TWI745656B - 氣相成長方法 - Google Patents

氣相成長方法 Download PDF

Info

Publication number
TWI745656B
TWI745656B TW108106383A TW108106383A TWI745656B TW I745656 B TWI745656 B TW I745656B TW 108106383 A TW108106383 A TW 108106383A TW 108106383 A TW108106383 A TW 108106383A TW I745656 B TWI745656 B TW I745656B
Authority
TW
Taiwan
Prior art keywords
film
reaction chamber
gas
substrate
wafer
Prior art date
Application number
TW108106383A
Other languages
English (en)
Other versions
TW201943882A (zh
Inventor
津久井雅之
名古肇
家近泰
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW201943882A publication Critical patent/TW201943882A/zh
Application granted granted Critical
Publication of TWI745656B publication Critical patent/TWI745656B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明的實施形態的氣相成長方法包括:將第一基板搬入至反應室;產生第一混合氣體,所述第一混合氣體混合有包含銦的氣體、包含鋁的氣體、以及包含氮化合物的氣體;一面將第一混合氣體供給至反應室中一面使第一基板以300 rpm以上的第一轉速進行旋轉,而在第一基板上形成第一氮化銦鋁膜。

Description

氣相成長方法
本發明是有關於一種供給氣體而在基板上形成膜的氣相成長方法。
採用氮化鎵系半導體(GaN based semiconductor)的高電子遷移率電晶體(High Electron Mobility Transistor,HEMT)實現了高耐壓與低導通電阻。HEMT將在所積層的通道(channel)層與障壁(barrier)層之間的異質(hetero)介面處感應的二維電子氣體(two-dimensional electron gas,2DEG)用作電流路徑。
例如,於通道層使用氮化鎵(以下亦稱為GaN),於障壁層使用氮化鋁鎵(以下亦稱為AlGaN)。業界正研究在障壁層應用氮化銦鋁(以下亦稱為InAlN)來代替氮化鋁鎵。
由於InAlN具有大的自發極化,故可提高InAlN與GaN的介面的2DEG濃度。因此,可實現低導通電阻的HEMT。又,藉由使InAlN中的In組成(In/(In+Al))為約17原子%,而可實現其與GaN的晶格匹配。因此,消除因晶格不匹配引起的應變,從而提高HEMT的可靠性。
又,業界期待InAlN膜與GaN膜的積層構造亦應用於在面發光雷射等中所使用的介電鏡(dielectric mirror)。關於朝所 述介電鏡的應用,要求GaN膜與InAlN膜的介面為明確,即,要求所述兩個膜的化合物組成急劇地變化。
然而,InAlN膜的氣相成長中,朝InAlN膜中的非意圖的鎵(gallium,Ga)的摻入(unintentional Ga incorporation)成為問題。若鎵被摻入至InAlN膜中,則有產生例如InAlN與GaN的介面的2DEG密度降低、或電子遷移率降低的擔憂。又,由於無法獲得化合物組成的急劇的變化,因此難以形成良好的介電鏡。
作為在所述InAlN膜中產生非意圖的Ga的摻入的原因,可考量有:在InAlN膜的成長前進行的包含Ga的膜的成長時,在成長裝置的上游部分產生包含Ga的堆積物,在InAlN膜的成長時自包含所述Ga的堆積物朝成長環境放出Ga,而所述Ga被摻入至InAlN膜。
在J.Lu等人的「MRS進步」(MRS Advances),(2017.174,pp32),記載有利用圖1(b)所示的進行分離氣體供給的裝置進行成膜,獲得將非意圖的鎵的摻入予以抑制的InAlN膜。
本發明的一態樣提供一種形成將非意圖的鎵的摻入予以抑制的優質InAlN膜的氣相成長方法。
本發明的一態樣的氣相成長方法,將第一基板搬入至反應室;產生第一混合氣體,所述第一混合氣體混合有包含銦(indium,In)的氣體、包含鋁(aluminum,Al)的氣體、以及包含氮化合物的氣體;一面將所述第一混合氣體供給至所述反應室 中一面使所述第一基板以300rpm以上的第一轉速進行旋轉,而在所述第一基板上形成第一氮化銦鋁膜。
10:反應室
11:第一氣體供給路徑
12:第二氣體供給路徑
13:第三氣體供給路徑
15:保持器
16:旋轉體單元
17:壁面
18:旋轉軸
19:旋轉驅動機構
20:氣體供給口
21:混合氣體室
22:噴淋板
24:內加熱器
26:外加熱器
28:反射器
34:支持柱
36:固定台
38:固定軸
40:氣體排出口
S100、S110、S115、S120、S130、S200、S210、S215、S220、S230:步驟
W:晶圓/第一晶圓/第二晶圓/第一基板/第二基板
圖1是第一實施形態的氣相成長方法中所使用的氣相成長裝置的示意剖面圖。
圖2是表示第一實施形態的氣相成長方法的製程步驟(process step)的圖。
