JP2004014770A - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP2004014770A JP2004014770A JP2002165548A JP2002165548A JP2004014770A JP 2004014770 A JP2004014770 A JP 2004014770A JP 2002165548 A JP2002165548 A JP 2002165548A JP 2002165548 A JP2002165548 A JP 2002165548A JP 2004014770 A JP2004014770 A JP 2004014770A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- conductive film
- semiconductor device
- film
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 273
- 239000003990 capacitor Substances 0.000 claims abstract description 303
- 239000000758 substrate Substances 0.000 claims abstract description 106
- 239000010410 layer Substances 0.000 claims description 120
- 239000011229 interlayer Substances 0.000 claims description 70
- 238000002955 isolation Methods 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 26
- 238000004519 manufacturing process Methods 0.000 description 87
- 238000000034 method Methods 0.000 description 32
- 230000000694 effects Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- -1 oxygen ions Chemical class 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
- H01L23/5223—Capacitor integral with wiring layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76895—Local interconnects; Local pads, as exemplified by patent document EP0896365
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/09—Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
【課題】半導体基板の主表面に平行な方向に大きな面積を占有することなく、静電容量を増加させることが可能であるとともに、ダミーパターンを構成する材料の使用量を低減することができるキャパシタを有する半導体装置を提供する。
【解決手段】キャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直方向に延びる部分と、半導体基板1の主表面に対して平行方向に延びる部分とを有している。キャパシタ誘電体膜を構成する絶縁膜15bは、導電性膜15aが形成する凹部の表面に沿うように形成される。キャパシタ上部電極を構成する導電性膜15cは、絶縁膜15bの凹部内に埋込まれる。導電性膜15cと配線層65とは、同一層により形成されているため、配線層65は導電性膜15cおよび導電性膜15aを有するキャパシタのダミーパターンとして機能する。
【選択図】 図1
【解決手段】キャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直方向に延びる部分と、半導体基板1の主表面に対して平行方向に延びる部分とを有している。キャパシタ誘電体膜を構成する絶縁膜15bは、導電性膜15aが形成する凹部の表面に沿うように形成される。キャパシタ上部電極を構成する導電性膜15cは、絶縁膜15bの凹部内に埋込まれる。導電性膜15cと配線層65とは、同一層により形成されているため、配線層65は導電性膜15cおよび導電性膜15aを有するキャパシタのダミーパターンとして機能する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、キャパシタを備えた半導体装置に関するものである。
【0002】
【従来の技術】
従来より、DRAM(Dynamic Random Access Memory)などの半導体装置においては、半導体基板の上の層間絶縁膜にキャパシタを設ける構造のものが多く用いられている。
【0003】
以下、図43を用いて従来のキャパシタを有する半導体装置を説明する。
従来のキャパシタを有する半導体装置においては、半導体基板100上の素子分離絶縁膜で囲まれた素子形成領域それぞれの内側に、2つのトランジスタ101,102が形成されている。また、トランジスタ101のソース/ドレイン領域には、上下方向に延びる配線が接続されている。また、トランジスタ102のソース/ドレイン領域にも上下方向に延びる配線が接続されている。
【0004】
また、トランジスタ101およびトランジスタ102の上方には、層間絶縁膜が複数積み重なるように形成されている。複数の層間絶縁膜のうち、層間絶縁膜113においては、トランジスタ101の上方にビアプラグ114が埋込まれている。
【0005】
また、層間絶縁膜113においては、キャパシタ下部電極115が埋め込まれている。キャパシタ下部電極115は、ビアプラグ114の上面に接続されている。また、トランジスタ102の上方には、トランジスタ101の上方のキャパシタ下部電極115と同一層の配線層165が埋込まれている。キャパシタ下部電極115と配線層165とは、半導体基板の主表面からの高さが同一である。また、配線層165の上側には、キャパシタ上部電極1015と同一層の配線層1165が埋込まれている。キャパシタ上部電極1165と配線層11015とは、半導体基板の主表面からの高さが同一である。
【0006】
前述のような構造の図43に示す半導体装置において、トランジスタ101の上方にキャパシタを形成するために、トランジスタ101およびトランジスタ102それぞれの上方に層間絶縁膜1100が形成されている。また、トランジスタ101の上方の層間絶縁膜1100の上部に、キャパシタ上部電極1015が形成されている。なお、キャパシタ下部電極115とキャパシタ上部電極1015とにより、トランジスタ101のソース/ドレイン領域に接続されたキャパシタが構成されている。
【0007】
また、トランジスタ101およびトランジスタ102それぞれの上方に、層間絶縁膜1100およびキャパシタ上部電極1015を覆う層間絶縁膜1200が形成されている。この層間絶縁膜1200は、たとえば、図43に示す領域以外の領域において、ホール内を埋込むための絶縁膜である。
【0008】
上記図43に示すような半導体装置においては、キャパシタ下部電極115およびキャパシタ上部電極1015それぞれに対応するダミーパターンとしての配線層165および配線層1165が設けられている。ダミーパターンとしての配線層165および配線層1165は、キャパシタが設けられている高さ位置と同じ高さ位置において、半導体基板100の主表面に平行な方向にほぼ等しい間隔で多数設けられている。そのため、キャパシタを形成した後のCMP工程において、研磨後の層間絶縁膜の表面の起伏の均一性が確保される。
【0009】
【発明が解決しようとする課題】
上記図43に示す半導体装置においては、キャパシタを設けるために、半導体基板100の主表面に平行な方向にほぼ等しい間隔で、層間絶縁膜1100のほぼ全体にダミーパターンとしての配線層165および配線層1165それぞれを多数設ける必要がある。そのため、ダミーパターンを構成する材料の使用量が大きくなってしまうという問題がある。
【0010】
また、一方では、DRAMのような半導体装置においては、キャパシタの容量を増加させたいという課題がある。キャパシタの容量を増加させるためには、キャパシタ上部電極1015とキャパシタ下部電極115とが対向する面積を大きくする必要がある。そのために、キャパシタ上部電極1015およびキャパシタ下部電極115を半導体基板100の主表面に対して平行な方向に大きくするということが考えられる。しかしながら、キャパシタを半導体基板100の主表面に平行な方向に大きく形成すると、半導体装置を微細化することが困難になる。
【0011】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を提供することである。
【0012】
【課題を解決するための手段】
本発明の第1の局面の半導体装置は、半導体基板と、半導体基板の主表面と平行な上表面を有し、上表面から所定の深さにかけて形成された第1凹部と、上表面から所定の深さにかけて形成された第2凹部とを有する層間絶縁膜と、第1凹部に充填され、上表面と連続する上表面を有する第1導電性膜とを備えている。
【0013】
また、本発明の第1の局面の半導体装置は、第2凹部の表面に沿うように設けられたキャパシタ下部電極と、キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを備えている。
【0014】
上記の構成によれば、キャパシタ誘電体膜が、キャパシタ下部電極が形成する凹部の表面に沿うように設けられているため、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができる。
【0015】
また、キャパシタ上部電極は、キャパシタ誘電体膜が形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである第1導電性膜の高さを小さくすることができる。それにより、キャパシタに対応するダミーパターンの高さも小さくすることができるため、ダミーパタンを構成する材料の使用量を低減することができる。
【0016】
したがって、上記本発明の半導体装置の構造によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0017】
本発明の第1の局面の半導体装置は、キャパシタ誘電体膜と同一層を用いて形成された絶縁膜が、第1導電性膜の上表面を覆うように設けられていてもよい。また、半導体基板の主表面から絶縁膜の上表面までの高さと半導体基板の主表面からキャパシタ上部電極の上表面までの高さとが同一であってもよい。
【0018】
本発明の第1の局面の半導体装置は、半導体基板の主表面から第1導電性膜の上表面までの高さと半導体基板の主表面からキャパシタ上部電極の上表面までの高さとが同一であってもよい。
【0019】
本発明の第1の局面の半導体装置は、キャパシタ下部電極が形成する凹部が、所定の導電性膜がエッチングされることにより形成されていてもよい。
【0020】
本発明の第1の局面の半導体装置は、第1導電性膜が、下側導電性膜と上側導電性膜とにより構成される2層構造であってもよい。また、キャパシタ下部電極が、底面部と側面部とを有していてもよい。また、キャパシタ下部電極は、底面部が下側導電性膜と同一層を用いて形成され、かつ、側面部が上側導電性膜と同一層を用いて形成されていてもよい。
【0021】
本発明の第1の局面の半導体装置は、キャパシタ下部電極が形成する凹部が、複数の溝部を用いて形成されていてもよい。また、キャパシタ誘電体膜が、複数の溝部の表面それぞれに沿うように設けられていてもよい。また、キャパシタ上部電極が、複数に分離された状態で、キャパシタ誘電体膜が形成する複数の凹部それぞれの内側に設けられていてもよい。
【0022】
上記の構成によれば、キャパシタ誘電体膜が複数の凹部を有しているため、キャパシタの静電容量をさらに増加させることができる。
【0023】
本発明の第1の局面の半導体装置は、半導体基板に設けられた領域であって、トランジスタが設けられた素子形成領域と、素子形成領域を囲むとともに、上表面から所定の深さにかけて形成された凹部を有する素子分離絶縁膜と、凹部内に設けられ、トランジスタのソース/ドレイン領域に電気的に接続されたキャパシタとを備えている。
【0024】
上記の構成によれば、キャパシタ誘電体膜が、キャパシタ下部電極が形成する凹部の表面に沿うように設けられているため、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができる。
【0025】
また、キャパシタは、素子分離絶縁膜内に設けられているため、キャパシタに対応するダミーパターンを形成する必要がない。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0026】
したがって、上記本発明の半導体装置の構造によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0027】
本発明の第2の局面の半導体装置は、キャパシタが、凹部の表面に沿うように形成されキャパシタ下部電極と、キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを含んでいてもよい。また、キャパシタ下部電極とソース/ドレイン領域とを電気的に接続する配線層が設けられていてもよい。
【0028】
【発明の実施の形態】
以下、図1〜図42を用いて本発明の実施の形態の半導体装置およびその製造方法を説明する。
【0029】
(実施の形態1)
まず、図1〜図10を用いて実施の形態1の半導体装置の構造および半導体装置の製造方法を説明する。
【0030】
図1に示すように、本実施の形態の半導体装置の構造は、以下に記載するようなものである。
【0031】
半導体基板1の主表面から所定の深さにかけて素子形成領域を分離するための素子分離絶縁膜2が形成されている。素子形成領域には、半導体基板1の主表面から所定の深さにかけてソース/ドレイン領域3,53が形成されている。
【0032】
また、ソース/ドレイン領域3同士の間の領域の上部には、ゲート絶縁膜4が形成されている。ゲート絶縁膜4の上にはゲート電極5が形成されている。また、ゲート絶縁膜4およびゲート電極5の側面には側壁絶縁膜6が形成されている。
【0033】
また、ソース/ドレイン領域53同士の間にはゲート絶縁膜54が形成されている。ゲート絶縁膜54の上にはゲート電極55が形成されている。ゲート絶縁膜54およびゲート電極55の側壁には側壁絶縁膜56が形成されている。
【0034】
また、トランジスタおよび素子分離絶縁膜2の上表面を覆うように層間絶縁膜7が形成されている。また、層間絶縁膜7を上下方向に貫通してソース/ドレイン領域3に接続するコンタクトプラグ8が形成されている。また、層間絶縁膜7を上下方向に貫通してソース/ドレイン領域53に接続するコンタクトプラグ58が形成されている。また、コンタクトプラグ8の上面には配線層9が接続されている。また、コンタクトプラグ58の上面には配線層59が接続されている。
【0035】
また、層間絶縁膜7、配線層9および配線層59の上には層間絶縁膜10が形成されている。層間絶縁膜10を上下方向に貫通して配線層9にビアプラグ11が接続されている。また、層間絶縁膜10を上下方向に貫通して配線層59にビアプラグ61が接続されている。また、ビアプラグ11の上面には配線層12が接続されている。また、ビアプラグ61の上面には配線層62が接続されている。
【0036】
さらに、層間絶縁膜10、配線層12および配線層62を覆うように層間絶縁膜13が形成されている。また、層間絶縁膜13の上部であって、ゲート電極55の上方には、第1凹部が設けられている。この第1凹部には配線層65が埋め込まれている。また、層間絶縁膜13の上部であって、ゲート電極5の上方には、第2凹部が設けられている。この第2凹部の表面に沿うように、キャパシタ下部電極を構成する導電性膜15aが設けられている。配線層65の上表面と層間絶縁膜13の上表面とは、連続するように形成されているとともに、半導体基板1の主表面からの高さが同一である。
【0037】
