式会社 | Ac current limiting device |
US4473765A (en) | 1982-09-30 | 1984-09-25 | General Electric Company | Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress |
US4508251A (en) | 1982-10-26 | 1985-04-02 | Nippon Telegraph And Telephone Public Corp. | Cable pulling/feeding apparatus |
JPS5986110A (en) | 1982-11-09 | 1984-05-18 | 住友電気工業株式会社 | Crosslinked polyethylene insulated cable |
GB2140195B (en) | 1982-12-03 | 1986-04-30 | Electric Power Res Inst | Cryogenic cable and method of making same |
JPS59129558A (en) * | 1983-01-14 | 1984-07-25 | Hitachi Ltd | Variable speed rotary electric machine |
CH659910A5 (en) | 1983-01-27 | 1987-02-27 | Bbc Brown Boveri & Cie | AIR THROTTLE COIL AND METHOD FOR THEIR PRODUCTION. |
DE3305225A1 (en) | 1983-02-16 | 1984-08-16 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | High-voltage DC-transmission power station in a block circuit |
GB2136214B (en) | 1983-03-11 | 1986-05-29 | British Aerospace | Pulse transformer |
DE3309051C2 (en) | 1983-03-14 | 1986-10-02 | Thyssen Industrie Ag, 4300 Essen | Three-phase alternating current winding for a linear motor |
EP0120154A1 (en) | 1983-03-25 | 1984-10-03 | TRENCH ELECTRIC, a Division of Guthrie Canadian Investments Limited | Continuously transposed conductor |
US4619040A (en) | 1983-05-23 | 1986-10-28 | Emerson Electric Co. | Method of fabricating stator for a multiple pole dynamoelectric machine |
US4510476A (en) | 1983-06-21 | 1985-04-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High voltage isolation transformer |
DE3323696A1 (en) | 1983-07-01 | 1985-01-10 | Thyssen Industrie Ag, 4300 Essen | METHOD AND DEVICE FOR LAYING A PRE-MANUFACTURED WINDING OF A LINEAR MOTOR |
US4590416A (en) | 1983-08-08 | 1986-05-20 | Rig Efficiency, Inc. | Closed loop power factor control for power supply systems |
US4565929A (en) | 1983-09-29 | 1986-01-21 | The Boeing Company | Wind powered system for generating electricity |
US4510077A (en) | 1983-11-03 | 1985-04-09 | General Electric Company | Semiconductive glass fibers and method |
US4503284A (en) | 1983-11-09 | 1985-03-05 | Essex Group, Inc. | RF Suppressing magnet wire |
IT1195482B (en) | 1983-11-18 | 1988-10-19 | Meccanica Di Precisione Spa | PROGRAMMABLE ROBOT ABLE TO MANAGE THE FEEDING AND UNLOADING OF EMPTY SPOOLS AND FULL SPOOLS INTO AND FROM MACHINES USED FOR WINDING METAL WIRES EOD OTHER MATERIAL AT TWENTY OPERATING CHARACTERISTICS U GUALES OR DIFFERENT THAN ONE LONG THE SAME ROBOT YOU ARE LOOKING AT |
GB2150153B (en) | 1983-11-25 | 1986-09-10 | Gen Electric | Electrodeposition of mica on coil or bar connections |
US4724345A (en) | 1983-11-25 | 1988-02-09 | General Electric Company | Electrodepositing mica on coil connections |
US4622116A (en) | 1983-11-25 | 1986-11-11 | General Electric Company | Process for electrodepositing mica on coil or bar connections and resulting products |
US4723083A (en) | 1983-11-25 | 1988-02-02 | General Electric Company | Electrodeposited mica on coil bar connections and resulting products |
FR2556146B1 (en) | 1983-12-05 | 1988-01-15 | Paris & Du Rhone | DEVICE FOR MOUNTING AND INSULATING CONDUCTORS ON ROTORS OF ELECTRIC ROTATING MACHINES |
SE452823B (en) | 1984-03-07 | 1987-12-14 | Asea Ab | Series capacitor EQUIPMENT |
DE3444189A1 (en) | 1984-03-21 | 1985-09-26 | Kraftwerk Union AG, 4330 Mülheim | DEVICE FOR INDIRECT GAS COOLING OF THE STATE DEVELOPMENT AND / OR FOR DIRECT GAS COOLING OF THE STATE SHEET PACKAGE OF DYNAMOELECTRICAL MACHINES, PREFERRED FOR GAS COOLED TURBOGENERATORS |
US4488079A (en) | 1984-03-30 | 1984-12-11 | Westinghouse Electric Corp. | Dynamoelectric machine with stator coil end turn support system |
US4650924A (en) | 1984-07-24 | 1987-03-17 | Phelps Dodge Industries, Inc. | Ribbon cable, method and apparatus, and electromagnetic device |
US5067046A (en) | 1984-08-23 | 1991-11-19 | General Electric Company | Electric charge bleed-off structure using pyrolyzed glass fiber |
US5036165A (en) | 1984-08-23 | 1991-07-30 | General Electric Co. | Semi-conducting layer for insulated electrical conductors |
US5066881A (en) | 1984-08-23 | 1991-11-19 | General Electric Company | Semi-conducting layer for insulated electrical conductors |
US4853565A (en) * | 1984-08-23 | 1989-08-01 | General Electric Company | Semi-conducting layer for insulated electrical conductors |
AU575681B2 (en) | 1984-09-13 | 1988-08-04 | Utdc Inc. | Linear induction motor |
US4560896A (en) | 1984-10-01 | 1985-12-24 | General Electric Company | Composite slot insulation for dynamoelectric machine |
DE3438747A1 (en) | 1984-10-23 | 1986-04-24 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | ELECTRONICALLY COMMUTED, COLLECTORLESS DC MOTOR |
JPH0123900Y2 (en) | 1984-11-08 | 1989-07-20 | ||