圖3是第一實施形態的氣相成長方法的效果的說明圖。
圖4是表示第二實施形態的氣相成長方法的製程步驟的圖。
以下,一面參照圖式,一面對本發明的實施形態進行說明。
本說明書中,有時對相同或類似的構件附上相同的符號。
本說明書中,將氣相成長裝置經設置成可進行膜的形成的狀態下的重力方向定義為「下」,將其相反方向定義為「上」。因此,「下部」是指相對於基準的重力方向的位置,「下方」是指相對於基準的重力方向。而且,「上部」是指相對於基準的重力方向的反方向的位置,「上方」是指相對於基準的重力方向的反方向。另外,「縱向」為重力方向。
又,本說明書中,「製程氣體」是為了在基板上成膜而 使用的氣體的統稱,例如設為包含源(source)氣體、載體氣體、稀釋氣體等的概念
(第一實施形態)
第一實施形態的氣相成長方法,將第一基板搬入至反應室;產生第一混合氣體,所述第一混合氣體混合有包含銦的氣體、包含鋁的氣體、以及包含氮化合物的氣體;一面將第一混合氣體供給至反應室中一面使第一基板以300rpm以上的第一轉速進行旋轉,而在第一基板上形成第一氮化銦鋁膜。進而,產生第二混合氣體,所述第二混合氣體至少混合有包含鎵的氣體及包含氮化合物的氣體;一面將第二混合氣體供給至反應室中一面使第一基板以300rpm以上的第二轉速進行旋轉,而在第一基板上形成第一含鎵氮化物膜;在形成第一含鎵氮化物膜後,無須將第一基板自反應室搬出而連續地形成第一氮化銦鋁膜。
圖1是第一實施形態的氣相成長方法中所使用的氣相成長裝置的示意剖面圖。第一實施形態的氣相成長裝置為例如使用有機金屬氣相成長法(Metal-organic Chemical Vapor Deposition,MOCVD法)的單片型磊晶(epitaxial)成長裝置。
第一實施形態的氣相成長裝置包括:反應室10、第一氣體供給路徑11、第二氣體供給路徑12、以及第三氣體供給路徑13。反應室10包括:保持器(holder)15、旋轉體單元16、旋轉軸18、旋轉驅動機構19、氣體供給口20、混合氣體室21、噴淋板(Shower plate)22、內加熱器(In Heater)24、外加熱器(Out Heater)26、 反射器(Reflector)28、支持柱34、固定台36、固定軸38、氣體排出口40。
第一氣體供給路徑11、第二氣體供給路徑12、及第三氣體供給路徑13與氣體供給口20連接,對混合氣體室21供給製程氣體。
第一氣體供給路徑11例如對反應室10供給包含III族元素的有機金屬與載體氣體的第一製程氣體。可設置多條第一氣體供給路徑11。又,亦可將多條第一氣體供給路徑11一元化。第一製程氣體是為了在晶圓(wafer)上形成III-V族半導體的膜的包含III族元素的氣體。
III族元素是例如,鎵(Ga)、鋁(Al)、銦(In)。又,有機金屬是例如,三甲基鎵(Trimethylgallium,TMG)、三甲基鋁(Trimethylaluminum,TMA)、三甲基銦(Trimethylindium,TMI)。
第二氣體供給路徑12對反應室10供給作為氮(N)源的包含氮化合物的第二製程氣體。氮化合物是例如,氨(ammonia,NH3)。第二製程氣體是為了在晶圓上形成III-V族半導體的膜的V族元素的源氣體。V族元素是氮(N)。
再者,氮化合物只要是活性氮化合物即可,並不限於氨,亦可使用包含肼(hydrazine)、烷基肼(alkyl hydrazine)、烷基胺(Alkylamine)等其他氮化合物的氣體。
第三氣體供給路徑13例如將稀釋第一製程氣體、及第二製程氣體的稀釋氣體即第三製程氣體朝反應室10供給。藉由利 用稀釋氣體將第一製程氣體、及第二製程氣體進行稀釋,而調整供給至反應室10的III族元素及V族元素的濃度。稀釋氣體例如是氫氣、氮氣、或氬氣(Argon gas)等惰性氣體或所述的混合氣體。
第一氣體供給路徑11、第二氣體供給路徑12、及第三氣體供給路徑13在氣體供給口20之前進行合流。因此,第一製程氣體、第二製程氣體、及第三製程氣體在氣體供給口20之前經混合而成為混合氣體。第一製程氣體、第二製程氣體、及第三製程氣體的混合氣體自氣體供給口20供給至混合氣體室21。
再者,製程氣體的混合不一定必須在較混合氣體室21更靠上游側的配管內進行,亦可將幾條製程氣體配管分別與混合氣體室21連接,而在混合氣體室21內進行製程氣體的混合。
藉由將製程氣體進行混合並自噴淋板22朝反應室10放出,而可均一地保持自各氣體放出孔放出的氣體的流量與密度,因此反應室10內部的氣體流易於形成層流。因此,可相信在噴淋板22的表面不易產生附著物。
反應室10具備例如不銹鋼(stainless)製且圓筒狀的壁面17。噴淋板22設置於反應室10的上部。噴淋板22設置於反應室10與混合氣體室21之間。
於噴淋板22設置有多個氣體放出孔。自混合氣體室21穿過多個氣體放出孔,對反應室10內供給製程氣體的混合氣體。
進而,晶圓W表面與噴淋板22隔開3cm以上。由於 晶圓W表面與噴淋板22之間隔寬廣,因此到達晶圓W的表面的製程氣體不會再次返回至噴淋板22側,從而抑制在噴淋板22的表面附著反應產生物。換言之,由於晶圓W表面與噴淋板22之間隔寬廣,因此在晶圓W表面與噴淋板22之間不易產生紊流,從而抑制在噴淋板22的表面附著反應產生物。
因在與晶圓W的表面相向的噴淋板22的表面,不易附著反應產生物,因此抑制朝InAlN膜的非意圖的Ga的摻入。又,不易產生因附著於噴淋板22的反應產生物落下至晶圓W表面而引起的表面缺陷。因此,形成缺陷密度低的優質膜。
