US20010026003A1 - Semiconductor device having capacitor and method of manufacturing the same - Google Patents
Semiconductor device having capacitor and method of manufacturing the same Download PDFInfo
- Publication number
- US20010026003A1 US20010026003A1 US09/813,986 US81398601A US2001026003A1 US 20010026003 A1 US20010026003 A1 US 20010026003A1 US 81398601 A US81398601 A US 81398601A US 2001026003 A1 US2001026003 A1 US 2001026003A1
- Authority
- US
- United States
- Prior art keywords
- insulating film
- film
- wiring
- electrode
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 239000003990 capacitor Substances 0.000 title claims description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000011229 interlayer Substances 0.000 claims description 31
- 238000009792 diffusion process Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000010410 layer Substances 0.000 description 27
- 229910052681 coesite Inorganic materials 0.000 description 15
- 229910052906 cristobalite Inorganic materials 0.000 description 15
- 239000000377 silicon dioxide Substances 0.000 description 15
- 229910052682 stishovite Inorganic materials 0.000 description 15
- 229910052905 tridymite Inorganic materials 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
Definitions
- the present invention relates to a semiconductor device having a capacitor and a method of manufacturing the same.
- FIG. 16 is a cross sectional view showing a conventional semiconductor device of a damascene structure.
- a first wiring 62 made of, for example, Cu is formed in a SiO 2 film 61 , and a dielectric film 63 is formed on the first wiring 62 .
- an upper electrode 64 is formed on the dielectric film 63 .
- a via hole 66 connected to the upper electrode 64 is formed in an interlayer insulating film 65
- a second wiring 67 made of, for example, Cu, which is connected to the via hole 66 is formed on the interlayer insulating film 65 .
- the first wiring 62 , the dielectric film 63 and the upper electrode 64 collectively form a capacitor 68 .
- the first wiring 62 buried in the SiO 2 film 61 plays the role of the lower electrode of the capacitor 68 .
- the first wiring 62 is hereinafter referred to as a lower electrode.
- the capacitance of the capacitor 68 is determined by the surface area of any of the lower electrode 62 and the upper electrode 64 having a smaller surface area. Therefore, where a capacitor having a large capacitance is required, it is necessary to enlarge the surface area of not only the upper electrode 64 but also the lower electrode 62 . Such being the situation, it was very difficult to form a capacitor having a large capacitance while promoting the fineness of the element.
- FIG. 17 shows in a magnified fashion the portion B shown in FIG. 16.
- an edge portion 64 a of the upper electrode 64 on the side of the dielectric film 63 forms an acute angle, with the result that the electric field is concentrated on the edge portion 64 a, giving rise to a problem that the reliability of the element is lowered.
- capacitors used as analog passive elements are capacitors fixed at one kind of capacitance
- the area of the capacitor is increased, the delay time accompanying the charging is rendered long, making it necessary to diminish the capacitance per unit area of the capacitor because the capacitor having a small capacitance permits shortening the charging time so as to shorten the delay time accompanying the charging.
- An object of the present invention which has been achieved for overcoming the above-noted problems inherent in the prior art, is to provide a semiconductor device, which permits forming a capacitor having a large capacitance or a plurality of capacitors having at least two kinds of capacitance values while promoting the fineness of the element, and which also permits moderating the electric field concentration, and a method of manufacturing the same.
- a first semiconductor device comprising a first wiring formed in a first insulating film; a second insulating film formed on the first insulating film; a first electrode film selectively formed on the second insulating film; a third insulating film formed on the first electrode film, and having an end portion and a central portion, wherein the end portion has a thickness thinner than the central portion; a second electrode film formed on the central portion of the third insulating film such that the second electrode film faces the first electrode film; a fourth insulating film formed on the second electrode film and the end portion of the third insulating film; a fifth insulating film formed on the fourth insulating film; a sixth insulating film formed on the fifth insulating film; a seventh insulating film formed on the first interlayer insulating film; second, third and fourth wirings formed in the seventh insulating film; a first connecting member formed in the sixth, fifth and fourth insulating films to electrically connect the second
- the first and second electrode films and the third insulating film form a capacitor.
- the seventh insulating film prefferably be formed of an insulating film having a low dielectric constant.
- the second, fourth and fifth insulating films are a diffusion preventing film.
- a second semiconductor device comprising a first wiring formed in a first insulating film; a second insulating film formed on the first insulating film; a first electrode film selectively formed on the second insulating film; a third insulating film selectively formed on the first electrode film and the second insulating film; a second electrode film formed on the third insulating film such that the second electrode film faces the first electrode film; a second wiring formed on the second electrode film; a third wiring formed on the second insulating film and positioned apart from the second wiring; a first connecting member formed in the second insulating film to electrically connect the first electrode film to the first wiring; and a second connecting member formed in the second insulating film to electrically connect the third wiring to the first wiring.
- the first and second electrode films and the third insulating film form a capacitor.
