TWI762528B - 研磨用氧化矽系粒子及研磨材 - Google Patents

研磨用氧化矽系粒子及研磨材 Download PDF

Info

Publication number
TWI762528B
TWI762528B TW106139849A TW106139849A TWI762528B TW I762528 B TWI762528 B TW I762528B TW 106139849 A TW106139849 A TW 106139849A TW 106139849 A TW106139849 A TW 106139849A TW I762528 B TWI762528 B TW I762528B
Authority
TW
Taiwan
Prior art keywords
polishing
particles
silicon oxide
methanol
mass
Prior art date
Application number
TW106139849A
Other languages
English (en)
Other versions
TW201827554A (zh
Inventor
熊澤光章
江上美紀
荒金宏忠
村口良
平井俊晴
Original Assignee
日商日揮觸媒化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日揮觸媒化成股份有限公司 filed Critical 日商日揮觸媒化成股份有限公司
Publication of TW201827554A publication Critical patent/TW201827554A/zh
Application granted granted Critical
Publication of TWI762528B publication Critical patent/TWI762528B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • C01B33/1435Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates using ion exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

本發明提供一種基板表面之研磨速度快速,且研磨後之粒子於基板之後殘留經抑制之尤其適於一次研磨的研磨用氧化矽系粒子;及包含該研磨用氧化矽系粒子而成之研磨材。 本發明係一種研磨用氧化矽系粒子,其係含有烷氧基之三維縮聚結構之粒子,且平均粒徑(d)為5~300 nm,縱橫比超過1.20且為5.00以下,碳含量為0.005質量%以上且未達0.50質量%。

