TWI685883B - 氣相成長方法 - Google Patents

氣相成長方法 Download PDF

Info

Publication number
TWI685883B
TWI685883B TW108114702A TW108114702A TWI685883B TW I685883 B TWI685883 B TW I685883B TW 108114702 A TW108114702 A TW 108114702A TW 108114702 A TW108114702 A TW 108114702A TW I685883 B TWI685883 B TW I685883B
Authority
TW
Taiwan
Prior art keywords
substrate
gas
phase growth
vapor phase
wafer
Prior art date
Application number
TW108114702A
Other languages
English (en)
Other versions
TW201946115A (zh
Inventor
高橋英志
家近泰
津久井雅之
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW201946115A publication Critical patent/TW201946115A/zh
Application granted granted Critical
Publication of TWI685883B publication Critical patent/TWI685883B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

將基板W載置於設在反應室內的支持部7,一邊以通過所述基板中心的旋轉軸A為中心而使基板W與支持部7一同以1300 rpm以上且2000 rpm以下的轉速來旋轉,一邊從反應室上方向基板W上供給含有有機金屬的原料氣體,使III-V族半導體層在基板W上成長。

Description

氣相成長方法
本發明是有關於一種氣相成長方法。
近年來,對於功率半導體元件等的用途,正推進期待高耐壓、超低導通(ON)電阻的GaN系高電子遷移率電晶體(High Electron Mobility Transistor,HEMT)的開發。在此種GaN系元件中,例如使用AlGaN/GaN異質(hetero)結構,對於該些層的形成,是使用有機金屬氣相成長(Metalorganic Chemical Vapor Deposition,MOCVD)法。
在AlGaN層的形成中,向載置有Si等的晶圓(wafer)的腔室(chamber)內,供給下述氣體作為原料氣體,該氣體包含三甲基鋁(Trimethyl Aluminium,TMA)氣體、三甲基鎵(Trimethyl Gallium,TMG)氣體及氨(ammonia)。並且,使所供給的原料氣體在經加熱的晶圓上發生反應,藉此來使AlGaN層於晶圓上成長。
然而,以往的MOCVD法中,三甲基鋁與氨會在到達晶圓之前在氣相中發生反應,因此產生了下述問題,即:難以確保晶圓面內的AlGaN層的厚度、或Al濃度的均勻性(以下亦稱作面內均勻性)。
本發明提供一種可提高III-V族半導體層的面內均勻性的氣相成長方法。
本發明的一形態的氣相成長方法是將基板載置於設在反應室內的支持部,一邊以通過基板中心的旋轉軸為中心而使基板與支持部一同以1300 rpm以上且2000 rpm以下的轉速來旋轉,一邊從反應室上方向基板上供給含有有機金屬的原料氣體,從而使III-V族半導體層在基板上成長。
以下,參照圖式來說明本發明的實施形態。實施形態並非限定本發明者。
(氣相成長裝置1) 圖1是表示可適用於本實施形態的氣相成長方法的氣相成長裝置1的一例的平面圖。圖1的氣相成長裝置1是使用MOCVD法的單片式磊晶(epitaxial)成長裝置。如圖1所示,氣相成長裝置1具備:作為反應室之一例的四個腔室2A~2D、晶匣(cassette)室3及搬送室4。
腔室2A~2D在小於大氣壓的壓力下,對作為基板之一例的晶圓W進行處理。腔室2A~2D是沿著搬送室4的搬送方向d而呈直線狀地配置。藉由具有多個腔室2A~2D,從而氣相成長裝置1可有效率地處理多片晶圓W。
晶匣室3具有可載置晶匣31的載置台32,該晶匣31保持多片晶圓W。晶匣31例如包含樹脂或鋁。在晶匣室3中,設有閘閥(gate valve)33。通過閘閥33,可從外部將晶匣31搬入至晶匣室3內。晶匣室3內可在關閉閘閥33的狀態下藉由未圖示的真空泵(pump)而減壓至小於大氣壓的壓力。
搬送室4被設於晶匣室3與腔室2A~2D之間。在搬送室4中,在小於大氣壓的壓力下,在晶匣室3與腔室2A~2D之間沿搬送方向d來搬送晶圓W。具體而言,磊晶成長前的晶圓W從晶匣室3搬送至腔室2A~2D,磊晶成長後的晶圓W從腔室2A~2D搬送至晶匣室3。在搬送室4的內部,設有機械臂(robot arm)41與載置台42。機械臂41可在晶匣室3或腔室2A~2D之間交接晶圓W。載置台42可在搭載有晶圓W及機械臂41的狀態下沿搬送方向d移動。因此,可使從晶匣室3接取到磊晶成長前的晶圓W的機械臂41利用載置台42而移動至腔室2A~2D為止,從而將機械臂41所保持的晶圓W搬入至腔室2A~2D內。而且,可使從腔室2A~2D接取到磊晶成長後的晶圓W的機械臂41利用載置台42而移動至晶匣室3為止,從而將機械臂41所保持的晶圓W回收至晶匣室3內。
在晶匣室3與搬送室4之間以及搬送室4與腔室2A~2D之間,設有可開閉的閘閥43A~43E。藉由打開閘閥43A,可在晶匣室3與搬送室4之間移動晶圓W。而且,藉由打開閘閥43B~43E,可在搬送室4與腔室2A~2D之間移動晶圓W。
圖2是圖1的氣相成長裝置1的剖面圖。圖2是將圖1的氣相成長裝置1的各個腔室2A~2D的內部結構與腔室2A~2D的上游及下游的氣流路一同表示。
如圖2所示,氣相成長裝置1除了所述結構以外,還具備氣體供給部5、簇射頭(shower head)6、作為支持部之一例的晶座(susceptor)7、旋轉部8、旋轉機構9、加熱器(heater)10、氣體排出部11及排氣機構12。
氣體供給部5在氣體的上游側連接於腔室2A~2D。氣體供給部5具有多個貯存部5a、多根氣管5b及多個氣閥5c。貯存部5a各別地貯存氣體或氣體的液體前驅物。當使III-V族半導體層在晶圓W上成長時,在各貯存部5a中,貯存有III-V族半導體層的原料氣體或其液體前驅物。例如,在使AlGaN層作為III-V族半導體層而成長的情況下,在各貯存部5a中,分別貯存有液體的三甲基鋁、液體的三甲基鎵以及氨。
貯存於貯存部5a中的三甲基鋁利用氫等載氣(carrier gas)而起泡(bubbling)即氣化,藉此,作為III族原料氣體的一例,成為含有三甲基鋁的第1原料氣體(以下亦稱作TMA氣體)。而且,貯存於貯存部5a中的三甲基鎵利用氫等載氣而起泡,藉此,作為III族原料氣體的一例,成為含有三甲基鎵的第2原料氣體(以下亦稱作TMG氣體)。當使AlGaN層成長時,對於腔室2A~2D,與TMA氣體及TGA氣體的供給一同進行氨氣的供給,該氨氣是第3原料氣體即V族原料氣體的一例。
多根氣管5b將多個貯存部5a各自與氣體導入部6a予以連接。多個氣閥5c分別設在多根氣管5b中。氣閥5c可對流經對應的氣管5b的氣流量進行調整。實際的配管可採用將多根氣管予以結合,或者將一根氣管分支為多根氣管,或者將氣管的分支或結合加以組合等多種結構。
氣體導入部6a是與設在腔室2A~2D上部的簇射頭6連接。簇射頭6在其底面側具有簇射板(shower plate)61。在簇射板61上,設有多個氣體噴出口62。簇射板61可使用不鏽鋼或鋁合金等金屬材料而構成。從多根氣管5b各自供給的多種氣體被導入至簇射頭6內。所導入的多種氣體在簇射頭6內經混合後,通過簇射板61的氣體噴出口62而供給至腔室2A~2D內。另外,亦可在簇射板61中設置多個橫向的氣流路,將多種氣體保持分離的狀態而供給至腔室2A~2D內的晶圓W。
晶座7在腔室2A~2D內水平地支持晶圓W。晶座7是設於旋轉機構9的上部,在晶座7的內周側所設的沉孔7a內載置支持晶圓W。另外,圖2的示例中,晶座7是在其中央具有開口部的環狀形狀,但亦可為無開口部的大致平板形狀。而且,圖2的示例中,晶座7支持一片晶圓W,但亦可支持四片等多片晶圓W。
旋轉部8一邊在腔室2A~2D內保持晶座7,一邊以鉛垂方向的旋轉軸A為中心而旋轉。旋轉軸A穿過晶座7的中心及晶圓W的中心。藉由旋轉部8旋轉,從而被保持於旋轉部8的晶座7與支持於晶座7的晶圓W一同以旋轉軸A為中心而旋轉。
旋轉機構9驅動旋轉部8旋轉。旋轉機構9例如具有馬達(motor)等驅動源、控制驅動源的控制部、及將驅動源的驅動力傳遞至旋轉部8的正時皮帶(timing belt)或齒輪(gear)等傳遞構件。旋轉機構9以規定的轉速來使晶圓W旋轉。
在後述的III-V族半導體層的形成時,為了提高面內均勻性,將晶圓W的轉速控制為1300 rpm以上且2000 rpm以下。
加熱器10是從下方對晶座7及晶圓W進行加熱。加熱器10的具體加熱方式並無特別限定,例如亦可為電阻加熱、燈(lamp)加熱或感應加熱等。
氣體排出部11將反應後的原料氣體從腔室2A~2D的內部排出至外部。
排氣機構12是藉由排氣閥12a與真空泵12b的作用,通過氣體排出部11而將腔室2A~2D內控制為所需的壓力。
(氣相成長方法) 接下來,對使用以上述方式構成的單片式氣相成長裝置1的氣相成長方法即成膜方法進行說明。另外,在以下說明的氣相成長方法中,藉由MOCVD法,使AlGaN層作為III-V族半導體層而成長。而且,在以下的說明中,對於AlN層等、HEMT中的AlGaN層以外的半導體層的製程(process)省略說明。
首先,搬送室4的機械臂41及載置台42將晶圓W從晶匣室3通過閘閥43A~43E而搬送至腔室2A~2D為止。然後,機械臂41將所搬送的晶圓W載置於晶座7。
對於腔室2A~2D,從氣體導入部6a經由簇射頭6、氣體噴出口62而以規定的流量來供給H 2、N 2、Ar等惰性氣體,在將晶圓W載置於晶座7後,關閉閘閥43A~43E。然後,排氣機構12通過氣體排出部11來對腔室2A~2D內進行排氣,以將腔室2A~2D內的壓力調整為所需的壓力。
藉由加熱器10,將晶圓W加熱至磊晶成長溫度,例如1000℃以上且1100℃以下的溫度。
旋轉機構9經由旋轉部8及晶座7而以旋轉軸A為中心來使晶圓W以規定的轉速而旋轉。
在使晶圓W旋轉的狀態下,氣體供給部5將TMA氣體及TMG氣體與氨氣一同供給至腔室2A~2D內。
從氣體供給部5供給的TMA氣體、TMG氣體及氨氣被導入至腔室2A~2D的上部所設的簇射頭6,在簇射頭6內進行混合。然後,經混合的TMA氣體、TMG氣體及氨氣從簇射板61的氣體噴出口62朝向晶圓W噴出。
如此,一邊以規定的流量向晶圓W上供給原料氣體,一邊將晶圓W加熱至規定溫度,並使其以規定的轉速來旋轉,藉此,於晶圓W上形成AlGaN層。
此處,將在晶圓W面上產生氣相反應的厚度方向的區域稱作邊界層。在晶圓W的轉速為低速的情況下,被認為會在晶圓W上形成厚且不均勻的邊界層。若邊界層厚,則在到達晶圓W之前,便會產生邊界層中的原料氣體的氣相反應。因而,成長速度下降。而且,為了形成AlGaN層,須使相對較容易進行氣相反應的TMA氣體與難以進行氣相反應的TMG氣體同時流動,並與氨氣發生反應而成膜,因此,因邊界層內的氣體行為,TMA與氨會優先反應而成為顆粒(particle),從而無助於AlGaN層的成長而被排出。由於在氣相反應中如此般產生分佈,因此不僅膜厚,Al的面內分佈亦會下降。尤其,在使氣體於簇射頭6內混合後供給至腔室2A~2D內的情況下,氣相反應更容易進行。
與此相對,本實施形態中,使晶圓W以1300 rpm以上的轉速來高速旋轉。藉由該高速旋轉、與從簇射板61朝向晶圓W下降的原料氣體的流動的組合,可在晶圓W上形成厚度薄且均勻的邊界層。
此處,在晶圓W的轉速為低於1300 rpm的速度的情況下,難以確保AlGaN層的面內均勻性。另一方面,若為高於2000 rpm的速度,則會產生因晶圓W或旋轉機構9的微小的對準(alignment)偏離等引起的振動、偏離、跳動等,從而難以進行穩定的成膜。
因而,藉由將晶圓W的轉速設為1300 rpm以上且2000 rpm以下,從而可穩定地提高AlGaN層的面內均勻性。而且,如下所述,藉由將轉速設為1300 rpm以上且2000 rpm以下,從而不僅可提高AlGaN層的膜厚的面內均勻性,亦可提高晶圓面內的Al組成的均勻性。晶圓W的轉速較佳為1500 rpm以上,更佳為1500 rpm以上且1700 rpm以下。
藉由形成厚度薄且均勻的邊界層,可抑制在到達晶圓W之前產生原料氣體的氣相反應。而且,薄的邊界層易將原料氣體導入晶圓W的表面,從而可促進晶圓W表面的均勻的氣相反應。進而,藉由晶圓W的高速旋轉帶來的離心力,可將晶圓W上的顆粒從晶圓W上有效率地予以排出。即,從腔室2A~2D的上方供給至晶圓W上的原料氣體在晶圓W上形成邊界層,並從晶圓W的外周予以排出。藉此,可使AlGaN層在晶圓W的表面以高的面內均勻性成長。
而且,本實施形態的氣相成長方法中,由於使用單片式氣相成長裝置1,因此與使用批量(batch)式氣相成長裝置的情況相比,可獲得穩定的氣流,從而可使AlGaN層穩定地磊晶成長。
另外,AlGaN層的基底只要是可使AlGaN層磊晶成長的結構,則無特別限定,例如亦可為在作為晶圓W之一例的AIN基板上所形成的AlN緩衝(buffer)層等。
本實施形態的氣相成長方法亦可有效地適用於AlN層、GaN層、InGaN層、pGaN層等AlGaN層以外的III-V族半導體層的成長。
(實驗例) 接下來,對氣相成長方法的實驗例進行說明。
圖3是表示氣相成長方法的第1實驗例的圖表。第1實驗例中,作為晶圓W的轉速,採用800 rmp、1000 rmp、1200 rmp、1500 rmp這四種,在各轉速下,藉由MOCVD法而使AlGaN層在晶圓W上磊晶成長。另外,加熱器10對晶圓W的加熱溫度是設為1060℃。並且,在晶圓W的中心位置、距中心20 mm的位置、距中心40 mm的位置、距中心60 mm的位置及距中心80 mm的位置處,分別測定在各轉速下分別成長的AlGaN層的厚度。對於AlGaN層的厚度及組成的測定,使用X射線繞射裝置。並且,將AlGaN層的厚度測定結果如圖3般圖表化。在圖3中,橫軸表示距晶圓W中心的距離,縱軸表示將晶圓W中心處的AlGaN層的厚度標準化為1的、各測定位置處的AlGaN層的厚度。
如圖3所示,在晶圓W的轉速為800 rpm、1000 rpm及1200 rpm的情況下,AlGaN層的厚度的最大值max與最小值min之比(以下亦稱作min/max)低於0.96。例如,為了獲得良好的HEMT特性,對於AlGaN層的面內均勻性,min/max較佳為0.96以上,但在800 rpm、1000 rpm、1200 rpm時無法滿足。與此相對,當晶圓W的轉速為1500 rpm時,可使min/max大於0.96,從而可推定可在1300 rpm左右滿足。
因此,根據第1實驗例已證實:藉由將晶圓W的轉速設為1300 rpm以上,可提高至可滿足AlGaN層的面內均勻性的水準(level)。
而且,根據第1實驗例已證實:藉由將晶圓W的轉速設為1500 rpm以上,可更有效地提高AlGaN層的面內均勻性。
圖4是表示氣相成長方法的第2實驗例的圖表。第2實驗例中,在圖1的氣相成長裝置1的四個腔室2A~2D的各自中,一邊使晶圓W以1700 rpm旋轉,一邊藉由MOCVD來使AlGaN層在晶圓W上磊晶成長。另外,加熱器10對晶圓W的加熱溫度Tg是設為1030℃。並且,在晶圓W的中心位置、距中心20 mm的位置、距中心40 mm的位置、距中心60 mm的位置、距中心80 mm的位置及距中心90 mm的位置處,分別測定在各腔室2A~2D內成長的AlGaN層的厚度。並且,將AlGaN層的厚度的測定結果如圖4般圖表化。在圖4中,橫軸表示距晶圓W中心的距離,縱軸表示AlGaN層的厚度。
如圖4所示,可知的是,四個腔室2A~2D均可將AlGaN層的厚度的最大值與最小值之差控制在1 nm以內。這是作為面內均勻性而言足夠良好的結果。而且,圖4的結果表示各腔室2A~2D的面內均勻性良好,同時表示腔室2A~2D間的AlGaN層的厚度的均勻性即面間均勻性亦良好。
圖5是表示氣相成長方法的第3實驗例的圖表。第3實驗例中的AlGaN層的成長條件與第2實驗例相同。在第3實驗例中,在晶圓W的中心位置、距中心20 mm的位置、距中心40 mm的位置、距中心60 mm的位置、距中心80 mm的位置及距中心90 mm的位置處,分別測定在各腔室2A~2D內磊晶成長的AlGaN層中的Al組成(%)。
並且,將AlGaN層中的Al組成的測定結果如圖5般圖表化。在圖5中,橫軸表示距晶圓W中心的距離,縱軸表示AlGaN層中的Al組成。
如圖5所示,可知的是,四個腔室2A~2D均可在各測定位置處將AlGaN層中的Al組成均勻地控制在25%左右。Al組成為25%左右則表示作為AlGaN層的組成為良好。
如以上所述,根據本實施形態,藉由使用將晶圓W的轉速設為1300 rpm以上且2000 rpm以下的MOCVD法,可提高III-V族半導體層的面內均勻性。
所述實施形態僅為例示,並不意圖限定發明的範圍。實施形態可以其他的各種形態來實施,在不脫離發明主旨的範圍內,可進行各種省略、置換、變更。該些實施形態或其變形包含在發明的範圍或主旨內,同樣包含在申請專利範圍所揭示的發明及其均等的範圍內。
1:氣相成長裝置 2A~2D:腔室 3:晶匣室 4:搬送室 5:氣體供給部 5a:貯存部 5b:氣管 5c:氣閥 6:簇射頭 6a:氣體導入部 7:晶座(支持部) 7a:沉孔 8:旋轉部 9:旋轉機構 10:加熱器 11:氣體排出部 12:排氣機構 12a:排氣閥 12b:真空泵 31:晶匣 32、42:載置台 33、43A~43E:閘閥 41:機械臂 61:簇射板 62:氣體噴出口 A:旋轉軸 d:搬送方向 W:基板(晶圓)
圖1是表示可適用於本實施形態的氣相成長方法的氣相成長裝置的一例的平面圖。 圖2是圖1的氣相成長裝置的剖面圖。 圖3是表示氣相成長方法的第1實驗例的圖表。 圖4是表示氣相成長方法的第2實驗例的圖表。 圖5是表示氣相成長方法的第3實驗例的圖表。
1:氣相成長裝置 2A~2D:腔室 5:氣體供給部 5a:貯存部 5b:氣管 5c:氣閥 6:簇射頭 6a:氣體導入部 7:晶座(支持部) 7a:沉孔 8:旋轉部 9:旋轉機構 10:加熱器 11:氣體排出部 12:排氣機構 12a:排氣閥 12b:真空泵 61:簇射板 62:氣體噴出口 A:旋轉軸 W:基板(晶圓)

Claims (10)

  1. 一種氣相成長方法,其是: 將基板載置於設在反應室內的支持部, 一邊以通過所述基板中心的旋轉軸為中心而使所述基板與所述支持部一同以1300 rpm以上且2000 rpm以下的轉速來旋轉,一邊從所述反應室上方向所述基板上供給含有有機金屬的原料氣體,從而使III-V族半導體層在所述基板上成長, 從所述基板中心至60 mm為止的所述III-V族半導體層的厚度的最小值與從所述基板中心至60 mm為止的所述III-V族半導體層的厚度的最大值之比為0.96以上。
  2. 如申請專利範圍第1項所述的氣相成長方法,其中 所述原料氣體包含III族原料氣體及V族原料氣體。
  3. 如申請專利範圍第2項所述的氣相成長方法,其中 所述III族原料氣體含有鋁。
  4. 如申請專利範圍第2項或第3項所述的氣相成長方法,其中 將所述III族原料氣體及所述V族原料氣體予以混合後,供給至所述反應室內。
  5. 如申請專利範圍第1項所述的氣相成長方法,其中 所述原料氣體包含:含有三甲基鋁的第1原料氣體、含有三甲基鎵的第2原料氣體以及包含氨氣的第3原料氣體。
  6. 如申請專利範圍第1項所述的氣相成長方法,其中 所述III-V族半導體層為AlGaN層。
  7. 如申請專利範圍第1項所述的氣相成長方法,其中 所述基板的轉速為1500 rpm以上且1700 rpm以下。
  8. 如申請專利範圍第1項所述的氣相成長方法,其中 所述基板為Si基板。
  9. 如申請專利範圍第1項所述的氣相成長方法,其中 一邊進行所述基板的旋轉及所述原料氣體向所述基板上的供給,一邊對所述基板進行加熱。
  10. 如申請專利範圍第1項所述的氣相成長方法,其中 從所述反應室上方向所述基板上供給的所述原料氣體在所述基板上形成邊界層,並從所述基板外周予以排出。
TW108114702A 2016-08-29 2017-07-10 氣相成長方法 TWI685883B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167132A JP6786307B2 (ja) 2016-08-29 2016-08-29 気相成長方法
JP2016-167132 2016-08-29

Publications (2)

Publication Number Publication Date
TW201946115A TW201946115A (zh) 2019-12-01
TWI685883B true TWI685883B (zh) 2020-02-21

Family

ID=61241852

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108114702A TWI685883B (zh) 2016-08-29 2017-07-10 氣相成長方法
TW106122971A TW201820417A (zh) 2016-08-29 2017-07-10 氣相成長方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106122971A TW201820417A (zh) 2016-08-29 2017-07-10 氣相成長方法

Country Status (4)

Country Link
US (1) US20180057938A1 (zh)
JP (1) JP6786307B2 (zh)
KR (1) KR102072704B1 (zh)
TW (2) TWI685883B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101721A (ja) 2016-12-21 2018-06-28 株式会社ニューフレアテクノロジー 気相成長方法
JP7180984B2 (ja) 2018-03-01 2022-11-30 株式会社ニューフレアテクノロジー 気相成長方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW408372B (en) * 1997-08-21 2000-10-11 Toshiba Ceramisc Co Ltd High speed rotation vapor phase thin film formation apparatus and the high speed vapor phase thin film formation method using said apparatus
WO2005010227A2 (en) * 2003-07-15 2005-02-03 Elite Optoelectronics, Inc. Chemical vapor deposition reactor
TWI497762B (zh) * 2011-09-30 2015-08-21 Osram Opto Semiconductors Gmbh 用於製造光電半導體晶片之方法
CN105247615A (zh) * 2013-06-27 2016-01-13 Hoya株式会社 信息记录介质用玻璃基板及磁盘装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1313247C (en) * 1988-05-17 1993-01-26 Kiyoshi Ichimura Compound semiconductor light emitting device
JP2745819B2 (ja) * 1990-12-10 1998-04-28 日立電線株式会社 気相膜成長装置
JPH05152207A (ja) * 1991-11-28 1993-06-18 Toshiba Mach Co Ltd 気相成長方法
AU5461998A (en) * 1996-11-27 1998-06-22 Emcore Corporation Chemical vapor deposition apparatus
US6204201B1 (en) * 1999-06-11 2001-03-20 Electron Vision Corporation Method of processing films prior to chemical vapor deposition using electron beam processing
US6770146B2 (en) * 2001-02-02 2004-08-03 Mattson Technology, Inc. Method and system for rotating a semiconductor wafer in processing chambers
JP2003142416A (ja) * 2001-11-05 2003-05-16 Matsushita Electric Ind Co Ltd 気相成長方法および気相成長装置
SG135924A1 (en) * 2003-04-02 2007-10-29 Sumitomo Electric Industries Nitride-based semiconductor epitaxial substrate, method of manufacturing the same, and hemt substrate
JP4343580B2 (ja) * 2003-05-09 2009-10-14 シャープ株式会社 薄膜形成装置
US20050178336A1 (en) * 2003-07-15 2005-08-18 Heng Liu Chemical vapor deposition reactor having multiple inlets
US20070111372A1 (en) * 2004-07-20 2007-05-17 Cermet, Inc. Methods of forming a p-type group ii-vi semiconductor crystal layer on a substrate
JP4691060B2 (ja) * 2007-03-23 2011-06-01 古河電気工業株式会社 GaN系半導体素子
JP2008244014A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 基板処理装置、基板処理方法及び半導体装置の製造方法
US8057602B2 (en) * 2007-05-09 2011-11-15 Applied Materials, Inc. Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber
DE112010000737T5 (de) * 2009-02-11 2013-01-17 Applied Materials, Inc. Nichtkontakt-Bearbeitung von Substraten
JP5254295B2 (ja) * 2010-09-22 2013-08-07 株式会社東芝 成膜装置
US20130026480A1 (en) * 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8659032B2 (en) * 2012-01-31 2014-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US20140030444A1 (en) * 2012-07-30 2014-01-30 Novellus Systems, Inc. High pressure, high power plasma activated conformal film deposition
TW201411690A (zh) * 2012-09-13 2014-03-16 Saint Gobain Ceramics 回收的晶圓以及用於回收晶圓之方法
US9373502B2 (en) * 2013-05-13 2016-06-21 Applied Materials, Inc. Structure for III-V devices on silicon
JP6180208B2 (ja) * 2013-07-08 2017-08-16 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
JP2015195312A (ja) * 2014-03-31 2015-11-05 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
US9728630B2 (en) * 2014-09-05 2017-08-08 Infineon Technologies Austria Ag High-electron-mobility transistor having a buried field plate
JP2016081945A (ja) * 2014-10-09 2016-05-16 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW408372B (en) * 1997-08-21 2000-10-11 Toshiba Ceramisc Co Ltd High speed rotation vapor phase thin film formation apparatus and the high speed vapor phase thin film formation method using said apparatus
WO2005010227A2 (en) * 2003-07-15 2005-02-03 Elite Optoelectronics, Inc. Chemical vapor deposition reactor
TWI497762B (zh) * 2011-09-30 2015-08-21 Osram Opto Semiconductors Gmbh 用於製造光電半導體晶片之方法
CN105247615A (zh) * 2013-06-27 2016-01-13 Hoya株式会社 信息记录介质用玻璃基板及磁盘装置

Also Published As

Publication number Publication date
JP6786307B2 (ja) 2020-11-18
KR102072704B1 (ko) 2020-02-03
TW201820417A (zh) 2018-06-01
KR20180025194A (ko) 2018-03-08
JP2018037456A (ja) 2018-03-08
TW201946115A (zh) 2019-12-01
US20180057938A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US10132001B2 (en) Vapor phase growth apparatus and vapor phase growth method
TWI583833B (zh) Gas - phase growth device and gas - phase growth method
US11124894B2 (en) Vapor phase growth apparatus and vapor phase growth method
US20170283985A1 (en) Vapor phase growth apparatus and vapor phase growth method
TW201820418A (zh) 氣相成長裝置、環狀保持器以及氣相成長方法
US20160102401A1 (en) Vapor phase growth apparatus and vapor phase growth method
TWI685883B (zh) 氣相成長方法
US20180179662A1 (en) Method for controlling vapor phase growth apparatus
JP7164332B2 (ja) 気相成長装置
US9966258B2 (en) Method of growing gallium nitride-based crystal and heat treatment apparatus
CN111349908A (zh) SiC化学气相沉积装置
TWI745656B (zh) 氣相成長方法
WO2015194068A1 (ja) 気相成長装置および成膜方法
JP7432465B2 (ja) 気相成長装置
JP2017139263A (ja) 半導体装置の製造方法
JP2023170809A (ja) 気相成長装置
JP2006100741A (ja) 気相成膜装置
JP2019057740A (ja) 半導体装置の製造方法
JP2008053669A (ja) 温度制御されたプロセスガスを用いた結晶成長法及び結晶成長装置
JP2017135170A (ja) 気相成長装置及び気相成長方法
JP2017092311A (ja) 結晶成長装置
JP2016096177A (ja) ハイドライド気相成長装置および成膜方法