- a third semiconductor device comprising a first wiring formed in a first insulating film; a second insulating film formed on the first insulating film; a first electrode film selectively formed on the second insulating film in a manner to overlap partially with the first wiring; a third insulating film selectively formed on the first electrode film; a second electrode film formed on the third insulating film such that the second electrode film faces the first electrode film; a fourth insulating film formed on the first and second electrode films and the second insulating film; a fifth insulating film formed on the fourth insulating film; second, third and fourth wirings formed in the fifth insulating film; a first connecting member formed in the fourth and second insulating films to electrically connect the second wiring to the first wiring; a second connecting member formed in the fourth insulating film to electrically connect the third wiring to the second electrode film; and a third connecting member formed in the fourth insulating film to electrically connect the fourth wiring to the
- the first wiring, the first electrode film and the second insulating film form a first capacitor, and the first and second electrodes and the third insulating film form a second capacitor, the first and second capacitors differing from each other in the capacitance.
- the fifth insulating film prefferably be formed of an insulating film having a low dielectric constant.
- a method of manufacturing the first semiconductor device comprising the steps of forming a first wiring in a first insulating film; forming a second insulating film on the first insulating film; forming a first electrode film on the second insulating film; forming a third insulating film on the first electrode film, and having an end portion and a central portion; forming a second electrode film on the third insulating film; removing the second electrode film and the third insulating film to an extent that the first electrode film is not exposed to the outside, and forming the end portion of the third insulating film thinner than the central portion of the third insulating film; forming a fourth insulating film on the second insulating film and the end portion of the third insulating film; selectively removing the fourth insulating film, the end portion of the third insulating film and the first electrode film; forming a fifth insulating film on the fourth and second insulating films; forming a sixth
- a method of manufacturing the second semiconductor device comprising the steps of forming a first wiring in a first insulating film; forming a second insulating film on the first insulating film; forming first and second connecting members electrically connected to the first wiring within the second insulating film; forming a first electrode film connected to the first connecting member on the second insulating film; forming a third insulating film on the first electrode film and the second insulating film; forming a second electrode film on the third insulating film; selectively removing the second electrode film and the third insulating film so as to expose the second connecting member; and forming a second wiring on the second electrode film and forming a third wiring positioned apart from the second wiring and connected to the second connecting member on the second insulating film.
- a method of manufacturing the third semiconductor device comprising the steps of forming a first wiring in a first insulating film; forming a second insulating film on the first insulating film; selectively forming a first electrode film on the second insulating film in a manner to overlap partially with the first wiring; selectively forming a third insulating film on the first insulating film; forming a second electrode film on the third insulating film; forming a fourth insulating film on the first and second electrode films and the second insulating film; forming a fifth insulating film on the fourth insulating film; forming a first connecting member electrically connected to the first wiring within the fourth and second insulating films, forming a second connecting member electrically connected to the second electrode film within the fourth insulating film and forming a third connecting member electrically connected to the first electrode film within the fourth insulating film; and forming second, third and fourth wirings connected to the first, second and
- FIG. 1 is a cross sectional view showing a manufacturing step of a semiconductor device according to a first embodiment of the present invention
- FIG. 2 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 1, of a semiconductor device according to the first embodiment of the present invention
- FIG. 3 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 2, of a semiconductor device according to the first embodiment of the present invention
- FIG. 4 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 3, of a semiconductor device according to the first embodiment of the present invention
- FIG. 5 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 4, of a semiconductor device according to the first embodiment of the present invention
- FIG. 6A is a cross sectional view showing a manufacturing step, following the step shown in FIG. 5, of a semiconductor device according to the first embodiment of the present invention
- FIG. 6B is a cross sectional view showing a modification of the semiconductor device according to the first embodiment of the present invention.
- FIG. 7 is a cross sectional view showing a manufacturing step of a semiconductor device according to a second embodiment of the present invention.
- FIG. 8 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 7, of a semiconductor device according to the second embodiment of the present invention.
- FIG. 9 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 8, of a semiconductor device according to the second embodiment of the present invention.
- FIG. 10 is a cross sectional view showing in a magnified fashion the portion A shown in FIG. 9, i.e., the electrode edge portion in the second embodiment of the present invention.
- FIG. 11 is a graph comparing the second embodiment of the present invention and the prior art in respect of the electric field intensity in the edge portion of the electrode;
- FIG. 12 is a cross sectional view showing a manufacturing step of a semiconductor device according to a third embodiment of the present invention.
- FIG. 13 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 12, of a semiconductor device according to the third embodiment of the present invention.
- FIG. 14 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 13, of a semiconductor device according to the third embodiment of the present invention.
- FIG. 15 is a cross sectional view showing a manufacturing step, following the step shown in FIG. 14, of a semiconductor device according to the third embodiment of the present invention.
- FIG. 16 is a cross sectional view showing a conventional semiconductor device.
- FIG. 17 is a cross sectional view showing in a magnified fashion the portion B shown in FIG. 16, i.e., the edge portion of the electrode in the prior art.
