TWI831396B - 製造記憶單元之方法 - Google Patents

製造記憶單元之方法 Download PDF

Info

Publication number
TWI831396B
TWI831396B TW111137070A TW111137070A TWI831396B TW I831396 B TWI831396 B TW I831396B TW 111137070 A TW111137070 A TW 111137070A TW 111137070 A TW111137070 A TW 111137070A TW I831396 B TWI831396 B TW I831396B
Authority
TW
Taiwan
Prior art keywords
layer
transistor
forming
area
electrode
Prior art date
Application number
TW111137070A
Other languages
English (en)
Other versions
TW202303935A (zh
Inventor
盧超群
Original Assignee
鈺創科技股份有限公司
新加坡商發明創新暨合作實驗室有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈺創科技股份有限公司, 新加坡商發明創新暨合作實驗室有限公司 filed Critical 鈺創科技股份有限公司
Publication of TW202303935A publication Critical patent/TW202303935A/zh
Application granted granted Critical
Publication of TWI831396B publication Critical patent/TWI831396B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

記憶單元結構包含一矽基板,一電晶體,和一電容。該矽基板具有一矽表面。該電晶體耦接該矽表面,其中該電晶體包含一閘極結構,一第一導通區,以及一第二導通區。該電容具有一存儲電極,其中該電容位在該電晶體上方以及該存儲電極電耦接該電晶體的第二導通區。該電容包含一電容周邊,以及該電晶體是位在該電容周邊之內。