また、層間絶縁膜13、導電性膜15aおよび配線層65それぞれの上表面を覆うように絶縁層15bが形成されている。この絶縁層15bは、キャパシタの誘電体膜を構成している。また、絶縁層15bの表面が形成する凹部には、キャパシタ上部電極を構成する導電性膜15cが埋込まれている。この絶縁層15bの上表面と導電性膜15cの上表面とは、半導体基板1の主表面からの高さが同一であるとともに、半導体基板1の主表面にほぼ平行に形成されている。
【0038】
また、絶縁層15bおよび導電性膜15cを覆うように層間絶縁膜16が形成されている。この層間絶縁膜16を上下方向に貫通して導電性膜15cにビアプラグ17が接続されている。また、層間絶縁膜16の上部に配線層18が埋込まれている。配線層18は、ビアプラグ17の上面に接続されている。また、配線層18と同一層を用いて形成された配線層68が層間絶縁膜16の上部に埋め込まれている。
【0039】
上記図1に示すような構造の半導体装置においては、キャパシタ下部電極を構成する導電性膜15aが、半導体基板1の主表面に対して垂直方向に延びる2つの側面部と、側面部同士の間に設けられ、半導体基板1の主表面に平行な方向に延びる底面部とを有している。そのため、導電性膜15aが形成する凹部に沿うように形成された絶縁膜15bは、その両端部において半導体基板1の主表面に対して垂直方向に延びる側面部と半導体基板の主表面に対して平行に延びる底面部とを有している。したがって、キャパシタ誘電体膜とキャパシタの下部電極とが接触する面積が、図43を用いて従来技術で説明したキャパシタに比較して大きくなる。
【0040】
そのため、本実施の形態の半導体装置は、従来のキャパシタに比べて半導体基板1の主表面に平行な方向にキャパシタの面積を大きくすることなく、キャパシタ容量を増加させることができている。
【0041】
また、図1に示すような構造の半導体装置においては、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの高さを小さくすることができる。その結果、キャパシタ容量を大きくしながら、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンの高さを小さくすることができるため、ダミーパターンを構成する材料の使用量を低減することができる。
【0042】
したがって、図1に示すような構造の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0043】
次に、図2〜図10を用いて、図1に示す構造のキャパシタを有する半導体装置の製造方法を説明する。
【0044】
本実施の形態の半導体装置の製造方法においては、配線層12および配線層62が形成されるまでの工程は、従来から用いられている手法と同様の手法が用いられる。次に、本実施の形態の半導体装置の製造方法においては、図2に示すように、層間絶縁膜10、配線層12および配線層62が形成された状態で、層間絶縁膜13が形成される。この層間絶縁膜13の上表面は半導体基板1の主表面に平行に形成される。
【0045】
次に、図3に示すように、層間絶縁膜13を上下方向に貫通して配線層9に接続されるビアプラグ14が形成される。その後、ビアプラグ14の上面に接続する導電性膜15が形成される。また、導電性膜15と同一層を用いて配線層65が形成される。この時点においては、層間絶縁膜13、導電性膜15および配線層65それぞれの上表面は、連続するように形成されるとともに、半導体基板1の主表面に対して平行に形成されている。
【0046】
次に、図4に示すように、導電性膜15の両端部から所定の距離までの位置よりも外側の位置の導電性膜15の上表面を覆うとともに、層間絶縁膜13および配線層65の表面を覆うレジスト膜250を形成する。その後、レジスト膜250をマスクとして、導電性膜15をエッチングすることにより、図5に示すようなキャパシタ下部電極を構成する導電性膜15aを形成する。図5に示す導電性膜15aの表面が形成する凹部の表面積は、図5に示す導電性膜15aの幅と図43に示す従来のキャパシタ下部電極の幅とが同一である場合、図43に示す従来のキャパシタ下部電極の上表面の表面積よりも大きくなっている。
【0047】
次に、図6に示すように、層間絶縁膜13の上表面、配線層65の上表面および導電性膜15aの表面に沿って絶縁膜15bが形成される。したがって、絶縁膜15bと導電性膜15aとが接触する部分の面積は、図43に示す従来技術のキャパシタ下部電極115の上表面とキャパシタ誘電体膜とが接触する部分の面積よりも大きくなっている。
【0048】
次に、図7に示すように、絶縁膜15bの上表面を覆うように導電性膜25を形成する。次に、図7に示す状態において、導電性膜25をエッチバックすることにより、図8に示すような導電性膜15cが形成される。なお、導電性膜15cの形成工程においては、図7に示す導電性膜25がエッチバックされるときに、絶縁膜15bがストッパ膜として機能する。このような製造工程においては、導電性膜15cの上表面と絶縁膜15bの上表面とは、連続するように形成されるとともに、半導体基板1の主表面に平行に形成される。
【0049】
次に、図9に示すように、絶縁膜15bおよび導電性膜15cの上に層間絶縁膜16が形成される。次に、図10に示すように、層間絶縁膜16を上下方向に貫通し導電性膜15dにビアプラグ17が接続される。その後、図1に示すように、配線層18および配線層68が形成される。
【0050】
上記のような本実施の形態の半導体装置の製造方法によれば、図9に示すように、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0051】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を形成することができる。
【0052】
(実施の形態2)
次に、実施の形態2の半導体装置の構造および製造方法を説明する。まず、図11を用いて、本実施の形態の半導体装置の構造を説明する。図11に示すように、本実施の形態の半導体装置は、実施の形態1の半導体装置の構造とほぼ同様である。すなわち、層間絶縁膜13にビアプラグ14が形成されるまでの構造は図1を用いて示した実施の形態1の半導体装置の構造と全く同様である。
【0053】
また、層間絶縁膜16に形成される配線層18および配線層68の構造も実施の形態1の半導体装置の構造と全く同様である。したがって、本実施の形態の半導体装置は、ゲート電極5の上方に形成されるキャパシタの構造、ならびに、ゲート電極55の上方に形成される配線層の構造およびその周辺の絶縁膜の構造のみが異なる。
【0054】
本実施の形態の半導体装置においては、ビアプラグ14の上側に導電性膜15が形成されている。この導電性膜15の両端部それぞれには、半導体基板1の主表面に対して垂直方向に延びる2つの導電性膜26aが接続されている。なお、導電性膜15と2つの導電性膜26aとにより、キャパシタ下部電極が構成されている。
【0055】
また、導電性膜15の上表面に接するとともに導電性膜26aの内側面に接し、かつ半導体基板1の主表面に平行な方向に延びる、絶縁膜35aが形成されている。また、導電性膜26aの内側面に接するとともに、絶縁膜35aの両端部それぞれから半導体基板1の主表面に対して垂直方向に延びる2つの絶縁膜27aが形成されている。なお、導電性膜15および導電性膜26aが形成する凹部の表面に沿うように形成された、絶縁膜35aおよび2つの絶縁膜27aによりキャパシタ誘電体膜が構成されている。
【0056】
また、絶縁膜35aおよび絶縁膜27aによりキャパシタ誘電体膜の表面が形成する凹部内に導電性膜26aが形成されている。このキャパシタ誘電体膜の表面が形成する凹部内の導電性膜26aによりキャパシタ上部電極が構成されている。
【0057】
また、配線層65の上表面に接するように導電性膜26aが形成されている。配線層65および導電性膜26により、2層構造の配線層が形成されている。
【0058】
また、層間絶縁膜13の上表面には、絶縁膜35aが形成されている。また、絶縁膜35aの上表面には絶縁膜27aが形成されている。
【0059】
上記のような本実施の形態の半導体装置によれば、キャパシタ下部電極を構成する前述の導電性膜15および2つの導電性膜26aの表面が形成する凹部の表面に沿うように、キャパシタ絶縁膜を構成する2つの絶縁膜27aおよび絶縁膜35が形成される。そのため、実施の形態1のキャパシタと同様に、2つの絶縁膜27aおよび絶縁膜35によって構成されるキャパシタ誘電体膜と導電性膜26aおよび導電性膜15によって構成されるキャパシタ下部電極との接触面積が従来のキャパシタに比べて大きくなっている。
【0060】
そのため、本実施の形態の半導体装置は、従来技術で説明した半導体装置よりもキャパシタ容量が増加している。また、キャパシタ誘電体膜を構成する2つの絶縁膜27aおよび絶縁膜35が形成する凹部に、導電性膜26aが埋込まれている。この導電性膜26aはキャパシタ上部電極として機能する。
【0061】
また、配線層65の上にも、導電性膜26aが形成されている。この配線層65の上に形成された導電性膜26aの上表面と、キャパシタ上部電極を構成する導電性膜26aの上表面とは、半導体基板1の主表面からの高さが同じであるとともに、半導体基板1の主表面に対して平行である。
【0062】
また、本実施の形態の半導体装置においては、従来技術の半導体装置に比較して、半導体基板の主表面に対して平面な方向に面積を大きくすることなく、キャパシタ誘電体膜とキャパシタ下部電極とが接触する面積が増加している。
【0063】
次に、本実施の形態の半導体装置の製造方法を図12〜図20を用いて説明する。本実施の形態の半導体装置の製造方法においては、配線層12および配線層62が形成されるまでの工程は、従来から用いられている手法と同様の手法が用いられる。
【0064】
本実施の形態の半導体装置の製造方法においては、層間絶縁膜13を上下に貫通して配線層9にビアプラグ14が接続される。次に、ビアプラグ14の上面に接触する導電性膜15とゲート電極55の上部に形成される配線層65とが同一層になるように形成される。このとき、層間絶縁膜13、導電性膜15および配線層65それぞれの表面は半導体基板1の主表面に対して平行になっている。次に、層間絶縁膜13、導電性膜15および配線層65の上表面の上に半導体基板の主表面に平行な方向に延びる絶縁膜35が形成される。
【0065】
次に、図13に示すように、配線層65の上表面の上側部分が開口されているとともに、導電性膜15の上表面の両端それぞれから所定の距離の位置までの領域の上側部分が開口されているレジスト膜251が形成される。
【0066】
次に、図13に示す状態において、レジスト膜251をマスクとして絶縁膜35がエッチングされる。このエッチングにおいては、導電性膜15の表面および配線層65の表面が露出するまでエッチングが行なわれる。それにより、図14に示すような絶縁膜35aが形成される。
【0067】
次に、図14に示す状態で、導電性膜25を半導体基板1の主表面と平行に延びるように半導体基板1の主表面上の全体にわたって形成する。それにより、図15に示すような構造が得られる。次に、導電性膜25がエッチバックされることにより、導電性膜25の上表面が平坦化される。それにより、図16に示すような構造が得られる。
【0068】
次に、図17に示すように、配線層65の上側の領域全体、導電性膜15の上側の領域であって、絶縁膜35aに覆われていない部分の上側の領域、および、導電性膜15の上側の領域であって、絶縁膜35aの両端それぞれから所定の距離をおいた位置よりも内側の領域を覆うように、レジスト膜252が形成される。
【0069】
図17に示す状態において、導電性膜26のエッチバックが行なわれる。それにより、図18に示すように、配線層65の上部に導電性膜26aが形成される。また、導電性膜15の両端部それぞれに接続されるとともに、半導体基板1の主表面から垂直な方向に延びる2つの導電性膜26aが形成される。また、導電性膜15の両端部それぞれに接続する導電性膜26aから所定の距離をおいた位置よりも内側の領域において、半導体基板1の主表面に対して平行に延びる導電性膜26aが形成される。
【0070】
次に、図18に示す状態において、半導体基板1上の全領域を覆うように絶縁膜27が形成される。次に、図19に示す状態において、導電性膜26aの上表面が露出するまで絶縁膜27がエッチバックされる。それにより、図20に示すように、導電性膜15の上側には、導電性膜15に接続された導電性膜26aと、導電性膜15と接触しない導電性膜26aとの間に、半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜27aが、絶縁膜35の両端それぞれに接続されている。また、絶縁膜35aの上表面に接するとともに、半導体基板1の主表面と平行な方向に延びる絶縁膜27aが形成される。このとき、絶縁膜27aの上表面と導電性膜26aの上表面とは、一体的に連続したものとなり、半導体基板1の主表面に平行な状態となる。
【0071】
次に、上記のような製造方法によれば、導電性膜15と、導電性膜15の両端部それぞれに接続され、半導体基板1の主表面に対して垂直な方向に延びる2つの導電性膜26aとによりキャパシタ下部電極が形成される。また、キャパシタ下部電極の表面が形成する凹部の表面に沿うように、半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜27aと、2つの絶縁膜27aそれぞれの下側端部が接続され、半導体基板1の主表面に対して平行に延びる絶縁膜35aとによりキャパシタ誘電体膜が形成されている。
【0072】
したがって、このような製造方法によれば、実施の形態1に記載の半導体装置の製造方法と同様に、キャパシタ誘電体膜を半導体基板1の主表面に平行な方向に大きくすることなく、キャパシタ誘電体膜とキャパシタ下部電極との接触面積を大きくすることができる。したがって、半導体基板1の主表面に平行な方向に大きな構造にすることなく、キャパシタの静電容量を増加させることができる。
【0073】
また、キャパシタ上部電極に相当する導電性膜26aは、キャパシタ誘電体膜に相当する絶縁膜35aおよび絶縁膜27aが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0074】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0075】
なお、その後においては、キャパシタ上部電極を構成する導電性膜26aにビアプラグ17が形成される工程等が行なわれるが、これらの形成工程については実施の形態1の半導体装置の製造方法と同様の手法により行なわれる。
【0076】
(実施の形態3)
次に、図21〜図27を用いて実施の形態3の半導体装置およびその製造方法を説明する。まず、図21を用いて本実施の形態の半導体装置の構造を説明する。本実施の形態の半導体装置においては、層間絶縁膜13が形成されるまでの構造においては、実施の形態1または実施の形態2において説明した図1または図11に示す構造と全く同様の構造である。
【0077】
また、配線層18および配線層68の構造についても実施の形態1および実施の形態2の半導体装置の構造と全く同様の構造である。したがって、本実施の形態の半導体装置においては、キャパシタが形成される領域およびその周辺部分の構造のみが実施の形態1または実施の形態2の半導体装置の構造と異なる。
【0078】
すなわち、本実施の形態の半導体装置は、層間絶縁膜13内において上下方向に延びるビアプラグ14の上側に、キャパシタ下部電極を構成する導電性膜15aが形成されている。このキャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直に延びる部分と、その両端部の内側に接続された半導体基板1の主表面に対して平行に延びる部分とを有している。
【0079】
また、導電性膜15aが形成する凹部の底面に沿うように、絶縁膜15dが形成されている。この絶縁膜15dの両端部の上側であって、導電性膜15aの半導体基板1の主表面に対して垂直に延びる部分の内側側面に接して、半導体基板1の主表面に垂直な方向に延びる2つの絶縁膜15eが形成されている。この2つの絶縁膜15eの内側側面に接するとともに、絶縁膜15dの上表面に接触するように導電性膜15cが形成されている。また、この導電性膜15eの上表面に接触するようにビアプラグ17が形成されている。
【0080】