Description

研磨用氧化矽系粒子及研磨材
本發明係關於一種為了進行基板之平坦化,尤其於半導體積體電路中之金屬配線層之形成等中較為有用之研磨用氧化矽系粒子;及包含該研磨用粒子而成之研磨材。
於電腦、各種電子機器中使用各種積體電路,隨著該等之小型化、高性能化,要求電路之高密度化及高性能化。 例如,半導體積體電路係於矽晶圓等基材上成膜配線層間膜(絕緣膜),於該配線層間膜(絕緣膜)上形成金屬配線用槽圖案,視需要藉由濺鍍法等形成氮化鉭(TaN)等障壁金屬層,繼而,藉由化學蒸鍍(CVD)法等將金屬配線用銅成膜。此處,於設置有TaN等障壁金屬層之情形時,可防止伴隨銅或雜質等對層間絕緣膜之擴散或侵蝕之層間絕緣膜之絕緣性之降低等,又,可提高層間絕緣膜與銅之接著性。 繼而,將於槽內以外成膜之無用之銅及障壁金屬(有時稱為犧牲層)藉由化學機械研磨(CMP)法進行研磨而去除,並且儘可能使上部表面平坦化,僅於槽內殘留金屬膜而形成銅之配線、電路圖案。 該CMP法中所使用之研磨材通常含有包含氧化矽或氧化鋁等金屬氧化物之平均粒徑為5~300 nm左右之球狀之研磨用粒子、用以加快配線・電路用金屬之研磨速度之氧化劑、有機酸等添加劑、及純水等溶劑。 於先前之藉由氧化矽或氧化鋁等研磨用粒子之研磨中,存在於研磨後,於被研磨材之表面觀察到刮痕(損傷),或者因殘留之研磨粒子而新產生刮痕之問題。關於該方面,作為用以抑制刮痕之產生之研磨用粒子,揭示有一種有機質無機質複合體粒子,其包含有機聚合物骨架、及於分子內具有矽原子直接化學鍵結於該有機聚合物骨架中之至少1個碳原子之有機矽之聚矽氧烷骨架,且構成該聚矽氧烷骨架之SiO2 之量為25重量%以上(例如參照專利文獻1)。 又,作為可抑制刮痕之產生,且以充分之研磨速度將基板表面研磨為平坦之研磨用粒子,揭示有一種研磨用粒子,其係於氧化矽粒子中,源自烷氧化物之烷氧基殘基之碳含量含有0.5~5重量%,10%壓縮彈性模數為500~3000 kgf/mm2 ,氧化矽粒子中之鈉含量以Na計為100 ppm以下(參照專利文獻2)。 又,作為雜質成分較少之研磨用氧化矽粒子,揭示有一種平均二次粒徑為20~1000 nm,氧化矽濃度為10~50重量%,金屬雜質含量為1 ppm以下者(參照專利文獻3);或CV(coefficient of variation,變異係數)值為20以下,選自鈉、鈣及鎂中之鹼土金屬、選自鐵、鈦、鎳、鉻、銅、鋅、鉛、銀、錳及鈷中之重金屬類、以及羥基陰離子以外之陰離子之含量分別為1重量%以下(參照專利文獻4)之研磨用粒子。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開平9-324174號公報 [專利文獻2]日本專利特開2003-213249號公報 [專利文獻3]日本專利特開2005-060217號公報 [專利文獻4]日本專利特開2013-082584號公報
[發明所欲解決之問題] 然而,專利文獻1之有機質無機質複合體粒子係根據聚矽氧烷骨架所具有之SiO2 之含量而粒子之硬度不同,於有機聚合物含量較多且SiO2 之含量較少之情形時,雖刮痕之產生較少,但研磨速度變慢。反之,於有機聚合物含量較少且SiO2 之含量較多之情形時,雖研磨速度較快,但有容易產生刮痕之傾向。然而,即便於不會產生刮痕之範圍內使SiO2 含量較多,亦無法獲得充分之研磨速度之方面成為阻礙。 其次,於專利文獻2中,獲得研磨速率或面精度較高為某一程度之研磨材,但存在如下問題:於研磨後,研磨粒(研磨用氧化矽粒子)附著,即便進行清洗亦不易掉落,成為粒子附著於基板之狀態(所謂存在因粒子附著性所引起之粒子之「後殘留」之狀態)。該附著之原因雖不明確,但推測其原因在於由於該研磨粒具有過量之-OR基(烷氧基),故而因製備研磨漿料(研磨材)時添加之酸或鹼,烷氧基殘基發生水解,生成活性之-OH基,與基板之相互作用變強。 其次,於專利文獻3及4中,由於作為原料之矽烷氧化物本身為高純度,故而即便直接使用醇或觸媒,於先前之電子機器中亦不存在問題,但隨著半導體之高積體化、高密度化,必需進一步之金屬雜質成分含量之降低。 本發明之課題在於提供一種基板表面之研磨速度較快,且研磨後之粒子於基板之後殘留經抑制之尤其適於一次研磨的研磨用氧化矽系粒子;及包含該研磨用氧化矽系粒子而成之研磨材。 [解決問題之技術手段] 本發明之研磨用氧化矽系粒子係平均粒徑(d)為5~300 nm,縱橫比超過1.20且為5.00以下,碳含量為0.005質量%以上且未達0.50質量%之含有烷氧基之三維縮聚結構之氧化矽系粒子。本發明之研磨用氧化矽系粒子由於具有較高之硬度,為非為真球之「異形狀」,故而研磨時之研磨速度較高,又,粒子中之烷氧基較少,因此於基板之「後殘留」變少。 該氧化矽系粒子較佳為鹼金屬、鹼土金屬、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zr之各者之含量處於未達0.1 ppm之範圍,Cu、Ni、Cr之各者之含量處於未達1 ppb之範圍,U、Th之各者之含量處於未達0.3 ppb之範圍。藉由為該範圍,可用作配線節點為40 nm以下之高積體之邏輯或記憶體、及三維封裝用研磨粒。 又,該氧化矽系粒子較佳為動態光散射粒徑(γ)與平均長軸直徑(b)之比(γ/b)為0.70以上且3.00以下。若處於該範圍,則氧化矽系粒子為未凝集之狀態,故而即便無粒子之彈性,研磨時之研磨速度亦較快,亦提昇平滑性,進而,亦進一步降低粒子於基板之「後殘留」。 進而,較佳為根據BET法之比表面積算出之等效球換算粒徑(γ1 )與平均粒徑(d)之比(γ1 /d)為0.80以上且未達1.00。若比(γ1 /d)為該範圍,則由於氧化矽系粒子包含多孔性粒子,故而即便粒子本身無彈性,粒子亦不硬,可提昇平滑性。 本發明之研磨材之特徵在於包含上述氧化矽系粒子而成,較佳地用作一次研磨用。 本發明之研磨材可進而包含平均粒徑(d)為5~300 nm,縱橫比為1.00以上且1.20以下,碳含量為0.005質量%以上且未達0.50質量%之含有烷氧基之三維縮聚結構之氧化矽系粒子。 [發明之效果] 本發明之研磨用氧化矽系粒子、及包含該研磨用氧化矽系粒子而成之研磨材係研磨速度較快,進而,可抑制研磨後之粒子於基板之後殘留。因此,本發明之研磨用氧化矽系粒子、及包含該研磨用氧化矽系粒子而成之研磨材尤其可用於一次研磨(粗研磨)。
<研磨用粒子> 本發明之研磨用氧化矽系粒子之平均粒徑(d)為5~300 nm,可根據所要求之研磨速度或研磨精度等適當設定。該平均粒徑(d)係拍攝電子顯微鏡照片,針對任意之100個粒子,如圖1例示般測定各粒子之一次粒子之最長直徑,以其平均值之形式獲得者。 此處,於平均粒徑未達5 nm之情形時,有氧化矽系粒子分散液之穩定性變得不充分之傾向,又,有粒徑過小而無法獲得充分之研磨速度,又,表面積較大,故而於研磨後粒子容易「後殘留」於基板之情形。於平均粒徑超過300 nm之情形時,亦根據基板或絕緣膜之種類而不同,但有容易產生刮痕,無法獲得充分之平滑性之情況。平均粒徑較佳為10~200 nm,更佳為15~100 nm。 本發明之研磨用氧化矽系粒子係縱橫比超過1.20且為5.00以下。 該縱橫比係藉由掃描式電子顯微鏡觀察粒子,針對100個粒子,如圖2例示般,於以長方形包圍粒子時,將最長之邊設為邊b而測定縱橫比,以其平均值之形式獲得者。若縱橫比處於該範圍,則粒子成為非為真球之「異形狀」。又,若縱橫比處於該範圍,則於粒子表面存在突出之部分,故而於研磨時應力集中,可使基板之研磨速度較快。因此,本發明之研磨用氧化矽粒子尤其適合作為一次研磨粒。 此處,若縱橫比為1.00以上且1.20以下,則粒子為真球或接近真球之形狀,故而有尤其於一次研磨中研磨速度變得不充分之虞。 另一方面,若縱橫比超過5.00,則粒子為過度地凝集之狀態,或者粒子之形狀極端地為異形之情形、或為矩形之情形較多,於研磨中無法期望均一之研磨,產生刮痕,不滿足作為研磨粒子之適合性。 本發明之研磨用氧化矽系粒子之一次粒子採用三維縮聚結構。其原因在於藉由於鹼性側進行烷氧基矽烷之水解及縮聚,以立體(三維)方式進行,並非僅平面狀(二維)地進行。使用具有此種結構之粒子之研磨材由於粒子之分散性較高,可獲得充分之研磨速度,故而較佳。另一方面,若於酸性側進行水解及縮聚,則以二維方式進行,無法獲得球狀粒子。 該結構可藉由利用穿透式電子顯微鏡或掃描式電子顯微鏡確認,以粒子之形式存在而判斷。 本發明之研磨用氧化矽系粒子係含有烷氧基之氧化矽系粒子。該研磨用氧化矽系粒子中之源自烷氧基之碳之含量為0.005質量%以上且未達0.50質量%。若碳含量處於該範圍,則使用使用其之研磨材後,可獲得粒子附著較低,粒子容易沖洗(粒子之「後殘留」較少)之基板。 其機制雖未特定,但推測先前粒子之「後殘留」較多之原因在於如上所述,於製備研磨漿料(研磨材)時,藉由酸或鹼之添加,研磨用氧化矽系粒子之過量之烷氧基殘基發生水解,活性之-OH基之生成變多。相對於此,認為本發明由於研磨用氧化矽系粒子中之碳含量為0.005質量%以上且未達0.50質量%之範圍,於製備研磨材之階段,因烷氧基殘基之水解所引起之-OH基之生成量微少,故而與基板之相互作用變低,可獲得粒子附著量較少(粒子之「後殘留」較少)之基板。 此處,於碳含量為0.50質量%以上之情形時,烷氧基殘基變多,故而無法獲得充分之研磨速度,研磨後之粒子附著亦變多,從而不佳。 另一方面,於碳含量未達0.005質量%之情形時,作為碳源之烷氧基殘基較少,進行矽氧烷鍵結。因此,粒子變得非常硬,雖研磨速度較快,但即便調整其他條件亦產生刮痕,研磨面之平滑性變得不充分。又,由於氧化矽系粒子與其他材料之混合穩定性變低,故而有於研磨漿料化時引起凝集,於研磨時產生刮痕之情形。如此,有即便為了提高氧化矽系粒子之純度而使碳含量進而低於0.005質量%,作為研磨材之性能亦變得不充分之虞。 碳含量更佳為0.01質量%以上且未達0.30質量%,進而較佳為0.01質量%以上且未達0.20質量%。 本發明之研磨用氧化矽系粒子較佳為鹼金屬、鹼土金屬、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zr之各者之含量處於未達0.1 ppm之範圍,Cu、Ni、Cr之各者之含量處於未達1 ppb之範圍,U、Th之各者之含量處於未達0.3 ppb之範圍。 若該等雜質成分之金屬元素之含量超過上述範圍而存在較多,則有如下情況:於使用氧化矽系粒子進行研磨後之基板殘存金屬元素,該金屬元素引起形成於半導體基板之電路之絕緣不良,或者電路發生短路,絕緣用所設置之膜(絕緣膜)之介電常數降低,金屬配線阻抗增大,發生回應速度之延遲、消耗電力之增大等。又,有金屬元素離子轉移(擴散),於使用條件變得更苛刻之情形時或長期使用之情形時產生上述不良情況之情況。尤其於為U、Th之情形時,由於產生放射線,故而於即便殘存微量之情形時,亦引起因放射線所引起之半導體之誤動作,就該方面而言不佳。 此處,鹼金屬表示Li、Na、K、Rb、Cs、Fr。鹼土金屬表示Be、Mg、Ca、Sr、Ba、Ra。 為了獲得此種雜質成分之含量較少之高純度氧化矽系粒子,較佳為使製備粒子時之裝置之材質為不包含該等元素,且耐化學品性較高者,具體而言,較佳為鐵氟龍(註冊商標)、FRP(fiber reinforced plastic,纖維強化塑膠)、碳纖維等塑膠、無鹼玻璃等。 又,關於使用之原料,較佳為藉由蒸餾、離子交換、過濾器去除進行精製。尤其是烷氧化物之水解時使用之醇有殘存來自槽等之金屬雜質成分或合成時之觸媒之虞,有尤其必需精度較高之精製之情形。 作為獲得高純度氧化矽系粒子之方法,如上所述,有預先準備雜質成分較少之原料,或者抑制自粒子製備用裝置之混入之方法。除此以外,亦可於獲得未充分採取此種對策而製備之粒子後,降低雜質成分。然而,由於雜質成分被引入至氧化矽粒子內,故而有藉由離子交換或過濾器去除進行精製之效率較差,成為高成本之虞。因此,藉由此種方法,獲得雜質成分之含量較少之氧化矽系粒子不現實。 本發明之研磨用氧化矽系粒子較佳為動態光散射粒徑(γ)與平均長軸直徑(b)之比(γ/b)為0.70以上且3.00以下。藉由動態光散射法測定之平均粒徑、即動態光散射粒徑(γ)係藉由測定原理利用動態光散射法之測定機器而獲得。動態光散射粒徑(γ)由於根據進行布朗運動之粒子之短軸直徑a及長軸直徑b兩者之資訊而算出粒徑,故而縱橫比超過1.20且為5.00以下者亦根據樣本之狀態而不同,有因奈米粒子之布朗運動之影響,小於平均長軸直徑(b)之情形。