TWI829635B - 用於鋰離子二次電池之分隔件 - Google Patents

用於鋰離子二次電池之分隔件 Download PDF

Info

Publication number
TWI829635B
TWI829635B TW107111851A TW107111851A TWI829635B TW I829635 B TWI829635 B TW I829635B TW 107111851 A TW107111851 A TW 107111851A TW 107111851 A TW107111851 A TW 107111851A TW I829635 B TWI829635 B TW I829635B
Authority
TW
Taiwan
Prior art keywords
resin
separator
microporous
stretching
polyolefin
Prior art date
Application number
TW107111851A
Other languages
English (en)
Other versions
TW201840039A (zh
Inventor
近藤孝彥
內田一德
濱崎真也
Original Assignee
日商旭化成股份有限公司
美商希爾格得有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商旭化成股份有限公司, 美商希爾格得有限公司 filed Critical 日商旭化成股份有限公司
Publication of TW201840039A publication Critical patent/TW201840039A/zh
Application granted granted Critical
Publication of TWI829635B publication Critical patent/TWI829635B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

問題:本發明提供一種用於鋰離子二次電池的分隔件,其具有優良的強度、由非水性電解質溶液潤溼之能力、在鋰離子二次電池中的耐電壓性及循環特徵;及一種增加該分隔件的穿刺深度之方法。 解答:用於鋰離子二次電池的分隔件係由一包含聚烯烴樹脂(A)作為主要組分與樹脂(B)之微孔膜形成,其中以該樹脂(B)塗佈在該微孔膜中之微孔洞的至少一部分表面。