上記のような構造の本実施の形態の半導体装置によれば、キャパシタ下部電極は、半導体基板1の主表面に対して垂直な方向に延びる部分と、半導体基板1の主表面に対して平行な方向に延びる部分とを有するように形成されている。そのため、キャパシタ下部電極の表面により凹部が形成されている。キャパシタ下部電極が形成する凹部の表面と、その凹部の表面に沿うように形成されたキャパシタ誘電体膜を構成する絶縁膜15eおよび絶縁膜15dが接触する部分の面積は、従来のキャパシタに比べて大きくなっている。したがって、実施の形態1または2に記載のキャパシタと同様に、キャパシタの容量が増加している。また、本実施の形態の半導体装置によれば、水平方向にキャパシタ誘電体膜を大きくすることなくキャパシタの容量を大きくすることができる。
【0081】
さらに、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15dおよび絶縁膜15eが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0082】
その結果、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0083】
次に、実施の形態3の半導体装置の製造方法を図22〜図27を用いて説明する。本実施の形態の半導体装置の製造方法においては、層間絶縁膜13にビアプラグ14が形成されるまでは実施の形態1または実施の形態2の半導体装置の製造方法と全く同様である。
【0084】
次に、ビアプラグ14の上表面に接触する導電性膜15が形成されるとともに、配線層65が形成される。導電性膜15と配線層65とは、半導体基板1の主表面からの高さが同一の層である。このとき、層間絶縁膜13、導電性膜15および配線層65それぞれの上表面は、連続するように形成されるとともに、半導体基板1の主表面に対してほぼ平行な状態となっている。
【0085】
次に、図22に示すように、導電性膜15の両端から所定の距離をおいた部分よりも内側の部分のみに開口が設けられたレジスト膜253が形成される。次に、レジスト膜253をマスクとして、導電性膜15に酸素がイオン注入される。注入される酸素が導電性膜15の厚さ方向のほぼ中央部に偏析するように、ドーズ量および注入エネルギが調整されている。また、導電性膜15の酸素イオンが偏析する部分は、金属酸化膜またはシリコン酸化膜などに変化する。
【0086】
その結果、図23に示すように、導電性膜15の内部には絶縁膜15dが形成される。この絶縁膜15dは、導電性膜15とは区別される膜として形成される。なお、導電性膜15には、たとえば、銅、またはアルミニウムなどの金属または多結晶シリコン膜が用いられている。
【0087】
次に、図24に示すように、層間絶縁膜13および配線層65を覆うとともに、導電性膜15の両端それぞれから所定の距離の位置それぞれよりも外側の領域を覆うように、レジスト膜254が形成される。また、絶縁膜15dの上側にも、レジスト膜254が形成される。このレジスト膜254は、絶縁膜15dの両端それぞれから所定の距離をおいた位置それぞれよりも内側の領域に形成される。したがって、レジスト膜254により形成される開口は、絶縁膜15dの両端部それぞれから所定の距離をおいた位置それぞれよりも内側の領域の上側に形成される。
【0088】
図24に示す状態で、レジスト膜254をマスクとして導電性膜15がエッチングされる。このときのエッチングでは、絶縁膜15dの表面が露出するまでエッチングが行なわれる。それにより、図25に示すように、図24に示す導電性膜15が2つの導電性膜15aと15cに分離される。この導電性膜15aによりキャパシタ下部電極が構成される。また、導電性膜15cによりキャパシタ上部電極が構成される。
【0089】
次に、図26に示すように、絶縁膜150が、絶縁膜15d、導電性膜15aおよび導電性膜15cにより形成される凹部を埋込むとともに、層間絶縁膜13および配線層65の上表面を覆うように半導体基板1の主表面に対して平行に形成される。次に、絶縁膜150がエッチバックされることにより、層間絶縁膜13、導電性膜15aの上表面、導電性膜15cの上表面および配線層65の上表面を露出させる。それにより図27に示す構造が得られる。
【0090】
上記のような本実施の形態の半導体装置の製造方法によれば、キャパシタの下部電極15aが、半導体基板1の主表面に対して垂直に延びる部分と、半導体基板1の主表面に対して平行に延びる部分とを有するように形成される。また、キャパシタ誘電体膜が、半導体基板1の主表面に対して平行な方向に延びる絶縁膜15dと、絶縁膜15dの両端部それぞれにおいて半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜15eとにより構成されている。
【0091】
その結果、本実施の形態のキャパシタの製造方法によれば、実施の形態1〜3のキャパシタと同様に、半導体基板1の主表面にほぼ平行な方向にキャパシタを大きくすることなく、キャパシタ下部電極とキャパシタ誘電体膜とが接触する面積を大きくすることができる。その結果、半導体基板1の主表面に平行な方向にキャパシタの面積を大きくすることなく、キャパシタ容量を増加させることができる。
【0092】
また、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15dおよび絶縁膜15eが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0093】
その結果、本実施の形態のキャパシタの製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0094】
(実施の形態4)
次に、図28〜図33を用いて本発明の実施の形態4の半導体装置およびその製造方法を説明する。まず、図28を用いて本実施の形態の半導体装置の構造を説明する。
【0095】
本実施の形態の半導体装置においては、層間絶縁膜13が形成されるまでの構造は、実施の形態1〜3の半導体装置の構造と全く同様である。図28に示すように、本実施の形態の半導体装置においては、層間絶縁膜13を上下方向に貫通するビアプラグ14が形成される。ビアプラグ14の上側には、複数の溝を有する導電性膜15aが形成される。複数の溝は、紙面に垂直な方向に延びている。また、導電性膜15aによりキャパシタ下部電極が構成されている。
【0096】
また、層間絶縁膜13の上表面、配線層65の上表面、および、導電性膜15aが形成する複数の溝の表面それぞれに沿うように絶縁膜15bが形成されている。この絶縁膜15bによりキャパシタ誘電体膜が構成されている。
【0097】
また、絶縁膜15bが形成する複数の溝それぞれの内部には、導電性膜15f、導電性膜15g、導電性膜15hが形成されている。導電性膜15f、導電性膜15gおよび導電性膜15hにより、キャパシタ上部電極が構成されている。
【0098】
また、絶縁膜15bの上に形成された層間絶縁膜16には、導電性膜15f,15g,15hそれぞれに接続したビアプラグ17c,17b,17aが設けられている。このビアプラグ17c,17b,17aの上面には、配線層18が接続されている。また、配線層18と配線層68とは、半導体基板1の主表面からの高さが同一である。
【0099】
上記のような本実施の形態の半導体装置によれば、キャパシタ下部電極を構成する導電性膜15aの表面により複数の溝が形成されている。そのため、半導体基板1の主表面に平面な方向にキャパシタ下部電極を大きくすることなく、キャパシタ下部電極を構成する導電性膜15とキャパシタ誘電体膜を構成する絶縁膜15bとが接触する面積を大きくすることができる。
【0100】
そのため、本実施の形態の半導体装置によれば、半導体基板1に平行な方向にキャパシタを大きくすることなく、キャパシタ容量を増加させることができる。
【0101】
また、キャパシタ上部電極に相当する導電性膜15f,15g,15hそれぞれは、キャパシタ誘電体膜に相当する絶縁膜bが形成する複数の凹部それぞれ内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0102】
その結果、本実施の形態の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0103】
また、実施の形態1〜3の半導体装置よりもさらにキャパシタの静電容量を大きくすることができる。
【0104】
次に、本実施の形態の半導体装置の製造方法を図29〜図33を用いて説明する。本実施の形態の半導体装置の製造方法においては、層間絶縁膜13にビアプラグ14が形成されるまでは実施の形態1〜実施の形態3の半導体装置の製造方法と全く同様である。
【0105】
本実施の形態の半導体装置の製造方法においては、図29に示すように、層間絶縁膜13に上下方向に貫通するビアプラグ14が形成される。ビアプラグ14の上表面に接触するように導電性膜15が形成されるとともに、導電性膜15と同一層に配線層65が形成される。
【0106】
次に、層間絶縁膜13の上表面および配線層65の上表面を覆うとともに、導電性膜15の両端部それぞれから所定の距離の位置それぞれよりも外側の領域覆うレジスト膜255が形成される。また、導電性膜15の上表面上の中央部近傍には、2つの孤立したレジスト膜255が形成される。
【0107】
次に、図29に示す状態において、レジスト膜255をマスクとして導電性膜15がエッチングされる。それにより、図30に示すような構造が得られる。図30に示す導電性膜15aによりキャパシタ下部電極が構成されている。この図30に示す構造においては、導電性膜15aの形状が、櫛型状になっている。キャパシタ下部電極としての導電性膜15aは紙面に垂直方向に延びる3つの溝を有している。すなわち、キャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直な方向に延びる4つの側壁部と、その4つの側壁部の下部側おいて半導体基板1の主表面に対して平行に延び、4つの側壁部の下端が一体的に形成された底面部とが設けられている。
【0108】
次に、図31に示すように、層間絶縁膜13の上表面、配線層65の上表面および導電性膜15aの表面に沿うように絶縁膜15bが一定の厚さで形成される。次に、図32に示すように、絶縁膜15bの表面を覆うように導電性膜550が形成される。このとき、導電性膜550は、絶縁膜15bの表面が形成する複数の凹部それぞれを埋込むように形成される。
【0109】
次に、導電性膜550がエッチバックされることにより、絶縁膜15bの上表面が露出する。それにより、図33に示すような構造が得られる。図33に示す構造においては、絶縁膜15bの上表面と、絶縁膜15bの表面が形成する凹部に埋込まれた導電性膜15f,15g,15hそれぞれの上表面とは半導体基板1の主表面からの高さが同一である。
【0110】
次に、キャパシタ上部電極を構成する導電性膜15f,15g,15hそれぞれに接続するビアプラグ17c,17b,17aが層間絶縁膜16に設けられる。その後、ビアプラグ17c,17b,17aの上面に接続する配線層18が形成されるとともに、配線層18と同一層に配線層68が形成されることによって、図28に示されるような構造が得られる。
【0111】
上記のような本実施の形態の半導体装置の製造方法によれば、図33に示すように、キャパシタ上部電極に相当する導電性膜15f,15g,15hは、キャパシタ誘電体膜に相当する絶縁膜bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0112】
また、キャパシタの下部電極を構成する導電性膜15とキャパシタ誘電体膜を構成する絶縁膜15bとが接触する面積は、従来のキャパシタよりも大きくなっている。したがって、本実施の形態の半導体装置の製造方法によれば、半導体基板1の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を増加させることができる。
【0113】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0114】
なお、本実施の形態のキャパシタの製造方法には、実施の形態1のキャパシタの製造方法と同様の製造方法が用いられている。しかしながら、本実施の形態のキャパシタを実施の形態2または3のキャパシタの製造方法と同様の製造方法により形成しても、前述の効果を得ることができる。
【0115】
(実施の形態5)
実施の形態5の半導体装置およびその製造方法を図34〜図42を用いて説明する。
【0116】
まず、図34を用いて実施の形態5の半導体装置の構造を説明する。本実施の形態の半導体装置においては、実施の形態1〜4の半導体装置の構造と同様の構造である。しかしながら、本実施の形態の半導体装置は、層間絶縁膜13の上部近傍にキャパシタが形成されていないことが実施の形態1〜4の半導体装置の構造と異なる。
【0117】
したがって、層間絶縁膜13の上部近傍に形成された導電性膜15と配線層65とは、ともに一層構造である。したがって、本実施の形態の半導体装置の構造によれば、従来技術において示したキャパシタに対応するダミーパターンが2層構造である半導体装置に比較して、ダミーパターンの高さを小さくすることができる。
【0118】
また、本実施の形態の半導体装置においては、キャパシタが、素子分離絶縁膜2aに形成された凹部に埋込まれていることが実施の形態1〜4の半導体装置の構造と異なる。
【0119】
本実施の形態の半導体装置は、素子分離絶縁膜2aに形成された凹部の表面に沿うように、導電性膜20aが形成されている。導電性膜20aによりキャパシタ下部電極が構成されている。したがって、キャパシタ下部電極は、半導体基板1の主表面に対して垂直な方向に延びる部分および半導体基板1の主表面に対して平行な方向に延びる部分を有している。
【0120】
また、導電性膜20aが形成する凹部の底面に沿うように絶縁膜20dが形成されている。導電性膜20aが形成する凹部の2つの内側面それぞれに沿うように2つの絶縁膜20eが形成されている。絶縁膜20dと2つの絶縁膜20eとにより、キャパシタ誘電体膜が構成されている。
【0121】
また、絶縁膜20dおよび2つの絶縁膜20eが形成する凹部に、導電性膜20cが埋込まれている。この導電性膜20cによりキャパシタ上部電極が構成されている。また、導電性膜20cの上表面に接するとともに、ソース/ドレイン領域3の上表面に接する配線層300が形成されている。また、キャパシタ上部電極を構成する導電性膜20cの上表面には、ビアプラグ88が接続されている。このビアプラグ88は配線層9に接続されている。
【0122】
なお、上述した本実施の形態の半導体装置の特徴部分の構造以外の構造については、実施の形態1〜4において、図1、図11、図21および図28を用いて示した構造と全く同様の構造である。
【0123】
上記の構造の本実施の形態の半導体装置によれば、キャパシタが、素子分離絶縁膜2a内に埋込まれている。そのため、キャパシタに対応するダミーパターンを形成する必要がない。つまし、一層の配線層15に対応する一層のダミーパターンである配線層65のみを設けるだけで、後工程におけるCMP後の層間絶縁膜16の上表面の平坦化を実現することができる。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0124】
また、キャパシタ誘電体膜は、半導体基板1の主表面に対して垂直な方向に延びる部分および半導体の主表面に対して平行な方向に延びる部分を有している。そのため、実施の形態1〜4の半導体装置と同様に、半導体基板の主表面に平行な方向にキャパシタの上部電極および下部電極を大きくすることなく、キャパシタの容量を増加させることができる。
【0125】
その結果、本実施の形態の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0126】
次に、図35〜図42を用いて実施の形態5の半導体装置の製造方法を説明する。実施の形態5の半導体装置の製造方法においては、まず、半導体基板1の主表面から所定の深さにかけて、素子形成領域を形成するための素子分離絶縁膜2が形成される。
【0127】
次に、素子形成領域の半導体基板1の主表面から所定の深さにかけてソース/ドレイン領域3およびソース/ドレイン領域53が形成される。また、ソース/ドレイン領域3同士に挟まれた領域の上部にはゲート絶縁膜4が形成される。また、ゲート絶縁膜4の上にはゲート電極5が形成される。また、ゲート絶縁膜4およびゲート電極5の側壁には側壁絶縁膜6が形成される。
【0128】
また、ソース/ドレイン領域53同士に挟まれた領域の上部にはゲート絶縁膜54が形成される。次に、ゲート絶縁膜54およびゲート電極55の側壁には側壁絶縁膜56が形成される。
【0129】