Description

製造記憶單元之方法
本發明是有關於一種記憶單元結構,尤指一種具有更緻密的結構,較小的面積,較低的漏電流,較高的電容值等優點的記憶單元結構。
在現有技術中,最重要的揮發性記憶體(volatile-memory)積體電路之一是使用1T1C存儲單元的動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)。該動態隨機存取記憶體不僅提供了最佳的性價比功能並作為計算和通信應用程式的主記憶體和/或緩衝記憶體,也可作為用以從通過縮小矽晶圓上的最小特徵尺寸(從幾微米到二十奈米(nm)左右)微縮制程技術以維持摩爾定律的最佳驅動力。近來持續使用嵌入式靜態隨機存取記憶體(Static Random Access Memory,SRAM)作為其微縮制程驅動力的邏輯技術聲稱獲得接近5奈米的制程的最先進的技術節點。相較之下,該動態隨機存取記憶體所聲稱的最佳技術節點仍在10至12奈米以上,其主要問題在於即使通過非常激進的設計規則也很難進一步微縮該1T1C存儲單元的結構,其中該非常激進的設計規則是用於微縮該1T1C存儲單元內的存取電晶體(也就是1T)和立體(three-dimensional,3D)存儲電容(也就是1C),且該立體存儲電容例如為在該存取電晶體的一部分的上方和隔離區上方的堆疊電容,或例如為位於該存取電晶體下方非常深的溝槽電容。
在此詳細闡述儘管在技術、設計和設備上投入巨額的資金和研發的情況下微縮該1T1C記憶體單元所面臨的眾所周知的困難。以下列舉一些眾所周知困難的例子:(1)該存取電晶體的結構遭受不可避免且更嚴重的漏電流問題,從而降低了該1T1C存儲單元的存儲功能(例如減少該動態隨機存取記憶體的刷新時間);(2)佈局字元線,位元線和存儲電容的幾何和表面形貌的複雜性以及該字元線、該位元線、該存儲電容和該存取電晶體的閘極,源極和汲極之間的連接在微縮該動態隨機存取記憶體時變得越來越糟;(3)該溝槽電容遭受該溝槽電容的深度與開口尺寸的長寬比過大的問題,且該溝槽電容的製程幾乎停止在14奈米節點製程;(4)該堆疊電容遭受更糟的表面形貌,並且在該存取電晶體的主動區域從20度扭轉到50度以上後,幾乎沒有空間可作為該存儲電容的存儲電極與該存取電晶體的源極之間的接觸空間。另外,用於該位元線接觸該存取電晶體的汲極的可允許空間越來越小,但卻又必須艱難地維持自對準特徵;(5)除非能夠發現用於獲得較高存儲電容的電容值的高介電常數(high-k)絕緣體材料,否則該存取電晶體惡化的漏電流問題將要求增加該堆疊電容器的電容值並保持持續增加堆疊電容器的高度以得到更大的電容面積;(6)因為在日益要求更高的密度/容量和性能的情況下,並沒有解決上述困難的技術突破,所以對該動態隨機存取記憶體晶片更好的可靠性,品質和彈性的所有日益增長的要求都變得越來越難以滿足等等。
然而現有技術並沒有任何技術突破以解決上述困難,所以如何設計該1T1C存儲單元的新結構去解決上述困難已成為該1T1C存儲單元的設計者的一項重要課題。
本發明公開一種動態隨機存取記憶體存儲單元(HCoT cell)和製造方法以實現1T1C記憶單元結構,其中該HCoT單元包含一H型(H-shape)存儲電容(也就是1C)和一存取電晶體(也就是1T),且該H型存儲電容直接在該存取電晶體上方鉗住該存取電晶體。
本發明的一實施例公開一種記憶單元結構。該記憶單元結構包含一矽基板,一電晶體,和一電容。該矽基板具有一矽表面。該電晶體耦接該矽表面,其中該電晶體包含一閘極結構,一第一導通區,以及一第二導通區。該電容具有一存儲電極,其中該電容位在該電晶體上方以及該存儲電極電耦接該電晶體的第二導通區。該電容包含一電容周邊,以及該電晶體是位在該電容周邊之內。
在本發明的另一實施例中,該存儲電極包含一周邊,且該電晶體是位在該周邊之內。
在本發明的另一實施例中,該電容另包含一個對電極,且該對電極覆蓋該電晶體。
在本發明的另一實施例中,該記憶單元結構另包含一位元線,其中該位元線電耦接該電晶體的第一導通區,以及該位元線位於該矽表面下方。
在本發明的另一實施例中,該記憶單元結構另包含一位元線,其中該位元線通過一橋接觸電耦接該電晶體的第一導通區,該橋接觸位於該矽表面下方,該橋接觸的第一側壁與該位元線的邊緣對齊,該橋接觸包含一上半部和 一下半部,該橋接觸的上半部毗鄰該矽基板,以及該橋接觸的下半部通過一第一隔離層與該矽基板隔離。
在本發明的另一實施例中,該電容包含一第一突出區,一第二突出區,和一連接區,其中該連接區位於該電晶體的閘極結構上方且連接該第一突出區和該第二突出區,以及該第一突出區和該第二突出區局限該電晶體。
在本發明的另一實施例中,該電晶體另包含一第一間隔層和一第二間隔層,該第一間隔層覆蓋該閘極結構的第一側壁以及位於該矽表面上方,且該第二間隔層覆蓋該閘極結構的第二側壁以及位於該矽表面上方,其中該電容的第二突出區從該矽表面向上沿伸以及毗鄰該第二間隔層,以及該電容的第一突出區毗鄰該第一間隔層且從該矽表面上方的一隔離區向上沿伸。
本發明的另一實施例公開了一種記憶單元結構。該記憶單元結構包含一矽基板,一電晶體,和一電容。該矽基板具有一矽表面。該電晶體耦接該矽表面,其中該電晶體包含一閘極結構,一第一導通區,以及一第二導通區。該電容電耦接該電晶體的第二導通區,以及該電容完全覆蓋該電晶體。
在本發明的另一實施例中,該電容包含一存儲電極,以及該存儲電極包含一第一突出區,一第二突出區,和一連接區,其中該連接區垂直堆疊於該電晶體的頂部上方且連接該第一突出區和該第二突出區,以及該第二突出區連接該電晶體的第二導通區。
在本發明的另一實施例中,該第一突出區和該第二突出區鉗住該電 晶體。
在本發明的另一實施例中,該記憶單元結構另包含一個對電極,複數個第一電晶體,以及複數個第一存儲電極,其中該複數個第一存儲電極分別對應該複數個第一電晶體,該對電極覆蓋該複數個第一電晶體和該複數個第一存儲電極,以及該對電極耦接一第一電壓源。
在本發明的另一實施例中,該記憶單元結構另包含一位元線,其中該位元線電耦接該電晶體的第一導通區,該位元線位於該矽表面下方,以及該位元線通過一橋接觸電耦接該電晶體的第一導通區。
在本發明的另一實施例中,該橋接觸位於該矽表面下方,以及該橋接觸的第一側壁與該位元線的邊緣對齊。
在本發明的另一實施例中,該橋接觸包含一上半部和一下半部,該橋接觸的上半部毗鄰該矽基板,以及該橋接觸的下半部通過一第一隔離層與該矽基板隔離。
在本發明的另一實施例中,該電晶體另包含一第一間隔層和一第二間隔層,該第一間隔層覆蓋該閘極結構的第一側壁以及位在該矽表面上方,以及該第二間隔層覆蓋該閘極結構的第二側壁和位在該矽表面上方;其中該存儲電極的第二突出區從該矽表面向上延伸和毗鄰該第二間隔層,以及該存儲電極的第一突出區毗鄰該第一間隔層且從該矽表面上方的一隔離區向上沿伸。
在本發明的另一實施例中,該第一突出區的頂部具有一矩形形狀,以及該第二突出區的頂部具有另一矩形形狀。
本發明的另一實施例公開了一種包含單元區和在該單元區之內的內部區的記憶單元結構。該記憶單元結構包含一電晶體和一電容。該電晶體位於該內部區之內。該電容位於該單元區之內,該電容包含複數個突出區和一連接區,以及該連接區位在該電晶體上方且連接該複數個突出區。
在本發明的另一實施例中,該單元區具有一矩形形狀,以及該複數個突出區中的一突出區的頂部具有另一矩形形狀。
在本發明的另一實施例中,該電晶體包含一閘極結構,在該閘極結構上方的帽隔離層,一第一導通區,以及一第二導通區,其中該複數個突出區的第一突出區從該帽隔離層的頂部向上沿伸和向下沿伸。
在本發明的另一實施例中,該複數個突出區的第二突出區從該帽隔離層的頂部向上沿伸和向下沿伸,以及該第二突出區連接該電晶體的第二導通區。
在本發明的另一實施例中,該複數個突出區局限該電晶體。
本發明的另一實施例公開了一種記憶單元結構。該記憶單元結構包含一矽基板,一電晶體,和一電容。該矽基板具有一矽表面。該電晶體耦接該矽表面以及包含一閘極結構,在該閘極結構上方的一帽隔離層,一第一導通區, 以及一第二導通區。該電容電耦接該電晶體的第二導通區,其中該電容位在該電晶體上方且包含一電容周邊,以及該電容周邊具有一矩形形狀。
在本發明的另一實施例中,該電晶體位在該電容周邊之內。
在本發明的另一實施例中,該電容另包含一存儲電極,以及該存儲電極包含一第一突出區,一第二突出區,和一連接區,其中該連接區位於該帽隔離層上方且連接該第一突出區和該第二突出區,以及該第一突出區和該第二突出區從該帽隔離層的頂部向上沿伸和向下沿伸。
在本發明的另一實施例中,該第一突出區從該帽隔離層的頂部向上沿伸至高於該連接區的一位置,以及從該帽隔離層的頂部向下沿伸至該矽表面上方的一隔離區。
在本發明的另一實施例中,該第二突出區從該帽隔離層的頂部向上沿伸至高於該連接區的另一位置,以及從該帽隔離層的頂部向下沿伸至該矽表面。
本發明的另一實施例公開了一種記憶單元結構。該記憶單元結構包含一對電極,複數個第一電晶體,和複數個第一存儲電極。該複數個第一存儲電極分別對應該複數個第一電晶體;其中該對電極覆蓋該複數個第一電晶體和該複數個第一存儲電極,以及該對電極耦接一第一電壓源。
202:基板
204:襯墊氧化層
206:襯墊氮化層
208、HSS-1/2、HSS-1/3、HSS:水平矽表面
210:溝槽
214:氧化層
304、1702、1902、2202:旋塗電介質
306、702、1106:光阻層
502:第一氧化層
504:第一氧化/STI層
602、2802、3802、5002、6102、6702:金屬層
902、UGBL:矽表面下位元線
1002、CVD-STI-Oxide2:第二氧化層
1102:第三氧化層
1104:第二氮化層
1302:U形通道
1304:高介電常數絕緣層
1306:閘極材料
1402:第三氮化層
1404:第四氧化層
1602:第四氮化層
1604:第五氧化層
1606:第一多晶矽層
1704:第一氧化帽層
1802:第五氮化層
1904、2302、6402:光阻
2102:第七氧化層
2402:第八氧化層
2802:鎢插銷
2804:第六氮化層
3202:n+原位摻雜矽層
3302:第九氧化層
3402:多晶矽層-a
3502:多晶矽層-b
4012:n+輕摻雜汲極
4102:氧化層-a
4302:第一旋塗電介質
4502:氮化層-a
4702:氧化層-bb
4902:第一高介電常數絕緣層
5402:氮化層-cc
5702:氧化層-d
6002:第二高介電常數絕緣層
6301:n+原位重摻雜矽塔
6302:第三高介電常數絕緣層
AQ1、AQ2、AQ3:存取電晶體
Drain-1:第一汲極
Drain-2:第二汲極
EH-1D、EH-2D、EH-1+2D、LGS-2D:汲極電極
EH-1S、EH-2S、EH-1+2S、LGS-2S:源極電極
Hole-1/2、Hole-1/3:孔洞
LGS-2D-Tower:汲極電極塔
LGS-2S-Tower:源極電極塔
LGS-2DS:連接矽層
oxide-7 plug:第七氧化物插銷
SHAR:用於源極和汲極的晶種矽表面區
Source-1:第一源極
STI:淺溝槽隔離
Source-3:第三源極
Tungsten plug:鎢插銷
Wordline-1:第一字元線
Wordline-2:第二字元線
Wordline-3:第三字元線
WBW:鎢緩衝牆
10-55、102-202:步驟
圖1A是本發明的一實施例所公開的一種動態隨機存取記憶體存儲單元(1T1C cell)陣列的製造方法的流程圖。
圖1B、圖1C、圖1D、圖1E、圖1F、圖1G、圖1H、圖1I、圖1J是說明圖1A的示意圖。
圖2是說明沉積襯墊氮化層和襯墊氧化層以及形成淺溝槽隔離後的上視圖和沿著該X方向的剖面圖的示意圖。
圖3是說明沉積和回蝕第一氮化層以形成第一氮化間隔層,以及沉積旋塗電介質層和光阻層的示意圖。
圖4是說明蝕刻掉沒有被光阻層覆蓋的上邊緣第一氮化間隔層和旋塗電介質的示意圖。
圖5是說明剝離光阻層和旋塗電介質,且生成第一氧化層的示意圖。
圖6是說明沉積金屬層在溝槽中且通過該化學機械平坦化技術平坦化的示意圖。
圖7是說明沉積光阻層的示意圖。
圖8是說明蝕刻對應該主動區的末端的金屬層的示意圖。
圖9是說明移除光阻層且回蝕金屬層以形成矽表面下位元線的示意圖。
圖10是說明在溝槽中沉積第二氧化層的示意圖。
圖11是說明沉積第三氧化層,第二氮化層,以及光阻層,然後移除第三氧化層,第二氮化層,以及光阻層的不必要部份的示意圖。
圖12是說明移除光阻層,襯墊氮化層,以及襯墊氧化層的示意圖。
圖13是說明形成U形凹槽,形成高介電常數絕緣層以作為存取電晶體的閘極介電層,以及沉積並回蝕閘極材料以形成存取電晶體的字元線和閘極結構的示意圖。
圖14是說明沉積第三氮化層和第四氧化層,之後回蝕或平坦化第三氮化層和第四氧化層的示意圖。
圖15是說明蝕刻掉第二氮化層和第三氧化層的示意圖。
圖16是說明移除襯墊氮化層,回蝕第二氧化層,以及沉積和蝕刻第四氮化層,第五氧化層,以及第一多晶矽層的示意圖。
圖17是說明沉積和平坦化旋塗電介質,蝕刻第一多晶矽層的上半部,以及沉積和平坦化第一氧化帽層的示意圖。
圖18是說明移除旋塗電介質,然後沉積第五氮化層的示意圖。
圖19是說明沉積旋塗電介質層,沉積光阻,以及移除對應該源極的旋塗電介質層的示意圖。
圖20是說明蝕刻掉曝露的第五氮化層和位在該源極的區域的中心的襯墊氧化層,以及挖掘對應該源極的區域的中心的矽材料以產生孔洞的示意圖。
圖21是說明在孔洞熱生成第七氧化層的示意圖。
圖22是說明沉積和回蝕旋塗電介質層的示意圖。
圖23是說明沉積光阻覆蓋對應該源極的區域以及曝露出為該汲極保留的區域,然後移除曝露的旋塗電介質層,曝露的第五氮化層,曝露的襯墊氧化層,以及移除對應水平矽表面的矽材料以產生孔洞的示意圖。
圖24是說明移除光阻,然後熱生成第八氧化層以產生第八氧化間隔層的示意圖。
圖25是說明該動態隨機存取記憶體存儲單元陣列沿著該Y2方向的剖面圖的示意圖。
圖26是說明蝕刻孔洞內的下邊緣第一氮化間隔層的示意圖。
圖27是說明移除第五氮化層的示意圖。
圖28是說明沉積和回蝕金屬層以在孔洞內留下鎢插銷,以及沉積和蝕刻第六氮化層的示意圖。
圖29是說明回蝕該鎢插銷在水平矽表面下方的上半部的示意圖。
圖30是說明該鎢插銷連接至UGBL的示意圖。
圖31是說明移除第八氧化層的上半部的示意圖。
圖32是說明橫向生長n+原位摻雜矽層以形成n+矽汲環的示意圖。
圖33是說明在n+矽汲環上局部熱生成第九氧化層的示意圖。
圖34是說明回蝕第九氧化層,以及沉積和回蝕多晶矽層-a的示意圖。
圖35是說明移除該第六氮化間隔層,以及沉積和回蝕多晶矽層-b的示意圖。
圖36是說明移除所有的旋塗電介質層以及第五氮化層的示意圖。
圖37是說明動態隨機存取記憶體存儲單元(HCoT cell)陣列的上視圖的示意圖。
圖38是說明沉積金屬層以及和回蝕金屬層的部分以形成鎢緩衝牆的示意圖。
圖39是說明蝕刻掉第一氧化帽層,該第一多晶矽間隔層,以及襯墊氧化層以曝露出對應該源極和該汲極的水平矽表面的示意圖。
圖40是說明生成源極電極和汲極電極的示意圖。
圖40-1是說明通過快速熱退火(rapid thermal annealing,RTA)步驟形成用於源極電極或汲極電極到通道連接的n+輕摻雜汲極(n+ lightly doped drain,NLDD)的示意圖。
圖41是說明蝕刻該第五氧化間隔層,以及熱生成和蝕刻氧化層-a的示意圖。
圖42是說明生成源極電極和汲極電極的示意圖。
圖43是說明沉積和回蝕第一旋塗電介質層的示意圖。
圖44是說明蝕刻掉該鎢緩衝牆的示意圖。
圖45是說明沉積氮化層-a,以及通過該各向異性蝕刻技術蝕刻氮化層-a的示意圖。
