US1762775A - Inductance device - Google Patents

Inductance device Download PDF

Info

Publication number
US1762775A
US1762775A US306877A US30687728A US1762775A US 1762775 A US1762775 A US 1762775A US 306877 A US306877 A US 306877A US 30687728 A US30687728 A US 30687728A US 1762775 A US1762775 A US 1762775A
Authority
US
United States
Prior art keywords
winding
current
transformer
turns
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306877A
Inventor
Albert G Ganz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Bell Labs
Original Assignee
Nokia Bell Labs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Bell Labs filed Critical Nokia Bell Labs
Priority to US306877A priority Critical patent/US1762775A/en
Application granted granted Critical
Publication of US1762775A publication Critical patent/US1762775A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • Y10S174/25Transformer

Description

g June 10, 1930. A. G. GANZl INDUCTANCE DEVICE Filed sept. 19. 1928v Z3 ZZ AGGANz. BY l Arron/ver Patented June 1o, 1930 UNITED STATES PATENT OFFICE ALBERT G. GANZ, OF UNION CITY, NEW JERSEY, ABSIGNOR TO BELL. TELEPHONE LAB- ORATOBIES, INCORPORATED, I' N EW YORK, N- Y., A CORPORATION 0F NEW YORK INDUCTANCE DEVICE Application filed September 19, 1928. Serial No. 306,877.

This invention relates to inductance appay ratus for connecting electrical circuits and particularly to transformers.

An object of this invention is to provide a 5 transformer which will transfer waves'` between two circuits with low energy loss and.

variation may be of considerable importance.

These changes may cause a mismatching of the im pedances of the circuits at various frequencies which may cause reflection losses und distortion.

In the case of the joiningof two carrier circuits of different characteristics, it was found that as the frequency increased the effective series resistance of the windings of the connecting transformer also increased, disturbing the matched impedance condition of the joined circuits, and causing excessive reflection losses and poor transmission at the higher frequencies. One reason for this increase in effectiveseries resistance of the windings of the transformer with fre uency was found to be that the unbalanced ux of the load currents cutting the turns of the windings set up eddy currents in the wires of the transformer windings. l

To illustrate briefly, the portion of the load flux, cutting the cross-section of any wire produces a voltage, e, around a loop linking such flux in accordance with the equation e=%i) This voltage produces currents which flow in a plane parallel with the axis of the wire and resultin an energy loss. As the load flux is proportional to the load current Ie, and e at any frequency is proportional to 1, the eddy current i is proportional I.. and the total energy loss W=2ei is proportional to I2. Where eddy current losses occur, therefore, they appear, at any fre-4 quency as an effectivezresistance in series with the load, since =R. As these losses are dependent'on frequency, they change with variations in frequency causing changes in the impedance of devices in which they occur. This loss, of course, is not'the loss due to skin effect which is present in an alternating cur-l rent conductor regardless of surrounding flux and currents.

This invention provides for the construction of a transformer whose impedance modifying effect is substantially inde endent of frequency over a wide band of requencies. This transformer has its windings so wound that no substantial accumulation of flux due to load currents is possible at any point within the windin s. For instance, in a balanced auto-trans ormer each half of the shunt winding and the adjacent series winding may be wound as a. parallel pair. In the case of a two-winding transformer, the primary and secondary windings may be wound as a parallel pair. A i

A better understanding of the invention will be had from the following specification taken in connection with the drawings, in which:

Fig. 1 is a schematic representation of a two-Winding transformer embodying the invention;

Fig. 2 is a diagrammatic view of a portion of the transformer of Fig. l1 showing the details of the winding; Fig. 3 isa cross-sectional view showing the relative positions of the turns of the windin s of the transformer of Fig. 1;

ig. 4,'s a schematic representation of an auto-transformer embodyin the invention; Fig. 5 shows a portion o? the auto-transformer of Fig. 4 diagrammatically; and

Fig. 6 is a cross-sectional view showing the relative positions of the turns of the windings of the auto-transformer of Fig. 4.