Description

用於鋰離子二次電池之分隔件
發明領域 本發明係關於一種用於鋰離子二次電池之分隔件、分隔件薄膜等等。
發明背景 微孔樹脂膜或薄膜具有電絕緣性質或離子滲透性,因此使用於電池分隔件、電容器分隔件、燃料電池材料、微過濾薄膜及透氣式防水膜中,及特別是使用在用於鋰離子二次電池之分隔件中。
最近幾年,已經將鋰離子二次電池使用於諸如小型電子裝置之應用,諸如行動電話及膝上型輕便電腦;和機動車,諸如電動車輛及小尺寸電動摩托車。當併入電池中時,該用於鋰離子二次電池的分隔件必需具有強度、透氣性、離子滲透性及安全性。
樹脂膜通常藉由熔融擠出一樹脂,接著拉伸而形成。在樹脂膜中形成孔洞的方法大部分為乾式方法或溼式方法。
乾式方法包括讓一包含諸如無機粒子之不相容粒子與聚烯烴的未拉伸薄片接受拉伸及提取,以剝離異源材料界面及形成孔洞來形成孔洞之方法;和層狀開孔方法;及β-結晶開孔方法。
層狀開孔方法係一種藉由在薄片形成期間,控制熔融擠出樹脂的熔融結晶條件來獲得一具有結晶層狀結構之未拉伸薄片,及拉伸該未拉伸薄片來裂解該層狀界面及形成孔洞之方法。
在β-結晶開孔方法中,於聚丙烯(PP)的熔融擠出期間製造出具有相當低結晶密度之β結晶的未拉伸薄片,及拉伸所製造的未拉伸薄片使其轉換成具有相當高結晶密度之α結晶,藉由在二種結晶型式間之結晶密度差異形成孔洞。
溼式方法包括將諸如塑化劑之孔洞形成材料(可萃取物質)加入至聚烯烴及分散其,然後在薄片形成後以溶劑萃取該可萃取物質以形成孔洞,若需要的話,在萃取前及/或後進行拉伸之方法。
微孔膜強度已經係一研究主題,其目標為將藉由乾式方法製造的微孔膜使用作為用於二次電池之分隔件(PTL 1至5)。
PTL 1描述出一種使用β-結晶開孔方法之雙軸拉伸的薄片,其包括一第一PP、一第二PP或與該第一PP不相容的乙烯-辛烯共聚物、及一β結晶成核劑。其描述出所獲得的微孔膜在機器方向(MD)上具有強度至少40 MPa,同時具有多孔洞性至少70%及平均孔洞尺寸40至400奈米。
PTL 2描述出一種在β-結晶開孔方法中,讓二種具有不同熔融流動速率(MFR)的不同型式之PP接受熔融擠出及雙軸拉伸之方法。
PTL 3描述出一種在β-結晶開孔方法中,讓PP與苯乙烯-丁二烯彈性體之混合物相繼接受雙軸拉伸的方法。
PTL 4描述出一種在β-結晶開孔方法中,藉由雙軸拉伸獲得之微孔PP膜,該膜具有厚度10至30微米,多孔洞性55至85%,抗透氣性70至300秒/100毫升,穿刺強度0.18至0.50牛頓/1微米厚,橫軸方向(TD)熱收縮因子≤12%(在135℃下60分鐘),及抗張強度60至200 MPa。
PTL 5描述出在β-結晶開孔方法中,共擠出PP丸粒與由聚乙烯(PE)與苯乙烯基底的彈性體組成之丸粒,及進行雙軸拉伸以製備一多孔積層膜,其目標為控制強度及透氣性。
微孔膜強度亦已係一研究主題,其目標為將藉由溼式方法製造的微孔膜使用作為用於二次電池之分隔件(PTL 6)。PTL 6描述出一種在膜厚度方向上具有可變的定向程度之微孔聚烯烴膜,及從斷裂強度及穿刺強度二者的觀點來看,其穿刺延伸度係2.2至2.4毫米。 [引用表列] 專利文獻(PTL)
[PTL 1]WO 2007/46226 [PTL 2] 日本未審查的專利公告案號2012-7156 [PTL 3] 日本未審查的專利公告案號2012-131990 [PTL 4] WO 2013/54929 [PTL 5] 日本未審查的專利公告案號2014-4771 [PTL 6] 日本未審查的專利公告案號1995(H7)-188440
發明概要 最近幾年,已經將鋰離子二次電池併入小型電子裝置及機動車中,及甚至已達成在嚴酷環境中使用。就這一點而言,當併入二次電池中時,仍然需要進一步改良包括微孔膜或薄膜的分隔件之強度、由非水性電解質溶液潤溼之能力、耐電壓性及循環特徵。
但是,藉由在PTL 1至5中所描述的乾式方法或在PTL 6中所描述的溼式方法所獲得之微孔膜無法改良強度、由非水性電解質溶液潤溼的能力、二次電池之耐電壓性及循環特徵,或無法在這些性質當中提供平衡。
再者,就穿刺深度同時維持透氣性來說,在PTL 1至6中所描述的微孔膜仍然需要改良。
按照這些情況,本發明之目標為提供一種用於鋰離子二次電池的分隔件,其具有優良的強度、由非水性電解質溶液潤溼之能力、鋰離子二次電池的耐電壓性及循環特徵;及一種增加該分隔件之穿刺深度的方法。
本發明家已發現前述提及的問題可藉由將一特定樹脂置於如所塑模的多孔或微孔聚烯烴薄片網狀物中,或藉由具體指定該微孔聚烯烴膜之穿刺深度而解決,因此完成本發明。 特別是,本發明係如下。 [1]一種用於鋰離子二次電池的分隔件,其包含一微孔膜,其中該微孔膜包含: 一聚烯烴樹脂(A)作為主要組分;及 在該微孔膜中的微孔洞之至少一個表面區域係使用一與該聚烯烴樹脂(A)不同的樹脂(B)塗佈。 [2]如第[1]項的分隔件,其中該微孔洞係由該聚烯烴樹脂(A)的原纖維形成,及該原纖維的外表面係由該樹脂(B)包圍。 [3]如第[1]或[2]項的分隔件,其中在選自於在膜厚度方向上將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。 [4]如第[1]至[3]項之任何一項的分隔件,其中該分隔件具有穿刺深度2.5毫米或更大。 [5]如第[4]項的分隔件,其中該穿刺深度係大於2.5毫米及等於或小於4.5毫米。 [6]如第[1]至[5]項之任何一項的分隔件,其中該樹脂(B)具有彈性模數在25℃下係700 MPa或較小。 [7]如第[6]項的分隔件,其中該彈性模數在25℃下係等於或大於100 MPa及等於或小於700 MPa。 [8]如第[1]至[7]項之任何一項的分隔件,其中該樹脂(B)具有熔點130℃或較低。 [9]如第[1]至[8]項之任何一項的分隔件,其中該樹脂(B)係疏水性樹脂。 [10]如第[9]項之分隔件,其中該疏水性樹脂在辛烷中具有一溶解度,其於25℃下係20克/公斤或更大。 [11]如第[9]或[10]項之分隔件,其中該疏水性樹脂係一在25℃下具有彈性模數係700 MPa或較小之聚烯烴樹脂。 [12]如第[1]至[11]項之任何一項的分隔件,其中該聚烯烴樹脂(A)包含聚丙烯樹脂。 [13]如第[1]至[12]項之任何一項的分隔件,其中該分隔件具有多孔洞性係30%或更大。 [14]如第[1]至[13]項之任何一項的分隔件,其中該分隔件具有穿刺強度係0.25公斤力或更大。 [15]如第[1]至[14]項之任何一項的分隔件,其中該分隔件之薄膜厚度係等於或小於100微米。 [16]如第[1]至[15]項之任何一項的分隔件,其中該分隔件之熔融溫度係低於150℃。 [17]如第[1]至[16]項之任何一項的分隔件,其中該微孔膜可藉由拉伸一包含該聚烯烴樹脂(A)的前驅物,及隨後以該樹脂(B)浸透該經拉伸的產物而獲得。 [18]如第[17]項的分隔件,其中該微孔膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經TD拉伸的產物而獲得。 [19]如第[18]項的分隔件,其中該微孔膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,壓延該經TD拉伸的產物,及隨後以該樹脂(B)浸透該經壓延的產物而獲得。 [20]如第[18]項的分隔件,其中該微孔膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,以該樹脂(B)浸透該經TD拉伸的產物,及隨後壓延該經浸透的產物而獲得。 [21]如第[17]項的分隔件,其中該微孔膜可藉由在至少機器方向(MD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經MD拉伸的產物而獲得。 [22]一種用於鋰離子二次電池的分隔件,其包含一微孔聚烯烴膜,其中該分隔件具有穿刺深度2.5毫米或更大。 [23]如第[22]項的分隔件,其中該微孔聚烯烴膜可藉由拉伸一包含聚烯烴樹脂(A)之前驅物,及隨後以與該聚烯烴樹脂(A)不同的樹脂(B)浸透該經拉伸之產物而獲得。 [24]如第[23]項的分隔件,其中該微孔聚烯烴膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經TD拉伸的產物而獲得。 [25]如第[24]項的分隔件,其中該微孔聚烯烴膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,壓延該經TD拉伸的產物,及隨後以該樹脂(B)浸透該經壓延的產物而獲得。 [26]如第[24]項的分隔件,其中該微孔聚烯烴膜可藉由在至少橫軸方向(TD)上拉伸該前驅物,以該樹脂(B)浸透該經TD拉伸的產物,及隨後壓延該經浸透的產物而獲得。 [27]如第[23]項的分隔件,其中該微孔聚烯烴膜可藉由在至少機器方向(MD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經MD拉伸的產物而獲得。 [28]如第[23]至[27]項之任何一項的分隔件,其中在選自於在膜厚度方向上將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。 [29]如第[22]至[28]項之任何一項的分隔件,其中該分隔件之熔融溫度係低於150℃。 [30]一種改良用於鋰離子二次電池的分隔件之穿刺深度的方法,其步驟包括: (1)提供一包含聚烯烴樹脂(A)作為主要組分的微孔膜; (2)以一與該聚烯烴樹脂(A)不同的樹脂(B)塗佈在該微孔膜中的微孔洞之至少一個表面區域,以形成一經塗佈的微孔膜;及 (3)形成該含有經塗佈的微孔膜之分隔件。 [31]如第[30]項的方法,其中該步驟(2)係藉由以一溶解或分散有該樹脂(B)之溶液塗佈該微孔洞的至少一個表面區域而進行。 [32]如第[30]項的方法,其中該步驟(2)係藉由以一溶解或分散有該樹脂(B)之溶液浸透該微孔膜而進行。 [33]如第[30]至[32]項之任何一項的方法,其中該微孔膜係於步驟(1)中藉由在至少橫軸方向(TD)上拉伸一包含該聚烯烴樹脂(A)的前驅物而形成。 [34]如第[30]至[32]項之任何一項的方法,其中該微孔膜係於步驟(1)中藉由在至少橫軸方向(TD)上拉伸與經控制的機器方向(MD)鬆解一包含該聚烯烴樹脂(A)的前驅物而形成。 [35]如第[30]至[32]項之任何一項的方法,其中該微孔膜係於步驟(1)中藉由在機器方向(MD)及橫軸方向(TD)上拉伸一包含該聚烯烴樹脂(A)的前驅物而形成。 [36]如第[30]至[32]項之任何一項的方法,其中該微孔膜係於步驟(1)中藉由在至少機器方向(MD)上拉伸一包含該聚烯烴樹脂(A)的前驅物而形成。 [37]如第[30]至[32]項之任何一項的方法,其中該微孔膜係於步驟(1)中藉由在至少機器方向(MD)上拉伸,然後在橫軸方向(TD)上拉伸與經控制的機器方向(MD)鬆解一包含該聚烯烴樹脂(A)的前驅物而形成。 [38]如第[33]至[37]項之任何一項的方法,其中該經拉伸的產物係通過一對壓延輥間。 [39]如第[30]至[32]項之任何一項的方法,其中該經塗佈的微孔膜係通過一對壓延輥間。 [40]如第[30]至[39]項之任何一項的方法,其中在選自於在膜厚度方向上將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。 [41]如第[30]至[40]項之任何一項的方法,其中該分隔件之熔融溫度係低於150℃。
根據本發明,可提供一種用於鋰離子二次電池的分隔件,其具有優良的強度、由非水性電解質溶液潤溼之能力、鋰離子二次電池的耐電壓性及循環特徵。
較佳實施例之詳細說明 現在,將詳細解釋用以進行本發明之具體實例(在下文中指為「具體實例」)。但是,要了解的是,本發明不限於這些具體實例及可在其主旨範圍內併入多種修改。
<用於鋰離子二次電池的分隔件> 本發明的一個態樣係一種用於鋰離子二次電池之分隔件。如於本文中所使用,「分隔件」係一配置在鋰離子二次電池之複數個電極間的成員,其可讓鋰離子穿透且亦可依需求而具有停機性質。