圖46是說明移除多晶矽層-a和多晶矽層-b,以及蝕刻汲極電極的部分底部的示意圖。
圖47是說明熱生成氧化層-bb的示意圖。
圖48是說明移除該氮化層-a間隔層和第一旋塗電介質層的示意圖。
圖49是說明形成第一高介電常數絕緣層的示意圖。
圖50是說明沉積和回蝕金屬層的示意圖。
圖51是說明移除在第四氧化層上方的第一高介電常數絕緣層,然後蝕刻掉第四氧化層的示意圖。
圖52是說明移除第三氮化層的上半部和移除該第四氮化間隔層的上半部的示意圖。
圖53是說明橫向生長源極電極和汲極電極的示意圖。
圖54是說明沉積氮化層-cc,以及通過該化學機械平坦化技術以曝露汲極電極,源極電極,和氮化層-cc的示意圖。
圖55是說明移除該第一金屬對電極板和壁的示意圖。
圖56是說明通過將曝露的汲極電極和源極電極做為晶種生成用於該H型存儲電容的雙塔狀(twin-tower)存儲電極的示意圖。
圖57是說明熱生成氧化層-d以及各向異性蝕刻蝕刻氧化層-d的示意圖。
圖58是說明橫向和垂直生長n+原位重摻雜矽材料的示意圖。
圖59是說明移除該氧化層-d間隔層的示意圖。
圖60是說明移除第一高介電常數絕緣層以及形成第二高介電常數絕緣層的示意圖。
圖61是說明沉積金屬層以及利用該化學機械平坦化技術平坦化金屬層的示意圖。
圖62是說明回蝕該第二金屬對電極板和壁以及蝕刻掉在該雙塔狀存儲電極頂部的第二高介電常數絕緣層的示意圖。
圖63是說明通過在該雙塔狀存儲電極頂部的曝露的矽材料作為晶種,生成更高的n+原位重摻雜矽塔以作為該H型存儲電容的雙塔狀存儲電極,蝕刻第二高介電常數絕緣層,以及形成第三高介電常數絕緣層的示意圖。
圖64是說明形成光阻的示意圖。
圖65是說明蝕刻掉在該第二金屬對電極板和壁曝露的邊緣區域上的第三高介電常數絕緣層的示意圖。
圖66是說明移除光阻的示意圖。
圖67是說明沉積金屬層以完成該H型存儲電容的對電極板的示意圖。
圖68是說明本發明所公開的該HCoT單元的結構的示意圖。
圖69是說明該HCoT單元的簡化上視圖的示意圖。
請參照圖1A、圖1B、圖1C、圖1D、圖1E、圖1F,圖1A是本發明的一實施例所公開的一種動態隨機存取記憶體存儲單元(HCoT cell)陣列的製造方 法的流程圖,其中該HCoT單元即為1T1C記憶體單元,該製造方法詳細步驟如下:步驟10:開始;步驟15:基於一基板(例如,一p型矽基板),定義該動態隨機存取記憶體存儲單元陣列的主動區並形成淺溝槽隔離(shallow trench isolation,STI);步驟20:沿著該主動區的側壁,形成非對稱的間隔層;步驟25:在該非對稱的間隔層之間和該基板的水平表面之下,形成矽表面下導線(例如位元線);步驟30:形成該動態隨機存取記憶體存儲單元陣列的存取電晶體的字元線和閘極結構;步驟35:定義該動態隨機存取記憶體存儲單元陣列的存取電晶體汲極(也就是第一導通區)和源極(也就是第二導通區);步驟40:在該矽表面下導線和該存取電晶體的汲極之間形成連結;步驟45:形成該存取電晶體的汲極和源極;步驟50:在該存取電晶體上方形成一電容塔;步驟55:結束。
請參照圖1B和圖2,步驟15包含:步驟102:在基板202的水平矽表面208(也就是該水平表面)上方沉積襯墊氧化層204和襯墊氮化層206;步驟104:定義該動態隨機存取記憶體存儲單元陣列的主動區,且移除對應該主動區之外的水平矽表面208的基板材料(例如矽材料)以產生溝槽 210;步驟106:在溝槽210內沉積且回蝕氧化層214以在水平矽表面208下方形成該淺溝槽隔離(STI)。
請參照圖1C和圖3、圖4、圖5,步驟20包含:步驟108:沉積和回蝕第一氮化層以形成第一氮化間隔層(圖3);步驟110:在溝槽210內沉積旋塗電介質(spin-on dielectrics,SOD)304且通過化學機械平坦化(chemical mechanical polishing,CMP)技術平坦化(圖3);步驟112:在旋塗電介質304和襯墊氮化層206上方沉積光阻層306(圖3);步驟114:蝕刻掉沒有被光阻層306覆蓋的上邊緣第一氮化間隔層和旋塗電介質304(圖4);步驟116:剝離光阻層306和旋塗電介質304,且生成(例如熱生成)第一氧化層502(圖5)。
請參照圖1D和圖6、圖7、圖8、圖9、圖10,步驟25包含:步驟118:沉積金屬層602在溝槽210中且通過該化學機械平坦化技術平坦化(圖6);步驟120:沉積並圖案化光阻層702(圖7);步驟122:蝕刻對應該主動區的末端的金屬層602以形成多條導線(圖8);步驟124:移除光阻層702且回蝕金屬層602(該多條導線)以形成矽表面下位元線(underground bit line,UGBL)902或矽表面下導線(圖9); 步驟126:在溝槽210中沉積第二氧化層1002且通過該化學機械平坦化技術平坦化(圖10)。
請參照圖1E和圖11、圖12、圖13、圖14、圖15,步驟30包含:步驟128:沉積第三氧化層1102,第二氮化層1104,以及圖案化的光阻層1106,然後蝕刻掉第三氧化層1102和第二氮化層1104的不必要部份(圖11);步驟130:移除圖案化的光阻層1106,襯墊氮化層206,以及襯墊氧化層204,以及露出水平矽表面208(圖12);步驟132:蝕刻水平矽表面208以形成U形凹槽,在該U形凹槽內形成高介電常數(high-k)絕緣層1304,以及沉積和回蝕閘極材料1306(例如鎢)以形成該存取電晶體的字元線和閘極結構(圖13),其中該存取電晶體可以稱為U型電晶體;步驟134:沉積和回蝕第三氮化層1402,隨後沉積第四氧化層1404,之後回蝕或平坦化第四氧化層1404(圖14);步驟136:蝕刻掉第二氮化層1104和第三氧化層1102(圖15)。
請參照圖1F和圖16、圖17、圖18、圖19、圖20、圖21、圖22,步驟35包含:步驟138:移除襯墊氮化層206,以及回蝕第二氧化層1002至襯墊氧化層204的頂部;步驟140:分別沉積以及各向異性蝕刻(anisotropic etching)第四氮化層1602,第五氧化層1604,以及第一多晶矽層1606(圖16);步驟142:沉積和通過該化學機械平坦化技術平坦化旋塗電介質 1702,蝕刻第一多晶矽層1606的上半部,以及沉積和通過該化學機械平坦化技術平坦化第一氧化帽層1704(圖17);步驟144:移除旋塗電介質1702,然後沉積第五氮化層1802(圖18);步驟146:沉積和通過該化學機械平坦化技術平坦化旋塗電介質1902,沉積光阻1904,然後回蝕要移除的旋塗電介質1902(圖19);步驟148:蝕刻掉曝露的第五氮化層1802,襯墊氧化層204,以及對應水平矽表面HSS-1/3的矽材料以產生孔洞hole-1/3(圖20);步驟150:移除光阻1904以及熱生成第七氧化層2102(圖21);步驟152:在第七氧化層2102上方沉積旋塗電介質2202,然後回蝕旋塗電介質2202(圖22)。
請參照圖1G和圖23、圖24、圖25、圖26、圖27、圖28、圖29、圖30、圖31、圖32、圖33,步驟40包含:步驟154:沉積光阻2302,移除曝露的旋塗電介質1902、曝露的第五氮化層1802以及曝露的襯墊氧化層204,然後挖掘和移除對應水平矽表面HSS-1/2的矽材料以產生孔洞hole-1/2(圖23);步驟156:移除光阻2302和熱生成第八氧化層2402(圖24和圖25);步驟158:移除該下邊緣第一氮化間隔層以露出矽表面下位元線902(UGBL)的側壁,以及移除第五氮化層1802(圖26和圖27);步驟160:在孔洞hole-1/2中沉積金屬層2802以接觸矽表面下位元線902(UGBL)的側壁,然後沉積和回蝕第六氮化層2804以創造出第六氮化間隔層(圖28);步驟162:回蝕金屬層2802的上半部(圖29和圖30);步驟164:回蝕第八氧化層2402的上半部以露出對應孔洞hole-1/2 的矽材料(圖31);步驟166:基於露出的矽材料橫向生長n+原位摻雜(n+ in-situ doped)矽層3202以接觸該汲極和鎢插銷(圖32);步驟168:在n+原位摻雜矽層3202上方熱生成第九氧化層3302(圖33)。
請參照圖1H和圖34、圖35、圖36、圖37、圖38、圖39、圖40、圖40-1、圖41、圖42,步驟45包含:步驟170:回蝕第九氧化層3302,以及沉積和回蝕多晶矽層-a 3402(圖34);步驟171:移除該第六氮化間隔層,以及沉積和回蝕多晶矽層-b 3502(圖35);步驟172:移除所有的旋塗電介質層(也就是旋塗電介質1902和旋塗電介質2202)以及第五氮化層1802(圖36);步驟173:沉積和回蝕金屬層(例如鎢)3802(圖38);步驟174:蝕刻掉第一氧化帽層1704,該第一多晶矽間隔層,以及襯墊氧化層204(圖39);步驟175:通過選擇性外延生長技術生成源極電極EH-1S和汲極電極EH-1D(圖40);步驟176:蝕刻掉該第五氧化間隔層,以及熱生成並蝕刻氧化層-a 4102(圖41);步驟177:通過使用源極電極EH-1S和汲極電極EH-1D的曝露矽表面和該選擇性外延生長技術分別生成源極電極EH-2S和汲極電極EH-2D(圖42)。
請參照圖1I,圖1J和圖43、圖44、圖45、圖46、圖47、圖48、圖49、圖50、圖51、圖52、圖53、圖54、圖55、圖56、圖57、圖58、圖59、圖60、圖61、圖62、圖63、圖64、圖65、圖66、圖67,步驟50包含:步驟178:沉積和回蝕第一旋塗電介質4302(圖43);步驟179:蝕刻掉該鎢緩衝牆(圖44);步驟180:沉積和蝕刻氮化層-a 4502(圖45);步驟181:移除多晶矽層-a 3402和多晶矽層-b 3502,以及通過各向同性蝕刻技術蝕刻汲極電極EH-1D的底部的部分(圖46);步驟182:熱生成氧化層-bb 4702(圖47);步驟183:通過該各向同性蝕刻技術移除氮化層-a間隔層和第一旋塗電介質4302(圖48);步驟184:形成第一高介電常數絕緣層4902(圖49);步驟185:沉積和回蝕金屬層5002以產生第一金屬對電極板和壁(metal-counter-electrode-plate&wall-1,MCEPW-1)(圖50);步驟186:移除在第四氧化層1404上方的第一高介電常數絕緣層4902以及蝕刻掉第四氧化層1404(圖51);步驟187:蝕刻第三氮化層1402和該第四氮化間隔層(圖52);步驟188:通過該EH-2電極曝露的矽側壁在第三氮化層1402上方橫向生長n+原位摻雜矽材料(圖53);步驟189:沉積氮化層-cc 5402(圖54);步驟190:移除該第一金屬對電極板和壁(圖55);步驟191:通過將曝露的汲極電極LGS-2D和源極電極LGS-2S做為晶種,執行該選擇性外延生長技術以創造出雙塔狀(twin-tower-like)存儲電極(圖56); 步驟192:熱生成以及利用該各向異性蝕刻技術蝕刻氧化層-d 5702,以及移除氮化層-cc 5402(圖57);步驟193:利用該選擇性外延生長技術從汲極電極LGS-2D和源極電極LGS-2S的曝露的矽區域橫向和垂直生長n+原位重摻雜矽(heavily n+ in-situ-doped silicon)材料(圖58);步驟194:移除氧化層-d間隔層(圖59);步驟195:移除第一高介電常數絕緣層4902以及形成第二高介電常數絕緣層6002(圖60);步驟196:沉積金屬層(例如鎢)6102,然後利用該化學機械平坦化技術平坦化金屬層6102(圖61);步驟197:回蝕該第二金屬對電極板和壁,然後蝕刻掉在該雙塔狀存儲電極頂部的第二高介電常數絕緣層6002(圖62);步驟198:生成更高的n+原位重摻雜矽塔6301,蝕刻第二高介電常數絕緣層6002,以及形成第三高介電常數絕緣層6302(圖63);步驟199:形成光阻6402(圖64);步驟200:蝕刻掉在該第二金屬對電極板和壁曝露的邊緣區域上的第三高介電常數絕緣層6302(圖65);步驟201:移除光阻6402(圖66);步驟202:沉積和回蝕金屬層6702完成該HCoT單元(圖67)。
用於上述製造方法的金屬層的可能材料(例如在圖6中,用於該矽表面下位元線的金屬材料,在圖13中,用於該字元線,該電極(源極電極和汲極電極),及/或該H型存儲電容的對電極等)可以是鎢。然而由於鎢材料對氧化物或氧化製程的敏感性,所以最好該鎢材料可以被另一個氮化鈦層或合適的層覆蓋。 因為本發明領域具有熟知技藝者應當明瞭該鎢材料的特性,所以本發明並沒有描述該鎢材料的詳細保護過程,但假設包括該鎢材料在內的金屬層都經過良好處理,以避免直接在其上發生任何氧化反應。當然,有一些合適的金屬層還是可適用於該矽表面下位元線和該字元線,而不受限於不適合插入積體電路製程的特定類型的金屬材料。
上述製造方法的詳細說明如下。上述製造方法是從p型矽晶圓(也就是p型基板202)開始。在步驟102中,如圖2(a)所示,在水平矽表面208(如果該基板是矽基板)上方形成襯墊氧化層204,然後在襯墊氧化層204上方沉積襯墊氮化層206,其中水平矽表面208也稱為HSS(horizontal silicon surface)或OSS(original silicon surface),之後的附圖說明是以水平矽表面208或HSS為例。
在步驟104中,可通過光刻光罩技術(photolithographic mask technique)定義該動態隨機存取記憶體存儲單元陣列的主動區,其中圖2(a)所示,因為該動態隨機存取記憶體存儲單元陣列的主動區對應襯墊氧化層204和襯墊氮化層206,所以在主動區圖案(active region pattern)之外的水平矽表面208將據以而曝露。因為在該主動區圖案之外的水平矽表面208被曝露,所以對應該主動區圖案之外的水平矽表面208的矽材料可被各向異性蝕刻技術(anisotropic etching technique)移除以製造出溝槽(或管道)210,其中例如,溝槽210可在水平矽表面208之下達到250奈米(nm)深。
在步驟106中,沉積氧化層214以填滿溝槽210,然後回蝕氧化層214以在溝槽210內形成在水平矽表面208下方的該淺溝槽隔離。另外,圖2(b)是對應圖2(a)的上視圖,其中圖2(a)是沿著如圖2(b)所示的X方向的切割線的剖面圖。另 外,如圖2(a)所示,例如,該淺溝槽隔離具有約50奈米的厚度,以及如果低於水平矽表面208的溝槽210具有250奈米的深度,則該淺溝槽隔離的頂部距離水平矽表面208約200奈米深。
在步驟108中,如圖3(a)所示,沉積該第一氮化層和利用該各向異性蝕刻技術回蝕該第一氮化層以沿著溝槽210的兩邊緣(也就是上邊緣和下邊緣)形成該第一氮化間隔層。在步驟110中,如圖3(a)所示,在溝槽210內的該淺溝槽隔離上方沉積旋塗電介質304以填充溝槽210。然後通過該化學機械平坦化技術平坦化旋塗電介質304以使旋塗電介質304的頂部和襯墊氮化層206的頂部平齊。
在步驟112中,如圖3(a)所示,利用該光刻光罩技術通過光阻層306保護沿著溝槽210的下邊緣的該第一氮化間隔層的下邊緣第一氮化間隔層,但是沿著溝槽210的上邊緣的該第一氮化間隔層的上邊緣第一氮化間隔層則不被光阻層306保護。也就是說在旋塗電介質304和襯墊氮化層206上方沉積光阻層306後,因為在該上邊緣第一氮化間隔層上的光阻層306被移除但該下邊緣第一氮化間隔層上的光阻層306被保留,所以之後該下邊緣第一氮化間隔層可被保留但該上邊緣第一氮化間隔層會被移除。另外,圖3(b)是對應圖3(a)的上視圖,其中圖3(a)是沿著如圖3(b)所示的Y方向的切割線的剖面圖。在步驟114中,如圖4所示,可通過蝕刻製程蝕刻掉沒有被光阻層306覆蓋的該上邊緣第一氮化間隔層和旋塗電介質304。