次に、素子分離絶縁膜2、ソース/ドレイン領域3,53、側壁絶縁膜6,56およびゲート電極5,55を一体的に覆うようにレジスト膜256が形成される。ただし、レジスト膜256は、導電性膜20の上表面の一部の領域において開口されている。その後、レジスト膜256の開口部において露出する素子分離絶縁膜2がエッチングされる。それにより、素子分離絶縁膜2aが形成される。この素子分離絶縁膜2aに導電性膜200が埋込まれる。その結果、図35に示す構造が得られる。
【0130】
このレジスト膜256をマスクとして、図36において矢印で示す方向に、導電性膜20に対してイオン注入が行なわれる。このイオン注入おいては酸素イオン200が注入される。導電性膜20の酸素イオンが偏析する部分は、金属酸化膜またはシリコン酸化膜などに変化する。
【0131】
次に、レジスト膜256が除去される。それにより、図37に示すように、導電性膜20の内部には、絶縁膜20dが形成される。この絶縁膜20dは導電性膜20とは区別可能な膜になっている。なお、導電性膜20には、たとえば、銅、またはアルミニウムなどの金属または多結晶シリコン膜が用いられている。
【0132】
また、前述のイオン注入工程においては、酸素イオンの濃度のピークが、導電性膜20の主表面から所定の深さの位置(導電性膜20の上下方向の略中央部)に形成されるように、ドーズ量および注入エネルギが決定されている。したがって、図37に示すように、イオン注入後の絶縁膜20bは、導電性膜20dの主表面から所定の深さの位置にのみ延在するように形成される。
【0133】
次に、図38に示すように、導電性膜20の両端部それぞれから所定の距離をおいた位置それぞれよりの外側の領域を覆うレジスト膜257が形成される。また、レジスト膜257は、絶縁膜20bの両端それぞれから所定の距離をおいた位置それぞれよりも内側の領域を覆う。
【0134】
その後、レジスト膜257をマスクとして、導電性膜200が、絶縁膜20dの表面が露出するまでエッチングされる。それにより、図39に示すような構造が得られる。すなわち、キャパシタ下部電極を構成する導電性膜20aとキャパシタ上部電極を構成する導電性膜20cとが形成される。
【0135】
次に、図40に示すように、半導体基板1の主表面を一体的に覆う絶縁膜650が形成される。この絶縁膜650は、導電性膜20cと導電性膜20aとの間に形成された凹部を埋込むように形成される。
【0136】
次に、図40に示す絶縁膜650がエッチバックされることにより、ゲート電極5,55の上表面およびソース/ドレイン領域3,53の上表面が露出する。それにより、図41に示すような構造が得られる。
【0137】
図41に示すような構造においては、導電性膜20aと導電性膜20cとの間に2つの絶縁膜20eが埋込まれている。この絶縁膜20dおよび2つの絶縁膜20eにより、キャパシタ誘電体膜が構成される。
【0138】
次に、図42に示すように、導電性膜20aの上表面の一部と、ソース/ドレイン領域3の上表面とを接続するように配線層300が形成される。この配線層300によりキャパシタとトランジスタとが電気的に接続される。
【0139】
上記のような本実施の形態の半導体装置の製造方法によれば、半導体基板1の主表面に対して平行な方向に延びる部分と、半導体基板1の主表面に対して垂直な方向に延びる部分とを有するようにキャパシタ下部電極を構成する導電性膜20aが形成される。そのため、半導体基板1の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を増加させることができる。
【0140】
また、上記の実施の形態の半導体装置の製造方法によれば、キャパシタを素子分離絶縁膜2a内に埋込むように形成することができる。そのため、キャパシタに対応するダミーパターンを形成する必要がない。したがって、一層の配線層15に対応する一層のダミーパターンである配線層65のみを設けるだけで、後工程におけるCMP後の層間絶縁膜16の上表面の平坦化を実現することができる。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0141】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0142】
なお、本実施の形態の半導体装置の製造方法においては、実施の形態3のキャパシタの製造方法と同様の製造方法が用いられてキャパシタが形成されている。しかしながら、本実施の形態のキャパシタの製造方法として、実施の形態1または2のキャパシタの製造方法を用いても、前述の効果と同様の効果を得ることができる。
【0143】
また、本実施の形態のキャパシタ上部電極には、一体構造の導電性膜が用いられているが、実施の形態4のキャパシタ上部電極と同様に、複数に分離されたキャパシタ上部電極を用いてもよい。それにより、実施の形態4の半導体装置と同様に、キャパシタの静電容量をよりさらに増加させることができる。
【0144】
また、上記実施の形態1〜5の半導体装置においては、キャパシタ上電極またはキャパシタ下部電極には、不純物を含む多結晶シリコン、銅膜、アルミニウム膜、銅/アルミニウム合金膜、若しくは、銅/アルミニウム合金とシリコンとの合金膜が用いられる。
【0145】
キャパシタ上電極またはキャパシタ下部電極は、CVD(Chemical Vapor Deposition)法、めっき、またはスパッタ法等を用いて形成される。
【0146】
また、キャパシタ誘電体膜には、シリコン酸化膜、シリコン窒化膜、Ta2O5(酸化タンタル)膜、または、BST(チタン酸バリウムストロンチウム)膜が用いられる。
【0147】
また、上記実施の形態1〜5の半導体装置のキャパシタは、MIM(Metal Insulator Metal)キャパシタである。また、コンタクトプラグまたは配線層には、タングステンまたはチタンなどの金属、ならびに、不純物を含む多結晶シリコン膜等が用いられる。また、層間絶縁膜には、CVD法またはスパッタ法により堆積されたシリコン酸化膜またはシリコン窒化膜が用いられる。
【0148】
また、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0149】
【発明の効果】
本発明の半導体装置およびその製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【図面の簡単な説明】
【図1】実施の形態1の半導体装置の構造を示す断面図である。
【図2】実施の形態1の半導体装置の製造方法を説明するための図である。
【図3】実施の形態1の半導体装置の製造方法を説明するための図である。
【図4】実施の形態1の半導体装置の製造方法を説明するための図である。
【図5】実施の形態1の半導体装置の製造方法を説明するための図である。
【図6】実施の形態1の半導体装置の製造方法を説明するための図である。
【図7】実施の形態1の半導体装置の製造方法を説明するための図である。
【図8】実施の形態1の半導体装置の製造方法を説明するための図である。
【図9】実施の形態1の半導体装置の製造方法を説明するための図である。
【図10】実施の形態1の半導体装置の製造方法を説明するための図である。
【図11】実施の形態2の半導体装置の構造を示す断面図である。
【図12】実施の形態2の半導体装置の製造方法を説明するための図である。
【図13】実施の形態2の半導体装置の製造方法を説明するための図である。
【図14】実施の形態2の半導体装置の製造方法を説明するための図である。
【図15】実施の形態2の半導体装置の製造方法を説明するための図である。
【図16】実施の形態2の半導体装置の製造方法を説明するための図である。
【図17】実施の形態2の半導体装置の製造方法を説明するための図である。
【図18】実施の形態2の半導体装置の製造方法を説明するための図である。
【図19】実施の形態2の半導体装置の製造方法を説明するための図である。
【図20】実施の形態2の半導体装置の製造方法を説明するための図である。
【図21】実施の形態3の半導体装置の構造を説明するための断面図である。
【図22】実施の形態3の半導体装置の製造方法を説明するための図である。
【図23】実施の形態3の半導体装置の製造方法を説明するための図である。
【図24】実施の形態3の半導体装置の製造方法を説明するための図である。
【図25】実施の形態3の半導体装置の製造方法を説明するための図である。
【図26】実施の形態3の半導体装置の製造方法を説明するための図である。
【図27】実施の形態3の半導体装置の製造方法を説明するための図である。
【図28】実施の形態4の半導体装置の構造を説明するための断面図である。
【図29】実施の形態4の半導体装置の製造方法を説明するための図である。
【図30】実施の形態4の半導体装置の製造方法を説明するための図である。
【図31】実施の形態4の半導体装置の製造方法を説明するための図である。
【図32】実施の形態4の半導体装置の製造方法を説明するための図である。
【図33】実施の形態4の半導体装置の製造方法を説明するための図である。
【図34】実施の形態5の半導体装置の構造を説明するための断面図である。
【図35】実施の形態5の半導体装置の製造方法を説明するための図である。
【図36】実施の形態5の半導体装置の製造方法を説明するための図である。
【図37】実施の形態5の半導体装置の製造方法を説明するための図である。
【図38】実施の形態5の半導体装置の製造方法を説明するための図である。
【図39】実施の形態5の半導体装置の製造方法を説明するための図である。
【図40】実施の形態5の半導体装置の製造方法を説明するための図である。
【図41】実施の形態5の半導体装置の製造方法を説明するための図である。
【図42】実施の形態5の半導体装置の製造方法を説明するための図である。
【図43】従来の半導体装置を説明するための図である。
【符号の説明】
1 半導体装置、2 素子分離絶縁膜、3,53 ソース/ドレイン領域、4,54 ゲート絶縁膜、5,55 ゲート電極、6,56 側壁絶縁膜、7 層間絶縁膜、8,58 コンタクトプラグ、9,59 配線層、10 層間絶縁膜、11,61 ビアプラグ、12,62 配線層、13 層間絶縁膜、14 ビアプラグ、15,15a 導電性膜、15b 絶縁膜、15c 導電性膜、15d,15e 絶縁膜、15f,15g,15h 導電性膜、16 層間絶縁膜、17,17a,17b,17c ビアプラグ、18 配線層、27a,35a 絶縁膜、26a,20a,20c 導電性膜、20b,20e 絶縁膜、62,65,68 配線層、88 ビアプラグ、300 配線層。
【発明の属する技術分野】
本発明は、キャパシタを備えた半導体装置に関するものである。
【0002】
【従来の技術】
従来より、DRAM(Dynamic Random Access Memory)などの半導体装置においては、半導体基板の上の層間絶縁膜にキャパシタを設ける構造のものが多く用いられている。
【0003】
以下、図43を用いて従来のキャパシタを有する半導体装置を説明する。
従来のキャパシタを有する半導体装置においては、半導体基板100上の素子分離絶縁膜で囲まれた素子形成領域それぞれの内側に、2つのトランジスタ101,102が形成されている。また、トランジスタ101のソース/ドレイン領域には、上下方向に延びる配線が接続されている。また、トランジスタ102のソース/ドレイン領域にも上下方向に延びる配線が接続されている。
【0004】
また、トランジスタ101およびトランジスタ102の上方には、層間絶縁膜が複数積み重なるように形成されている。複数の層間絶縁膜のうち、層間絶縁膜113においては、トランジスタ101の上方にビアプラグ114が埋込まれている。
【0005】
また、層間絶縁膜113においては、キャパシタ下部電極115が埋め込まれている。キャパシタ下部電極115は、ビアプラグ114の上面に接続されている。また、トランジスタ102の上方には、トランジスタ101の上方のキャパシタ下部電極115と同一層の配線層165が埋込まれている。キャパシタ下部電極115と配線層165とは、半導体基板の主表面からの高さが同一である。また、配線層165の上側には、キャパシタ上部電極1015と同一層の配線層1165が埋込まれている。キャパシタ上部電極1165と配線層11015とは、半導体基板の主表面からの高さが同一である。
【0006】
前述のような構造の図43に示す半導体装置において、トランジスタ101の上方にキャパシタを形成するために、トランジスタ101およびトランジスタ102それぞれの上方に層間絶縁膜1100が形成されている。また、トランジスタ101の上方の層間絶縁膜1100の上部に、キャパシタ上部電極1015が形成されている。なお、キャパシタ下部電極115とキャパシタ上部電極1015とにより、トランジスタ101のソース/ドレイン領域に接続されたキャパシタが構成されている。
【0007】
また、トランジスタ101およびトランジスタ102それぞれの上方に、層間絶縁膜1100およびキャパシタ上部電極1015を覆う層間絶縁膜1200が形成されている。この層間絶縁膜1200は、たとえば、図43に示す領域以外の領域において、ホール内を埋込むための絶縁膜である。
【0008】
上記図43に示すような半導体装置においては、キャパシタ下部電極115およびキャパシタ上部電極1015それぞれに対応するダミーパターンとしての配線層165および配線層1165が設けられている。ダミーパターンとしての配線層165および配線層1165は、キャパシタが設けられている高さ位置と同じ高さ位置において、半導体基板100の主表面に平行な方向にほぼ等しい間隔で多数設けられている。そのため、キャパシタを形成した後のCMP工程において、研磨後の層間絶縁膜の表面の起伏の均一性が確保される。
【0009】
【発明が解決しようとする課題】
上記図43に示す半導体装置においては、キャパシタを設けるために、半導体基板100の主表面に平行な方向にほぼ等しい間隔で、層間絶縁膜1100のほぼ全体にダミーパターンとしての配線層165および配線層1165それぞれを多数設ける必要がある。そのため、ダミーパターンを構成する材料の使用量が大きくなってしまうという問題がある。
【0010】
また、一方では、DRAMのような半導体装置においては、キャパシタの容量を増加させたいという課題がある。キャパシタの容量を増加させるためには、キャパシタ上部電極1015とキャパシタ下部電極115とが対向する面積を大きくする必要がある。そのために、キャパシタ上部電極1015およびキャパシタ下部電極115を半導体基板100の主表面に対して平行な方向に大きくするということが考えられる。しかしながら、キャパシタを半導体基板100の主表面に平行な方向に大きく形成すると、半導体装置を微細化することが困難になる。
【0011】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を提供することである。
【0012】
【課題を解決するための手段】
本発明の第1の局面の半導体装置は、半導体基板と、半導体基板の主表面と平行な上表面を有し、上表面から所定の深さにかけて形成された第1凹部と、上表面から所定の深さにかけて形成された第2凹部とを有する層間絶縁膜と、第1凹部に充填され、上表面と連続する上表面を有する第1導電性膜とを備えている。
【0013】
また、本発明の第1の局面の半導体装置は、第2凹部の表面に沿うように設けられたキャパシタ下部電極と、キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを備えている。
【0014】
上記の構成によれば、キャパシタ誘電体膜が、キャパシタ下部電極が形成する凹部の表面に沿うように設けられているため、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができる。
【0015】
また、キャパシタ上部電極は、キャパシタ誘電体膜が形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである第1導電性膜の高さを小さくすることができる。それにより、キャパシタに対応するダミーパターンの高さも小さくすることができるため、ダミーパタンを構成する材料の使用量を低減することができる。
【0016】
したがって、上記本発明の半導体装置の構造によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0017】
本発明の第1の局面の半導体装置は、キャパシタ誘電体膜と同一層を用いて形成された絶縁膜が、第1導電性膜の上表面を覆うように設けられていてもよい。また、半導体基板の主表面から絶縁膜の上表面までの高さと半導体基板の主表面からキャパシタ上部電極の上表面までの高さとが同一であってもよい。