該用於鋰離子二次電池的分隔件之第一具體實例包含一微孔膜,該微孔膜包含一聚烯烴樹脂(A)作為主要組分及一覆蓋該微孔膜的微孔洞之至少一個表面區域的樹脂(B)。在該第一具體實例中,該樹脂(B)係與該聚烯烴樹脂(A)不同。
從防止應力集中於分隔件內的微孔洞之微裂縫中的觀點來看,較佳的是,在選自於在膜厚度方向上藉由三等分均分該分隔件所獲得的三層當中之中間層中,該分隔件包含樹脂(A)及樹脂(B),及以該樹脂(B)塗佈由該樹脂(A)組成的骨架之至少一部分表面層。為了證實該骨架是否由該樹脂(B)塗佈,在該分隔件與RuO4 (由Rare Metallic Co., Ltd.製造)共存的密封容器中,藉由蒸氣染色該分隔件四小時來製備一經釕染色的分隔件。混合10.6毫升Quetol 812(由Nisshin EM Co., Ltd.製造)作為環氧埋入基礎樹脂、9.4毫升MNA(由Nisshin EM Co., Ltd.製造)作為硬化劑及0.34毫升2,4,6-三(二甲基胺基甲基)酚(特級化學試劑DMP-30,由Wako Pure Chemical Industries, Ltd.製造)作為加速劑,揉捏及除泡,然後注塑成型進該經釕染色的分隔件中,及在60℃下硬化十二小時或更多以進行該環氧樹脂埋置。使用超薄切片機(EM-UC7,由Leica Microsystems Co., Ltd.製備)形成該埋入環氧樹脂中的分隔件之超薄切片(具有厚度約50至100奈米),藉由穿透式電子顯微鏡(TEM)觀察該分隔件的切片表面以取得相片,在厚度方向上三等分該相片以獲得三層,及該三層在厚度方向上各別指為表面層、中間層及表面層。因為樹脂(A)及樹脂(B)在可染性或結晶性上不同,可根據該相片證實,該樹脂(B)係於該中間層中塗佈至該樹脂(A)表面。
此外,該樹脂(B)之塗佈量不限制,但是較佳為5至70重量%,以總樹脂重量為基準。從防止應力集中在微裂縫中之觀點來看,該樹脂(B)的塗佈量較佳為5重量%或更多;及從維持足夠的細孔以維持鋰離子滲透性之觀點來看,較佳為70重量%或較少。為了相同理由,在該表面及中間層中的樹脂(B)塗佈量較佳為滿足由下列式所表示的關係: 在中間層中的塗佈量/在表面層中的塗佈量=0.5至1.5。 關於該塗佈量,藉由雷射技術等等移除表面層,從該分隔件釋放出該中間層,然後,稱重該中間層(即,測量樹脂(A)加上樹脂(B)的總樹脂重量)。使用該中間層重量約三十倍的溶劑諸如辛烷,萃取該分隔件之沒有表面層的中間層12小時,然後乾燥,測量該樹脂(B)之重量。然後,根據下列式計算該塗佈量: 樹脂(B)的塗佈量=樹脂(B)的重量/(樹脂(A)的重量+樹脂(B)的重量)=在經萃取的中間層中之樹脂(B)重量/在中間層中的總樹脂重量。 使用與上述相同的方法移除中間層,從該分隔件釋放出表面層,然後,進行與上述相同的測量及處理來計算在該表面層中之塗佈量,接著為「在中間層中的塗佈量/在表面層中的塗佈量」。
該微孔膜的微孔洞係由該聚烯烴樹脂(A)所構成之網狀物結構形成。至少一個微孔洞係由該聚烯烴樹脂(A)(在下文中指為「原纖維」)所構成之網狀物結構的最小單元所界定。
若該樹脂(B)覆蓋至少部分或整體的微孔洞表面時,其將可防止應力集中在微孔洞的微裂縫中,因此改良該分隔件之穿刺強度。
再者,若該高疏水性樹脂(B)覆蓋微孔洞的部分表面時,由包括碳酸酯基底溶劑之非水性電解質溶液潤溼的能力將增加,及離子傳導度將由於該潤溼能力增加而促進,因此幫助維持二次電池之高循環特徵。由該第一具體實例的分隔件所提供之高循環特徵程度可維持在等於或超過包含習知微孔聚烯烴膜之分隔件的循環特徵程度。
若該樹脂(B)覆蓋微孔洞表面及較佳為構成該微孔洞之原纖維的外周圍部分時,可改良該分隔件之耐電壓性。
因此,該第一具體實例的分隔件會由於該微孔洞表面由該樹脂(B)塗佈而具有優良的強度、由非水性電解質溶液潤溼之能力、用於鋰離子二次電池的耐電壓性及循環特徵。
從防止應力集中在微孔洞的微裂縫中及增加由電解質溶液潤溼之能力的觀點來看,該樹脂(B)較佳為覆蓋在該分隔件或微孔膜內的空洞表面而沒有覆蓋該分隔件或微孔膜之外表面。
從該微孔膜及分隔件的強度及由非水性電解質溶液潤溼之能力的觀點來看,該經樹脂(B)塗佈的微孔洞較佳為在該聚烯烴樹脂(A)與樹脂(B)間不包括共價鍵,或不包括親水性樹脂塗層。更佳的是,在該微孔洞上的樹脂(B)表面塗層不具有該樹脂(B)之結構單元單體接枝聚合在由該聚烯烴樹脂(A)構成的原纖維之外周圍部分上。
根據第二具體實例,該用於鋰離子二次電池的分隔件包含一微孔聚烯烴膜及具有穿刺深度2.5毫米或較大。
如於本文中所使用,「穿刺深度」係一特定尺寸的針從其接觸該分隔件後直到其打開一個孔洞時之移動距離(深度),其中假設該分隔件的周圍邊緣係經錨定及使用該針在厚度方向上從該分隔件之外表面刺穿該分隔件。在實施例中有解釋用來測量穿刺深度及穿刺強度的方法。
於此,具體指出具有穿刺深度2.5毫米或較大的分隔件構成具有優良的強度、由非水性電解質溶液潤溼之能力、二次電池的耐電壓性及循環特徵之分隔件。該分隔件若其穿刺深度係2.5毫米或較大時,將亦趨向於改良其穿刺強度。已經發現穿刺深度2.5毫米或較大之性質可有用作為選擇可使用來形成微孔聚烯烴膜的聚烯烴材料之指標。為了進一步改良穿刺強度,該分隔件的穿刺深度較佳為大於2.5毫米至等於或小於4.5毫米,更佳為大於2.6毫米至等於或小於4.5毫米,及最佳為大於2.7毫米至等於或小於4.5毫米。
第二具體實例的微孔聚烯烴膜可由與使用於第一具體實例相同之聚烯烴樹脂(A)形成,或其可由聚烯烴樹脂(A)及樹脂(B)形成。
該用於鋰離子二次電池的分隔件之多孔洞性較佳為30%或較大,更佳為大於30%至最高95%,甚至更佳為35%或較大至最高75%,及最佳為35%或較大至最高55%。從改良離子導電度的觀點來看,該多孔洞性較佳為30%或較大。該分隔件之多孔洞性可藉由控制該樹脂組成物、該樹脂與塑化劑之摻合比率、拉伸條件、熱定型條件等等來調整。
從分隔件的生產力及二次電池的安全性之觀點來看,該用於鋰離子二次電池的分隔件之穿刺強度較佳為在0.25公斤力或較大及更佳為0.25至0.60公斤力之範圍內。
從在穿刺強度與穿刺深度間之平衡及二次電池之小型化的觀點來看,該用於鋰離子二次電池的分隔件之薄膜厚度較佳為不大於100微米,更佳為在2至80微米之範圍內及甚至更佳為在3至30微米之範圍內。該分隔件的薄膜厚度可藉由最佳化微孔膜製造條件來調整。
現在,將描述上述具體實例的構成元素。
<微孔膜> 此具體實例之微孔膜包含一聚烯烴樹脂(A)作為主要組分,及一在該微孔洞的至少一個表面區域中且亦與該聚烯烴樹脂(A)不同的樹脂(B)。該微孔膜較佳為具有低導電性、具有離子導電度、具有高抗有機溶劑性及具有細孔洞直徑。
包含聚烯烴樹脂(A)作為主要組分的微孔膜意謂著相關於該微孔膜的質量,在該微孔膜中之聚烯烴樹脂(A)比例係至少50質量%。從該膜的潤溼能力、厚度及停機性質之觀點來看,在該微孔膜中之聚烯烴樹脂(A)比例較佳為在50質量%至100質量%間,內含;更佳為在55質量%至99質量%間,內含;及最佳為在60質量%至98質量%間及內含。
適用作為該膜的主要組分之聚烯烴樹脂(A)係形成具有微孔洞的聚合物網狀物,及該微孔洞表面係由該樹脂(B)塗佈。從支撐在該膜中的聚合物網狀物之觀點來看,該聚烯烴樹脂(A)較佳為在室溫下不溶於辛烷或己烷中。較佳的是,此意謂著從該膜獲得的辛烷或己烷萃取物中不存在來自該聚烯烴樹脂(A)之組分。
該聚烯烴樹脂(A)的實施例包括使用諸如乙烯、丙烯、1-丁烯、4-甲基-1-戊烯、1-己烯及1-辛烯之單體所獲得的同元聚物、共聚物或多段式聚合聚合物。此用於聚烯烴樹脂(A)的樹脂可單獨使用,或可以二或更多種之混合物使用。 從停機性質的觀點來看,較佳為使用聚乙烯、聚丙烯及其共聚物、和其混合物;同時從停機性質、辛烷不溶性及己烷不溶性的觀點來看,更佳為使用一或數種型式的聚丙烯。
特定的聚乙烯實施例包括低密度聚乙烯、線性低密度聚乙烯、中密度聚乙烯、高密度聚乙烯及超高分子量聚乙烯。如於本文中所使用,「高密度聚乙烯」指為具有密度0.942至0.970克/立方公分之聚乙烯。該聚乙烯的密度係根據由JIS K7112(1999)所具體指定的D)密度梯度管方法所測量之值。 聚丙烯的特定實施例包括全同立構聚丙烯、間同立構聚丙烯及無規立構聚丙烯。 乙烯-丙烯共聚物可呈無規或嵌段結構形式,或乙丙橡膠。
包含該聚烯烴樹脂(A)作為主要組分的微孔膜可呈單層或多層形式。從透氣性、強度及辛烷不溶性的觀點來看,較佳為形成單層膜,如為包含聚丙烯作為該聚烯烴樹脂(A)的單層。從該樹脂(B)之透氣性、強度及內部滲透的觀點來看,較佳為一具有外層與內層之多層膜,其中該外層包含聚丙烯作為該聚烯烴樹脂(A),該內層包含聚乙烯作為該聚烯烴樹脂(A)。
將與該聚烯烴樹脂(A)係不同樹脂的樹脂(B)處置成覆蓋該微孔膜的微孔洞之至少一個表面區域,及較佳為覆蓋構成該微孔洞的原纖維之外周圍部分。
為了將相對軟的樹脂(B)傳遞至微孔洞及防止應力集中在微孔洞的微裂縫中,因此增加該分隔件的穿刺強度,該樹脂(B)於25℃下的彈性模數較佳為50至700 MPa,更佳為80至700 MPa,甚至更佳為100至700 MPa及又更佳為110至650 MPa。
從內部滲透的觀點來看,該樹脂(B)較佳為例如(1)乳液,如為分散在水中的聚合物;及(2)聚合物溶液,其中該樹脂(B)係溶解在諸如辛烷的溶劑中。至於該乳液(1),較佳為使用具有粒子尺寸比分隔件的孔洞尺寸小之樹脂(B)乳液。至於該聚合物溶液(2),即使機制不清楚,較佳為使用在己烷或辛烷中具有溶解度的樹脂(B),及更佳為使用該樹脂(B)於25℃下在辛烷中之溶解度係20克/公斤或較大的聚合物溶液。
從對聚烯烴樹脂(A)的潤溼能力及微孔膜的生產力之觀點來看,該樹脂(B)的熔點較佳為不高於130℃及更佳為50至125℃。如於本文中所使用,聚合物的「熔點」係在聚合物之示差掃描卡計(DSC)所獲得的DSC曲線中,觀察到與結晶聚合物熔化時的吸熱波峰相應之溫度(℃)。當在DSC曲線中觀察到二個吸熱波峰時,與在較高溫度末端處的吸熱波峰相應之溫度係定義為熔點。
從微孔膜的透氣性、穿刺強度及穿刺深度之觀點來看,該樹脂(B)較佳為疏水性樹脂。如於本文中所使用,「疏水性樹脂」係一完全不溶於水,或在25℃下於水中具有溶解度少於1克/公斤之樹脂。
從微孔膜的透氣性及強度之觀點來看,該樹脂(B)較佳為可溶於己烷或辛烷,及更佳為該樹脂(B)在25℃下於辛烷中具有溶解度係20克/公斤或較大。從相同觀點來看,該使用作為微孔膜的起始材料之樹脂(B)的彈性模數較佳為大約等於使用己烷或辛烷從該微孔膜獲得的萃取物之彈性模數。
從該微孔膜的樹脂成分、厚度、透氣性及強度之觀點來看,該樹脂(B)較佳為聚烯烴樹脂,諸如聚乙烯、聚丙烯或聚丁烯、或其共聚物;或聚對酞酸乙二酯、聚環烯烴、聚醚碸、聚醯胺、聚醯亞胺、聚醯亞胺醯胺,聚芳族醯胺、聚二氟乙烯、耐綸、聚四氟乙烯、聚甲基丙烯酸酯、聚丙烯酸酯、聚苯乙烯或聚胺基甲酸酯、或其共聚物。更佳的樹脂包括聚烯烴樹脂,諸如聚乙烯、聚丙烯及聚丁烯及其共聚物;聚甲基丙烯酸酯、聚丙烯酸酯、聚苯乙烯及聚胺基甲酸酯及其共聚物;及聚對酞酸乙二酯、聚環烯烴、聚醚碸、聚醯胺、聚醯亞胺、聚醯亞胺醯胺、聚芳族醯胺、聚環烯烴、耐綸及聚四氟乙烯,在此當中,聚烯烴樹脂較佳,諸如聚乙烯、聚丙烯及聚丁烯及其共聚物。該樹脂(B)更佳為在25℃下具有彈性模數不大於700 MPa之聚烯烴樹脂,及甚至更佳的是,其係在25℃下具有彈性模數110至520 MPa及熔點不高於130℃之低熔點聚烯烴樹脂。
該樹脂(B)之實施例包括具有重量平均分子量最高140,000的低分子量聚丙烯、C3單體與C4單體之共聚物(例如,由C4主要組分/C3輔助組分構成的α-烯烴共聚物,及由C3主要組分/C4輔助組分構成的α-烯烴共聚物)及具有低立體規則性之聚丙烯。