- the first embodiment of the present invention is directed to a semiconductor device having a Cu wiring of a damascene structure and is featured in that a capacitor is formed separately from the Cu wiring.
- FIGS. 1 to 6 A are cross sectional views showing the manufacturing process of a semiconductor device according to the first embodiment of the present invention. The manufacturing method of the semiconductor device according to the first embodiment of the present invention will now be described with reference to FIGS. 1 to 6 A.
- a wiring groove 11 a is formed in a SiO 2 film 11 , followed by forming a barrier metal layer 12 in the wiring groove 11 , as shown in FIG. 1.
- a wiring material layer such as a Cu layer is formed on the barrier metal layer 12 so as to fill the wiring groove 11 a.
- the wiring material layer and the barrier metal layer 12 are planarized by, for example, a CMP (Chemical Mechanical Polish) method until the surface of the SiO 2 film 11 is exposed to the outside so as to form a first wiring 13 buried in the SiO 2 film 11 .
- CMP Chemical Mechanical Polish
- a Cu diffusion preventing film 14 made of, for example, a SiN film is formed on the SiO 2 film 11 , followed by forming a lower electrode film 15 made of, for example, a TiN film is formed on the Cu diffusion preventing film 14 . Further, a dielectric film 16 made of, for example, a Ta 2 O 5 film is formed on the lower electrode film 15 , followed by forming an upper electrode film 17 made of, for example, a TiN film on the dielectric film 16 .
- the Cu diffusion preventing film 14 is formed in a thickness of, for example, 50 nm
- the lower electrode film 15 is formed in a thickness of, for example, 60 nm
- the dielectric film 16 is formed in a thickness of, for example, 50 nm
- the upper electrode film 17 is formed in a thickness of, for example, 50 nm.
- the upper electrode film 17 is coated with a resist film 18 , followed by patterning the resist film 18 by means of photolithography, as shown in FIG. 2. Further, the upper electrode film 17 is selectively removed by RIE (Reactive Ion Etching) with the patterned resist film 18 used as a mask. In the step of selectively removing the upper electrode film 17 , the dielectric film 16 is also removed partly in a thickness of, for example, 30 nm. As a result, an end portion of the dielectric film 16 is thinner than a central portion of the dielectric film 16 . In this fashion, formed is a capacitor 28 consisting of the upper electrode film 17 , the dielectric film 16 and the lower electrode film 15 . Then, the resist film 18 is removed.
- RIE Reactive Ion Etching
- a SiN film 19 is formed on the upper electrode film 17 and the dielectric film 16 , as shown in FIG. 3, followed by coating the SiN film 19 with a resist film 20 and subsequently patterning the resist film 20 by means of photolithography. Then, the SiN film 19 , the dielectric film 16 and the lower electrode film 15 are selectively removed by RIE with the patterned resist film 20 used as a mask so as to expose the surface of the Cu diffusion preventing film 14 to the outside. Further, the resist film 20 is removed.
- a SiN film 21 is formed on the SiN film 19 and the Cu diffusion preventing film 14 , as shown in FIG. 4. It should be noted that the sum of the thickness of the SiN film 19 and the thickness of the SiN film 21 is, for example, about 50 nm.
- a first interlayer insulating film 22 made of, for example, a SiO 2 film is formed on the SiN film 21 by a PECVD (Plasma Enhances Chemical Vapor Deposition) method, followed by planarizing the first interlayer insulating film 22 by a CMP method, as shown in FIG. 5.
- a second interlayer insulating film 23 is formed on the planarized first interlayer insulating film 22 .
- the second interlayer insulating film 23 is formed of an insulating film having a low dielectric constant such as a SiN film. As a result, it is possible to decrease the capacitance between the wirings.
- the low dielectric constant is a relative dielectric constant of less than 4.0.
- the first interlayer insulating film 22 is selectively removed by the photolithography and RIE so as to form via holes 24 a, 24 b, 24 c in the first interlayer insulating film 22 .
- the via hole 24 a is connected to the first wiring 13
- the via hole 24 b is connected to the lower electrode film 15
- the via hole 24 c is connected to the upper electrode film 17 .
- the second interlayer insulating film 23 is selectively etched so as to form wiring grooves 25 , which are positioned on the via holes 24 a, 24 b, 24 c, in the second interlayer insulating film 23 .
- a barrier metal layer 26 made of, for example, TaN is formed on the via holes 24 a, 24 b, 24 c and the wiring grooves 25 , as shown in FIG. 6A, followed by forming a wiring material layer such as a Cu layer on the barrier metal layer 26 so as to permit the via holes 24 a, 24 b, 24 c and the wiring grooves 25 to be filled with the wiring material. Further, the barrier metal layer 26 and the wiring material layer are planarized by, for example, a CMP method until the surface of the second interlayer insulating film 23 is exposed to the outside, thereby forming a second wiring 27 .