DE3441311A1 (en) | 1984-11-12 | 1986-05-15 | Siemens AG, 1000 Berlin und 8000 München | SPLICE PROTECTOR INSERT FOR CABLE SLEEVES MADE OF SHRINKABLE MATERIAL |
US4607183A (en) | 1984-11-14 | 1986-08-19 | General Electric Company | Dynamoelectric machine slot wedges with abrasion resistant layer |
JPS61121729A (en) | 1984-11-14 | 1986-06-09 | Fanuc Ltd | Liquid cooled motor |
EP0246377A1 (en) | 1986-05-23 | 1987-11-25 | Royal Melbourne Institute Of Technology Limited | Electrically-variable inductor |
EP0185788B1 (en) | 1984-12-21 | 1988-08-24 | Audi Ag | Wire-feeding device for an insulated wire cutting and stripping apparatus |
US4761602A (en) | 1985-01-22 | 1988-08-02 | Gregory Leibovich | Compound short-circuit induction machine and method of its control |
US4588916A (en) | 1985-01-28 | 1986-05-13 | General Motors Corporation | End turn insulation for a dynamoelectric machine |
US4868970A (en) | 1985-03-08 | 1989-09-26 | Kolimorgen Corporation | Method of making an electric motor |
EP0198535B1 (en) | 1985-04-04 | 1990-02-07 | Koninklijke Philips Electronics N.V. | Composite wire for hf applications, coil wound from such a wire, and deflection unit comprising such a coil |
US4618795A (en) | 1985-04-10 | 1986-10-21 | Westinghouse Electric Corp. | Turbine generator stator end winding support assembly with decoupling from the core |
US4701691A (en) * | 1985-05-14 | 1987-10-20 | Nickoladze Leo G | Synchronous generators |
US4654551A (en) * | 1985-05-20 | 1987-03-31 | Tecumseh Products Company | Permanent magnet excited alternator compressor with brushless DC control |
US4723104A (en) | 1985-10-02 | 1988-02-02 | Frederick Rohatyn | Energy saving system for larger three phase induction motors |
FR2589017B1 (en) | 1985-10-17 | 1990-07-27 | Alsthom | SYNCHRONOUS MACHINE WITH SUPERCONDUCTING WINDINGS |
DE3543106A1 (en) | 1985-12-06 | 1987-06-11 | Kabelmetal Electro Gmbh | ELECTRIC CABLE FOR USE AS WINDING STRING FOR LINEAR MOTORS |
US4656379A (en) * | 1985-12-18 | 1987-04-07 | The Garrett Corporation | Hybrid excited generator with flux control of consequent-pole rotor |
FR2594271A1 (en) | 1986-02-13 | 1987-08-14 | Paris & Du Rhone | Rotor for electric rotating machine, with slots housing two overlying conductors |
IT1190077B (en) | 1986-02-28 | 1988-02-10 | Pirelli Cavi Spa | ELECTRIC CABLE WITH IMPROVED SCREEN AND PROCEDURE FOR THE CONSTRUCTION OF THIS SCREEN |
US5447665A (en) | 1986-03-31 | 1995-09-05 | Nupipe, Inc. | Method of removal of replacement pipe installed in an existing conduit |
US5244624B1 (en) | 1986-03-31 | 1997-11-18 | Nu Pipe Inc | Method of installing a new pipe inside an existing conduit by progressive rounding |
DE3612112A1 (en) | 1986-04-10 | 1987-10-15 | Siemens Ag | Bracing for the teeth of the stator of a turbogenerator |
US4687882A (en) | 1986-04-28 | 1987-08-18 | Stone Gregory C | Surge attenuating cable |
US4963695A (en) | 1986-05-16 | 1990-10-16 | Pirelli Cable Corporation | Power cable with metallic shielding tape and water swellable powder |
GB8617004D0 (en) | 1986-07-11 | 1986-08-20 | Bp Chem Int Ltd | Polymer composition |
JPS63110939A (en) | 1986-10-25 | 1988-05-16 | Hitachi Ltd | Rotor of induction motor |
JPH0687642B2 (en) | 1986-12-15 | 1994-11-02 | 株式会社日立製作所 | Rotor winding abnormality diagnosis device for rotating electric machine |
US4924342A (en) | 1987-01-27 | 1990-05-08 | Teledyne Inet | Low voltage transient current limiting circuit |
EP0280759B1 (en) | 1987-03-06 | 1993-10-13 | Heinrich Dr. Groh | Arrangement for electric energy cables for protection against explosions of gas and/or dust/air mixtures, especially for underground working |
JPH07108074B2 (en) | 1987-03-10 | 1995-11-15 | 株式会社三ツ葉電機製作所 | Slot structure of rotor core in rotating electric machine |
CA1258881A (en) | 1987-04-15 | 1989-08-29 | Leonard Bolduc | Self-regulated transformer with gaps |
US4771168A (en) | 1987-05-04 | 1988-09-13 | The University Of Southern California | Light initiated high power electronic switch |
SU1511810A1 (en) | 1987-05-26 | 1989-09-30 | Ленинградское Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова | Method of repairing laminated stator core of high-power electric machine |
US4890040A (en) | 1987-06-01 | 1989-12-26 | Gundersen Martin A | Optically triggered back-lighted thyratron network |
US5012125A (en) | 1987-06-03 | 1991-04-30 | Norand Corporation | Shielded electrical wire construction, and transformer utilizing the same for reduction of capacitive coupling |
SE457792B (en) | 1987-06-12 | 1989-01-30 | Kabmatik Ab | CABLE EXCHANGE DEVICE FOR APPLICATION FROM EXCHANGE FROM A FIRST ROTARY DRUM TO ANOTHER ROTARY DRUM |
US4845308A (en) | 1987-07-20 | 1989-07-04 | The Babcock & Wilcox Company | Superconducting electrical conductor |
DE3726346A1 (en) | 1987-08-07 | 1989-02-16 | Vacuumschmelze Gmbh | Annular core (ring core) for current sensors |