晶圓W表面與噴淋板22之間的距離較佳為3cm以上、20cm以下,更佳為5cm以上、15cm以下。當低於所述範圍時,到達晶圓W的表面的製程氣體再次返回至噴淋板22側,而有在噴淋板22的表面附著反應產生物的擔憂。又,當超過所述範圍時,在反應室10的內部產生熱對流,而有在晶圓W的表面形成的膜的膜厚均一性、膜質均一性變低的擔憂。
又,關於設置於噴淋板22的表面的氣體放出孔,最接近的放出孔的間隔較佳為1mm以上、15mm以下。更佳為3mm以上、10mm以下。又,有時在噴淋板22的氣體放出面設置凹凸,而可使自噴淋板22放出的氣體流穩定。然而,當所述凹凸過大時反而會在噴淋板22的表面附著反應產生物,因此不佳。較佳的噴淋板22的表面的凹凸是凹凸部分的表面與水平方向所成角度為45度以下。更佳為30度以下,最佳為20度以下。
又,噴淋板22的氣體放出面上的氣體放出孔的高低差(位於最上側的部分與位於最下側的部分的上下方向的距離的差)較佳為15mm以下。進而佳為10mm以下,最佳為5mm以下。在高低差較此大時,在噴淋板22的表面產生堆積物,從而在成膜時表面缺陷密度增大。
保持器15設置於反應室10的內部。於保持器15,可載置作為基板的一例的晶圓W。保持器15例如為環狀。於保持器15中,在中心部設置開口部。此種環狀保持器15可在使用例如如矽(Si)基板般的不透明基板時使用,而可獲得高面內均一性。再者,保持器15的形狀亦可為在中央部不具有空洞的大致平板型。
保持器15例如是將碳化矽(SiC)、碳化鉭(TaC)、氮化硼(BN)、熱解石墨(pyrolytic graphite,PG)等陶瓷(ceramics)、或碳(carbon)作為基材而形成。對於保持器15,例如可使用塗佈有SiC、BN、TaC、或PG等的碳。
保持器15固定於旋轉體單元16的上部。旋轉體單元16固定於旋轉軸18。保持器15間接地固定於旋轉軸18。
旋轉軸18可藉由旋轉驅動機構19而旋轉。藉由旋轉驅動機構19使旋轉軸18旋轉,藉此可使保持器15旋轉。藉由使保持器15旋轉,而可使被載置於保持器15的晶圓W以高速自轉。自轉是指晶圓W以穿過晶圓W的大致中心的法線為旋轉軸進行旋轉。
例如,使晶圓W以300rpm以上3000rpm以下的轉速 進行自轉。旋轉驅動機構19例如包括馬達(motor)與軸承(bearing)。
內加熱器24與外加熱器26設置於保持器15的下方。內加熱器24與外加熱器26設置於旋轉體單元16內。外加熱器26設置於內加熱器24與保持器15之間。
內加熱器24與外加熱器26對保持於保持器15的晶圓W進行加熱。內加熱器24對晶圓W的至少中心部進行加熱。外加熱器26對保持器15及晶圓W的外周區域進行加熱。內加熱器24例如為圓板狀。外加熱器26例如為環狀。
反射器28設置於內加熱器24與外加熱器26的下方。在反射器28與保持器15之間,設置有內加熱器24與外加熱器26。
反射器28將自內加熱器24與外加熱器26朝下方放射的熱進行反射,從而使晶圓W的加熱效率提高。又,反射器28防止較反射器28更下方的構件被加熱。反射器28為例如圓板狀。
反射器28由耐熱性高的材料形成。反射器28例如具有相對於1100℃以上的溫度的耐熱性。
反射器28例如是將SiC、TaC、碳、BN、PG等陶瓷、或者鎢(W)等金屬作為基材來形成。於反射器28中使用陶瓷的情況下,可使用燒結體或藉由氣相成長而製作的基材。作為反射器28,亦可使用對碳的基材等塗佈有SiC、TaC、BN、PG、玻璃狀碳等陶瓷而成者。
反射器28例如藉由多個支持柱34而固定於固定台36。 固定台36例如由固定軸38支持。
於旋轉體單元16內,為了使晶圓W自保持器15脫離而設有上頂銷(pin)(未圖示)。上頂銷例如貫穿反射器28及內加熱器24。
氣體排出口40設置於反應室10的底部。氣體排出口40將製程氣體在晶圓W表面處進行了反應後的剩餘的反應產生物、及剩餘的製程氣體排出至反應室10的外部。
另外,在反應室10的壁面17中設置有未圖示的晶圓出入口及閘閥(gate valve)。藉由晶圓出入口及閘閥,可將晶圓W搬入至反應室10內或者搬出至反應室10外。
接著,對第一實施形態的氣相成長方法進行說明。第一實施形態的氣相成長方法使用圖1所示的磊晶成長裝置。
以下,以在氮化鎵膜(GaN膜)上連續形成氮化銦鋁膜(InAlN膜)的情況為例進行說明。例如,將GaN膜用作HEMT的通道層,將InAlN膜用作HEMT的障壁層。再者,HEMT的障壁層的材料的帶隙(band gap)大於通道層的材料的帶隙。
以下,以通道層為氮化鎵的情況為例進行說明。然而,於通道層,亦可應用基於在包含鎵的氣體與包含氨的氣體中混合包含銦的氣體及包含鋁的氣體而產生的混合氣體而形成的氮化鎵系膜。具體而言,通道層可為InGaN膜、AlGaN膜等。
圖2是表示第一實施形態的氣相成長方法的製程步驟的圖。第一實施形態的氣相成長方法包括:第一基板搬入步驟 (S100)、第一GaN膜形成步驟(S110)、第一InAlN膜形成步驟(S120)、第一基板搬出步驟(S130)、第二基板搬入步驟(S200)、第二GaN膜形成步驟(S210)、第二InAlN膜形成步驟(S220)、第二基板搬出步驟(S230)。
首先,將第一晶圓W(第一基板)搬入至反應室10內(S100)。第一晶圓W是表面為{111}面的矽(silicon)基板。第一晶圓W的面方位的誤差較佳為3度以下,更佳為2度以下。矽基板的厚度例如為700μm以上、1.2mm以下。再者,{111}面表示與(111)面在結晶學上等效的面。
接著,將第一晶圓W載置於保持器15。接著,一面藉由旋轉驅動機構19使第一晶圓W進行自轉,一面藉由設置於保持器15的下方的內加熱器24及外加熱器26進行加熱。