Before taking up the detailed description of the drawings it might be well to consider briefly the action of a transformer, considering for simplicity a unity ratio transformer. It is well known that the impedance diagram of a transformer includes a shunt element izing current in the primary w ich in a well constructed transformer 1s small 1n comparison with the primary load current and, as to l phase is substantially at right angles thereto. 'Izhe load current in the secondary is substantially equal and opposite to the load current in the primary, and the secondary load flux within the core neutralizes the primary load ilux. p

Outside the core two regions are to be distinguished, rst, the space occupied by 4the conductors and second the remaining space external to the core. If the secondary winding is spaced materially from the primary windinv the load fluxes outside the core are not entlrely neutralized. In particular, if we consider a primary turn which is surrounded at some distance away by a secondary turn it is found that in the space between these two turns the load fluxes are in the same direction and therefore add ,instead of neutralize. It is, of course, this failure of the two load iiuxes to neutralize which accounts for the leakage flux and the leakage im edance.

onsidering now the space occupied by the winding conductors themselves any leakage iiux which interlinks a turn of the winding produces eddy-current losses in the copper. Applicant has found' that in certain uses of a transformer, at least, these eddycurrent losses in the windings themselves are appreciable as has been noted above.

The eti'ects above described for a unity ratio transformer are, of course, present in a non-unity ratio transformer, except that in considering the magnitudes of the load currents the turns ratio must be taken into account.

The transformer structure now to be described in accordance with the invention reduces the leakage substantially to a minimum and also by the disposition of the primary and secondary conductors reduces the energy losses in the conductors which would be produced by the leakage flux.

In the descri tion to follow the same elements in the di erent figures are given identical numbers while the arrows show by their lengths and directions a rou h comparison of the magnitude of the load currents and the direction in which they iiow at one particular instant in the windings of the transformers. It is to be understood that the magnetizing current has been arbitrarily omitted since-its magnitude is small and any eddy current losses due to it appear as a small additional core loss which has no appreciable effect on the impedance characteristic.

The transformer of Figs. 1, 2 and 3 which is moans shown as a non-unity ratio transformer, comprises a core 5, a primary winding 6 with terminals 10 and 11 and a secondary winding 7 with terminals 12 and 13. (It will be understood that either winding can be considered the primary and the other the secondary). l

` Fig. 2 shows the primary winding 6, be-

1nn1n at terminal 10, being wound rst on t e inside of the loops and then returning b conductor 14 and beingv wound on the outside of the loops endin at terminal 11. The secondary windin 7, nin at terminal 13, is wound on t e insi e of tv e loops and terminates at terminal 12. Winding 6, being the high voltage, small current wmding, is shown with twice the number of turns as the low volta e, lar e current winding 7, while 4the lengt s of tl e arrows roughly indicate the comparative magnitude of the currents. The neutralization of the flux roduced by the oppositely directioned loa currents 1s substantiall complete since the current owing in win in 7 is approximatel twice as large as that owing in the win 'ng 6, the winding 6, of course, having twice as many turns as winding 7. The arrangement of the turns is shown in Fig. 3 in cross-section with a turn of windin 6 oneither side of a turn of winding 7. n this last fi ure the dots represent current flow toward t e reader and the crosses represent current flow in the opposite direction in accordance with the wellknown convention. The windings are shown in Fig. 2 as a group of three for clearness but this group may have as many turns as required for the desired voltages and loads.

The auto-transformer of Figs. 4, 5 and 6 comprises a core 20, a primary winding including the upper series winding 21 and lower series winding 22 together with shunt or bridge winding 23, havin terminals 24 and 25, and a secondary win ing including only the shunt winding 23 having terminals 26 and 27.

Tracing the larger current circuit, or in this case, the secondary winding, starting at terminal 27, this circuit be ins at oint 30, Fig. 5, the current flowin t rough t e shunt winding 23, the turns o which are on the outside of the loops to point 31 and terminal 26. The current in theprimary winding flows in series windin s 21 and 22 in the opposite direction from the current in the circult just traced. Starting at terminal 24 the inner conductor shown in the two upper loops of Fi 5 is series winding 21 terminating at point 3l, while the correspondin conductor startin at point 30 in the two ower loops forms t e series winding 22 which terminates at terminal 25.