- the first wiring 13 is not used as the lower electrode of a capacitor, and the capacitor 28 is formed separately from the first wiring 13 . It follows that it is possible to form a capacitor having a large capacitance by simply adjusting the areas of the lower electrode 15 and the upper electrode 17 without enlarging the first wiring 13 so as to facilitate the promotion of the fineness of the element.
- the end portion of the dielectric film 16 has a thickness thinner than the central portion of the dielectric film 16 by stopping the etching before the dielectric film 16 is etched completely. As a result, it is possible to prevent formation of a leak current path to the lower electrode 15 from an end portion of the upper electrode 17 , thereby moderating the electric field concentration in the edge portion of the upper electrode 17 , compared with the case where the dielectric film 16 is etched completely.
- the insulating films 19 , 21 are formed on the capacitor 28 , it is possible to prevent the contamination with Cu to the dielectric film 16 of the capacitor 28 from the second wiring 27 and the via holes 24 a, 24 b, 24 c.
- the Cu diffusion preventing film 14 is formed below the capacitor 28 , it is possible to prevent the contamination with Cu to an element (not shown) formed below the capacitor 28 from the second wiring 27 and the via holes 24 a, 24 b, 24 c.
- the capacitor 28 is formed separately from the first wiring 13 , it suffices to form the first wiring 13 only below the via hole 24 a.
- the surface area of the first wiring 62 is large as in the prior art, the problem that the area of the dielectric film 63 is limited by the reduction in the thickness of the first wiring 62 is rendered prominent.
- the surface area of the first wiring 13 can be made smaller than in the prior art, making it possible to suppress the problem in respect of the reduction in the thickness of the wiring. Further, even if the Cu diffusion preventing film 14 has a high dielectric constant, it is possible to diminish the parasitic capacitance because the first wiring 13 is formed only partly.
- the side surface of the via hole 24 b is in contact with the silicon nitride films 19 , 21 and the dielectric film 16 .
- the present invention is not limited to the particular construction.
- the dielectric film 16 it is possible for the dielectric film 16 to be formed in a part on the lower electrode 15 such that the side surface of the via hole 24 b is only in contact with the silicon nitride films 19 , 21 as shown in FIG. 6B.
- the via holes 24 a, 24 b, 24 c can be formed under the same process conditions (etching conditions).
- the second embodiment is directed to a semiconductor device having an Al wiring and is featured in that the lower electrode of a capacitor is covered with a dielectric film and the upper electrode.
- FIGS. 7 to 9 are cross sectional views showing the process of manufacturing the semiconductor device according to the second embodiment of the present invention. The manufacturing method of the semiconductor device according to the second embodiment of the present invention will now be described with reference to FIGS. 7 to 9 .
- a first wiring 32 made of Al is formed in a SiO 2 film 31 , as shown in FIG. 7, followed by forming an interlayer insulating film 33 made of, for example, a SiO 2 film on the SiO 2 film 31 and subsequently forming via holes 34 a, 34 b in the interlayer insulating film 33 .
- a lower electrode film 35 made of, for example, a TiN film is formed on the interlayer insulating film 33 , followed by patterning the lower electrode film 35 such that the lower electrode film 35 selectively remains unremoved on the via holes 34 a.
- the lower electrode film 35 has a thickness of, for example, 60 nm.
- a dielectric film 36 made of, for example, a Ta 2 O 5 film is formed on the lower electrode film 35 and the interlayer insulating film 33 surface, as shown in FIG. 8, followed by forming an upper electrode film 37 made of, for example, a TiN film on the dielectric film 36 .
- the dielectric film 36 has a thickness of, for example, 50 nm
- the upper electrode film 37 has a thickness of, for example, 50 nm.
- a resist film (not shown) is formed in the upper electrode film 37 and patterned such that the resist film remains unremoved in the region other than the region above the via hole 34 b.
- the upper electrode film 37 and the dielectric film 36 are selectively removed with the patterned resist film used as a mask so as to expose the surface of the via hole 34 b and the surface of the interlayer insulating film 33 in the vicinity of the via hole 34 b to the outside.
- a capacitor 39 consisting of the lower electrode film 35 , the dielectric film 36 and the upper electrode film 37 . Then, the resist film is removed.
- a wiring material layer consisting of Al is formed on the upper electrode film 37 and the interlayer insulating film 33 , followed by patterning the wiring material layer, as shown in FIG. 9. As a result, formed are a second wiring 38 a on the upper electrode film 37 and a third wiring 38 b connected to the via hole 34 b.
- FIG. 10 shows in a magnified fashion the portion A shown in FIG. 9.
- FIG. 11 is a graph showing the electric field intensity in the edge portion of the electrode in respect of the prior art and the present invention.
- an edge portion 35 a of the lower electrode 35 on the side of the dielectric film 36 has an obtuse angle, with the result that the electric field in the edge portion of the electrode in the present invention is rendered weaker than that in the prior art.