US4800314A (en) | 1987-08-24 | 1989-01-24 | Westinghouse Electric Corp. | Deep beam support arrangement for dynamoelectric machine stator coil end portions |
JPH0633789B2 (en) * | 1987-10-09 | 1994-05-02 | 株式会社日立製作所 | Multistage pump |
US4801832A (en) | 1987-11-04 | 1989-01-31 | General Electric Company | Stator and rotor lamination construction for a dynamo-electric machine |
DE3737719A1 (en) | 1987-11-06 | 1989-05-24 | Thyssen Industrie | METHOD AND DEVICE FOR INSERTING A WINDING IN THE INDUCTOR OF A LINEAR MOTOR |
US4810919A (en) | 1987-11-16 | 1989-03-07 | Westinghouse Electric Corp. | Low-torque nuts for stator core through-bolts |
CA1318948C (en) | 1987-11-18 | 1993-06-08 | Takayuki Nimiya | Cable closure |
US4859989A (en) | 1987-12-01 | 1989-08-22 | W. L. Gore & Associates, Inc. | Security system and signal carrying member thereof |
US4994952A (en) | 1988-02-10 | 1991-02-19 | Electronics Research Group, Inc. | Low-noise switching power supply having variable reluctance transformer |
NL8800832A (en) | 1988-03-31 | 1989-10-16 | Lovink Terborg Bv | METHOD FOR PROTECTING PROTECTION AGAINST MOISTURE-ENCLOSED ELEMENTS AND FILLING MASS USED IN THAT METHOD |
US4914386A (en) | 1988-04-28 | 1990-04-03 | Abb Power Distribution Inc. | Method and apparatus for providing thermal protection for large motors based on accurate calculations of slip dependent rotor resistance |
US4864266A (en) | 1988-04-29 | 1989-09-05 | Electric Power Research Institute, Inc. | High-voltage winding for core-form power transformers |
DE3816652A1 (en) | 1988-05-16 | 1989-11-30 | Magnet Motor Gmbh | ELECTRIC MACHINE WITH LIQUID COOLING |
JPH0721078Y2 (en) | 1988-07-21 | 1995-05-15 | 多摩川精機株式会社 | Electric motor |
CH677549A5 (en) | 1988-08-02 | 1991-05-31 | Asea Brown Boveri | |
US4847747A (en) | 1988-09-26 | 1989-07-11 | Westinghouse Electric Corp. | Commutation circuit for load-commutated inverter induction motor drives |
US5083360A (en) | 1988-09-28 | 1992-01-28 | Abb Power T&D Company, Inc. | Method of making a repairable amorphous metal transformer joint |
US4926079A (en) | 1988-10-17 | 1990-05-15 | Ryobi Motor Products Corp. | Motor field winding with intermediate tap |
GB2223877B (en) | 1988-10-17 | 1993-05-19 | Pirelli General Plc | Extra-high-voltage power cable |
JPH02179246A (en) | 1988-12-28 | 1990-07-12 | Fanuc Ltd | Stator construction of built-in motor |
US5168662A (en) | 1988-12-28 | 1992-12-08 | Fanuc Ltd. | Process of structuring stator of built-in motor |
US4982147A (en) | 1989-01-30 | 1991-01-01 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Power factor motor control system |
CA2027553C (en) | 1989-02-14 | 1996-09-17 | Kazuo Sawada | Insulated wire for high-temperature environment |
US5136459A (en) | 1989-03-13 | 1992-08-04 | Electric Power Research Institute, Inc. | High speed current limiting system responsive to symmetrical & asymmetrical currents |
US4942326A (en) | 1989-04-19 | 1990-07-17 | Westinghouse Electric Corp. | Biased securement system for end winding conductor |
US5124607A (en) | 1989-05-19 | 1992-06-23 | General Electric Company | Dynamoelectric machines including metal filled glass cloth slot closure wedges, and methods of making the same |
JPH0351968A (en) | 1989-07-19 | 1991-03-06 | Toshiba Corp | Linearization decision system |
US4949001A (en) * | 1989-07-21 | 1990-08-14 | Campbell Steven R | Partial discharge detection method and apparatus |
DE3925337A1 (en) | 1989-07-31 | 1991-02-07 | Loher Ag | Electric motor with housing accommodating stator surrounding rotor - has cooling ducts running axially so gaseous cooling medium under high pressure is fed in closed cooling circuit |
US5355046A (en) | 1989-12-15 | 1994-10-11 | Klaus Weigelt | Stator end-winding system and a retrofitting set for same |
SE465240B (en) | 1989-12-22 | 1991-08-12 | Asea Brown Boveri | OVERVOLTAGE PROTECTION FOR SERIAL CONDENSER EQUIPMENT |
US5097241A (en) | 1989-12-29 | 1992-03-17 | Sundstrand Corporation | Cooling apparatus for windings |
YU48139B (en) | 1990-01-25 | 1997-05-28 | Branimir Jakovljević | LAMINATED MAGNETIC core |
EP0440865A1 (en) | 1990-02-09 | 1991-08-14 | Asea Brown Boveri Ab | Electrical insulation |
US5030813A (en) | 1990-02-06 | 1991-07-09 | Pulsair Anstalt Corporation | Welding apparatus and transformer therefor |
CA2010670C (en) | 1990-02-22 | 1997-04-01 | James H. Dymond | Salient pole rotor for a dynamoelectric machine |
TW215446B (en) | 1990-02-23 | 1993-11-01 | Furukawa Electric Co Ltd | |
US5171941A (en) | 1990-03-30 | 1992-12-15 | The Furukawa Electric Co., Ltd. | Superconducting strand for alternating current |
JP2814687B2 (en) | 1990-04-24 | 1998-10-27 | 日立電線株式会社 | Watertight rubber / plastic insulated cable |