接著,在第一晶圓W上利用TMA、TMG及氨形成氮化鋁(AlN)及氮化鋁鎵(AlGaN)的緩衝(buffer)層。
接著,在第一晶圓W上形成第一GaN膜(S110)。第一GaN膜是單晶。第一GaN膜的厚度例如為100nm以上、10μm以下。
在形成第一GaN膜時,使第一晶圓W以規定的轉速(第二轉速)進行旋轉。第二轉速例如為500rpm以上、1500rpm以下。又,第一晶圓W的溫度例如為1000℃以上、1100℃以下。
在形成第一GaN膜時,自第一氣體供給路徑11例如供給有以氮氣為載體氣體的TMG。又,自第二氣體供給路徑12供 給有氨。又,自第三氣體供給路徑13例如供給有氮氣作為稀釋氣體。
以氮氣為載體氣體的TMG、氨、氮氣經混合而產生混合氣體(第二混合氣體),並被供給至混合氣體室21。混合氣體自混合氣體室21穿過噴淋板22被供給至反應室10中。
混合氣體在反應室10中形成與第一晶圓W的表面大致垂直的方向的層流,並被供給至第一晶圓W的表面。供給至第一晶圓W的表面的混合氣體沿著旋轉的第一晶圓W的表面朝第一晶圓W的外周流動。藉由混合氣體的化學反應,而在第一晶圓W上形成有第一GaN膜。
接著,無須將第一晶圓W自反應室10搬出,而在第一晶圓W上形成第一InAlN膜(S120)。第一InAlN膜是單晶。第一InAlN膜的膜厚例如為5nm以上、30nm以下。第一InAlN膜的膜厚例如較第一GaN膜的膜厚薄。
第一InAlN膜的In組成例如為約17原子%。In組成表示銦在第一InAlN膜中的III族元素中所占的比例。
在形成第一InAlN膜時,使第一晶圓W以規定的轉速(第一轉速)進行旋轉。第一轉速例如為1600rpm以上、1800rpm以下。第一轉速例如大於第二轉速。又,第一晶圓W的溫度例如為700℃以上、900℃以下。
在形成第一InAlN膜時,自第一氣體供給路徑11例如供給有以氮氣為載體氣體的TMI。又,自第一氣體供給路徑11例 如供給有以氮氣為載體氣體的TMA。又,自第二氣體供給路徑12供給有氨。又,自第三氣體供給路徑13例如供給氮氣作為稀釋氣體。
以氮氣為載體氣體的TMI、以氮氣為載體氣體的TMA、氨、氮氣經混合而產生混合氣體(第一混合氣體),並被供給至混合氣體室21。混合氣體自混合氣體室21穿過噴淋板22供給至反應室10中。
混合氣體在反應室10中形成與第一晶圓W的表面大致垂直的方向的層流,並被供給至第一晶圓W的表面。供給至第一晶圓W的表面的混合氣體沿著旋轉的第一晶圓W的表面朝第一晶圓W的外周流動。藉由混合氣體的化學反應,而在第一晶圓W上形成第一InAlN膜。
接著,將第一晶圓W(第一基板)自反應室10搬出至外部(S130)。
接著,將第二晶圓W(第二基板)搬入至反應室10內(S200)。在將第一晶圓W自反應室10搬出後,在不進行反應室10的清洗(濕式清洗)下,將第二晶圓W搬入至反應室10內。第二晶圓W為與第一晶圓W相同的矽基板。
接著,在第二晶圓W上,在與形成於第一晶圓W上的緩衝層相同的製程條件下,形成AlN及AlGaN的緩衝層。
接著,在第二晶圓W上形成第二GaN膜(S210)。第二GaN膜是單晶。第二GaN膜在與第一GaN膜相同的製程條件下形 成。
接著,無須將第二晶圓W自反應室10搬出,而在第二晶圓W上形成第二InAlN膜(S220)。第二InAlN膜是單晶。第二InAlN膜在與第一InAlN膜同樣的製程條件下形成。
在形成第二InAlN膜時,自第一氣體供給路徑11例如供給有以氮氣為載體氣體的TMI。又,自第一氣體供給路徑11例如供給有以氮氣為載體氣體的TMA。又,自第二氣體供給路徑12供給氨。又,自第三氣體供給路徑13例如供給氮氣作為稀釋氣體。
以氮氣為載體氣體的TMI、以氮氣為載體氣體的TMA、氨、氮氣經混合而產生混合氣體,並被供給至混合氣體室21。混合氣體自混合氣體室21穿過噴淋板22供給至反應室10中。
混合氣體在反應室10中形成與第二晶圓W的表面大致垂直的方向的層流,並被供給至第二晶圓W的表面。供給至第二晶圓W的表面的混合氣體沿著旋轉的第二晶圓W的表面朝第二晶圓W的外周流動。藉由混合氣體的化學反應,而在第二晶圓W上形成第二InAlN膜。
接著,將第二晶圓W(第二基板)自反應室10搬出至外部(S230)。
接著,對第一實施形態的氣相成長方法的作用及效果進行說明。
在InAlN膜的氣相成長中,朝InAlN膜中的非意圖的鎵的摻入成為問題。若鎵被摻入至InAlN膜中,例如,產生InAlN 與GaN的介面的2DEG密度的降低、或電子遷移率的降低。因此,例如,使用了GaN膜與InAlN膜的積層膜的HEMT的特性劣化。又,因未受控制的量的鎵被摻入至InAlN膜中,而失去HEMT的特性的再現性。
特別是,在將InAlN膜連續形成在GaN膜上時,可設想到在形成GaN膜時附著於反應室10的壁面等的包含鎵的物質被朝InAlN膜中摻入。作為抑制朝InAlN膜中的非意圖的鎵的摻入的方法,例如,可考量在形成InAlN膜之前,對反應室進行清洗。然而,在每次形成InAlN膜時,因對反應室進行清洗而氣相成長裝置的運轉率會大幅降低。
在第一實施形態的氣相成長方法中,在將III族元素的製程氣體與V族元素的製程氣體供給至反應室10之前進行混合而產生混合氣體。而且,將混合氣體供給至反應室10中而在晶圓上形成GaN膜或InAlN膜。反應室10中的晶圓僅為一片。然後,在一片晶圓以高速自轉的狀態下,在晶圓上形成GaN膜或InAlN膜。
根據第一實施形態的氣相成長方法,即便在將InAlN膜連續形成在GaN膜上的情況下,仍可抑制朝InAlN膜中的非意圖的鎵的摻入。根據第一實施形態的氣相成長方法,藉由在供給至反應室10之前產生III族元素的製程氣體與V族元素的製程氣體的混合氣體,而可抑制在反應室10中產生紊流。因此,例如,可相信在GaN膜的形成中抑制包含鎵的物質附著於反應室10的壁面 等。又,在反應室10中的紊流的產生受到抑制,而可相信抑制附著於反應室10的壁面等的包含鎵的物質在InAlN膜的形成中脫離至環境中。