但是,若比(γ/b)處於該範圍,則氧化矽系粒子之凝集較小,故而研磨時之研磨速度較快,亦提昇平滑性,進而,亦進一步降低粒子於基板之「後殘留」。 再者,平均長軸直徑(b)係將藉由掃描式電子顯微鏡觀察之100個粒子之長軸(b)(參照圖2)之測定值進行平均所獲得的值。 本發明之研磨用氧化矽系粒子較佳為根據氮吸附法(BET法)之比表面積(SA)算出之等效球換算粒徑(γ1 )與平均粒徑(d)的比(γ1 /d)為0.80以上且未達1.00。該等效球換算粒徑(γ1 )係使用BET法,根據氮之吸附量藉由BET1點法算出比表面積,根據等效球換算粒徑(γ1 )=6000/(SA×密度)之式,將氧化矽之密度設為2.2而求出等效球換算粒徑(γ1 )。 若比(γ1 /d)為該範圍,則根據視粒子尺寸(平均粒徑,d),等效球換算粒徑(γ1 )較小,故而粒子為多孔性。因此,即便粒子本身無彈性,粒子亦不硬,故而可提昇平滑性。 此處,於比(γ1 /d)為1.00時,有為粒子本身之內部堵塞之(實心)狀態,粒子本身無彈性之情形;於研磨中難以獲得平滑性較高之基板之情形。於比(γ1 /d)未達0.80之情形時,有粒子為稀疏之狀態且較脆,無法進行充分之研磨之虞。 如上所述,本發明之研磨用氧化矽系粒子可用於一次研磨等,較佳為於該一次研磨後,使用精研磨粒子進行精研磨(二次研磨)。又,亦可將本發明之研磨用氧化矽系粒子與精研磨粒子進行混合而使用。作為此種精研磨粒子,可較佳地例示平均粒徑(d)為5~300 nm,縱橫比為1.00以上且1.20以下,碳含量為0.005質量%以上且未達0.50質量%之含有烷氧基之三維縮聚結構之氧化矽系粒子。此種粒子係本發明者等人於日本專利特願2016-216956號中提出之粒子,具有較高之硬度,故而研磨時之研磨速度較高,為接近真球之形狀,於製備漿料時粒子之凝集較少,分散性較高,故而研磨時之平滑性亦較高,粒子中之烷氧基較少,故而於基板之「後殘留」變少,可同時滿足研磨速度、平滑性、刮痕之產生抑制、後殘留之抑制之研磨材所要求之4個要求。 即,作為本發明之一實施形態,可列舉包含如下研磨材之研磨材之組合:包含上述所說明之本發明之研磨用氧化矽系粒子而成之研磨材;及包含平均粒徑(d)為5~300 nm,縱橫比為1.00以上且1.20以下,碳含量為0.005質量%以上且未達0.50質量%之含有烷氧基之三維縮聚結構之氧化矽系粒子(精研磨粒子)而成的研磨材。更具體而言,可列舉:如上所述,於使用包含本發明之研磨用氧化矽系粒子之研磨材後,使用包含精研磨粒子之研磨材進行研磨之一次研磨用研磨材與二次研磨用研磨材之組合的態樣;及混合兩者之組合之態樣。 於混合兩者而使用之情形時,兩者之混合物中之精研磨粒子之質量比率較佳為0.1~70%,更佳為1~10%。若超過70%,則有研磨速度降低,無法獲得作為一次研磨之目的之高研磨速度之特性之虞。若未達0.1%,則即便混合精研磨粒子,研磨速度亦不會變快。若為1~10%之範圍,則與單獨使用一次研磨材相比,平滑性較高,研磨速度變得非常快。研磨速度變快之原因雖不明確,但認為於研磨時,存在於研磨墊與基材之間之氧化矽系粒子之轉速因存在縱橫比較低之球狀粒子,而表現出齒輪效應,與單獨存在一次研磨粒子相比變快,因此,研磨速度提昇。 因此,本發明之研磨用氧化矽系粒子之平均粒徑與精研磨粒子之平均粒徑比(精研磨粒徑/本發明之研磨用氧化矽系粒徑)較佳為0.01~1,更佳為0.05~0.85。 適於上述精研磨之精研磨粒子較佳為具有下述特徵者。 (1)鹼金屬、鹼土金屬、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zr之各者之含量未達0.1 ppm,Cu、Ni、Cr之各者之含量未達1 ppb,U、Th之各者之含量未達0.3 ppb。 (2)動態光散射粒徑(γ)與平均粒徑(d)之比(γ/d)為1.00以上且1.50以下。 (3)根據BET法之比表面積(SA)算出之等效球換算粒徑(γ1 )與平均粒徑(d)之比(γ1 /d)為0.80以上且未達1.00。 <研磨用氧化矽系粒子之製造> 作為本發明之研磨用氧化矽系粒子之製造方法,只要可獲得上述粒子則並無特別限制。 再者,作為降低鹼金屬等雜質成分、或源自烷氧基殘基之碳成分之含量之方法,亦可將專利文獻2中所揭示之源自烷氧化物之烷氧基殘基之碳含量含有0.5~5質量%的氧化矽粒子使用超濾膜等去除未反應烷氧基矽烷,進而進行清洗而降低源自烷氧化物之碳含量,或者使用高壓釜等將氧化矽粒子之分散液於鹼性(pH值9~11)之條件下進而進行水熱處理,或進行焙燒而壓碎。該等方法亦可併用。 以下,例示具體之研磨用氧化矽系粒子之製造方法。作為獲得本發明之研磨用氧化矽系粒子之方法,分為如下大致兩種方法:1)製造方法(製造方法1),其係於將烷氧基矽烷水解而獲得接近真球狀或球狀之粒子後,於酸性~弱鹼性(pH值8以下)之條件下進行水熱處理等,藉此使粒子彼此接合,獲得縱橫比超過1.20且為5.00以下之粒子;及2)製造方法(製造方法2),其係於將烷氧基矽烷水解時,獲得縱橫比超過1.20且為5.00以下之粒子。 <研磨用氧化矽系粒子之製造/製造方法1> 首先,對1)於將烷氧基矽烷水解而獲得接近真球狀或球狀之粒子後,於酸性~弱鹼性(pH值8以下)之條件下進行水熱處理等,藉此使粒子彼此接合,獲得縱橫比超過1.20且為5.00以下之粒子之製法進行說明。 接近真球狀或球狀之粒子係將下述式[1]所表示之烷氧基矽烷之1種或2種以上水解而獲得。 Xn Si(OR)4-n ・・・[1] 式中,X表示氫原子、氟原子、碳數1~8之烷基、芳基或乙烯基,R表示氫原子、碳數1~8之烷基、芳基或乙烯基,n為0~3之整數。 於該等烷氧基矽烷中,尤佳為使用四甲氧基矽烷(TMOS)或四乙氧基矽烷(TEOS)等烷基鏈較短者。其原因在於在使用該等之情形時,有水解速度變快,可獲得碳含量較少之氧化矽粒子之傾向。進而較佳為烷基鏈較短之四甲氧基矽烷(TMOS)。 烷氧基矽烷之水解係於水、有機溶劑及觸媒之存在下進行。該水解所需之水之量較理想為如相對於構成烷氧基矽烷之烷氧基(-OR基)1莫耳,成為超過4且為50莫耳以下、較佳為超過4且為25莫耳以下的量。若為該等範圍,則容易獲得縱橫比為1.00以上且1.20以下之粒子。 又,觸媒較理想為以相對於烷氧基矽烷1莫耳,成為0.005~1莫耳、較佳為0.01~0.8莫耳之方式添加。此處,若烷氧基矽烷每1莫耳之觸媒未達0.005莫耳,則有難以產生水解,獲得粒度分佈較廣之粒子之情形。若烷氧基矽烷每1莫耳之觸媒超過1莫耳,則有水解速度明顯變快,故而難以獲得粒子,成為凝膠狀物之情形。 作為上述有機溶劑,可列舉:醇類、酮類、醚類、酯類等。更具體而言,例如使用甲醇、乙醇、丙醇、丁醇等醇類;甲基乙基酮、甲基異丁基酮等酮類;甲基溶纖劑、乙基溶纖劑、丙二醇單丙醚等二醇醚類;乙二醇、丙二醇、己二醇等二醇類;乙酸甲酯、乙酸乙酯、乳酸甲酯、乳酸乙酯等酯類。 作為上述觸媒,使用氨、胺、鹼金屬氫化物、四級銨化合物、胺系偶合劑等表現出鹼性之化合物。再者,亦可使用鹼金屬氫化物作為觸媒,但由於會促進上述烷氧基矽烷之烷氧基之水解,因此,所獲得之粒子中殘存之烷氧基(碳)減少,故而雖研磨速度較高,但有產生刮痕之情況,進而,有鹼金屬元素之含量變高之虞。 作為上述式[1]所表示之烷氧基矽烷,除四甲氧基矽烷、四乙氧基矽烷以外,亦可列舉:四異丙氧基矽烷、四丁氧基矽烷、四辛基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三異丙氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三異丙氧基矽烷、辛基三甲氧基矽烷、辛基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、三甲氧基矽烷、三乙氧基矽烷、三異丙氧基矽烷、氟三甲氧基矽烷、氟三乙氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二乙基二甲氧基矽烷、二乙基二乙氧基矽烷、二甲氧基矽烷、二乙氧基矽烷、二氟二甲氧基矽烷、二氟二乙氧基矽烷、三氟甲基三甲氧基矽烷、三氟甲基三乙氧基矽烷等。 上述烷氧基矽烷之水解通常於常壓下,於使用之溶劑之沸點以下之溫度、較佳為較沸點低5~10℃左右之溫度下進行。於使用高壓釜等耐熱耐壓容器之情形時,亦可於較該溫度更高之溫度下進行。 若於如上所述之條件下進行水解,則容易獲得以三維方式進行烷氧基矽烷之縮聚,平均粒徑具有5~300 nm之粒徑之縱橫比為1.00以上且1.20以下之粒子。 如上所述般藉由水解所生成之氧化矽系粒子可(1)較佳為進行清洗處理,(2)於酸性~弱鹼性(pH值8以下)之條件下於300℃以下之溫度下進行水熱處理而進行雜質去除,藉此獲得本發明之研磨用氧化矽粒子。該研磨用氧化矽系粒子可視需要進行焙燒而進行壓碎處理。藉由進行該等處理中之任一者,或者組合該等處理而進行,可降低至所需之碳含量。關於碳成分之去除,越是碳鏈較短之結構之矽烷烷氧化物越容易,於上述矽烷烷氧化物中,較佳為四甲氧基矽烷、四乙氧基矽烷。尤其是四甲氧基矽烷由於碳鏈最短,故而可藉由簡單之水清洗而去除碳成分。 首先,對上述步驟之(1)清洗處理進行說明。於製造方法1中,該處理為任意,較佳為進行。 清洗處理中使用之清洗劑只要為溶解烷氧基矽烷者即可。其中,較佳為純水或醇。進而較佳為醇,其中,可較佳地使用甲醇或乙醇。若藉由醇進行清洗,則亦根據清洗條件而不同,但由於烷氧化物之溶解性較高,故而甚至可去除粒子內部之未反應烷氧化物。 因此,容易獲得根據BET法之比表面積(SA)算出之等效球換算粒徑(γ1 )與平均粒徑(d)之比(γ1 /d)為0.80以上且未達1.00者。另一方面,若藉由烷氧化物之溶解度較低之水進行清洗,則容易清洗粒子表面之烷氧化物,容易獲得比(γ1 /d)為1.00者。又,若藉由水進行清洗,則雖原因不明確,但有比(γ1 /d)變大之情形。其雖原因無法特定,但推定為粒子表面之烷氧化物量之影響。 作為藉由醇之清洗法,較佳為使用超濾膜或陶瓷膜之清洗法。又,關於清洗用純水或醇之量,根據氧化矽系粒子分散液之濃度而不同,較佳為分散液量之4~100倍量,更佳為分散液量之8~100倍量。此處,於清洗用純水或醇之量未達分散液量之4倍量之情形時,適於去除如專利文獻1、2所示之未反應烷氧基矽烷,但難以降低粒子表面或內部之源自烷氧化物基之碳。另一方面,若清洗用純水或醇之量超過分散液量之100倍,則碳含量亦未降低,經濟上亦效率較差。 經清洗之粒子係使用超濾膜或旋轉蒸發器置換為水,將氧化矽系粒子之濃度調整為1~5質量%。 其次,對(2)酸性~弱鹼性(pH值8以下)下之300℃以下之溫度下之水熱處理進行說明。於製造方法1中,該處理為必需之處理。 進行清洗處理後之縱橫比為1.20以下之氧化矽系粒子之濃度1~5質量%的分散液藉由於酸性側(酸性~弱鹼性,即pH值8以下)進行水熱處理,可獲得連結有2個以上之粒子之縱橫比為1.20~5.00之粒子。推定其原因在於在酸性條件(酸性~弱鹼性,即pH值8以下)下,氧化矽之溶解度較低,故而不均一地產生Ostwald生長。其pH值更佳為3~7。於為該範圍以外之情形時,有獲得動態光散射粒徑(γ)與平均長軸直徑(b)之比(γ/b)超過3.00之凝集狀態者之虞。若使用此種短纖維狀氧化矽系粒子或凝集之氧化矽系粒子作為研磨材,則有產生刮痕之情況,故而不佳。 水熱處理溫度較佳為100~300℃,更佳為100~250℃。 於水熱處理溫度較低,pH值較低之情形時,容易獲得碳含量較高且多孔性較高之氧化矽系粒子。因此,有根據BET法之比表面積(SA)算出之等效球換算粒徑(γ1 )與平均粒徑(d)之比(γ1 /d)變低的傾向。 經水熱處理之粒子可使用離子交換樹脂進行精製,使用超濾膜或旋轉蒸發器置換為水,繼而,進行濃縮,獲得研磨用氧化矽系粒子。 所獲得之研磨用氧化矽系粒子係於進行焙燒而壓碎之情形時,焙燒溫度較佳為200℃~600℃。此處,若焙燒溫度未達200℃,則有未反應之烷氧化物不進行反應,獲得粒子中之碳含量為0.50質量%以上之粒子之情形。反之,若焙燒溫度超過600℃,則有分解烷氧化物,獲得碳含量未達0.005質量%之粒子之情形。此時,即便獲得碳含量為0.005質量%以上者,亦有將粒子間接合,壓碎後亦無法獲得球狀之粒子之虞。壓碎法可使用先前公知之壓碎法,較佳為藉由珠磨機進行壓碎之方法。 <研磨用氧化矽系粒子之製造/製造方法2> 其次,對2)於將烷氧基矽烷水解時,獲得縱橫比超過1.20且為5.00以下之粒子之製造法進行說明。 縱橫比超過1.20且為5.00以下之粒子係將下述式[1]所表示之烷氧基矽烷之1種或2種以上水解而獲得。 Xn Si(OR)4-n ・・・[1] 式中,X表示氫原子、氟原子、碳數1~8之烷基、芳基或乙烯基,R表示氫原子、碳數1~8之烷基、芳基或乙烯基,n為0~3之整數。 於該等烷氧基矽烷中,尤佳為使用四甲氧基矽烷(TMOS)或四乙氧基矽烷(TEOS)等烷基鏈較短者。其原因在於在使用該等之情形時,有水解速度變快,獲得碳含量較少之氧化矽粒子之傾向。進而較佳為烷基鏈較短之四甲氧基矽烷(TMOS)。 烷氧基矽烷之水解係於水、有機溶劑及觸媒之存在下進行。該水解所需之水之量較理想為如相對於構成烷氧基矽烷之烷氧基(-OR基)1莫耳,成為0.1~4莫耳、較佳為0.2~2莫耳的量。若為該等範圍,則容易獲得超過1.20且為5.00以下之粒子。此處,於構成烷氧基矽烷之烷氧基每1莫耳之水之量未達0.1莫耳的情形時,有不進行水解本身,殘存未反應之烷氧基矽烷,所獲得之粒子凝集之情形。於構成烷氧基矽烷之烷氧基每1莫耳之水之量超過4莫耳的情形時,容易獲得球狀之粒子、或縱橫比為1.00~1.20之粒子。 又,觸媒較理想為以相對於烷氧基矽烷1莫耳,成為0.005~1莫耳、較佳為0.01~0.8莫耳之方式添加。此處,若烷氧基矽烷每1莫耳之觸媒未達0.005莫耳,則有難以產生水解,獲得粒度分佈較廣之粒子之情形。若烷氧基矽烷每1莫耳之觸媒超過1莫耳,則有水解速度明顯變快,故而難以獲得粒子,成為凝膠狀物之情形。 作為上述有機溶劑,可列舉:醇類、酮類、醚類、酯類等。更具體而言,例如使用甲醇、乙醇、丙醇、丁醇等醇類;甲基乙基酮、甲基異丁基酮等酮類;甲基溶纖劑、乙基溶纖劑、丙二醇單丙醚等二醇醚類;乙二醇、丙二醇、己二醇等二醇類;乙酸甲酯、乙酸乙酯、乳酸甲酯、乳酸乙酯等酯類。 作為上述觸媒,使用氨、胺、鹼金屬氫化物、四級銨化合物、胺系偶合劑等表現出鹼性之化合物。再者,亦可使用鹼金屬氫化物作為觸媒,但由於會促進上述烷氧基矽烷之烷氧基之水解,因此,所獲得之粒子中殘存之烷氧基(碳)減少,故而雖研磨速度較高,但有產生刮痕之情況,進而,有鹼金屬元素之含量變高之虞。 作為上述式[1]所表示之烷氧基矽烷,除四甲氧基矽烷、四乙氧基矽烷以外,亦可列舉:四異丙氧基矽烷、四丁氧基矽烷、四辛基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三異丙氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三異丙氧基矽烷、辛基三甲氧基矽烷、辛基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、三甲氧基矽烷、三乙氧基矽烷、三異丙氧基矽烷、氟三甲氧基矽烷、氟三乙氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二乙基二甲氧基矽烷、二乙基二乙氧基矽烷、二甲氧基矽烷、二乙氧基矽烷、二氟二甲氧基矽烷、二氟二乙氧基矽烷、三氟甲基三甲氧基矽烷、三氟甲基三乙氧基矽烷等。 上述烷氧基矽烷之水解通常於常壓下,於使用之溶劑之沸點以下之溫度、較佳為較沸點低5~10℃左右之溫度下進行。又,於使用高壓釜等耐熱耐壓容器之情形時,亦可於較該溫度更高之溫度下進行。 若於如上所述之條件下進行水解,則可獲得以三維方式進行烷氧基矽烷之縮聚,平均粒徑具有5~300 nm之粒徑之縱橫比超過1.20且為5.00以下之研磨用氧化矽系粒子。 如上所述般藉由水解所生成之氧化矽系粒子可進行(1)清洗處理、及(2)於鹼性(pH值9~11)之條件下於300℃以下之溫度下之水熱處理中之至少一者而進行雜質去除,藉此獲得本發明之研磨用氧化矽粒子。該研磨用氧化矽系粒子可視需要進行焙燒而進行壓碎處理。藉由進行該等處理中之任一者,或者組合該等處理而進行,可降低至所需之碳含量。關於碳成分之去除,越是碳鏈較短之結構之矽烷烷氧化物越容易,於上述矽烷烷氧化物中,較佳為四甲氧基矽烷、四乙氧基矽烷。尤其是四甲氧基矽烷由於碳鏈最短,故而可藉由簡單之水清洗而去除碳成分。 作為清洗處理及焙燒、壓碎方法,可列舉與上述製造方法1中所說明者相同之處理。 對(2)於鹼性(pH值9~11)之條件下於300℃以下之溫度下之水熱處理進行說明。 藉由進行本水熱處理,可促進氧化矽系微粒子之烷氧化物基之水解,進一步降低碳含量,可獲得緻密之粒子。於酸性條件下,由於氧化矽之溶解度較低,故而有不促進水解之情形,無法降低碳含量,粒子亦難以變得緊密。因此,容易獲得根據BET法之比表面積(SA)算出之等效球換算粒徑(γ1 )與平均粒徑(d)之比(γ1 /d)之值較高為0.9~1.00者。較佳之鹼性條件之pH值為9~11。水熱處理溫度較佳為300℃以下,更佳為80~300℃,進而較佳為100~200℃,最佳為100~150℃以下。 此處,於水熱處理時之pH值未達9之條件下,有氧化矽之溶解度較低,不促進水解之情形。若水熱處理時之pH值超過11,則有氧化矽溶解度較高,故而氧化矽系粒子發生溶解而成為不定形狀之粒子之情形。於水熱處理溫度未達80℃之情形時,有溫度較低,故而不促進水解之情形。於水熱處理溫度超過300℃之情形時,有溫度較高,故而氧化矽之溶解度亦變得更高,氧化矽系粒子發生溶解而成為不定形狀之粒子之情形。 與上述同樣地,於pH值為9~11且300℃以下之水熱處理中,於為該範圍以外之情形時,成為粒子不穩定之狀態下之處理,故而有獲得動態光散射粒徑(γ)與平均長軸直徑(b)之比(γ/b)超過3.00之凝集狀態者之虞。若使用此種短纖維狀氧化矽系粒子或凝集之氧化矽系粒子作為研磨材,則有產生刮痕之情況,故而不佳。 經水熱處理之粒子可使用離子交換樹脂進行精製,使用超濾膜或旋轉蒸發器置換為水,繼而,進行濃縮,獲得研磨用氧化矽系粒子。 <研磨材> 本發明之研磨材係將上述研磨用氧化矽系粒子分散於分散介質中而成者。 作為分散介質,通常使用水,可視需要使用甲醇、乙醇、異丙醇等醇類,除此以外,亦可使用醚類、酯類、酮類等水溶性之有機溶劑。 研磨材中之研磨用氧化矽系粒子之濃度較佳為處於2~50質量%、進而為5~30質量%之範圍。此處,於濃度未達2質量%之情形時,有根據基材或絕緣膜之種類,濃度過低而研磨速度較慢,生產性成為問題之情況。若氧化矽系粒子之濃度超過50質量%,則有研磨材之穩定性變得不充分,亦不會進一步提昇研磨速度或研磨效率,又,於為了進行研磨處理而供給分散液之步驟中生成乾燥物而附著之情況,且有成為刮痕產生之原因之情況。 於本發明之研磨材中,亦根據被研磨材之種類而不同,可視需要添加先前公知之過氧化氫、過乙酸、過氧化脲等及該等之混合物而使用。若添加此種過氧化氫等而使用,則於被研磨材為金屬之情形時,可有效地提昇研磨速度。 又,可視需要添加硫酸、硝酸、磷酸、氫氟酸等酸、或該等酸之鈉鹽、鉀鹽、銨鹽及該等之混合物等而使用。於此情形時,於研磨複數種材質之被研磨材時,藉由加快或減慢特定成分之被研磨材之研磨速度,最終可獲得平坦之研磨面。作為其他添加劑,例如,為了於金屬被研磨材表面形成鈍態層或溶解抑制層而防止基材之腐蝕,可使用聚乙烯醇、聚乙烯吡咯啶酮、咪唑、苯并三唑、苯并噻唑等。 又,為了將上述鈍態層擴散,亦可使用檸檬酸、乳酸、乙酸、草酸、鄰苯二甲酸等有機酸或該等之有機酸鹽等錯合物形成材料。 為了提昇研磨材漿料之分散性或穩定性,可適當選擇陽離子系、陰離子系、非離子系、兩性系界面活性劑而添加。 進而,為了提高上述各添加劑之效果,可視需要添加酸或鹼而調節研磨材漿料之pH值。 本發明之研磨用氧化矽系粒子、及包含該研磨用氧化矽系粒子而成之研磨材係研磨速度較快。又,該氧化矽系粒子由於碳含量較少,且粒子於基板之「後殘留」較少,故而尤其可用於一次研磨。進而,於該氧化矽系粒子實質上不包含鈉等雜質成分之金屬元素成分之情形時,不存在金屬元素附著於經研磨之半導體基板或氧化膜表面之情況,因此,尤其可用於基板之平坦化、尤其是半導體積體電路中之金屬配線層之形成等。 [實施例] 以下,藉由實施例說明本發明,但本發明並不限定於該等實施例。 [實施例1] <研磨用氧化矽系粒子(A)之製造> 將混合有純水139.1 g及甲醇(中國精油股份有限公司製造(以下相同))169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷(多摩化學工業股份有限公司製造之Ethyl Silicate 28,SiO2 =28質量%(以下相同))之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之3倍量之純水11663.7 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨,進而,使用相當於熟成品之10倍量之38879 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於250℃下熟成20小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(A)之分散液。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備(以下相同)。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者(以下相同)。測定研磨用氧化矽系粒子(A)之平均粒徑、縱橫比、平均長軸系、動態光散射粒徑、等效球換算粒徑、烷氧基之有無、碳含量、鈉等雜質成分之金屬元素之含量,將結果示於表1及表2(以下相同)。 《平均粒徑之測定》 平均粒徑(d)係拍攝氧化矽系粒子之電子顯微鏡照片,針對任意之100個粒子,如圖1例示般,測定一次粒子之直徑最長之部分,以其平均值之形式獲得。 《縱橫比之測定》 縱橫比係拍攝氧化矽系粒子之電子顯微鏡照片,針對任意之100個粒子,如圖2例示般,於以長方形包圍粒子時,將最長之邊設為邊b而測定縱橫比,以其平均值之形式獲得。 《平均長軸直徑之測定》 拍攝氧化矽系粒子之電子顯微鏡照片,針對任意之100個粒子,如圖2例示般,於以長方形包圍粒子時,將最長之邊設為邊b而進行測定,以其平均值之形式獲得平均長軸直徑(b)。 《烷氧基之測定》 氧化矽系粒子中之烷氧基係使氧化矽系粒子分散液於150℃下乾燥,使用傅立葉變換型紅外分光裝置(日本分光製造之型號:FT/IR-6100)進行測定,確認-OR基之有無。 《碳含量之測定》 氧化矽系粒子中之碳含量係使氧化矽系粒子分散液於150℃下乾燥,使用碳硫分析裝置(HORIBA製造之EMIA-320V)進行測定。 《金屬元素含量之測定》 關於氧化矽系粒子中之鹼金屬、鹼土金屬、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zr之含量、Cu、Ni、Cr之含量及U、Th之含量,藉由氫氟酸溶解本發明之氧化矽系粒子,進行加熱而去除氫氟酸後,視需要加入純水,針對所獲得之溶液,使用ICP(inductively coupled plasma,感應耦合電漿)感應耦合電漿發射光譜質譜裝置(島津製作所股份有限公司製造之ICPM-8500)進行測定。 《動態光散射粒徑之測定》 動態光散射粒徑之平均粒徑(γ)係使用pH值10.5之氨水將研磨用氧化矽系粒子稀釋至0.1%,使用動態光散射粒度分佈測定裝置(大塚電子股份有限公司製造之PAR-III)進行測定,將其累積粒徑設為γ。 《等效球換算粒徑之測定》 等效球換算粒徑(γ1 )係使氧化矽系粒子分散液於150℃下乾燥,藉由比表面積測定裝置(Mountech公司製造之裝置名Macsorb-1200),使用BET法進行測定。根據氮之吸附量藉由BET1點法算出比表面積(SA),根據等效球換算粒徑(γ1 )=6000/(SA×密度)之式,將氧化矽之密度設為2.2而求出等效球換算粒徑(γ1 )。 <研磨材(A)之製造> 製造含有研磨用氧化矽系粒子3.0質量%、羥乙基纖維素(HEC)175 ppm、氨225 ppm之研磨材(A)。 <研磨用基板> 為了評價一次研磨之性能,使用結晶結構為(1.0.0)之單晶矽晶圓。 