【0018】
本発明の第1の局面の半導体装置は、半導体基板の主表面から第1導電性膜の上表面までの高さと半導体基板の主表面からキャパシタ上部電極の上表面までの高さとが同一であってもよい。
【0019】
本発明の第1の局面の半導体装置は、キャパシタ下部電極が形成する凹部が、所定の導電性膜がエッチングされることにより形成されていてもよい。
【0020】
本発明の第1の局面の半導体装置は、第1導電性膜が、下側導電性膜と上側導電性膜とにより構成される2層構造であってもよい。また、キャパシタ下部電極が、底面部と側面部とを有していてもよい。また、キャパシタ下部電極は、底面部が下側導電性膜と同一層を用いて形成され、かつ、側面部が上側導電性膜と同一層を用いて形成されていてもよい。
【0021】
本発明の第1の局面の半導体装置は、キャパシタ下部電極が形成する凹部が、複数の溝部を用いて形成されていてもよい。また、キャパシタ誘電体膜が、複数の溝部の表面それぞれに沿うように設けられていてもよい。また、キャパシタ上部電極が、複数に分離された状態で、キャパシタ誘電体膜が形成する複数の凹部それぞれの内側に設けられていてもよい。
【0022】
上記の構成によれば、キャパシタ誘電体膜が複数の凹部を有しているため、キャパシタの静電容量をさらに増加させることができる。
【0023】
本発明の第1の局面の半導体装置は、半導体基板に設けられた領域であって、トランジスタが設けられた素子形成領域と、素子形成領域を囲むとともに、上表面から所定の深さにかけて形成された凹部を有する素子分離絶縁膜と、凹部内に設けられ、トランジスタのソース/ドレイン領域に電気的に接続されたキャパシタとを備えている。
【0024】
上記の構成によれば、キャパシタ誘電体膜が、キャパシタ下部電極が形成する凹部の表面に沿うように設けられているため、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができる。
【0025】
また、キャパシタは、素子分離絶縁膜内に設けられているため、キャパシタに対応するダミーパターンを形成する必要がない。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0026】
したがって、上記本発明の半導体装置の構造によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0027】
本発明の第2の局面の半導体装置は、キャパシタが、凹部の表面に沿うように形成されキャパシタ下部電極と、キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを含んでいてもよい。また、キャパシタ下部電極とソース/ドレイン領域とを電気的に接続する配線層が設けられていてもよい。
【0028】
【発明の実施の形態】
以下、図1〜図42を用いて本発明の実施の形態の半導体装置およびその製造方法を説明する。
【0029】
(実施の形態1)
まず、図1〜図10を用いて実施の形態1の半導体装置の構造および半導体装置の製造方法を説明する。
【0030】
図1に示すように、本実施の形態の半導体装置の構造は、以下に記載するようなものである。
【0031】
半導体基板1の主表面から所定の深さにかけて素子形成領域を分離するための素子分離絶縁膜2が形成されている。素子形成領域には、半導体基板1の主表面から所定の深さにかけてソース/ドレイン領域3,53が形成されている。
【0032】
また、ソース/ドレイン領域3同士の間の領域の上部には、ゲート絶縁膜4が形成されている。ゲート絶縁膜4の上にはゲート電極5が形成されている。また、ゲート絶縁膜4およびゲート電極5の側面には側壁絶縁膜6が形成されている。
【0033】
また、ソース/ドレイン領域53同士の間にはゲート絶縁膜54が形成されている。ゲート絶縁膜54の上にはゲート電極55が形成されている。ゲート絶縁膜54およびゲート電極55の側壁には側壁絶縁膜56が形成されている。
【0034】
また、トランジスタおよび素子分離絶縁膜2の上表面を覆うように層間絶縁膜7が形成されている。また、層間絶縁膜7を上下方向に貫通してソース/ドレイン領域3に接続するコンタクトプラグ8が形成されている。また、層間絶縁膜7を上下方向に貫通してソース/ドレイン領域53に接続するコンタクトプラグ58が形成されている。また、コンタクトプラグ8の上面には配線層9が接続されている。また、コンタクトプラグ58の上面には配線層59が接続されている。
【0035】
また、層間絶縁膜7、配線層9および配線層59の上には層間絶縁膜10が形成されている。層間絶縁膜10を上下方向に貫通して配線層9にビアプラグ11が接続されている。また、層間絶縁膜10を上下方向に貫通して配線層59にビアプラグ61が接続されている。また、ビアプラグ11の上面には配線層12が接続されている。また、ビアプラグ61の上面には配線層62が接続されている。
【0036】
さらに、層間絶縁膜10、配線層12および配線層62を覆うように層間絶縁膜13が形成されている。また、層間絶縁膜13の上部であって、ゲート電極55の上方には、第1凹部が設けられている。この第1凹部には配線層65が埋め込まれている。また、層間絶縁膜13の上部であって、ゲート電極5の上方には、第2凹部が設けられている。この第2凹部の表面に沿うように、キャパシタ下部電極を構成する導電性膜15aが設けられている。配線層65の上表面と層間絶縁膜13の上表面とは、連続するように形成されているとともに、半導体基板1の主表面からの高さが同一である。
【0037】
また、層間絶縁膜13、導電性膜15aおよび配線層65それぞれの上表面を覆うように絶縁層15bが形成されている。この絶縁層15bは、キャパシタの誘電体膜を構成している。また、絶縁層15bの表面が形成する凹部には、キャパシタ上部電極を構成する導電性膜15cが埋込まれている。この絶縁層15bの上表面と導電性膜15cの上表面とは、半導体基板1の主表面からの高さが同一であるとともに、半導体基板1の主表面にほぼ平行に形成されている。
【0038】
また、絶縁層15bおよび導電性膜15cを覆うように層間絶縁膜16が形成されている。この層間絶縁膜16を上下方向に貫通して導電性膜15cにビアプラグ17が接続されている。また、層間絶縁膜16の上部に配線層18が埋込まれている。配線層18は、ビアプラグ17の上面に接続されている。また、配線層18と同一層を用いて形成された配線層68が層間絶縁膜16の上部に埋め込まれている。
【0039】
上記図1に示すような構造の半導体装置においては、キャパシタ下部電極を構成する導電性膜15aが、半導体基板1の主表面に対して垂直方向に延びる2つの側面部と、側面部同士の間に設けられ、半導体基板1の主表面に平行な方向に延びる底面部とを有している。そのため、導電性膜15aが形成する凹部に沿うように形成された絶縁膜15bは、その両端部において半導体基板1の主表面に対して垂直方向に延びる側面部と半導体基板の主表面に対して平行に延びる底面部とを有している。したがって、キャパシタ誘電体膜とキャパシタの下部電極とが接触する面積が、図43を用いて従来技術で説明したキャパシタに比較して大きくなる。
【0040】
そのため、本実施の形態の半導体装置は、従来のキャパシタに比べて半導体基板1の主表面に平行な方向にキャパシタの面積を大きくすることなく、キャパシタ容量を増加させることができている。
【0041】
また、図1に示すような構造の半導体装置においては、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの高さを小さくすることができる。その結果、キャパシタ容量を大きくしながら、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンの高さを小さくすることができるため、ダミーパターンを構成する材料の使用量を低減することができる。
【0042】
したがって、図1に示すような構造の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0043】
次に、図2〜図10を用いて、図1に示す構造のキャパシタを有する半導体装置の製造方法を説明する。
【0044】
本実施の形態の半導体装置の製造方法においては、配線層12および配線層62が形成されるまでの工程は、従来から用いられている手法と同様の手法が用いられる。次に、本実施の形態の半導体装置の製造方法においては、図2に示すように、層間絶縁膜10、配線層12および配線層62が形成された状態で、層間絶縁膜13が形成される。この層間絶縁膜13の上表面は半導体基板1の主表面に平行に形成される。
【0045】
次に、図3に示すように、層間絶縁膜13を上下方向に貫通して配線層9に接続されるビアプラグ14が形成される。その後、ビアプラグ14の上面に接続する導電性膜15が形成される。また、導電性膜15と同一層を用いて配線層65が形成される。この時点においては、層間絶縁膜13、導電性膜15および配線層65それぞれの上表面は、連続するように形成されるとともに、半導体基板1の主表面に対して平行に形成されている。
【0046】
次に、図4に示すように、導電性膜15の両端部から所定の距離までの位置よりも外側の位置の導電性膜15の上表面を覆うとともに、層間絶縁膜13および配線層65の表面を覆うレジスト膜250を形成する。その後、レジスト膜250をマスクとして、導電性膜15をエッチングすることにより、図5に示すようなキャパシタ下部電極を構成する導電性膜15aを形成する。図5に示す導電性膜15aの表面が形成する凹部の表面積は、図5に示す導電性膜15aの幅と図43に示す従来のキャパシタ下部電極の幅とが同一である場合、図43に示す従来のキャパシタ下部電極の上表面の表面積よりも大きくなっている。
【0047】
次に、図6に示すように、層間絶縁膜13の上表面、配線層65の上表面および導電性膜15aの表面に沿って絶縁膜15bが形成される。したがって、絶縁膜15bと導電性膜15aとが接触する部分の面積は、図43に示す従来技術のキャパシタ下部電極115の上表面とキャパシタ誘電体膜とが接触する部分の面積よりも大きくなっている。
【0048】
次に、図7に示すように、絶縁膜15bの上表面を覆うように導電性膜25を形成する。次に、図7に示す状態において、導電性膜25をエッチバックすることにより、図8に示すような導電性膜15cが形成される。なお、導電性膜15cの形成工程においては、図7に示す導電性膜25がエッチバックされるときに、絶縁膜15bがストッパ膜として機能する。このような製造工程においては、導電性膜15cの上表面と絶縁膜15bの上表面とは、連続するように形成されるとともに、半導体基板1の主表面に平行に形成される。
【0049】
次に、図9に示すように、絶縁膜15bおよび導電性膜15cの上に層間絶縁膜16が形成される。次に、図10に示すように、層間絶縁膜16を上下方向に貫通し導電性膜15dにビアプラグ17が接続される。その後、図1に示すように、配線層18および配線層68が形成される。
【0050】
上記のような本実施の形態の半導体装置の製造方法によれば、図9に示すように、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0051】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を形成することができる。
【0052】
(実施の形態2)
次に、実施の形態2の半導体装置の構造および製造方法を説明する。まず、図11を用いて、本実施の形態の半導体装置の構造を説明する。図11に示すように、本実施の形態の半導体装置は、実施の形態1の半導体装置の構造とほぼ同様である。すなわち、層間絶縁膜13にビアプラグ14が形成されるまでの構造は図1を用いて示した実施の形態1の半導体装置の構造と全く同様である。
【0053】
また、層間絶縁膜16に形成される配線層18および配線層68の構造も実施の形態1の半導体装置の構造と全く同様である。したがって、本実施の形態の半導体装置は、ゲート電極5の上方に形成されるキャパシタの構造、ならびに、ゲート電極55の上方に形成される配線層の構造およびその周辺の絶縁膜の構造のみが異なる。
【0054】
本実施の形態の半導体装置においては、ビアプラグ14の上側に導電性膜15が形成されている。この導電性膜15の両端部それぞれには、半導体基板1の主表面に対して垂直方向に延びる2つの導電性膜26aが接続されている。なお、導電性膜15と2つの導電性膜26aとにより、キャパシタ下部電極が構成されている。
【0055】
また、導電性膜15の上表面に接するとともに導電性膜26aの内側面に接し、かつ半導体基板1の主表面に平行な方向に延びる、絶縁膜35aが形成されている。また、導電性膜26aの内側面に接するとともに、絶縁膜35aの両端部それぞれから半導体基板1の主表面に対して垂直方向に延びる2つの絶縁膜27aが形成されている。なお、導電性膜15および導電性膜26aが形成する凹部の表面に沿うように形成された、絶縁膜35aおよび2つの絶縁膜27aによりキャパシタ誘電体膜が構成されている。
【0056】
また、絶縁膜35aおよび絶縁膜27aによりキャパシタ誘電体膜の表面が形成する凹部内に導電性膜26aが形成されている。このキャパシタ誘電体膜の表面が形成する凹部内の導電性膜26aによりキャパシタ上部電極が構成されている。
【0057】
また、配線層65の上表面に接するように導電性膜26aが形成されている。配線層65および導電性膜26により、2層構造の配線層が形成されている。
【0058】
また、層間絶縁膜13の上表面には、絶縁膜35aが形成されている。また、絶縁膜35aの上表面には絶縁膜27aが形成されている。
【0059】
上記のような本実施の形態の半導体装置によれば、キャパシタ下部電極を構成する前述の導電性膜15および2つの導電性膜26aの表面が形成する凹部の表面に沿うように、キャパシタ絶縁膜を構成する2つの絶縁膜27aおよび絶縁膜35が形成される。そのため、実施の形態1のキャパシタと同様に、2つの絶縁膜27aおよび絶縁膜35によって構成されるキャパシタ誘電体膜と導電性膜26aおよび導電性膜15によって構成されるキャパシタ下部電極との接触面積が従来のキャパシタに比べて大きくなっている。
【0060】
そのため、本実施の形態の半導体装置は、従来技術で説明した半導体装置よりもキャパシタ容量が増加している。また、キャパシタ誘電体膜を構成する2つの絶縁膜27aおよび絶縁膜35が形成する凹部に、導電性膜26aが埋込まれている。この導電性膜26aはキャパシタ上部電極として機能する。
【0061】
また、配線層65の上にも、導電性膜26aが形成されている。この配線層65の上に形成された導電性膜26aの上表面と、キャパシタ上部電極を構成する導電性膜26aの上表面とは、半導体基板1の主表面からの高さが同じであるとともに、半導体基板1の主表面に対して平行である。
【0062】
また、本実施の形態の半導体装置においては、従来技術の半導体装置に比較して、半導体基板の主表面に対して平面な方向に面積を大きくすることなく、キャパシタ誘電体膜とキャパシタ下部電極とが接触する面積が増加している。
【0063】
次に、本実施の形態の半導体装置の製造方法を図12〜図20を用いて説明する。本実施の形態の半導体装置の製造方法においては、配線層12および配線層62が形成されるまでの工程は、従来から用いられている手法と同様の手法が用いられる。
【0064】
本実施の形態の半導体装置の製造方法においては、層間絶縁膜13を上下に貫通して配線層9にビアプラグ14が接続される。次に、ビアプラグ14の上面に接触する導電性膜15とゲート電極55の上部に形成される配線層65とが同一層になるように形成される。このとき、層間絶縁膜13、導電性膜15および配線層65それぞれの表面は半導体基板1の主表面に対して平行になっている。次に、層間絶縁膜13、導電性膜15および配線層65の上表面の上に半導体基板の主表面に平行な方向に延びる絶縁膜35が形成される。
【0065】
次に、図13に示すように、配線層65の上表面の上側部分が開口されているとともに、導電性膜15の上表面の両端それぞれから所定の距離の位置までの領域の上側部分が開口されているレジスト膜251が形成される。
【0066】
次に、図13に示す状態において、レジスト膜251をマスクとして絶縁膜35がエッチングされる。このエッチングにおいては、導電性膜15の表面および配線層65の表面が露出するまでエッチングが行なわれる。それにより、図14に示すような絶縁膜35aが形成される。
【0067】