又,可相信藉由因以高速自轉的晶圓所致的混合氣體的引入效果,而抑制在反應室10中產生紊流,從而抑制包含鎵的物質朝反應室10的壁面等的附著、或包含鎵的物質的脫離。又,可相信藉由使晶圓以高速自轉而將混合氣體的反應及分解限定於晶圓表面附近,從而可抑制包含鎵的物質附著於反應室10的壁面等。
圖3是第一實施形態的氣相成長方法的效果的說明圖。利用第一實施形態的氣相成長方法,將包含GaN膜的積層膜的形成在不進行反應室10的清洗下進行100次以上。圖3表示在其後在不進行反應室10的清洗下形成的InAlN膜與GaN膜的積層膜中的銦(In)、鋁(Al)、鎵(Ga)、氮(N)在深度方向的分佈。
圖3是由拉塞福背散射光譜分析法(Rutherford Backscattering Spectrometry,RBS)進行的分析結果。橫軸為將InAlN膜的表面作為基準的深度,縱軸為各元素的存在比例。例如,在鎵的情況下,由Ga/(In+Al+Ga+N)表示的比例是以原子%表示。
InAlN膜中的鎵為檢測界限(6原子%)以下。亦藉由二次離子質量分析法(secondary ion mass spectroscopy,SIMS)對相同試樣進行了分析,但InAlN膜中的鎵為1000ppm以下。
由此可明確,根據第一實施形態的氣相成長方法,在進 行多次包含鎵的膜的形成後,即便在不間隔清洗反應室10下形成InAlN膜,亦不會產生朝InAlN膜中的非意圖的鎵的摻入。
在第一實施形態的氣相成長方法中,形成InAlN膜時的晶圓的轉速(第一轉速)較佳為大於形成GaN膜時的晶圓的轉速(第二轉速)。
在將InAlN膜用作HEMT的障壁層的情況下,在使HEMT的特性穩定上,重要的是提高薄的InAlN膜的膜厚的均一性或組成的均一性。晶圓的轉速愈大,則膜厚的均一性及組成的均一性愈高。
在將GaN膜用作HEMT的通道層時,若摻入至GaN膜中的碳量變多,則有產生2DEG濃度的降低及電子遷移率的降低的擔憂。因此,GaN膜中的碳量較佳為少。碳自GaN膜的形成中所使用的TMG被摻入至GaN膜中。
晶圓的轉速愈大,則摻入至GaN膜中的碳量愈多。因此,自抑制GaN膜中的碳量的觀點而言,晶圓的轉速較佳為小。
藉由使形成InAlN膜時的晶圓的轉速(第一轉速)大於形成GaN膜時的晶圓的轉速(第二轉速),而可兼顧提高InAlN膜的膜厚的均一性及組成的均一性、與抑制GaN膜中的碳量。
再者,在將InAlN膜用作HEMT的障壁層,將GaN膜用作HEMT的通道層的情況下,GaN膜的厚度厚於InAlN膜的厚度。當以大的轉速進行厚膜的成膜時,膜形成中所使用的消耗電力增大。因此,用於膜形成的製造成本增大。因此,自抑制製造 成本的觀點而言亦然,較佳為使形成InAlN膜時的晶圓的轉速(第一轉速)大於形成GaN膜時的晶圓的轉速(第二轉速)。換言之,較佳為使形成厚的GaN膜時的晶圓的轉速(第二轉速)小於形成薄的InAlN膜時的晶圓的轉速(第一轉速)。
形成InAlN膜時的晶圓的轉速(第一轉速)較佳為1600rpm以上、2000rpm以下。若低於所述範圍,則有InAlN膜的膜厚的均一性或組成的均一性降低的擔憂。若超過所述範圍,則難以穩定地控制轉速。
形成GaN膜時的晶圓的轉速(第二轉速)較佳為500rpm以上、1500rpm以下。若低於所述範圍,則有GaN膜的膜厚的均一性或組成的均一性降低的擔憂。若超過所述範圍,則有摻入至GaN膜中的碳量過多的擔憂。
自抑制朝InAlN膜中的非意圖的鎵的摻入的觀點而言,第一轉速及第二轉速較佳為300rpm以上,更佳為800rpm以上,進而佳為1000rpm以上。
以上,根據第一實施形態的氣相成長方法,可形成將非意圖的鎵的摻入予以抑制的InAlN膜。
再者,在形成氮化銦鋁膜,而將晶圓W自反應室10搬出之後,在處理下一晶圓W之前,理想的是藉由氣相蝕刻(etching)將在反應室10內附著於保持器15的堆積物去除。或者是,理想的是將附著有堆積物的保持器15與新的保持器15或在反應室10的外部已除去堆積物的保持器15進行更換。藉由將保持器進行蝕 刻或更換,而可在每次成長運行(run)時使用未附著有堆積物的保持器,從而可將保持器的初始狀態設為相同的狀態,因此提高成膜再現性。保持器的搬入可與將接著進行處理的晶圓W搬入至反應室10為同時。
(第二實施形態)
第二實施形態的氣相成長方法除了在形成第一氮化鎵膜之後,在形成第一氮化銦鋁膜之前,在第一基板上形成厚度較第一氮化銦鋁膜的厚度薄的氮化鋁膜或氮化鋁鎵膜以外,與第一實施形態相同。以下,對於與第一實施形態重覆的內容,將一部分記述予以省略。
圖4是表示第二實施形態的氣相成長方法的製程步驟的圖。以下,以在形成第一氮化鎵膜之後,在形成第一氮化銦鋁膜之前,形成氮化鋁膜的情況為例進行說明。
第二實施形態的氣相成長方法包括:第一基板搬入步驟(S100)、第一GaN膜形成步驟(S110)、第一AlN膜形成步驟(S115)、第一InAlN膜形成步驟(S120)、第一基板搬出步驟(S130)、第二基板搬入步驟(S200)、第二GaN膜形成步驟(S210)、第二AlN膜形成步驟(S215)、第二InAlN膜形成步驟(S220)、以及第二基板搬出步驟(S230)。
自第一基板搬入步驟(S100)至第一GaN膜形成步驟(S110)與第一實施形態相同。