該樹脂(B)較佳為置於在微孔膜的微孔洞表面上,沒有被局限在其最外邊表面(外表面)上,及更佳為該微孔洞表面係全部或部分由該樹脂(B)塗佈。不意欲由任何理論界限,當該樹脂(B)係以允許將該微孔膜之透氣性維持至可實行程度的程度存在於該微孔洞表面上時,該樹脂(B)可鬆解及防止應力集中在微孔膜之應力會集中及造成缺陷及其類似現象之位置處,如此改良該膜的斷裂深度及斷裂強度。為了增加該膜的穿刺強度,常見採用的方法為增加刺穿應力(堅硬度)之步驟,諸如增加厚度、增加樹脂的基礎重量或增加樹脂其自身的堅硬度。但是,根據本發明,假設當該樹脂(B)係以該樹脂B係浸透在微孔膜可發生缺陷的應力集中位置處之此方式塗佈於微孔洞表面上時,該樹脂(B)會鬆解及防止應力集中在應力趨向於集中的位置處,而造成該微孔膜的斷裂深度及斷裂強度增加。由於根據本發明將獲得增加的強度,其可不僅增加堅硬度而且亦改良斷裂深度,因此改良分隔件的物理性質。
考慮到樹脂(B)相關於聚烯烴樹脂(A)之比例,較佳為以由樹脂(A)與(B)所形成的微孔膜之多孔洞性係單獨由該樹脂(A)所形成的微孔膜之多孔洞性的30%至85%之比率,將該樹脂(B)施加至該樹脂(A)。
該微孔膜亦可包括除了樹脂(A)及(B)外之構成元素。此等構成元素包括例如樹脂纖維之編織物或不織物、或紙、絕緣材料粒子團聚物及其類似物。
該微孔膜的多孔洞性較佳為30%或較大,更佳為大於30%至最高95%,甚至更佳為35%或較大至最高75%,及最佳為35%或較大至最高55%。從改良離子導電度的觀點來看,該多孔洞性較佳為30%或較大;同時從強度的觀點來看,其較佳為不大於95%。該多孔洞性可藉由控制該樹脂組成物、該樹脂與塑化劑之摻合比率、拉伸條件、熱定型條件等等來調整。
從分隔件的生產力及二次電池的安全性之觀點來看,該微孔膜的穿刺強度較佳為在0.25公斤力或較大及更佳為0.25至0.60公斤力之範圍內。從穿刺強度、在非水性溶劑中的潤溼能力及耐電壓性之觀點來看,該微孔膜的穿刺深度較佳為2.5毫米或較大,更佳為大於2.5毫米至等於或小於4.5毫米,甚至更佳為2.6毫米或較大至等於或小於4.5毫米,及最佳為2.7毫米或較大至等於或小於4.5毫米。
該微孔膜的薄膜厚度較佳為0.1微米或較大至等於或小於100微米,更佳為1微米或較大至等於或小於50微米,甚至更佳為3微米或較大至等於或小於25微米,及最佳為5微米或較大至等於或小於20微米。從機械強度的觀點來看,其較佳為0.1微米或較大;及從獲得具有高容量電池之觀點來看,較佳為等於或小於100微米。該薄膜厚度可藉由控制模唇間距、拉伸條件等等來調整。
該微孔膜的平均孔洞尺寸較佳為0.03微米或較大至等於或小於0.80微米,及更佳為0.04微米或較大至等於或小於0.70微米。從離子導電度及耐電壓性的觀點來看,其較佳為0.03微米或較大至等於或小於0.80微米。該平均孔洞尺寸可藉由控制樹脂組成物、擠出條件、拉伸條件、熱定型條件等等進行調整。
該微孔膜的黏度平均分子量較佳為在30,000至12,000,000間,內含;更佳為50,000或較大至少於4,000,000,及甚至更佳為100,000或較大至少於1,000,000。若該黏度平均分子量係30,000或較大時,在熔融模塑期間的熔融張力將增加而產生令人滿意之可塑能力,同時該強度將亦由於在聚合物間之纏結而趨向於高。若該黏度平均分子量係12,000,000或較低時,將較易達成均勻的熔融揉捏,及薄片可塑能力及特別是其厚度穩定性將趨向於優異。
在電池內部溫度由於電池外部短路等等增加之情況中,熱逃脫可造成電池爆炸或燃燒。但是,該熱逃脫可藉由在電池中使用分隔件來防止,即,將該分隔件設計成於預定溫度下封閉其微孔洞,及提高該分隔件之電阻(ER)或透氣性(Gurley)來防止在正電極與負電極間之反應。此外,提高該分隔件的電阻或透氣性之溫度指為「熔融溫度」。較佳的是,該用於電池的分隔件之熔融溫度足夠低以保證電池安全性,更佳為130℃或較低,進一步較佳為50℃或更高至125℃或較低。
<用以製造微孔膜的方法> 該微孔膜可藉由在聚烯烴樹脂組成物的熔融揉捏產物或模塑薄片中,使用乾式方法或溼式方法形成孔洞而製造。
乾式方法包括熔融揉捏及擠壓該聚烯烴樹脂組成物,然後藉由熱處理及拉伸來剝離該聚烯烴結晶界面的方法;及一起熔融揉捏該聚烯烴樹脂組成物與無機充填劑,將該揉捏混合物模塑成薄片,然後拉伸其,以在該聚烯烴與無機充填劑間之界面處產生分離的方法。
溼式方法包括熔融揉捏該聚烯烴樹脂組成物與孔洞形成材料,及將其模塑成薄片形式,若需要的話伴隨著拉伸,然後萃取該孔洞形成材料之方法;及溶解該聚烯烴樹脂組成物,然後將該溶液浸入該聚烯烴的不良溶劑中來固化該聚烯烴,同時移除該溶劑之方法。
該聚烯烴樹脂組成物所包含的聚烯烴樹脂(A)較佳為50質量%或較大,及更佳為在60質量%至100質量%間,內含。
該聚烯烴樹脂組成物亦可包含除了聚烯烴樹脂(A)外的樹脂,和選擇性添加劑。該添加劑的實施例包括無機充填劑、抗氧化劑、金屬肥皂、紫外光吸收劑、光安定劑、抗靜電劑、抗霧化劑及彩色顏料。
例如,可以擠壓器、揉捏器、Laboplastomil、揉捏輥或Banbury混合器進行該聚烯烴樹脂組成物之熔融揉捏。
該孔洞形成材料可係塑化劑、無機充填劑或其組合。
該塑化劑的實施例包括烴,諸如液態石蠟及石蠟;酯,諸如酞酸二辛酯及酞酸二丁酯;及高級醇,諸如油醇及硬脂醇。
該無機充填劑之實施例包括氧化物基底的陶瓷,諸如氧化鋁、二氧化矽(氧化矽)、二氧化鈦、氧化鋯、氧化鎂、二氧化鈰、氧化釔、氧化鋅及氧化鐵;氮化物基底的陶瓷,諸如氮化矽、氮化鈦及氮化硼;陶瓷,諸如碳化矽、碳酸鈣、硫酸鋁、氫氧化鋁、鈦酸鉀、滑石、高嶺土黏土、高嶺石、埃洛石、葉蠟石、蒙脫石、絹雲母、雲母、鎂鋁蛇紋石、斑脫土、石棉、沸石、矽酸鈣、矽酸鎂、矽藻土及石英沙;及玻璃纖維。
例如,可使用T型模具或金屬輥進行該薄片模塑。亦可使用雙帶式加壓機或其類似機器輥軋該經模塑的薄片。
可藉由已知的乾式方法及/或溼式方法來進行該孔洞形成步驟。亦可在孔洞形成步驟期間或在孔洞形成步驟前或後進行拉伸步驟。可藉由單軸拉伸或雙軸拉伸來進行該拉伸處理,其中從改良所獲得的微孔膜強度之觀點來看,雙軸拉伸較佳。當已模塑的薄片在雙軸方向上接受高拉伸比率時,該分子被定向在面內方向上,此提供該最後產物較不可能被撕裂及提供高穿刺強度。該拉伸方法的實施例包括同步雙軸拉伸、相繼雙軸拉伸、多段式拉伸及重覆拉伸。從增加穿刺強度及在拉伸期間獲得較大均勻性及優異的停機性質之觀點來看,同步雙軸拉伸較佳。從促進平面定向控制的觀點來看,相繼雙軸拉伸較佳。
同步雙軸拉伸係一種同步進行在MD(在微孔膜之連續模塑期間的機器方向)上拉伸及在TD(與該微孔膜的MD呈90o 角相交之方向)上拉伸的拉伸方法,及在此情況中,在每個方向上的拉長比率可不同。相繼雙軸拉伸係一種各自獨立地在MD及TD上,以當進行該MD或TD拉伸時,其它方向係呈未限制狀態或呈具有固定長度的錨定狀態之此方式進行拉伸之拉伸方法。
為了最小化微孔膜之收縮,可在拉伸後或在孔洞形成後進行熱處理來產生熱定型。該熱處理可包括以規定的溫度環境及規定的拉伸程度進行拉伸操作來調整該物理性質,及/或以規定的溫度環境及規定的鬆解程度來進行鬆解操作以減低拉伸應力。該鬆解操作亦可在拉伸操作後進行。可使用拉幅機或輥式拉伸器來進行該熱處理。
現在,將描述藉由乾式層狀開孔方法來製造微孔膜的方法作為實施例。在乾式層狀開孔方法中,拉伸許多具有層狀結構且經由非晶相聚合物黏接的球晶之前驅物以裂解該層狀界面,因此沒有使用諸如水或有機溶劑之溶劑而形成孔洞。
該乾式層狀開孔方法較佳包括(i)一擠出包含該聚烯烴樹脂(A)的前驅物之步驟,及(ii)一單軸拉伸該經擠出的前驅物之步驟。將該包含聚烯烴樹脂(A)的前驅物供應於至少一個在機器方向(MD)或橫軸方向(TD)上之拉伸操作,及該前驅物可例如係熔融樹脂、樹脂組成物或模塑樹脂。例如,該在步驟(i)中接受擠出模塑的前驅物可係一擠出模塑物件、版紙卷(master-roll)薄片或生膜。較佳的是,讓藉由包括步驟(i)及(ii)之乾式層狀開孔方法所獲得的微孔膜接受以樹脂(B)塗佈、浸漬或浸透。
可藉由習知的擠出方法進行該步驟(i)。所使用的擠壓器可包含一具有長形孔的T型模具或環狀模具。
可以上述方式進行在步驟(ii)中的單軸拉伸。可在機器方向(MD)或橫軸方向(TD)上進行單軸拉伸。該前驅物在單軸拉伸後於橫軸方向(TD)上拉伸之雙軸拉伸較佳。在雙軸拉伸時,可進行機器方向(MD)拉伸,及橫軸方向(TD)拉伸且同步控制在MD方向上鬆解。該MD拉伸可包括冷拉伸及熱拉伸二者。較佳的是,讓藉由在步驟(ii)中拉伸而獲得的微孔膜接受以樹脂(B)塗佈、浸漬或浸透。
從最小化該前驅物的內部應變之觀點來看,該前驅物可在步驟(i)期間、在步驟(ii)後或在步驟(ii)之拉伸前進行退火。該退火可在溫度低於該聚烯烴樹脂(A)的熔點50℃至溫度低於該聚烯烴樹脂(A)的熔點10℃間之範圍內,或在溫度低於該聚烯烴樹脂(A)的熔點50℃至溫度低於該聚烯烴樹脂(A)的熔點15℃間之範圍內進行。
較佳的是,在步驟(ii)期間或之後,讓已經於MD及/或TD方向上拉伸的產物接受壓延處理。較佳的是,讓該經壓延的產物接受以樹脂(B)塗佈、浸漬或浸透。可藉由讓該經拉伸的產物通過至少一對壓延輥來進行壓延處理。該壓延輥對可包含例如鋼輥與彈性輥組,或二個鋼輥組。該壓延輥對可在壓延處理期間進行加熱或冷卻。
從微孔膜強度及以樹脂(B)後處理的觀點來看,更佳為,在上述乾式層狀開孔方法中使用一讓該包含聚烯烴樹脂(A)的前驅物接受在MD及TD方向上之連續或同步拉伸,然後將其供應於壓延處理的方法(在下文中指為「MD/TD/壓延方法」)。從增加強度的觀點來看,對MD/TD/壓延方法來說,在MD拉伸後進行TD拉伸之連續拉伸甚至更佳。
<改良用於鋰離子二次電池之分隔件的穿刺深度方法> 本發明的另一個態樣為一種使用上述微孔膜來增加用於鋰離子二次電池的分隔件之穿刺深度的方法。
根據第三具體實例,一種增加分隔件的穿刺深度之方法,其包含下列步驟: (1)提供一包含聚烯烴樹脂(A)作為主要組分的微孔膜; (2)以與該聚烯烴樹脂(A)不同的樹脂(B)塗佈在該微孔膜中的微孔洞之至少一個表面區域來形成一經塗佈的微孔膜;及 (3)形成該含有經塗佈的微孔膜之用於鋰離子二次電池的分隔件。
在增加分隔件穿刺深度的方法中所使用之聚烯烴樹脂(A)及樹脂(B)係與如上所述者相同。
在步驟(1)中,藉由如上所述之用以製造微孔膜的方法來形成一包含該聚烯烴樹脂(A)作為主要組分的微孔膜。
在步驟(1)中,較佳為藉由上述乾式層狀開孔方法形成該微孔膜,同時更佳為拉伸該包含聚烯烴樹脂(A)的前驅物,及甚至更佳為在機器方向(MD)及/或橫軸方向(TD)上拉伸該包含聚烯烴樹脂(A)之前驅物,或在至少橫軸方向(TD)上拉伸其與在機器方向(MD)上經控制的鬆解,及甚至又更佳為讓該經拉伸的產物通過至少一對壓延輥。
在步驟(2)中,藉由樹脂(B)覆蓋該微孔膜之全部或部分微孔洞表面。在步驟(2)中,全部的樹脂(B)未固定至該微孔膜的最外邊(即,膜表面),而是滲濾通過由該聚烯烴樹脂(A)形成的微孔膜之微孔網狀物到達微孔洞表面,因此允許穿刺深度增加同時維持微孔膜的透氣性。從該分隔件的耐電壓性之觀點來看,較佳為在步驟(2)中由樹脂(B)覆蓋構成該微孔洞的原纖維。
從以樹脂(B)覆蓋更多原纖維的觀點來看,較佳為使用溶解或分散有該樹脂(B)的溶液來進行步驟(2)。從相同觀點來看,溶解有該樹脂(B)的溶液更佳為該樹脂(B)係溶解在諸如己烷、辛烷或二氯甲烷之有機溶劑中的溶液。分散有該樹脂(B)的溶液更佳為包括樹脂(B)、異丙基醇(IPA)及/或界面活性劑、及水之水性乳液。
從分隔件強度及由非水性電解質溶液潤溼之能力的觀點來看,較佳為以溶解或分散有該樹脂(B)之溶液浸透該微孔膜來進行該步驟(2)。從分隔件強度的觀點來看,步驟(2)更佳為不包括樹脂(B)的單體結構單元電子束接枝聚合到由聚烯烴樹脂(A)製得之原纖維上。
可藉由將該微孔膜浸泡在包括分散或溶解有該樹脂(B)的溶液之槽中,或以分散或溶解有該樹脂(B)的溶液塗佈該微孔膜之外表面來進行讓該微孔膜在溶解或分散有該樹脂(B)之溶液中浸透,以允許樹脂(B)滲透進在該微孔膜內的微孔洞中。
可在20至60℃下進行將該微孔膜浸泡進包括分散或溶解有該樹脂(B)的溶液之槽中一段0.5至15分鐘時期。