DE4022476A1 (en) * | 1990-07-14 | 1992-01-16 | Thyssen Industrie | Electric cable for three=phase AC winding of linear motor - covers one phase by inner conducting layer surrounded by insulation and outer conducting layer |
DE4023903C1 (en) | 1990-07-27 | 1991-11-07 | Micafil Ag, Zuerich, Ch | Planar insulator for electrical machine or appts. - is laminated construction withstanding high mechanical loading and with curved edges for fitting into grooves |
NL9002005A (en) | 1990-09-12 | 1992-04-01 | Philips Nv | TRANSFORMER. |
DE4030236C2 (en) | 1990-09-25 | 1999-01-07 | Thyssen Industrie | Device for removing the winding of a linear motor |
US5111095A (en) | 1990-11-28 | 1992-05-05 | Magna Physics Corporation | Polyphase switched reluctance motor |
US5175396A (en) | 1990-12-14 | 1992-12-29 | Westinghouse Electric Corp. | Low-electric stress insulating wall for high voltage coils having roebeled strands |
DE4100135C1 (en) | 1991-01-04 | 1992-05-14 | Loher Ag, 8399 Ruhstorf, De | |
US5187428A (en) | 1991-02-26 | 1993-02-16 | Miller Electric Mfg. Co. | Shunt coil controlled transformer |
ES2025518A6 (en) * | 1991-03-08 | 1992-03-16 | Huarte Frances Domingo | Rotary electromechanical arrangements. |
US5153460A (en) | 1991-03-25 | 1992-10-06 | The United States Of America As Represented By The Secretary Of The Army | Triggering technique for multi-electrode spark gap switch |
DE4112161C2 (en) | 1991-04-13 | 1994-11-24 | Fraunhofer Ges Forschung | Gas discharge device |
FR2677802B1 (en) | 1991-06-14 | 1994-09-09 | Alsthom Gec | ELECTRIC WINDING AND ITS WINDING METHOD. |
US5246783A (en) | 1991-08-15 | 1993-09-21 | Exxon Chemical Patents Inc. | Electrical devices comprising polymeric insulating or semiconducting members |
SE469361B (en) | 1991-11-04 | 1993-06-21 | Asea Brown Boveri | PROCEDURE AND DEVICE FOR REDUCTION OF DIFFICULTIES IN THE POWER |
US5499178A (en) | 1991-12-16 | 1996-03-12 | Regents Of The University Of Minnesota | System for reducing harmonics by harmonic current injection |
US5264778A (en) | 1991-12-31 | 1993-11-23 | Westinghouse Electric Corp. | Apparatus protecting a synchronous machine from under excitation |
CA2086897A1 (en) | 1992-01-13 | 1993-07-14 | Howard H. Bobry | Toroidal transformer and method for making |
US5343139A (en) | 1992-01-31 | 1994-08-30 | Westinghouse Electric Corporation | Generalized fast, power flow controller |
US5235488A (en) | 1992-02-05 | 1993-08-10 | Brett Products, Inc. | Wire wound core |
US5327637A (en) | 1992-02-07 | 1994-07-12 | Kabelmetal Electro Gmbh | Process for repairing the winding of an electrical linear drive |
JP3135338B2 (en) | 1992-02-21 | 2001-02-13 | 株式会社日立製作所 | Commutation type DC circuit breaker |
DE59206629D1 (en) | 1992-03-05 | 1996-07-25 | Siemens Ag | COIL FOR A HIGH VOLTAGE TRANSFORMER |
JP3245748B2 (en) | 1992-03-09 | 2002-01-15 | 久光製薬株式会社 | P-menthane derivative and cooling sensate containing the same |
JPH05328681A (en) | 1992-05-18 | 1993-12-10 | Mitsuba Electric Mfg Co Ltd | Coating material for armature core in motor of electrical equipment |
DE4218969A1 (en) | 1992-06-10 | 1993-12-16 | Asea Brown Boveri | Process for fixing winding heads of electrical machines and means for carrying out the process |
FR2692693A1 (en) | 1992-06-23 | 1993-12-24 | Smh Management Services Ag | Control device of an asynchronous motor |
GB2268337B (en) | 1992-07-01 | 1996-06-05 | Gec Alsthom Ltd | Electrical machine slot wedging system |
US5304883A (en) | 1992-09-03 | 1994-04-19 | Alliedsignal Inc | Ring wound stator having variable cross section conductors |
DE4233558C2 (en) | 1992-09-30 | 1995-07-20 | Siemens Ag | Electrical machine |
DE69308737T2 (en) | 1992-11-05 | 1997-06-19 | Gec Alsthom Electromec | Superconducting winding, in particular for current limiters and current limiters with such a winding |
US5325008A (en) | 1992-12-09 | 1994-06-28 | General Electric Company | Constrained ripple spring assembly with debondable adhesive and methods of installation |
GB9226925D0 (en) | 1992-12-24 | 1993-02-17 | Anglia Electronic Tech Ltd | Transformer winding |
US5449861A (en) | 1993-02-24 | 1995-09-12 | Vazaki Corporation | Wire for press-connecting terminal and method of producing the conductive wire |
EP0620630A1 (en) | 1993-03-26 | 1994-10-19 | Ngk Insulators, Ltd. | Superconducting fault current limiter |
DE69401722T2 (en) | 1993-03-26 | 1997-07-03 | Ngk Insulators Ltd | Superconducting device for residual current limitation |
US5399941A (en) | 1993-05-03 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Optical pseudospark switch |
US5341281A (en) | 1993-05-14 | 1994-08-23 | Allen-Bradley Company, Inc. | Harmonic compensator using low leakage reactance transformer |
US5365132A (en) | 1993-05-27 | 1994-11-15 | General Electric Company | Lamination for a dynamoelectric machine with improved cooling capacity |