《研磨試驗》 使用研磨用基板,設置於研磨裝置(Nano Factor股份有限公司製造之NF300),於研磨墊SUBA600、基板負荷15 kPa、工作台轉速50 rpm、主軸速度60 rpm之條件下,將上述研磨材(A)以250 ml/分鐘之速度進行10分鐘研磨用基板之研磨。其後,藉由純水進行清洗並進行風乾。其後,測定研磨用基板之重量減少,算出研磨速度。觀察所獲得之研磨基板之研磨表面,藉由以下之基準(刮痕之程度)評價表面之平滑性,將結果示於表3。 未見刮痕 :◎ 稍微可見較小之刮痕。 :○ 於廣泛範圍內可見較小之刮痕。 :△ 散佈可見較大之刮痕。 :× 於廣泛範圍內可見較大之刮痕。 :×× 研磨基板上之粒子之「後殘留」係藉由使用雷射顯微鏡(基恩士股份有限公司製造之VK-X250)計算粒子之數量的下述評價基準進行評價,將結果示於表3。 粒子之「後殘留」0個 :◎ 粒子之「後殘留」1~10個 :○ 粒子之「後殘留」11~50個 : △ 粒子之「後殘留」51~100個 :× 粒子之「後殘留」101個~ :×× 《綜合判定》 考慮上述研磨試驗之結果、及作為高積體半導體電路用研磨材之用途,綜合判斷作為一次研磨用研磨材之性能。判定結果之區別如下所述。將結果示於表3。 作為研磨材 較佳 :◎ 作為研磨材 適合 :○ 作為研磨材 可 :△ 作為研磨材 不適合 :× 作為研磨材 明顯不適合 :×× [實施例2] <研磨用氧化矽系粒子(B)之製造、研磨材(B)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷(多摩化學股份有限公司製造之正矽酸甲酯 SiO2 =39.6質量%(以下相同))與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之4倍量之純水14927.6 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於150℃下熟成4小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(B)之分散液。 使用研磨用氧化矽系粒子(B),除此以外,以與實施例1相同之方式製造研磨材(B),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例3] <研磨用氧化矽系粒子(C)之製造、研磨材(C)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之4倍量之純水14927.6 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於250℃下熟成48小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(C)之分散液。 使用研磨用氧化矽系粒子(C),除此以外,以與實施例1相同之方式製造研磨材(C),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例4] <研磨用氧化矽系粒子(D)之製造、研磨材(D)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之8倍量之純水29855.2 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於150℃下熟成4小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(D)之分散液。 使用研磨用氧化矽系粒子(D),除此以外,以與實施例1相同之方式製造研磨材(D),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例5] <研磨用氧化矽系粒子(E)之製造、研磨材(E)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之4倍量之純水14927.6 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於100℃下熟成2小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(E)之分散液。 使用研磨用氧化矽系粒子(E),除此以外,以與實施例1相同之方式製造研磨材(E),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例6] <研磨用氧化矽系粒子(F)之製造、研磨材(F)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之4倍量之純水15551.6 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,使用相當於熟成品之10倍量之38879 g之甲醇,藉由超濾膜進行清洗,進而,降低源自烷氧化物基之碳含量,置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於100℃下熟成2小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(F)之分散液。 使用研磨用氧化矽系粒子(F),除此以外,以與實施例1相同之方式製造研磨材(F),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例7] <研磨用氧化矽系粒子(G)之製造、研磨材(G)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之8倍量之純水29855.2 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於150℃下熟成4小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(G)之分散液。 使用研磨用氧化矽系粒子(G),除此以外,以與實施例1相同之方式製造研磨材(G),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用鈉玻璃容器及SUS304製高壓釜設備。四甲氧基矽烷、甲醇係不進行蒸餾而使用。 [實施例8] <研磨用氧化矽系粒子(H)之製造、研磨材(H)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.50質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之4倍量之純水14927.6 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,藉由熟成品之10倍量之37319 g之甲醇進行清洗,進而降低源自烷氧基之碳含量,置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於100℃下熟成1小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(H)之分散液。 使用研磨用氧化矽系粒子(H),除此以外,以與實施例1相同之方式製造研磨材(H),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例9] <研磨用氧化矽系粒子(I)之製造、研磨材(I)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3140.68 g。其後,使用相當於熟成品之4倍量之純水12562.72 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,藉由熟成品之10倍量之31406.8 g之甲醇進行清洗,進而降低源自烷氧基之碳含量,置換為水。其後,使用鹽酸調整為pH值3.0,藉由高壓釜於100℃下熟成2小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(I)之分散液。 使用研磨用氧化矽系粒子(I),除此以外,以與實施例1相同之方式製造研磨材(I),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例10] <研磨用氧化矽系粒子(J)之製造、研磨材(J)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3140.68 g。其後,使用相當於熟成品之4倍量之純水12562.72 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,藉由熟成品之10倍量之31406.8 g之甲醇進行清洗,進而降低源自烷氧基之碳含量,置換為水。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於100℃下熟成0.5小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(J)之分散液。 使用研磨用氧化矽系粒子(J),除此以外,以與實施例1相同之方式製造研磨材(J),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例11] <研磨用氧化矽系粒子(K)之製造、研磨材(K)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3140.68 g。其後,使用相當於熟成品之4倍量之純水12562.72 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,藉由熟成品之10倍量之31406.8 g之甲醇進行清洗,進而降低源自烷氧基之碳含量,置換為水。其後,使用鹽酸調整為pH值3.0,藉由高壓釜於150℃下熟成20小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(K)之分散液。 使用研磨用氧化矽系粒子(K),除此以外,以與實施例1相同之方式製造研磨材(K),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例12] <研磨用氧化矽系粒子(L)之製造、研磨材(L)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.035)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3296.68 g。其後,使用相當於熟成品之4倍量之純水13186.72 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,進而,藉由熟成品之10倍量之32966.8 g之甲醇進行清洗,進而降低源自烷氧基之碳含量,置換為水,調整為1質量%。其後,使用鹽酸調整為pH值3.0,藉由高壓釜於150℃下熟成20小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(L)之分散液。 使用研磨用氧化矽系粒子(L),除此以外,以與實施例1相同之方式製造研磨材(L),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例13] <精研磨粒子(M)之製造、研磨材(M)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時10小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷266.3 g而成者)2716.3 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3621.75 g。其後,使用相當於熟成品之3倍量之純水10865.25 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨(此時,存在較多之源自烷氧基之碳)。進而,使用相當於熟成品之10倍量之36217.5 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用鹽酸調整為pH值3.0,藉由高壓釜於150℃下熟成20小時。藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(M)之分散液。 使用實施例1中所製造之研磨用氧化矽系粒子(A)2.8質量%、研磨用氧化矽系粒子(M)0.2質量%,除此以外,以與實施例1相同之方式製造研磨材(M),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例14] <研磨用氧化矽系粒子(N)之製造、研磨材(N)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑放入至經鐵氟龍襯裏之壓力容器中並保持為120℃,於其中同時歷時60小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷7358.18而成者)9808.18 g、及濃度0.25質量%之氨水11331.6 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為21448.78 g。其後,使用相當於熟成品之3倍量之純水64346.34 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,進而,使用相當於熟成品之12倍量之257385.4 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜熟成150小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(N)之分散液。 使用研磨用氧化矽系粒子(N)2.8質量%、實施例13中所製造之研磨用氧化矽系粒子(M)0.2質量%,除此以外,以與實施例1相同之方式製造研磨材(N),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例15] <研磨用氧化矽系粒子(O)之製造、研磨材(O)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為10℃,於其中同時歷時1秒添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷1.6 g而成者)2451.6 g、及濃度0.25質量%之氨水2.50 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為2763.1 g。其後,使用相當於熟成品之8倍量之純水22104.8 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於200℃下熟成3小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(O)之分散液。 使用研磨用氧化矽系粒子(O),除此以外,以與實施例1相同之方式製造研磨材(O),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例16] <研磨用氧化矽系粒子(N)之製造、研磨材(P)之製造、研磨試驗> 使用實施例14中所製造之研磨用氧化矽系粒子(N),除此以外,以與實施例1相同之方式製造研磨材(P),以與實施例1相同之方式進行研磨試驗。 [實施例17] <研磨用氧化矽系粒子(Q)之製造、研磨材(Q)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑放入至經鐵氟龍襯裏之壓力容器中並保持為120℃,於其中同時歷時80小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷11380.1而成者)13830.1 g、及濃度0.25質量%之氨水17282 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為31421.1 g。其後,使用相當於熟成品之3倍量之純水94263.3 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,進而,使用相當於熟成品之12倍量之377053.2 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜熟成150小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(Q)之分散液。 使用研磨用氧化矽系粒子(Q),除此以外,以與實施例1相同之方式製造研磨材(Q),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [實施例18] <研磨用氧化矽系粒子(R)之製造、研磨材(R)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3731.9 g。其後,使用相當於熟成品之20倍量之純水29855.2 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於150℃下熟成10小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(R)之分散液。 使用研磨用氧化矽系粒子(R),除此以外,以與實施例1相同之方式製造研磨材(R),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例1] <研磨用氧化矽系粒子(RF-A)之製造、研磨材(RF-A)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之3倍量之純水11663.7 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨(此時,存在較多之源自烷氧基之碳)。進而,使用相當於熟成品之10倍量之38879 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用氨調整為pH值10,藉由高壓釜於150℃下熟成20小時。藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-A)之分散液。 使用研磨用氧化矽系粒子(RF-A),除此以外,以與實施例1相同之方式製造研磨材(RF-A),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例2] <研磨用氧化矽系粒子(RF-B)之製造、研磨材(RF-B)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之3倍量之純水11663.7 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨(此時,存在較多之源自烷氧基之碳)。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-B)之分散液。 使用研磨用氧化矽系粒子(RF-B),除此以外,以與實施例1相同之方式製造研磨材(RF-B),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例3] <研磨用氧化矽系粒子(RF-C)之製造、研磨材(RF-C)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3140.68 g。其後,使用相當於熟成品之1倍量之純水3140.68 g,藉由超濾膜去除未反應之四甲氧基矽烷、甲醇、氨,且降低源自烷氧化物基之碳含量,使用旋轉蒸發器置換為水。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-C)之分散液。 使用研磨用氧化矽系粒子(RF-C),除此以外,以與實施例1相同之方式製造研磨材(RF-C),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例4] <研磨用氧化矽系粒子(RF-D)之製造、研磨材(RF-D)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之3倍量之純水11663.7 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨,進而,使用相當於熟成品之10倍量之38879 g之甲醇,藉由超濾膜進行清洗,繼而,使用純水並藉由超濾膜置換為水,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於350℃下熟成20小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-D)之分散液。 使用研磨用氧化矽系粒子(RF-D),除此以外,以與實施例1相同之方式製造研磨材(RF-D),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例5] <研磨用氧化矽系粒子(RF-E)之製造、研磨材(RF-E)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為60℃,於其中同時歷時20小時添加四乙氧基矽烷之水-甲醇溶液(於水/甲醇(質量比2/8)混合溶劑2450 g中溶解四乙氧基矽烷532.5 g而成者)2982.5 g、及濃度0.25質量%之氨水596.4 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3887.9 g。其後,使用相當於熟成品之3倍量之純水11663.7 g,藉由超濾膜大致完全去除未反應之四乙氧基矽烷、甲醇、氨,調整為1質量%。其後,使用鹽酸將pH值調整為3.0,藉由高壓釜於250℃下熟成20小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-C)之分散液。 使用研磨用氧化矽系粒子(RF-E),除此以外,以與實施例1相同之方式製造研磨材(RF-E),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四乙氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [比較例6] <研磨用氧化矽系粒子(RF-F)之製造、研磨材(RF-F)之製造、研磨試驗> 將混合有純水139.1 g及甲醇169.9 g之混合溶劑保持為50℃,於其中同時歷時20小時添加四甲氧基矽烷與甲醇之混合溶液(於甲醇2450 g中溶解四甲氧基矽烷376.5 g而成者)2826.5 g、及濃度28.8質量%之氨水5.18 g(觸媒/烷氧基矽烷之莫耳比=0.034)。添加結束後,進而於該溫度下熟成3小時。此時之重量為3140.68 g。其後,使用相當於熟成品之150倍量之甲醇471102 g,藉由超濾膜大致完全去除未反應之四甲氧基矽烷、甲醇、氨、及源自烷氧化物基之碳源,繼而,置換為水。其後,使用氨調整為pH值11,藉由高壓釜於150℃下熟成3小時。繼而,藉由兩性離子交換樹脂進行精製,繼而,藉由超濾膜進行濃縮,獲得固形物成分濃度20質量%之研磨用氧化矽系粒子(RF-F)之分散液。 使用研磨用氧化矽系粒子(RF-F),除此以外,以與實施例1相同之方式製造研磨材(RF-F),以與實施例1相同之方式進行研磨試驗。 再者,設備係使用經鐵氟龍(註冊商標)襯裏之設備。四甲氧基矽烷、甲醇、氨係使用進行蒸餾而使表2記載之鈉等雜質成分降低至未達0.01 ppb者。 [表1]
Figure 106139849-A0304-0001
[表2]
Figure 106139849-A0304-0002
[表3]
Figure 106139849-A0304-0003
圖1係說明本發明中之平均粒徑(d)之算出方法之圖。塗黑部係粒子間之接合部之影像,接合部可包含空間。 圖2係說明本發明中之縱橫比(b/a;其中,b≧a)及平均長軸直徑(b)之算出方法之圖。a表示短軸直徑,b表示長軸直徑。塗黑部係粒子間之接合部之影像,接合部可包含空間。