可藉由印刷機或塗佈機或藉由手進行施加,藉由將該樹脂(B)溶液或樹脂(B)分散液以小滴加入到該膜上,進行將一分散或溶解有該樹脂(B)的溶液塗佈到該微孔膜之外表面上。
可讓該已經於步驟(2)中塗佈的微孔膜通過至少一對壓延輥。使用與如在上述乾式層狀開孔方法中相同的方式來使用該壓延輥對。
從將樹脂(B)固定在微孔洞表面上之觀點來看,步驟(2)較佳為接著在空氣環境中或在惰性氣體環境中,於溫度20至100℃下乾燥該經塗佈的微孔膜。
在步驟(3)中,將於步驟(2)中所獲得之經塗佈的微孔膜使用來形成用於鋰離子二次電池之分隔件。
在步驟(3)中,該已經以樹脂(B)塗佈在微孔洞的至少一個表面區域上之經塗佈的微孔膜可直接使用作為用於鋰離子二次電池之分隔件,或其可與另一種多孔膜進行積層或以功能性塗佈材料進行表面塗佈。當其係以功能性塗佈材料進行表面塗佈時,從簡化該製造方法的觀點來看,較佳為以單一方法將該功能性塗佈材料及塗層同步表面塗佈到該外表面上,以造成樹脂(B)滲透進該多孔膜之微孔洞中。
一個用以製造用於鋰離子二次電池的分隔件之方法的實施例可包括一藉由根據第三具體實例之增加分隔件的穿刺深度之方法來修改習知用於鋰離子二次電池的分隔件之步驟。
除非其它方面有具體指定,否則多種上述物理性質之測量值係藉由在下列實施例中所描述的方法所測量之值。 實施例
現在,將藉由實施例及比較例更詳細地解釋本具體實例,且要了解的是,只要維持其主旨,本發明不限於該等實施例。評估所使用的起始材料及多種性質之方法係如下。
根據JIS K7210,在210℃下測量2.16公斤聚丙烯樹脂及在190℃下測量2.16公斤聚乙烯樹脂之熔融流動率(MFR)(單位:克/10分鐘)。樹脂密度全部係根據JIS K7112測量(單位:公斤/立方公尺)。
如下測量該膜之性質。
(1)厚度(微米) 使用Mitsutoyo Corp.之IDC112 Digimatic Indicator 來測量該多孔膜在室溫(23±2℃)下的厚度。
(2)多孔洞性(%) 從該多孔膜切出5公分x5公分的方形樣品,及使用下式從樣品的體積及質量來計算多孔洞性。 多孔洞性(%)=(體積(立方公分)-質量(克)/樹脂組成物密度(克/立方公分))/體積(立方公分)x100
(3)透氣性(秒/100立方公分) 根據JIS P-8117,使用Gurley透氣性測試機來測量該多孔膜的透氣性。
(4)穿刺強度(克力)及穿刺深度(毫米) 圖5顯示出用以闡明穿刺測試條件及穿刺深度的圖式圖。在穿刺測試期間,製備一具有半徑0.5毫米的半球狀尖端之針(1),將分隔件(2)夾在具有開口直徑(dia.)11毫米之二片板(3,3)間,及將該針(1)、分隔件(2)及板(3,3)設定成顯示於圖5(a)的位置關係。使用Imada Co., Ltd.之MX2-50N,在0.5毫米的針尖曲率半徑、直徑11毫米的分隔件托板開口及穿刺速度2毫米/秒之條件下進行穿刺測試,讓該針(1)與分隔件(2)接觸(圖5(b)),測量最大穿刺負載(即,穿刺強度(克力)),及測量從該針與分隔件接觸後直到到達最大穿刺負載(穿刺強度)時之針位移(毫米)程度作為穿刺深度(D)(圖5(c))。
(5)電解質溶液潤溼能力 將切割成在TD(橫軸方向)上長度5公分及在MD(機器方向)上長度1公分之多孔膜浸泡於碳酸乙二酯(EC)與碳酸甲乙酯(EMC)呈1:1(體積比率)的混合溶劑(Kishida Chemical Co., Ltd.)中,最高僅有尖端的1公分,然後允許靜置120秒,在此之後,測量該液體當其被拉起時至未浸漬部分的高度程度及使用此作為潤溼能力之指標。
(6)熔融溫度 製備二片具有厚度10微米的鎳箔薄片(A,B),藉由鐵弗龍(Teflon)(註冊商標)膠帶將一片鎳箔薄片(A)掩蓋在玻璃載片上,如此曝露出10毫米乘以10毫米的方形薄片(A)部分,及將該薄片(A)穩固在該玻璃載片上。 將另一片鎳箔薄片(B)放置在一與溫度計連接的陶瓷板上,及將已經藉由將該膜浸入一電解質溶液中三小時而完全浸透該電解質溶液的微孔膜作為測量樣品放置在該薄片(B)上,將接附該鎳箔薄片(A)的玻璃載片放置在該微孔膜上,然後將一矽橡膠放在該玻璃載片上。 該微孔膜已經浸透1莫耳/升作為電解質溶液的硼氟化鋰溶液(其溶劑係碳酸丙二酯/碳酸乙二酯/γ-丁內酯=1/1/2)。 將上述形成的陶瓷板、鎳箔薄片(A,B)及玻璃載片固定在加熱板上,及以15℃/分鐘之速率提昇其溫度,同時藉由油壓機器向那裏施加1.5 MPa的壓力。在高溫下,於1伏特及1 kHz之交流電條件下,藉由LCR計量器測量阻抗變化。在此測量下,阻抗到達在較高溫度邊的最小值上之最小阻抗值的一倍半時所獲得之溫度作為熔融溫度。
[實施例1] 經由進料器,將作為聚烯烴樹脂(A)的聚丙烯樹脂(MFR:2.0,密度:0.91)負載進單螺柱擠壓器中,其中該擠壓器之設定為孔洞直徑=30毫米,L/D(L:從材料進料埠至擠壓器的排出孔之距離(公尺),D:擠壓器的內徑(公尺),在下文中相同)=30及溫度=200℃,然後從安裝在擠壓器尖端處具有唇厚2.5毫米的T型模具(200℃)擠出。立即接著此,使用氣刀將25℃冷空氣吹到該熔融樹脂上,及以拉長比率200及捲取速度20公尺/分鐘將該樹脂捲取到設定為95℃之鑄造輥上,及塑形成膜。
讓所獲得的膜在加熱至145℃之熱空氣循環烘箱中接受退火1小時。然後,讓該已退火的膜於溫度25℃下接受在機器方向上單軸拉伸至因子1.2,以獲得一冷拉長膜。隨後,讓該冷拉長膜在溫度140℃下接受於機器方向上單軸拉伸至因子2.5,及在150℃下熱定型以獲得一單軸拉伸膜。讓該單軸拉伸膜在溫度145℃下接受於橫軸方向上單軸拉伸至因子4.0,及於145℃下熱定型以獲得一微孔膜(C0)。
在燒瓶中稱出10克於25℃下具有彈性模數260 MPa之C4/C3 α-烯烴共聚物(B1,TAFMER BL2491,來自Mitsui Chemicals, Inc.)使用作為樹脂(B)後,稱出190克辛烷(Wako Pure Chemical Industries, Ltd.),及獲得5%溶解有C4/C3 α-烯烴共聚物之C4/C3 α-烯烴共聚物辛烷溶液。將該微孔膜(C0)浸泡在該溶液中10分鐘,然後移出,擦拭掉殘餘在表面上的溶液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)之微孔膜(C1)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C1)具有1.1克/平方公尺的樹脂(B1)。所獲得的微孔膜(C1)之穿刺強度高而有240克力,穿刺深度高而有2.80毫米及透氣性係129秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。
[實施例2] 在燒瓶中稱出14克具有彈性模數260 MPa之C4/C3 α-烯烴共聚物(B1,TAFMER BL2491來自Mitsui Chemicals, Inc.)使用作為樹脂(B)後,稱出186克辛烷(Wako Pure Chemical Industries, Ltd.),及獲得7%溶解有C4/C3 α-烯烴共聚物的C4/C3 α-烯烴共聚物辛烷溶液。
將在實施例1中獲得的微孔膜(C0)浸泡於該溶液中10分鐘,然後移出,擦拭掉殘餘在表面上的溶液,然後於玻璃板上在室溫下進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C2)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C2)具有1.9克/平方公尺的樹脂(B1)。所獲得的微孔膜(C2)之穿刺強度高而有270克力,穿刺深度高而有2.89毫米及透氣性係244秒。電解質溶液潤溼能力的值係令人滿意之5.5毫米。
圖1顯示出在加入樹脂(B1)前之微孔膜(C0)的表面掃描式電子顯微鏡(SEM)相片,及圖2顯示出微孔膜(C0)的MD截面之SEM相片。 圖3顯示出在加入樹脂(B1)後之微孔膜(C2)的表面SEM相片,及圖4顯示出微孔膜(C2)的MD截面之SEM相片。 藉由比較圖1與圖3及藉由比較圖2與圖4可看見,樹脂(B1)已滲透至在微孔膜(C2)中的孔洞內部及塗佈該孔洞表面,沒有局限在微孔膜(C2)的最外邊表面上。 圖7顯示出在微孔膜(C2)的MD截面中,選自於三層當中之中間層的TEM相片。 在圖7中清楚看見,樹脂(B1)由於其結晶性而觀察到如為條紋圖案,已證實其係在該微孔膜(C2)的中間層中及覆蓋該孔洞表面。 在從該微孔膜(C2)移除表面層後,藉由將該中間層浸泡於該中間層重量三十倍之辛烷中12小時從該中間層萃取出樹脂(B1),然後乾燥,測量重量,及結果,在該中間層中的塗佈量係36%。使用與上述相同的方法證實在表面層中之塗佈量,及計算在該中間層中的塗佈量對在該表面層中的塗佈量之比率,以獲得下列結果: 在中間層中的塗佈量/在表面層中的塗佈量=1.1。
圖6顯示出該微孔膜(C0)在加入樹脂(B1)前之穿刺測試的深度-應力曲線,及該微孔膜(C2)在加入樹脂(B1)後之穿刺測試的深度-應力曲線。如從圖6看見,樹脂(B1)滲透至微孔膜的孔洞內部允許應力避免集中在應力趨向於集中之位置處,及結果,斷裂深度及斷裂強度二者增加。
[實施例3] 在燒瓶中稱出10克具有彈性模數260 MPa之C4/C3 α-烯烴共聚物(B1,TAFMER BL2491來自Mitsui Chemicals, Inc.)使用作為樹脂(B)後,稱出190克辛烷(Wako Pure Chemical Industries, Ltd.),及獲得5%溶解有C4/C3 α-烯烴共聚物之C4/C3 α-烯烴共聚物辛烷溶液。
使用具有間隙75微米的塗抹器,將該溶液塗佈到在實施例1中獲得於玻璃板上之微孔膜(C0)上,在此之後,於室溫下在玻璃板上乾燥該塗層1小時,以獲得一在微孔洞表面上具有樹脂(B)之微孔膜(C3)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C3)具有1.8克/平方公尺的樹脂(B1)。所獲得的微孔膜(C3)之穿刺強度高而有264克力,穿刺深度高而有2.88毫米及透氣性係220秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。
[實施例4] 在燒瓶中稱出14克具有彈性模數520 MPa的C3/C4 α-烯烴共聚物(B2,TAFMER XM7090來自Mitsui Chemicals, Inc.)使用作為樹脂(B)後,稱出186克辛烷(Wako Pure Chemical Industries, Ltd.),及獲得7%溶解有C3/C4 α-烯烴共聚物之C3/C4 α-烯烴共聚物辛烷溶液。
將在實施例1中獲得的微孔膜(C0)浸泡於該溶液中10分鐘,然後移出,擦拭掉殘餘在表面上的溶液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C4)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C4)具有1.8克/平方公尺的樹脂(B2)。所獲得的微孔膜(C4)之穿刺強度高而有262克力,穿刺深度高而有2.81毫米及透氣性係288秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。
[實施例5] 在燒瓶中稱出14克具有彈性模數110 MPa的低立體規則聚丙烯樹脂(B3,L-MODU S901來自Idemitsu Kosan Co., Ltd.)使用作為樹脂(B)後,稱出186克辛烷(Wako Pure Chemical Industries, Ltd.),及獲得7%溶解有低立體規則聚丙烯樹脂的低立體規則聚丙烯樹脂辛烷溶液。
將在實施例1中獲得的微孔膜(C0)浸泡於該溶液中10分鐘,然後移出,擦拭掉殘餘在表面上的溶液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C5)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C5)具有1.8克/平方公尺的樹脂(B3)。所獲得的微孔膜(C5)之穿刺強度高而有258克力,穿刺深度高而有2.82毫米及透氣性係183秒。電解質溶液潤溼能力之值係令人滿意的6.0毫米。