- the width of the lower electrode 35 is made smaller than that of each of the dielectric film 36 and the upper electrode 37 , and the lower electrode 35 is covered with the dielectric film 36 and the upper electrode 37 . Because of the particular construction, the edge portion 35 a of the lower electrode 35 on the side of the dielectric film 36 is allowed to have an obtuse angle so as to moderate the electric field concentration on the edge portion 64 a. It follows that it is possible to improve the reliability of the element.
- the third embodiment is directed to a semiconductor device including a capacitor of a laminate structure with a Cu wiring of a damascene structure, and is featured in that a plurality of capacitors having various capacitance values are formed in the same layer.
- FIGS. 12 to 15 are cross sectional views showing the manufacturing process of a semiconductor device according to the third embodiment of the present invention. The manufacturing method of the semiconductor device according to the third embodiment of the present invention will now be described with reference to FIGS. 12 to 15 .
- a wiring groove 41 a is formed in a SiO 2 film 41 , followed by forming a barrier metal layer 42 as shown in FIG. 12. Then, a wiring material layer such as a Cu layer is formed on the barrier metal layer 42 so as to fill the wiring groove 41 a. Further, the wiring material layer and the barrier metal layer 42 are planarized by, for example, a CMP method until the surface of the SiO 2 film 41 is exposed to the outside so as to form a first wiring 43 buried in the SiO 2 film 41 .
- a dielectric film 44 consisting of, for example, a SiN film is formed on the SiO 2 film 41 , followed by forming an intermediate electrode film 45 made of, for example, a TiN film or a Ta film on the dielectric film 44 .
- a resist film (not shown) is formed on the intermediate electrode film 45 and, then, patterned as shown in FIG. 13. Then, the intermediate electrode film 45 is selectively removed with the patterned resist film used as a mask such that the intermediate electrode film 45 is partly left unremoved on the first wiring 43 so as to expose the surface of the dielectric film 44 to the outside, followed by removing the resist film.
- a first capacitor 54 consisting of the first wiring 43 , the dielectric film 44 and the intermediate electrode film 45 . It should be noted that the first wiring 43 forms the lower electrode of the first capacitor 54 .
- the first wiring 43 is hereinafter referred to as the lower electrode film.
- a dielectric film 46 consisting of, for example, a Ta 2 O 5 film is formed on the intermediate electrode film 45 and the dielectric film 44 , as shown in FIG. 14, followed by forming an upper electrode film 47 made of, for example, TaN on the dielectric film 46 .
- a resist film (not shown) is formed on the upper electrode film 47 and, then, patterned.
- the upper electrode film 47 and the dielectric film 46 are selectively removed with the patterned resist film used as a mask such that the upper electrode film 47 and the dielectric film 46 are left unremoved on only the intermediate electrode film 45 , thereby exposing the surfaces of the dielectric film 44 and the intermediate electrode film 45 to the outside.
- the resist film is removed.
- the second capacitor 55 thus formed differs from the first capacitor 54 in capacitance.
- a first interlayer insulating film 48 made of, for example, a SiO 2 film is formed on the upper electrode film 47 , the intermediate electrode film 45 and the dielectric film 44 by a PECVD method, followed by planarizing the first interlayer insulating film 48 by a CMP method, as shown in FIG. 15.
- a second interlayer insulating film 49 is formed on the planarized first interlayer insulating film 48 .
- the second interlayer insulating film 49 is formed of an insulating film having a low dielectric constant such as a SiN film, with the result that it is possible to lower the capacitance between the wirings.
- the first interlayer insulating film 48 is selectively removed by the photolithography and RIE so as to form via holes 50 a, 50 b, 50 c within the first interlayer insulating film 48 .
- the via hole 50 a is connected to the lower electrode 43
- the via hole 50 b is connected to the upper electrode 47
- the via hole 50 c is connected to the intermediate electrode film 45 .
- the second interlayer insulating film 49 is selectively etched so as to form wiring grooves 51 in the second interlayer insulating film 49 , said grooves being positioned on the via holes 50 a, 50 b, 50 c formed in the first interlayer insulating film 48 .
- a barrier metal layer 52 made of, for example, TaN is formed in the wiring grooves 51 , followed by forming a wiring material layer such as a Cu layer on the barrier metal layer 52 , with the result that the via holes 50 a, 50 b, 50 c and the wiring grooves 51 are filled with the wiring material. Further, the barrier metal layer 52 and the wiring material layer are planarized by, for example, a CMP method until the surface of the second interlayer insulating film 49 is exposed to the outside, thereby forming a second wiring 53 .