Claims (8)

  1. 一種研磨用氧化矽系粒子,其特徵在於:其係三維縮聚結構之氧化矽系粒子,其含有烷氧基,平均粒徑(d)為5~300nm,縱橫比超過1.20且為5.00以下,源自上述烷氧基之碳之含量為0.005質量%以上且未達0.50質量%。
  2. 如請求項1之研磨用氧化矽系粒子,其中鹼金屬、鹼土金屬、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zr之各者之含量未達0.1ppm,Cu、Ni、Cr之各者之含量未達1ppb,U、Th之各者之含量未達0.3ppb。
  3. 如請求項1或2之研磨用氧化矽系粒子,其中動態光散射粒徑(γ)與平均長軸直徑(b)之比(γ/b)為0.70以上且3.00以下。
  4. 如請求項1或2之研磨用氧化矽系粒子,其中根據BET法之比表面積(SA)算出之等效球換算粒徑(γ1)與平均粒徑(d)之比(γ1/d)為0.80以上且未達1.00。
  5. 一種研磨材,其係包含如請求項1至4中任一項之研磨用氧化矽系粒子而成。
  6. 如請求項5之研磨材,其係進而包含三維縮聚結構之氧化矽系粒子 (S)而成,上述氧化矽系粒子(S)含有烷氧基,平均粒徑(d)為5~300nm,縱橫比為1.00以上且1.20以下,源自上述烷氧基之碳之含量為0.005質量%以上且未達0.50質量%。
  7. 如請求項5或6之研磨材,其係一次研磨用。
  8. 如請求項6之研磨材,其中上述研磨用氧化矽系粒子與上述氧化矽系粒子(S)之混合物中之上述氧化矽系粒子(S)之質量比率為1~10%。
TW106139849A 2016-12-02 2017-11-17 研磨用氧化矽系粒子及研磨材 TWI762528B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235227 2016-12-02
JP2016235227 2016-12-02

Publications (2)

Publication Number Publication Date
TW201827554A TW201827554A (zh) 2018-08-01
TWI762528B true TWI762528B (zh) 2022-05-01

Family

ID=62240473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139849A TWI762528B (zh) 2016-12-02 2017-11-17 研磨用氧化矽系粒子及研磨材

Country Status (4)

Country Link
US (1) US10184069B2 (zh)
JP (1) JP6962797B2 (zh)
KR (1) KR102439062B1 (zh)
TW (1) TWI762528B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454024A (zh) 2019-02-21 2021-09-28 三菱化学株式会社 二氧化硅粒子及其制造方法、硅溶胶、研磨组合物、研磨方法、半导体晶片的制造方法和半导体器件的制造方法
JP7211147B2 (ja) * 2019-02-21 2023-01-24 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
WO2020171134A1 (ja) 2019-02-21 2020-08-27 三菱ケミカル株式会社 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
CN113544093A (zh) * 2019-03-06 2021-10-22 扶桑化学工业株式会社 胶体二氧化硅及其制造方法
KR20210133285A (ko) * 2019-03-06 2021-11-05 후소카가쿠코교 가부시키가이샤 콜로이달 실리카 및 그의 제조 방법
WO2020179556A1 (ja) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 コロイダルシリカ及びその製造方法
WO2020179557A1 (ja) 2019-03-06 2020-09-10 扶桑化学工業株式会社 コロイダルシリカ及びその製造方法
JP7331436B2 (ja) * 2019-04-23 2023-08-23 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7331435B2 (ja) * 2019-04-23 2023-08-23 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7331437B2 (ja) * 2019-04-23 2023-08-23 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2021116208A (ja) * 2020-01-28 2021-08-10 三菱ケミカル株式会社 シリカ粒子の製造方法、シリカゾルの製造方法、中間生成物の除去方法及び研磨方法
KR20220131926A (ko) * 2020-01-28 2022-09-29 미쯔비시 케미컬 주식회사 실리카 입자, 실리카 졸, 연마 조성물, 연마 방법, 반도체 웨이퍼의 제조 방법 및 반도체 디바이스의 제조 방법
JP2021147267A (ja) * 2020-03-18 2021-09-27 三菱ケミカル株式会社 シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
CN113004804B (zh) * 2021-03-01 2022-04-19 深圳清华大学研究院 大尺寸硅片边缘的抛光液、抛光液制备方法及抛光方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324174A (ja) * 1996-06-05 1997-12-16 Nippon Shokubai Co Ltd 研磨剤
JP2003213249A (ja) * 2001-11-15 2003-07-30 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子および研磨材
JP2005060217A (ja) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
TW201211221A (en) * 2010-08-31 2012-03-16 Fujimi Inc Polishing composition
JP2013082584A (ja) * 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
TWI471268B (zh) * 2008-09-26 2015-02-01 Fuso Chemical Co Ltd 含有具彎曲結構及/或分枝結構之二氧化矽二次粒子的矽酸膠及其製造方法
TW201817846A (zh) * 2016-11-07 2018-05-16 日商日揮觸媒化成股份有限公司 研磨用氧化矽系粒子及研磨材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234319A (ja) 1988-03-16 1989-09-19 Nippon Steel Chem Co Ltd 球状シリカの製造方法
JPH07206451A (ja) 1993-12-29 1995-08-08 Nippon Steel Corp 合成石英ガラスの製造方法
JP3702903B2 (ja) 1994-04-04 2005-10-05 セイコーエプソン株式会社 紫外線レーザ用合成石英ガラス及びその製造方法
JP4642165B2 (ja) * 1997-08-07 2011-03-02 日揮触媒化成株式会社 多孔質シリカ系被膜形成用塗布液、被膜付基材および短繊維状シリカ
JP4123685B2 (ja) * 2000-05-18 2008-07-23 Jsr株式会社 化学機械研磨用水系分散体
US6652612B2 (en) * 2001-11-15 2003-11-25 Catalysts & Chemicals Industries Co., Ltd. Silica particles for polishing and a polishing agent
JP2004315300A (ja) 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd シリカ微粒子、それが分散したシリカコロイド及びその製造方法
JP5348400B2 (ja) 2008-09-05 2013-11-20 Jsr株式会社 シリカ粒子分散液およびその製造方法
JP2010182811A (ja) * 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物、及びその製造方法
JP5615529B2 (ja) 2009-11-16 2014-10-29 日揮触媒化成株式会社 無機酸化物微粒子分散液、研磨用粒子分散液及び研磨用組成物
JP5564461B2 (ja) * 2010-10-12 2014-07-30 株式会社フジミインコーポレーテッド 研磨用組成物
JP5669152B2 (ja) * 2011-03-30 2015-02-12 国立大学法人 名古屋工業大学 スケルトンナノ粒子及びその製造方法
KR20140044903A (ko) 2011-07-29 2014-04-15 모멘티브 퍼포먼스 머티리얼즈 인크. 고순도 금속산화물 제조방법 및 그 방법으로 만들어진 입자 및 재료
WO2015087965A1 (ja) * 2013-12-12 2015-06-18 日産化学工業株式会社 シリカ粒子及びその製造方法並びにシリカゾル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324174A (ja) * 1996-06-05 1997-12-16 Nippon Shokubai Co Ltd 研磨剤
JP2003213249A (ja) * 2001-11-15 2003-07-30 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子および研磨材
JP2005060217A (ja) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
TWI471268B (zh) * 2008-09-26 2015-02-01 Fuso Chemical Co Ltd 含有具彎曲結構及/或分枝結構之二氧化矽二次粒子的矽酸膠及其製造方法
TW201211221A (en) * 2010-08-31 2012-03-16 Fujimi Inc Polishing composition
JP2013082584A (ja) * 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
TW201817846A (zh) * 2016-11-07 2018-05-16 日商日揮觸媒化成股份有限公司 研磨用氧化矽系粒子及研磨材

Also Published As

Publication number Publication date
US10184069B2 (en) 2019-01-22
JP6962797B2 (ja) 2021-11-05
KR20180063834A (ko) 2018-06-12
KR102439062B1 (ko) 2022-08-31
US20180155591A1 (en) 2018-06-07
JP2018090798A (ja) 2018-06-14
TW201827554A (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
TWI762528B (zh) 研磨用氧化矽系粒子及研磨材
JP5599440B2 (ja) 異形シリカゾル
TW201825398A (zh) 氧化鈰系複合微粒子分散液、其製造方法及含有氧化鈰系複合微粒子分散液之研磨用磨粒分散液
TWI787224B (zh) 二氧化矽粒子分散液之製造方法
TW201904870A (zh) 氧化鈰系複合微粒子分散液、其製造方法及包含氧化鈰系複合微粒子分散液之研磨用磨粒分散液
JP4105838B2 (ja) 研磨剤及び研磨方法
TWI757349B (zh) 研磨用氧化矽系粒子及研磨材
TWI748077B (zh) 二氧化矽粒子分散液之製造方法
TWI761629B (zh) 二氧化矽粒子之分散液及其製造方法
JP7351698B2 (ja) シリカ粒子分散液及びその製造方法
TWI781135B (zh) 二氧化矽粒子分散液及其製造方法
JP7038031B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液