[實施例6] 在燒瓶中稱出15.0克以聚胺基甲酸酯丙烯酸酯為基底的共聚物水性分散液(B4,UCOAT UWS-145來自Sanyo Chemical Industries, Ltd.,固體成分:35.5重量%)使用作為樹脂(B)後,稱出18.0克蒸餾水及9.5克異丙基醇(Kanto Kagaku Co., Ltd.),及獲得15%分散有以聚胺基甲酸酯丙烯酸酯為基底的共聚物之以聚胺基甲酸酯丙烯酸酯為基底的共聚物分散液。
將在實施例1中獲得的微孔膜(C0)浸泡於該分散液中10分鐘,然後移出,於玻璃板上以樹脂滾筒移除殘餘在表面上的分散液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C6)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C6)具有3.4克/平方公尺的樹脂(B4)。所獲得的微孔膜(C6)之穿刺強度高而有233克力,穿刺深度高而有2.64毫米及透氣性係312秒。電解質溶液潤溼能力之值係令人滿意的6.0毫米。
[實施例7] 在燒瓶中稱出36.5克以丙烯酸為基底的聚合物水性分散液(B5,AKL-CG1來自Asahi Kasei Corp.,固體成分:24.0重量%)使用作為樹脂(B)後,稱出19.5克蒸餾水、14.0克異丙基醇(Kanto Kagaku Co., Ltd.)及4.5克N-甲基-2-吡咯啶酮(Kanto Kagaku Co., Ltd.),及獲得12.5%分散有以丙烯酸為基底的聚合物之以丙烯酸為基底的聚合物分散液。
將在實施例1中獲得的微孔膜(C0)浸泡於該分散液中10分鐘,然後移出,於玻璃板上以樹脂滾筒移除殘餘在表面上的分散液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C7)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C7)具有3.4克/平方公尺的樹脂(B5)。所獲得的微孔膜(C7)之穿刺強度高而有224克力,穿刺深度高而有2.85毫米及透氣性係59秒。電解質溶液潤溼能力之值係令人滿意的6.0毫米。
[實施例8] 在燒瓶中稱出30.0克以聚烯烴為基底的共聚物水性分散液(B6,DB-4010來自Unitika,Ltd.,固體成分:25.0重量%)使用作為樹脂(B)後,稱出30.0克蒸餾水及15.0克異丙基醇(Kanto Kagaku Co., Ltd.),及獲得10%分散有以聚烯烴為基底的聚合物之以聚烯烴為基底的聚合物分散液。
將在實施例1中獲得的微孔膜(C0)浸泡於該分散液中10分鐘,然後移出,於玻璃板上以樹脂滾筒移除殘餘在表面上的分散液,然後於室溫下在玻璃板上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C8)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C8)具有1.9克/平方公尺的樹脂(B6)。所獲得的微孔膜(C8)之穿刺強度高而有221克力,穿刺深度高而有2.61毫米及透氣性係286秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。
[實施例9] 在燒瓶中稱出20.0克以聚烯烴為基底的共聚物水性分散液(B7,ZAIKTHENE L來自Sumitomo Seika Chemicals Co., Ltd.,固體成分:24.5重量%)使用作為樹脂(B)後,稱出36.0克蒸餾水、18.0克異丙基醇(Kanto Kagaku Co., Ltd.)及6.0克N-甲基-2-吡咯啶酮(Kanto Kagaku Co., Ltd.),及獲得6%分散有以聚烯烴為基底的聚合物之以聚烯烴為基底的聚合物分散液。
使用棒式塗佈機(#18),將所獲得的分散液塗佈到在實施例1中獲得已敷開於玻璃板上之無塵薄片上的微孔膜(C0)上,在此之後,在敷開於玻璃板上之無塵薄片上於室溫下進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C9)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C9)具有1.9克/平方公尺的樹脂(B7)。所獲得的微孔膜(C9)之穿刺強度高而有230克力,穿刺深度高而有2.70毫米及透氣性係200秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。熔融溫度係104℃。
[實施例10] 在燒瓶中稱出20.0克以聚烯烴為基底的聚合物之水分散液(B8,ZAIKTHENE N由Sumitomo Seika Chemicals Co., Ltd.製造,固體成分:24.5重量%)使用作為樹脂(B)後,稱出36.0克蒸餾水、18.0克異丙基醇(Kanto Kagaku Co., Ltd.)及6.0克N-甲基-2-吡咯啶酮(Kanto Kagaku Co., Ltd.),及獲得6%分散有以聚烯烴為基底的聚合物之以聚烯烴為基底的聚合物分散液。
使用棒式塗佈機(#18),將所獲得的分散液塗佈到在實施例1中獲得已敷開於玻璃板上之無塵薄片上的微孔膜(C0)上,在此之後,於室溫下在已敷開於玻璃板上之無塵薄片上進行乾燥1小時,以獲得一在微孔洞表面上具有樹脂(B)的微孔膜(C10)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C10)具有1.6克/平方公尺的樹脂(B8)。所獲得的微孔膜(C10)之穿刺強度高而有228克力,穿刺深度高而有2.65毫米及透氣性係161秒。電解質溶液潤溼能力之值係令人滿意的5.0毫米。熔融溫度係99℃。
[實施例11] 在燒瓶中稱出2.3克氫氧化鋁粒子(平均粒子尺寸:2.0微米)使用作為無機充填劑及10.0克以聚烯烴為基底的聚合物水分散液(B7,ZAIKTHENE L由Sumitomo Seika Chemicals Co., Ltd.製造,固體成分:24.5重量%)使用作為樹脂(B)後,稱出11.3克蒸餾水、9.0克異丙基醇(Kanto Kagaku Co., Ltd.)及3.0克N-甲基-2-吡咯啶酮(Kanto Kagaku Co., Ltd.),及獲得6%分散有以聚烯烴為基底的聚合物之以聚烯烴為基底的聚合物分散液。
使用棒式塗佈機(#18),將所獲得的分散液塗佈到在實施例1中獲得已敷開於玻璃板上之無塵薄片上的微孔膜(C0)上,在此之後,於室溫下在已敷開於玻璃板上之無塵薄片上進行乾燥1小時,以獲得一在微孔洞表面上具有無機充填劑多孔層和樹脂(B)的微孔膜(C11)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C11)具有2.1克/平方公尺的樹脂(B7)。所獲得的微孔膜(C11)之穿刺強度高而有246克力,穿刺深度高而有2.60毫米及透氣性係139秒。電解質溶液潤溼能力之值係令人滿意的5.1毫米。
[比較例1] 評估在實施例1中獲得但是沒有以樹脂(B)處理的微孔膜(C0)之性能。該微孔膜(C0)之穿刺強度係178克力,穿刺深度係2.23毫米及透氣性係39秒。電解質溶液的潤溼能力係3.0毫米。如上述提及,圖1顯示出在比較例1中沒有加入樹脂(B1)之微孔膜(C0)的表面SEM相片,圖2顯示出其MD截面的SEM相片,及圖6顯示出在穿刺測試中的深度-應力曲線。
[比較例2] 在混合95重量%聚丙烯樹脂(MFR:2.0,密度:0.91)與5重量%具有彈性模數108 MPa的聚烯烴彈性體(ENGAGE來自Dow Chemical Corp.)後,經由進料器將該混合物負載進單螺柱擠壓器中,其中該擠壓器之設定為孔洞直徑30毫米,L/D=30及溫度200℃,及從設定在擠壓器尖端處具有唇厚2.5毫米之T型模具(200℃)擠出。立即接著此,使用氣刀將25℃冷空氣吹到熔融樹脂上,及以拉長比率200及捲取速度20公尺/分鐘將該樹脂捲取到設定至95℃之鑄造輥上,及塑形成膜。
讓所獲得的膜在已加熱至145℃的熱空氣循環烘箱中接受退火1小時。然後,讓該已退火的膜在溫度25℃下接受於機器方向上單軸拉伸至因子1.2,以獲得一冷拉長膜。隨後,讓該冷拉長膜在溫度140℃下接受於機器方向上單軸拉伸至因子2.5,及在150℃下熱定型以獲得一單軸拉伸膜。於溫度145℃下讓該單軸拉伸膜接受在橫軸方向上單軸拉伸至因子4.0,及在145℃下熱定型以獲得一微孔膜(C10)。
該微孔膜(C10)的穿刺強度係184克力,穿刺深度係2.34毫米及透氣性係54秒。該電解質溶液的潤溼能力係3.0毫米。僅藉由熔融揉捏聚烯烴彈性體之混合物,大概該彈性體未充分存在於微孔洞膜的微孔洞表面上,因此穿刺深度及穿刺強度難以適當地增加,同時無觀察到電解質溶液潤溼能力增加。
[比較例3] 在燒瓶中稱出6克具有彈性模數1600 MPa的聚丙烯樹脂(B8,F113G來自Prime Polymer Co., Ltd.)使用作為樹脂(B),及194克辛烷(Wako Pure Chemical Industries, Ltd.)後,嘗試溶解該聚丙烯樹脂,但是其不溶解在辛烷中。
[比較例4] 在燒瓶中稱出2.3克氫氧化鋁粒子(平均粒子尺寸:2.0微米)使用作為無機充填劑及10.0克以聚烯烴為基底的聚合物水分散液(B7,ZAIKTHENE L由Sumitomo Seika Chemicals Co., Ltd.製造,固體成分:24.5重量%)使用作為樹脂(B)後,稱出23.3克蒸餾水,及獲得6%分散有以聚烯烴為基底的聚合物之以聚烯烴為基底的聚合物分散液。
使用棒式塗佈機(#18),將所獲得的分散液塗佈到在實施例1中獲得已敷開於玻璃板上之無塵薄片上的微孔膜(C0)上,在此之後,於室溫下在已敷開於玻璃板上之無塵薄片上進行乾燥1小時,以獲得一在微孔洞表面上具有無機充填劑多孔層和樹脂(B)的微孔膜(C24)。以在浸泡前及後之膜重量為基準,已證實該微孔膜(C24)具有1.9克/平方公尺的樹脂(B7)。所獲得的微孔膜(C24)之穿刺強度高而有183克力,穿刺深度係2.20毫米及透氣性係120秒。電解質溶液潤溼能力係3.1毫米。 在微孔膜(C24)的MD截面之TEM測量中,未證實該樹脂(B7)存在於該微孔膜(C24)之中間層中。
在實施例1至11及比較例1至4中所使用之樹脂、基礎膜及多孔膜的細節係顯示在表1至3中。
表1
表2
表3
本揭示或發明不限於上述實施例或具體實例。例如,用於鋰離子二次電池的分隔件之一個具體實例可包含一多孔或微孔膜,該多孔或微孔膜包含一聚烯烴樹脂(A)作為主要組分及該多孔或微孔膜的孔洞或微孔洞之至少一個表面區域係以樹脂(B)覆蓋。在第一具體實例中,該樹脂(B)係與該聚烯烴樹脂(A)不同及該樹脂(B)可充分地填充該膜之孔洞以製造所產生的微孔洞。
1‧‧‧具有半徑0.5毫米之半球狀尖端的針2‧‧‧分隔件3‧‧‧分隔件托板dia‧‧‧.板開口直徑(11毫米)D‧‧‧在最大穿刺負載下之穿刺深度(穿刺強度)(毫米)
圖1係習知微孔膜的表面SEM相片。 圖2係習知微孔膜的截面SEM相片。 圖3係根據本發明的一個具體實例之微孔膜的表面SEM相片。 圖4係根據本發明的一個具體實例之微孔膜的截面SEM相片。 圖5係一用以闡明穿刺測試條件及穿刺深度的圖式圖,(a)係一側視圖及板上俯視圖,其表示出於穿刺測試開始時,在該針、分隔件及分隔件托板當中的關係;(b)係一側視圖,其表示出在接觸後,於針與分隔件間之位置關係;及(c)係一側視圖,其表示出在穿刺深度測量期間,於針與分隔件間之位置關係。 圖6係一曲線圖,其用以比較微孔膜在加入樹脂(B1)前及後之穿刺測試的深度-應力曲線。 圖7係一在實施例2中所使用的微孔膜之中間層,其機器方向(MD)截面之穿透式電子顯微鏡(TEM)相片。