- a plurality of capacitors 54 , 55 are formed in a laminate structure within a single layer. Since these capacitors 54 and 55 differ from each other in the capacitance, it is possible to form a plurality of capacitors having various capacitance values within a single layer. It follows that it is possible to provide a large capacitance without increasing the capacitor area by combining a plurality of capacitors, thereby coping with the conventional pairing problem. It should also be noted that, if a capacitor having a small capacitance is selected, it is possible to increase, for example, the read out speed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/263,186 US6746929B2 (en) | 2000-03-28 | 2002-10-03 | Semiconductor device having capacitor and method of manufacturing the same |
US10/770,489 US6998663B2 (en) | 2000-03-28 | 2004-02-04 | Semiconductor device having capacitor and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-089290 | 2000-03-28 | ||
JP2000089290A JP3505465B2 (ja) | 2000-03-28 | 2000-03-28 | 半導体装置及びその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/263,186 Division US6746929B2 (en) | 2000-03-28 | 2002-10-03 | Semiconductor device having capacitor and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010026003A1 true US20010026003A1 (en) | 2001-10-04 |
Family
ID=18605066
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/813,986 Abandoned US20010026003A1 (en) | 2000-03-28 | 2001-03-22 | Semiconductor device having capacitor and method of manufacturing the same |
US10/263,186 Expired - Fee Related US6746929B2 (en) | 2000-03-28 | 2002-10-03 | Semiconductor device having capacitor and method of manufacturing the same |
US10/770,489 Expired - Fee Related US6998663B2 (en) | 2000-03-28 | 2004-02-04 | Semiconductor device having capacitor and method of manufacturing the same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/263,186 Expired - Fee Related US6746929B2 (en) | 2000-03-28 | 2002-10-03 | Semiconductor device having capacitor and method of manufacturing the same |
US10/770,489 Expired - Fee Related US6998663B2 (en) | 2000-03-28 | 2004-02-04 | Semiconductor device having capacitor and method of manufacturing the same |
Country Status (5)
Country | Link |
---|---|
US (3) | US20010026003A1 (ja) |
JP (1) | JP3505465B2 (ja) |
KR (1) | KR100398015B1 (ja) |
CN (2) | CN1177365C (ja) |
TW (1) | TW490804B (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002058117A2 (en) * | 2001-01-17 | 2002-07-25 | International Business Machines Corporation | Metal-insulator-metal capacitor in copper |
US20020153554A1 (en) * | 2001-04-23 | 2002-10-24 | Akihiro Kajita | Semiconductor device having a capacitor and manufacturing method thereof |
US6784478B2 (en) * | 2002-09-30 | 2004-08-31 | Agere Systems Inc. | Junction capacitor structure and fabrication method therefor in a dual damascene process |
US20050082589A1 (en) * | 2003-09-03 | 2005-04-21 | Takafumi Noda | Semiconductor device and manufacturing method of the same |
US20050153575A1 (en) * | 2002-03-21 | 2005-07-14 | Samsung Electronics, Co., Ltd. | Semiconductor device with analog capacitor and method of fabricating the same |
US20050194585A1 (en) * | 2004-03-05 | 2005-09-08 | Kabushiki Kaisha Toshiba | Field effect transistor and a method for manufacturing the same |
US20100117197A1 (en) * | 2004-12-30 | 2010-05-13 | Jin-Youn Cho | Semiconductor device and method for fabricating the same |
US20110227195A1 (en) * | 2006-03-01 | 2011-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Flexible Processing Method for Metal-Insulator-Metal Capacitor Formation |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010109610A (ko) * | 2000-05-31 | 2001-12-12 | 박종섭 | 반도체 소자의 강유전체 캐패시터 형성방법 |
US6593185B1 (en) * | 2002-05-17 | 2003-07-15 | United Microelectronics Corp. | Method of forming embedded capacitor structure applied to logic integrated circuit |
JP2004014770A (ja) | 2002-06-06 | 2004-01-15 | Renesas Technology Corp | 半導体装置 |
JP2004022551A (ja) | 2002-06-12 | 2004-01-22 | Oki Electric Ind Co Ltd | 半導体素子の製造方法 |
KR100456829B1 (ko) * | 2002-06-17 | 2004-11-10 | 삼성전자주식회사 | 듀얼다마신공정에 적합한 엠아이엠 캐패시터 및 그의제조방법 |
JP4094904B2 (ja) * | 2002-07-22 | 2008-06-04 | 三菱電機株式会社 | 半導体装置 |
JP4037711B2 (ja) | 2002-07-26 | 2008-01-23 | 株式会社東芝 | 層間絶縁膜内に形成されたキャパシタを有する半導体装置 |
JP2004152796A (ja) | 2002-10-28 | 2004-05-27 | Toshiba Corp | 半導体装置及びその製造方法 |
JP3822569B2 (ja) | 2003-02-28 | 2006-09-20 | 株式会社東芝 | 半導体装置およびその製造方法 |
KR100539198B1 (ko) | 2003-03-10 | 2005-12-27 | 삼성전자주식회사 | 금속-절연체-금속 캐패시터 및 그 제조 방법 |
JP2004273920A (ja) | 2003-03-11 | 2004-09-30 | Toshiba Corp | 半導体装置 |
DE10324066A1 (de) * | 2003-05-27 | 2004-12-30 | Texas Instruments Deutschland Gmbh | Stapelkondensator und Verfahren zur Herstellung eines solchen |
KR100585115B1 (ko) * | 2003-12-10 | 2006-05-30 | 삼성전자주식회사 | 금속-절연체-금속 커패시터를 포함하는 반도체 소자 및 그제조방법 |
JP2005191182A (ja) * | 2003-12-25 | 2005-07-14 | Nec Electronics Corp | 半導体装置及びその製造方法 |
KR100591148B1 (ko) | 2003-12-31 | 2006-06-19 | 동부일렉트로닉스 주식회사 | 반도체 장치의 캐패시터 및 그의 제조 방법 |
US6919244B1 (en) * | 2004-03-10 | 2005-07-19 | Motorola, Inc. | Method of making a semiconductor device, and semiconductor device made thereby |
US20050255664A1 (en) * | 2004-05-12 | 2005-11-17 | Ching-Hung Kao | Method of forming a metal-insulator-metal capacitor |
KR20070015210A (ko) * | 2004-05-15 | 2007-02-01 | 씨-코어 테크놀로지즈, 인코포레이티드 | 수지로 충전된 채널을 포함하는 전도성 억제 코어를 가지는인쇄 배선 기판 |
JP4338614B2 (ja) * | 2004-09-29 | 2009-10-07 | シャープ株式会社 | 半導体装置およびその製造方法 |
KR100791676B1 (ko) * | 2005-12-16 | 2008-01-03 | 동부일렉트로닉스 주식회사 | 커패시터의 형성 방법 |
JP2006310891A (ja) * | 2006-08-07 | 2006-11-09 | Toshiba Corp | 半導体装置及びその製造方法 |
US7468525B2 (en) * | 2006-12-05 | 2008-12-23 | Spansion Llc | Test structures for development of metal-insulator-metal (MIM) devices |
US7460423B2 (en) * | 2007-01-05 | 2008-12-02 | International Business Machines Corporation | Hierarchical 2T-DRAM with self-timed sensing |
JP2008227344A (ja) * | 2007-03-15 | 2008-09-25 | Nec Electronics Corp | 半導体装置及びその製造方法 |
US8445913B2 (en) * | 2007-10-30 | 2013-05-21 | Spansion Llc | Metal-insulator-metal (MIM) device and method of formation thereof |
JP5446120B2 (ja) * | 2008-04-23 | 2014-03-19 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法及び半導体装置 |
JP2012164714A (ja) * | 2011-02-03 | 2012-08-30 | Rohm Co Ltd | 半導体装置の製造方法および半導体装置 |
JP5955045B2 (ja) * | 2012-03-14 | 2016-07-20 | ラピスセミコンダクタ株式会社 | 半導体装置の製造方法及び半導体装置 |
CN105304615B (zh) | 2014-06-05 | 2018-03-23 | 联华电子股份有限公司 | 半导体结构 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02162731A (ja) | 1988-12-16 | 1990-06-22 | Hitachi Ltd | 薄膜素子基板 |
JPH03174729A (ja) | 1989-09-07 | 1991-07-29 | Toshiba Corp | 半導体装置とその製造方法 |
JP2570139B2 (ja) | 1993-10-29 | 1997-01-08 | 日本電気株式会社 | 半導体装置の埋め込み配線の形成方法 |
JP2875733B2 (ja) * | 1994-02-15 | 1999-03-31 | 松下電子工業株式会社 | 半導体装置の製造方法 |
US5874770A (en) * | 1996-10-10 | 1999-02-23 | General Electric Company | Flexible interconnect film including resistor and capacitor layers |
US6180976B1 (en) * | 1999-02-02 | 2001-01-30 | Conexant Systems, Inc. | Thin-film capacitors and methods for forming the same |
US6066868A (en) * | 1999-03-31 | 2000-05-23 | Radiant Technologies, Inc. | Ferroelectric based memory devices utilizing hydrogen barriers and getters |
US6459562B1 (en) * | 2001-05-22 | 2002-10-01 | Conexant Systems, Inc. | High density metal insulator metal capacitors |
JP4947849B2 (ja) * | 2001-05-30 | 2012-06-06 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
-
2000
- 2000-03-28 JP JP2000089290A patent/JP3505465B2/ja not_active Expired - Fee Related
-
2001
- 2001-03-13 TW TW090105775A patent/TW490804B/zh not_active IP Right Cessation
- 2001-03-21 KR KR10-2001-0014582A patent/KR100398015B1/ko not_active IP Right Cessation
- 2001-03-22 CN CNB011118644A patent/CN1177365C/zh not_active Expired - Fee Related
- 2001-03-22 CN CNB2004100282752A patent/CN100541779C/zh not_active Expired - Lifetime
- 2001-03-22 US US09/813,986 patent/US20010026003A1/en not_active Abandoned
-
2002
- 2002-10-03 US US10/263,186 patent/US6746929B2/en not_active Expired - Fee Related
-
2004
- 2004-02-04 US US10/770,489 patent/US6998663B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002058117A3 (en) * | 2001-01-17 | 2003-08-28 | Ibm | Metal-insulator-metal capacitor in copper |
WO2002058117A2 (en) * | 2001-01-17 | 2002-07-25 | International Business Machines Corporation | Metal-insulator-metal capacitor in copper |