次に、図14に示す状態で、導電性膜25を半導体基板1の主表面と平行に延びるように半導体基板1の主表面上の全体にわたって形成する。それにより、図15に示すような構造が得られる。次に、導電性膜25がエッチバックされることにより、導電性膜25の上表面が平坦化される。それにより、図16に示すような構造が得られる。
【0068】
次に、図17に示すように、配線層65の上側の領域全体、導電性膜15の上側の領域であって、絶縁膜35aに覆われていない部分の上側の領域、および、導電性膜15の上側の領域であって、絶縁膜35aの両端それぞれから所定の距離をおいた位置よりも内側の領域を覆うように、レジスト膜252が形成される。
【0069】
図17に示す状態において、導電性膜26のエッチバックが行なわれる。それにより、図18に示すように、配線層65の上部に導電性膜26aが形成される。また、導電性膜15の両端部それぞれに接続されるとともに、半導体基板1の主表面から垂直な方向に延びる2つの導電性膜26aが形成される。また、導電性膜15の両端部それぞれに接続する導電性膜26aから所定の距離をおいた位置よりも内側の領域において、半導体基板1の主表面に対して平行に延びる導電性膜26aが形成される。
【0070】
次に、図18に示す状態において、半導体基板1上の全領域を覆うように絶縁膜27が形成される。次に、図19に示す状態において、導電性膜26aの上表面が露出するまで絶縁膜27がエッチバックされる。それにより、図20に示すように、導電性膜15の上側には、導電性膜15に接続された導電性膜26aと、導電性膜15と接触しない導電性膜26aとの間に、半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜27aが、絶縁膜35の両端それぞれに接続されている。また、絶縁膜35aの上表面に接するとともに、半導体基板1の主表面と平行な方向に延びる絶縁膜27aが形成される。このとき、絶縁膜27aの上表面と導電性膜26aの上表面とは、一体的に連続したものとなり、半導体基板1の主表面に平行な状態となる。
【0071】
次に、上記のような製造方法によれば、導電性膜15と、導電性膜15の両端部それぞれに接続され、半導体基板1の主表面に対して垂直な方向に延びる2つの導電性膜26aとによりキャパシタ下部電極が形成される。また、キャパシタ下部電極の表面が形成する凹部の表面に沿うように、半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜27aと、2つの絶縁膜27aそれぞれの下側端部が接続され、半導体基板1の主表面に対して平行に延びる絶縁膜35aとによりキャパシタ誘電体膜が形成されている。
【0072】
したがって、このような製造方法によれば、実施の形態1に記載の半導体装置の製造方法と同様に、キャパシタ誘電体膜を半導体基板1の主表面に平行な方向に大きくすることなく、キャパシタ誘電体膜とキャパシタ下部電極との接触面積を大きくすることができる。したがって、半導体基板1の主表面に平行な方向に大きな構造にすることなく、キャパシタの静電容量を増加させることができる。
【0073】
また、キャパシタ上部電極に相当する導電性膜26aは、キャパシタ誘電体膜に相当する絶縁膜35aおよび絶縁膜27aが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタの容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0074】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0075】
なお、その後においては、キャパシタ上部電極を構成する導電性膜26aにビアプラグ17が形成される工程等が行なわれるが、これらの形成工程については実施の形態1の半導体装置の製造方法と同様の手法により行なわれる。
【0076】
(実施の形態3)
次に、図21〜図27を用いて実施の形態3の半導体装置およびその製造方法を説明する。まず、図21を用いて本実施の形態の半導体装置の構造を説明する。本実施の形態の半導体装置においては、層間絶縁膜13が形成されるまでの構造においては、実施の形態1または実施の形態2において説明した図1または図11に示す構造と全く同様の構造である。
【0077】
また、配線層18および配線層68の構造についても実施の形態1および実施の形態2の半導体装置の構造と全く同様の構造である。したがって、本実施の形態の半導体装置においては、キャパシタが形成される領域およびその周辺部分の構造のみが実施の形態1または実施の形態2の半導体装置の構造と異なる。
【0078】
すなわち、本実施の形態の半導体装置は、層間絶縁膜13内において上下方向に延びるビアプラグ14の上側に、キャパシタ下部電極を構成する導電性膜15aが形成されている。このキャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直に延びる部分と、その両端部の内側に接続された半導体基板1の主表面に対して平行に延びる部分とを有している。
【0079】
また、導電性膜15aが形成する凹部の底面に沿うように、絶縁膜15dが形成されている。この絶縁膜15dの両端部の上側であって、導電性膜15aの半導体基板1の主表面に対して垂直に延びる部分の内側側面に接して、半導体基板1の主表面に垂直な方向に延びる2つの絶縁膜15eが形成されている。この2つの絶縁膜15eの内側側面に接するとともに、絶縁膜15dの上表面に接触するように導電性膜15cが形成されている。また、この導電性膜15eの上表面に接触するようにビアプラグ17が形成されている。
【0080】
上記のような構造の本実施の形態の半導体装置によれば、キャパシタ下部電極は、半導体基板1の主表面に対して垂直な方向に延びる部分と、半導体基板1の主表面に対して平行な方向に延びる部分とを有するように形成されている。そのため、キャパシタ下部電極の表面により凹部が形成されている。キャパシタ下部電極が形成する凹部の表面と、その凹部の表面に沿うように形成されたキャパシタ誘電体膜を構成する絶縁膜15eおよび絶縁膜15dが接触する部分の面積は、従来のキャパシタに比べて大きくなっている。したがって、実施の形態1または2に記載のキャパシタと同様に、キャパシタの容量が増加している。また、本実施の形態の半導体装置によれば、水平方向にキャパシタ誘電体膜を大きくすることなくキャパシタの容量を大きくすることができる。
【0081】
さらに、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15dおよび絶縁膜15eが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0082】
その結果、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0083】
次に、実施の形態3の半導体装置の製造方法を図22〜図27を用いて説明する。本実施の形態の半導体装置の製造方法においては、層間絶縁膜13にビアプラグ14が形成されるまでは実施の形態1または実施の形態2の半導体装置の製造方法と全く同様である。
【0084】
次に、ビアプラグ14の上表面に接触する導電性膜15が形成されるとともに、配線層65が形成される。導電性膜15と配線層65とは、半導体基板1の主表面からの高さが同一の層である。このとき、層間絶縁膜13、導電性膜15および配線層65それぞれの上表面は、連続するように形成されるとともに、半導体基板1の主表面に対してほぼ平行な状態となっている。
【0085】
次に、図22に示すように、導電性膜15の両端から所定の距離をおいた部分よりも内側の部分のみに開口が設けられたレジスト膜253が形成される。次に、レジスト膜253をマスクとして、導電性膜15に酸素がイオン注入される。注入される酸素が導電性膜15の厚さ方向のほぼ中央部に偏析するように、ドーズ量および注入エネルギが調整されている。また、導電性膜15の酸素イオンが偏析する部分は、金属酸化膜またはシリコン酸化膜などに変化する。
【0086】
その結果、図23に示すように、導電性膜15の内部には絶縁膜15dが形成される。この絶縁膜15dは、導電性膜15とは区別される膜として形成される。なお、導電性膜15には、たとえば、銅、またはアルミニウムなどの金属または多結晶シリコン膜が用いられている。
【0087】
次に、図24に示すように、層間絶縁膜13および配線層65を覆うとともに、導電性膜15の両端それぞれから所定の距離の位置それぞれよりも外側の領域を覆うように、レジスト膜254が形成される。また、絶縁膜15dの上側にも、レジスト膜254が形成される。このレジスト膜254は、絶縁膜15dの両端それぞれから所定の距離をおいた位置それぞれよりも内側の領域に形成される。したがって、レジスト膜254により形成される開口は、絶縁膜15dの両端部それぞれから所定の距離をおいた位置それぞれよりも内側の領域の上側に形成される。
【0088】
図24に示す状態で、レジスト膜254をマスクとして導電性膜15がエッチングされる。このときのエッチングでは、絶縁膜15dの表面が露出するまでエッチングが行なわれる。それにより、図25に示すように、図24に示す導電性膜15が2つの導電性膜15aと15cに分離される。この導電性膜15aによりキャパシタ下部電極が構成される。また、導電性膜15cによりキャパシタ上部電極が構成される。
【0089】
次に、図26に示すように、絶縁膜150が、絶縁膜15d、導電性膜15aおよび導電性膜15cにより形成される凹部を埋込むとともに、層間絶縁膜13および配線層65の上表面を覆うように半導体基板1の主表面に対して平行に形成される。次に、絶縁膜150がエッチバックされることにより、層間絶縁膜13、導電性膜15aの上表面、導電性膜15cの上表面および配線層65の上表面を露出させる。それにより図27に示す構造が得られる。
【0090】
上記のような本実施の形態の半導体装置の製造方法によれば、キャパシタの下部電極15aが、半導体基板1の主表面に対して垂直に延びる部分と、半導体基板1の主表面に対して平行に延びる部分とを有するように形成される。また、キャパシタ誘電体膜が、半導体基板1の主表面に対して平行な方向に延びる絶縁膜15dと、絶縁膜15dの両端部それぞれにおいて半導体基板1の主表面に対して垂直な方向に延びる2つの絶縁膜15eとにより構成されている。
【0091】
その結果、本実施の形態のキャパシタの製造方法によれば、実施の形態1〜3のキャパシタと同様に、半導体基板1の主表面にほぼ平行な方向にキャパシタを大きくすることなく、キャパシタ下部電極とキャパシタ誘電体膜とが接触する面積を大きくすることができる。その結果、半導体基板1の主表面に平行な方向にキャパシタの面積を大きくすることなく、キャパシタ容量を増加させることができる。
【0092】
また、キャパシタ上部電極に相当する導電性膜15cは、キャパシタ誘電体膜に相当する絶縁膜15dおよび絶縁膜15eが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0093】
その結果、本実施の形態のキャパシタの製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0094】
(実施の形態4)
次に、図28〜図33を用いて本発明の実施の形態4の半導体装置およびその製造方法を説明する。まず、図28を用いて本実施の形態の半導体装置の構造を説明する。
【0095】
本実施の形態の半導体装置においては、層間絶縁膜13が形成されるまでの構造は、実施の形態1〜3の半導体装置の構造と全く同様である。図28に示すように、本実施の形態の半導体装置においては、層間絶縁膜13を上下方向に貫通するビアプラグ14が形成される。ビアプラグ14の上側には、複数の溝を有する導電性膜15aが形成される。複数の溝は、紙面に垂直な方向に延びている。また、導電性膜15aによりキャパシタ下部電極が構成されている。
【0096】
また、層間絶縁膜13の上表面、配線層65の上表面、および、導電性膜15aが形成する複数の溝の表面それぞれに沿うように絶縁膜15bが形成されている。この絶縁膜15bによりキャパシタ誘電体膜が構成されている。
【0097】
また、絶縁膜15bが形成する複数の溝それぞれの内部には、導電性膜15f、導電性膜15g、導電性膜15hが形成されている。導電性膜15f、導電性膜15gおよび導電性膜15hにより、キャパシタ上部電極が構成されている。
【0098】
また、絶縁膜15bの上に形成された層間絶縁膜16には、導電性膜15f,15g,15hそれぞれに接続したビアプラグ17c,17b,17aが設けられている。このビアプラグ17c,17b,17aの上面には、配線層18が接続されている。また、配線層18と配線層68とは、半導体基板1の主表面からの高さが同一である。
【0099】
上記のような本実施の形態の半導体装置によれば、キャパシタ下部電極を構成する導電性膜15aの表面により複数の溝が形成されている。そのため、半導体基板1の主表面に平面な方向にキャパシタ下部電極を大きくすることなく、キャパシタ下部電極を構成する導電性膜15とキャパシタ誘電体膜を構成する絶縁膜15bとが接触する面積を大きくすることができる。
【0100】
そのため、本実施の形態の半導体装置によれば、半導体基板1に平行な方向にキャパシタを大きくすることなく、キャパシタ容量を増加させることができる。
【0101】
また、キャパシタ上部電極に相当する導電性膜15f,15g,15hそれぞれは、キャパシタ誘電体膜に相当する絶縁膜bが形成する複数の凹部それぞれ内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0102】
その結果、本実施の形態の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0103】
また、実施の形態1〜3の半導体装置よりもさらにキャパシタの静電容量を大きくすることができる。
【0104】
次に、本実施の形態の半導体装置の製造方法を図29〜図33を用いて説明する。本実施の形態の半導体装置の製造方法においては、層間絶縁膜13にビアプラグ14が形成されるまでは実施の形態1〜実施の形態3の半導体装置の製造方法と全く同様である。
【0105】
本実施の形態の半導体装置の製造方法においては、図29に示すように、層間絶縁膜13に上下方向に貫通するビアプラグ14が形成される。ビアプラグ14の上表面に接触するように導電性膜15が形成されるとともに、導電性膜15と同一層に配線層65が形成される。
【0106】
次に、層間絶縁膜13の上表面および配線層65の上表面を覆うとともに、導電性膜15の両端部それぞれから所定の距離の位置それぞれよりも外側の領域覆うレジスト膜255が形成される。また、導電性膜15の上表面上の中央部近傍には、2つの孤立したレジスト膜255が形成される。
【0107】
次に、図29に示す状態において、レジスト膜255をマスクとして導電性膜15がエッチングされる。それにより、図30に示すような構造が得られる。図30に示す導電性膜15aによりキャパシタ下部電極が構成されている。この図30に示す構造においては、導電性膜15aの形状が、櫛型状になっている。キャパシタ下部電極としての導電性膜15aは紙面に垂直方向に延びる3つの溝を有している。すなわち、キャパシタ下部電極を構成する導電性膜15aは、半導体基板1の主表面に対して垂直な方向に延びる4つの側壁部と、その4つの側壁部の下部側おいて半導体基板1の主表面に対して平行に延び、4つの側壁部の下端が一体的に形成された底面部とが設けられている。
【0108】
次に、図31に示すように、層間絶縁膜13の上表面、配線層65の上表面および導電性膜15aの表面に沿うように絶縁膜15bが一定の厚さで形成される。次に、図32に示すように、絶縁膜15bの表面を覆うように導電性膜550が形成される。このとき、導電性膜550は、絶縁膜15bの表面が形成する複数の凹部それぞれを埋込むように形成される。
【0109】
次に、導電性膜550がエッチバックされることにより、絶縁膜15bの上表面が露出する。それにより、図33に示すような構造が得られる。図33に示す構造においては、絶縁膜15bの上表面と、絶縁膜15bの表面が形成する凹部に埋込まれた導電性膜15f,15g,15hそれぞれの上表面とは半導体基板1の主表面からの高さが同一である。
【0110】
次に、キャパシタ上部電極を構成する導電性膜15f,15g,15hそれぞれに接続するビアプラグ17c,17b,17aが層間絶縁膜16に設けられる。その後、ビアプラグ17c,17b,17aの上面に接続する配線層18が形成されるとともに、配線層18と同一層に配線層68が形成されることによって、図28に示されるような構造が得られる。