It is noted that the transformer is so wound that at any oint within the windings there is substantial y no accumulation of ux due to load currents, that is, the product of mesma the number of turns and the load current in one direction tending to cause flux to linkany point is equal to the product of the number of turns andthe load current in the opposite direction causing flux to link the same point. As a result, there is an almost complete neutralization of load flux at all oints.

In the actual winding of the trans ormer as described it is preferable to wind the series and shunt windings as parallel pairs, that is, in the transformer shown in Fi s. 4, 5 and 6, winding 21 and the upper half o winding 23 are wound as one parallel pair, and winding 22 and the lower half of winding 23 are wound as another parallel pair, certain terminals being connected at points 30 and 31 as shown in Fig 5,

The transformers described have been shown as having turns ratios of 2 to 1 but any turns ratio may be obtained by grouping as many wires as desired and in a manner to substantially neutralize the flux at any point within the windings due to load currents flowing in each wire.

Although the invention has been described embodied in two particular transformers it is to be understood that modifications may be made and that no limitations upon the invention are intended other than those imposed by the scope of the appended claims.

What is claimed is:

1. An inductance device for connecting two lines, comprising a core with a plurality of inductively coupled windings, each'of saidk windings having its individual turns carrying current in one direction at a certain instant interleaved with the-individual turns of another winding carrying current in the op-I posite direction at said instant and substantially preventing the flux within either of said windin from producing eddy currents in any of said turns.

2. An inductance device intermediate and connecting two lines having different impedances, comprising a core with a primary windin and a secondar winding thereon inductive y cou led, sai windings having a diierent num r of turns res ectively, said primary winding being con uctively connected to one of said lines and said secondary winding bei other of sai? carryin current in one direction at a certain instant avin each turn interleaved with the turns of sai secondary winding ca ing current in the opposite direction at sai instant to reduce eddy current'losses in said turns.

3. A non-unity ratio inductance device intermediate and connecting two lines having dierent impedances comprising1 a core, a

conductively connected to the lines, said primary windingten other of said lines and inductively coupled to said primary winding carr ing current in the opposite direction at sai particular in- Stant, the turns of said primary and secondary windings bein wound respectively as parallel groups wit the product of the current in one direction and the turns carrying said current tending to cause flux to link a articular point outside the core, substantialy equal to the roduct of the current in the opposite direction and the turns carrying Said ofppositely flowing current tending to cause ux to link said point.

4. In combination, a multi-layer winding non-unity ratio inductance device havin a core and a plurality of windings on sait core, a source of currents of a band of frequencies to be transmitted through said device, and a receiving circuit, each turn of said windings connected to said source being wound adjacent a turn of said windingsfconnected to said receiving circuit, the oppositely flowing load currents in the alternate turns preventing the flux within the device from causing substantial eddy current losses in said turns. y

5. An auto-transformer comprising a lurality of series and shunt windings in uctively coupled forconnecting and matching the impedances of two electrical circuits having `diflerent impedances, each turn of said series windings paralleling and wound adjacent to at least one turn of said shunt windings to neutralize at any point within said windings the flux produced by the load currents in said auto-transformer.

6. An auto-transformerintermediate and connecting two lines having different im edances, comprising a core, a primary win ing lon said core connected to one of said lines substantially equal to t e product of the current in the opposite direction and the turns carying said otppositely ,flowing current ing to cause ux to link said point.