JP3355700B2 (en) | 1993-06-14 | 2002-12-09 | 松下電器産業株式会社 | Rotating electric machine stator |
FR2707448B1 (en) | 1993-07-06 | 1995-09-15 | Cableco Sa | Power generator for an arc lamp. |
US5321308A (en) | 1993-07-14 | 1994-06-14 | Tri-Sen Systems Inc. | Control method and apparatus for a turbine generator |
US5545853A (en) | 1993-07-19 | 1996-08-13 | Champlain Cable Corporation | Surge-protected cable |
FR2708157B1 (en) | 1993-07-22 | 1995-09-08 | Valeo Equip Electr Moteur | Element of a rotating machine and motor vehicle starter comprising such an element. |
DE4329382A1 (en) | 1993-09-01 | 1995-03-02 | Abb Management Ag | Method and device for detecting earth faults on the conductors of an electrical machine |
GB2283133B (en) | 1993-10-20 | 1998-04-15 | Gen Electric | Dynamoelectric machine and method for manufacturing same |
SE502417C2 (en) | 1993-12-29 | 1995-10-16 | Skaltek Ab | Control device for unrolling or unrolling a string, eg a cable on or from a drum |
DE4402184C2 (en) | 1994-01-26 | 1995-11-23 | Friedrich Prof Dr Ing Klinger | Multi-pole synchronous generator for gearless horizontal-axis wind turbines with nominal powers of up to several megawatts |
JP3468817B2 (en) | 1994-02-25 | 2003-11-17 | 株式会社東芝 | Field ground fault detector |
DE4409794C1 (en) | 1994-03-22 | 1995-08-24 | Vem Elektroantriebe Gmbh | Fastening for equalising connection lines of high-power DC machines |
US5530307A (en) | 1994-03-28 | 1996-06-25 | Emerson Electric Co. | Flux controlled permanent magnet dynamo-electric machine |
DE4412412C2 (en) | 1994-04-11 | 1996-03-28 | Siemens Ag | Locomotive transformer and winding arrangement for this |
DE4412761C2 (en) | 1994-04-13 | 1997-04-10 | Siemens Ag | Conductor feedthrough for an AC device with superconductivity |
JP3623269B2 (en) | 1994-04-15 | 2005-02-23 | コールモージェン・コーポレーション | Axial air gap motor |
US5500632A (en) | 1994-05-11 | 1996-03-19 | Halser, Iii; Joseph G. | Wide band audio transformer with multifilar winding |
GB2289992B (en) | 1994-05-24 | 1998-05-20 | Gec Alsthom Ltd | Improvements in or relating to cooling arrangements in rotating electrical machines |
FI942447A0 (en) | 1994-05-26 | 1994-05-26 | Abb Stroemberg Kojeet Oy | Foerfarande Foer eliminering av stoerningar i ett elkraftoeverfoeringsnaet samt koppling i ett elkraftoeverfoeringsnaet |
WO1995034117A1 (en) * | 1994-06-08 | 1995-12-14 | Precise Power Corporation | Versatile ac dynamo-electric machine |
DE4420322C2 (en) | 1994-06-13 | 1997-02-27 | Dresden Ev Inst Festkoerper | YBa¶2¶Cu¶3¶O¶X¶ high-temperature superconductor and method for its production |
IT1266896B1 (en) | 1994-07-27 | 1997-01-21 | Magneti Marelli Spa | ROTOR OF AN ELECTRIC MACHINE, IN PARTICULAR OF AN ELECTRIC MOTOR FOR STARTING THE INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE AND |
US5550410A (en) * | 1994-08-02 | 1996-08-27 | Titus; Charles H. | Gas turbine electrical power generation scheme utilizing remotely located fuel sites |
US5612510A (en) | 1994-10-11 | 1997-03-18 | Champlain Cable Corporation | High-voltage automobile and appliance cable |
DE4438186A1 (en) | 1994-10-26 | 1996-05-02 | Abb Management Ag | Operation of sync electrical machine mechanically coupled to gas-turbine |
US5533658A (en) | 1994-11-10 | 1996-07-09 | Production Tube, Inc. | Apparatus having replaceable shoes for positioning and gripping tubing |
US5510942A (en) | 1994-12-19 | 1996-04-23 | General Electric Company | Series-capacitor compensation equipment |
CA2167479C (en) | 1995-01-17 | 2006-04-11 | Andrew J. O'neill | Forced encapsulation cable splice enclosure including a container for existing encapsulant |
EP0729217B1 (en) | 1995-02-21 | 2000-01-12 | Siemens Aktiengesellschaft | Hybride excited synchronous machine |
GB9507391D0 (en) | 1995-04-10 | 1995-05-31 | Switched Reluctance Drives Ltd | Method and apparatus for reducing winding failures in switched reluctance machines |
CA2170686A1 (en) * | 1995-04-21 | 1996-10-22 | Mark A. Runkle | Interconnection system for electrical systems having differing electrical characteristic |
US5742515A (en) | 1995-04-21 | 1998-04-21 | General Electric Co. | Asynchronous conversion method and apparatus for use with variable speed turbine hydroelectric generation |
DE19515003C2 (en) | 1995-04-24 | 1997-04-17 | Asea Brown Boveri | Superconducting coil |
US5663605A (en) | 1995-05-03 | 1997-09-02 | Ford Motor Company | Rotating electrical machine with electromagnetic and permanent magnet excitation |
JPH08340661A (en) | 1995-06-13 | 1996-12-24 | Matsushita Electric Ind Co Ltd | Recycling method of resin-molded rotating electric machine and molding resin |
US5691589A (en) | 1995-06-30 | 1997-11-25 | Kaman Electromagnetics Corporation | Detachable magnet carrier for permanent magnet motor |
US5607320A (en) | 1995-09-28 | 1997-03-04 | Osram Sylvania Inc. | Cable clamp apparatus |