【0111】
上記のような本実施の形態の半導体装置の製造方法によれば、図33に示すように、キャパシタ上部電極に相当する導電性膜15f,15g,15hは、キャパシタ誘電体膜に相当する絶縁膜bが形成する凹部内に設けられている。そのため、従来のキャパシタに比較して、キャパシタ容量を大きくしながら、キャパシタの高さを小さくすることができる。その結果、キャパシタに対応するダミーパターンである配線層65の高さを小さくすることができる。したがって、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0112】
また、キャパシタの下部電極を構成する導電性膜15とキャパシタ誘電体膜を構成する絶縁膜15bとが接触する面積は、従来のキャパシタよりも大きくなっている。したがって、本実施の形態の半導体装置の製造方法によれば、半導体基板1の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を増加させることができる。
【0113】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0114】
なお、本実施の形態のキャパシタの製造方法には、実施の形態1のキャパシタの製造方法と同様の製造方法が用いられている。しかしながら、本実施の形態のキャパシタを実施の形態2または3のキャパシタの製造方法と同様の製造方法により形成しても、前述の効果を得ることができる。
【0115】
(実施の形態5)
実施の形態5の半導体装置およびその製造方法を図34〜図42を用いて説明する。
【0116】
まず、図34を用いて実施の形態5の半導体装置の構造を説明する。本実施の形態の半導体装置においては、実施の形態1〜4の半導体装置の構造と同様の構造である。しかしながら、本実施の形態の半導体装置は、層間絶縁膜13の上部近傍にキャパシタが形成されていないことが実施の形態1〜4の半導体装置の構造と異なる。
【0117】
したがって、層間絶縁膜13の上部近傍に形成された導電性膜15と配線層65とは、ともに一層構造である。したがって、本実施の形態の半導体装置の構造によれば、従来技術において示したキャパシタに対応するダミーパターンが2層構造である半導体装置に比較して、ダミーパターンの高さを小さくすることができる。
【0118】
また、本実施の形態の半導体装置においては、キャパシタが、素子分離絶縁膜2aに形成された凹部に埋込まれていることが実施の形態1〜4の半導体装置の構造と異なる。
【0119】
本実施の形態の半導体装置は、素子分離絶縁膜2aに形成された凹部の表面に沿うように、導電性膜20aが形成されている。導電性膜20aによりキャパシタ下部電極が構成されている。したがって、キャパシタ下部電極は、半導体基板1の主表面に対して垂直な方向に延びる部分および半導体基板1の主表面に対して平行な方向に延びる部分を有している。
【0120】
また、導電性膜20aが形成する凹部の底面に沿うように絶縁膜20dが形成されている。導電性膜20aが形成する凹部の2つの内側面それぞれに沿うように2つの絶縁膜20eが形成されている。絶縁膜20dと2つの絶縁膜20eとにより、キャパシタ誘電体膜が構成されている。
【0121】
また、絶縁膜20dおよび2つの絶縁膜20eが形成する凹部に、導電性膜20cが埋込まれている。この導電性膜20cによりキャパシタ上部電極が構成されている。また、導電性膜20cの上表面に接するとともに、ソース/ドレイン領域3の上表面に接する配線層300が形成されている。また、キャパシタ上部電極を構成する導電性膜20cの上表面には、ビアプラグ88が接続されている。このビアプラグ88は配線層9に接続されている。
【0122】
なお、上述した本実施の形態の半導体装置の特徴部分の構造以外の構造については、実施の形態1〜4において、図1、図11、図21および図28を用いて示した構造と全く同様の構造である。
【0123】
上記の構造の本実施の形態の半導体装置によれば、キャパシタが、素子分離絶縁膜2a内に埋込まれている。そのため、キャパシタに対応するダミーパターンを形成する必要がない。つまし、一層の配線層15に対応する一層のダミーパターンである配線層65のみを設けるだけで、後工程におけるCMP後の層間絶縁膜16の上表面の平坦化を実現することができる。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0124】
また、キャパシタ誘電体膜は、半導体基板1の主表面に対して垂直な方向に延びる部分および半導体の主表面に対して平行な方向に延びる部分を有している。そのため、実施の形態1〜4の半導体装置と同様に、半導体基板の主表面に平行な方向にキャパシタの上部電極および下部電極を大きくすることなく、キャパシタの容量を増加させることができる。
【0125】
その結果、本実施の形態の半導体装置によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【0126】
次に、図35〜図42を用いて実施の形態5の半導体装置の製造方法を説明する。実施の形態5の半導体装置の製造方法においては、まず、半導体基板1の主表面から所定の深さにかけて、素子形成領域を形成するための素子分離絶縁膜2が形成される。
【0127】
次に、素子形成領域の半導体基板1の主表面から所定の深さにかけてソース/ドレイン領域3およびソース/ドレイン領域53が形成される。また、ソース/ドレイン領域3同士に挟まれた領域の上部にはゲート絶縁膜4が形成される。また、ゲート絶縁膜4の上にはゲート電極5が形成される。また、ゲート絶縁膜4およびゲート電極5の側壁には側壁絶縁膜6が形成される。
【0128】
また、ソース/ドレイン領域53同士に挟まれた領域の上部にはゲート絶縁膜54が形成される。次に、ゲート絶縁膜54およびゲート電極55の側壁には側壁絶縁膜56が形成される。
【0129】
次に、素子分離絶縁膜2、ソース/ドレイン領域3,53、側壁絶縁膜6,56およびゲート電極5,55を一体的に覆うようにレジスト膜256が形成される。ただし、レジスト膜256は、導電性膜20の上表面の一部の領域において開口されている。その後、レジスト膜256の開口部において露出する素子分離絶縁膜2がエッチングされる。それにより、素子分離絶縁膜2aが形成される。この素子分離絶縁膜2aに導電性膜200が埋込まれる。その結果、図35に示す構造が得られる。
【0130】
このレジスト膜256をマスクとして、図36において矢印で示す方向に、導電性膜20に対してイオン注入が行なわれる。このイオン注入おいては酸素イオン200が注入される。導電性膜20の酸素イオンが偏析する部分は、金属酸化膜またはシリコン酸化膜などに変化する。
【0131】
次に、レジスト膜256が除去される。それにより、図37に示すように、導電性膜20の内部には、絶縁膜20dが形成される。この絶縁膜20dは導電性膜20とは区別可能な膜になっている。なお、導電性膜20には、たとえば、銅、またはアルミニウムなどの金属または多結晶シリコン膜が用いられている。
【0132】
また、前述のイオン注入工程においては、酸素イオンの濃度のピークが、導電性膜20の主表面から所定の深さの位置(導電性膜20の上下方向の略中央部)に形成されるように、ドーズ量および注入エネルギが決定されている。したがって、図37に示すように、イオン注入後の絶縁膜20bは、導電性膜20dの主表面から所定の深さの位置にのみ延在するように形成される。
【0133】
次に、図38に示すように、導電性膜20の両端部それぞれから所定の距離をおいた位置それぞれよりの外側の領域を覆うレジスト膜257が形成される。また、レジスト膜257は、絶縁膜20bの両端それぞれから所定の距離をおいた位置それぞれよりも内側の領域を覆う。
【0134】
その後、レジスト膜257をマスクとして、導電性膜200が、絶縁膜20dの表面が露出するまでエッチングされる。それにより、図39に示すような構造が得られる。すなわち、キャパシタ下部電極を構成する導電性膜20aとキャパシタ上部電極を構成する導電性膜20cとが形成される。
【0135】
次に、図40に示すように、半導体基板1の主表面を一体的に覆う絶縁膜650が形成される。この絶縁膜650は、導電性膜20cと導電性膜20aとの間に形成された凹部を埋込むように形成される。
【0136】
次に、図40に示す絶縁膜650がエッチバックされることにより、ゲート電極5,55の上表面およびソース/ドレイン領域3,53の上表面が露出する。それにより、図41に示すような構造が得られる。
【0137】
図41に示すような構造においては、導電性膜20aと導電性膜20cとの間に2つの絶縁膜20eが埋込まれている。この絶縁膜20dおよび2つの絶縁膜20eにより、キャパシタ誘電体膜が構成される。
【0138】
次に、図42に示すように、導電性膜20aの上表面の一部と、ソース/ドレイン領域3の上表面とを接続するように配線層300が形成される。この配線層300によりキャパシタとトランジスタとが電気的に接続される。
【0139】
上記のような本実施の形態の半導体装置の製造方法によれば、半導体基板1の主表面に対して平行な方向に延びる部分と、半導体基板1の主表面に対して垂直な方向に延びる部分とを有するようにキャパシタ下部電極を構成する導電性膜20aが形成される。そのため、半導体基板1の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を増加させることができる。
【0140】
また、上記の実施の形態の半導体装置の製造方法によれば、キャパシタを素子分離絶縁膜2a内に埋込むように形成することができる。そのため、キャパシタに対応するダミーパターンを形成する必要がない。したがって、一層の配線層15に対応する一層のダミーパターンである配線層65のみを設けるだけで、後工程におけるCMP後の層間絶縁膜16の上表面の平坦化を実現することができる。その結果、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができる。
【0141】
その結果、本実施の形態の半導体装置の製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる半導体装置を製造することができる。
【0142】
なお、本実施の形態の半導体装置の製造方法においては、実施の形態3のキャパシタの製造方法と同様の製造方法が用いられてキャパシタが形成されている。しかしながら、本実施の形態のキャパシタの製造方法として、実施の形態1または2のキャパシタの製造方法を用いても、前述の効果と同様の効果を得ることができる。
【0143】
また、本実施の形態のキャパシタ上部電極には、一体構造の導電性膜が用いられているが、実施の形態4のキャパシタ上部電極と同様に、複数に分離されたキャパシタ上部電極を用いてもよい。それにより、実施の形態4の半導体装置と同様に、キャパシタの静電容量をよりさらに増加させることができる。
【0144】
また、上記実施の形態1〜5の半導体装置においては、キャパシタ上電極またはキャパシタ下部電極には、不純物を含む多結晶シリコン、銅膜、アルミニウム膜、銅/アルミニウム合金膜、若しくは、銅/アルミニウム合金とシリコンとの合金膜が用いられる。
【0145】
キャパシタ上電極またはキャパシタ下部電極は、CVD(Chemical Vapor Deposition)法、めっき、またはスパッタ法等を用いて形成される。
【0146】
また、キャパシタ誘電体膜には、シリコン酸化膜、シリコン窒化膜、Ta2O5(酸化タンタル)膜、または、BST(チタン酸バリウムストロンチウム)膜が用いられる。
【0147】
また、上記実施の形態1〜5の半導体装置のキャパシタは、MIM(Metal Insulator Metal)キャパシタである。また、コンタクトプラグまたは配線層には、タングステンまたはチタンなどの金属、ならびに、不純物を含む多結晶シリコン膜等が用いられる。また、層間絶縁膜には、CVD法またはスパッタ法により堆積されたシリコン酸化膜またはシリコン窒化膜が用いられる。
【0148】
また、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0149】
【発明の効果】
本発明の半導体装置およびその製造方法によれば、半導体基板の主表面に平行な方向にキャパシタを大きくすることなく、キャパシタの静電容量を大きくすることができるという効果と、キャパシタに対応するダミーパターンを構成する材料の使用量を低減することができるという効果との双方を得ることができる。
【図面の簡単な説明】
【図1】実施の形態1の半導体装置の構造を示す断面図である。
【図2】実施の形態1の半導体装置の製造方法を説明するための図である。
【図3】実施の形態1の半導体装置の製造方法を説明するための図である。
【図4】実施の形態1の半導体装置の製造方法を説明するための図である。
【図5】実施の形態1の半導体装置の製造方法を説明するための図である。
【図6】実施の形態1の半導体装置の製造方法を説明するための図である。
【図7】実施の形態1の半導体装置の製造方法を説明するための図である。
【図8】実施の形態1の半導体装置の製造方法を説明するための図である。
【図9】実施の形態1の半導体装置の製造方法を説明するための図である。
【図10】実施の形態1の半導体装置の製造方法を説明するための図である。
【図11】実施の形態2の半導体装置の構造を示す断面図である。
【図12】実施の形態2の半導体装置の製造方法を説明するための図である。
【図13】実施の形態2の半導体装置の製造方法を説明するための図である。
【図14】実施の形態2の半導体装置の製造方法を説明するための図である。
【図15】実施の形態2の半導体装置の製造方法を説明するための図である。
【図16】実施の形態2の半導体装置の製造方法を説明するための図である。
【図17】実施の形態2の半導体装置の製造方法を説明するための図である。
【図18】実施の形態2の半導体装置の製造方法を説明するための図である。
【図19】実施の形態2の半導体装置の製造方法を説明するための図である。
【図20】実施の形態2の半導体装置の製造方法を説明するための図である。
【図21】実施の形態3の半導体装置の構造を説明するための断面図である。
【図22】実施の形態3の半導体装置の製造方法を説明するための図である。
【図23】実施の形態3の半導体装置の製造方法を説明するための図である。
【図24】実施の形態3の半導体装置の製造方法を説明するための図である。
【図25】実施の形態3の半導体装置の製造方法を説明するための図である。
【図26】実施の形態3の半導体装置の製造方法を説明するための図である。
【図27】実施の形態3の半導体装置の製造方法を説明するための図である。
【図28】実施の形態4の半導体装置の構造を説明するための断面図である。
【図29】実施の形態4の半導体装置の製造方法を説明するための図である。
【図30】実施の形態4の半導体装置の製造方法を説明するための図である。
【図31】実施の形態4の半導体装置の製造方法を説明するための図である。
【図32】実施の形態4の半導体装置の製造方法を説明するための図である。
【図33】実施の形態4の半導体装置の製造方法を説明するための図である。
【図34】実施の形態5の半導体装置の構造を説明するための断面図である。
【図35】実施の形態5の半導体装置の製造方法を説明するための図である。
【図36】実施の形態5の半導体装置の製造方法を説明するための図である。
【図37】実施の形態5の半導体装置の製造方法を説明するための図である。
【図38】実施の形態5の半導体装置の製造方法を説明するための図である。
【図39】実施の形態5の半導体装置の製造方法を説明するための図である。
【図40】実施の形態5の半導体装置の製造方法を説明するための図である。
【図41】実施の形態5の半導体装置の製造方法を説明するための図である。
【図42】実施の形態5の半導体装置の製造方法を説明するための図である。
【図43】従来の半導体装置を説明するための図である。
【符号の説明】
1 半導体装置、2 素子分離絶縁膜、3,53 ソース/ドレイン領域、4,54 ゲート絶縁膜、5,55 ゲート電極、6,56 側壁絶縁膜、7 層間絶縁膜、8,58 コンタクトプラグ、9,59 配線層、10 層間絶縁膜、11,61 ビアプラグ、12,62 配線層、13 層間絶縁膜、14 ビアプラグ、15,15a 導電性膜、15b 絶縁膜、15c 導電性膜、15d,15e 絶縁膜、15f,15g,15h 導電性膜、16 層間絶縁膜、17,17a,17b,17c ビアプラグ、18 配線層、27a,35a 絶縁膜、26a,20a,20c 導電性膜、20b,20e 絶縁膜、62,65,68 配線層、88 ビアプラグ、300 配線層。