在步驟116中,如圖5所示,剝離光阻層306和旋塗電介質304,其中旋塗電介質304具有遠高於熱生成氧化層和沉積氧化層的蝕刻速率。然後熱生成第一氧化層502以形成第一氧化間隔層,其中該第一氧化間隔層覆蓋溝槽210的 上邊緣,第一氧化層502不會長超過襯墊氮化層206,以及僅有非常薄的氧化層(稱為第一氧化/STI層504)形成在該淺溝槽隔離上方。如圖5所示,步驟116導致非對稱的間隔層(也就是該下邊緣第一氮化間隔層和該第一氧化間隔層)分別形成在溝槽210的兩對稱邊緣(也就是溝槽210的上邊緣和下邊緣)。例如,該第一氧化間隔層的厚度是4奈米以及該下邊緣第一氮化間隔層的厚度是3奈米。另一方面,該非對稱的間隔層也是沿著該主動區的側壁形成。該非對稱的間隔層(如圖5所示)的結構和上述相關的步驟是本發明的第一主要技術特徵,其稱為在溝槽(或管道)的兩對稱邊緣上的非對稱的間隔層(asymmetric spacers on two symmetrical edges of a trench or a canal,ASoSE)。
在步驟118中,如圖6所示,沉積金屬層602(或需要承受後續製程條件的導電材料)以填滿溝槽210且通過該化學機械平坦化技術平坦化以使金屬層602的頂部和襯墊氮化層206的頂部平齊(如圖6所示)。另外,在本發明的一實施例中,金屬層602可以是鎢(其縮寫為W)。
在步驟120中,如圖7所示,沉積光阻層702以覆蓋該下邊緣第一氮化間隔層和該第一氧化間隔層,但曝露該下邊緣第一氮化間隔層和該第一氧化間隔層對應該主動區的末端的兩邊緣。
在步驟122中,如圖8所示,蝕刻對應該主動區的末端的金屬層602直到曝露第一氧化/STI層504的頂部以分隔該多條導線(也就是也就是金屬層602)。
在步驟124中,如圖9(a)所示,在移除光阻層702之後,回蝕溝槽210內的金屬層602至合理厚度以形成矽表面下位元線(或矽表面下導線)902,其中矽 表面下位元線902的頂部是遠低於水平矽表面208(例如,矽表面下位元線902的厚度約為40奈米)。另外,如圖9(a)所示,矽表面下位元線902位於該淺溝槽隔離的頂部之上以及矽表面下位元線902的兩側壁分別受限於該非對稱間隔層(也就是該下邊緣第一氮化間隔層和該第一氧化間隔層)。另外,圖9(a)是沿著如圖9(b)所示的Y方向的切割線的剖面圖。
在步驟126中,如圖10(沿著如圖9(b)所示的Y方向的切割線的剖面圖)所示,第二氧化層1002(也稱為CVD-STI-oxide2)需要有足夠的厚度以填充矽表面下位元線902上方的溝槽210,然後通過該化學機械平坦化技術拋光第二氧化層1002以保留第二氧化層1002的部分,其中第二氧化層1002被保留的部分的頂部和襯墊氮化層206的頂部平齊,以及覆蓋該下邊緣第一氮化間隔層和該第一氧化間隔層。如圖10所示,步驟126可使矽表面下位元線902(也就是互連導線)嵌入至溝槽210內所有絕緣體(也就是隔離區)中且受限於該所有絕緣體(之後矽表面下位元線902將連接至該動態隨機存取記憶體存儲單元陣列的存取電晶體的汲極),其中如圖10所示的結構稱為絕緣體包圍的矽表面下位元線,且該矽表面下位元線(UGBL)是本發明的第二主要技術特徵。
以下的說明將介紹如何同時通過自對準方法(self-alignment method)形成該動態隨機存取記憶體存儲單元(1T1C單元)陣列的存取電晶體和字元線以及形成字元線連接該存取電晶體的所有相關閘極結構。如此,該動態隨機存取記憶體存儲單元(1T1C單元)陣列的存取電晶體的閘極結構和字元線將被連接成為一體的金屬(例如鎢(W))。
在步驟128中,如圖11(a)所示,首先沉積第三氧化層1102,第二氮化 層1104,以及圖案化的光阻層1106。然後利用蝕刻技術移除第三氧化層1102和第二氮化層1104中的不必要部份。另外,可通過第三氧化層1102和第二氮化層1104所組成的複合層定義電晶體/字元線圖案(transistor/word line pattern),其中第三氧化層1102和第二氮化層1104所組成的複合層是由垂直于該主動區方向的方向上的複數個條狀的第三氧化層1102和第二氮化層1104所組成。因此,如圖11(a)和圖11(b)所示,用於定義該存取電晶體和該字元線的縱向(該Y方向)條紋(由第三氧化層1102和第二氮化層1104組成),以及用於定義該主動區的交叉點方形(cross-point square)將被形成,其中該主動區是位於兩縱向條紋之間的交叉點方形,以及圖11(a)是沿著如圖11(b)所示的X方向的切割線的剖面圖。
如圖11(b)所示,圖11(b)所示的上視圖顯示了位於襯墊氮化層206和襯墊氧化層204上方的具有第三氧化層1102和第二氮化層1104所組成的縱向條紋的織物狀棋盤圖案(fabric-like checkerboard pattern),以及也顯示了在水平方向(也就是如圖11(b)所示的X方向)上的該主動區和該淺溝槽隔離。如圖11(b)所示,該主動區允許該存取電晶體通過一種自對準技術(self-alignment technique)製成。這種用於在一個製程步驟中製造該存取電晶體的閘極結構和該字元線的自對準結構的織物狀棋盤圖案是本發明的第三主要技術特徵。
在步驟130中,如圖12(a)所示,保留光阻層1106以蝕刻掉襯墊氮化層206,但保留襯墊氧化層204,以及如圖12(b)所示,移除光阻層1106和襯墊氧化層204。因此,水平矽表面208(也就是HSS)曝露在如圖12(b)所示的交叉點方形區域(cross-point square area),其中該交叉點方形區域對應該主動區(位於圖11(a)和圖11(b)所示的交叉點方形)。
在步驟132中,如圖13所示,通過該各向異性蝕刻技術蝕刻曝露在該交叉點方形區域的水平矽表面208以形成凹槽(例如該U形凹槽),其中該U形凹槽是用於形成該存取電晶體的U形通道1302,以及例如從水平矽表面208開始算起該U形凹槽的垂直深度可達約60奈米,也就是說如圖13所示,U型通道1302是位於水平矽表面208之下。因為該存取電晶體的U形凹槽被曝露出來,所以可通過合理設計的硼(p型摻雜劑)的濃度來摻雜該U形凹槽內的U形通道1302以實現通道摻雜,其中該通道摻雜是為了使該存取電晶體在隨後的高介電常數金屬-閘極結構(high-k metal-gate structure)形成之後具有所需的臨界值電壓(threshold voltage)。之後在該U形凹槽的底部和側壁形成高介電常數絕緣層1304,其中高介電常數絕緣層1304是作為該存取電晶體的閘極介電層,其中如圖13所示,高介電常數絕緣層1304的兩邊緣的頂部是高於水平矽表面208。然後選擇適合於字元線導電率並且可以實現該存取電晶體的目標功函數(targeted work-function)性能的閘極材料1306,以使該存取電晶體具有較低的臨界值電壓(選擇閘極材料1306的目的是將升壓後的字元線電壓盡可能降低但仍能提供足夠的驅動力以完成用以恢復(restore)該電容(1C)的足夠電荷量,以及在另一方面是有利於更快的電荷轉移以進行信號檢測)。
閘極材料1306足以填充兩相鄰縱向條紋(由第三氧化層1102和第二氮化層1104組成)之間的該U形凹槽(如圖13所示)。然後柵回蝕極材料1306以產生夾在該兩相鄰縱向條紋(由第三氧化層1102和第二氮化層1104組成)之間的縱向(該Y方向)字元線。例如,閘極材料1306可以是用以形成該高介電常數金屬-閘極結構的鎢(W),其中如果U型通道1302具有合適的摻雜濃度,則該高介電常數金屬-閘極結構可允許該存取電晶體具有所需的較低臨界值電壓。
本發明所公開的具有U形通道1302的該存取電晶體(以下稱為U型電晶體)是不同于現有技術所公開的常用於埋入式字元線設計(buried word line design)中的嵌入式電晶體(recessed transistor)。該U型電晶體的主體沿著該Y方向(也就是通道寬度方向)的兩邊被第二氧化層1002(也就是CVD-STI-Oxide2)限制住,以及該U型電晶體的通道長度包含U形通道1302對應該U型電晶體的汲極的一邊的深度,U形通道1302的底部的長度,以及U形通道1302對應該U型電晶體的源極的一邊的深度。例如,如果該U形凹槽的垂直深度為60奈米以及該U形凹槽沿著該X方向(也就是通道長度方向)的開口為7奈米,則該U型電晶體的U形通道1302的總長度約可達127奈米。相較之下,該嵌入式電晶體的通道長度必須更多地取決於該嵌入式電晶體的閘極材料被嵌入的深度以及該嵌入式電晶體的源極結和汲極結所形成的深度。
由於該U型電晶體和該嵌入式電晶體之間的結構差異,所以可以更好地控制U形通道1302的通道長度(尤其特別的是當U形通道1302的通道長度不需要取決於該U型電晶體的閘極結構的高度時)。另外,因為水平矽表面208是固定的,所以該U型電晶體的汲極和源極的摻雜濃度分佈具有更少的元件設計參數變化(device-design-parameter variation)而可控性更高,這將在之後有關如何完成該U型電晶體的汲極和源極時有更詳細地描述。另外,在該縱向方向上,通過該兩相鄰縱向條紋(由第三氧化層1102和第二氮化層1104組成)之間的自對準同時形成該U型電晶體的閘極結構和該字元線是一種使該字元線不會位在水平矽表面208下方的方式,其中不會位元在水平矽表面208下方的該字元線具有與現有技術中常用的埋入式字元線相當不同的設計與性能參數。另外,如圖13所示,通過回蝕使該字元線(也就是閘極材料1306)的高度被設計成低於該複合層(由第三氧化層1102和第二氮化層1104組成)的高度。另外,該U型電晶體的閘極結構自 對準地連接到該字元線的結構設計是本發明的第四主要技術特徵。
在步驟134中,如圖14所示,沉積第三氮化層1402(也就是電介質帽),以及隨後沉積第四氧化層1404,其中第三氮化層1402和第四氧化層1404堆疊在一起使其總厚度足以填充該兩相鄰縱向條紋(由第三氧化層1102和第二氮化層1104組成)之間的空缺。然後,回蝕(或拋光)第四氧化層1404以使第四氧化層1404的頂部平齊第二氮化層1104的頂部從而直接在該字元線(也就是閘極材料1306)的正上方形成由第四氧化層1404和第三氮化層1402組成的複合層。
在步驟136中,如圖15所示,通過該各向異性蝕刻技術蝕刻掉第二氮化層1104,以及保留該字元線之上的第四氧化層1404/第三氮化層1402。然後也通過該各向異性蝕刻技術蝕刻掉第三氧化層1102以曝露襯墊氮化層206。該閘極結構(例如,第四氧化層1404/第三氮化層1402/閘極材料1306)同時實現了在該U形凹槽內的該U型電晶體的閘極結構以及在該縱向方向(也就是該Y方向)上的該字元線。
在步驟138中,如圖16所示,移除襯墊氮化層206以留下襯墊氧化層204。回蝕第二氧化層1002(也就是CVD-STI-oxide2)以使第二氧化層1002的頂部平齊襯墊氧化層204的頂部。
在步驟140中,如圖16所示,沉積第四氮化層1602以及通過該各向異性蝕刻技術蝕刻第四氮化層1602以生成具有精心設計的厚度的第四氮化間隔層。然後沉積第五氧化層1604以及通過該各向異性蝕刻技術蝕刻第五氧化層1604以生成第五氧化間隔層。然後沉積第一多晶矽層1606(其中第一多晶矽層 1606是固有未摻雜的(intrinsic and undoped))在如圖16所示的整個表面上方。然後通過該各向異性蝕刻技術蝕刻第一多晶矽層1606創造出第一多晶矽間隔層以使該第一多晶矽間隔層環繞字元線(例如第一字元線wordline-1,第二字元線wordline-2,第三字元線第三字元線word line-3)。因此,總結而言,該第一多晶矽間隔層是在該第五氮化間隔層之外,該第五氧化間隔層是在該第四氮化間隔層之外,以及上述所有間隔層都圍繞且沿著該閘極結構(例如,第四氧化層1404/第三氮化層1402/閘極材料1306)。
如圖16,17所示,為了方便和清楚地描述具有該字元線和該位元線的該動態隨機存取記憶體存儲單元陣列,位於中心的字元線標記為第一字元線wordline-1(對應存取電晶體AQ1),比鄰第一字元線wordline-1左邊的字元線標記為第二字元線wordline-2(對應比鄰存取電晶體AQ1左邊的存取電晶體AQ2),以及襯墊氧化層204仍然覆蓋第一字元線wordline-1和第二字元線wordline-2之間作為該汲極的區域以保留給存取電晶體AQ1的第一汲極Drain-1以及存取電晶體AQ2的第二汲極第二汲極drain-2。比鄰第一字元線wordline-1右邊的字元線標記為第三字元線wordline-3(對應比鄰存取電晶體AQ1右邊的存取電晶體AQ3),以及襯墊氧化層204仍然覆蓋第一字元線wordline-1和第三字元線wordline-3之間作為該源極的區域以保留給存取電晶體AQ1的第一源極source-1以及存取電晶體AQ3的第三源極source-3。
在步驟142中,如圖17所示,沉積旋塗電介質1702,其中旋塗電介質1702的厚度足以填充在上述字元線(第一字元線wordline-1、第二字元線wordline-2和第三字元線wordline-3)之間的空缺(對應作為該汲極的區域和作為該源極的區域),之後通過該化學機械平坦化技術拋光旋塗電介質1702以使旋塗 電介質1702的頂部與第四氧化層1404的頂部平齊。然後通過該各向異性蝕刻技術蝕刻第一多晶矽層1606的上半部。之後沉積第一氧化帽層1704以填充該第一多晶矽間隔層的頂部上方的空缺,然後通過該化學機械平坦化技術平坦化第一氧化帽層1704以使第一氧化帽層1704的頂部與第四氧化層1404的頂部平齊。
在步驟144中,如圖18所示,蝕刻掉旋塗電介質1702,其中旋塗電介質1702具有遠高於熱生成氧化層和沉積氧化層的蝕刻速率,所以在蝕刻掉旋塗電介質1702時,熱生成氧化層和沉積氧化層仍可保持良好狀態。然後沉積第五氮化層1802在如圖18所示的整個表面上方。
在步驟146中,如圖19所示,沉積旋塗電介質1902,其中旋塗電介質1902的厚度足以填充在上述字元線(第一字元線wordline-1、第二字元線wordline-2和第三字元線wordline-3)之間的空缺,之後通過該化學機械平坦化技術拋光旋塗電介質1902以使旋塗電介質1902的頂部與第五氮化層1802的頂部平齊。然後沉積光阻1904在平齊的表面上以覆蓋對應該汲極(第一汲極drain-1以及第二汲極drain-2)的旋塗電介質1902,以及曝露對應該源極(第一源極source-1以及第三源極source-3)的旋塗電介質1902做後續處理。然後圍繞上述字元線(第一字元線wordline-1、第二字元線wordline-2和第三字元線wordline-3)的第五氮化層1802可作為自對準光罩(self-alignment mask)以移除對應該源極(第一源極source-1以及第三源極source-3)的旋塗電介質1902。當所需的圖案已轉移到旋塗電介質1902後,所有不必要的光阻均被清除,從而使旋塗電介質1902平坦化(如圖19所示)。