DE19547229A1 (en) | 1995-12-18 | 1997-06-19 | Asea Brown Boveri | Packing strips for large rotary electrical machine stator winding |
GB2308490A (en) | 1995-12-18 | 1997-06-25 | Oxford Instr Ltd | Superconductor and energy storage device |
IT1281651B1 (en) | 1995-12-21 | 1998-02-20 | Pirelli Cavi S P A Ora Pirelli | TERMINAL FOR CONNECTING A SUPERCONDUCTIVE POLYPHASE CABLE TO A ROOM TEMPERATURE ELECTRICAL SYSTEM |
NO302850B1 (en) * | 1995-12-22 | 1998-04-27 | Elvelund As | Electric motor |
FR2745117B1 (en) | 1996-02-21 | 2000-10-13 | Whitaker Corp | FLEXIBLE AND FLEXIBLE CABLE WITH SPACED PROPELLERS |
EP0802542B1 (en) | 1996-03-20 | 2002-01-02 | NKT Cables A/S | A high-voltage cable |
US5654602A (en) * | 1996-05-13 | 1997-08-05 | Willyoung; David M. | Generator winding |
DE19620906C2 (en) | 1996-05-24 | 2000-02-10 | Siemens Ag | Wind farm |
SE9602079D0 (en) * | 1996-05-29 | 1996-05-29 | Asea Brown Boveri | Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same |
US5807447A (en) | 1996-10-16 | 1998-09-15 | Hendrix Wire & Cable, Inc. | Neutral conductor grounding system |
DE19747968A1 (en) | 1997-10-30 | 1999-05-06 | Abb Patent Gmbh | Process for repairing laminated cores of an electrical machine |
GB2332557A (en) | 1997-11-28 | 1999-06-23 | Asea Brown Boveri | Electrical power conducting means |
US6456021B1 (en) | 2000-06-30 | 2002-09-24 | General Electric Company | Rotating variable frequency transformer with high voltage cables |
-
1996
- 1996-05-29 SE SE9602079A patent/SE9602079D0/en unknown
-
1997
- 1997-05-27 CZ CZ983860A patent/CZ386098A3/en unknown
- 1997-05-27 WO PCT/SE1997/000887 patent/WO1997045925A1/en not_active Application Discontinuation
- 1997-05-27 AU AU29883/97A patent/AU720311B2/en not_active Ceased
- 1997-05-27 CA CA002255770A patent/CA2255770A1/en not_active Abandoned
- 1997-05-27 DE DE19781791T patent/DE19781791T1/en not_active Withdrawn
- 1997-05-27 CZ CZ19983857A patent/CZ288390B6/en not_active IP Right Cessation
- 1997-05-27 CN CN2008100850759A patent/CN101242125B/en not_active Expired - Fee Related
- 1997-05-27 KR KR1019980709663A patent/KR20000016096A/en not_active Application Discontinuation
- 1997-05-27 AT AT97924468T patent/ATE254350T1/en not_active IP Right Cessation
- 1997-05-27 CA CA002255744A patent/CA2255744A1/en not_active Abandoned
- 1997-05-27 DE DE69725306T patent/DE69725306T2/en not_active Expired - Lifetime
- 1997-05-27 WO PCT/SE1997/000874 patent/WO1997045919A2/en active IP Right Grant
- 1997-05-27 KR KR1019980709662A patent/KR20000016095A/en not_active Application Discontinuation
- 1997-05-27 EA EA199801052A patent/EA001440B1/en not_active IP Right Cessation
- 1997-05-27 DE DE69727669T patent/DE69727669T2/en not_active Expired - Lifetime
- 1997-05-27 CN CN97196553A patent/CN1225755A/en active Pending
- 1997-05-27 JP JP54220297A patent/JP3970934B2/en not_active Expired - Lifetime
- 1997-05-27 EP EP97924460A patent/EP0901700B1/en not_active Expired - Lifetime
- 1997-05-27 DE DE69737446T patent/DE69737446T2/en not_active Expired - Lifetime
- 1997-05-27 US US08/952,995 patent/US6919664B2/en not_active Expired - Fee Related
- 1997-05-27 CN CN97195013A patent/CN1097335C/en not_active Expired - Fee Related
- 1997-05-27 WO PCT/SE1997/000892 patent/WO1997045927A1/en active Application Filing
- 1997-05-27 NZ NZ333601A patent/NZ333601A/en not_active IP Right Cessation
- 1997-05-27 KR KR1019980709661A patent/KR20000016094A/en not_active Application Discontinuation
- 1997-05-27 AU AU29879/97A patent/AU718766B2/en not_active Ceased
- 1997-05-27 WO PCT/SE1997/000885 patent/WO1997045923A1/en active IP Right Grant
- 1997-05-27 JP JP09542203A patent/JP2000511390A/en active Pending
- 1997-05-27 DE DE69727668T patent/DE69727668T2/en not_active Expired - Fee Related
- 1997-05-27 UA UA98126430A patent/UA42867C2/en unknown
- 1997-05-27 DE DE69726139T patent/DE69726139T2/en not_active Expired - Fee Related
- 1997-05-27 AT AT97924460T patent/ATE356460T1/en active
- 1997-05-27 CZ CZ983882A patent/CZ388298A3/en unknown
- 1997-05-27 AT AT97924467T patent/ATE259996T1/en not_active IP Right Cessation
- 1997-05-27 YU YU54598A patent/YU54598A/en unknown
- 1997-05-27 AU AU30525/97A patent/AU3052597A/en not_active Abandoned
- 1997-05-27 US US08/973,018 patent/US6894416B1/en not_active Expired - Fee Related
- 1997-05-27 EP EP97924470A patent/EP0889797A2/en not_active Withdrawn
- 1997-05-27 US US08/973,017 patent/US6831388B1/en not_active Expired - Fee Related
- 1997-05-27 AP APAP/P/1998/001409A patent/AP907A/en active
- 1997-05-27 EP EP97924467A patent/EP0901702B1/en not_active Expired - Lifetime
- 1997-05-27 EP EP97924472A patent/EP0901711B1/en not_active Expired - Lifetime
- 1997-05-27 CA CA002255769A patent/CA2255769A1/en not_active Abandoned
- 1997-05-27 EA EA199801053A patent/EA001441B1/en not_active IP Right Cessation
- 1997-05-27 PL PL97330215A patent/PL330215A1/en unknown
- 1997-05-27 DE DE69728533T patent/DE69728533D1/en not_active Expired - Lifetime
- 1997-05-27 BR BR9709399A patent/BR9709399A/en active Search and Examination
- 1997-05-27 EA EA199801051A patent/EA001097B1/en not_active IP Right Cessation
- 1997-05-27 CN CN97195026A patent/CN1100377C/en not_active Expired - Fee Related
- 1997-05-27 CA CA002255771A patent/CA2255771A1/en not_active Abandoned
- 1997-05-27 AT AT97924469T patent/ATE259997T1/en not_active IP Right Cessation
- 1997-05-27 BR BR9709474A patent/BR9709474A/en not_active IP Right Cessation
- 1997-05-27 US US08/952,996 patent/US6936947B1/en not_active Expired - Fee Related
- 1997-05-27 CN CN97195035A patent/CN1220051A/en active Pending
- 1997-05-27 YU YU54398A patent/YU54398A/en unknown
- 1997-05-27 JP JP09542205A patent/JP2000511391A/en not_active Ceased
- 1997-05-27 BR BR9709618A patent/BR9709618A/en not_active IP Right Cessation
- 1997-05-27 BR BR9709617-2A patent/BR9709617A/en not_active IP Right Cessation
- 1997-05-27 EE EE9800414A patent/EE03361B1/en not_active IP Right Cessation
- 1997-05-27 UA UA98126431A patent/UA45453C2/en unknown
- 1997-05-27 CA CA002255740A patent/CA2255740C/en not_active Expired - Fee Related
- 1997-05-27 US US09/194,578 patent/US20020050758A1/en not_active Abandoned
- 1997-05-27 TR TR1998/02472T patent/TR199802472T2/en unknown
- 1997-05-27 CN CN97195034A patent/CN1083356C/en not_active Expired - Fee Related
- 1997-05-27 BR BR9709387A patent/BR9709387A/en not_active IP Right Cessation
- 1997-05-27 WO PCT/SE1997/000884 patent/WO1997045922A1/en active IP Right Grant
- 1997-05-27 EA EA199801054A patent/EA001465B1/en not_active IP Right Cessation
- 1997-05-27 WO PCT/SE1997/000886 patent/WO1997045924A1/en active IP Right Grant
- 1997-05-27 PL PL97330289A patent/PL330289A1/en unknown
- 1997-05-27 WO PCT/SE1997/000890 patent/WO1997045912A1/en active IP Right Grant
- 1997-05-27 EA EA199801050A patent/EA001439B1/en not_active IP Right Cessation
- 1997-05-27 EP EP97924466A patent/EP0901701B1/en not_active Expired - Lifetime
- 1997-05-27 AU AU29882/97A patent/AU718708B2/en not_active Ceased
- 1997-05-27 AT AT97924466T patent/ATE251358T1/en not_active IP Right Cessation
- 1997-05-27 EP EP97924468A patent/EP0901703B1/en not_active Expired - Lifetime
- 1997-05-27 US US08/973,306 patent/US6906447B2/en not_active Expired - Fee Related
- 1997-05-27 US US08/973,307 patent/US20010019494A1/en not_active Abandoned
- 1997-05-27 JP JP09542199A patent/JP2000511388A/en active Pending
- 1997-05-27 AU AU29873/97A patent/AU731064B2/en not_active Ceased
- 1997-05-27 JP JP9542193A patent/JPH11514199A/en active Pending
- 1997-05-27 TR TR1998/02473T patent/TR199802473T2/en unknown
- 1997-05-27 US US08/973,019 patent/US20020047438A1/en not_active Abandoned
- 1997-05-27 AT AT97924472T patent/ATE264017T1/en not_active IP Right Cessation
- 1997-05-27 PL PL97330198A patent/PL330198A1/en unknown
- 1997-05-27 CN CN97195012A patent/CN1103133C/en not_active Expired - Fee Related
- 1997-05-27 IL IL12694397A patent/IL126943A/en not_active IP Right Cessation
- 1997-05-27 CA CA002255768A patent/CA2255768A1/en not_active Abandoned
- 1997-05-27 CN CNB971950075A patent/CN100403626C/en not_active Expired - Lifetime
- 1997-05-27 BR BR9709397A patent/BR9709397A/en not_active IP Right Cessation
- 1997-05-27 PL PL97330200A patent/PL330200A1/en unknown
- 1997-05-27 EP EP97924469A patent/EP0901704B1/en not_active Expired - Lifetime
- 1997-05-27 AU AU29881/97A patent/AU2988197A/en not_active Abandoned
- 1997-05-27 AU AU29885/97A patent/AU2988597A/en not_active Abandoned
- 1997-05-27 CA CA002256473A patent/CA2256473A1/en not_active Abandoned
- 1997-05-27 PL PL97330199A patent/PL330199A1/en unknown
- 1997-05-27 CN CN200910128640XA patent/CN101546932B/en not_active Expired - Lifetime
- 1997-05-27 WO PCT/SE1997/000888 patent/WO1997045288A2/en not_active Application Discontinuation
- 1997-05-27 EA EA199801058A patent/EA001487B1/en not_active IP Right Cessation
- 1997-05-27 AU AU29880/97A patent/AU2988097A/en not_active Abandoned
- 1997-05-28 ID IDP971796A patent/ID19456A/en unknown
- 1997-05-28 CO CO97029213A patent/CO4600758A1/en unknown
- 1997-05-28 ID IDP971787A patent/ID19777A/en unknown
- 1997-05-28 ID IDP971795A patent/ID19708A/en unknown
- 1997-05-29 AR ARP970102312A patent/AR007333A1/en unknown
- 1997-05-29 CO CO97029910A patent/CO4650252A1/en unknown
- 1997-05-29 PE PE1997000438A patent/PE73998A1/en not_active Application Discontinuation
- 1997-05-29 ZA ZA974718A patent/ZA974718B/en unknown
- 1997-05-29 ZA ZA974727A patent/ZA974727B/en unknown
- 1997-05-29 ZA ZA9704737A patent/ZA974737B/en unknown
- 1997-05-29 ZA ZA9704734A patent/ZA974734B/en unknown