Claims (8)
- 半導体基板と、
該半導体基板の主表面と平行な上表面を有し、該上表面から所定の深さにかけて形成された第1凹部と、前記上表面から所定の深さにかけて形成された第2凹部とを有する層間絶縁膜と、
前記第1凹部に充填され、前記上表面と連続する上表面を有する第1導電性膜と、
前記第2凹部の表面に沿うように設けられたキャパシタ下部電極と、
該キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、
該キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを備えた、半導体装置。 - 前記キャパシタ誘電体膜と同一層を用いて形成された絶縁膜が、前記第1導電性膜の上表面を覆うように設けられ、
前記半導体基板の主表面から前記絶縁膜の上表面までの高さと前記半導体基板の主表面から前記キャパシタ上部電極の上表面までの高さとが同一である、請求項1に記載の半導体装置。 - 前記半導体基板の主表面から前記第1導電性膜の上表面までの高さと前記半導体基板の主表面から前記キャパシタ上部電極の上表面までの高さとが同一である、請求項1に記載の半導体装置。
- 前記キャパシタ下部電極が形成する凹部は、所定の導電性膜がエッチングされることにより形成された、請求項1に記載の半導体装置。
- 前記第1導電性膜は、下側導電性膜と上側導電性膜とにより構成される2層構造であり、
前記キャパシタ下部電極は、底面部と側面部とを有し、該底面部が前記下側導電性膜と同一層を用いて形成され、かつ、該側面部が前記上側導電性膜と同一層を用いて形成された、請求項1に記載の半導体装置。 - 前記キャパシタ下部電極が形成する凹部は、複数の溝部を用いて形成され、
前記キャパシタ誘電体膜は、前記複数の溝部の表面それぞれに沿うように設けられ、
前記キャパシタ上部電極は、複数に分離された状態で、前記キャパシタ誘電体膜が形成する複数の凹部それぞれの内側に設けられた、請求項1に記載の半導体装置。 - 半導体基板に設けられた領域であって、トランジスタが設けられた素子形成領域と、
該素子形成領域を囲むとともに、上表面から所定の深さにかけて形成された凹部を有する素子分離絶縁膜と、
前記凹部内に設けられ、前記トランジスタのソース/ドレイン領域に電気的に接続されたキャパシタとを備えた、半導体装置。 - 前記キャパシタは、
前記凹部の表面に沿うように形成されキャパシタ下部電極と、
該キャパシタ下部電極が形成する凹部の表面に沿うように設けられたキャパシタ誘電体膜と、
該キャパシタ誘電体膜が形成する凹部内に設けられたキャパシタ上部電極とを含み、
前記キャパシタ下部電極と前記ソース/ドレイン領域とを電気的に接続する配線層を備えた、請求項7に記載の半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002165548A JP2004014770A (ja) | 2002-06-06 | 2002-06-06 | 半導体装置 |
DE10252818A DE10252818B4 (de) | 2002-06-06 | 2002-11-13 | Halbleitervorrichtung mit Kondensator |
US10/315,029 US6815747B2 (en) | 2002-06-06 | 2002-12-10 | Semiconductor device comprising capacitor |
CNA021563136A CN1466222A (zh) | 2002-06-06 | 2002-12-13 | 具有电容器的半导体器件 |
KR10-2003-0008684A KR20030095202A (ko) | 2002-06-06 | 2003-02-12 | 캐패시터를 구비한 반도체 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002165548A JP2004014770A (ja) | 2002-06-06 | 2002-06-06 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004014770A true JP2004014770A (ja) | 2004-01-15 |
Family
ID=29706689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002165548A Withdrawn JP2004014770A (ja) | 2002-06-06 | 2002-06-06 | 半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6815747B2 (ja) |
JP (1) | JP2004014770A (ja) |
KR (1) | KR20030095202A (ja) |
CN (1) | CN1466222A (ja) |
DE (1) | DE10252818B4 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005347335A (ja) * | 2004-05-31 | 2005-12-15 | Nec Electronics Corp | 半導体装置およびその製造方法 |
KR100802222B1 (ko) * | 2006-05-17 | 2008-02-11 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
JPWO2005109508A1 (ja) * | 2004-04-28 | 2008-03-21 | 富士通株式会社 | 半導体装置及びその製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050258512A1 (en) * | 2004-05-21 | 2005-11-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Topographically elevated microelectronic capacitor structure |
US20060157776A1 (en) * | 2005-01-20 | 2006-07-20 | Cheng-Hung Chang | System and method for contact module processing |
US7619872B2 (en) * | 2006-05-31 | 2009-11-17 | Intel Corporation | Embedded electrolytic capacitor |
US7732889B2 (en) * | 2007-05-24 | 2010-06-08 | Akros Silicon Inc. | Capacitor structure in a semiconductor device |
JP2008205165A (ja) * | 2007-02-20 | 2008-09-04 | Toshiba Corp | 半導体集積回路装置 |
KR100862870B1 (ko) * | 2007-05-10 | 2008-10-09 | 동부일렉트로닉스 주식회사 | 반도체 소자 및 그 제조방법 |
KR101924231B1 (ko) * | 2010-10-29 | 2018-11-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 기억 장치 |
US8551856B2 (en) | 2011-09-22 | 2013-10-08 | Northrop Grumman Systems Corporation | Embedded capacitor and method of fabricating the same |
US9929148B1 (en) * | 2017-02-22 | 2018-03-27 | Globalfoundries Inc. | Semiconductor device including buried capacitive structures and a method of forming the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3380373B2 (ja) * | 1995-06-30 | 2003-02-24 | 三菱電機株式会社 | 半導体記憶装置及びその製造方法 |
KR100209748B1 (ko) * | 1996-01-10 | 1999-07-15 | 구본준 | 반도체 장치의 축전기 제조방법 |
JP2925006B2 (ja) | 1996-07-04 | 1999-07-26 | 日本電気株式会社 | 半導体装置およびその製造方法 |
KR100267093B1 (ko) * | 1997-04-29 | 2000-10-02 | 윤종용 | 박막커패시터및그제조방법 |
JPH11186524A (ja) * | 1997-12-24 | 1999-07-09 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
JP3505465B2 (ja) | 2000-03-28 | 2004-03-08 | 株式会社東芝 | 半導体装置及びその製造方法 |
EP1146556A1 (en) * | 2000-04-07 | 2001-10-17 | Lucent Technologies Inc. | A process for fabricating an integrated ciruit that has embedded dram and logic devices |
JP3629187B2 (ja) * | 2000-06-28 | 2005-03-16 | 株式会社東芝 | 電気フューズ、この電気フューズを備えた半導体装置及びその製造方法 |
US6333221B1 (en) * | 2000-07-20 | 2001-12-25 | United Microelectronics Corp. | Method for improving planarization of an ILD layer |
JP4573009B2 (ja) * | 2000-08-09 | 2010-11-04 | 日本電気株式会社 | 金属酸化物誘電体膜の気相成長方法 |
KR100399072B1 (ko) * | 2001-05-03 | 2003-09-26 | 주식회사 하이닉스반도체 | 강유전체 메모리 소자의 제조 방법 |
-
2002
- 2002-06-06 JP JP2002165548A patent/JP2004014770A/ja not_active Withdrawn
- 2002-11-13 DE DE10252818A patent/DE10252818B4/de not_active Expired - Fee Related
- 2002-12-10 US US10/315,029 patent/US6815747B2/en not_active Expired - Fee Related
- 2002-12-13 CN CNA021563136A patent/CN1466222A/zh active Pending
-
2003
- 2003-02-12 KR KR10-2003-0008684A patent/KR20030095202A/ko not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005109508A1 (ja) * | 2004-04-28 | 2008-03-21 | 富士通株式会社 | 半導体装置及びその製造方法 |
JP4787152B2 (ja) * | 2004-04-28 | 2011-10-05 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
JP2005347335A (ja) * | 2004-05-31 | 2005-12-15 | Nec Electronics Corp | 半導体装置およびその製造方法 |
KR100802222B1 (ko) * | 2006-05-17 | 2008-02-11 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20030095202A (ko) | 2003-12-18 |
DE10252818A1 (de) | 2004-01-08 |
DE10252818B4 (de) | 2005-04-14 |
CN1466222A (zh) | 2004-01-07 |
US6815747B2 (en) | 2004-11-09 |
US20030227085A1 (en) | 2003-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8383477B2 (en) | Semiconductor device including vertical transistor and method for manufacturing the same | |
TW200414307A (en) | Semiconductor device and method of manufacturing the same | |
US20010006242A1 (en) | Semiconductor device with pillar-shaped capacitor storage node | |
US20060183252A1 (en) | Ferroelectric memory devices | |
KR20000023205A (ko) | 고-ε-유전체 또는 강유전체를 갖는, 핀-스택-원리에 따른커패시터 및 네가티브 형태를 이용한 그것의 제조 방법 | |
JP2004014770A (ja) | 半導体装置 | |
KR20050057080A (ko) | 개구부 내에 도전성 재료를 형성하는 방법 및 그 방법과 관련된 구조 | |
KR20040000068A (ko) | 반도체 메모리 소자 및 그 제조방법 | |
JP4559757B2 (ja) | 半導体装置およびその製造方法 | |
US5665626A (en) | Method of making a chimney capacitor | |
KR20010089214A (ko) | 반도체 메모리 장치 및 그 제조방법 | |
JPH03256358A (ja) | 半導体記憶装置およびその製造方法 | |
US20010005033A1 (en) | Semiconductor device and its manufacture | |
US7612399B2 (en) | Semiconductor integrated circuit devices | |
CN114256153B (zh) | 半导体结构形成方法以及半导体结构 | |
JP3654898B2 (ja) | 半導体メモリデバイスの製造方法 | |
JPH09232542A (ja) | 半導体装置およびその製造方法 | |
US6544841B1 (en) | Capacitor integration | |
KR100306183B1 (ko) | 반도체장치및그제조방법 | |
US20030227802A1 (en) | Semiconductor memory device and method for manufacturing the device | |
TW479353B (en) | Manufacturing method of MIM capacitor | |
TW200405551A (en) | Semiconductor device | |
US20020195631A1 (en) | Semiconductor device and manufacturing method thereof | |
US6400022B1 (en) | Semiconductor device and fabrication process therefor and capacitor structure | |
KR20020016308A (ko) | 반도체 장치의 커패시터 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050906 |