在步驟148中,如圖20所示,蝕刻掉曝露的第五氮化層1802以及位在 兩條字元線(第一字元線wordline-1和第三字元線wordline-3)之間的該源極的區域的中心的襯墊氧化層204以曝露出水平矽表面208。因為被曝露的水平矽表面208是位於存取電晶體AQ1的第一源極source-1和存取電晶體AQ3的第三源極source-3之間,所以在第一源極source-1和第三源極source-3之間的水平矽表面208稱為水平矽表面HSS-1/3。如圖20所示,在第一字元線wordline-1和第二字元線wordline-2之間的水平矽表面HSS-1/2是作為第一汲極drain-1(也就是存取電晶體AQ1的汲極)以及第二汲極drain-2(也就是存取電晶體AQ2的汲極)的區域,以及也作為垂直連接存取電晶體AQ1、AQ2至矽表面下位元線902的區域。另外,在第一字元線wordline-1的右邊,在第一字元線wordline-1和第三字元線wordline-3之間的水平矽表面HSS-1/3是作為第一源極source-1(也就是存取電晶體AQ1的源極)以及第三源極source-3(也就是存取電晶體AQ3的源極)的區域,但是因為第一源極source-1和第三源極source-3將分別連接至單元存儲節點CSN1、CSN3(未繪示於圖20),所以第一源極source-1和第三源極source-3必須是分開無法連接。
另外,總結而言,該光刻光罩技術是用於覆蓋水平矽表面HSS-1/2,但是該光刻光罩技術所使用的光罩並不是關鍵的光罩,其功能僅是讓處理水平矽表面HSS-1/3的製程與處理水平矽表面HSS-1/2的製程分開。如上所述,沉積旋塗電介質1902的厚度須足以形成光滑的表面形貌,然後沉積光阻1904作為光罩材料以保護覆蓋該汲極的旋塗電介質1902但曝露該源極。另外,使用旋塗電介質1902是因為旋塗電介質1902具有很高的蝕刻速率,可以在不損害其他現有材料的情況下將其去除,並且旋塗電介質1902可以抵抗除光阻以外的其他熱製程。
如圖20所示,通過該各向異性蝕刻挖掘在水平矽表面HSS-1/3(對應該源極的區域的中心)下方的矽材料以產生孔洞hole-1/3,其中孔洞hole-1/3的兩對 邊(未繪示於圖20)被該下邊緣第一氮化間隔層和該第一氧化間隔層圍繞以及孔洞hole-1/3的另外兩對邊被p型基板202圍繞。
在步驟150中,如圖21所示,移除光阻1904,以及熱生成第七氧化層2102以填充孔洞hole-1/3,其中因為第五氮化層1802上不會有氧化物的生長,所以第七氧化層2102只會部分生長在沒有被第五氮化層1802覆蓋的第一氧化帽層1704的頂部上。另外,填充孔洞hole-1/3的第七氧化層2102稱為第七氧化物插銷(oxide-7 plug),其中該第七氧化物插銷具有光滑表面,且其高度與襯墊氧化層204的頂部平齊。
在步驟152中,如圖22所示,沉積旋塗電介質2202,其中旋塗電介質2202須足夠厚以填充到在孔洞hole-1/3中的第七氧化層2102頂部上方的空缺中,然後通過該化學機械平坦化技術移除旋塗電介質2202的頂部材料直到旋塗電介質2202的頂部與第五氮化層1802的頂部平齊。
在步驟154中,如圖23所示,沉積光阻2302覆蓋對應該源極的區域以及曝露出上述為該汲極保留的區域,其中在步驟154中所使用的光罩並不是關鍵的光罩,其功能僅是讓處理水平矽表面HSS-1/3的製程與處理水平矽表面HSS-1/2的製程分開。然後曝露的旋塗電介質1902、曝露的第五氮化層1802以及曝露的襯墊氧化層204被移除以露出水平矽表面(也就是水平矽表面HSS-1/2)。然後通過該各向異性蝕刻技術挖掘和移除對應水平矽表面HSS-1/2的矽材料以產生孔洞hole-1/2,其中孔洞hole-1/2的兩對邊被p型基板202圍繞,孔洞hole-1/2的第三邊(未繪示於圖23)被該下邊緣第一氮化間隔層圍繞,孔洞hole-1/2的第四邊(未繪示於圖23)被該第一氧化間隔層圍繞,以及孔洞hole-1/2的第三邊和第四邊更進一步由 第二氧化層1002(也就是CVD-STI-oxide2,未繪示於圖23)在外部限制。
在步驟156中,如圖24所示,移除光阻2302,然後熱生成第八氧化層2402以產生第八氧化間隔層,其中孔洞hole-1/2的四個側壁中除了第三側壁被該下邊緣第一氮化間隔層覆蓋之外,該第八氧化間隔層覆蓋孔洞hole-1/2的四個側壁中的其餘三個側壁和孔洞hole-1/2的底部。另外,第八氧化層2402部分生長在第一氧化帽層1704的頂部。圖25是說明該動態隨機存取記憶體存儲單元陣列沿著該Y2方向的剖面圖的示意圖,其中該Y2方向沿著孔洞Hole-1/2的中心延伸並垂直於該X方向。另外,如圖25所示,該主動區被夾在第二氧化層1002(CVD-STI-Oxide2),矽表面下位元線902(UGBL),該第一氧化間隔層,以及該下邊緣第一氮化間隔層之間。
在步驟158中,如圖26、27所示,通過該各向同性蝕刻技術(isotropic etching technique)移除孔洞hole-1/2內該第三側壁上的該下邊緣第一氮化間隔層,以及同時移除第五氮化層1802(如圖27所示,因為該下邊緣第一氮化間隔層非常薄,所以該各向同性蝕刻技術不會損害水平矽表面208之上的其他結構,且也不會移除孔洞Hole-1/2內的第八氧化層2402)。
在步驟160中,如圖28所示,沉積金屬層(例如鎢)2802,其中金屬層2802的厚度足以填充孔洞hole-1/2,然後通過該各向同性蝕刻技術蝕回在水平矽表面208上的金屬層2802以在孔洞hole-1/2內留下鎢插銷(Tungsten plug)。如圖28所示,該鎢插銷通過孔洞hole-1/2的第三側壁上的開口連接矽表面下位元線902(UGBL),其中孔洞hole-1/2的第三側壁原來是被該下邊緣第一氮化間隔層覆蓋。然後沉積第六氮化層2804以及通過該各向異性蝕刻技術蝕刻創造出該第六 氮化間隔層,其中該第六氮化間隔層圍繞對應該汲極的該第一多晶矽間隔層。
在步驟162中,如圖29所示,回蝕該鎢插銷在水平矽表面208下方的上半部,其中如圖30所示,在孔洞Hole-1/2內,該鎢插銷是通過其側壁連接至矽表面下位元線902(UGBL)的側壁。
在步驟164中,如圖31所示,通過該各向異性蝕刻技術移除適量的第八氧化層2402的上半部,導致該第八氧化間隔層的高度因此低於該鎢插銷的高度。另外,如圖31所示,第一氧化帽層1704的部分也可被蝕刻掉。
在步驟166中,如圖32所示,通過該選擇性外延生長(selective epitaxy growth,SEG)技術從兩個曝露的矽邊緣(鄰近以及在第八氧化層2402和該鎢插銷的上方)橫向生長n+原位摻雜矽層3202,如此導致連接到孔洞hole-1/2的兩側上的水平矽表面208的項鍊型(necklace-type)導電n+矽汲極(稱為n+矽汲環(n+ silicon drain-collar))可分別作為存取電晶體AQ1的第一汲極drain-1和存取電晶體AQ2的第二汲極drain-2,也可作為在矽表面下位元線902(UGBL)和存取電晶體AQ1、AQ2之間的導電橋(也就是橋接觸)。
在步驟168中,如圖33所示,在該n+矽汲環上局部熱生成具有良好設計厚度的第九氧化層3302以蓋住水平矽表面HSS-1/2(且第九氧化層3302可能覆蓋第一氧化帽層1704)。在矽表面下位元線902(UGBL)和第一汲極drain-1(或第二汲極drain-2)之間形成該導電橋的上述連接方法是本發明的第六主要技術特徵,其中第一汲極drain-1和第二汲極drain-2是氧化物覆蓋(oxide-capped)的n+汲極。
在步驟170中,如圖34所示,回蝕覆蓋在該n+矽汲環上方的第九氧化層3302的部分以使第九氧化層3302的厚度和襯墊氧化層204的高度相同,以及蝕刻掉覆蓋在第一氧化帽層1704上方的第九氧化層3302。然後,沉積多晶矽層-a 3402在第九氧化層3302上方的空缺中和回蝕多晶矽層-a 3402。
在步驟171中,如圖35所示,通過該各向異性蝕刻技術移除該第六氮化間隔層(第六氮化層2804)。沉積多晶矽層-b 3502。然後利用該各向異性蝕刻技術回蝕多晶矽層-b 3502以使多晶矽層-b 3502可填充至該第六氮化間隔層被移除後所出現的空缺(其中該第六氮化間隔層被移除後所出現的空缺緊鄰多晶矽層-a 3402),且使多晶矽層-b 3502的厚度幾乎和多晶矽層-a 3402的厚度相同。
在步驟172中,如圖36所示,通過該各向同性蝕刻技術移除所有的旋塗電介質層(也就是旋塗電介質1902和旋塗電介質2202)以及第五氮化層1802。另外,圖37是說明該動態隨機存取記憶體存儲單元(HCoT cell)陣列的上視圖的示意圖,其中圖37特別顯示了該字元線(第一字元線wordline-1,第二字元線wordline-2,第三字元線wordline-3),矽表面下位元線(UGBL),存取電晶體AQ1、AQ3的該源極(第一源極source-1和第三源極source-3),以及存取電晶體AQ1、AQ2的該汲極(第一汲極drain-1和第二汲極drain-2)的幾何排列。
在步驟173中,如圖38所示,沉積金屬層(例如鎢)3802和回蝕金屬層3802的部分以形成鎢緩衝牆(W-Buffer-Walls,WBW)。
在步驟174中,如圖39所示,移除在該第一多晶矽間隔層上方的第一氧化帽層1704。然後,蝕刻掉該第一多晶矽間隔層以及在該第一多晶矽間隔層 下方的襯墊氧化層204。如此,分別曝露出對應該源極和該汲極的水平矽表面208(稱為用於源極和汲極的晶種矽表面區(the seeding HSS area for source and drain regions,SHAR))。
在步驟175中,如圖40所示,通過該用於源極和汲極的晶種矽表面區作為晶種,利用該選擇性外延生長技術在水平矽表面208上方的垂直方向分別生成源極電極EH-1S和汲極電極EH-1D,其中因為源極電極EH-1S和汲極電極EH-1D可通過該用於源極和汲極的晶種矽表面區作為晶種良好地逐漸生成,所以源極電極EH-1S和汲極電極EH-1D可以是純矽材料而不是多晶或非晶矽材料,且源極電極EH-1S和汲極電極EH-1D沿著該X方向的左側壁和右側壁分別被該鎢緩衝牆和該第五氧化間隔層圍繞。雖然沿著該Y方向的其他兩個側壁是開放的,但是第二氧化層1002(CVD-STI-oxide2)不能提供用於生長選擇性外延矽的晶種功能。因此,選擇性外延矽的生長應導致一些橫向過度生長的純矽材料停止在第二氧化層1002(CVD-STI-oxide2)的邊緣,並且不可能引起相鄰電極的連接。另外,在源極電極EH-1S和汲極電極EH-1D生成後,可選擇性地利用快速熱退火(rapid thermal annealing,RTA)步驟形成用於源極電極EH-1S(或汲極電極EH-1D)到U形通道1302連接的n+輕摻雜汲極(n+ lightly doped drain,NLDD)4012。
完成源極電極EH-1S和汲極電極EH-1D的新製程設計描述如下:
(1)通過該用於源極和汲極的晶種矽表面區(SHAR)作為晶種且利用該選擇性外延生長技術生成源極電極EH-1S和汲極電極EH-1D時,重要的是在矽生長過程中設計合適的n+原位摻雜濃度(in-situn-type doping concentration)以實現該存取電晶體的通道區的適當介面電導(其中該介面電導分別包含位於該閘極 介電層(高介電常數絕緣層1304)正下方的水平矽表面208的電導,位於該第四氮化間隔層/該第五氧化間隔層下方的水平矽表面208的電導,以及位於源極電極EH-1S或導電電極EH-1D下方的水平矽表面208的電導)以實現低漏電流,特別是閘極引起的汲極洩漏(gate induced drain leakage,GIDL),汲極引起的勢壘降低(drain induced barrier lowering,DIBL),由於短通道引起的次臨界值洩漏(sub-threshold leakage due to the short-channel effect),以及接面洩漏(junction leakages)等等。
(2)如圖40所示,源極電極EH-1S和汲極電極EH-1D會生長到特定高度,其中源極電極EH-1S和汲極電極EH-1D的高度低於EH-1+2電極(也就是隨後在步驟177生成的源極電極EH-1+2S和汲極電極EH-1+2D)的最終高度。在步驟176中,如圖41所示,首先通過該各向同性蝕刻技術蝕刻掉該第五氧化間隔層以在該第四氮化間隔層和汲極電極EH-1D之間(在該第四氮化間隔層和源極電極EH-1S之間)留下接縫。熱生成氧化層-a 4102以覆蓋除了漏電極EH-1D(或源電極EH-1S)的第四側壁外的其他三個側壁及頂部(稱為氧化-a帽層(oxide-a-cap layer)),其中漏電極EH-1D(或源電極EH-1S)的第四側壁是由該鎢緩衝牆限制住。如下所述執行這種精細的階梯狀源電極形成製程的目的是在於因熱生成氧化層-a 4102具有非常高品質的二氧化矽到矽電極鍵而能確保實現源極電極EH-1S的頂部(或汲極電極EH-1D的頂部)具有高性能的氧化矽介面(其中毫無疑問地由該選擇性外延生長製程衍生出的非晶態或低品質的矽材料可能會降低矽源極電極的品質從而不是造成降低的載子遷移率(導致當該存取電晶體開啟時可能無法傳送足夠的開啟電流(On-current)),就是造成當該存取電晶體關閉時可能會增加漏電流的大量缺陷)。然後,通過該各向異性蝕刻技術蝕刻氧化層-a 4102的帽蓋部分以留下部分的氧化層-a 4102,其存在於該第四氮化間隔層源極電極 EH-1S之間(或存在於該第四氮化間隔層和汲極電極EH-1D之間)。
(3)在步驟177中,如圖42所示,通過利用源極電極EH-1S和汲極電極EH-1D曝露的矽表面作為高品質的矽晶種執行第二次選擇性外延生長以分別生成源極電極EH-2S和汲極電極EH-2D。而在執行該第二次選擇性外延生長的過程中,為了在源極電極EH-2S(或汲極電極EH-2D)和之後製作的堆疊式存儲電容(stacked storage capacitor,SSC)的信號電極之間的低阻抗連接做準備,可在源極電極EH-2S和汲極電極EH-2D中實現良好設計的n+原位重摻雜濃度(heavier in-situ n+ doping concentration)。另外,源極電極EH-1S和源極電極EH-2S的結合稱為源極電極EH-1+2S(同樣地,汲極電極EH-1D和汲極電極EH-2D的結合稱為汲極電極EH-1+2D)。另外,以源極電極EH-1+2S為例,如圖42所示,源極電極EH-1+2S的上半部(也就是源極電極EH-2S)有一些高品質的特性,例如源極電極EH-2S的一側壁的n+摻雜矽材料直接毗鄰該第四氮化間隔層,對應源極電極EH-2S的該側壁的一個相反方向的側壁毗鄰該鎢緩衝牆,以及源極電極EH-2S的其餘兩個側壁沿著該字元線在該Y方向上敞開。另外,源極電極EH-1+2S(或汲極電極EH-1+2D)的高度是被良好設計以低於該第四氮化間隔層的高度。
在步驟178中,如圖43所示,分別在汲極電極EH-2D和源極電極EH-2S的頂部上方沉積第一旋塗電介質4302,以及回蝕第一旋塗電介質4302。
在步驟179中,如圖44所示,蝕刻掉在整個晶圓表面上的該鎢緩衝牆。
在步驟180中,如圖45所示,沉積氮化層-a 4502,以及通過該各向異性蝕刻技術蝕刻氮化層-a 4502以分別形成圍繞源極電極EH-1+2S和汲極電極 EH-1+2D的所有側壁的該氮化層-a間隔層。如圖45所示,圍繞源極電極EH-1+2S(汲極電極EH-1+2D)的該氮化層-a間隔層站在作用像一層床墊的多晶矽層-a 3402和多晶矽層-b 3502的頂部,但是在源極電極EH-1+2S(汲極電極EH-1+2D)的那一側,則沒有作用像一層床墊的多晶矽層-a 3402和多晶矽層-b 3502。
在步驟181中,如圖46所示,首先利用該各向異性蝕刻技術移除多晶矽層-a 3402(此時其餘的矽區(例如汲極電極EH-2D和源極電極EH-2S)可受到第一旋塗電介質4302和該氮化層-a間隔層良好的保護)。然後,在利用該各向同性蝕刻技術蝕刻掉多晶矽層-b 3502後,因為接縫(或空缺)可因多晶矽層-a 3402和多晶矽層-b 3502被移除而形成,所以可利用該各向同性蝕刻技術蝕刻掉汲極電極EH-1D的部分底部。值得注意的是(1)由於高品質的矽鍵力,所以汲極電極EH-1D剩下的底部仍可保持用於支持汲極電極EH-1D的上半部的強度,以及(2)因為圍繞該EH-1+2電極的該氮化層-a間隔層具有豎立在第二氧化層1002(也就是CVD-STI-oxide2)頂部的腳,以及由於化學鍵而具有的該氮化層-a間隔層的強力膠,所以該氮化層-a間隔層並未完全懸空。創建這種新穎的製程設計的目標最終結果是曝露位於汲極電極EH-1D下方的水平矽表面208。
在步驟182中,如圖47所示,通過在如圖46所示曝露的水平矽表面208的矽和二氧化矽之間的熱化學反應,執行熱氧化製程以生成高品質的氧化層-bb 4702,如此導致氧化物隔離層(氧化層-bb 4702)將該汲極與汲極電極EH-1+2D的底部良好地隔離,其中汲極電極EH-1+2D可被用作該存儲電容的信號電極的部分。
在步驟183中,如圖48所示,通過該各向同性蝕刻技術移除該氮化層-a間隔層以及對應該EH-1+2電極(也就是源極電極EH-1+2S和汲極電極EH-1+2D)的第一旋塗電介質4302。然後,在步驟184中,如圖49所示,形成第一高介電常數絕緣層4902。
在步驟185中,如圖50所示,沉積和回蝕金屬層(例如鎢)5002以使具有良好設計厚度的殘餘金屬層5002的高度略高於該EH-1+2電極(也就是源極電極EH-1+2S和汲極電極EH-1+2D)的高度,但大約等於該第四氮化間隔層的高度。此時晶圓表面上普遍存在的金屬層5002稱為第一金屬對電極板和壁(metal-counter-electrode-plate&wall-1,MCEPW-1)。該第一金屬對電極板和壁覆蓋在該EH-1+2電極上方的第一高介電常數絕緣層4902的部分high-K-cap-1,以及可能覆蓋該複合層(由第四氧化層1404和第三氮化層1402組成)中的第四氧化層1404和該第四氮化間隔層的頂部。
在步驟186中,如圖51所示,通過該各向異性蝕刻技術移除在第四氧化層1404上方的第一高介電常數絕緣層4902,然後蝕刻掉第四氧化層1404(由第四氧化層1404和第三氮化層1402組成的該複合層的頂層)而不會損壞被該第一金屬對電極板和壁(MCEPW-1)覆蓋的第一高介電常數絕緣層4902的部分high-K-cap-1和第一高介電常數絕緣層4902。因此,在該複合層(由第四氧化層1404和第三氮化層1402組成)上方存在一個運河狀(canal-like)凹槽,該複合層的兩側上具有該第四氮化間隔層,其中該第四氮化間隔層的上半部的高度高於第三氮化層1402的厚度且像柵欄一樣豎立但曝露在面對該運河狀凹槽的方向上。
在步驟187中,如圖52所示,通過該各向同性蝕刻技術將在該複合層 上方具有良好設計厚度的第三氮化層1402的上半部移除,以及同時也通過該各向同性蝕刻技術移除該第四氮化間隔層的上半部以使該第四氮化間隔層剩餘部分的頂部和第三氮化層1402剩餘部分的頂部平齊。另外,在該第四氮化間隔層因為該各向同性蝕刻技術失去其上半部後,該第四氮化間隔層的高度變低,導致EH-2電極(也就是源極電極EH-2S和汲極電極EH-2D)的上半部面向該第四氮化間隔層的矽側壁被曝露。
在步驟188中,如圖53所示,通過該EH-2電極(也就是源極電極EH-2S和汲極電極EH-2D)面向該字元線的方向(也就是上述面向該第四氮化間隔層的方向)上曝露的矽側壁利用該選擇性外延生長技術在第三氮化層1402上方橫向生長該n+原位摻雜矽材料。以第一字元線wordline-1為參考,源極電極EH-1+2S和汲極電極EH-1+2D分別在第一字元線wordline-1的兩邊。通過控制生長時間,從源極電極EH-2S橫向生長的外延矽(稱為源極電極LGS-2S)以及從汲極電極EH-2D橫向生長的外延矽(稱為汲極電極LGS-2D)不被允許在第一字元線wordline-1上方的中心接觸,取而代之的是在水平空間(或空缺)中存在一個精心設計的間隙。
在步驟189中,如圖54所示,沉積高品質的氮化層-cc 5402以及通過該化學機械平坦化技術以曝露汲極電極LGS-2D和源極電極LGS-2S,其中在汲極電極LGS-2D和源極電極LGS-2S之間具有氮化物-cc隔離層(也就是氮化層-cc 5402)其可完全隔開汲極電極LGS-2D和源極電極LGS-2S。同時,不是通過該化學機械平坦化技術就是通過蝕刻移除該第一金屬對電極板和壁和第一高介電常數絕緣層4902的上半部,以及該第一金屬對電極板和壁和第一高介電常數絕緣層4902的剩餘的部分的高度分別和汲極電極LGS-2D的高度和源極電極LGS-2S 的高度平齊。
在步驟190中,如圖55所示,移除該第一金屬對電極板和壁(也就是金屬層5002)。
在步驟191中,如圖56所示,通過將曝露的汲極電極LGS-2D和源極電極LGS-2S做為晶種(分別稱為SBSES-D和SBSES-S,其中SBSES是Seeding Base for Growing Storage-Electrode Skyscraper的縮寫),執行該選擇性外延生長技術以創造出用於該H型存儲電容的雙塔狀(twin-tower)存儲電極,以及將在下面的描述中展示如何完成該H型存儲電容的雙塔狀存儲電極(該雙塔狀存儲電極具有兩座電極塔:該兩座電極塔中在該汲極上方的稱為汲極電極塔LGS-2D-Tower,以及在該源極上方的稱為源極電極塔LGS-2S-Tower)。
在步驟192中,如圖57所示,熱生成氧化層-d 5702以及利用該各向異性蝕刻技術移除在汲極電極塔LGS-2D-Tower和源極電極塔LGD-2S-Tower頂部的氧化層-d 5702以形成該氧化層-d間隔層。然後利用該各向同性蝕刻技術移除氮化層-cc 5402以分別曝露出汲極電極LGS-2D和源極電極的側邊。
在步驟193中,如圖58所示,利用該選擇性外延生長技術從汲極電極LGS-2D和源極電極LGS-2S的曝露的矽區域橫向生長n+原位重摻雜矽(heavily n+ in-situ-doped silicon)材料直到形成連接矽層LGS-2DS。另外,如圖58所示,也利用該選擇性外延生長技術從汲極電極塔LGS-2D-Tower和源極電極塔LGD-2S-Tower的頂部垂直生長n+原位重摻雜矽材料。如圖58所示,水平連接區(包含連接矽層LGS-2DS)連接H型(H-shape)存儲電容的一個垂直突出區(例如汲 極電極EH-1+2D)和該H型存儲電容的另一個垂直突出區(例如源極電極EH-1+2S),其中該水平連接區不必耦接該H型存儲電容的兩個垂直突出區的中間,也就是說該水平連接區可以耦接該H型存儲電容的兩個垂直突出區的較高或較低區域。
在步驟194中,如圖59所示,然後移除該氧化層-d間隔層。在步驟195中,如圖60所示,利用該各向同性蝕刻技術移除第一高介電常數絕緣層4902以及形成圍繞該雙塔狀存儲電極的第二高介電常數絕緣層6002。
在步驟196中,如圖61所示,沉積金屬層(例如鎢)6102(其中金屬層6102為第二金屬對電極板和壁(MCEPW-2)),然後回蝕金屬層6102或利用該化學機械平坦化技術平坦化金屬層6102以產生平坦表面。如圖61所示,該動態隨機存取記憶體存儲單元(HCoT cell)所包含的該H型存儲電容具有該雙塔狀存儲電極(也稱為雙塔狀H型存儲電極),其中第二高介電常數常數層6002由外完全包覆該雙塔狀存儲電極,且第二高介電常數常數層6002被偏壓在恒定電壓電位(例如half-VCC)的該第二金屬對電極板和壁(也就是金屬層6102)完全覆蓋。如圖61所示,該H型存儲電容包圍存取電晶體AQ1就像一個馬鞍緊緊地鉗住存取電晶體AQ1且具有完全擴展表面區域的該雙塔狀存儲電極,其中該完全擴展表面區域的範圍從存取電晶體AQ1的源極電極EH-1S的底部的水平矽表面208,直達源極電極塔LGD-2S-Tower的頂部且圍繞源極電極塔LGD-2S-Tower的所有表面區域,直達汲極電極塔LGS-2D-Tower的頂部且圍繞汲極電極塔LGS-2D-Tower的所有表面區域,以及直到下降到位於存取電晶體AQ1的汲極電極EH-1的底部的氧化層-bb 4702的頂部。圍繞源極電極塔LGD-2S-Tower和汲極電極塔LGS-2D-Tower的四個側壁表面幾乎全被用來產生幾乎最大的介電面積以盡可能 地增大該H型存儲電容的電容值。
另外,如果源極電極塔LGD-2S-Tower和汲極電極塔LGS-2D-Tower的高度必須進一步擴展,則可採用圖62至圖67所示的步驟以進一步增加該H型存儲電容的電容值。此外,在重複執行圖62至圖67所示的步驟幾次後,介於該H型存儲電容的兩個垂直突出區之間的水平連接區可包含複數個水平次連接區,其中該複數個水平次連接區中的每一個次連接區可連接該H型存儲電容的兩個垂直突出區。
在步驟197中,如圖62所示,回蝕該第二金屬對電極板和壁使其高度低於該雙塔狀存儲電極的高度。然後通過該各向異性蝕刻技術蝕刻掉在該雙塔狀存儲電極頂部的第二高介電常數絕緣層6002只留下圍繞該雙塔狀存儲電極的第二高介電常數絕緣層6002。
在步驟198中,如圖63所示,通過在該雙塔狀存儲電極頂部的曝露的矽材料作為晶種,利用該選擇性外延生長技術生成更高的n+原位重摻雜矽塔6301以作為該H型存儲電容的雙塔狀存儲電極。然後,通過該各向同性蝕刻技術蝕刻第二高介電常數絕緣層6002,以及形成第三高介電常數絕緣層6302覆蓋n+原位摻雜矽塔6301的所有側壁和頂部以阻絕任何可能從n+原位摻雜矽塔6301至該第二金屬對電極板和壁的電氣連接路徑或漏電流機制。
在步驟199中,如圖64所示,形成光阻6402覆蓋除了露出該第二金屬對電極板和壁的邊緣區域外的所有存儲單元陣列區域。在步驟200中,如圖65所示,然後蝕刻掉在該第二金屬對電極板和壁曝露的邊緣區域上的第三高介電常 數絕緣層6302。在步驟201中,如圖66所示,然後移除光阻6402。
在步驟202中,如圖67所示,沉積和回蝕金屬(例如鎢W)層6702,其中金屬層6702將所有n+原位重摻雜矽塔6301的側壁和水平矽表面208上的其他山谷狀(valley-like)的區域包裹成一個平坦的高原,且被稱為第三金屬對電極板和壁(MCEPW-3)。該第三金屬對電極板和壁加上已存在的該第二金屬對電極板和壁(MCEPW-2)不僅可以用作偏壓在恒定電壓電位(例如half-VCC)的該H型存儲電容的對電極板,而且還可以用作金屬遮罩板像金屬散熱器一樣實現更好的散熱,並因為電場可以在該對電極板上更均勻地分佈和遮罩而進一步降低該字元線和該存取電晶體的閘極結構的雜訊或提高該字元線和該存取電晶體的閘極結構的抗雜訊能力。圖67示出了新的具有可鉗住該存取電晶體的H型存儲電容的動態隨機存取記憶體存儲單元(HCoT單元),其中因為該H型存儲電容具有該雙塔狀存儲電極,所以該H型存儲電容具有最大化的電容存儲區域。圖68是說明本發明所公開的該HCoT單元的結構的示意圖。
圖69是說明該HCoT單元(1T1C存儲單元)的簡化上視圖的示意圖,其中圖69特別關注在該雙塔狀存儲電極,且該雙塔狀存儲電極的底部可連接並向下傳輸到該存取電晶體的源極電極。該HCoT單元的單元區域具有矩形形狀,該H型存儲電容包含也具有矩形形狀的電容周邊,以及該存取電晶體位於該電容周邊之內。除了該單元區域所需要用來劃分相鄰的存儲電極的隔離容差外,該H型存儲電容的面積幾乎和該單元區域的面積一樣大。就本發明領域的熟知技藝而言,本發明所公開的H型存儲電容應該是關於存儲電容的平面面積與1T1C單元的平面面積之間的比率的最有效設計。
總結而言,本發明公開了一種動態隨機存取記憶體存儲單元(該HCoT單元)的新結構,該新結構不僅縮小了該動態隨機存取存儲存儲單元的尺寸,而且還提高了在該動態隨機存取記憶體操作期間的信雜比(signal-to-noise ratio)。因為該H型存儲電容是位元在該存取電晶體上方並在很大程度上涵蓋了該存取電晶體,並具有用於排列和連接該動態隨機存取存儲存儲單元中的基本微結構的幾何形狀的垂直和水平自對準技術,所以該新結構(該HCoT單元的結構)可以在即使最小特徵尺寸λ遠小於10奈米時仍能保留至少4到10平方單位的優點,其中該H型存儲電容的面積可占該HCoT單元的面積的50%~70%。
此外,在該新結構中的該H型存儲電容的金屬電極為散熱提供了一條有效途徑,所以在操作期間該動態隨機存取存儲存儲單元的溫度可相對應地降低,然後較低的溫度將同時減少熱/操作雜訊和該H型存儲電容的漏電流。另外,該金屬電極進一步圍繞穿過該存取電晶體的該字元線,並且被圍繞的該字元線與位在矽表面下方的矽表面下位元線(UGBL)的組合可以有效遮罩不同字元線/位元線之間的交叉耦合雜訊。如此,在現有技術所公開的動態隨機存取記憶體存儲單元陣列操作時所發生的有問題的模式敏感性問題(problematic pattern sensitivity issue)將可大大減少。
另外,良好設計的電晶體結構也可降低閘極引起的汲極洩漏(GIDL)電流,以及該降低的閘極引起的汲極洩漏電流和衍生自較低操作溫度的降低電流的結合更可進一步擴大信雜比並實現在該HCoT單元的結構中使用較小尺寸的存儲電容的可能性,而不會對儲存資料的可靠性產生負面影響。
此外,本發明所公開的矽表面下位元線(UGBL)可以靈活地降低該矽 表面下位元線的寄生電阻和寄生電容,所以可以提高該存儲電容和該矽表面下位元線在電荷共用期間的信號靈敏度,從而可以提高該HCoT單元的結構的操作速度。
綜上所述,圖68是說明本發明所公開的該HCoT單元的結構的示意圖,其中圖68對應圖67。相較于現有技術所公開的動態隨機存取記憶體存儲單元陣列的結構,當最小特徵尺寸λ小於10奈米時,該HCoT單元的結構顯示了具有以下可說明存儲單元尺寸實現約4至10平方單位(或4~10 λ2)的功能:(1)該H型存儲電容的雙塔狀存儲電極圍繞該存取電晶體;(2)該對電極板(該第二金屬對電極板和壁和該第三金屬對電極板和壁)圍繞該存取電晶體以及覆蓋整個該動態隨機存取記憶體存儲單元陣列;(3)該矽表面下位元線位在該水平矽表面下方以簡化該動態隨機存取記憶體存儲單元陣列的表面形貌;(4)自對準源極電極具有可調的對該通道邊緣的導電率以最小化該HCoT單元的漏電流;(5)自對準雙塔狀存儲電極從該源極伸出並騎在該存取電晶體上方,就像是具有自對準電容塔的馬鞍;(6)多數該HCoT單元都可通過可靠的材料擴展其特徵以及具有足夠可靠性和品質的製程步驟;(7)對大多數現有技術所公開的動態隨機存取記憶體存儲單元而言,該HCoT單元的形狀如同佔據矽晶片平面表面的矩形(L(長度)x W(寬度))一樣最有效率,所以除了必須保留一些距離以隔離不同存儲單元的相鄰存儲電容之間的存儲電極之外,該HCoT單元在該矩形(L x W)上具有最大的存儲電容擴展的能力;(8)如上述實施例中所述,通過使用本發明所公開的多種技術和方法可以逐步建立該雙塔狀存儲電極的高度,並使該雙塔狀存儲電極具有所需的良好直塔形狀;另外,在因元件縮放要求而進一步縮小的存儲單元(該HCoT單元)面積中,有效提高了增加存儲單元(該HCoT單元)的高度以擴大該H型存儲電容的表面積與存儲單元(該HCoT單元)所占的平面面積的比率;(9)創建複數個 具有突出形狀且連接為該H型存儲電容的存儲節點的存儲電極可以擴大其存儲面積,從而導致在有限且縮小的該HCoT單元所占的平面面積中產生大的電容值。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
504:第一氧化/STI層
6702:金屬層
AQ1、AQ2、AQ3:存取電晶體
CVD-STI-oxide2:第二氧化層
STI:淺溝槽隔離
UGBL:矽表面下位元線

Claims (20)

  1. 一種製造記憶單元之方法,包含:準備一矽基板,具有一矽表面;基於該一矽基板,形成一電晶體,其中該電晶體包含一閘極結構,一第一導通區,以及一第二導通區;及形成具有一存儲電極之一電容,其中該電容位在該電晶體上方以及該存儲電極電耦接該電晶體的第二導通區;其中該電容包含一電容周邊,該電容周邊覆蓋該電晶體的該閘極結構、該第一導通區,以及該第二導通區,該存儲電極覆蓋該電晶體的閘極結構的整個頂面,以及該存儲電極不與其他電容共用。
  2. 如請求項1所述的方法,其中該電容另包含一電極,該電極覆蓋該電晶體的該閘極結構、該第一導通區,以及該第二導通區;且該存儲電極包含一周邊,而該電晶體是位在該周邊之內。
  3. 如請求項1所述的方法,另包含:形成一位元線,其中該位元線位於該矽表面下方;以及形成一橋接觸電耦接該位元線,該橋接觸位於該矽表面下方。
  4. 如請求項3所述的方法,其中該矽基板具有一主動區以及一淺溝槽隔離區,形成該位元線之步驟包含:沿著該主動區的側壁,形成非對稱的間隔層;以及 在該非對稱的間隔層之間,形成該位元線。
  5. 如請求項4所述的方法,其中形成該橋接觸之步驟包含:於該矽基板之該主動區上,產生一第一孔洞;形成一隔離層於該第一孔洞之表面;移除該非對稱的間隔層中之一間隔層,以露出該位元線;以及於該第一孔洞內形成一導電插銷電耦接該位元線。
  6. 如請求項5所述的方法,形成該橋接觸之步驟更包含:去除位於該第一孔洞表面之部分該隔離層,以露出該矽基板之矽材料;以及基於露出的矽材料,選擇性生長一摻雜矽層,其中該摻雜矽層接觸該導電插銷,該橋接觸包含該導電插銷與該摻雜矽層。
  7. 如請求項6所述的方法,其中於該第一孔洞之表面的該隔離層是一熱生成氧化層,被移除之該間隔層材料不同於氧化層,該導電插銷可以是金屬或是摻雜半導體。
  8. 如請求項6所述的方法,其中該橋接觸的第一側壁與該位元線的邊緣對齊,該橋接觸的該導電插銷藉由該隔離層與該矽基板隔離。
  9. 如請求項5所述的方法,形成該電晶體之步驟包含:於該矽基板之該主動區,形成該電晶體;以及於該電晶體之該第二導通區的一側邊,形成一第二孔洞,並於該第二孔洞內形成一隔離插銷;其中該橋接觸電耦接該位元線至該電晶體的第一導通區。
  10. 如請求項1所述的方法,其中形成該電容之步驟包含:形成該存儲電極電耦接該電晶體的第二導通區,其中該存儲電極包含位於該電晶體的該第一導通區上方之一第一突出區,位於該電晶體的該第二導通區上方之一第二突出區,和一連接區;其中該第二導通區電連接該第二突出區,該連接區位於該電晶體的閘極結構上方且橫向連接該第一突出區和該第二突出區;以及形成一絕緣層於該存儲電極之上;以及形成該電極於該絕緣層之上,其中該電極包覆該存儲電極的該第一突出區,該第二突出區,和該連接區。
  11. 一種製造記憶單元之方法,包含:準備一半導體基板,該半導體基板包含一半導體表面、一主動區與一淺溝槽隔離區;基於該淺溝槽隔離區,形成一位元線於該半導體表面下方;形成一電晶體,其中該電晶體包含一閘極結構、一第一導通區與一第二導通區; 基於該主動區,於該半導體表面下方形成一橋接觸,該橋接觸電耦接該位元線至該第一導通區;以及形成具有一存儲電極之一電容,其中該電容位在該電晶體上方,該存儲電極電耦接該電晶體的該第二導通區,該存儲電極覆蓋該電晶體的閘極結構的頂面和二個側邊,以及該存儲電極不與其他電容共用。
  12. 如請求項11所述的方法,其中該電容另包含一電極,該電極覆蓋該電晶體的該閘極結構、該第一導通區,以及該第二導通區。
  13. 如請求項11所述的方法,其中形成該位元線之步驟包含:沿著該主動區的側壁,形成非對稱的間隔層;以及在該非對稱的間隔層之間,形成該位元線。
  14. 如請求項13所述的方法,形成該電晶體之步驟包含:於該半導體基板之該主動區,形成該電晶體;以及於該電晶體之該第二導通區的一側邊,形成一孔洞,並於該孔洞內形成一隔離插銷。
  15. 如請求項14所述的方法,其中形成該橋接觸之步驟包含:於該半導體基板之該主動區上,產生另一孔洞;形成一隔離層於該另一孔洞之表面; 移除該非對稱的間隔層中之一間隔層,以露出該位元線;以及於該另一孔洞內形成一導電插銷電耦接該位元線。
  16. 如請求項15所述的方法,形成該橋接觸之步驟更包含:去除位於該另一孔洞表面之部分該隔離層,以露出該半導體基板之半導體材料;以及基於露出的半導體材料,選擇性生長一摻雜半導體層,其中該摻雜半導體層接觸該導電插銷,該橋接觸包含該導電插銷與該摻雜半導體層。
  17. 如請求項16所述的方法,更包含:形成一絕緣層位於該摻雜半導體層之上。
  18. 如請求項15所述的方法,其中該電晶體位於該孔洞與該另一孔洞之間。
  19. 如請求項11所述的方法,其中形成該電容之步驟包含:形成該存儲電極電耦接該電晶體的第二導通區,其中該存儲電極包含位於該電晶體的該第一導通區上方之一第一突出區,位於該電晶體的該第二導通區上方之一第二突出區,和一連接區;其中該第二導通區電連接該第二突出區,該第一導通區電隔離該第一突出區,且該連接區位於該電晶體的閘極結構上方且橫向連接該第一突出區和該第二突出區;以及 形成一絕緣層於該存儲電極之上;以及形成一電極於該絕緣層之上,其中該電極包覆該存儲電極的該第一突出區,該第二突出區,和該連接區。
  20. 如請求項19所述的方法,其中該第一突出區和該第二突出區鉗住該電晶體的閘極結構,該第一突出區的頂部具有一矩形形狀,以及該第二突出區的頂部具有另一矩形形狀。
TW111137070A 2020-06-04 2021-06-03 製造記憶單元之方法 TWI831396B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063034411P 2020-06-04 2020-06-04
US63/034,411 2020-06-04

Publications (2)

Publication Number Publication Date
TW202303935A TW202303935A (zh) 2023-01-16
TWI831396B true TWI831396B (zh) 2024-02-01

Family

ID=78787416

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111137070A TWI831396B (zh) 2020-06-04 2021-06-03 製造記憶單元之方法
TW110120283A TWI782558B (zh) 2020-06-04 2021-06-03 記憶單元結構

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110120283A TWI782558B (zh) 2020-06-04 2021-06-03 記憶單元結構

Country Status (4)

Country Link
US (2) US11825645B2 (zh)
KR (2) KR102561834B1 (zh)
CN (1) CN113764418A (zh)
TW (2) TWI831396B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825645B2 (en) * 2020-06-04 2023-11-21 Etron Technology, Inc. Memory cell structure
TWI827499B (zh) * 2023-04-12 2023-12-21 旺宏電子股份有限公司 記憶體裝置及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281091B1 (en) * 1999-09-02 2001-08-28 Micron Technology, Inc. Container capacitor structure and method of formation thereof
US20140015028A1 (en) * 2010-08-13 2014-01-16 Samsung Electronics Co., Ltd. Microelectronic memory devices having flat stopper layers
TWI604596B (zh) * 2015-12-18 2017-11-01 芙洛提亞股份有限公司 記憶胞、非揮發性半導體記憶裝置、及非揮發性半導體記憶裝置之製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137842A (en) 1991-05-10 1992-08-11 Micron Technology, Inc. Stacked H-cell capacitor and process to fabricate same
TW222710B (zh) 1991-09-07 1994-04-21 Samsung Electronics Co Ltd
KR960005251B1 (ko) 1992-10-29 1996-04-23 삼성전자주식회사 반도체 메모리장치의 제조방법
JPH06338592A (ja) 1993-05-31 1994-12-06 Toshiba Corp 半導体記憶装置及びその製造方法
JPH08125034A (ja) 1993-12-03 1996-05-17 Mitsubishi Electric Corp 半導体記憶装置
JPH0982918A (ja) 1995-09-19 1997-03-28 Toshiba Corp 半導体記憶装置およびその製造方法
JP3597328B2 (ja) 1995-12-08 2004-12-08 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
JP2917912B2 (ja) 1996-06-07 1999-07-12 日本電気株式会社 半導体記憶装置およびその製造方法
SG72756A1 (en) * 1996-09-19 2000-05-23 Texas Instruments Inc Cross point dram cell and process
US5885864A (en) * 1996-10-24 1999-03-23 Micron Technology, Inc. Method for forming compact memory cell using vertical devices
US6064589A (en) * 1998-02-02 2000-05-16 Walker; Darryl G. Double gate DRAM memory cell
US6025624A (en) 1998-06-19 2000-02-15 Micron Technology, Inc. Shared length cell for improved capacitance
US6812092B2 (en) * 2000-12-19 2004-11-02 Infineon Technologies Method for fabricating transistors having damascene formed gate contacts and self-aligned borderless bit line contacts
US6294426B1 (en) * 2001-01-19 2001-09-25 Taiwan Semiconductor Manufacturing Company Method of fabricating a capacitor under bit line structure with increased capacitance without increasing the aspect ratio for a dry etched bit line contact hole
JP3795435B2 (ja) * 2002-07-30 2006-07-12 プロモス テクノロジーズ インコーポレイテッド トレンチキャパシタを備えたダイナミック・ランダムアクセスメモリとその製造方法
TW589697B (en) * 2003-01-09 2004-06-01 Nanya Technology Corp Test structure of DRAM
DE10320239B4 (de) 2003-05-07 2006-06-01 Infineon Technologies Ag DRAM-Speicherzelle und Verfahren zum Herstellen einer solchen DRAM-Speicherzelle
KR100526880B1 (ko) * 2003-06-27 2005-11-09 삼성전자주식회사 반도체 메모리에서의 스토리지 노드 콘택 형성방법과 그에따른 구조
KR100538098B1 (ko) * 2003-08-18 2005-12-21 삼성전자주식회사 개선된 구조적 안정성 및 향상된 캐패시턴스를 갖는캐패시터를 포함하는 반도체 장치 및 그 제조 방법
US7034408B1 (en) * 2004-12-07 2006-04-25 Infineon Technologies, Ag Memory device and method of manufacturing a memory device
US20080061340A1 (en) * 2006-09-07 2008-03-13 Qimonda Ag Memory cell array and method of forming the memory cell array
CN101673744B (zh) 2008-09-12 2011-05-18 南亚科技股份有限公司 晶体管结构、动态随机存取存储器结构及其制造方法
KR101095784B1 (ko) * 2009-07-03 2011-12-21 주식회사 하이닉스반도체 반도체 기억 장치 및 그의 제조 방법
KR101168338B1 (ko) 2011-02-28 2012-07-31 에스케이하이닉스 주식회사 반도체 메모리 소자 및 그 제조방법
KR101934037B1 (ko) 2012-11-21 2018-12-31 삼성전자주식회사 서포터를 갖는 반도체 소자 및 그 형성 방법
US10355002B2 (en) * 2016-08-31 2019-07-16 Micron Technology, Inc. Memory cells, methods of forming an array of two transistor-one capacitor memory cells, and methods used in fabricating integrated circuitry
KR102371892B1 (ko) * 2017-05-25 2022-03-08 삼성전자주식회사 확대된 콘택홀과 랜딩 패드를 갖는 반도체 소자 형성 방법 및 관련된 소자
CN109962068B (zh) * 2017-12-14 2020-09-08 联华电子股份有限公司 存储器单元
WO2019132939A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Shielded capacitors and embedded memory employing shielded capacitors
KR20210032843A (ko) * 2019-09-17 2021-03-25 삼성전자주식회사 반도체 메모리 소자
US20210358918A1 (en) * 2020-05-13 2021-11-18 Etron Technology, Inc. Memory cell structure with capacitor over transistor
US11825645B2 (en) * 2020-06-04 2023-11-21 Etron Technology, Inc. Memory cell structure
US20220139918A1 (en) * 2020-10-29 2022-05-05 Sang-Yun Lee Novel Three-Dimensional DRAM Structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281091B1 (en) * 1999-09-02 2001-08-28 Micron Technology, Inc. Container capacitor structure and method of formation thereof
US20140015028A1 (en) * 2010-08-13 2014-01-16 Samsung Electronics Co., Ltd. Microelectronic memory devices having flat stopper layers
TWI604596B (zh) * 2015-12-18 2017-11-01 芙洛提亞股份有限公司 記憶胞、非揮發性半導體記憶裝置、及非揮發性半導體記憶裝置之製造方法

Also Published As

Publication number Publication date
US11825645B2 (en) 2023-11-21
CN113764418A (zh) 2021-12-07
KR102561834B1 (ko) 2023-07-28
TW202211439A (zh) 2022-03-16
US20210384195A1 (en) 2021-12-09
US20240008256A1 (en) 2024-01-04
TW202303935A (zh) 2023-01-16
KR20230133244A (ko) 2023-09-19
TWI782558B (zh) 2022-11-01
KR20210152050A (ko) 2021-12-14

Similar Documents

Publication Publication Date Title
US7371627B1 (en) Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US8624350B2 (en) Semiconductor device and method of fabricating the same
US5460994A (en) Semiconductor device having vertical conduction transistors and cylindrical cell gates
TW202040791A (zh) 整合互補式場效電晶體之結構及sram位元單元
CN111696987B (zh) 动态随机存取存储单元与其相关的工艺
TWI792136B (zh) 半導體裝置結構
TWI831396B (zh) 製造記憶單元之方法
US20210358918A1 (en) Memory cell structure with capacitor over transistor
JPH04233272A (ja) ダブルトレンチ半導体メモリ及びその製造方法
TWI803350B (zh) 半導體結構及其製作方法
US20020001900A1 (en) Memory cell for dynamic random access memory (dram)
US20180130804A1 (en) Vertical Thyristor Cell and Memory Array with Silicon Germanium Base Regions
TWI806672B (zh) 半導體結構及其製作方法
JP7339319B2 (ja) メモリセル構造
EP4191674A1 (en) Memory cell structure
US20240145536A1 (en) Semiconductor device structure with vertical transistor over underground bit line
CN115249660B (zh) 半导体结构的制作方法
CN113517286A (zh) 一种半导体器件及其形成方法、电子设备