- 1997-05-29 CO CO97029909A patent/CO4650250A1/en unknown
- 1997-05-29 ZA ZA9704747A patent/ZA974747B/en unknown
- 1997-05-29 ZA ZA974724A patent/ZA974724B/en unknown
- 1997-05-29 PE PE19970002381997000450A patent/PE69998A1/en not_active Application Discontinuation
- 1997-05-29 PE PE1997000452A patent/PE81298A1/en not_active Application Discontinuation
- 1997-05-29 AR ARP970102317A patent/AR007338A1/en unknown
- 1997-05-29 CO CO97029902A patent/CO4650247A1/en unknown
- 1997-05-29 ZA ZA974728A patent/ZA974728B/en unknown
- 1997-05-29 AR ARP970102319A patent/AR007340A1/en not_active Application Discontinuation
- 1997-05-29 ZA ZA9704720A patent/ZA974720B/en unknown
- 1997-05-29 CO CO97029908A patent/CO4920189A1/en unknown
- 1997-05-29 ZA ZA974708A patent/ZA974708B/en unknown
- 1997-05-29 AR ARP970102313A patent/AR007334A1/en unknown
- 1997-05-29 AR ARP970102314A patent/AR007335A1/en not_active Application Discontinuation
- 1997-05-29 CO CO97029903A patent/CO4650248A1/en unknown
- 1997-05-29 ZA ZA974722A patent/ZA974722B/en unknown
- 1997-05-29 ZA ZA974704A patent/ZA974704B/en unknown
- 1997-05-29 CO CO97029908D patent/CO4920190A1/en unknown
- 1997-05-29 PE PE1997000446A patent/PE68798A1/en not_active Application Discontinuation
- 1997-05-29 ZA ZA974705A patent/ZA974705B/en unknown
- 1997-05-29 ZA ZA974717A patent/ZA974717B/en unknown
- 1997-05-29 AR ARP970102311A patent/AR007332A1/en active IP Right Grant
- 1997-05-29 ZA ZA9704719A patent/ZA974719B/en unknown
- 1997-05-29 ZA ZA9704721A patent/ZA974721B/en unknown
- 1997-05-29 ZA ZA974723A patent/ZA974723B/en unknown
- 1997-05-29 ZA ZA974725A patent/ZA974725B/en unknown
- 1997-05-29 ZA ZA9704726A patent/ZA974726B/en unknown
- 1997-05-29 PE PE1997000451A patent/PE81198A1/en not_active Application Discontinuation
- 1997-05-29 AR ARP970102315A patent/AR007336A1/en unknown
- 1997-05-29 ZA ZA974707A patent/ZA974707B/en unknown
- 1997-05-29 ZA ZA974706A patent/ZA974706B/en unknown
- 1997-05-29 CO CO97029911A patent/CO4650251A1/en unknown
- 1997-06-10 TW TW086107973A patent/TW355802B/en active
- 1997-06-10 TW TW086107963A patent/TW453010B/en not_active IP Right Cessation
- 1997-06-10 TW TW086107959A patent/TW441154B/en not_active IP Right Cessation
- 1997-06-10 TW TW086107968A patent/TW443023B/en active
- 1997-06-10 TW TW086107961A patent/TW360603B/en active
- 1997-06-10 TW TW090218129U patent/TW516746U/en not_active IP Right Cessation
- 1997-06-10 TW TW086107974A patent/TW454371B/en not_active IP Right Cessation
- 1997-06-10 TW TW086107936A patent/TW361005B/en active
- 1997-11-26 UY UY24794A patent/UY24794A1/en unknown
-
1998
- 1998-11-13 BG BG102926A patent/BG63444B1/en unknown
- 1998-11-17 IS IS4894A patent/IS1818B/en unknown
- 1998-11-20 IS IS4900A patent/IS4900A/en unknown
- 1998-11-20 IS IS4901A patent/IS4901A/en unknown
- 1998-11-26 NO NO985524A patent/NO985524D0/en not_active Application Discontinuation
- 1998-11-27 NO NO985552A patent/NO985552L/en not_active Application Discontinuation
- 1998-11-27 NO NO985580A patent/NO985580L/en not_active Application Discontinuation
- 1998-11-27 NO NO985554A patent/NO985554D0/en not_active Application Discontinuation
-
2003
- 2003-06-26 US US10/603,802 patent/US6798107B2/en not_active Expired - Lifetime
-
2005
- 2005-02-07 US US11/050,858 patent/US7088027B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100315606A1 (en) * | 2005-10-20 | 2010-12-16 | Seiko Epson Corporation | Image display apparatus |
KR20170032021A (en) * | 2015-09-14 | 2017-03-22 | 엘지이노텍 주식회사 | Integrated cable and motor assembly including the same |
KR102485025B1 (en) * | 2015-09-14 | 2023-01-05 | 엘지이노텍 주식회사 | Integrated cable and motor assembly including the same |
US20220271594A1 (en) * | 2019-11-11 | 2022-08-25 | Denso Corporation | Rotating electric machine |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020050758A1 (en) | Rotating electric machine for high voltage | |
US6376775B1 (en) | Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor | |
AU714564B2 (en) | Rotating electrical machine plants | |
US6417456B1 (en) | Insulated conductor for high-voltage windings and a method of manufacturing the same | |
US20020125788A1 (en) | Axial cooling tubes provided with clamping means | |
WO1997045915A1 (en) | Rotary electric machine with radial cooling | |
AU737358B2 (en) | Switch gear station | |
WO1997045929A2 (en) | Earthing device and rotating electric machine including the device | |
US20020153800A1 (en) | Device in the stator of a rotating electric machine and such a machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASEA BROWN BOVERI AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEIJON, MATS;TEMPLIN, PETER;HOLLELAND, MONS;AND OTHERS;REEL/FRAME:009884/0335;SIGNING DATES FROM 19981113 TO 19981130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |