TWI714232B - 用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 - Google Patents
用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 Download PDFInfo
- Publication number
- TWI714232B TWI714232B TW108130203A TW108130203A TWI714232B TW I714232 B TWI714232 B TW I714232B TW 108130203 A TW108130203 A TW 108130203A TW 108130203 A TW108130203 A TW 108130203A TW I714232 B TWI714232 B TW I714232B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical unit
- projection optical
- mirrors
- mirror
- imaging
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0663—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0891—Ultraviolet [UV] mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/067—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
本發明揭示一種投影光學單元(7),其適用於將物場(4)成像於像場(8)中。複數個反射鏡(M1至M8)適用於將來自物場(4)的成像光(3)引導至像場(8)。反射鏡(M1至M8)之至少兩者經體現為用於成像光(3)之入射角大於60°之掠入射的反射鏡(M2、M3;M5、M6),其在成像光(3)的光束路徑中直接配置在彼此之後。這造成可成像場充分修正的成像光學單元,同時造成較高的成像光通量。
Description
本發明有關一種用於將物場成像於像場的投影光學單元。此外,本發明有關一種包含此投影光學單元的光學系統、一種包含此光學系統的投影曝光裝置、一種使用此投影曝光裝置製造微結構化或奈米結構化組件的方法、及一種利用此方法製造的微結構化或奈米結構化組件。
一開始所提類型的投影光學單元請見DE 10 2012 202 675 A1、DE 10 2009 011 328 A1、US 8 027 022 B2及US 6 577 443 B2。用於投影曝光裝置的照射光學單元請見DE 10 2009 045 096 A1。
本發明之目的在於開發一開始所提類型的投影光學單元,致使這造成可成像場充分修正的成像光學單元,同時造成較高的成像光通量(throughput)。
根據本發明,此目的係藉由包含如申請專利範圍第1項所述之特徵的投影光學單元及藉由包含如申請專利範圍第10項所述之特徵的EUV投影光學單元來達成。
根據本發明,發現到,投影光學單元內直接配置在彼此之後用於掠入射的兩個反射鏡導致可設計較高成像光通量的投影光學單元,且在要成像的整個場上的成像光通量很均勻,其中同時還提供利用具有掠入射的反射鏡修正像場中之影像的自由度。
投影光學單元的反射鏡可載有增加成像光反射率的塗布。釕及/或鉬可用作這些塗布的塗布材料。
用於掠入射的反射鏡可具有位在75%及95%之間的範圍中的反射率,且此反射率尤其至少可以是80%。用於掠入射的反射鏡可具有線性取決於入射角的反射率。此線性相依可藉由使用至少另一個用於掠入射的反射鏡來補償,該至少另一個用於掠入射的反射鏡同樣具有反射率對入射角的對應線性相依。投影光學單元適合於EUV波長的成像光,尤其波長在5nm及30nm之間的範圍中。成像光在用於掠入射的反射鏡上的入射角可大於65°、可大於70°、可大於72°、可大於75°、可大於80°或亦可大於85°。
投影光學單元可體現用於成像反射光罩的一部分。為此,中央物場點的主光線可包括與物面法線呈大於3°及例如等於5.5°的角度。
至少兩個用於掠入射的反射鏡之一者可以是投影光學單元在成像光束路徑中在物場下游的第一反射鏡。用於掠入射的反射鏡可具有脫離平表面的反射面,及尤其可具有修正影像像差的表面形狀。用於掠入射之反射鏡的反射面可體現為非球面表面或為無旋轉對稱性的自由形式表面(free-form surface)。
在用於掠入射的反射鏡上,中間像面可配置在反射的區域中。這導致成像光束在用於掠入射的反射鏡區域中的有利壓縮,及因此避免用於掠入射的反射鏡需要非所要的較大反射面。
投影光學單元可體現為反射式光學單元。
投影光學單元可包含至少一個反射鏡,其具有用於照射光的通道開口。投影光學單元可體現為屏蔽式光學單元(obscured optical unit)。
替代地,投影光學單元亦可體現致使投影光學單元之所有反射鏡的反射面都被使用到。投影光學單元可體現為非屏蔽式光學單元。
投影光學單元之至少一個反射鏡為照射光所光學撞擊之反射面(即,使用反射面)的x/y長寬比可小於1、可小於0.8、可等於0.7、可小於0.7、可小於0.6及可等於0.5。此處,y座標位在分別所觀察反射鏡的入射平面中。x座標則垂直於分別所觀察反射鏡的入射平面。其中要成像的物體及/或發生成像的基板位移的掃描方向亦可沿著y座標延伸。
投影光學單元之至少一個反射鏡之為照射光所光學撞擊之反射面(即,使用反射面)的x/y長寬比可大於1、可等於2、可大於2、可等於2.5、可大於2.5、可大於3、可大於4、可大於5、可大於6、可等於7.5、可大於10及可等於15。
投影光學單元可具有一系列反射鏡,其中除了至少一對GI反射鏡(即,在光束路徑中直接配置在彼此之後的兩個用於掠入射的反射鏡)之外,還有單一GI反射鏡。投影光學單元可具有三個連續GI反射鏡。
投影光學單元可包含至少一個反射鏡,其具有鞍狀表面(saddle surface)的具體實施例,即,其在一平面中具有正折射功率,及在與該平面垂直的平面中具有負折射功率。投影光學單元可具有複數個此鞍狀反射鏡。
已知如申請專利範圍第2項所述之確切兩個用於掠入射的反射鏡尤其適合於投影光學單元。
如申請專利範圍第3項所述之在物面及像面之間的角度實現成像光光束路徑或成像光束路徑之尤其小型的引導。此角度可大於1°、可大於2°、可大於3°、可大於5°、可大於7°、可大於10°、可大於20°、可大於30°及可等於39°。
亦已知如申請專利範圍第4項所述之確切四個用於掠入射的反射鏡尤其適合。
已知如申請專利範圍第5項所述之用於掠入射的反射鏡的成對配置適合於補償入射角相依反射。用於法線入射的至少一個反射鏡可位在成對的用於掠入射的反射鏡之間。成對的用於掠入射的反射鏡可配置致使連續配置之兩個反射鏡的偏轉效應合計,即,使反射角相加。此具體實施例能夠補償用於掠入射之反射鏡上的入射角相依反射率。替代地,可在投影光學單元中,在成像光之光束路徑的不同點處,將用於掠入射的補償反射鏡指派給用於掠入射的反射鏡,其中以相對較大入射角入射在用於掠入射之反射鏡上的個別光線相應地以較小入射角入射在補償反射鏡上,及反之亦然。又一用於掠入射的反射鏡及/或一用於法線入射的反射鏡可配置在掠入射之反射鏡及指派給該掠入射之反射鏡的補償反射鏡之間。倘若在投影光學單元中提供多於兩個用於掠入射的反射鏡,則補償反射鏡的補償效應亦可應用於其他用於掠入射的反射鏡的多於一者。因此,例如,在三個用於掠入射的反射鏡的情況中,可提供一個用於掠入射的補償反射鏡,其補償另兩個用於掠入射的反射鏡之反射的入射角相依性。
已知如申請專利範圍第6項所述之具體實施例尤其適合於滿足加諸投影光學單元的邊界條件。至少兩個用於法線入射的反射鏡可為以下入射角的成像光所撞擊:小於40°、小於35°、小於30°、小於25°、小於20°及甚至可以更小。
如申請專利範圍第7項所述之四個用於法線入射的反射鏡導致具有尤其良好之影像修正之投影光學單元的選項。
投影光學單元的像側數值孔徑可為至少0.4或0.5或0.6。此投影光學單元實現尤其高的解析度(resolution)。
如申請專利範圍第8項所述之投影光學單元的總反射率可為9.75%、可大於10%、可大於11%、可等於11.97%、可大於12%及尤其可等於12.2%。尤其取決於反射鏡上增加反射之塗布的具體實施例,亦可以有較大的總反射率。
如申請專利範圍第9項所述之EUV投影光學單元同時具有EUV成像光的較高結構解析度及較高通量。也就是說,在投影期間損失較少使用光,這進而減少曝光持續期間,及因此增加配備此EUV投影光學單元之投影曝光裝置的晶圓產量。總反射率可大於8%、可大於9%、可大於10%或甚至可更大。
已知如申請專利範圍第10項所述之體現為歪像光學單元之投影光學單元尤其有利。
歪像光學單元(anamorphic optical unit)具有用於不同場座標、尤其用於正交場座標的不同成像比例(imaging scale)。此處,投影光學單元的絕對縮小因數稱為成像比例。舉例而言,縮小因數4的投影光學單元相應地具有成像比例為4。因而,成像比例較大是指縮小因數增加。因此,在此意義內,縮小因數8的投影光學單元具有比縮小因數4的投影光學單元大的成像比例。
歪像光學單元可具有方向相依(direction-dependent)(即,場座標相依(field coordinate-dependent))物側數值孔徑(object-side numerical aperture)。
已知如果物側數值孔徑增加,則需要放大物側主光線角(object-side chief ray angle),因而可能導致吸收體結構的遮蔽效應(shadowing effect),及導致層傳輸的問題,尤其導致光罩塗布的強烈變跡效應。此外,已知利用歪像成像光學單元,尤其利用歪像成像投影透鏡,具預定大小的光罩可以預定成像比例從物場成像至預定照射場,其中照射場在第一成像比例的方向中被完全照射,而第二方向中之增加的成像比例對投影曝光裝置的產量沒有負面影響,而是可藉由適合措施加以補償。
因此,歪像透鏡既能夠在第一方向中以較大物側數值孔徑完全照射影像區,且成像光罩的延伸區不需要在此第一方向中放大及此不會造成投影曝光裝置的產量減少,且亦能夠將因照射光的傾斜入射引起的成 像品質損失降到最低。
由於具有在兩個主截面的方向中具有相同正負號的成像比例,故避免影像顛倒(image inversion)(影像翻轉(image flip))。光學單元尤其在兩個主截面的方向中具有正成像比例。
歪像光學單元協助在反射物體上產生成像光的入射角,該入射角越小越好。較大物側數值孔徑可垂直於成像光在物體上的入射平面而存在。組態歪像光學單元並不一定要使用圓柱形光學單元。不同成像比例可具有用於兩個場座標的正號。不同成像比例可具有用於兩個場座標的縮小效應。歪像投影光學單元可具有橢圓形入射光瞳及/或橢圓形出射光瞳。歪像投影光學單元可具有旋轉對稱及n倍旋轉對稱出射光瞳。正交場座標的不同成像比例可相差至少1.1倍、至少1.2倍、至少1.3倍、至少1.4倍、至少1.5倍、至少1.7倍、至少2倍、至少2.5倍及至少3倍或甚至更多倍。
如申請專利範圍第11、12及16項所述之優點對應於上文已經論述的優點。較小的成像比例相當於較小的縮小效應。
已知如申請專利範圍第13及14項所述之成像比例尤其適合。舉例而言,兩個不同成像比例的較小者可為5.4、可小於5、可等於4或甚至可更小。兩個不同成像比例的較大者可等於7、可等於8或甚至可更大。
如申請專利範圍第15項所述之體現為自由形式表面的反射鏡反射面能夠擴大投影光學單元的設計自由度。尤其,歪像效應可在複數個反射鏡表面上分布。
如申請專利範圍第17至19項所述之數值孔徑及像場尺寸針對投影曝光裝置中在使用期間關於成像品質及晶圓曝光的需求充分調適。
投影光學單元可具有孔徑光闌(aperture stop)。此孔徑光闌可位在平面中或具有三維具體實施例。孔徑光闌的延伸區在掃描方向中可比與其垂直的小。
投影光學單元可具有屏蔽光闌(obscuration stop)。上文關於 孔徑光闌解說的內容適用於關於屏蔽光闌的具體實施例。
如申請專利範圍第20項所述之具延伸區比率的光闌針對投影光學單元的歪像效應進行調適。光闌可配置在投影光學單元的入射光瞳平面中。延伸區沿著較短物場尺寸及沿著較長物場尺寸的比率可對應於縮小成像比例在較長物場尺寸中及在較短物場尺寸中的比率。
上文參考各種投影光學單元論述的特徵可以與彼此的任何組合來實現。
如申請專利範圍第20項所述之光學系統的優點對應於上文參考投影光學單元已經解說的優點。倘若使用歪像投影光學單元,照射光學單元可針對投影光學單元的非旋轉對稱入射光瞳進行調適。
投影光學單元的優點在如申請專利範圍第21項所述之光學系統中尤其顯著。用於EUV光源的可能操作波長可為13.5nm。替代地,亦可使用DUV光源,也就是說,例如,波長193nm的光源。
如申請專利範圍第22項所述之投影曝光裝置的優點對應於上文已經參考投影光學單元所解說的優點。
如申請專利範圍第23項所述之投影曝光裝置使用歪像投影光學單元的優點。
如申請專利範圍第24項所述之光罩針對歪像投影光學單元進行調適。
如申請專利範圍第25項所述之製造方法及如申請專利範圍第26項所述之微結構化或奈米結構化組件的優點對應上文參考投影光學單元及光學系統及投影曝光裝置已經解說於的優點。
尤其,可使用投影曝光裝置製造半導體組件,例如記憶體晶片。
1‧‧‧微影投影曝光裝置
2‧‧‧光源
3‧‧‧照射光/成像光
4‧‧‧物場
5‧‧‧物面
6‧‧‧照射光學單元
7‧‧‧投影光學單元
8‧‧‧像場
9‧‧‧像面
10‧‧‧光罩
10a‧‧‧光罩固持器
10b‧‧‧光罩位移驅動機
11‧‧‧基板
12‧‧‧基板固持器
12a‧‧‧基板位移驅動機
13‧‧‧光束
14‧‧‧光束
15‧‧‧個別光線
16‧‧‧主光線
17‧‧‧通道開口
18‧‧‧第一光瞳平面/光闌
19‧‧‧中間像面/中間影像
20-37‧‧‧投影光學單元
dOIS‧‧‧y距離
K1-K3‧‧‧交叉區
M1-M8‧‧‧反射鏡
下文參考圖式詳細解說本發明的例示性具體實施例。在圖式 中:圖1示意性顯示用於EUV微影的投影曝光裝置;圖2以縱剖面顯示可用作圖1之投影曝光裝置中投影透鏡之成像光學單元的具體實施例,其中描繪兩個選定場點之主光線及上下彗形像差光線的成像光束路徑;圖3至13以類似於圖2的圖解分別顯示可用作圖1之投影曝光裝置中投影透鏡之成像光學單元的其他具體實施例;圖14以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之成像光學單元的又一具體實施例,其具有彎曲場及從物場發出的發散主光線;圖15顯示從圖14的觀看方向XV所見,圖14之成像光學單元的視圖;圖15A顯示圖14及15之成像光學單元之反射鏡之光學使用表面邊緣輪廓的視圖;圖16以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之成像光學單元的又一具體實施例;圖17顯示從圖16的觀看方向XVII所見,圖16之成像光學單元的視圖;圖18以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之成像光學單元的又一具體實施例;圖19顯示從圖18的觀看方向XIX所見,圖18之成像光學單元的視圖;圖20以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之組態為歪像光學單元之成像光學單元的又一具體實施例;圖21顯示從圖20的觀看方向XXI所見,圖20之成像光學單元的視圖; 圖21A顯示圖20及21之成像光學單元之反射鏡之光學使用表面邊緣輪廓的視圖;圖22以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之組態為歪像光學單元之成像光學單元的又一具體實施例;圖23顯示從圖22的觀看方向XXIII所見,圖22之成像光學單元的視圖;圖24以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之組態為歪像光學單元之成像光學單元的又一具體實施例;圖25顯示從圖24的觀看方向XXV所見,圖24之成像光學單元的視圖;圖26以類似於圖2的圖解顯示可用作圖1之投影曝光裝置中投影透鏡之組態為歪像光學單元且無光瞳屏蔽之成像光學單元的又一具體實施例;圖27顯示從圖26的觀看方向XXVII所見,圖26之成像光學單元的視圖。
微影投影曝光裝置1包含照射光或成像光3的光源2。光源2為EUV光源,產生光的波長範圍例如在5nm與30nm之間,尤其在5nm與15nm之間。尤其,光源2可以是波長13.5nm的光源或波長6.9nm的光源。也可以使用其他EUV波長。一般而言,在投影曝光裝置1中引導的照射光3亦可使用任何所要波長,例如可見波長或其他波長,其可在微影中使用(如,DUV、真空紫外線)及其可使用適合的雷射光源及/或LED光源(例如365nm、248nm、193nm、157nm、129nm、109nm)。在圖1中,示意性描繪照射光3的光束路徑。
照射光學單元6適用於將來自光源2的照射光3引導至物面5中的物場4。使用投影光學單元或成像光學單元7,以預定的縮小比例將物 場4成像於像面9中的像場8中。
為了簡化投影曝光裝置1的說明及投影光學單元7的各種具體實施例,在圖式中指定xyz直角座標系統,以此座標系統展現圖式中描繪之組件的相應位置關係。在圖1,x方向延伸垂直於圖面並向圖面中延伸。y方向向左延伸,而z方向向上延伸。
物場4與像場8均為矩形。替代地,物場4及像場8亦可體現為彎形或彎曲,也就是說,尤其呈現局部環形的形式。物場4及像場8具有xy長寬比大於1。因此,物場4在x方向中具有較長物場尺寸,及在y方向中具有較短物場尺寸。這些物場尺寸沿著場座標x及y延伸。
在圖2以後描繪的例示性具體實施例之一可用於投影光學單元7。根據圖2的投影光學單元7具有縮小因數為8。也可以使用其他縮小比例,例如4×、5×或大於8×的縮小比例。在圖2及圖5以後的具體實施例中,像面9在投影光學單元7中配置平行於物面5。在此描繪的是反射遮罩10(又稱為光罩)的區段,其與物場4重合。光罩10由光罩固持器10a承載。光罩固持器10a由光罩位移驅動機10b位移。
在基板11的表面上進行投影光學單元7的成像,基板11的形式為晶圓,由基板固持器12承載。基板固持器12由晶圓或基板位移驅動機12a位移。
在光罩10及投影光學單元7之間,進入後者之照射光3的光束13如照射光3的光束14示意性描繪於圖1中,在投影光學單元7及基板11之間,照射光3的光束14出自投影光學單元7。在圖1中,投影光學單元7的像場側數值孔徑(NA)未按比例重現。
投影曝光裝置1是掃描器類型的裝置。在投影曝光裝置1操作期間,光罩10及基板11皆在y方向中同步掃描。亦可使用步進機類型的投影曝光裝置1,其中在基板11的個別曝光之間,光罩10及基板11在y方向中逐步位移。這些位移藉由位移驅動機10b及12a的相應致動而彼此同步。
圖2顯示投影光學單元7之第一具體實施例的光學設計。圖2中描繪的是三個個別光線15各者的光束路徑,其從圖2之y方向中彼此隔開的兩個物場點發出。其中描繪主光線16,即,在投影光學單元7的光瞳平面中延伸穿過光瞳中心的個別光線15,及各描繪這兩個物場點的上下彗形像差光線。從物場4發出,主光線16包括與物面5的法線角度CRAO為5.5°。
物面5平行於像面9。
投影光學單元7具有像側數值孔徑為0.45。
投影光學單元7具有縮小成像比例為8×。
根據圖2的投影光學單元7具有總共八個反射鏡,其按照個別光線15從物場4開始之光束路徑的順序依序編號為M1至M8。成像光學單元7亦可具有不同數目的反射鏡,例如四個反射鏡或六個反射鏡。
圖2描繪反射鏡M1至M8的計算反射面。如可從圖2的圖解看見,僅使用這些計算反射面的一部分。反射面之僅此實際使用區事實上存在於真實的反射鏡M1至M8中。這些使用反射面由反射鏡主體按其本身已知的方式承載。
在圖2的投影光學單元7中,反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡,也就是說,體現為成像光3以小於45°的入射角入射於其上的反射鏡。因此,圖2的投影光學單元7具有總共四個用於法線入射的反射鏡M1、M4、M7及M8。
反射鏡M2、M3、M5及M6係用於照射光3之掠入射的反射鏡,也就是說,照射光3以大於60°的入射角入射於其上的反射鏡。成像光3在用於掠入射之反射鏡M2、M3及M5、M6上之個別光線15的典型入射角約為80°。總之,圖2的投影光學單元7包含確切四個用於掠入射的反射鏡M2、M3、M5及M6。
反射鏡M2及M3形成在成像光3的光束路徑中直接配置在彼此之後的反射鏡對。反射鏡M5及M6亦形成在成像光3的光束路徑中直接配 置在彼此之後的反射鏡對。
一方面反射鏡對M2、M3及另一方面反射鏡對M5、M6反射成像光3,致使個別光線15在這兩個反射鏡對之相應反射鏡M2、M3或M5、M6上的反射角相加。因此,相應反射鏡對M2、M3及M5、M6的相應第二反射鏡M3及M6放大由分別第一反射鏡M2、M5對相應個別光線15施加的偏轉效應。此反射鏡對M2、M3及M5、M6之反射鏡的配置對應於DE 10 2009 045 096 A1中針對照射光學單元所說明的配置。
用於掠入射的反射鏡M2、M3、M5及M6各具有很大的半徑絕對值,即,與平表面具有相對較小的偏差。這些用於掠入射的反射鏡M2、M3、M5及M6因此實際上沒有任何光學功率,即,實際上沒有像凹面或凸面反射鏡的總光束形成效應,但促成特定像差修正,且尤其促成局部像差修正。
為了描述投影光學單元7之反射鏡之偏轉效應的特性,在下文基於分別描繪的縱剖面定義偏轉方向。如在例如圖2的縱剖面中的分別入射光束方向所見,以縮寫「R」代表相應反射鏡在順時針方向中的偏轉效應,即,向右方的偏轉。舉例而言,投影光學單元7的反射鏡M1具有此「R」偏轉效應。以縮寫「L」代表反射鏡在逆時針方向(即,向左方)中的偏轉效應,如從入射在此反射鏡上的相應光束方向所見。投影光學單元7的反射鏡M2及M3係「L」偏轉效應的實例。以縮寫「0」代表具有摺疊角f(其中-1°<f<1°)之反射鏡的弱偏轉效應或完全非偏轉效應。投影光學單元7的反射鏡M7是「0」偏轉效應的實例。總之,反射鏡M1至M8的投影光學單元7具有以下偏轉效應順序:RLLLRR0L。
原則上,投影光學單元之所有說明的例示性具體實施例可繞著平行於xz平面延伸的平面變成鏡像,且在此情況中並無基本成像性質改變。然而,這卻勢必改變偏轉效應的順序,例如在投影光學單元7中藉由對應鏡像顯現之投影光學單元的情況中,其具有以下順序:LRRRLL0R。
例如反射鏡M4上之偏轉效應的選擇(即,相應入射光束之方向的選擇)及反射鏡對M2、M3及M5、M6之偏轉方向的選擇,各經選定致使有效地使用可供投影光學單元7使用的安裝空間。
反射鏡M1至M8載有最佳化反射鏡M1至M8對成像光3之反射率的塗布。這可以是釕塗布、鉬塗布或具有釕頂層的鉬塗布。在用於掠入射的反射鏡M2、M3、M5及M6中,可使用具有如由鉬或釕製成之夾層的塗布。這些高反射層,尤其用於法線入射的反射鏡M1、M4、M7及M8的高反射層,可體現為多夾層的層,其中可以不同材料製造連續層。亦可使用交替的材料層。典型多夾層的層可包含50個各由鉬層及矽層製成的雙夾層。
為了計算投影光學單元7的總反射率,將系統傳輸計算如下:各反射鏡表面上的反射鏡反射率取決於引導光線(即,中央物場點的主光線)的入射角而決定,並結合乘法以形成系統傳輸。
此處,反射鏡上的反射率RM百分比顯現為:RM=c0x4+c1x3+c2x2+c3x+c4,其中x代表相應入射角的度數。係數ci出自:ci=½(ciS-fit+ciP-fit),作為一方面S極化及另一方面P極化之相應係數的平均值。
關於GI反射鏡(用於掠入射的反射鏡)上之反射的更多資訊請見WO 2012/126867 A。關於NI反射鏡(法線入射反射鏡)之反射率的更多資訊請見DE 101 55 711 A。
投影光學單元7的總反射率或系統傳輸顯現為投影光學單元7的所有反射鏡M1至M8之反射率的乘積,即R=10.43%。
反射鏡M8,即,成像光束路徑中在像場8前方的最後反射鏡,具有通道開口17用於使自倒數第三反射鏡M6反射至倒數第二反射鏡M7的成像光3從中通過。以反射方式使用在通道開口17周圍的反射鏡M8。其他反射鏡M1至M7均沒有通道開口,且該等反射鏡在無間隙的連續區域中以反射方式使用。
反射鏡M1至M8經體現為無法以旋轉對稱函數描述的自由形式表面。亦可使用投影光學單元7的其他具體實施例,其中反射鏡M1至M8的至少一者經體現為旋轉對稱非球面。所有反射鏡M1至M8亦可體現為非球面。
以下適用於此方程式(1)的參數:Z是自由形式表面在點x、y的弛度(sag),其中x2+y2=r2。此處,r是與自由形式表面方程式之參考軸(x=0;y=0)的距離。
在自由形式表面方程式(1)中,C1、C2、C3...代表依x及y之次方之自由形式表面級數展開的係數。
在圓錐形底面積的情況中,cx、cy是對應於對應非球面之頂點曲率的常數。因此,cx=1/Rx及cy=1/Ry適用。此處,kx及ky各對應於對應非球面的圓錐形常數。因此,方程式(1)描述圓錐形自由形式表面。
替代的可能自由形式表面可從旋轉對稱參考表面產生。用於微影投影曝光裝置之投影光學單元之反射鏡的反射面之此自由形式表面請見US 2007-0058269 A1。
或者,亦可借助二維樣條表面描述自由形式表面。此範例為Bezier曲線或非均勻有理基本樣條(non-uniform rational basis spline,NURBS)。舉例而言,二維樣條表面可藉由xy平面中的點格柵及相關聯的z值描述,或藉由這些點及與其相關聯的梯度描述。取決於相應的樣條表面類型,使用如關於其連續性及可辨性具有特定性質的多項式或函數,利用格柵點之間的內插,獲得完整表面。此範例為分析函數。
可從以下各表取得投影光學單元7之反射鏡M1至M8之反射 面的光學設計資料。這些光學設計資料各始於像面9,即,以像面9及物面5之間之成像光3的反向傳播方向描述相應投影光學單元。
這些表格的第一者提供投影光學單元7之設計資料的概觀,並概述數值孔徑NA、計算的成像光設計波長、像場在x及y向中的尺寸、像場曲率及光闌位置。將此曲率定義為場曲率的反半徑。
這些表格的第二者指定光學組件之光學表面的頂點半徑(半徑_x=Rx、半徑_y=Ry)及折射功率值(功率_x、功率_y)。負值半徑是指在所觀察平面(xz、yz)之相應表面截面中對著入射照射光3的凹曲線,其為相應曲率方向(x、y)之頂點的表面法線所跨越。兩個半徑:半徑_x、半徑_y可明確具有不同正負號。
將各光學表面的頂點定義為引導光線的入射點,引導光線沿著對稱平面x=0,即,圖2的圖式平面(縱向面(meridional plane)),從物場中心延伸至像場8。
第三表格針對以mm為單位的反射鏡M1至M8,指定圓錐形常數kx及ky、頂點半徑Rx(=半徑_x)及自由形式表面係數Cn。未見於表格中的係數Cn各具有0值。
第四表格更指定相應反射鏡從參考表面開始在y方向中偏軸(DCY)、及在z方向中位移(DCZ)及傾斜(TLA、TLB、TLC)的量值。此對應於實行自由形式表面設計方法時的平行位移及傾斜。此處,在y方向及z方向中實行以mm為單位的位移,及繞著x軸及繞著z軸實行傾斜。此處,傾斜角以度為單位。首先實行偏軸,接著實行傾斜。在偏軸期間的參考表面各 為指定之光學設計資料的第一表面。亦針對物場4指定y方向及z方向中的偏軸。除了指派給個別反射鏡的表面之外,第四表格亦將像面列為第一表面,將物面類為最後表面及可能列出光闌表面(以「光闌」代表)。
第五表格更指定反射鏡M8至M1的傳輸資料,即該等反射鏡針對入射在相應反射鏡中央之照射光線入射角的反射率。將總傳輸指定為入射強度在投影光學單元中的所有反射鏡反射之後所剩下的比例因數。
第六表格將光闌(表面M8)的邊緣指定為局部xyz座標中的多邊形鏈。此光闌配置在反射鏡M8的位置。如上文說明,光闌經偏軸及傾斜。
投影光學單元7的總反射率為10.43%。
反射鏡M1至M7為自由形式表面,其中自由形式表面展開最多達到x及y的10次方。在反射鏡M8中,此展開繼續達到x及y的12次方。
非球面反射鏡的旋轉對稱軸一般相對於像面9的法線傾斜,如從表格中的傾斜值清楚看出。
反射鏡M1、M2、M4、M5及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M3、M6及M7具有正值半徑,即,原則上為凸面反射鏡。反射鏡M2、M3、M5及M6具有很大的絕對半徑,即,僅與平面反射 面構成較小偏差。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元7針對13.5nm之照射光3的操作波長進行最佳化。
第一光瞳平面18在成像光3的光束路徑中配置在反射鏡M2及M3之間。與圖2中示意性描繪的不同,第一光瞳平面18相對於中央場點的主光線傾斜,即,其與此主光線包括≠90的角。成像光3的整個光束可從反射鏡M2及M3之間之光瞳平面18的區域中的所有側進入。因此,孔徑光闌可配置在光瞳平面18的區域中。在下文中,亦以參考符號18代表此光闌。替代地或額外地,如上文結合用於圖2之表6所解說,光闌亦可配置在反射鏡M8上。
光闌之光闌表面的邊緣(亦見用於圖2之表6)在光闌表面上從照射光3之所有光線的交點形成,該照射光在像側上,在具有完全像側遠心孔徑之光闌表面的方向中的場中心點傳播。當光闌18經體現為孔徑光闌時,邊緣係內邊緣。
光闌18可位在平面中或具有三維具體實施例。光闌18的延伸區在掃描方向(y)中可小於在交叉掃描方向(x)中。
投影光學單元7的中間影像19配置在反射鏡M3及M4之間的成像光束路徑中。
投影光學單元7的又一光瞳平面配置在反射鏡M7及M8上反射成像光3的區域中。在反射鏡M7及M8的區域中的孔徑光闌可在成像光束路徑中的兩個定位處,經配置一方面分布在x維度中,及另一方面分布在y方向中,例如可以有用於主要沿著y維度在反射鏡M8上設定限制的孔徑光闌,及用於主要沿著x維度在反射鏡M7上設定限制的孔徑光闌。
投影光學單元7在z方向中的安裝長度,即,物面5及像面9之間的距離大約2000mm。反射鏡M8具有約為650mm的直徑。在中央物場點及中央像場點之間的y距離dOIS為1870mm。
投影光學單元7具有波前像差的掃描RMS值小於5至10mλ。投影光學單元7的失真小於0.12nm。投影光學單元7在像場8上沿x方向測量的遠心值小於6mrad。投影光學單元7在像場8上沿y方向測量的遠心值小於0.4mrad。
投影光學單元7在像側上為大約遠心。
在最接近像場的反射鏡M7及像場8之間的工作距離為78mm。
小於15%的數值孔徑因通道開口17而屏蔽。建構屏蔽邊緣的方式類似於建構光闌邊緣(stop edge)的方式,如上文關聯光闌18所解說。當體現為屏蔽光闌時,邊緣是光闌的外邊緣。在投影光學單元7的系統光瞳中,因屏蔽而無法被照射的表面小於總系統光瞳表面的0.152。在系統光瞳內的非照射表面在x方向中與在y方向中可具有不同延伸區。系統光瞳中的非照射表面可為圓形、橢圓形、方形或矩形。此外,系統光瞳中無法被照射的此表面可在相對於系統光瞳中心的x方向及/或y方向中為偏軸。
下文基於圖3解說可在圖1之投影曝光裝置1中取代投影光學單元7使用之投影光學單元20的又一具體實施例。以相同參考符號相應地代表上文在圖1及2的背景中已經解說的組件及功能,且不再詳細論述。
反射鏡M1至M6再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元20的光學設計資料,該等表格在設計上對應於關於圖2之投影光學單元7的表格。
投影光學單元20的總反射率為12.99%。
投影光學單元20具有像側數值孔徑為0.45。像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元20針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元20具有縮小成像比例為8×(β=8)。
投影光學單元20具有確切六個反射鏡M1至M6。反射鏡M1及M2再次被體現為用於掠入射的反射鏡,且在成像光束路徑中作為反射鏡對直接配置在彼此之後。投影光學單元20具有確切兩個用於掠入射的反射鏡,即反射鏡M1及M2。反射鏡M3至M6經體現為用於法線入射的反射鏡。
投影光學單元20具有總反射率大於11.97%。
就絕對值而言,物面5相對於像面9繞著x軸傾斜大約39°角。據此,在以上最後表格(用於圖3之表3b)中,針對物場指定大約219°的值TLA。
物場4及像場8之間的z距離大約為1740mm。
具有最大直徑的反射鏡是直徑值1000mm的反射鏡M6。物場4及像場8之間的y距離(即,值dOIS)為285mm於物場4。正如在投影光學單元7中,物場側主光線角CRAO在投影光學單元20中為5.5°。波前像差的掃描RMS值在投影光學單元20中小於10.5mλ。投影光學單元20的失真值小於0.1nm。投影光學單元20之像場側在x方向中的遠心值在小於5mrad。投影 光學單元20之像場側在y方向中的遠心值在小於0.45mrad。
在投影光學單元20中,光瞳平面配置在像場8上游之光束路徑中的倒數第二反射鏡M5上反射成像光3的區域中。因此,孔徑光闌可配置在反射鏡M5上或配置在反射鏡M6上。根據先前用於圖3之表6的多邊形邊緣與反射鏡M6上的光闌有關。
投影光學單元20在像側上為實質上遠心(telecentric)。在最接近像場的反射鏡M5及像場8之間的工作距離為90mm。
像場8位在投影光學單元20在物場4下游的第一像面中。因此,在物場4及像場8之間的成像光束路徑中,投影光學單元20不會產生中間影像。
因在成像光束路徑中將倒數第三反射鏡M4直接配置在最後反射鏡M6之中心的前方,造成投影光學單元20的光瞳屏蔽。此屏蔽小於投影光學單元20之像側數值孔徑的26%。
成像光束路徑中僅倒數第二反射鏡M5具有用於成像光3的通道開口17。所有其他反射鏡M1至M4及M6均具有連續反射面。
使用在反射鏡M5的通道開口17周圍的反射面。反射鏡M6的反射面並非連續使用,而是僅在未被配置在反射鏡M6之反射面前方的反射鏡M4屏蔽之處使用。
用於掠入射的兩個反射鏡M1及M2將成像光3橫向偏轉越過最後反射鏡M6並繞過其反射面。
反射鏡M2相對於像面9繞著x軸旋轉90°,即,其實際上垂直於像面9。
反射鏡M1、M3及M6具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M4及M5具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M1及M2再次具有很大的半徑,即,僅與平面反射面構成較小偏差。
下文基於圖4解說可在圖1之投影曝光裝置1中取代投影光學單元7使用之投影光學單元21的又一具體實施例。以相同參考符號相應地代表上文在圖1至3的背景中已經解說的組件及功能,且不再詳細論述。
反射鏡M1至M6再次被體現為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元21的光學設計資料,該等表格在設計上對應於關於圖2之投影光學單元7的表格。
投影光學單元21的總反射率為13.32%。
投影光學單元21具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及0.8mm的y延伸區。投影光學單元21針對13.5nm之照射光3的操作波長進行最佳化。
如同投影光學單元20,投影光學單元21亦是具有確切六個反射鏡M1至M6的純反射式投影光學單元。如同在投影光學單元20中,投影光學單元21在成像光束路徑中在物場4下游的前兩個反射鏡M1及M2經體現為用於掠入射的反射鏡。另外的反射鏡M3至M6經體現為用於法線入射的反射 鏡。
不像投影光學單元7及20的光束引導,主光線在投影光學單元21的光束引導中交叉。此交叉一方面在反射鏡M2及M3之間及另一方面在M4及M5之間的局部成像光束路徑之間發生,其中指示交叉區K1。成像局部光束的主光線在反射鏡M2及M3之間的又一交叉因一方面在反射鏡M5及M6之間及另一方面在反射鏡M6及像場之間之成像局部光束的主光線而發生,其以另外交叉區K2及K3指示。
在投影光學單元21中,物面5及像面9平行於彼此而延伸。
反射鏡M1、M3及M6具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M4及M5具有正值半徑,即,原則上為凸面反射鏡。反射鏡M1及M2再次具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
如同在投影光學單元20中,投影光學單元21的倒數第三反射鏡M4配置在最後反射鏡M6的反射面中心前方,及因此造成投影光學單元21的光瞳屏蔽。
在投影光學單元21中,反射鏡M1至M6均無用於成像光3的通道開口。除了反射鏡M6的情況,投影光學單元21的所有反射面,即,反射鏡M1至M5的反射面可無間隙地使用。在其中未因反射鏡M4而發生屏蔽之處使用反射鏡M6的反射面。
在投影光學單元21中,在物面5及像面9之間的z距離大約為2200mm。
最大反射鏡M6的典型直徑大約為1200mm。
投影光學單元21中的物體/影像偏移dOIS大約為1100mm。在投影光學單元21中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元21具有像場側波前的掃描RMS值小於11mλ。在投影光學單元21中,像場側失真值小於0.1nm。在投影光學單元21 中,x方向中的像側遠心值小於4mrad。在投影光學單元21中,y方向中的像側遠心值小於0.3mrad。
在投影光學單元21中,光瞳平面配置在反射鏡M6上反射成像光3的區域中。因此,孔徑光闌可提供在反射鏡M6上。根據先前用於圖4之表6的多邊形邊緣與反射鏡M6上的此光闌有關。如同投影光學單元20,投影光學單元21也沒有中間影像。
投影光學單元21在像側上為實質上遠心。
在成像光束路徑中在最接近像場之反射鏡(倒數第二反射鏡M5)及像場8之間的工作距離為36mm。
反射鏡M4定義像側屏蔽(image-side obscuration),其小於投影光學單元21之像側數值孔徑的23%。
下文基於圖5解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元22的又一具體實施例。以相同參考符號相應地代表上文在圖1至4的背景中已經解說的組件及功能,且不再詳細論述。
總之,投影光學單元22具有七個反射鏡M1至M7。投影光學單元22具有三個用於掠入射的反射鏡,即反射鏡M1至M3,及具有四個用於法線入射的反射鏡,即反射鏡M4至M7。這些反射鏡M1至M7再次被組態為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元22的光學設計資料,該等表格在設計上對應於關於圖2之投影光學單元7的表格。
投影光學單元22的總反射率為11.89%。
投影光學單元22具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元22針對13.5nm之照射光3的操作波長進行最佳化。
在一方面反射鏡M1及M2及另一方面反射鏡M4至M7的區域中,投影光學單元22的光束路徑在定性上對應於圖3之投影光學單元20的光束路徑。與投影光學單元20相比,在投影光學單元22中,又一用於掠入射的反射鏡M3配置在用於掠入射的反射鏡M2及用於法線入射的反射鏡M4之間。相比於用於掠入射的反射鏡M1及M2的偏轉效應,此又一反射鏡造成成像光3朝向反射鏡M4的反向偏轉,致使不像投影光學單元20的情況,投影光學單元22中的物面5並不以相對於像面9的此強烈傾斜而配置。替代地,投影光學單元22亦可體現致使物面5平行於像面9而配置。反射鏡M1及M2再次形成用於掠入射的成對反射鏡,其在成像光3的光束路徑中直接配置在彼此之後。
成像光3之引導在投影光學單元22中相比於在投影光學單元 20中的又一差異在於以下事實:反射鏡M7包含一方面在反射鏡M4及M5之間及另一方面在反射鏡M5及M6之間之用於成像光3的通道開口(passage opening)17。反射鏡M5的反射面相對於反射鏡M7中的此通道開口17配置為凹入。
反射鏡M1、M3、M4及M7具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5及M6具有正值半徑,即,原則上為凸面反射鏡。
反射鏡M6及M7分別具有用於成像光3的通道開口17。其他反射鏡M1至M5沒有用於成像光3的通道開口。
使用反射鏡M6及M7在其相應通道開口17周圍的反射面。
在投影光學單元22中,孔徑光闌配置在反射鏡M7上。根據先前用於圖5之表6的多邊形資料與反射鏡7有關。
在投影光學單元22中,在物面5及像面9之間的z距離大約為2200mm。
最大反射鏡M7的典型直徑大約為1350mm。在投影光學單元22中,物體/影像偏移dOIS大約為1050mm。在投影光學單元22中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元22具有像場側波前(image field-side wavefront)的掃描RMS值大約100mλ。投影光學單元22中的像場側失真值(image field-side distortion value)大約為2nm。在投影光學單元22中,x方向中的像側遠心值(image-side telecentricity value)小於2mrad。在投影光學單元22中,y方向中的像側遠心值小於0.5mrad。
在投影光學單元22中,主光線16在物場4及反射鏡M1之間相對於彼此發散地傳播。
反射鏡M6定義x維度的像側屏蔽(image-side obscuration),其小於投影光學單元22之像側數值孔徑的26%。在y方向中,屏蔽明顯較小且此外為偏軸(decentered)。
下文基於圖6解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元23的又一具體實施例。以相同參考符號相應地代表上文在圖1至5的背景中已經解說的組件及功能,且不再詳細論述。
總之,投影光學單元23具有八個反射鏡M1至M8。在這些反射鏡中,反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡,及反射鏡M2、M3和M5及M6經體現為用於掠入射的反射鏡。反射鏡M1至M8被組態為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元23的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。用於圖6之表1中的規格「光闌S8」是指光闌配置在設計表面之第八表面的位置,計算包括像面(在此方面,見用於6圖之表4a、4b)。亦可在以下說明之投影光學單元的具體實施例中,找到關於光闌位置的對應規格。
投影光學單元23的總反射率為8.11%。
投影光學單元23具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元23針對13.5nm之照射光3的操作波長進行最佳化。
與其他投影光學單元不同,投影光學單元23具有像側數值孔徑0.45。
成像光3通過投影光學單元23在反射鏡M6及像場8之間的光束路徑在定性上對應於在圖2的投影光學單元7中在反射鏡M6及像場8之間的光束路徑,但繞著平行於xz平面的平面變成鏡像。
一方面用於掠入射的反射鏡M2及M3及另一方面用於掠入射的反射鏡M5及M6係配置致使其具有相應的反向偏轉效應,也就是說,這些反射鏡對M2、M3及M5、M6之相應第二反射鏡M3及M6的偏轉效應從相應第一反射鏡M2及M5的偏轉效應減去。關於在各情況中,反射鏡M2及M3、反射鏡M5及M6之一者對成像光3之相應個別光線15的反射率具有反向相依性,即,這些反射鏡代表補償反射鏡,使得用於掠入射的四個反射鏡M2、M3、M5及M6對像場8上或其照射角分布上的反射率,沒有非所要的總相依性(overall dependence)。
投影光學單元23的光瞳平面位在反射鏡M2上的偏轉區域中。x維度的有效孔徑光闌可配置在成像光3在反射鏡M1及M2之間鄰近M2的光束路徑中。在y維度中起作用的孔徑光闌可配置在成像光3在反射鏡M2 及M3之間再次鄰近反射鏡M2的光束路徑中。投影光學單元23的中間像面位在反射鏡M5上的偏轉區域中。又一光瞳平面位在成像光3在反射鏡M7及M8之間的光束路徑中。在其中,可同樣配置x維度的有效孔徑光闌。
在剖面圖中,反射鏡M1及M8係背對背體現。
僅反射鏡M8具有通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的成像光3通過。
反射鏡M1、M4、M5及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M3、M6及M7具有正值半徑,即,原則上為凸面反射鏡。反射鏡M2、M3及M5具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
在投影光學單元23中,物面5及像面9之間的z距離大約為1840mm。
最大反射鏡M8的典型直徑大約為800mm。
在投影光學單元23中,物體/影像偏移(object/image offset)dOIS大約為520mm。在投影光學單元23中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元23具有像場側波前的掃描RMS值小於70mλ。投影光學單元23中的像場側失真值大約為1.2nm。
在投影光學單元23中,主光線16在物場4及反射鏡M1之間相對於彼此發散地傳播。
反射鏡M8定義x維度的像側屏蔽,其小於投影光學單元23之像側數值孔徑的20%。在y方向中,屏蔽明顯較小且此外為偏軸。
下文基於圖7解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元24的又一具體實施例。以相同參考符號相應地代表上文在圖1至6的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元24的成像光束路徑在定性上對應於圖6之投影 光學單元23的成像光束路徑。投影光學單元24亦包含八個反射鏡M1至M8,其中反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡,及反射鏡M2、M3、M5及M6經體現為用於掠入射的反射鏡。一方面反射鏡M2及M3及另一方面M5及M6的偏轉效應彼此減去。
反射鏡M1至M8被組態為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元24的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元24的總反射率為9.88%。
投影光學單元24具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及0.8mm的y延伸區。投影光學單元24針對13.5nm之照射光3的操作波長進行最佳化。
在投影光學單元24中,光瞳平面18配置在成像光3在反射鏡M2及M3之間的光束路徑中。中間像面19配置在反射鏡M4及M5之間的成像光束路徑中。
反射鏡M1、M3、M4、M6及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5及M7具有正值半徑,即,原則上為凸面反射鏡。反射鏡M3、M5及M6具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
在投影光學單元24的情況中也是如此:僅最後反射鏡M8在成像光束路徑中包含用於在反射鏡M6及M7之間引導之成像光3的通道開口17。
投影光學單元24在z方向中的安裝長度,即,物面5及像面9之間的距離大約1900mm。反射鏡M8具有投影光學單元24中之所有反射鏡的最大直徑,該直徑約為700mm。
在投影光學單元24中,物體/影像偏移dOIS大約為360mm。在投影光學單元24中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元24具有像場側波前的掃描RMS值約為100mλ。在投影光學單元24中,像場側失真值約為0.6nm。
y維度的有效孔徑光闌可配置在成像光3在反射鏡M2及M3之間的光束路徑中。
在投影光學單元24中,成像光3的主光線16在物場4及反射鏡 M1之間發散地傳播。
反射鏡M8定義像側屏蔽,其在x維度上小於投影光學單元24之像側數值孔徑的24%。
在y方向中,屏蔽明顯較小且此外為偏軸。
下文基於圖8解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元25的又一具體實施例。以相同參考符號相應地代表上文在圖1至7的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元25的成像光束路徑在定性上對應於圖6及7之投影光學單元23及24的成像光束路徑。投影光學單元25亦包含八個反射鏡M1至M8,其中反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡,及反射鏡M2、M3、M5及M6經體現為用於掠入射的反射鏡。一方面反射鏡M2及M3及另一方面M5及M6的偏轉效應彼此減去。
反射鏡M1至M8被組態為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元25的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元25的總反射率為10.04%。
投影光學單元25具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元25針對13.5nm之照射光3的操作波長進行最佳化。
反射鏡M1、M3、M4、M5及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M6及M7具有正值半徑,即,原則上為凸面反射鏡。反射鏡M3、M5及M6具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
在投影光學單元25的情況中也是如此:僅最後反射鏡M8包含用於在反射鏡M6及M7之間引導之成像光3的通道開口17。
在投影光學單元25中,光瞳平面18配置在反射鏡M2及反射鏡M3之間。在投影光學單元25中,中間像面19配置在用於掠入射的反射鏡M5上反射的區域中。
在投影光學單元25中,在物面5及像面9之間的z距離為1900mm。
在投影光學單元25中,最大反射鏡M8的典型直徑大約為800mm。
在投影光學單元25中,物體/影像偏移dOIS大約為600mm。在投影光學單元25中,物場側主光線16亦包括與物面5之法線的角度CRAO 為5.5°。
投影光學單元25具有像場側波前的掃描RMS值大約70mλ。投影光學單元25中的像場側失真值大約為3nm。
在投影光學單元25中,孔徑光闌可配置在成像光3在反射鏡M2及M3之間的光束路徑中。
在投影光學單元25中,主光線16在物場4及反射鏡M1之間發散地傳播。
反射鏡M8定義像側屏蔽,其在x維度上小於投影光學單元25之像側數值孔徑的20%。在y方向中,屏蔽明顯較小且此外為偏軸。
下文基於圖9解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元26的又一具體實施例。以相同參考符號相應地代表上文在圖1至8的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元26具有總共八個反射鏡M1至M8。這些反射鏡組態為自由形式表面,上文指定自由形式表面方程式(1)對其適用。投影光學單元26的成像光束路徑在定性上對應於投影光學單元7的成像光束路徑,其繞著平行於xz平面的平面變成鏡像。
一方面反射鏡M2及M3及另一方面M5及M6再次構成成對之用於掠入射的反射鏡,其對於成像光的偏轉效應相加。其他反射鏡M1、M4、M7及M8是用於法線入射的反射鏡。
可從以下表格取得投影光學單元26的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元26的總反射率為8.83%。
投影光學單元26具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元26針對13.5nm之照射光3的操作波長進行最佳化。
反射鏡M1、M2、M4及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M3、M5、M6及M7具有正值半徑,即,原則上為凸面反射鏡。反射鏡M2、M3、M5及M6具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
投影光學單元26的光瞳平面18位在反射鏡M2及M3之間的光束路徑中。不像圖9示意性指示的,此光闌平面相對於中央場點的主光線傾斜。投影光學單元26的中間像面19位在反射鏡M3上反射的區域中。
在投影光學單元26的情況中也是如此:反射鏡M8是在成像光束路徑中包含用於在反射鏡M6及M7之間之成像光3之通道開口17的唯一 反射鏡。
在投影光學單元26中,在物面5及像面9之間的z距離為1900mm。
在投影光學單元26中,最大反射鏡M8的典型直徑大約為800mm。
在投影光學單元26中,物體/影像偏移dOIS大約為1350mm。在投影光學單元26中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元26具有像場側波前的掃描RMS值大約30mλ。投影光學單元26中的像場側失真值大約為1.0nm。
在投影光學單元26中,x方向的有效光闌可配置在成像光3在反射鏡M1及M2之間的光束路徑中,及y維度的有效光闌可配置在反射鏡M2及M3之間的光束路徑中。
在投影光學單元26中,主光線16在成像光3在物場4及反射鏡M1之間的光束路徑中發散地傳播。
反射鏡M8定義像側屏蔽,其在x維度上小於投影光學單元26之像側數值孔徑的20%。在y方向中,屏蔽明顯較小且此外為偏軸。
下文基於圖10解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元27的又一具體實施例。以相同參考符號相應地代表上文在圖1至9的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元27具有總共九個反射鏡M1至M9。反射鏡M1、M3、M5、M6及M7經體現為用於掠入射的反射鏡。其他反射鏡M2、M4、M8及M9經體現為用於法線入射的反射鏡。在反射鏡M1上反射之後,投影光學單元27的成像光束路徑在定性上對應於投影光學單元26在位在其中的反射鏡M1上反射之前的成像光束路徑。
不像在投影光學單元26中,投影光學單元27中的物面5及像 面9並非平行於彼此而延伸,而是相對於彼此具有某個角度。在物面5及像面9之間的角度大約為25°。在物面5及像面9之間亦可以有不同角度,例如9°角。
反射鏡M1至M9被體現為自由形式表面,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元27的光學設計資料,該等表格在設計上對應於關於圖2之投影光學單元7的表格。
投影光學單元27的總反射率為7.89%。
投影光學單元27具有縮小成像比例為8×(β=8)。
像場8具有2×6.5mm的x延伸區及1mm的y延伸區。投影光學單元27針對13.5nm之照射光3的操作波長進行最佳化。
在投影光學單元27中,光瞳平面18配置在反射鏡M3及M4之間的成像光束路徑中。不像所示意性描繪的,光瞳平面18相對於中央場點的主光線傾斜。中間像面19配置在反射鏡M4及M5之間接近反射鏡M4的成像光束路徑中。
在投影光學單元27中,一方面反射鏡M3及M4及另一方面反射鏡M6及M7形成成對的用於掠入射的反射鏡,其對成像光3的偏轉效應相加。
反射鏡M1、M4、M6、M7及M8具有正值半徑,即,原則上為凸面反射鏡。反射鏡M2、M3、M5及M9具有負值半徑,即,原則上為凹面反射鏡。反射鏡M1、M3、M4、M6及M7具有很大的絕對半徑,即,僅與平面反射面構成較小偏差。
繼而在投影光學單元27中的情況也是如此:反射鏡M9是包含通道開口17的唯一反射鏡,該通道開口用於使在反射鏡M7及M8之間引導的成像光3通過。
在投影光學單元27中,在物面5及像面9之間的z距離大約為1700mm。
在投影光學單元27中,最大反射鏡M9的典型直徑大約為730mm。
在投影光學單元27中,物體/影像偏移dOIS大約為1000mm。在投影光學單元27中,物場側主光線16亦包括與物面5之法線的角度CRAO為5.5°。
投影光學單元27具有像場側波前的掃描RMS值大約30 mλ。投影光學單元27中的像場側失真值大約為0.6nm。
x維度的有效光闌可配置在成像光3在反射鏡M2及M3之間的光束路徑中。在投影光學單元27中,y維度的有效光闌可配置在反射鏡M3及M4之間的光束路徑中。
投影光學單元27中的主光線16在成像光3在物場4及反射鏡M1之間的光束路徑中具有發散傳播。
反射鏡M9定義像側屏蔽,其在x維度上小於投影光學單元27之像側數值孔徑的20%。在y方向中,屏蔽明顯較小且此外為偏軸。
下文基於圖11解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元28的又一具體實施例。以相同參考符號相應地代表上文在圖1至10的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元28具有總共八個反射鏡M1至M8。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。反射鏡M2、M3、M5及M6經體現為用於掠入射的反射鏡。在反射鏡M4之後,投影光學單元28中的光束路徑在定性上對應於在圖10之投影光學單元27中的反射鏡M5之後的光束路徑,其中與投影光學單元27之倒數第二反射鏡M8的配置相比,投影光學單元28中的倒數第二反射鏡M7繞著平行於xz平面的平面配置成鏡像。
在投影光學單元28的光束引導中,光束路徑的主光線16一方面在反射鏡M1及M2之間交叉,及光束路徑另一方面在反射鏡M5及M6之間交叉。
一方面用於掠入射的兩個反射鏡M2及M3,及另一方面用於掠入射的兩個反射鏡M5及M6,各經體現為成對的反射鏡,其偏轉效應相加。
在投影光學單元28中,僅最後反射鏡M8經體現具有通道開口17,其用於使在反射鏡M6及M7之間引導的成像光3通過。
在投影光學單元28中,在物面5及像面9之間的z距離大約為 2000mm。在投影光學單元28中,物體/影像偏移大約為1000mm。
下文基於圖12解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元29的又一具體實施例。以相同參考符號相應地代表上文在圖1至11的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元29具有總共八個反射鏡M1至M8。反射鏡M1、M7及M8經體現為用於法線入射的反射鏡。反射鏡M2、M3、M4、M5及M6經體現為用於掠入射的反射鏡。因此,投影光學單元29具有五個連續配置之用於掠入射的反射鏡。所有用於掠入射的反射鏡M2至M6對投影光學單元29中的成像光3具有偏轉效應。
在反射鏡M5之後,投影光學單元29中的光束路徑在定性上對應於圖2之投影光學單元7的光束路徑。
在投影光學單元29中,僅最後反射鏡M8再次包含通道開口17,其用於使在反射鏡M6及M7之間引導的成像光3通過。
在投影光學單元29中,在彼此平行之物面5及像面9之間的z距離大約為2500mm。在投影光學單元29中,物體/影像偏移大約為3000mm。
下文基於圖13解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元30的又一具體實施例。以相同參考符號相應地代表上文在圖1至12的背景中已經解說的組件及功能,且不再詳細論述。
投影光學單元30具有總共十一個反射鏡M1至M11。反射鏡M5、M10及M11經體現為用於法線入射的反射鏡。反射鏡M1、M2、M3、M4、M6、M7、M8及M9經體現為用於掠入射的反射鏡。因此,投影光學單元30具有兩個群組,各群組具有四個連續配置之用於掠入射的反射鏡。用於掠入射的反射鏡M1至M4的偏轉效應相加。用於掠入射的反射鏡M6至M9的偏轉效應相加。
在反射鏡M8之後,投影光學單元30中的成像光束路徑在定性上對應於圖11之投影光學單元28中在其中的反射鏡M4之後的成像光束路 徑,其繞著平行於xz平面的平面變成鏡像。
下文基於圖14及15解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元31的又一具體實施例。以相同參考符號相應地代表上文在圖1至13的背景中已經解說的組件及功能,且不再詳細論述。圖14顯示投影光學單元31的縱剖面(meridional section)。圖15顯示投影光學單元31的矢狀面視圖(sagittal view)。
投影光學單元31具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元31的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元31的總反射率為8.67%。
投影光學單元31具有像側數值孔徑為0.6。像場8具有2×6.5mm的x延伸區及1.20mm的y延伸區。像場8以曲率半徑如20.28mm相對於y軸對稱彎曲。因此,投影光學單元31具有弧形場且無矩形場。投影光學單元31針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元31具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元31具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元31中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
投影光學單元31具有縮小成像比例為β=8.00。
主光線16在物面5中的入射角為6.3°。
在圖14的縱剖面中,主光線以發散方式在物場4及反射鏡M1之間延伸。在yz平面中,投影光學單元31的入射光瞳在照射光的光束路徑中位在物場4前方的-3500mm。在xz平面(見圖15)中,入射光瞳在投影光學單元31的成像光束路徑中位在物場之後的2100mm。
在xz截面(見圖15)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為1600mm。
物體/影像偏移(dOIS)大約為1560mm。
在反射鏡M7及像場8之間的自由工作距離是61mm。
在投影光學單元31中,波前像差的掃描RMS值最多為8mλ,及平均為7mλ。
最大失真值在x方向中最多為0.12nm及在y方向中最多為0.08nm。x方向的遠心值在像場側上最多為0.61mrad,及y方向的遠心值在像場側上最多為1.16mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖14)之反射鏡M5上反射的區域中的光束路徑中及在xz平面(圖15)之反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其通道開口17周圍的反射面。
反射鏡M1、M3、M4、M6及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
圖15A顯示在投影光學單元31之各為照射光3所撞擊之反射鏡M1至M8上的表面邊緣輪廓,即,反射鏡M1至M8的所謂覆蓋區。這些邊緣輪廓各以x/y曲線圖描繪,x/y曲線圖對應於相應反射鏡M1至M8的局部x及y座標。這些圖解按真實比例繪製,單位為公釐。反射鏡M1、M2、M6及M8具有無異於值1或僅與值1只差一點的x/y長寬比。反射鏡M3具有x/y長寬比大約為0.55。反射鏡M4具有x/y長寬比大約為7.5。反射鏡M5具有x/y長寬比大約為2.5。反射鏡M7具有x/y長寬比大約為2。
下文基於圖16及17解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元32的又一具體實施例。以相同參考符號相應地代表上文在圖1至15的背景中已經解說的組件及功能,且不再詳細論述。圖16顯示投影光學單元32的縱剖面。圖17顯示投影光學單元32的矢狀面視圖。
投影光學單元32具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元32的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元32的總反射率為9.95%。
投影光學單元32具有像側數值孔徑為0.63。像場8具有2×6.5mm的x延伸區及1.20mm的y延伸區。投影光學單元32針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元32具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元32具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元32中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
投影光學單元32具有縮小成像比例為β=8.00。
主光線16在物面5中的入射角為6.3°。
在投影光學單元32中,入射光瞳在xz平面及yz平面二者中在 成像光束路徑中位在物場4的下游。從物場4發出之主光線16的延伸區因此在圖16的縱剖面中及圖17的視圖中均為會聚。
在xz截面(見圖17)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為1680mm。
物體/影像偏移(dOIS)大約為2180mm。
在反射鏡M7及像場8之間的自由工作距離是66mm。
在投影光學單元32中,波前像差的掃描RMS值最多為10mλ,及平均為10mλ。
最大失真值在x方向中最多為0.05nm及在y方向中最多為0.05nm。x方向的遠心值在像場側上最多為0.56mrad,及y方向的遠心值在像場側上最多為0.90mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖16)之反射鏡M5上反射的區域中的光束路徑中及在xz平面(圖17)之反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其 通道開口17周圍的反射面。
反射鏡M1、M3、M4及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5、M6及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
下文基於圖18及19解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元33的又一具體實施例。以相同參考符號相應地代表上文在圖1至17的背景中已經解說的組件及功能,且不再詳細論述。圖18顯示投影光學單元33的縱剖面。圖19顯示投影光學單元33的矢狀面視圖。
投影光學單元33具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元33的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元33的總反射率為10.03%。
投影光學單元33具有像側數值孔徑為0.55。像場8具有2×6.5mm的x延伸區及1.20mm的y延伸區。投影光學單元33針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元33具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元33具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元33中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
投影光學單元33具有縮小成像比例為β=7.00。
主光線16在物面5中的入射角為6.4°。
在yz平面中,投影光學單元33的入射光瞳在照射光的光束路徑中位在物場4前方的7700mm。在xy平面(見圖19)中,入射光瞳在投影光學單元33的成像光束路徑中位在物場之後的1775mm。從物場4發出之主光線16的延伸區因此在圖18的縱剖面中及圖19的視圖中均為會聚。
在xz截面(見圖19)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為1290mm。
物體/影像偏移(dOIS)大約為1460mm。
在反射鏡M7及像場8之間的自由工作距離是50mm。
在投影光學單元33中,波前像差的掃描RMS值最多為10mλ,及平均為8mλ。
最大失真值在x方向中最多為0.03nm及在y方向中最多為0.08nm。x方向的遠心值在像場側上最多為0.79mrad,及y方向的遠心值在像場側上最多為0.37mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖18)之反射鏡M3及M4之間的成像光束路徑區域中的光束路徑中及在xz平面(圖19)之反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。中間影像19亦可出現在yz平面中在反射鏡M5上反射的區域中。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。
投影光學單元33的光瞳屏蔽是投影光學單元33之像側數值孔徑的14%。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其通道開口17周圍的反射面。
反射鏡M1、M3、M4及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5、M6及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
下文基於圖20及21解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元34的又一具體實施例。以相同參考符號相應地代表上文在圖1至19的背景中已經解說的組件及功能,且不再詳細論述。圖20顯示投影光學單元34的縱剖面。圖21顯示投影光學單元34的矢狀面視圖。
投影光學單元34具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
投影光學單元34經體現為歪像光學單元。在圖20的yz截面中,投影光學單元34具有縮小成像比例βy為8.00。在與其垂直的xz平面(見圖21)中,投影光學單元34具有縮小成像比例βx為4.00。
結合投影光學單元34的旋轉對稱出射光瞳,這些不同成像比例βx、βy導致物側數值孔徑相比於在xz平面中,在yz平面中為一半大小,如從圖20及21之間的比較馬上可見。因此,在yz平面中獲得有利地較小主光線角CRAO為5.1°。
與此關聯之歪像投影透鏡的優點亦論述於US 2013/0128251 A1中,其全文以引用方式並入本申請案中。
投影光學單元34的歪像效應分布至反射鏡M1至M8的所有光學表面。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元34的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元34的總反射率為10.17%。
投影光學單元34具有像側數值孔徑為0.55。像場8具有2×13mm的x延伸區及1.20mm的y延伸區。投影光學單元34針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元34具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元34具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元34中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
在xz平面(見圖21)中,投影光學單元34的入射光瞳在照射光的光束路徑中位在物場4前方的2740mm。在yz平面中,入射光瞳在投影光學單元34的成像光束路徑中位在物場之後的5430mm。從物場4發出之主光線16的延伸區因此在圖20的縱剖面中及圖21的視圖中均為會聚。
在xz截面(見圖21)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。光闌18為平面且相對於像場傾斜。光闌18在 x方向中的較長延伸區為583.18mm。光闌18在y方向中的總延伸區為238.85mm。
物場4及像場8之間的z距離大約為1850mm。
物體/影像偏移(dOIS)大約為2400mm。
在反射鏡M7及像場8之間的自由工作距離是83mm。
在投影光學單元34中,波前像差的掃描RMS值最多為8mλ,及平均為7mλ。
最大失真值在x方向中最多為0.10nm及在y方向中最多為0.10nm。x方向的遠心值在像場側上最多為1.58mrad,及y方向的遠心值在像場側上最多為0.15mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖20)之反射鏡M4上反射的區域中的光束路徑中及在平行於xz平面(圖21)的反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其通道開口17周圍的反射面。
反射鏡M1、M3、M4及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5、M6及M7具有正值半徑,即,原則上為凸面反 射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
圖21A顯示在投影光學單元34之各為照射光3所撞擊之反射鏡M1至M8上的表面邊緣輪廓,即,反射鏡M1至M8的所謂覆蓋區。這些邊緣輪廓各以x/y曲線圖描繪,x/y曲線圖對應於相應反射鏡M1至M8的局部x及y座標。這些圖解按真實比例繪製,單位為公釐。反射鏡M2、M3及M8具有無異於值1或僅與值1只差一點的x/y長寬比。反射鏡M1及M5及還有M7具有x/y長寬比大約為2。反射鏡M4具有x/y長寬比大約為15。反射鏡M6具有x/y長寬比大約為0.7。
下文基於圖22及23解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元35的又一具體實施例。以相同參考符號相應地代表上文在圖1至21A的背景中已經解說的組件及功能,且不再詳細論述。圖22顯示投影光學單元35的縱剖面。圖23顯示投影光學單元35的矢狀面視圖。
投影光學單元35具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
投影光學單元35經體現為歪像光學單元。在圖22的yz截面中,投影光學單元35具有縮小成像比例βy為6.00。在與其垂直的xz平面(見圖23)中,投影光學單元35具有縮小成像比例βx為4.00。
這些不同成像比例βx、βy導致物側數值孔徑在yz平面中比在xz平面中小,如從圖22及23之間的比較馬上可見。因此,在yz平面中獲得有利地較小主光線角CRAO為6.3°。
投影光學單元35的歪像效應分布至反射鏡M1至M8的所有光學表面。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元35 的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元35的總反射率為10.15%。
投影光學單元35具有像側數值孔徑為0.49。像場8具有2×13mm的x延伸區及1.20mm的y延伸區。投影光學單元35針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元35具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元35具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元35中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
主光線16在物面5中的入射角為6.3°。
在圖22的縱剖面中,主光線以發散方式在物場4及反射鏡M1之間延伸。在yz平面中,投影光學單元35的入射光瞳在照射光的光束路徑中位在物場4前方大約-6640mm。在xz平面(見圖23)中,入射光瞳在投影光學單元35的成像光束路徑中位在物場之後大約2750mm。反射鏡M8定義像側屏蔽,其在x維度上小於投影光學單元35之像側數值孔徑的15%。
在xz截面(見圖23)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為1600mm。
物體/影像偏移(dOIS)大約為2430mm。
在反射鏡M7及像場8之間的自由工作距離是88mm。
在投影光學單元35中,波前像差的掃描RMS值最多為10mλ,及平均為7mλ。
最大失真值在x方向中最多為0.27nm及在y方向中最多為0.17nm。x方向的遠心值在像場側上最多為0.01mrad,及y方向的遠心值在像場側上最多為0.06mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖22)之反射鏡M5上反射的區域中的光束路徑中及在xz平面(圖23)之反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。屏蔽值為15%。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其通道開口17周圍的反射面。
反射鏡M1、M3、M4、M5及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M6及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
下文基於圖24及25解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元36的又一具體實施例。以相同參考符號相應地代表上文在圖1至23的背景中已經解說的組件及功能,且不再詳細論述。圖24顯示投影光學單元36的縱剖面。圖25顯示投影光學單元36的矢狀面視圖。
投影光學單元36具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
投影光學單元36經體現為歪像光學單元。在圖24的yz截面中,投影光學單元36具有縮小成像比例βy為6.00。在與其垂直的xz平面(見圖25)中,投影光學單元36具有縮小成像比例βx為5.40。
這些不同成像比例βx、βy導致物側數值孔徑在yz平面中比在xz平面中小,如從圖22及23之間的比較可見。因此,在yz平面中獲得有利地較小主光線角CRAO為6.7°。
投影光學單元36的歪像效應分布至反射鏡M1至M8的所有光學表面。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元36的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元36的總反射率為10.11%。
投影光學單元36具有像側數值孔徑為0.50。像場8具有2×13mm的x延伸區及1.20mm的y延伸區。投影光學單元36針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元36具有確切八個反射鏡M1至M8。一方面反射 鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。投影光學單元36具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元36中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
主光線16在物面5中的入射角為6.7°。
在xz平面(見圖25)中,投影光學單元36的入射光瞳在照射光的光束路徑中位在物場4前方的2225mm。在yz平面中,入射光瞳在投影光學單元36的成像光束路徑中位在物場之後的4000mm。從物場4發出之主光線24的延伸區因此在圖16的縱剖面中及圖25的視圖中均為會聚。反射鏡M8定義像側屏蔽,其在x維度上小於投影光學單元36之像側數值孔徑的18%。
在xz截面(見圖25)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為1600mm。
物體/影像偏移(dOIS)大約為2000mm。
在反射鏡M7及像場8之間的自由工作距離是71mm。
在投影光學單元36中,波前像差的掃描RMS值最多為11mλ,及平均為10mλ。
最大失真值在x方向中最多為0.10nm及在y方向中最多為0.32nm。x方向的遠心值在像場側上最多為0.61mrad,及y方向的遠心值在像場側上最多為0.74mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖24)之反射鏡M3及M4之間的區域中的光束路徑中及在xz平面(圖25)之反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
反射鏡M8被屏蔽,且包含通道開口17用於使在反射鏡M6及M7之間的成像光束路徑中的照射光3通過。
成像光束路徑中僅最後反射鏡M8包含用於成像光3的通道開口17。所有其他反射鏡M1至M7均具有連續反射面。使用反射鏡M8在其通道開口17周圍的反射面。
反射鏡M1、M3、M4及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M2、M5、M6及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,且僅與平面反射面構成較小偏差。
下文基於圖26及27解說可在圖1之投影曝光裝置1中取代如投影光學單元7使用之投影光學單元37的又一具體實施例。以相同參考符號相應地代表上文在圖1至25的背景中已經解說的組件及功能,且不再詳細論述。圖26顯示投影光學單元37的縱剖面。圖27顯示投影光學單元37的矢狀面視圖。
投影光學單元37具有總共8個反射鏡M1至M8,及其基本設計類似於如圖2的投影光學單元7。
投影光學單元37經體現為歪像光學單元。在圖26的yz截面中,投影光學單元37具有縮小成像比例βy為8.00。在與其垂直的xz平面(見圖27)中,投影光學單元37具有縮小成像比例βx為4.00。
這些不同成像比例βx、βy導致物側數值孔徑相比於在xz平面 中,在yz平面中為一半大小,如從圖26及27之間的比較馬上可見。因此,在yz平面中獲得有利地較小的主光線角CRAO為3.6°。
投影光學單元37的歪像效應分布至反射鏡M1至M8的所有光學表面。
反射鏡M1至M8再次被體現為自由形式表面反射鏡,上文指明的自由形式表面方程式(1)對其適用。可從以下表格取得投影光學單元37的光學設計資料,該等表格在設計上對應於圖2之投影光學單元7的表格。
投影光學單元37的總反射率為8.78%。
投影光學單元37具有像側數值孔徑為0.45。像場8具有2×13mm的x延伸區及1.20mm的y延伸區。投影光學單元37針對13.5nm之照射光3的操作波長進行最佳化。
投影光學單元37具有確切八個反射鏡M1至M8。一方面反射鏡M2及M3及另一方面反射鏡M5、M6經體現為用於掠入射的反射鏡,及各在成像光束路徑中配置為直接在彼此之後的反射鏡對。反射鏡M2及M3在xy平面中沿相反方向偏轉主光線16。投影光學單元37具有確切四個用於掠入射的反射鏡,即反射鏡M2、M3、M5及M6。反射鏡M1、M4、M7及M8經體現為用於法線入射的反射鏡。
在投影光學單元37中,光闌18配置在反射鏡M1及M2之間接近反射鏡M2上的掠入射的光束路徑中。替代地或額外地,光闌可直接配置在反射鏡M2的表面上。
在xz平面(見圖27)中,投影光學單元37的入射光瞳在照射光的光束路徑中位在物場4之後的3000mm。在yz平面中,入射光瞳在投影光學單元37的成像光束路徑中位在物場之後的3100mm。從物場4發出之主光線26的延伸區因此在圖16的縱剖面中及圖27的視圖中均為會聚。
在xz截面(見圖27)中,相比於其在yz截面中的定位,光闌18可位在沿z方向位移的定位中。
物場4及像場8之間的z距離大約為2100mm。
物體/影像偏移(dOIS)大約為3400mm。
在反射鏡M7及像場8之間的自由工作距離是86mm。