接著,無須將第一晶圓W自反應室10搬出,而在第一 晶圓W上形成第一InAlN膜(S115)。第一AlN膜是單晶。第一AlN膜的厚度例如為0.1nm以上,較佳為0.3nm以上、5nm以下。第一AlN膜的厚度較第一InAlN膜的厚度薄。
在形成第一AlN膜時,使第一晶圓W以規定的轉速進行旋轉。轉速例如為1600rpm以上、2000rpm以下。又,第一晶圓W的溫度例如為1000℃以上、1100℃以下。
在形成第一AlN膜時,自第一氣體供給路徑11例如供給有以氮氣為載體氣體的TMA。又,自第二氣體供給路徑12供給有氨。又,自第三氣體供給路徑13例如供給氮氣作為稀釋氣體。
以氮氣為載體氣體的TMA、氨、氮氣經混合而產生混合氣體,並被供給至混合氣體室21。混合氣體自混合氣體室21穿過噴淋板22供給至反應室10中。
混合氣體在反應室10中形成與第一晶圓W的表面大致垂直的方向的層流,並被供給至第一晶圓W的表面。供給至第一晶圓W的表面的混合氣體沿著旋轉的第一晶圓W的表面朝第一晶圓W的外周流動。藉由混合氣體的化學反應,而在第一晶圓W上形成第一AlN膜。
接著,無須將第一晶圓W自反應室10搬出,而在第一晶圓W上形成第一InAlN膜(S120)。第一InAlN膜形成步驟(S120)與第一實施形態相同。
接著,將第一晶圓W(第一基板)自反應室10搬出至外部(S130)。
接著,將第二晶圓W(第二基板)搬入至反應室10內(S200)。自第二基板搬入步驟(S200)至第二GaN膜形成步驟(S120)與第一實施形態相同。
接著,無須將第二晶圓W自反應室10搬出,而在第二晶圓W上形成第二AlN膜(S215)。第二AlN膜是單晶。第二AlN膜在與第一AlN膜同樣的製程條件下形成。
接著,無須將第二晶圓W自反應室10搬出,而在第二晶圓W上形成第二InAlN膜(S220)。第二InAlN膜形成步驟(S220)與第一實施形態相同。
接著,將第二晶圓W(第二基板)自反應室10搬出至外部(S230)。
其次,對第二實施形態的氣相成長方法的作用及效果進行說明。
根據第二實施形態的氣相成長方法,與第一實施形態的氣相成長方法同樣,可抑制朝InAlN膜中的非意圖的鎵的摻入。
再者,與第一實施形態同樣,在形成氮化銦鋁膜,而將晶圓W自反應室10搬出之後,在處理下一晶圓W之前,理想的是藉由氣相蝕刻將在反應室10內附著於保持器15的堆積物去除。或者是,理想的是將附著有堆積物的保持器15與新的保持器15或在反應室10的外部已除去堆積物的保持器15進行更換。保持器的搬入可與將接著進行處理的晶圓W搬入至反應室10為同時。
在將InAlN膜用作HEMT的障壁層,將GaN膜用作HEMT的通道層的情況下,藉由在InAlN膜與GaN膜之間夾隔薄的AlN膜或AlGaN膜,而抑制電子的散射,從而提高電子遷移率。因此,根據第二實施形態的氣相成長方法,可形成適宜於朝HEMT應用的積層膜。
以上,根據第二實施形態的氣相成長方法,可形成將非意圖的鎵的摻入予以抑制的InAlN膜。進而,可形成適宜於朝HEMT應用的積層膜。
[實施例]
在藉由第一實施形態的氣相成長方法製作了第一試樣之後,進而,將以下所述的程序連續重覆8次,而製作出8個試樣。自第一試樣的製作至所述8個試樣的製作為止、及所述8個試樣的製作期間,未進行反應室10的清洗。
在所述8個試樣的製作時,在各試樣的製作後,在將虛設晶圓載置於保持器15的狀態下在反應室10的內部進行加熱而將保持器15上的附著物進行了去除。在將保持器15自反應室10搬出以後,將6吋矽晶圓W載置於保持器15,且將保持器15與晶圓W搬入至反應室10。
以與第二實施形態相同的程序,在晶圓W上與第二實施形態相同地在將AlN膜與AlGaN膜成長為緩衝層之後,將GaN通道層、AlN膜(設計膜厚1nm)、InAlN障壁層(設計膜厚10nm)進行了成長。其中,在緩衝層、通道層、及通道層上的AlN膜的 成長時將氫與氮的混合氣體作為載體氣體。又,在InAlN障壁層的成長時將氮氣作為載體氣體。
如此製作而成的8片晶圓任一者皆未觀察到表面的模糊,從而可確認形成了優質膜。對於所述8片晶圓,藉由X射線繞射對InAlN的半徑方向(半徑0mm、20mm、40mm、60mm、及70mm)的膜厚分佈進行了評估。各晶圓的InAlN膜的膜厚的平均值為10nm±0.2nm。針對8片晶圓的全部的測定點(40點)的平均值為9.89nm,標準偏差為0.2nm。
對於所述8片晶圓就表面缺陷進行了評估(科磊(KLA-Tencor)公司製表面污染分析儀(SurfScan)6420)。將晶圓周邊的5mm除外,每一片的缺陷個數為100個以下(缺陷尺寸為0.7μm以上)。
以上結果示出優質InAlN膜再現性良好地進行了成長。
以上,一面參照具體例一面對本發明的實施形態進行了說明。所述實施形態只不過是作為示例而列舉,並非限定本發明。又,可使各實施形態的構成元件適當地進行組合。
又,在實施形態中,以將製程氣體在進入混合氣體室21之前已加以混合的情況為例進行了說明,但亦可為將製程氣體在混合氣體室21中加以混合的構成。
又,於實施形態中,作為加熱器,以具備內加熱器24與外加熱器26兩種加熱器的情況為例進行了說明,但加熱器亦可僅為一種。
又,舉出將基板一片接一片地進行成膜處理的單片式反應室為例進行了說明,但亦可應用於將多片晶圓載置於基座(susceptor)上而同時進行成膜處理。
於實施形態中,關於裝置構成或製造方法等對於本發明的說明而言並非直接必要的部分等省略了記載,但可適當選擇使用必要的裝置構成或製造方法等。此外,具備本發明的元件且本領域技術人員可適當進行設計變更的所有氣相成長方法均包含於本發明的範圍內。本發明的範圍是藉由申請專利範圍及其均等物的範圍而定義。
S100、S110、S120、S130、S200、S210、S220、S230‧‧‧步驟

Claims (8)

  1. 一種氣相成長方法,包括:將第一基板搬入至反應室;產生第一混合氣體,所述第一混合氣體混合有包含銦的氣體、包含鋁的氣體、及包含氮化合物的氣體;一面將所述第一混合氣體供給至所述反應室中一面使所述第一基板以300rpm以上的第一轉速進行旋轉,而在所述第一基板上形成第一氮化銦鋁膜,所述氣相成長方法更包括:產生第二混合氣體,所述第二混合氣體至少混合有包含鎵的氣體、及包含所述氮化合物的氣體;一面將所述第二混合氣體供給至所述反應室中一面使所述第一基板以300rpm以上的第二轉速進行旋轉,而在所述第一基板上形成第一含鎵氮化物膜;以及在形成所述第一含鎵氮化物膜之後,無須將所述第一基板自所述反應室搬出而連續地依序形成較所述第一氮化銦鋁膜的厚度薄的氮化鋁膜或氮化鋁鎵膜,以及所述第一氮化銦鋁膜。
  2. 如申請專利範圍第1項所述的氣相成長方法,其中所述反應室是將基板一片接一片進行成膜處理的反應室,所述第一基板的旋轉為自轉。
  3. 如申請專利範圍第1項所述的氣相成長方法,其中所述第一轉速大於所述第二轉速。
  4. 如申請專利範圍第1項所述的氣相成長方法,其中包括:在形成所述第一氮化銦鋁膜之後,將所述第一基板自所述反應室搬出;無須進行所述反應室的清洗,而將第二基板搬入至所述反應室;一面將所述第二混合氣體供給至所述反應室中一面使所述第二基板以所述第二轉速進行旋轉,而在所述第二基板上形成第二含鎵氮化物膜;無須將所述第二基板自所述反應室搬出,一面將所述第一混合氣體供給至所述反應室中一面使所述第二基板以所述第一轉速進行旋轉,而在所述第二基板上形成第二氮化銦鋁膜。
  5. 如申請專利範圍第1項所述的氣相成長方法,其中所述氮化合物為氨。
  6. 如申請專利範圍第1項所述的氣相成長方法,其中所述第一基板是矽基板。
  7. 如申請專利範圍第3項所述的氣相成長方法,其中所述第一轉速為1600rpm以上,所述第二轉速為1500rpm以下。
  8. 如申請專利範圍第1項所述的氣相成長方法,其中所述氮化鋁膜或氮化鋁鎵膜的膜厚為0.1nm以上且5nm以下。
TW108106383A 2018-03-01 2019-02-26 氣相成長方法 TWI745656B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018036381A JP7180984B2 (ja) 2018-03-01 2018-03-01 気相成長方法
JP2018-036381 2018-03-01