Claims (43)

  1. 一種用於鋰離子二次電池的分隔件,其包含一微孔膜,其中該微孔膜包含:一聚烯烴樹脂(A)作為主要組分;及在該微孔膜中的微孔洞之至少一個表面區域係以一與該聚烯烴樹脂(A)不同的樹脂(B)塗佈;其中該樹脂(B)係一疏水性樹脂;且其中該疏水性樹脂係一在25℃下具有彈性模數為700MPa或更小的聚烯烴樹脂。
  2. 如請求項1之分隔件,其中該微孔洞係以該聚烯烴樹脂(A)的原纖維(fibrils)形成,及該原纖維的外表面係由該樹脂(B)包圍。
  3. 如請求項1或2之分隔件,其中在選自於在膜厚度方向上藉由將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。
  4. 如請求項3之分隔件,其中該分隔件具有穿刺深度2.5毫米或更大。
  5. 如請求項4之分隔件,其中該穿刺深度係大於2.5毫米且等於或小於4.5毫米。
  6. 如請求項1之分隔件,其中該彈性模數在25℃下係等於或大於100Mpa且等於或小於700MPa。
  7. 如請求項1或2之分隔件,其中該樹脂(B)具有熔點為130℃或更低。
  8. 如請求項1之分隔件,其中該疏水性樹脂在25℃下具有於辛烷中的溶解度為20克/公斤或更大。
  9. 如請求項1或2之分隔件,其中該聚烯烴樹脂(A)包含一聚丙烯樹脂。
  10. 如請求項1或2之分隔件,其中該分隔件具有多孔洞性為30%或更大。
  11. 如請求項1或2之分隔件,其中該分隔件具有穿刺強度為0.25公斤力或更大。
  12. 如請求項1或2之分隔件,其中該分隔件的膜厚度係等於或小於100微米。
  13. 如請求項1或2之分隔件,其中該分隔件的熔融溫度係低於150℃。
  14. 如請求項1或2之分隔件,其中該微孔膜可藉由拉伸一包含該聚烯烴樹脂(A)的前驅物,及隨後以該樹脂(B)浸透該經拉伸的產物而獲得。
  15. 如請求項14之分隔件,其中該微孔膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經TD拉伸的產物而獲得。
  16. 如請求項15之分隔件,其中該微孔膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,壓延該經TD拉伸的產物,及隨後以該樹脂(B)浸透該經壓延的產物而獲得。
  17. 如請求項15之分隔件,其中該微孔膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,以該樹脂(B) 浸透該經TD拉伸的產物,及隨後壓延該經浸透的產物而獲得。
  18. 如請求項14之分隔件,其中該微孔膜可藉由在至少一機器方向(MD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經MD拉伸的產物而獲得。
  19. 如請求項1之分隔件,其中該分隔件具有穿刺深度為2.5毫米或更大。
  20. 如請求項19之分隔件,其中該微孔聚烯烴膜可藉由拉伸一包含聚烯烴樹脂(A)的前驅物,及隨後以與該聚烯烴樹脂(A)不同的樹脂(B)浸透該經拉伸的產物而獲得。
  21. 如請求項20之分隔件,其中該微孔聚烯烴膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,及隨後以該樹脂(B)浸透該經TD拉伸的產物而獲得。
  22. 如請求項21之分隔件,其中該微孔聚烯烴膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,壓延該經TD拉伸的產物,及隨後以該樹脂(B)浸透該經壓延的產物而獲得。
  23. 如請求項21之分隔件,其中該微孔聚烯烴膜可藉由在至少一橫軸方向(TD)上拉伸該前驅物,以該樹脂(B)浸透該經TD拉伸的產物,及隨後壓延該經浸透的產物而獲得。
  24. 如請求項20之分隔件,其中該微孔聚烯烴膜可藉由在至少一機器方向(MD)上拉伸該前驅物,及隨後 以該樹脂(B)浸透該經MD拉伸的產物而獲得。
  25. 如請求項20至24中任一項之分隔件,其中在選自於在膜厚度方向上藉由將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。
  26. 如請求項19至24中任一項之分隔件,其中該分隔件的熔融溫度係低於150℃。
  27. 一種改良如請求項1之用於鋰離子二次電池的分隔件之穿刺深度的方法,其步驟包括:(1)提供一包含聚烯烴樹脂(A)作為主要組分的微孔膜;(2)以一與該聚烯烴樹脂(A)不同之樹脂(B)塗佈在該微孔膜中的微孔洞之至少一個表面區域以形成一經塗佈的微孔膜;及(3)形成該含有該經塗佈的微孔膜之分隔件。
  28. 如請求項27之方法,其中該步驟(2)係藉由以溶解或分散有該樹脂(B)的溶液塗佈該微孔洞之至少一個表面區域而進行。
  29. 如請求項27之方法,其中該步驟(2)係藉由以溶解或分散有該樹脂(B)的溶液浸透該微孔膜而進行。
  30. 如請求項27至29中任一項之方法,其中該微孔膜係在步驟(1)中藉由於至少一橫軸方向(TD)上拉伸一包含該聚烯烴樹脂(A)的前驅物而形成。
  31. 如請求項27至29中任一項之方法,其中該 微孔膜係在步驟(1)中藉由於至少一橫軸方向(TD)上拉伸與經控制的機器方向(MD)鬆解一包含該聚烯烴樹脂(A)的前驅物而形成。
  32. 如請求項27至29中任一項之方法,其中該微孔膜係在步驟(1)中藉由於一機器方向(MD)及一橫軸方向(TD)上拉伸一包含該聚烯烴樹脂(A)的前驅物而形成。
  33. 如請求項27至29中任一項之方法,其中該微孔膜係在步驟(1)中藉由於至少一機器方向(MD)上拉伸一包含該聚烯烴樹脂(A)之前驅物而形成。
  34. 如請求項27至29中任一項之方法,其中該微孔膜係在步驟(1)中藉由於至少一機器方向(MD)上拉伸,然後在一橫軸方向(TD)上與經控制的機器方向(MD)鬆解一包含該聚烯烴樹脂(A)的前驅物而形成。
  35. 如請求項30之方法,其中該經拉伸的產物通過一對壓延輥間。
  36. 如請求項27至29中任一項之方法,其中該經塗佈的微孔膜通過一對壓延輥間。
  37. 如請求項27至29中任一項之方法,其中在選自於在膜厚度方向上藉由將該分隔件分成三等分所獲得的三層當中之中間層中,以該樹脂(B)塗佈由該聚烯烴樹脂(A)組成的骨架之至少一部分表面層。
  38. 如請求項27至29中任一項之方法,其中該分隔件的熔融溫度係低於150℃。
  39. 如請求項31之方法,其中該經拉伸的產物 通過一對壓延輥間。
  40. 如請求項32之方法,其中該經拉伸的產物通過一對壓延輥間。
  41. 如請求項33之方法,其中該經拉伸的產物通過一對壓延輥間。
  42. 如請求項34之方法,其中該經拉伸的產物通過一對壓延輥間。
  43. 如請求項3之分隔件,其中該分隔件具有一或多種以下性質:2.5毫米或更大之穿刺深度;大於2.5毫米及等於或小於4.5毫米之穿刺深度;在25℃下等於或大於100Mpa且等於或小於700MPa之彈性模數;該樹脂(B)具有130℃或更低之熔點;該疏水性樹脂在25℃下具有於辛烷中20克/公斤或更大之溶解度;該聚烯烴樹脂(A)包含一聚丙烯樹脂;該分隔件具有30%或更大之多孔洞性;穿刺強度0.25公斤力或更大;該分隔件的膜厚度係等於或小於100微米;及低於150℃之熔融溫度。
TW107111851A 2017-04-06 2018-04-03 用於鋰離子二次電池之分隔件 TWI829635B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762482239P 2017-04-06 2017-04-06
US62/482,239 2017-04-06