In witness whereof, I hereunto subscribe my name this 15th ttig of Se tember, 1928. BER G. GANZ.

primary winding on said core connected to y,

one of said Alines carrying current in one di- -rection at one particularinstant, and a secondary winding on said core connected to the ius

US306877A 1928-09-19 1928-09-19 Inductance device Expired - Lifetime US1762775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US306877A US1762775A (en) 1928-09-19 1928-09-19 Inductance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US306877A US1762775A (en) 1928-09-19 1928-09-19 Inductance device

Publications (1)

Publication Number Publication Date
US1762775A true US1762775A (en) 1930-06-10

Family

ID=23187263

Family Applications (1)

Application Number Title Priority Date Filing Date
US306877A Expired - Lifetime US1762775A (en) 1928-09-19 1928-09-19 Inductance device

Country Status (1)

Country Link
US (1) US1762775A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469162A (en) * 1946-10-12 1949-05-03 Rca Corp Radio-frequency distribution transformer
US2709219A (en) * 1951-11-20 1955-05-24 Du Mont Allen B Lab Inc High-frequency transformer and circuit
US3037175A (en) * 1958-05-12 1962-05-29 Bell Telephone Labor Inc Broadband transformers
US3226665A (en) * 1960-08-03 1965-12-28 Marelli Lenkurt S P A Transmission line transformer
US3262075A (en) * 1961-11-07 1966-07-19 Anzac Electronics Inc Impedance matching transformer
US4590453A (en) * 1983-06-23 1986-05-20 Universal Manufacturing Corporation Autotransformer with common winding having oppositely wound sections
US5719547A (en) * 1994-08-12 1998-02-17 Murata Manufacturing Co., Ltd. Transformer with bifilar winding
WO1999028923A1 (en) * 1997-11-28 1999-06-10 Abb Ab Transformer
US6261437B1 (en) 1996-11-04 2001-07-17 Asea Brown Boveri Ab Anode, process for anodizing, anodized wire and electric device comprising such anodized wire
US6279850B1 (en) 1996-11-04 2001-08-28 Abb Ab Cable forerunner
US6357688B1 (en) 1997-02-03 2002-03-19 Abb Ab Coiling device
US6369470B1 (en) 1996-11-04 2002-04-09 Abb Ab Axial cooling of a rotor
US6376775B1 (en) 1996-05-29 2002-04-23 Abb Ab Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
US6396187B1 (en) 1996-11-04 2002-05-28 Asea Brown Boveri Ab Laminated magnetic core for electric machines
US6417456B1 (en) 1996-05-29 2002-07-09 Abb Ab Insulated conductor for high-voltage windings and a method of manufacturing the same
US6429563B1 (en) 1997-02-03 2002-08-06 Abb Ab Mounting device for rotating electric machines
US6439497B1 (en) 1997-02-03 2002-08-27 Abb Ab Method and device for mounting a winding
US6465979B1 (en) 1997-02-03 2002-10-15 Abb Ab Series compensation of electric alternating current machines
US6525504B1 (en) 1997-11-28 2003-02-25 Abb Ab Method and device for controlling the magnetic flux in a rotating high voltage electric alternating current machine
US6525265B1 (en) 1997-11-28 2003-02-25 Asea Brown Boveri Ab High voltage power cable termination
US6577487B2 (en) 1996-05-29 2003-06-10 Asea Brown Boveri Ab Reduction of harmonics in AC machines
US6646363B2 (en) 1997-02-03 2003-11-11 Abb Ab Rotating electric machine with coil supports
US6801421B1 (en) 1998-09-29 2004-10-05 Abb Ab Switchable flux control for high power static electromagnetic devices
US6822363B2 (en) 1996-05-29 2004-11-23 Abb Ab Electromagnetic device
US6825585B1 (en) 1997-02-03 2004-11-30 Abb Ab End plate
US6828701B1 (en) 1997-02-03 2004-12-07 Asea Brown Boveri Ab Synchronous machine with power and voltage control
US6831388B1 (en) 1996-05-29 2004-12-14 Abb Ab Synchronous compensator plant
US6873080B1 (en) 1997-09-30 2005-03-29 Abb Ab Synchronous compensator plant
US6885273B2 (en) 2000-03-30 2005-04-26 Abb Ab Induction devices with distributed air gaps
US6891303B2 (en) 1996-05-29 2005-05-10 Abb Ab High voltage AC machine winding with grounded neutral circuit
US6970063B1 (en) 1997-02-03 2005-11-29 Abb Ab Power transformer/inductor
US6972505B1 (en) 1996-05-29 2005-12-06 Abb Rotating electrical machine having high-voltage stator winding and elongated support devices supporting the winding and method for manufacturing the same
US6995646B1 (en) 1997-02-03 2006-02-07 Abb Ab Transformer with voltage regulating means
US7019429B1 (en) 1997-11-27 2006-03-28 Asea Brown Boveri Ab Method of applying a tube member in a stator slot in a rotating electrical machine
US7045704B2 (en) 2000-04-28 2006-05-16 Abb Ab Stationary induction machine and a cable therefor
US7046492B2 (en) 1997-02-03 2006-05-16 Abb Ab Power transformer/inductor
US7061133B1 (en) 1997-11-28 2006-06-13 Abb Ab Wind power plant
US7141908B2 (en) 2000-03-01 2006-11-28 Abb Ab Rotating electrical machine

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469162A (en) * 1946-10-12 1949-05-03 Rca Corp Radio-frequency distribution transformer
US2709219A (en) * 1951-11-20 1955-05-24 Du Mont Allen B Lab Inc High-frequency transformer and circuit
US3037175A (en) * 1958-05-12 1962-05-29 Bell Telephone Labor Inc Broadband transformers
US3226665A (en) * 1960-08-03 1965-12-28 Marelli Lenkurt S P A Transmission line transformer
US3262075A (en) * 1961-11-07 1966-07-19 Anzac Electronics Inc Impedance matching transformer
US4590453A (en) * 1983-06-23 1986-05-20 Universal Manufacturing Corporation Autotransformer with common winding having oppositely wound sections
US5719547A (en) * 1994-08-12 1998-02-17 Murata Manufacturing Co., Ltd. Transformer with bifilar winding
US6919664B2 (en) 1996-05-29 2005-07-19 Abb Ab High voltage plants with electric motors
US6936947B1 (en) 1996-05-29 2005-08-30 Abb Ab Turbo generator plant with a high voltage electric generator
US6940380B1 (en) 1996-05-29 2005-09-06 Abb Ab Transformer/reactor
US6831388B1 (en) 1996-05-29 2004-12-14 Abb Ab Synchronous compensator plant
US6822363B2 (en) 1996-05-29 2004-11-23 Abb Ab Electromagnetic device
US6376775B1 (en) 1996-05-29 2002-04-23 Abb Ab Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
US6891303B2 (en) 1996-05-29 2005-05-10 Abb Ab High voltage AC machine winding with grounded neutral circuit
US6417456B1 (en) 1996-05-29 2002-07-09 Abb Ab Insulated conductor for high-voltage windings and a method of manufacturing the same
US6577487B2 (en) 1996-05-29 2003-06-10 Asea Brown Boveri Ab Reduction of harmonics in AC machines
US6906447B2 (en) 1996-05-29 2005-06-14 Abb Ab Rotating asynchronous converter and a generator device
US6972505B1 (en) 1996-05-29 2005-12-06 Abb Rotating electrical machine having high-voltage stator winding and elongated support devices supporting the winding and method for manufacturing the same
US6894416B1 (en) 1996-05-29 2005-05-17 Abb Ab Hydro-generator plant
US6369470B1 (en) 1996-11-04 2002-04-09 Abb Ab Axial cooling of a rotor
US6261437B1 (en) 1996-11-04 2001-07-17 Asea Brown Boveri Ab Anode, process for anodizing, anodized wire and electric device comprising such anodized wire
US6279850B1 (en) 1996-11-04 2001-08-28 Abb Ab Cable forerunner
US6396187B1 (en) 1996-11-04 2002-05-28 Asea Brown Boveri Ab Laminated magnetic core for electric machines
US6465979B1 (en) 1997-02-03 2002-10-15 Abb Ab Series compensation of electric alternating current machines
US6825585B1 (en) 1997-02-03 2004-11-30 Abb Ab End plate
US6828701B1 (en) 1997-02-03 2004-12-07 Asea Brown Boveri Ab Synchronous machine with power and voltage control
US6357688B1 (en) 1997-02-03 2002-03-19 Abb Ab Coiling device
US6970063B1 (en) 1997-02-03 2005-11-29 Abb Ab Power transformer/inductor
US6646363B2 (en) 1997-02-03 2003-11-11 Abb Ab Rotating electric machine with coil supports
US6429563B1 (en) 1997-02-03 2002-08-06 Abb Ab Mounting device for rotating electric machines
US7046492B2 (en) 1997-02-03 2006-05-16 Abb Ab Power transformer/inductor
US6439497B1 (en) 1997-02-03 2002-08-27 Abb Ab Method and device for mounting a winding
US6995646B1 (en) 1997-02-03 2006-02-07 Abb Ab Transformer with voltage regulating means
US6873080B1 (en) 1997-09-30 2005-03-29 Abb Ab Synchronous compensator plant
US7019429B1 (en) 1997-11-27 2006-03-28 Asea Brown Boveri Ab Method of applying a tube member in a stator slot in a rotating electrical machine
US7061133B1 (en) 1997-11-28 2006-06-13 Abb Ab Wind power plant
US6525265B1 (en) 1997-11-28 2003-02-25 Asea Brown Boveri Ab High voltage power cable termination
US6525504B1 (en) 1997-11-28 2003-02-25 Abb Ab Method and device for controlling the magnetic flux in a rotating high voltage electric alternating current machine
WO1999028923A1 (en) * 1997-11-28 1999-06-10 Abb Ab Transformer
US6867674B1 (en) 1997-11-28 2005-03-15 Asea Brown Boveri Ab Transformer
US6801421B1 (en) 1998-09-29 2004-10-05 Abb Ab Switchable flux control for high power static electromagnetic devices
US7141908B2 (en) 2000-03-01 2006-11-28 Abb Ab Rotating electrical machine
US6885273B2 (en) 2000-03-30 2005-04-26 Abb Ab Induction devices with distributed air gaps
US7045704B2 (en) 2000-04-28 2006-05-16 Abb Ab Stationary induction machine and a cable therefor