Publications (2)

Publication Number Publication Date
TW201943882A TW201943882A (zh) 2019-11-16
TWI745656B true TWI745656B (zh) 2021-11-11

Family

ID=67767620

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110137658A TWI795020B (zh) 2018-03-01 2019-02-26 氣相成長方法
TW108106383A TWI745656B (zh) 2018-03-01 2019-02-26 氣相成長方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110137658A TWI795020B (zh) 2018-03-01 2019-02-26 氣相成長方法

Country Status (3)

Country Link
US (2) US11072856B2 (zh)
JP (1) JP7180984B2 (zh)
TW (2) TWI795020B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244410A1 (en) * 2010-11-23 2013-09-19 Soitec Methods of forming bulk iii-nitride materials on metal-nitride growth template layers, and structures formed by such methods
US9869035B2 (en) * 2014-12-18 2018-01-16 Nuflare Technology, Inc. Vapor phase growth apparatus and vapor phase growth method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69304038T2 (de) * 1993-01-28 1996-12-19 Applied Materials Inc Vorrichtung für ein Vakuumverfahren mit verbessertem Durchsatz
US5665640A (en) * 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
JP2002261146A (ja) * 2001-03-02 2002-09-13 Hitachi Ltd 半導体集積回路装置の製造方法および半導体製造装置
JP4090346B2 (ja) * 2002-02-28 2008-05-28 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
EP1667217A1 (en) * 2003-09-03 2006-06-07 Tokyo Electron Limited Gas treatment device and heat readiting method
JP2005232432A (ja) 2003-10-22 2005-09-02 Mitsubishi Chemicals Corp 顔料分散液、顔料分散液の製造方法、着色樹脂組成物、カラーフィルタ、及び液晶表示装置
KR100731164B1 (ko) * 2005-05-19 2007-06-20 주식회사 피에조닉스 샤워헤드를 구비한 화학기상 증착 방법 및 장치
JP2008130916A (ja) * 2006-11-22 2008-06-05 Hitachi Cable Ltd 気相成長方法
JP2009255277A (ja) * 2008-03-19 2009-11-05 Tokyo Electron Ltd 表面処理方法、シャワーヘッド部、処理容器及びこれらを用いた処理装置
CN101981658B (zh) * 2008-03-24 2014-10-29 日本碍子株式会社 半导体元件、半导体元件用外延基板及其制作方法
JP5581471B2 (ja) * 2008-07-09 2014-09-03 中部電力株式会社 半導体装置およびその製造方法
WO2010065695A2 (en) 2008-12-04 2010-06-10 Veeco Instruments Inc. Chemical vapor deposition flow inlet elements and methods
WO2011072014A1 (en) * 2009-12-08 2011-06-16 Lehigh Univeristy THERMOELECTRIC MATERIALS BASED ON SINGLE CRYSTAL AlInN-GaN GROWN BY METALORGANIC VAPOR PHASE EPITAXY
JP2011151183A (ja) * 2010-01-21 2011-08-04 Fuji Electric Co Ltd プラズマcvd装置及びプラズマcvd成膜方法
JP2011184774A (ja) * 2010-03-10 2011-09-22 Fujifilm Corp ガス供給電極およびガス供給電極の洗浄方法
FR2968831B1 (fr) * 2010-12-08 2012-12-21 Soitec Silicon On Insulator Procedes de formation de materiaux massifs de nitrure iii sur des couches matricielles de croissance de nitrure de metal et structures formees par ces procedes
US8828859B2 (en) * 2011-02-11 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor film and method for manufacturing semiconductor device
US20120258580A1 (en) 2011-03-09 2012-10-11 Applied Materials, Inc. Plasma-assisted mocvd fabrication of p-type group iii-nitride materials
JP2012227228A (ja) * 2011-04-15 2012-11-15 Advanced Power Device Research Association 半導体デバイスおよび半導体デバイスの製造方法
JP5776344B2 (ja) * 2011-06-08 2015-09-09 住友電気工業株式会社 半導体装置
US8821641B2 (en) * 2011-09-30 2014-09-02 Samsung Electronics Co., Ltd. Nozzle unit, and apparatus and method for treating substrate with the same
JP5551730B2 (ja) 2012-03-28 2014-07-16 日本電信電話株式会社 半導体薄膜の製造方法
WO2013155396A1 (en) * 2012-04-12 2013-10-17 The Regents Of The University Of California Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors
SG11201407907XA (en) * 2012-07-13 2015-01-29 Gallium Entpr Pty Ltd Apparatus and method for film formation
US9217201B2 (en) * 2013-03-15 2015-12-22 Applied Materials, Inc. Methods for forming layers on semiconductor substrates
JP2014205892A (ja) * 2013-04-15 2014-10-30 京セラ株式会社 成膜ユニットおよび成膜装置
JP6318474B2 (ja) * 2013-06-07 2018-05-09 住友電気工業株式会社 半導体装置の製造方法
US10867792B2 (en) * 2014-02-18 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor (HEMT) having an indium-containing layer and method of manufacturing the same
JP6578158B2 (ja) * 2015-08-28 2019-09-18 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法
KR20170093614A (ko) * 2016-02-05 2017-08-16 엘지이노텍 주식회사 발광소자 및 조명시스템
JP6786307B2 (ja) 2016-08-29 2020-11-18 株式会社ニューフレアテクノロジー 気相成長方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244410A1 (en) * 2010-11-23 2013-09-19 Soitec Methods of forming bulk iii-nitride materials on metal-nitride growth template layers, and structures formed by such methods
US9869035B2 (en) * 2014-12-18 2018-01-16 Nuflare Technology, Inc. Vapor phase growth apparatus and vapor phase growth method

Also Published As

Publication number Publication date
JP7180984B2 (ja) 2022-11-30
US11072856B2 (en) 2021-07-27
TW201943882A (zh) 2019-11-16
TWI795020B (zh) 2023-03-01
JP2019153630A (ja) 2019-09-12
US20190271072A1 (en) 2019-09-05
US20210310118A1 (en) 2021-10-07
TW202204668A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US20120003822A1 (en) Wafer Guide, MOCVD Equipment, and Nitride Semiconductor Growth Method
US20090194024A1 (en) Cvd apparatus
US20130005118A1 (en) Formation of iii-v materials using mocvd with chlorine cleans operations
TW201237207A (en) Methods and systems for forming thin films
TW201216330A (en) Processing systems and apparatuses having a shaft cover
CN106057659B (zh) 气相生长方法
JP7164332B2 (ja) 気相成長装置
TWI745656B (zh) 氣相成長方法
CN111349908A (zh) SiC化学气相沉积装置
TWI685883B (zh) 氣相成長方法
JP2007109685A (ja) 化合物半導体製造装置および化合物半導体製造方法
WO2016080450A1 (ja) 気相成長方法
JP2008243948A (ja) エピタキシャル基板の製造方法
US20180119277A1 (en) Gas Distribution Apparatus for Deposition System
JP2015156418A (ja) 気相成長方法
TW202003894A (zh) Iii族氮化物半導體基板的製造方法
JP7432465B2 (ja) 気相成長装置
US20230357954A1 (en) Vapor phase growth apparatus and reflector
JP2009021533A (ja) 気相成長装置及び気相成長方法
KR20090114132A (ko) 반도체 제조장치
JP2016096178A (ja) 成膜方法、半導体素子の製造方法、および自立基板の製造方法
JP2003243318A (ja) 気相エピタキシャル成長装置
JP2006100741A (ja) 気相成膜装置
JP2017135170A (ja) 気相成長装置及び気相成長方法
JP2008198857A (ja) 半導体製造装置