Publications (2)

Publication Number Publication Date
TW201840039A TW201840039A (zh) 2018-11-01
TWI829635B true TWI829635B (zh) 2024-01-21

Family

ID=63712630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107111851A TWI829635B (zh) 2017-04-06 2018-04-03 用於鋰離子二次電池之分隔件

Country Status (7)

Country Link
US (1) US20200035969A1 (zh)
EP (1) EP3607598A4 (zh)
JP (1) JP7185634B2 (zh)
KR (2) KR20190128225A (zh)
CN (1) CN110603661A (zh)
TW (1) TWI829635B (zh)
WO (1) WO2018187255A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US11952475B2 (en) 2017-09-12 2024-04-09 Celgard, Llc Base films for impregnation, improved impregnated products, and related methods
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
EP3852169A4 (en) * 2018-12-18 2022-06-22 NGK Insulators, Ltd. SECONDARY LITHIUM BATTERY
JP7440296B2 (ja) * 2020-02-28 2024-02-28 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US11637291B2 (en) 2020-11-04 2023-04-25 Global Graphene Group, Inc. Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method
US20220190437A1 (en) * 2020-12-14 2022-06-16 Global Graphene Group, Inc. Lithium ion-permeable separator for a lithium secondary battery and manufacturing method
WO2022163714A1 (ja) * 2021-01-29 2022-08-04 旭化成株式会社 蓄電デバイス用セパレータ、及びこれを含む蓄電デバイス
CN116207446B (zh) * 2023-05-06 2023-08-01 深圳中兴新材技术股份有限公司 低短路率的锂电池隔膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423363A (zh) * 2001-11-24 2003-06-11 三星Sdi株式会社 制备包含多相隔膜的锂二次电池的方法
CN104393219A (zh) * 2007-06-19 2015-03-04 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893871A (en) * 1974-01-09 1975-07-08 Monsanto Co Phenolic resin and battery separator impregnated therewith
US4346142A (en) * 1979-09-04 1982-08-24 Celanese Corporation Hydrophilic monomer treated microporous films and process
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP4712251B2 (ja) 2000-09-22 2011-06-29 帝人株式会社 両面同時塗工方法
US20070148552A1 (en) * 2003-12-24 2007-06-28 Takashi Ikemoto Microporous membrane made from polyolefin
US7445735B2 (en) 2004-12-07 2008-11-04 Daramic Llc Method of making microporous material
KR100646508B1 (ko) * 2005-01-28 2006-11-14 삼성에스디아이 주식회사 세퍼레이터 및 이를 구비하는 이차 전지
KR101401833B1 (ko) 2005-10-18 2014-05-29 도레이 카부시키가이샤 축전 디바이스 세퍼레이터용 미다공 필름 및 그것을 이용한축전 디바이스 세퍼레이터
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
KR101147604B1 (ko) 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
JP5807388B2 (ja) 2010-05-26 2015-11-10 東レ株式会社 多孔性ポリプロピレンフィルム
US10826108B2 (en) * 2010-08-02 2020-11-03 Celgard, Llc High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
JP2012131990A (ja) 2010-12-02 2012-07-12 Toray Ind Inc 蓄電デバイス用セパレータ
HUE039312T2 (hu) * 2010-12-28 2018-12-28 Asahi Chemical Ind Porózus poliolefinmembrán és eljárás elõállítására
US8980461B2 (en) * 2011-02-03 2015-03-17 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
KR20140081807A (ko) 2011-10-14 2014-07-01 도레이 카부시키가이샤 다공성 폴리프로필렌 필름 및 축전 디바이스
JP6154585B2 (ja) 2012-06-25 2017-06-28 三菱ケミカル株式会社 積層多孔性フィルム
KR102183257B1 (ko) 2012-08-07 2020-11-27 셀가드 엘엘씨 리튬 이온 배터리용의 개선된 세퍼레이터 막 및 관련 방법
EP2918631A4 (en) 2012-11-06 2016-07-06 Sekisui Chemical Co Ltd HEAT-RESISTANT MICROPOROUS ART RESIN FOIL AND METHOD FOR THE PRODUCTION THEREOF, SEPARATOR FOR A SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
KR20150049974A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 낮은 저항을 갖는 이차전지용 분리막
KR101686401B1 (ko) * 2014-03-26 2016-12-14 도레이 배터리 세퍼레이터 필름 주식회사 폴리올레핀제 적층 다공질 막, 이를 이용한 전지용 세퍼레이터 및 폴리올레핀제 적층 다공질 막의 제조 방법
KR101765817B1 (ko) * 2014-08-28 2017-08-08 주식회사 엘지화학 고온 안전성이 향상된 이차전지용 세퍼레이터 및 그의 제조방법
JP6382051B2 (ja) * 2014-09-30 2018-08-29 旭化成株式会社 蓄電デバイス用セパレータ
KR102544195B1 (ko) * 2014-11-26 2023-06-15 셀가드 엘엘씨 리튬 이온 이차 배터리를 위한 개선된 다층 미소공성 분리기 및 관련 방법
KR101670802B1 (ko) * 2014-12-01 2016-10-31 에스케이씨 주식회사 이차전지용 다공성 분리막
JP2016172426A (ja) 2015-03-18 2016-09-29 積水化学工業株式会社 合成樹脂微多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423363A (zh) * 2001-11-24 2003-06-11 三星Sdi株式会社 制备包含多相隔膜的锂二次电池的方法
CN104393219A (zh) * 2007-06-19 2015-03-04 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池

Also Published As

Publication number Publication date
US20200035969A1 (en) 2020-01-30
KR20240060859A (ko) 2024-05-08
WO2018187255A1 (en) 2018-10-11
KR20190128225A (ko) 2019-11-15
JP2020513134A (ja) 2020-04-30
JP7185634B2 (ja) 2022-12-07
EP3607598A4 (en) 2020-12-30
CN110603661A (zh) 2019-12-20
TW201840039A (zh) 2018-11-01
EP3607598A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
TWI829635B (zh) 用於鋰離子二次電池之分隔件
KR101143106B1 (ko) 미세다공성 중합체 막
EP3159163B1 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
US20210218108A1 (en) Polyolefin composite porous film, method of producing same, battery separator, and battery
RU2418623C2 (ru) Способ получения микропористой полиэтиленовой мембраны и сепаратор аккумулятора
TWI405671B (zh) 聚乙烯多層微多孔膜及其製法與電池用隔離材
JP6273898B2 (ja) 積層多孔性フィルムおよび蓄電デバイス
JP2022000849A (ja) 蓄電デバイス用セパレータ
JP6877241B2 (ja) リチウムイオン二次電池用セパレータ
JP7268004B2 (ja) 蓄電デバイス用セパレータ
JP2021174656A (ja) ポリオレフィン系微多孔膜およびその製造法
JP2017119769A (ja) ポリオレフィン微多孔膜とその製造方法、ロール及びポリオレフィン微多孔膜の評価方法
JP6791526B2 (ja) 耐熱性ポリオレフィン系微多孔膜及びその製造方法
CN114207004B (zh) 聚烯烃微多孔膜、电池用隔膜和二次电池
JP2018200780A (ja) リチウムイオン二次電池用セパレータ
JP2018200796A (ja) リチウムイオン二次電池用セパレータ
JP2022146342A (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
WO2023053930A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
KR20220162781A (ko) 축전 디바이스용 세퍼레이터 및 축전 디바이스
JP2022142699A (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
JP2020069796A (ja) 多孔性ポリオレフィンフィルム