Similar Documents

Publication Publication Date Title
US6577219B2 (en) Multiple-interleaved integrated circuit transformer
US2445896A (en) Dielectric wave guide coupling arrangement for use in two-way signaling systems
EP0563373B1 (en) Directive separator/coupler circuit for medium frequency carrier currents on a low voltage electric line
US4012703A (en) Transmission line pulse transformers
US1547242A (en) Carrier transmission over power circuits
US3747028A (en) Directional tap comprising pi-section high pass filter for use in catv system
US3956717A (en) Hybrid diplexing filter
US3895370A (en) High-frequency communication system using A-C utility lines
EA006284B1 (en) High frequency network multiplexed communications over various lines using multiple modulated carrier frequencies
JPH11505677A (en) Electromagnetic interference isolator
Van Rensburg et al. Design of a bidirectional impedance-adapting transformer coupling circuit for low-voltage power-line communications
US3731234A (en) Combined voice frequency transmission and dc signaling circuit
US2470307A (en) High-frequency matching transformer
GB1573216A (en) Dc isolating circuits
US2488400A (en) Toroidal coil-terminal bushing coupling power line and telephone circuit
US3771069A (en) Coupling unit to couple carrier frequencies from high voltage transmission lines
JPH0565156U (en) Connection circuit between communication devices
US2000441A (en) Filter
US2128400A (en) Transmission line system
US1920948A (en) Electrical filter
US1759952A (en) Electrical transmission system
US2943272A (en) Crosstalk cancellation in signal communication system
JPWO2016114181A1 (en) Transformer phase shifter, phase shift circuit, and communication terminal device
US1553983A (en) Electrical coil
US2321521A (en) Frequency band filter