在投影光學單元37中,波前像差的掃描RMS值最多為18mλ,及平均為14mλ。
最大失真值在x方向中最多為0.15nm及在y方向中最多為 0.14nm。x方向的遠心值在像場側上最多為1.17mrad,及y方向的遠心值在像場側上最多為2.77mrad。
其他反射鏡資料顯現在以下表格中。
在yz平面(圖26)之反射鏡M3上反射的區域中的光束路徑中及在平行於xz平面(圖27)的反射鏡M6及M7之間的成像光束路徑區域中有中間影像19。
在光束路徑中的最後反射鏡M8未被屏蔽。照射光3在反射鏡M6及M7之間的局部光束路徑中被引導經過連續使用的反射鏡M8。所有反射鏡M1至M8均具有連續使用反射面。
反射鏡M1、M2、M4、M6及M8具有負值半徑,即,原則上為凹面反射鏡。反射鏡M3、M5及M7具有正值半徑,即,原則上為凸面反射鏡。用於掠入射的反射鏡M2、M3、M5及M6具有很大的半徑,即,僅與平面反射面構成較小偏差。
在以下表I及II中再次概述上述投影光學單元的一些資料。相應第一行用以指派相應例示性具體實施例的資料。
下表I概述以下光學參數:數值孔徑(NA)、在x方向中的像場延伸區(場大小X)、在y方向中的像場延伸區(場大小Y)、像場曲率(場曲率)及總反射率或系統傳輸(傳輸)。
下表II指定以下參數:「反射鏡類型的順序」(反射鏡類型順序)、「反射鏡偏轉效應的順序」(反射鏡旋轉順序)、「xz平面中的折射功率 順序」(x功率順序)及「yz平面中的折射功率順序」(y功率順序)。這些順序各以光束路徑中的最後反射鏡開始,即,按照反向的光束方向。舉例而言,順序「L0RRLLLR」有關圖2的具體實施例中順序M8至M1的偏轉效應。
在反射鏡類型中,規格「N」有關法線入射(NI)反射鏡,及命名「G」有關掠入射(GI)反射鏡。在折射功率順序中,「+」代表凹面反射鏡表面,及「-」代表凸面反射鏡表面。在比較x及y中的折射功率順序時,可看到實際上所有例示性具體實施例(如圖5的具體實施例除外)具有x及y的不同折射功率順序。舉例而言,圖2之具體實施例的反射鏡M1在x方向中為凸面(折射功率「-」,負折射功率)及在y方向中為凹面(折射功率「+」,正折射功率)。這些在x及y中具有不同正負號之折射功率的反射鏡構成鞍狀表面。
圖5及10的具體實施例除外,GI反射鏡總是成對出現,如可從表II中反射鏡類型的順序看出。在圖5的具體實施例中,三個GI反射鏡中一個接著一個位在另一個之後,即反射鏡M1至M3。在圖10的具體實施例中,有一單一GI反射鏡,即反射鏡M1。
圖6至9及圖14至27之具體實施例的反射鏡類型順序對於反射鏡M8至M1一樣均為NNGGNGGN。圖14至17及圖27的具體實施例對於反射鏡M8至M1具有相同的偏轉效應順序,即LRRRLLLR。圖18至25的具體實施例繼而對於反射鏡M8至M1具有相同的偏轉效應順序,即L0RRLLLR。
關於折射功率順序,圖7的具體實施例具有五個在xz平面中具有正折射功率的連續反射鏡,即反射鏡M1至M5。其他具體實施例具有四個在xz平面中具有正折射功率的連續反射鏡。圖8及22的具體實施例具有三個配置在彼此之後之各在yz平面中具有正折射功率的反射鏡,即各例中的反射鏡M3至M5。上文論述其設計資料的其他例示性具體實施例不具有多於兩個在yz平面中具有正折射功率的連續反射鏡。
上述投影光學單元的複數個具體實施例不具有兩個在xz平面或在yz平面中具有正折射功率的連續反射鏡。圖5的具體實施例不具有兩個在平面xz及yz中皆具有正折射功率的連續反射鏡。
為製造微結構化或奈米結構化組件,如下使用投影曝光裝置 1:首先提供反射遮罩10或光罩與基板或晶圓11。之後,借助投影曝光裝置1,將光罩10上的結構投影至晶圓11的感光層上。藉由顯影感光層,接著在晶圓11上產生微結構或奈米結構及因此產生微結構化組件。
3‧‧‧照射光/成像光
4‧‧‧物場
5‧‧‧物面
7‧‧‧投影光學單元
8‧‧‧像場
9‧‧‧像面
15‧‧‧個別光線
16‧‧‧主光線
17‧‧‧通道開口
18‧‧‧第一光瞳平面
19‧‧‧中間像面
M1至M8‧‧‧反射鏡
Claims (27)
- 一種投影光學單元(34;35;36;37),其用於將一物場(4)成像在一像場(8)中,包含複數個反射鏡(M1至M8),其用於將來自該物場(4)的成像光(3)引導至該像場(8),其中至少一個反射鏡(M2、M3、M5、M6)經體現為用於該成像光(3)之一入射角大於60°之掠入射的一反射鏡,其中該投影光學單元(34;35;36;37)在跨越該像場(8)的兩個不同方向中具有兩個不同成像比例(βx、βy)。
- 如申請專利範圍第1項所述之投影光學單元,其中該物場(4)具有一xy長寬比大於1,其中該投影光學單元的該等不同成像比例出現在此長寬比的這兩個物場尺寸(x、y)的方向中。
- 如申請專利範圍第2項所述之投影光學單元,其中該等不同成像比例其中之在一較長物場尺寸(x)中的一成像比例是小於該等不同成像比例其中之在一較短物場尺寸(y)中的另一成像比例,其中該較短物場尺寸垂直於較長物場尺寸。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該兩個不同成像比例之較小者(βx)小於6。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該兩個成像比例之較大者(βy)係至少6。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中 該等反射鏡的至少一者具有一反射面呈一自由形式表面之形式。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,具有一方向相依物側數值孔徑。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,具有一像側數值孔徑為至少0.4,場中心點的一物側主光線角(CRAO)小於7°,其中該像場(8)沿著一場尺寸(x)具有一延伸區多於13mm。
- 如申請專利範圍第8項所述之投影光學單元,具有一數值孔徑為至少0.5。
- 如申請專利範圍第8項所述之投影光學單元,其中該像場(8)的該延伸區在該場尺寸(x)中是多於20mm。
- 如申請專利範圍第2至3項中任一項所述之投影光學單元,更包含具有一光闌邊緣的一光闌(18),其中該光闌邊緣沿著該等物場尺寸之一較短者(y)的一延伸區是小於該光闌邊緣沿著該等物場尺寸之一較長者(x)的另一延伸區。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該等反射鏡(M1至M8;M1至M6;M1至M7;M1至M9;M1至M11)之至少兩者經體現為用於該成像光(3)之一入射角大於60°之掠入射的反射鏡(M2、M3;M5、M6;M1、M2;M1、M2、M3;M3、M4;M6、M7;M4、M5;M2至M6;M1至M4;M6至M9),其在該成像光(3)的光束路徑中直接 配置在彼此之後。
- 如申請專利範圍第12項所述之投影光學單元,其中該等反射鏡之用於掠入射的該至少兩者包含確切兩個用於掠入射的反射鏡(M1、M2)。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該投影光學單元是一屏蔽式單元。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,具有一物面(5)與一像面(9),其中該物場(4)配置於該物面,該像場(8)配置於該像面,且該物面與該像面包括不同於0°的一角度。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該等反射鏡之用於掠入射的該至少兩者包含確切四個用於掠入射的反射鏡(M2、M3、M5、M6)。
- 如申請專利範圍第16項所述之投影光學單元,其中用於掠入射的該四個反射鏡(M2、M3、M5、M6)在該成像光(3)的光束路徑中分別以成對的方式(M2、M3;M5、M6)直接配置在彼此之後。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該等反射鏡之至少兩者經體現為用於該成像光(3)之一入射角小於45°之法線入射的反射鏡(M1、M4、M7、M8;M3至M6;M4至M7;M2、M5、M8、M9;M1、M3、M6、M7;M1、M7、M8;M5、M10、M11)。
- 如申請專利範圍第18項所述之投影光學單元,其中該等反射鏡之用於法線入射的該至少兩者包含四個用於該成像光(3)之一入射角小於45°之法線入射的反射鏡(M1、M4、M7、M8;M3至M6;M4至M7)。
- 如申請專利範圍第1至3項中任一項所述之投影光學單元,其中該投影光學單元(7;20;21)之大於7%的總反射率,其顯現為該投影光學單元(7;20;21;22;23;24;25;26;27;28;29;30)之所有反射鏡(M1至M8;M1至M6;M1至M7;M1至M9;M1至M11)之反射率的乘積。
- 一種光學系統,包含如申請專利範圍第1至20項中任一項所述之一投影光學單元及用照射及成像光(3)照射物場(4)之一照射光學單元(6)。
- 如申請專利範圍第21項所述之光學系統,更包含一EUV光源(2)。
- 一種用於投影微影的投影曝光裝置,包含如申請專利範圍第21或22所述之一光學系統。
- 如申請專利範圍第23項所述之投影曝光裝置,包含用於固持一光罩(10)的一光罩固持器(10a),其可在一掃描方向(y)中位移,其中該投影光學單元在該掃描方向中的一成像比例比與其垂直的方向大。
- 一種光罩(10),用於如申請專利範圍第23或24項所述之一投影曝光裝置,該光罩具有一延伸區為至少104mm×132mm。
- 一種用於製造一結構化組件的方法,包含以下方法步驟: 提供一光罩(10)及一晶圓(11);借助如申請專利範圍第23或24項所述之投影曝光裝置,將該光罩(10)上的一結構投影至該晶圓(11)的一感光層上;產生一微結構或奈米結構於該晶圓(11)上。
- 一種結構化組件,其根據如申請專利範圍第26項之一方法製造。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013214770.8 | 2013-07-29 | ||
DE102013214770 | 2013-07-29 | ||
DE102014203190 | 2014-02-21 | ||
DE102014203190.7 | 2014-02-21 | ||
DE102014208770.8A DE102014208770A1 (de) | 2013-07-29 | 2014-05-09 | Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen Projektionsoptik |
DE102014208770.8 | 2014-05-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202004256A TW202004256A (zh) | 2020-01-16 |
TWI714232B true TWI714232B (zh) | 2020-12-21 |
Family
ID=52274204
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103125669A TWI673515B (zh) | 2013-07-29 | 2014-07-28 | 用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 |
TW108130203A TWI714232B (zh) | 2013-07-29 | 2014-07-28 | 用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103125669A TWI673515B (zh) | 2013-07-29 | 2014-07-28 | 用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10146033B2 (zh) |
JP (3) | JP6688219B2 (zh) |
KR (1) | KR102402365B1 (zh) |
CN (2) | CN105408796B (zh) |
DE (1) | DE102014208770A1 (zh) |
TW (2) | TWI673515B (zh) |
WO (1) | WO2015014753A1 (zh) |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014208770A1 (de) * | 2013-07-29 | 2015-01-29 | Carl Zeiss Smt Gmbh | Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen Projektionsoptik |
JP2017506358A (ja) * | 2014-02-24 | 2017-03-02 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置および方法 |
DE102015226531A1 (de) * | 2015-04-14 | 2016-10-20 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102015221983A1 (de) * | 2015-11-09 | 2017-05-11 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102015221984A1 (de) | 2015-11-09 | 2017-05-11 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102015225262A1 (de) * | 2015-12-15 | 2017-06-22 | Carl Zeiss Smt Gmbh | Optisches System, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage |
DE102015226529A1 (de) * | 2015-12-22 | 2017-06-22 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102016225220A1 (de) | 2016-02-09 | 2017-08-10 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik für die Projektionslithographie sowie optisches System mit einer derartigen Beleuchtungsoptik |
WO2017202976A1 (en) * | 2016-05-25 | 2017-11-30 | Carl Zeiss Smt Gmbh | Position measurement of optical elements in a lithographic apparatus |
DE102016212578A1 (de) * | 2016-07-11 | 2018-01-11 | Carl Zeiss Smt Gmbh | Projektionsoptik für die EUV-Projektionslithographie |
DE102016217633A1 (de) | 2016-09-15 | 2018-03-15 | Carl Zeiss Smt Gmbh | Optische Anordnung, insbesondere in einer Projektionsbelichtungsanlage für die EUV-Lithographie |
DE102017200935A1 (de) | 2017-01-20 | 2018-07-26 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Führung von EUV-Abbildungslicht sowie Justageanordnung für eine derartige abbildende Optik |
DE102017205130A1 (de) | 2017-03-27 | 2017-07-06 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102017205548A1 (de) * | 2017-03-31 | 2018-10-04 | Carl Zeiss Smt Gmbh | Optische Baugruppe zum Führen eines Ausgabestrahls eines Freie-Elektronen-Lasers |
DE102017210269A1 (de) | 2017-06-20 | 2017-08-31 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102017210990A1 (de) | 2017-06-28 | 2017-08-31 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld mit EUV-Abbildungslicht |
DE102017216401A1 (de) | 2017-09-15 | 2018-10-11 | Carl Zeiss Smt Gmbh | Computer-generiertes Hologramm (CGH), sowie Verfahren zu dessen Herstellung |
DE102017216893A1 (de) | 2017-09-25 | 2019-03-28 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld |
DE102017217372A1 (de) | 2017-09-29 | 2017-11-23 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102017217371A1 (de) | 2017-09-29 | 2019-04-04 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102017217680A1 (de) | 2017-10-05 | 2017-11-23 | Carl Zeiss Smt Gmbh | Projektionsobjektiv mit einem Messstrahlengang |
DE102018200167A1 (de) | 2018-01-08 | 2019-07-11 | Carl Zeiss Smt Gmbh | Pupillenfacettenspiegel, Beleuchtungsoptik und optisches System für eine Projektionsbelichtungsanlage |
DE102018201170A1 (de) * | 2018-01-25 | 2019-07-25 | Carl Zeiss Smt Gmbh | Abbildende Optik für die EUV-Mikrolithographie |
DE102018207081A1 (de) | 2018-05-07 | 2019-11-07 | Carl Zeiss Smt Gmbh | Prüfvorrichtung und Verfahren zum Prüfen der Oberflächenform eines optischen Elements |
DE102018207277A1 (de) | 2018-05-09 | 2019-11-14 | Carl Zeiss Smt Gmbh | Lithografiemaske, optisches System zur Übertragung von Original Strukturabschnitten der Lithografiemaske sowie Projektionsoptik zur Abbildung eines Objektfeldes, in dem mindestens ein Original-Strukturabschnitt einer Lithografiemaske anordenbar ist |
DE102018209175B4 (de) | 2018-06-08 | 2024-01-04 | Carl Zeiss Smt Gmbh | Computer-generiertes Hologramm (CGH), interferometrische Prüfanordnung, sowie Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102018211853A1 (de) | 2018-07-17 | 2020-01-23 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102018214437A1 (de) | 2018-08-27 | 2018-10-18 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102018221406A1 (de) | 2018-12-11 | 2019-12-24 | Carl Zeiss Smt Gmbh | Diffraktives optisches Element sowie Verfahren zu dessen Herstellung |
DE102018221405A1 (de) | 2018-12-11 | 2019-12-24 | Carl Zeiss Smt Gmbh | Diffraktives optisches Element sowie Verfahren zu dessen Herstellung |
EP3674797B1 (en) * | 2018-12-28 | 2021-05-05 | IMEC vzw | An euvl scanner |
DE102019201084A1 (de) | 2019-01-29 | 2019-03-21 | Carl Zeiss Smt Gmbh | Verfahren zur Vorhersage einer in einer vorgegebenen Einbaulage in einem optischen System zu erwartenden gravitationsbedingten Durchbiegung eines optischen Elements |
DE102019201762A1 (de) | 2019-02-12 | 2020-08-13 | Carl Zeiss Smt Gmbh | Vorrichtung und Verfahren zur Charakterisierung der Oberflächenform eines Testobjekts |
DE102019202759A1 (de) | 2019-02-28 | 2019-04-18 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projek-tionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102019205271A1 (de) | 2019-04-11 | 2020-10-15 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
DE102019208961A1 (de) | 2019-06-19 | 2020-12-24 | Carl Zeiss Smt Gmbh | Projektionsoptik und Projektionsbelichtungsanlage mit einer solchen Projektionsoptik |
DE102019214979A1 (de) | 2019-09-30 | 2021-04-01 | Carl Zeiss Smt Gmbh | Messvorrichtung zur interferometrischen Bestimmung einer Oberflächenform |
DE102019215707A1 (de) | 2019-10-14 | 2021-04-15 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102019215828B4 (de) | 2019-10-15 | 2022-12-01 | Carl Zeiss Smt Gmbh | Messvorrichtung und Verfahren zum Vermessen einer Oberflächenform eines optischen Elements |
DE102019216447A1 (de) | 2019-10-25 | 2019-12-19 | Carl Zeiss Smt Gmbh | Interferometrische Prüfanordnung zur Prüfung der Oberflächenform eines Testobjekts |
DE102019219209A1 (de) | 2019-12-10 | 2020-01-23 | Carl Zeiss Smt Gmbh | Oberflächenprofil-Messeinrichtung zur Vermessung der Spiegel einer abbildenden Optik |
DE102020210529A1 (de) | 2020-08-19 | 2022-02-24 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
WO2022073610A1 (de) | 2020-10-08 | 2022-04-14 | Carl Zeiss Smt Gmbh | Herstellungsverfahren und messverfahren |
DE102021203123A1 (de) | 2021-03-29 | 2022-09-29 | Carl Zeiss Smt Gmbh | Computer-generiertes Hologramm (CGH) sowie interferometrische Messanordnung zur Bestimmung der Oberflächenform eines Prüflings |
DE102021203850A1 (de) | 2021-04-19 | 2022-02-24 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Herstellung eines Computer-generierten Hologramms |
DE102021205202A1 (de) | 2021-05-21 | 2022-11-24 | Carl Zeiss Smt Gmbh | Messanordnung und Verfahren zur Vermessung der Oberflächenform eines optischen Elements |
DE102021205774A1 (de) | 2021-06-08 | 2022-12-08 | Carl Zeiss Smt Gmbh | Abbildende Optik |
DE102021205775A1 (de) | 2021-06-08 | 2022-12-08 | Carl Zeiss Smt Gmbh | Abbildende Optik |
DE102022205887A1 (de) | 2021-06-23 | 2022-12-29 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Vermessung der Oberflächenform eines optischen Elements |
DE102022207720A1 (de) | 2021-08-11 | 2023-02-16 | Carl Zeiss Smt Gmbh | Verfahren zur Vorhersage einer Abweichung zwischen einer für ein optisches Element in einem Messzustand gemessenen und einer im Betriebszustand zu erwartenden Passe |
WO2023051939A1 (en) | 2021-10-01 | 2023-04-06 | Carl Zeiss Smt Gmbh | Method for characterizing the surface shape of an optical element, and interferometric test arrangement |
DE102021211181A1 (de) | 2021-10-05 | 2022-08-18 | Carl Zeiss Smt Gmbh | EUV-Projektionsoptik |
DE102021211963A1 (de) | 2021-10-25 | 2022-12-29 | Carl Zeiss Smt Gmbh | Verfahren sowie interferometrische Messanordnung zur Bestimmung der Oberflächenform eines Prüflings |
DE102021213383A1 (de) | 2021-11-29 | 2023-06-01 | Carl Zeiss Smt Gmbh | Computer-generiertes Hologramm (CGH), sowie Verfahren zur Auslegung eines CGH |
DE102021213959B4 (de) | 2021-12-08 | 2024-01-25 | Carl Zeiss Smt Gmbh | EUV-Lichtquelle sowie Analyse- und/oder Produktionssystem mit einer derartigen EUV-Lichtquelle |
DE102022203745A1 (de) | 2022-04-13 | 2022-09-15 | Carl Zeiss Smt Gmbh | EUV-Kollektor für eine EUV-Projektionsbelichtungsanlage |
DE102022204645B4 (de) | 2022-05-12 | 2024-01-25 | Carl Zeiss Smt Gmbh | Verfahren sowie interferometrische Messanordnung zur Bestimmung der Oberflächenform eines Prüflings |
DE102022206110A1 (de) * | 2022-06-20 | 2023-12-21 | Carl Zeiss Smt Gmbh | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld |
DE102022206112A1 (de) | 2022-06-20 | 2023-12-21 | Carl Zeiss Smt Gmbh | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld |
DE102022206650A1 (de) | 2022-06-30 | 2024-01-04 | Carl Zeiss Smt Gmbh | Verfahren sowie Messanordnung zur interferometrischen Bestimmung der Oberflächenform eines Prüflings |
DE102022209513A1 (de) | 2022-09-12 | 2023-10-19 | Carl Zeiss Smt Gmbh | Verfahren zum Kalibrieren einer sphärischen Welle, sowie Prüfsystem zur interferometrischen Bestimmung der Oberflächenform eines Prüflings |
DE102022209791B3 (de) | 2022-09-19 | 2023-07-06 | Carl Zeiss Smt Gmbh | EUV-Kollektor für eine EUV-Projektionsbelichtungsanlage |
DE102022209887A1 (de) | 2022-09-20 | 2023-08-24 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements |
DE102022212382A1 (de) | 2022-11-21 | 2023-02-23 | Carl Zeiss Smt Gmbh | Verfahren zum Design einer Projektionsoptik sowie Projektionsoptik |
DE102023201790A1 (de) | 2023-02-28 | 2024-08-29 | Carl Zeiss Smt Gmbh | Verfahren zur interferometrischen Bestimmung der Oberflächenform eines Prüflings |
DE102023203224A1 (de) * | 2023-04-06 | 2024-10-10 | Carl Zeiss Smt Gmbh | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld |
DE102023203223A1 (de) * | 2023-04-06 | 2024-10-10 | Carl Zeiss Smt Gmbh | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld |
EP4354188A1 (en) | 2023-04-19 | 2024-04-17 | Carl Zeiss SMT GmbH | Method of manufacturing a diffractive optical element and diffractive optical element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1954406B (zh) * | 2004-06-23 | 2011-07-06 | 株式会社尼康 | 投影光学系统、曝光装置以及曝光方法 |
US20110164233A1 (en) * | 2008-09-30 | 2011-07-07 | Carl Zeiss Smt Gmbh | Field facet mirror for an illumination optics of a projection exposure apparatus for euv microlithography |
US20130063716A1 (en) * | 2010-05-18 | 2013-03-14 | Hans-Jürgen Mann | Illumination optics for a metrology system for examining an object using euv illumination light and metrology system comprising an illumination optics of this type |
TW201317717A (zh) * | 2011-10-03 | 2013-05-01 | Asml Holding Nv | 檢驗裝置,微影裝置及元件製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2759106A (en) | 1951-05-25 | 1956-08-14 | Wolter Hans | Optical image-forming mirror system providing for grazing incidence of rays |
US2766385A (en) * | 1952-09-11 | 1956-10-09 | Herrnring Gunther | Optical image-forming plural reflecting mirror systems |
JPH03504271A (ja) * | 1988-03-11 | 1991-09-19 | ロッサー,ロイ,ジョナサン | 光学装置及びその製造法 |
JP3499592B2 (ja) * | 1994-01-31 | 2004-02-23 | 株式会社ルネサステクノロジ | 投影露光装置及びパターン転写方法 |
US6577443B2 (en) | 1998-05-30 | 2003-06-10 | Carl-Zeiss Stiftung | Reduction objective for extreme ultraviolet lithography |
DE19923609A1 (de) * | 1998-05-30 | 1999-12-02 | Zeiss Carl Fa | Ringfeld-4-Spiegelsysteme mit konvexem Primärspiegel für die EUV-Lithographie |
GB0006330D0 (en) * | 2000-03-17 | 2000-05-03 | Kemp Malcolm H D | Superresolving/high numerical aperture imaging devices |
DE10155711B4 (de) | 2001-11-09 | 2006-02-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Im EUV-Spektralbereich reflektierender Spiegel |
US7481544B2 (en) * | 2004-03-05 | 2009-01-27 | Optical Research Associates | Grazing incidence relays |
KR101127346B1 (ko) | 2005-09-13 | 2012-03-29 | 칼 짜이스 에스엠티 게엠베하 | 마이크로리소그라피 투영 광학 시스템, 디바이스 제작 방법 및 광학 표면을 설계하기 위한 방법 |
CN101416117B (zh) * | 2006-04-07 | 2014-11-05 | 卡尔蔡司Smt有限责任公司 | 微光刻投影光学系统、工具及其制造方法 |
DE102008033341A1 (de) | 2007-07-24 | 2009-01-29 | Carl Zeiss Smt Ag | Projektionsobjektiv |
DE102009032751A1 (de) | 2008-09-16 | 2010-04-15 | Carl Zeiss Smt Ag | Reflektives optisches Element für die EUV-Lithographie |
DE102009011328A1 (de) | 2009-03-05 | 2010-08-19 | Carl Zeiss Smt Ag | Abbildende Optik |
DE102009045096A1 (de) | 2009-09-29 | 2010-10-07 | Carl Zeiss Smt Ag | Beleuchtungssystem mit einer Spiegelanordnung aus zwei Spiegeln |
JP5469778B2 (ja) * | 2010-04-22 | 2014-04-16 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 結像光学系及びそのような結像光学系を有するマイクロリソグラフィのための投影露光装置 |
CN103038690B (zh) * | 2010-07-30 | 2016-08-03 | 卡尔蔡司Smt有限责任公司 | 成像光学系统以及具有该类型成像光学系统的用于微光刻的投射曝光设备 |
DE102010039927A1 (de) * | 2010-08-30 | 2012-03-01 | Carl Zeiss Smt Gmbh | Substrat für Spiegel für die EUV-Lithographie |
DE102010040811A1 (de) * | 2010-09-15 | 2012-03-15 | Carl Zeiss Smt Gmbh | Abbildende Optik |
CN102012558B (zh) * | 2010-10-29 | 2012-05-09 | 中国科学院高能物理研究所 | 具有最大适用范围的同步辐射曲边聚焦镜及其获得方法 |
DE102011075579A1 (de) | 2011-05-10 | 2012-11-15 | Carl Zeiss Smt Gmbh | Spiegel und Projektionsbelichtungsanlage für die Mikrolithographie mit einem solchen Spiegel |
DE102011083888A1 (de) | 2011-09-30 | 2013-04-04 | Carl Zeiss Smt Gmbh | Abbildende katoptrische EUV-Projektionsoptik |
DE102012202675A1 (de) | 2012-02-22 | 2013-01-31 | Carl Zeiss Smt Gmbh | Abbildende Optik sowie Projektionsbelichtungsanlage für die Projektionslithografie mit einer derartigen abbildenden Optik |
DE102014208770A1 (de) | 2013-07-29 | 2015-01-29 | Carl Zeiss Smt Gmbh | Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen Projektionsoptik |
-
2014
- 2014-05-09 DE DE102014208770.8A patent/DE102014208770A1/de not_active Withdrawn
- 2014-07-25 KR KR1020167004700A patent/KR102402365B1/ko active IP Right Grant
- 2014-07-25 JP JP2016530459A patent/JP6688219B2/ja active Active
- 2014-07-25 WO PCT/EP2014/066072 patent/WO2015014753A1/en active Application Filing
- 2014-07-25 CN CN201480042509.0A patent/CN105408796B/zh active Active
- 2014-07-25 CN CN202010594600.0A patent/CN111708256B/zh active Active
- 2014-07-28 TW TW103125669A patent/TWI673515B/zh active
- 2014-07-28 TW TW108130203A patent/TWI714232B/zh active
-
2015
- 2015-12-08 US US14/962,130 patent/US10146033B2/en active Active
-
2018
- 2018-09-24 US US16/139,474 patent/US10558026B2/en active Active
-
2020
- 2020-04-03 JP JP2020067492A patent/JP2020109533A/ja active Pending
-
2022
- 2022-09-21 JP JP2022150191A patent/JP7565324B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1954406B (zh) * | 2004-06-23 | 2011-07-06 | 株式会社尼康 | 投影光学系统、曝光装置以及曝光方法 |
US20110164233A1 (en) * | 2008-09-30 | 2011-07-07 | Carl Zeiss Smt Gmbh | Field facet mirror for an illumination optics of a projection exposure apparatus for euv microlithography |
US20130063716A1 (en) * | 2010-05-18 | 2013-03-14 | Hans-Jürgen Mann | Illumination optics for a metrology system for examining an object using euv illumination light and metrology system comprising an illumination optics of this type |
TW201317717A (zh) * | 2011-10-03 | 2013-05-01 | Asml Holding Nv | 檢驗裝置,微影裝置及元件製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020109533A (ja) | 2020-07-16 |
JP2016525720A (ja) | 2016-08-25 |
US10146033B2 (en) | 2018-12-04 |
DE102014208770A1 (de) | 2015-01-29 |
TW202004256A (zh) | 2020-01-16 |
TWI673515B (zh) | 2019-10-01 |
CN105408796B (zh) | 2020-07-17 |
CN111708256B (zh) | 2024-06-25 |
KR20160040601A (ko) | 2016-04-14 |
JP7565324B2 (ja) | 2024-10-10 |
JP2022176242A (ja) | 2022-11-25 |
KR102402365B1 (ko) | 2022-05-26 |
JP6688219B2 (ja) | 2020-04-28 |
CN105408796A (zh) | 2016-03-16 |
TW201520597A (zh) | 2015-06-01 |
US20190025562A1 (en) | 2019-01-24 |
WO2015014753A1 (en) | 2015-02-05 |
US10558026B2 (en) | 2020-02-11 |
CN111708256A (zh) | 2020-09-25 |
US20160085061A1 (en) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI714232B (zh) | 用於將物場成像於像場的投影光學單元以及包含此投影光學單元的投影曝光裝置 | |
KR102648040B1 (ko) | 이미지 필드내에 오브젝트 필드를 이미징하기 위한 이미징 광학 유닛 및 이러한 이미징 광학 유닛을 포함하는 투영 노광 장치 | |
JP5319789B2 (ja) | 結像光学系及びこの種の結像光学系を有するマイクロリソグラフィ用の投影露光装置 | |
TWI714524B (zh) | 用於投影微影的照明光學單元、光瞳琢面反射鏡、光學系統、照明系統、投影曝光裝置、用以產生一微結構組件之方法以及微結構組件 | |
TWI746594B (zh) | 用於euv投射微影的投射光學單元 | |
US9983484B2 (en) | Illumination optical unit for EUV projection lithography | |
CN108292032B (zh) | 将物场成像到像场中的成像光学单元,以及包括这种成像光学单元的投射曝光设备 | |
KR101388330B1 (ko) | 이미징 광학기기 및 이러한 유형의 이미징 광학기기를 갖는 마이크로리소그래피용 투영 노광 설비 | |
TWI820129B (zh) | 用以轉移微影光罩之原初結構部分的光學系統、用以將可配置微影光罩之至少一原初結構部分的物場進行成像的投射光學單元、微影光罩、投射曝光裝置、結構化組件、以及用以產生結構化組件的方法 | |
CN108351499B (zh) | 将物场成像到像场中的成像光学单元以及包括这样的成像光学单元的投射曝光设备 | |
TWI539231B (zh) | 成像光學系統、具有此類型成像光學系統之用於微影的投射曝光設備以及用於製造結構化組件的方法 | |
WO2023247170A1 (en) | Imaging euv optical unit for imaging an object field into an image field | |
TWI805619B (zh) | 用於將物場成像至像場的成像光學單元 | |
CN117441122A (zh) | 成像光学单元 | |
US9459539B2 (en) | Imaging optical unit for a projection exposure apparatus | |
CN117441116A (zh) | 成像光学单元 |