US20020153554A1 (en) * | 2001-04-23 | 2002-10-24 | Akihiro Kajita | Semiconductor device having a capacitor and manufacturing method thereof |
US7462535B2 (en) | 2002-03-21 | 2008-12-09 | Samsung Electronics Co., Ltd. | Semiconductor device with analog capacitor and method of fabricating the same |
US20050153575A1 (en) * | 2002-03-21 | 2005-07-14 | Samsung Electronics, Co., Ltd. | Semiconductor device with analog capacitor and method of fabricating the same |
US6784478B2 (en) * | 2002-09-30 | 2004-08-31 | Agere Systems Inc. | Junction capacitor structure and fabrication method therefor in a dual damascene process |
GB2394358B (en) * | 2002-09-30 | 2006-07-19 | Agere Systems Inc | Capacitor structure and fabrication method therefor in a dual damascene process |
US20050082589A1 (en) * | 2003-09-03 | 2005-04-21 | Takafumi Noda | Semiconductor device and manufacturing method of the same |
US20050194585A1 (en) * | 2004-03-05 | 2005-09-08 | Kabushiki Kaisha Toshiba | Field effect transistor and a method for manufacturing the same |
US20100117197A1 (en) * | 2004-12-30 | 2010-05-13 | Jin-Youn Cho | Semiconductor device and method for fabricating the same |
US8310026B2 (en) | 2004-12-30 | 2012-11-13 | Magnachip Semiconductor, Ltd. | Semiconductor device and method for fabricating the same |
US20110227195A1 (en) * | 2006-03-01 | 2011-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Flexible Processing Method for Metal-Insulator-Metal Capacitor Formation |
US9000562B2 (en) * | 2006-03-01 | 2015-04-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Flexible processing method for metal-insulator-metal capacitor formation |
US9312325B2 (en) | 2006-03-01 | 2016-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor metal insulator metal capacitor device and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
TW490804B (en) | 2002-06-11 |
KR20010093673A (ko) | 2001-10-29 |
CN1315745A (zh) | 2001-10-03 |
CN1531080A (zh) | 2004-09-22 |
US20040155273A1 (en) | 2004-08-12 |
US20030042521A1 (en) | 2003-03-06 |
CN100541779C (zh) | 2009-09-16 |
US6998663B2 (en) | 2006-02-14 |
JP2001274340A (ja) | 2001-10-05 |
US6746929B2 (en) | 2004-06-08 |
JP3505465B2 (ja) | 2004-03-08 |
KR100398015B1 (ko) | 2003-09-19 |
CN1177365C (zh) | 2004-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6998663B2 (en) | Semiconductor device having capacitor and method of manufacturing the same | |
US6115233A (en) | Integrated circuit device having a capacitor with the dielectric peripheral region being greater than the dielectric central region | |
US6140238A (en) | Self-aligned copper interconnect structure and method of manufacturing same | |
US7462535B2 (en) | Semiconductor device with analog capacitor and method of fabricating the same | |
US8759192B2 (en) | Semiconductor device having wiring and capacitor made by damascene method and its manufacture | |
US7242094B2 (en) | Semiconductor device having capacitor formed in multilayer wiring structure | |
EP1119027B1 (en) | A capacitor for integration with copper damascene structure and manufacturing method | |
US20050263848A1 (en) | Metal-insulator-metal capacitor having a large capacitance and method of manufacturing the same | |
US7638830B2 (en) | Vertical metal-insulator-metal (MIM) capacitors | |
US20040164339A1 (en) | Capacitor and method of manufacturing a capacitor | |
KR100549787B1 (ko) | 반도체장치 및 그 제조방법 | |
US6228707B1 (en) | Semiconductor arrangement having capacitive structure and manufacture thereof | |
US6107686A (en) | Interlevel dielectric structure | |
US9859208B1 (en) | Bottom self-aligned via | |
US6281134B1 (en) | Method for combining logic circuit and capacitor | |
US7112537B2 (en) | Method of fabricating interconnection structure of semiconductor device | |
KR20040015792A (ko) | 집적 회로용 콘택의 제조 방법 및 상기 콘택을 가진반도체 소자 | |
JP4018615B2 (ja) | 半導体装置及びその製造方法 | |
US6610603B2 (en) | Method of manufacturing a capacitor | |
KR100340900B1 (ko) | 반도체장치의 제조방법 | |
KR19990061344A (ko) | 메탈-절연막-메탈 커페시터의 제조방법 | |
JPH1167764A (ja) | 半導体装置 | |
KR100447730B1 (ko) | 반도체 소자 및 그 제조 방법 | |
JP2000174016A (ja) | 半導体集積回路装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHITOMI, TAKASHI;MATSUMOTO, MASAHIKO;REEL/FRAME:011628/0939 Effective date: 20010301 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |